FUNCTORIAL PROPERTIES OF PRO-p-IWAHORI COHOMOLOGY

KAROL KOZIOL

ABSTRACT. Suppose F' is a finite extension of Qp, G is the group of F-points of a connected reductive
F-group, and I; is a pro-p-Iwahori subgroup of G. We construct two spectral sequences relating derived
functors on mod-p representations of G to the analogous functors on Hecke modules coming from pro-p-
Iwahori cohomology. More specifically: (1) using results of Ollivier—Vignéras, we provide a link between
the right adjoint of parabolic induction on pro-p-Iwahori cohomology and Emerton’s functors of derived
ordinary parts; and (2) we establish a “Poincaré duality spectral sequence” relating duality on pro-p-Iwahori
cohomology to Kohlhaase’s functors of higher smooth duals. As applications, we calculate various examples
of the Hecke modules H?(Iy, 7).

1. INTRODUCTION

Functorial constructions abound in the representation theory of p-adic reductive groups. For example,
when working with smooth representations over C, supercuspidal representations may be characterized as
those annihilated by all Jacquet functors, while duality functors arise naturally in functional equations of
automorphic L-functions (in the form of contragredient representations). Such functors give the category of
smooth representations a rich and intricate structure.

Motivated by recent advances in the mod-p and p-adic Langlands programs (cf. [AHHV17], [BP12],
[CEGT16], [Coll0], [Pasl3], [Sch18], [Ast08], [Ast10a], [Ast10b]), we would like to understand similar con-
structions when dealing with representations over coefficient fields of characteristic p. Unfortunately, most of
the analogously defined functors fail to be exact. It is therefore natural (and indeed necessary) to consider
their derived versions.

In order to state our setup more precisely, we introduce some notation. Let G denote a connected reductive
group defined over a finite extension F' of QQ,, and denote by G its group of F-points. We also let I; denote
a choice of pro-p-Iwahori subgroup of G, which we assume for this introduction to be torsion-free. All
representations and modules appearing in this article will have coefficients in a finite field C' of characteristic
p. Our starting point is the following theorem of Schneider [Sch15]: there exists an equivalence of triangulated
categories

D(Rep™(G)) — D(dgMod—H"),
where Rep™(G) denotes the category of smooth (mod-p) representations of G, H*® denotes the differential
graded Hecke algebra of G with respect to I, and 0g9to0—H® denotes the category of differential graded
modules over H®. The equivalence is given by sending a complex 7® of smooth representations to the complex
RH’(I,,7*) of derived I,-invariants, which naturally comes equipped with an action of the Hecke DGA H°.

Using the derived equivalence above, one would hope that various functors on the category D(PRep™ (G))
could be transferred to functors on the category D(0g9tod—H®). The purpose of this article is to address
several versions of this expectation. Namely, we simplify the setup somewhat, and consider the cohomology
of the above derived equivalence, along with derived functors on both sides. Thus, given a smooth G-
representation 7, we consider its pro-p-Iwahori cohomology spaces Hi(Il,w). These spaces come equipped
with a right action of H, the pro-p-Iwahori-Hecke algebra of I1-bi-invariant, compactly supported, C-valued
functions on G. (The algebra H is related to the DGA H*® via the isomorphism h%(H®*) = H.) Our goal is to
investigate how various derived functors on 7 are related to derived functors on H' (I, 7).

We now describe the contents of this article. The first situation we consider in Section 3 is that of passing
from G to a Levi subgroup. Suppose P = M x N is a rational parabolic subgroup of G, with rational Levi
subgroup M (chosen to be “compatible” with I7), and recall that we have the functor of parabolic induction

Ind% : Rep™ (M) — Rep™(G).
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This functor is exact, and by [Vigl6b], it admits a right adjoint
RS : Rep™ (G) — Rep™ (M).
On the side of H-modules, we also have a parabolic induction functor
Ind}; - Mod—Hy —> Mod—H,

where #H s denotes the pro-p-Iwahori-Hecke algebra of M with respect to Inr1 := I1 N M. As above, this
parabolic induction functor admits a right adjoint

RY ., Mod—H — Mod—H .

Work of Ollivier—Vignéras in [OV18] shows that the following diagram commutes up to natural equivalence:

RG
Rep™ (G) —— Rep™ (M)

HO(Il,)J JHO(IALL_)
RH

Mod—H —— M Mod—H s

Our first result computes the derived version of this diagram.

Theorem 1.1. Suppose m € Rep™ (G) is an admissible representation. Then we have an Es spectral sequence
of Hr-modules 4 4 .
H' (In1, RFRE(1)) = RY (H™ (11, 7)).

The proof of the above result follows from some standard manipulations with derived functors, along with
the explicit description of the functor ’R%

While the above theorem has the advantage of being valid for arbitrary reductive groups, very little is
known about the functors R7R% (to the author, at least). Indeed, even the construction of the underived
functor Rg is non-explicit, and follows from abstract category theoretic existence arguments. In order to
actually compute the above spectral sequence, we employ the following result, due to Abe-Henniart—Vignéras
[AHV19]: if 7 is an admissible G-representation, then we have

RE () = Ordg- (r),
where P~ denotes the parabolic subgroup opposite to P, and Ordgf denotes Emerton’s functor of ordinary
parts, constructed in [Emel0Oa]. The latter functor has the advantage of having an explicit description (see
Subsubsection 3.1.1 below). Moreover, if 7 is an admissible G-representation, then Ordgf (m) is an admissible
M-representation. Thus, the above commutative diagram becomes

d Ord( d
Rep™im(G) P~ Repdm (1)

H0(117_)J JHO(IZM,L—)
RH

Mod—H —— 2 Mod—Has
We would like to compute some sort of derived version of the above diagram. There are several difficulties
that arise, however. For one, the category Rep®™(G) of admissible G-representations does not have enough
injectives. We must therefore pass to the category i)‘iepladm(G) of locally admissible G-representations, which
does have enough injectives. This must be done very carefully, as it is not known whether RG agrees with
Ordgf on %epladm(G). Nevertheless, imposing some restrictions, we prove the following theorem.

Theorem 1.2. Suppose the simply connected cover of the derived subgroup of G is SLy/p, and let m €
Rep™™(Q) denote an admissible representation which has a central character. Then we have an Fy spectral
sequence of Hpr-modules
H' (IM,la RJOTdIGD* (ﬂ-)) = R%M (HZ+J (Ila 7T))7
where RIOrd$_ is computed in the category Rep™™(G).
With the hypotheses of the above theorem, the derived functor R?Ord%_ agrees with the d-functor H/ Ord%_

defined by Emerton in [EmelOb]. In particular, they may be explicitly computed using results of Emerton
and Hauseux (op. cit. and [Haul8], respectively).
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The proof of the above theorem is given for a general reductive group, granting the validity of three
interconnected conjectures. These conjectures in particular guarantee that R’ Ordg, ~ H’ Ordlc;t7 and that
we may compute R?Ord$%-_ () using certain resolutions in the category Rep®™ (G). In Appendix A, we prove
the three conjectures for several classes of groups (and in particular for those mentioned in the theorem) using
results of Emerton and Pasktnas. Verifying these conjectures for higher rank groups will likely require new
ideas.

The second functor we consider is that of passing to a dual representation. It is well known that for
G-representations over C, the process of taking smooth vectors in the C-linear dual is an exact functor,
which preserves admissibility and irreducibility. On the contrary, when 7 is a G-representation over a field of
characteristic p, the functor

7 S9(7) i= (xV)>®
is quite poorly behaved; in particular, it is no longer exact, and annihilates irreducible, admissible, infinite-
dimensional representations. To remedy this, Kohlhaase in [Koh17] introduced a contravariant é-functor of
“higher smooth duals”
St Rep™ (G) — Rep™(G)
for 0 <i < d:= dimg, (G), extending the functor S0, Taken together, these functors are much better behaved,
and give a satisfactory duality theory on Rep®¥™(G) (see op. cit., Corollary 3.15).

In Section 4, we compare Kohlhaase’s d-functor (S%);>o with duality for the functors H'(I;, —) of pro-
p-Iwahori cohomology. This is achieved by constructing a certain double complex which incorporates both
functors, and examining the two associated spectral sequences using results of Symonds—Weigel [SW00] on
the cohomology of p-adic analytic groups. As a result, we obtain the following “Poincaré duality spectral
sequence.”

Theorem 1.3. Suppose I is torsion-free, and m € Rep™ (G) is a smooth representation. We then have an
E5 spectral sequence of H-modules

Hi (Il7 S] (77)) — Hd_i_j (Ila W)v(§)7

where Hd_i_j(h, )V denotes the H-module whose underlying vector space is the linear dual of Hd_i_j(ll, ),
and (§) denotes the twist by a certain orientation character.

This spectral sequence may be thought of as an H-equivariant version of the Tate spectral sequence (cf.
[Ser02, Ch. 1, App. 1, Cor.]). Further, the theorem above partially answers a question posed by Harris in
[Harl6, Ques. 4.5]. We also note that there is related work of Sorensen relating Kohlhaase’s smooth duals to
a duality operation on the category D(dg9tod—H?®), assuming the group G is compact.

To conclude, we give in Section 5 several example calculations using the above spectral sequences. In
particular, using results of Emerton, Kohlhaase, Pasktinas and others, we obtain the following:

e When G = GL2(Qp) or G = SL2(Q,) with p > 5, we are able to compute (essentially) all of the
cohomology spaces H' (I, 7), where 7 is an absolutely irreducible G-representation.

e When G = GL3(Q,) and Stgr, denotes the Steinberg representation of G, we compute some of
the spaces H'(I1, Stgr,). We also are able to deduce a structural result about the representations
57 (StGL3)~

e When G is a general reductive group and 1¢ denotes the trivial G-representation, we obtain a Poincaré
duality isomorphism of H-modules

H'(I1,1¢) = H'™' (11, 16)" (§).
When 7 = Indg(x) is the parabolic induction of a character, we have an analogous isomorphism
H' (I, Ind$ (x)) = HE™e P = (1, md§(x")) ' (£),

where y’ denotes the dual character of x twisted by a certain modulus character.

\

We have decided to work with spectral sequences and derived functors in this article for the sake of explicitly
computing the cohomology spaces Hi(Il,w). In the spirit of Schneider’s derived equivalence, it should be
possible to upgrade these results to the level of total derived functors compatible with DGA structures. We
hope to return to this in future work.
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2. NOTATION

2.1. Basic notation. Let p denote a prime number, and suppose F' is a finite extension of ;. For an
algebraic F-group H, we let H := H(F') denote its group of F-points. Throughout the article we will consider
a connected reductive F-group G and its group of F-points G. Let Z denote the connected center of G, and
let Zy denote the maximal compact subgroup of Z. The group Z/ Zy is free of finite rank, say s, and choosing
a splitting of the surjection Z —» Z® gives a set {z1,..., 25} of central elements in G.

Let S denote a fixed maximal F-split torus of G, and Z its centralizer. We fix a minimal F-parabolic
subgroup B containing Z, and denote by U its unipotent radical, so that B = Z x U. More generally, by a
standard parabolic subgroup P we will mean any F-parabolic subgroup containing B. We write P = M x N,
where N is the unipotent radical of P, and M is its Levi component. It will be assumed that all Levi
components M contain Z. We write P~ = M x N~ for the opposite parabolic subgroup.

2.2. Representations. We let C denote a finite field of characteristic p, which will serve as the field of
coefficients for all representations and modules appearing. We let Pep°°(G) denote the category of smooth
G-representations. Further, we denote by Rep®™(G) (resp. Rep'®I™(G)) the full subcategory of Rep™(G)
consisting of (locally) admissible representations. All three categories are abelian, and the categories Rep™ (G)
and Rep™™ (@) have enough injectives (see [Emel0a, Lem. 2.2.6, Props. 2.2.13, 2.2.18] and [Emel0b,
Prop. 2.1.1]). Finally, for ¢1,...,¢s € C*, we let E)‘iepi?fci (G) denote the abelian subcategory of Rep™™™(QG)

consisting of representations on which the z; act by the scalars ¢;.

2.3. Hecke algebras. We fix a chamber of the semisimple Bruhat—Tits building contained in the apartment
corresponding to S, and let I denote the corresponding Iwahori subgroup and I; its pro-p-radical. (We make
no assumptions about torsion-freeness of I7, until indicated otherwise.) We then define the pro-p-Iwahori-
Hecke algebra H to be the convolution algebra of C-valued, compactly supported, [;-bi-invariant functions
on G. For g € G, we let T, denote the characteristic function of I1g/;. The algebra H has a distinguished set
of generators (given by those Ty where g is a lift of a generator of the extended pro-p affine Weyl group of
G) which satisfy braid relations and quadratic relations, but we shall not need this description. (See [Vigl6a,
§4] for details.)

Let Mod—?H denote the category of right H-modules. We will consider objects of 9t0d0—7H coming from the
following construction. Given a smooth G-representation 7, the space of Ij-invariants 7/t has a right action
of H, recalled in [OV18, pf. of Lem. 4.5]. We therefore obtain a functor

Rep™(G) — Mod—H

T — gl

Since I; is open in G, the functor c—indi of compact induction is exact, and therefore its right adjoint
res{ : Rep™ (G) — Rep™ (1) preserves injectives. Thus, we see that the derived functors of the above may
be identified with the cohomology spaces Hi(Il, ), equipped with a right action of the algebra H. (We will
make this abuse of notation going forward.) Explicitly, the operator T, acts on v € H'(I;,7) by

. _ I, —1 I,
vty = (Corflﬂg_lflg © 9« Ores[lﬂghg_l) (v).

We shall also need a duality operation on Hecke modules. Given a right H-module m, we set m¥ :=
Homg (m, C), and define a right action of H on m¥ by

(f-Tg)(m) = f(m-Ty-),
where f € mY and m € m. The fact that this gives a well defined right action follows from [Vigl5, Lemma
2.11].
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3. ORDINARY PARTS
3.1. Preliminaries.

3.1.1. Smooth representations. Let P = M x N denote a standard parabolic subgroup of G. Recall that we
have the smooth parabolic induction functor

d$ :  Rep™ (M) — Rep™ (),

which is exact and fully faithful ([Vigl6b, Prop. 4.2, Thm. 5.3]). Using [Emel0a, Prop. 4.1.7], we see that
this functor restricts to exact functors

d$ . Rep'®d™ (M) — Rep'*™(Q),
md$ : Rep™™(M) — Rep®™(Q).
By [Vigl6h, Prop. 4.2], the first of the above functors admits a right adjoint
RE: Rep™(G) — Rep™ (M).
On the other hand, Emerton in [Emec10a] has defined the functors of ordinary parts
Ord%_ : Mep™™(@) — Rep™I™ (M),
ordG. : Rep™™(G) — Rep™™ (M),

which are right adjoint to Ind%. We recall the construction of Ord%_ (x) for € Rep'* ™ (G). Let M~ C M
denote the submonoid of elements m such that mNg m~! C N;, where Ny := INN~. We let Zy; denote
the center of M, set Z;; := M~ N Zy, and let z € Z;; denote an element such that Zy, is generated (as a
monoid) by Z;, and z~!. As vector spaces, we then have

Ord%- (m) = Clz*] ®cpy 7o,

N,

where z acts on 7¥0 via the Hecke action

COI'N(;7
aNo 2y peNg 2™t Mol Ny
(cf. [EmelOa, Def. 3.1.3]). Given m € M, we may write m = z'mm~ for some i,, € Z and m~ € M~. The
action of m on 2z’ ® v € Ord%_ () is then given by
m.(z' ®@v) = 2T @m™ - v,
where we use the Hecke action in the second tensor factor. Up to isomorphism, the M-representation Ordg_ (m)
is independent of the choice of compact open subgroup N, of N~ ([EmelOa, Prop. 3.1.12]).

The functor Ord%- : Rep®I™(G) — Rep™@™ (M) is right adjoint to the admissible parabolic induction
functor Ind$ : Rep®™ (M) — Rep?™™(G). Theorem 4.11 of [AHV19] shows that RE preserves admissibility,
and is therefore also right adjoint to Ind$ : Rep®™ (M) — Rep®¥™(G). Consequently, we have Ord%_ () =
RE () for every m € Rep®™(Q).

Replacing 7o above with H'(Ny ,7) gives the definition of the d-functor H'Ord%_ : Rep™(G) —
Rep®¥™ (M) (and similarly with “adm” replaced by “ladm”; see [EmelOb, Def. 3.3.1, Lem. 3.2.1, Thm.
3.4.7)).

3.1.2. Hecke modules. We have analogous functors on the side of Hecke modules. By [OV18, §2.4.1, 2.4.2],
the group Iy 1 := I N M is a pro-p-Iwahori subgroup of M, and therefore we may form the analogous pro-
p-Iwahori-Hecke algebra H ;. Its Hecke operators will be denoted T% for m € M. Note that H, is not a
subalgebra of H in general.
Define the monoid
M* :={me& M :mNym* C Ny and m~"Nym C Ny },

where Ny := I N N. (Thus (MT)~' € M~.) The set of functions in Hjys with support in M* forms a
subalgebra, denoted 7—[}(}[, and is called the positive subalgebra. The algebra H}, admits an embedding € into
‘H, given by sending T% to Ty, for m € M. Thus, given any H j/-module n, we may define an H-module by

IndZM (n):=n @yt o M-
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The functor IndzM : Mod—Hpy —> Mod—H is exact and fully faithful ([Viglh, Prop. 4.1] and [Abel9b,
Lem. 5.2]).
The right adjoint of Ind%M is the functor ’RﬁM : Mod—H — IMod—H s given by

R, (m) = Homy+ o (Har, m)
for m € 9Moo—H. The right action of Hj; on the above space is the evident one, and we view m as an
H},-module via the embedding 6 : H, — H above.

We utilize another description of R%JW which will be useful in the derived context. By [Vigl5, Thm.

1.4(i1)], the algebra H,y is the localization of H}, at T, (with z as in the definition of Ord%_). Therefore,
we have an isomorphism of C-vector spaces

Homy + o(Har, m) = m  m
v}—)v-Tz,l

Fo— (™),

Let O : Modo—H; — C—Vec denote the forgetful functor. Since O is exact, the Grothendieck spectral

sequence associated to the composition O o R%M ~ @UHU T collapses to give
T,

OoR'RY  ~ I'&ni
U'—H)'Tz_l
In particular, if m is finite-dimensional over C, then the tower (m),>o satisfies the Mittag-Leffler condition.
Thus, we obtain @;HU.T m = 0 for all ¢ > 0, and consequently RlRﬁM (m) =0 for all ¢ > 0.

1

3.1.3. Comparison. The right adjoint functors OrdIGD,, RE and R%M are related as follows. By [OV18, §4.3.3,
Question 5] the diagram

RG
Rep™ (G) —— Rep™ (M)

(1) (_)11J J(_)IZM,I
RHM

Mod—H —— M Mod—H s

commutes up to natural equivalence. Similarly, since OrdIGD, o~ Rg on the category %epadm (G), we also have
the following commutative diagram

d Ordf d
Rep™(G) ——— Rep“™ (M)

(2) ()hJ J()Il\l,l
RH

Mod—H —— 5 Mod—Hyy

Our goal will be to compute the derived versions of the above diagrams. Note that some care must be taken
here, as the category Rep™™ (G) does not have enough injectives.

3.2. The admissible case. We begin by exploring the case of the ordinary parts functor. In what follows,
our arguments will rely on the following three conjectures.

Conjecture 3.1. Let cy,...,c, € C*, and let 7 € Rep™™ (G). Then there exists A € Rep™ ™ (G) and a

Zi=C4 Zi=C4
G-equivariant injection m — A, such that A|r is injective in Rep™ ().

Conjecture 3.2 (cf. [EmelOb], Conjecture 3.7.2). The functors HiOrdg_ are effaceable on the category
Rep®™(@) for i > 0. Consequently, we have H'OrdS_ ~ R'Ord%_ for i > 0, where R‘Ord%_ is computed
in the category Rep"* ™ (G).

Conjecture 3.3. Suppose m € Rep'*™ (@) is an injective object. Then the restriction |y € Rep™(I) is also
injective.
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We note that Conjecture 3.3 for G implies Conjecture 3.2 for G and any standard parabolic P. In Appendix
A, we provide proofs of these conjectures in several cases: (1) we prove Conjecture 3.1 when the semisimple
F-rank of G is 0 or 1; (2) we prove Conjecture 3.2 when the simply connected cover of the derived subgroup
of G is SLy,p; (3) we prove Conjecture 3.3 when the semisimple F-rank of G is 0. In particular, when the
simply connected cover of the derived subgroup of G is SLy,p, Conjectures 3.1 and 3.2 hold, and Conjecture
3.3 holds for Z, the Levi factor of the minimal F-parabolic subgroup of G.

3.2.1. We first examine the derived functors of the composition H°(I M1,—) O Ordg_. By composing with
the fully faithful inclusion Rep®¥™ (M) — Rep'™™ (M), we consider Ord%_ as a functor %ep??;nci(G) —
Rep'2I™ (M), and the commutative diagram (2) becomes

G

Ord? _
%epadm (G) P %epladm(M)

Zi=C4

(3) (_)IIJ( J{(_)I]\LI
RHM

Mod—H —— M Modo—Hyy

Let 2 denote the full subcategory of Repd™ (G) consisting of those representations A such that Al is

Zi=C4
injective in Rep® (I). We make the following observations:

e Assume Conjecture 3.1 is true for G. Then 2 is cogenerating in %epi?fci(G), in the terminology of

[KS06, Def. 8.3.21(v)]. Therefore, point (i) of Corollary 13.3.8 of op. cit. is satisfied.
e Consider a short exact sequence

0—A —A—A"—0
in Rep?™™ (@), with A, A’ € A. On restriction to I, the injectivity of Al; and A’|; implies the

injectivigl of A”|7. Therefore, A” € 2 and point (ii) of Corollary 13.3.8 of op. cit. is satisfied.
e For A’ € 2, the restriction A’|; is injective, and by definition of H*Ord%_ and [Emel0b, Prop. 2.1.11]

we get H'Ord§_ (4’) = 0. Therefore, given any short exact sequence

0—A —A—A"—0

in %epi?fci (@), with A, A" € A, we get a short exact sequence
0 — Ord%_(A") — Ord$_(A) — Ord%_(A") — 0.
Thus, point (iii) of [KS06, Cor. 13.3.8] is satisfied (for the functor Ord%.).

Combining these facts, [KKS06, Cor. 13.3.8] implies that 2 is Ordgf -injective (cf. op. cit., Definition 13.3.4).

In particular, by Proposition 13.3.5(i) of op. cit., we have the existence of the total derived functor
ROrd$- : DT (Rep2™ (G)) — DT (Rep™ ™ (M)).

Precisely, for m € %epi?fci (@), we have ROrd%_ (7) = Ord%_ (A®), where
0— 71— A" — A — .

is any resolution with A% € 2.

Lemma 3.4. Suppose Conjectures 3.1 and 3.2 are true for G, and let m € %epi?;“ci((?). Then we have
h'(ROrd%- (7)) = R‘Ord%— (),

where R'Ord$— () is calculated in the category Rep' ™ (G).

Proof. Let tq : %epi?;nci (G) — Rep'*¥™ (@) denote the fully faithful inclusion, so that we have a commutative
diagram:

Ord% _

mepadm (G) P %epladm(M)

Zi=C4

LGJ Adm
e

mepladm (G)

This article is protected by copyright. All rights reserved.
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(For the duration of this proof, we use the notation Ordgfadm
functors.)

Let @ denote the full subcategory of %epladm(G) consisting of Ordgfadm—acyclic objects. Note that €
contains all injective objects of Rep'*¥™ (@), as well as those locally admissible G-representations A such that
Alr is injective in Rep™(I) (by [EmelOb, Prop. 2.1.11] and Conjecture 3.2). By [KS06, Cor. 13.3.8], the
category € is Ordgfadm—injective, and similarly the category 2 is tg-injective (compare the discussion at the

beginning of Subsubsection 3.2.1). Since 1 is exact and maps 2 into €, Proposition 13.3.13(ii) of op. cit.
implies

to distinguish between the two ordinary parts

ROrd$_ ~ R(Ordgfadm oLg) ROrdgfadm oRug ~ ROrdIGDfaclm oLg.
(Il

3.2.2. Now let B denote the full subcategory of Rep'®¥™ (M) consisting of H (1,1, —)-acyclic objects. Pro-
ceeding as in the discussion of Subsubsection 3.2.1 or the proof of Lemma 3.4, we get that B is HO(I M1, —)-
injective. Thus, by [KS06, Prop. 13.3.5(i)], we have a total derived functor

RH’(Inr1, —) : DT (Rep™ ™ (M)) — D+ (Mod—Har),
which may be computed using injective resolutions as usual.
Lemma 3.5. Suppose Conjecture 3.3 is true for M, and let T € %epladm(M). Then we have
R (RH®(Iar1, 7)) = H (Ing1,7),
where Hi(IM,l, 7) 1is calculated in the category of smooth M -representations.

Proof. Let iy, : Rep" 3™ (M) —— Rep™ (M) denote the fully faithful inclusion, so that we have a commutative
diagram:

ladm HO(IM.ly—)
Rep'dm (M) — 217 anod—H

L/MJ: A)

Rep™ (M)

(For the duration of this proof, we use the notation HY_(I M.1,—) to distinguish between the two functors of
invariants.)

Let ® denote the full subcategory of Rep®™ (M) consisting of HY, (Ip 1, —)-acyclic objects. The total derived
functor

RH’(Iyr1,—) : DT (Rep® ™ (M)) —> DT (Mod—Hys)
may be computed using injective resolutions, and Conjecture 3.3 and [EmelOb, Prop. 2.1.2] imply that
ty;(A) € D for any injective A € Rep'™™(M). Therefore, [KS06, Prop. 13.3.13(ii)] and exactness of ¢}, imply
RH"(Ins1, —) ~ RHEY (Ing,1, =) 0 ) ~ RHY (Iar,1, —) o Rehy ~ RHY (Iar,1, —) oty
O

3.2.3. Next, we claim that Ord$_(A4) € B for A € 2. Recall that Ord$_ (4) = C[z+] ®cz) AN with z as
in Subsubsection 3.1.1. Given a profinite group H and a smooth H-representation V', we let Ci(H , V) denote
the vector space of V-valued inhomogeneous i-cochains. Letting K denote the set of open normal subgroups
of Ipr,1, we have the following sequence of isomorphisms:

(4) Ol ®cp H' (I, AN ) = Cle¥ @cyy ( lim H'(Ipr,1/K, AKN‘;))
KeK
(5) =~ lim Clz*' ®cp) H Iy /K, AXNo)
KeKk
= %C[zﬂ] ®c) W (C*(Tara /K, AKNo )
(S

This article is protected by copyright. All rights reserved.



FUNCTORIAL PROPERTIES OF PRO-p-IWAHORI COHOMOLOGY 9

(6) = lim b (C[z*"] ®@ct) C°(Tna /K, AKN0 )
KeK
(7) = lim ' (C*(Ia,1/ K, O[] @0 ARN0))
Kek
= lim H'(Iy,1/K, Clz™"] @cp) AN
Kek
(8) = H'(Iy,, Ol @cps AN)

The isomorphism (4) follows from [Ser02, §1.2.2, Cor. 1]; (5) follows from the fact that direct limits commute
with tensor products; (6) follows from the fact that cohomology of a cochain complex commutes with exact

functors; (7) follows from the isomorphism of C[z]-modules C* (I, /K, AKNo ) =2 (AKNo )@illm1:K] and (8)
follows from the fact that lim Clz%] ®C[%] AENo = Oz ®cp,) AN and [Ser02, §1.2.2, Prgp. 8]. 7
By the paragraph above, in order to show H' (57,1, 0rd%_ (4)) = 0 for i > 0, it suffices to show H*(Ip; 1, ANo ) =
0 for i > 0. Note that we have a Hochschild-Serre spectral sequence
H' (In1, H (Ny , A)) = H (LN P, A).
By the definition of 2 and [Emel0Ob, Prop. 2.1.11], we have that A|N0_ is injective, so that H? (N, A) = 0 for
j > 0. The above spectral sequence therefore collapses to give

Hi(Ip 1, ANo ) = HY(I, N P~, A).

Applying Proposition 2.1.11 of op. cit. once more to the group I; N P~ gives H'(I; N P~, A) = 0 for i > 0,
which gives the claim.

Since Ord%_ (A) C B, [KS06, Prop. 13.3.13(ii)] implies that A is H(I571, —) o Ord%-_-injective, and we
have a natural equivalence

(9) R(H(Inr,1,—) 0 Ord$-) ~ RH(Ins,1, —) o ROrd$-.
In particular, we may calculate R(H’(I5r,1, —) o Ord%_ ) using resolutions in 2.

Lemma 3.6. Suppose Conjectures 3.1 and 3.2 are true for G, and Conjecture 3.3 is true for M. Applying
the natural transformation (9) to w € %epi?fci(G) yields a spectral sequence of Hyr-modules

(10) H' (Ip71, R70rdg - (7)) = R™ (H(Ipy,1, —) 0 Ordg- ) (m),

where R70rd$ - is calculated in the category Rep™™ (@) and H' (Inr,1,—) is calculated in the category Rep™ (M).

Proof. This follows from the construction of the Grothendieck spectral sequence and Lemmas 3.4 and 3.5. O

3.2.4. We now examine the derived functors of the composition RﬁM o H(I;, —). We continue to assume
Conjecture 3.1 for G.

Let A € A. Since I is open in I, the restriction Ay, is injective in Rep(I1) ([EmelOb, Prop. 2.1.2]).
Therefore, A satisfies point (iii) of [KS06, Cor. 13.3.8] (for the functor H(I;, —)), and points (i) and (ii) hold
exactly as in Subsubsection 3.2.1. By op. cit., we obtain a total derived functor

RH’(I1,—) : DY (Rep®™ (G)) — DT (Mod—H),

which may be computed using resolutions in 2.

Lemma 3.7. Suppose Conjecture 3.1 is true for G, and let w € %epi‘?;nci (G). Then we have
R (RHO(Iy, 7)) = H (I, ),

where H' (I, 7) is calculated in the category Rep™(G).

Proof. Let tf, i)‘iepi?fci (@) < Rep™(G) denote the fully faithful inclusion, so that we have a commutative
diagram:
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HO(lef)

Rep2 ™™ (G) Mod—H
Rep™(G)

(For the duration of this proof, we use the notation H’ (I;,—) to distinguish between the two functors of
invariants.)

Let @ denote the full subcategory of Rep™ (G) consisting of H? (I1, —)-acyclic objects. By [KS06, Cor.
13.3.8], the category € is HY (I, —)-injective, and likewise the category 2 is 1/4-injective. By [Emel0b, Prop.
2.1.2], the functor ¢f> maps A into €. Therefore, the exactness of 7> and [KS06, Prop. 13.3.13(ii)] give

RH"(I1, —) ~ R(HY (11, —) 0 tfe) ~ RHY (11, —) o Ret ~ RH (1, —) 0 tfe.
(Il

3.2.5. Let § denote the full subcategory of 9to0—H consisting of R%M—acyclic objects. By [KS06, Cor.
13.3.8, Prop. 13.3.5(i)], § is RﬁM—injective7 and we have a total derived functor
RRY, : DT (Mod—H) — Dt (Mod—H ),

which may be computed using injective resolutions as usual.

3.2.6. By the final paragraph in Subsubsection 3.1.2, we see that § contains all finite-dimensional H-modules.
Furthermore, since H%(I;, A) is finite-dimensional for every A € 2, we have H°(I;,2) C §. Proposition
13.3.13(ii) of [KSO6] then implies that A is R¥ o H°(I;, —)-acyclic, and we have

(11) R(R¥  oH(I1,—)) ~RR¥ oRH(I},—).

In particular, we may calculate R(R;’_[‘M o H%(I,, —)) using resolutions in 2.

Lemma 3.8. Suppose Conjecture 3.1 is true for G. Applying the natural transformation (11) to w €
Rep2I™ (G) yields a spectral sequence of Har-modules

(12) R'RY (B (I, 7)) = R (R}, oH(I1,—))(m),

where BY (11, —) is calculated in the category Rep™ (G).

Proof. This follows from the construction of the Grothendieck spectral sequence and Lemma 3.7. O
Lemma 3.9. Suppose © € Rep ™ (G). Then dime(H (I, 7)) < oo for every j > 0.
Proof. This follows from [EmelOb, Lem. 3.4.4]. O

adm
Zi;=C;

Suppose now that m € Rep
we see that RiRﬁM (H7(I,,7)) = 0 for i > 0. Thus the spectral sequence (12) collapses to an isomorphism of
H pr-modules
(13) Ry, (W (I, 7)) =R/ (R}, o H (11, -)) ().

Combining the isomorphism (13) with the spectral sequence (10) along with the commutativity of the diagram
(3) gives the following result.

(@). Combining Lemma 3.9 with the last paragraph of Subsubsection 3.1.2,

Theorem 3.10. Suppose Conjectures 3.1 and 3.2 are true for G, and Conjecture 3.3 is true for M. Let
T € Repd™ (G). Then we have an Ey spectral sequence of Hpr-modules

H (In1, R70rd§- (1)) = RE(H™ (L, 7).

Corollary 3.11. Suppose the simply connected cover of the derived subgroup of G is SLy/p, and let ™ €
Rep2dm (Q). Then we have an Ey spectral sequence of Hpr-modules

H' (Ing,1, R70rd$ - (7)) = R¥ (H™ (11, ).
Proof. This follows from Theorems A.2, A.4, and A.8. O
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3.3. The smooth case. We now examine a variant of the above spectral sequence. It has the advantage of
not being conditional on Conjectures 3.1, 3.2, and 3.3, but seems difficult to compute in practice.

3.3.1. Recall that the category Jep™ (G) is abelian and has enough injectives (and likewise for M). Therefore,
we have the existence of total derived functors

RRE: DY (Rep™(G)) — DT (Rep™(M)),
RH(In1,—): DT (Rep™(M)) — DT (Mod—Hns).
Since the functor RG : Rep™(G) — Rep™ (M) is right adjoint to the exact parabolic induction functor

Ind$ : Rep™ (M) — Rep™ (@), it maps injective objects of Mep™ (G) to injective objects of Rep™(M).
Therefore, [KS06, Prop. 13.3.13(ii)] implies we have

R(H(In1,—) oRE) =~ RH’(Ijr1, —) o RRE.
Consequently, for m € Rep™ (G), by taking cohomology of the above we get a spectral sequence of H pr-modules
(14) H' (Ins1, RZRE(7)) = R (H(Iag,1, —) o RY) (7).

3.3.2. 'We now consider the composition R%M o H'(I;,—). As in the previous paragraph, the abelian cate-
gories Rep™ (@) and Mod—H have enough injectives, and therefore we have the total derived functors

RH(I1,—): D' (Rep™(G)) — D (Mod—H),
RRY  : DT (Mod—H) — Dt (Mod—Hu).

3.3.3.  We wish to understand the composition RR} o RH(I;, —). This will rely on the following lemma.
We thank Noriyuki Abe for his help with the argument.

Lemma 3.12. Suppose m € Rep™(G) is an injective object. Then w!t is an R%M—acyclic H-module.

Proof. Let ¥ := Homg (7, C') denote the C-linear dual of 7. Using the contragredient action, we view mV as
a not necessarily smooth G-representation (that is, a C[G]-module). Fix a presentation ., C[G] — 7",
where ¢/ is some index set. Dualizing, we obtain injections of C[G]-modules

v
TV — (@ C[G]) = H CclG)Y.
acdd acd
Taking smooth vectors, we obtain an injection of smooth G-representations
o0
m— (I] cla1v) .
acsd
As 7 is injective, this injection splits. Since R%M is additive, in order to prove 7! is R%M—acyclic, it suffices
to show (([T,c.y CIG]Y)>®)™ is R} -acyclic.
We have isomorphisms of right H-modules

(Tewe)™)

acof

< H C[G]V)h

a€ol

I el

acs

II clnary

acdd

(@cina)

acsd

1

IR

Il

A few comments on the above isomorphisms: given a not necessarily smooth G-representation M, the space of
I -coinvariants My, carries a left action of H by composing the restriction map to I; Ng~'I; g, the conjugation
by g, and the corestriction map from I; N gl1g~*. When M = C[G], this is most easily seen using the

isomorphism CI[G|;, c—indﬁ(l 1,)- We may convert the left H-action into a right H-action by twisting
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by the anti-involution Ty —— T -1, and as a result we view C[G];, = C[[;\G] as a right H-module. The
dual (C[G],)Y = C[I1\G]Y is once again a right H-module (as in Subsection 2.3), and the isomorphism
(C[G)V)1 22 (C[G]1,)" appearing in the second line is equivariant for the right H-action on both.
Using the above isomorphisms, it suffices to show that if m is any H-module, then m" is RﬁM—acyclic. To
this end, let
oo P — P — P —m— 0

denote a projective resolution of a right H-module m. Dualizing, we obtain an injective resolution
0—mY —py —p) —py — ...

of right H-modules. Applying R%M, we obtain a complex

(15) 0 — RY,, (mY) — RY, (bg) — RY,, (0)) — RE,, (1)) — ...

of right H r-modules. Now, the proof of [Abel7, Prop. 3.6] shows that for any right H-module n, the module
R%M (nY) is equal to the composition of an exact localization functor, an exact twisting functor, and an exact

duality functor. Therefore, the complex (15) is exact, and consequently R"R%M (mY) =0 for i > 0. O
The lemma above shows that HY(I;, —) maps injective objects into ’R;_{[M—acyclic objects, and [KS06, Prop.
13.3.13(ii)] gives a natural equivalence
R(RY,, oH(I1,—)) ~RRY, o RH(I1,—)
(by taking J' to be equal to the subcategory of R%M—acyclic modules). Thus, for 7 € Rep™(G), taking
cohomology of the above gives a spectral sequence of H ;-modules
(16) R'RY (B (I, 7)) = R (R}, oH(I1,—))(m).

3.3.4. Suppose now that 7 € Rep®¥™(G). Using Lemma 3.9 and the discussion of Subsubsection 3.1.2, the
spectral sequence (16) collapses to give

RY (W (I,m) 2R (R¥, oH(I1,—))(n).

Substituting this into (14) and using the commutativity of (1) gives the following.

Theorem 3.13. Suppose 7 € %epadm(G). Then we have an Es spectral sequence of Hyr-modules
H (In,1, RIRE (7)) = RYE (H (I, 7).

4. DUALITY

We now discuss how pro-p-Iwahori cohomology interacts with Kohlhaase’s higher duality functors [KKoh17].

4.1. Review of Pontryagin duality. Let K denote a compact open subgroup of G, and let A(K) denote
the completed group algebra of K:

A(K) := C[K] = lim C[K/N],

where N runs over the open normal subgroups of K. We let A(K)—ModP° denote the category of pseu-
docompact left A(K)-modules; it is an abelian category with enough projectives ([Bru66, Lem. 1.6]). We
let Extf\(K)(—, —) (resp., Extj\(K)ffmoapc(—, —)) denote the Ext functor computed in the category of all left
A(K)-modules (resp., computed in the category A(K)—9odP®).
Fixing a compact open subgroup K as above, we define
A(G) := ClG] ®crr) MK),

and let A(G)—ModP° denote the category of pseudocompact left A(G)-modules (see [Kohl7, §1] for the
relevant definitions). Note that, up to isomorphism, the algebra structure on A(G) is independent of the
choice of K. Pontryagin duality then induces quasi-inverse anti-equivalences of categories

Rep™(G) = A(G)—Mod"*
7 — 7 :=Homg(r, C)

This article is protected by copyright. All rights reserved.



FUNCTORIAL PROPERTIES OF PRO-p-IWAHORI COHOMOLOGY 13

Hom@*(M,C) = M"Y +— M

4.2. Preparation. Let d := dimg,(G) denote the dimension of G as a p-adic manifold. For 0 < i < d, the
smooth duality functors S* are endofunctors of the category Rep™ (G) of smooth G-representations, defined
by
Si(’ﬂ') = hAlEXtZA(K) (C, 7Tv),
K
where m € Rep™ (@), K runs over all compact open subgroups of G, and we view 7" as a pseudocompact left
A(K)-module. The transition maps in the direct limit are given by the restriction

resk, : Extf\(K)(C, ) — Extf\(K,)(C, )

for every inclusion K’ C K of compact open subgroups. The S? form a contravariant d-functor, with S¢ being
right-exact.

4.2.1. We recall the following useful facts regarding the completed group algebras A(K).

Lemma 4.1. Let K denote a compact open pro-p subgroup of G.

(a) The completed group algebra A(K) is a noetherian local ring.
(b) Let M denote a pseudocompact A(K)-module. Then we have canonical isomorphisms of C-vector spaces

Ext}y ) (C, M) 2 Extl s¢)_anoore (C, M) 2= He (K, M)
for all i > 0.
(¢) Suppose K is torsion-free. Then we have
. 0 ifi#d
Extl, ) (C, A(K)) = ’
X o (G AK)) {C if i = d.

Proof. (a) When C' = F,, this is due to Lazard [Laz65, Thm. V.2.2.4]. In general, the result may be deduced
from [Bou06, Ch. IX, §2.3, Prop. 5] and [Sch1l, Thm. 33.4].

(b) This follows from [Laz65, Thm. V.3.2.7] (see also [NSWO08, Ch. V, Prop. 5.2.14]).

(¢) By [DASMS99, Cor. 4.3], the subgroup K possesses an open normal subgroup J which is uniform.
Using [Koh17, Eq. (5), pf. of Prop. 3.8], we have

i 0 ifi#d
Ext) ) (C,A(J)) = {C fied

Applying the Eckmann—Shapiro lemma

% ~ 7 . AK ~ %
Ext) ) (C, A(J)) = Bxt i) (C, coind (1 (A (1)) 22 Bxtl ) (C, A(K))

gives the result. (Compare [SW00, Rmk. 4.2.9].) O

4.2.2.  We now examine the §-functor (S%);>o. The following result is due to Kohlhaase.
Lemma 4.2. For 0 <i < d, the functors S* are coeffaceable. Consequently, we have L;S% ~ S,
Proof. Let A denote an injective object of Rep™ (G). We claim S*(A) = 0 for 0 < i < d. Suppose
ve S(A) = li_n>nExtf\(K)(C’, AY),
K

and let v be represented by an element of Extﬁ\( k) (C; AY) for some fixed K. By definition of the direct limit,
we may replace v by reslf (v), where J is a torsion-free compact open pro-p group, and suppose v is represented
by an element of Extj ) (C, AY).

We claim that Extﬁ\( J)(C, AV) is trivial. Indeed, since J is open in G, the functor of compact induction

c-ind is exact, and therefore its right adjoint resG : Mep™ (G) — Rep™ (J) preserves injective objects. Con-
sequently, the Pontryagin dual AY € A(G)—9M0d" is projective, and its restriction AY[5(;) € A(J)—Mod" is
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projective as well. By [Bru66, Lem. 1.6] we may write AY[5() as a direct summand of [, ., A(J) for some
index set 7. Therefore it suffices to show the vanishing of

Ext s, (c, 11 A(J)) = T Exti (C,AW)).

acgl acdd
This follows from Lemma 4.1(c). O

Corollary (of proof) 4.3. Suppose A is an injective G-representation and K a torsion-free compact open
pro-p subgroup of G. Then we have Exty ) (C, AY) =0 for 0 <i < d.

4.3. Duality. From this point onwards, we suppose that the pro-p-Iwahori subgroup I; is torsion-free. This
implies that the cohomological dimension of I; is equal to d = dimg,(G) ([Ser65, Cor. (1)]). Note that
the torsion-freeness condition is satisfied if p is sufficiently large relative to the root system of G and the
ramification degree of F'; for an explicit bound (at least when G is semisimple), see [Tot99, Prop. 12.1].

4.3.1. Let 7 denote a smooth G-representation, and choose an injective resolution

0—m— A — A — .
in Rep™(G). Let us define B* := ker(A* — A1), Then we can truncate the above to obtain a resolution
(17) 0—7— A" — A — ... — At Bl 0.

Lemma 4.4. Let i > d.

(a) The G-representation B* is S%-acyclic.
(b) The G-representation B is I -acyclic.

Proof. (a) We have a short exact sequence
0— B'— A" — B —0

for all ¢ > 0. By examining the long exact sequence induced by applying the contravariant right-exact functor
S? and using injectivity of A%, we see that L;S¢(B*!) = L,,15%(B?) for every j > 1. In particular, if i > d
and j > 1, then d — ¢ — j < 0 and we have

L;S%B") = L;;;9%(B°) = 57"/(B") = 0.

Thus, B? is Sd—acyclic for i > d.
(b) This follows from a dimension-shifting argument, exactly as in part (a). O

Corollary 4.5. The resolution (17) of 7 is both S%-acyclic and I, -acyclic.

Remark 4.6. The conclusion of Lemma 4.4(a) can be strengthened as follows: for i > d and K a torsion-free
compact open pro-p subgroup of GG, we have Exti(K)(C’, B®V) =0 for 0 < j < d. Indeed, by Corollary 4.3,
this assertion holds if B? is replaced by A® with i > 0. The desired claim then follows from a straightforward
dimension-shifting argument.

4.3.2.  We define a complex Y* of smooth G-representations by applying S¢ to (17), truncating, and trans-
lating. Explicitly, we have
0—Y' Syl — ... —Yi 0,

with Y0 = §4(B9) and Y? = S4(A9~%) for 1 <i < d. Since (17) is an S%acyclic resolution of 7, we have
(18) R (Y'®) = Ly_;S%(m) = S%(n).
Now define a first quadrant double complex D := D**® by
Db .= CH (I, Y7).
We multiply the differentials D%/ —s D%J*! by (—1)%, so that dyert © dhor + dhor © dyert = 0.
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4.3.3. Spectral Sequence — I. Let Tot(D)® denote the direct sum totalization of the double complex D. We
have the following decreasing filtration by rows:

Fy,,Tot(D)* = @ D,
t>r
Since D is a first quadrant double complex, we obtain an associated convergent spectral sequence:

(19) EY = hi . (h]* (D)) = hi*(Tot(D)*®)

vert \"“hor

We examine the terms in the spectral sequence. Note first that we have A’ (D) = H/(I;,Y?).

Lemma 4.7.
(a) Fori >0, the G-representation S¢(A?) is Ir-acyclic.
(b) Fori > d, the G-representation S%(B?) is I -acyclic.

Proof. Let K denote the set of compact open normal subgroups of I;. Since K is cofinal in the set of all
compact open subgroups of G, we have a canonical I;-equivariant isomorphism
§U(7) 2 lim Ext}x)(C,7)
KeK
for T € Rep™ (G). By normality, we see that each Extfl\( x)(C,7Y) is a smooth I; / K-representation. Therefore,
by [Ser02, §1.2.2, Prop. 8] we have
H (I, S%T)) = lim HY (I / K, Ext{ 1, (C, 7).
KeKk

(a) Suppose now that 7 = A, In order to prove the claim, it suffices to show H’ (I, /K, Exti(K) (C,AV)) =0

for all j > 1 and all K € K. By Lemma 4.1(b), we have

Y (I /K Extf ) (C, A™Y)) = B (I /K HE (K, A™)).

cts

By [SWO00, Thm. 4.2.6], we have a Hochschild—Serre spectral sequence for continuous cohomology
HY (I, /K, HE (K, AMY)) = HIEF (1, ABY).

cts cts

By Lemma 4.1(b) and Corollary 4.3, we have H* (K, A%V) = 0 for k # d. Therefore the spectral sequence

cts

above collapses to give HY (I; /K, H% (K, A®V)) = H T4 (1;, AV). Applying Lemma 4.1(b) and Corollary 4.3

cts cts

once more gives H’ (I, /K, H% (K, A%Y)) =0 for j > 1.

cts
(b) Assume that ¢ > d, and consider the exact sequence

0— B' — A" — B — 0.

Applying S% and using Lemma 4.4(a), we obtain a short exact sequence

0 — S4By — §%AY) — SYB') — 0.
By examining the long exact sequence obtained by applying H°(I;, —), and using part (a), we get H’ (I, S4(B?))
H/ (1, S4(B**Y)) for j > 1. If 1 < j < d, then by applying this isomorphism inductively we obtain

H (11, Sd(Bi)) o il (117 Sd(BierJrlfj)) =0,
since the cohomological dimension of Iy is d (by torsion-freeness). On the other hand, if j > d + 1, then we
obtain H’ (I, S4(B?)) = 0 straight away. O

(a3

Applying the above lemma, we obtain
i , . HO(I,, YY) ifj=
hflﬁr(D)ij(h,Yl): (I1,Y") 1 j 0,
0 if 7 > 0.
Our next task will be to identify the term H°(I;,Y?).

Lemma 4.8. Suppose 7 = A* with i > 0 or 7 = B* with i > d. We then have an isomorphism of C-vector
spaces
Sd(T)Il ~ (7_11)\/.

Proof. Let K be as in the proof of Lemma 4.7. We begin with the following claim.
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Claim. Let K and K’ be two subgroups in K such that K' C K.
(a) Fori >0, the restriction map resk, : Extfl\(K)(C’, ABVY — Exti(K,)(C’, ABVY s injective.
(b) Fori > d, the restriction map resk, : Extﬁl\(K)(C, B®V) — Extfl\(K,)(C’, B%V) is injective.
Proof of claim. (a) Consider first the restriction map
resf, : Bxt} gy (C, A(K)) — Ext} gy (C, A(K)) = Ext 00 (C, A(K7)) P,
Applying Lemma 4.1(c), this becomes the diagonal map
C — COIGKT],

Therefore r.esfé, : Extji\(K)(C, AK)) — Exti(K,)(C, A(K)) is injective. _

Since A’ is an injective G-representation, the pseudocompact A(K)-module A“Y| (k) is projective and
therefore it is a direct summand of [], ., A(K) for some index set o/ (cf. proof of Lemma 4.2). By the
previous paragraph, the restriction map

resio || Bxtf (e (C, A(K)) — [] Ext} k) (C, A(K))
acd acd
is injective; since Ext‘f\(K) (C, A%V is a direct summand of Extj{(K) (CiIpeer ME)) = [ocor Ext‘fx(K) (C,A(K)),
the result follows.
(b) Recall that we have a short exact sequence of G-representations

0— B"— A" — B —0
for i > 0. Applying Pontryagin duality gives a short exact sequence of pseudocompact A(G)-modules
0 — BLY 5 AW 5 BYY 0.

This exact sequence induces long exact sequences which fit into a commutative diagram
j i j j+1 ; j+1 ;
- — Ext) 5, (C, AMY) — ExtA(K)(Q B"Y) — Exty () (C, B"*Y) — Ext) (4 (C, A%Y) —

K K K K
lresK, lresk, lresK, lresk,

J(CLARY) — Bxt 0 (C, B™Y) — Ext) (1, (C, BHY) — Exty{pe, (C,AMY) —

. — Ext’ ACKY)

A(K?) A(K")

Suppose 0 < j < d — 1. By Corollary 4.3, the leftmost vertical map is an isomorphism (both the domain
and codomain are 0); by the previous point, the rlghtmost vertical map is aneCthG A diagram chase then

shows that injectivity of the map resk, : Ext A( K)(C’ B%Y) — Ext (C B%V) implies injectivity of the
map resk, : Extf&l{ (C,BH*LY) — Ext]Jrl ) (C, BV, Proceeding by mductlon from the base case resk, :
Homy x)(C, B%Y) «— Homy k) (C, B* V) glves the desired result. O

Suppose now that 7 = A with ¢ > 0 or 7 = B* with ¢ > d. The claim above implies that we have

S%(7) = lim Ext(x)(C,7")
KeK

where all transition maps are injective. The group I; acts on each Extji\( K)(C, 7V), and we then have

I
sy = (lim B (7))
Kek
~ lig Eth/i\(K)(C, T\/)Il
Kek
=~ EXti(h)(C 7_\/)
= Hcts(‘[l’ )

The last two isomorphisms may be obtained as follows: by Lemma 4.1(b), the space Extji\(K)(C, V) is
isomorphic to H°(I; /K, H% (K, 7V)). Exactly as in the proof of Lemma 4.7(a), we have

H(I /K, HE (K, 7)) =2 Ha (I, 7) = Exty g, (C, 7Y)

cts
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(for 7 = B, we use Remark 4.6). Since the restriction maps in the direct limit are injective, we obtain the
desired isomorphisms.
To conclude, we apply [SW00, Prop. 4.5.4]: we have a natural isomorphism

o HE (I, TY) = HO (L, 7)Y
(we will describe ®? explicitly in the proof of Proposition 4.15 below). |

Next, we examine the H-action under the isomorphism S%(7)1t 2 (771)V. We thank Peter Schneider for
pointing out the need for several results below, and in particular, for suggesting the statement and proof of
Lemma 4.11.

We define

7 :=limlim HY(K, Z/p"7Z)",
Hing ling (K, Z/p"Z)
where K runs over all compact open subgroups of GG, and the transition maps in the inner direct limit are
Pontryagin duals of corestrictions. (In the above definition, the notation V denotes the Pontryagin dual as in
[INSWO8]: if A is a p-power-torsion abelian group, we have A = Hom(A,Q,/Z,).) Note that J is a torsion
Z,-module with a discrete action of the group G.

Suppose now that K is a torsion-free open pro-p subgroup of G. By [Ser65, Cor. (1)] and [Laz65, Thm.
V.2.5.8], K is a Poincaré group of dimension d. Since the set of open normal subgroups of K is cofinal in
the set of compact open subgroups of G, according to [NSWO08, §II1.4] the restriction of the G-action on J to
K gives the dualizing module of K. Consequently, using [Ser02, §1.4.5, Prop. 30(b)], we see that for every
torsion-free open pro-p subgroup K we have a canonically defined trace map

trg : HY(K,7) =5 Q,/Z,.
Lemma 4.9. Let K/ C K be an inclusion of torsion-free open pro-p subgroups of G. Then the composition

K
cory,

HY(K',7) =5 HY(K,7) 25 Q,/Z,
is equal to trg:. In particular, the map cork, : HY(K',7) — HY(K,J) is an isomorphism.

Proof. According to the remark following [Ser02, §1.3.5, Prop. 18], we have a commutative diagram

Hom (I[p"],J) —=— H(K, I[p"])Y

resﬁ,J{ J{(corﬁ,)v

Hom g (I[p"],J) —=— HY(K', 3[p"])V

where the horizontal maps are those coming from the representability property of J. By step (7) in the proof
of Proposition 30 in §1.4.5 of op. cit., we have Homg (J[p"],J) = Homg/(J[p"],J) = Z,/p"Z,, and thus
both res¥, and (cork,)Y in the diagram above are isomorphisms. Passing to the limit over n, we obtain a
commutative diagram

Hompg (3,7) —~— HY(K, 7)Y

reng{z {(corﬁdv

Hompg(3,7) —=— HY(K',3)V
The result now follows, as trx and trgs are the images of the respective identity maps under the horizontal
arrows. O
In order to alleviate notation, we use the following shorthand: for g € G, we define I, := I; N gl1g~".

Definition 4.10. Given g € G, we have a chain of isomorphisms

-1
tr;

g—1 ~ . trr,
Qp/Zy —2— HY(I,-1,3) 25 HY(1,,9) —5 Qp/Z,.
We denote by ¥(g) € Z, the corresponding element of Zy = Aut(Q,/Z,).
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Lemma 4.11. The map

is a homomorphism, which is trivial on I.

Proof. Let g,h € G. Lemma 4.9 implies that we have the following commutative diagrams (we omit decora-
tions on the corestriction maps for readability):

HY(I-14-1,3) +—Z—— HY I+ N 1y-14-1,7) —Z— HY(I,-1,7)
h*Jf h*J(Z h*J(Z
HYhI1h ' N g~ g,3) +—2— HY(I N 1,-1,0) —2—— HY(1,9)

HYhI1h ' Ng~1g,3) +—<2— HY I N 1,-1,0) —<— HY(I,1,7)
Hd

~ g
Q*JZ Q*JZ Q*JZ
HY(I,,7) =~ HY (I, N 1y,7) —2—— HY(],

2 ,J)
Thus, applying Lemma 4.9 and using commutativity of the above diagrams, we get
-1
U(h) = try, ohyo try

_ -1
= trpnr,_, © hy o tth,th,lg,l

-1
= trhnp-1ng-119 0 hx o th,L,lg,l
_ -1
U(g) = trr,o0g.0 trI(f1
-1
- tr[ghﬂlg Og* OtrlhﬂIg_l

= trp, 0g«o trfjlllhflmgflllg'
This implies
V(g)¥(h) = trr,, o (gh).ootry’, | =W(gh),
which shows ¥ is a homomorphism. That W is trivial on I; is a standard fact about group cohomology. [

Definition 4.12. (1) We define
Vv:G— C*
to be the mod-p reduction of the character .
(2) Let ic := J[p] ®r, C, and note that ic is a one-dimensional C-vector space with an action of G. We
let
A:G—C*
denote character which gives the action of G on i¢. (In particular, note that A is trivial on every
pro-p subgroup of G.)
(3) We define the mod-p orientation character of G (relative to I;), denoted

£E:G— C%,
by £ :== AL

Remark 4.13. If the group G is split over F', then the character & is trivial; for irreducible root systems,
this was shown in the proofs of [Koz18, Thms. 7.1, 7.2], and in general in [OS19, Prop. 7.16]. The character
£ is also trivial if G is semisimple and simply connected.

Definition 4.14. Suppose m is an H-module. We let m(¢) denote the H-module m twisted by &: it has the
same underlying vector space as m, with the operator T, acting by £(g~1)T,.
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We may now describe the aforementioned Hecke action.
Proposition 4.15. Suppose 7 = A® with i > 0 or 7 = B* with i > d. Then the vector space isomorphism
Sd(r)t 2 (r11)V
upgrades to an isomorphism of H-modules
S 7)™ 2 (r1)Y(€).

Proof. Recall that the isomorphism S%(7)t 2 (711)V is given as the composition of S%(7)"v = HE (11, 7V)
with @4 : HY (I, 7V) = H°(I;,7)V. The injectivity in the claim of Lemma 4.8 and the description of the
G-action on S%(7) imply that the isomorphism S%(7)"* =5 H% (I, 7Y) is actually H-equivariant.

It suffices to analyze the map ®¢ (and its analogs for open subgroups of I;). The stated result will follow

from the commutativity of the following three diagrams, where g € G:
d
Hé (I, 7Y) —%— (I, 7)Y

reng J{(corg )

HY (1, 7Y) —2 s HO(I,, 7)Y

cts

d
ets (Lo, T) +} HO(Ig7 7)Y

9*1} {E(g_l)-(g*)v

Hgts(lgflaTv) 'i:j ” HO(IgflaT)v

Hd

g 7)) — 2 HO(I, o, 7)Y

I I v
CorI_(;lJ J(resli_l )

He (I, 7Y) — 2 HO(y, 7)Y

cts

Hgts (I

In order to prove the commutativity of the first and third diagrams, it suffices to assume 7 is a finite
I;-module, and to replace 7V with Hom(7,J) (this follows from [SWO00, Prop. 3.6.1]; note also that as
representations of I, we have 7¥ 2 7V ®¢ i¢). The claimed commutativity is then a consequence of the
definition of ®? given in Section 4.5 of op. cit., the remark following [Ser02, §1.3.5, Prop. 18], and its dual
statement.

In order to prove the commutativity of the second diagram, fix a presentation 7 = hgz 7;, where the 7; are

finite-dimensional I -subrepresentations of 7. Dualizing, we have 7V = jmi 7/, and we let

pr; : H (I, 7V @c ic) — HY(Iy, 7 ®@cic)

denote the map associated to the surjection 7V @¢ ic —» 7,7 @¢ ic. Given x4 € Hgts(lg,Tv ®c ic) and

Yo € HO(Ig, 7), there exists an index ¢ such that yo € HO(Ig7 7;). The upper horizontal map ®¢ is then given
by
®4(24)(yo) = trr, (H(ev) (pr;(xa) — v0))-
Applying g~ to the presentation above, we have that h_ngl ¢~ 1.7; is a presentation of T by finite dimensional
I,-1-subrepresentations. We let

d
cts

—1

pr; :H (Ig71,7'v ®Rcic) — Hd(Iga, (g .Ti)v ®cic)
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L7)V ®c ic. The lower horizontal map ®¢
is defined analogously to the above, and we have pr; o g;' = g7 o pr; as maps H% (I, 7V ®c ic) —
HY(Iy1, (97" )Y @c ic).

Now let x4 € HCtS(Ig,TV ®cic),yo € HO(Ig 1,7), and choose i so that 3 € H° (I,-1,97 7). We compute:

denote the map associated to the surjection 7V ®¢ ic —» (g~

U (g  wa)(yo) = trr_, (HY(ev)(pri(g: ' wa) — vo))
= tr7,_, (H'(e ) pri(za) — g«3o0)))
= try_, (¢ H (d)vg*yo))

= (trr, 002! Otﬁ;)OtD@(Hd@VXPQ($H*V1hy®)
= (g ") (xa)(g+10)
= ((g™") - g 0 @) (za)(wo)-

This implies that the following diagram is commutative:

HY (1,7 ®c ic) — % HO(I,,7)

9*1} {w@‘l)-(g*)v

Hgts(lgflaTv K 10) # HO(Ig—1,T)\/

Twisting by A~! gives the claim. (]
Applying the proposition, we get
(BH)(©) itj=0i=0,
(D) = (1, Y") = { (A1) () if j=0,i>0,
0 if 7 > 0.

Rl

hor

Finally, since (17) is an I -acyclic resolution of 7 and taking the C-linear dual is exact, we obtain
HY (1, m)Y(€) ifj=0
hl hjo D ~ ) )
vert( hor( )) {0 lf] > 0
We therefore see that the spectral sequence (19) degenerates at the Eo page, and we obtain

(20) A" (Tot(D)*) = HY" (I, 7)Y (€).

4.3.4. Spectral Sequence — II. We now consider the decreasing filtration on Tot(D)® by columns:
F,Tot(D)* = @ D=,
t>r
Once again, we obtain a convergent spectral sequence:
(21) EQJ = hhor(hvert(D)) = hH_J(TOt(D).)
We examine the terms in the spectral sequence. Since the functor C*(I;, —) is exact, equation (18) implies

hid (D) = C'(Iy,S8%(r)). Therefore, we have hi_ (k%7 (D)) = H'(I},S/(r)). Combining this with the

hor \"*vert
isomorphism (20), the spectral sequence (21) becomes

HY (1, §7(m)) = 0T (1, )Y (€).
Proposition 4.16. The spectral sequence
(22) H' (11, 87 () = BT (1, m) ¥ (6).

18 H-equivariant.
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Proof. Given a compact open subgroup K of I, let Di := D}* denote the double complex defined by
D} = C(K,Y7),
with the differentials normalized as above. For g € G, the following maps (defined on the level of cocycles)
resi' :  Dy* — D}'°
g.': Dyt — DY*,

L. o0
cory! : DpT.
g 9

o0
— Dy’

commute with both the vertical and horizontal differentials. By taking direct sums, we obtain maps between
totalizations

resg : Tot(Dy,)* — Tot(Dy,)*
g;l : TOt(D[g). — TOt(D]gfl).
corfl_1 : Tot(Dy _,)* — Tot(Dy,)*

which commute with the differential. Consequently, the above maps induce morphisms between h™(Tot(D)*®)
for varying K. Furthermore, the above maps preserve both the filtration by rows F2  and the filtration by

row

columns F2, on Tot(Dg)®. Exactly as above for the group I, the spectral sequences associated to these

filtrations degenerate at the E.c(2,4+1} Page, and converge to h™(Tot(Dg)®). Since the differentials in the

spectral sequences associated to Fy%,,, and F are constructed from the differential on Tot(Dg)®, we conclude

that the maps resg, g1, and (:01{171 induce morphisms between the spectral sequences associated to each
b g
filtration.
Consider first the filtration F2

row

on Tot(Dy,)®. The E; page of associated spectral sequence is given by
E}) =H(1,,Y"),
with limit A" (Tot(Dy,)*). The composition co1ri1]_1 og; ! oresil7 gives the action of the Hecke operator T, on
HY(I;,Y"), and this extends to an action of H on H’(I;,Y?). Therefore, the E; page consists of #-modules
with H-equivariant differentials, and the same is then true of all subsequent pages. Since the maps resg ,g:
and cor%l1 give morphisms of spectral sequences, we conclude that Ey® = E™0 = p™(Tot(Dy,)*) is an H-
9
module, and Proposition 4.15 implies we have a H-equivariant isomorphism A" (Tot(Dy,)*) = H™"(I;, 7)Y ().

Consider now the filtration F2; on Tot(Dy, )®. The E; page of associated spectral sequence is given by

EY = H(I, 57 (n)),

with limit AT (Tot(Dy,)®). As above, the action of cor?_1 og;t oresg on H'(I1, 89 () extends to an action
g
of the entire Hecke algebra #, and all subsequent pages of the spectral sequence consist of H-modules with
‘H-equivariant differentials. Since the maps 1"es§1177 g1, and (301#171 give morphisms of spectral sequences, we
B 9

obtain a spectral sequence of ‘H-modules
H' (I, 87 (7)) = h**(Tot(Dr,)*);
composing with the H-equivariant isomorphism h?+7 (Tot(Dy,)*) = H*"77 (I, 7)Y (€) concludes the proof. [J

Remark 4.17. The existence of the above spectral sequence may also be proved without using continuous
cohomology. This approach will appear in forthcoming work of Schneider—Sorensen.

5. EXAMPLES

We now compute some examples using the spectral sequences above. As in previous sections, we let G
denote a connected reductive group over F, and I; a pro-p-Iwahori subgroup of G = G(F). We assume
throughout that I; is torsion-free, and set d := dimg, (G) = cd(Iy).

This article is protected by copyright. All rights reserved.



22 KAROL KOZIOL

5.1. Finite-dimensional representations. Let m denote a finite-dimensional representation of G. Then
the Pontryagin (or C-linear) dual 7V is once again a smooth G-representation, and we have

sim =™ HI=0,
0 ifj>0,

(cf. [Kohl7, Cor. 3.16]). The spectral sequence (22) thus gives an isomorphism of H-modules
H' (I, ") = B (1, )Y (€).

In particular, letting m = 15 denote the trivial G-representation, we obtain isomorphisms of H-modules
H'(I1,16) = B (1,16)"(¢)

and

HY (I, 16) = H(11,16)" (€) = Xyt (€) = Xuiv (6),

where Xtriv denotes the trivial character of H (see [OV18, §2.5.4]).

On the other hand, if 7 is an irreducible admissible infinite-dimensional representation of G, then [Koh17,
Prop. 3.9] shows that S°(m) = 0 (see also [AHV18, Thm. 6.4]). The spectral sequence (22) then shows in
this case that HY(I;,7) = 0.

5.2. Parabolic induction. In this subsection we suppose P is a rational parabolic subgroup of G with
rational Levi component M, and let x : M — C* denote a smooth character of M, which we inflate to P.
We have y/™1 = y, so that y inherits the structure of a right Hj;-module. We will use the letter x to refer
to both the character of M and the associated Hps-module; the meaning should be clear from context.

We consider the parabolically induced representation 7 := Indg(x). By [Koh17, Prop. 5.4], we have

() = [RAFOT) i = dimg, (G/P)
0 if j # dimg, (G/P),

where xp : P — C* denotes the dualizing character (see the remark below). The spectral sequence (22)
therefore collapses to give an isomorphism of H-modules

H' (I, Ind§ (x " xp)) 2 HY™e (D71 (1 nd@ (x)) * (6).
In particular, applying [OV18, Prop. 4.4] gives an isomorphism of H-modules

HYmer (P) (7, Ind$(x)) 2 HO (1), Ind$ (x 'xp)) " (€) = Ind¥, (x xp) Y ().

Specializing further to the case G = GL,, /g, and P = B the upper-triangular Borel subgroup, the results of
[K0z19] can be used to determine H™e» (B)=1(1, Tnd%(y)).

Remark 5.1. The formula for xp given in [Koh17, Cor. 5.3] seems to be inconsistent with other results in
the literature. For example, suppose p > 5, G = GLy/q,, and B = T x U is the upper-triangular Borel

subgroup of G. Let @ : T — C* denote the character (Ipa Ob> — zy~1, where z,y € ZX, a,b € Z.

0 yp P’
Corollary 5.3 of op. cit. would then imply that we have a nonsplit extension

0— 1g — S (Stg) — Ind%(@ ') — 0,

where St denotes the Steinberg representation of G (cf. op. cit, Proposition 5.7). However, [Emel0b, Prop.
4.3.13] implies that Extg, (Ind%(a—1),1¢) = 0, noting that the results of [Emel0b] are stated in terms of the
lower triangular Borel subgroup B~. (The existence of such a nonsplit extension would also imply that we
have an injection Ind%T (@) — H'(I;,1¢), which contradicts [Koz18, Thm. 6.4(a)].) We shall therefore
assume that, in the Qp-split case, the dualizing character is given by

(23) xp(mn) =[]  a(m)a(m),,

+
a€dtNPY,
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where mn € P = M x N. (We are being sloppy with notation on the right hand side: the expression
“Maco+at, alm)la(m)],” denotes the unique extension to M of the character

Tst— ] a(t)|a(t)|p.>

+
acdt o},

5.3. GL2(Q,). We now assume G = GLy/q, with p > 5, B =T x U is the upper-triangular Borel subgroup,
and I, is the “upper-triangular mod p” pro-p Iwahori subgroup. In this subsection we determine almost all
H' (I, ), where m denotes an irreducible smooth G-representation. Note that the assumption p > 5 implies
I, is torsion-free, and therefore has cohomological dimension dimg, (G) = 4. Since H'(I;, 7 ® y o det) =
Hi(I 1,T) ® x o det, we may twist our irreducible representation as is convenient.

5.3.1. Trivial representation. Suppose first that m = 1 is the trivial representation. By Subsection 5.1, we
have

H(11,16) = Xuiv,
HY(I,16) = Xov-
Theorem 6.4(a) of [Koz18] gives the structure of H', and we use Subsection 5.1 to determine H?:
H'(I1,1¢) & Xuiv ® Ind%T (@),
HY (I, 16) = Xy © Indj, (@)
Xtriv @ IndﬁT (@),

I

where the last isomorphism follows from [Abel9a, Thm. 4.9], and @ is as in Remark 5.1.
It therefore suffices to compute H?. Note first that by [Pas13, Eqn. (166)], we have Ord%- (1¢) = 0 and
RlOrdgf (1) = @. By Corollary 3.11, we obtain isomorphisms of Hp-modules
RYE (H* (I, 1)) 2 H' (Ip, @) 2 H' (I, 17) ®c @ = a®?,
where the last isomorphism follows from I7; = (1 4 pZ,)®? = Z$?. This implies we have an injection
(24) Ind}_(@)®? — H*(I1, 1¢).

On the other hand, the assumption p > 5 implies that we may write I; = I x 21, where I := I; N SL2(Q,)
and Z; denotes the pro-p part of the center Z. The Kiinneth formula then gives an isomorphism of C-vector
spaces

HQ(Ila C) = @ Hl(Iiv C) Xc Hj(Zla C)

i+j=2

Since Z; = 1 4 pZ, = Z,, has cohomological dimension 1, we have dim¢(H°(2,,C)) = dimg(H'(2,,C)) = 1.
By the calculation of H' (17, 1s1,,(q,)) in Subsubsection 5.4.1 below, we have dim¢ (H'(I],C)) = dimg(H?(I],C)) =
2. Consequently, we get dime(H?(I;,C)) = 4, and the injection (24) must be an isomorphism.

5.3.2. Principal series. Now let x : T —> C* denote a smooth character, and let Indg(x) denote the
parabolically induced representation. By [OV18, Prop. 4.4], Subsection 5.2, Remark 5.1, and the fact that
dimg, (B) = 3, we have

HO(I;,Ind§(x)) = Ind% (X)
H (I, Ind (x)) Ind} (x~'a)”
By [Koz19, Props. 4.5, 4.9] and [Abel9a, Cor. 3.3, Prop. 4.3], we have a short exact sequence

0 — Ind}_(x)®? — H'(I;,Ind§(x)) — Ind¥_(x"'@)" — 0.

1%

Lemma 5.13 of [Koz19] shows that this exact sequence is nonsplit if and only if x = x*@ (where x* denotes the
character ¢t — x((94)¢(94)) ). In this case Ind}{ (x~'@) is simple and Ind}} (x~'@)" = Ind} (x*@) =
IndzT (x)-
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Applying the isomorphisms in Subsection 5.2 to the exact sequence above, we see that
0 — Id}_(x) — B2(I,,Ind$(x)) — (Indf_(x'@)®?)" — 0.

As above, this short exact sequence is nonsplit if and only if x = x*@, in which case IndzT (x!

and Ind%_(x~'@)¥ = Ind}_(x*a@) = Ind}_(x).
l(For generic x, one can also use Corollary 3.11 along with [EmelOb, Thm. 4.2.12(1)] to determine all
H'(I1,Ind%(x)), without appealing to the calculations in [Koz19].)

@) is simple

5.3.3. Steinberg. Let Stg denote the Steinberg representation of G, defined by the exact sequence
0— 1 — Indg(lT) — Stg — 0.
We also let £ denote the unique nonsplit extension of Ind% (@) by 1¢ (cf. [Emel0b, Prop. 4.3.13]):
0—1g — & — Ind§(@) — 0.

By [Kohl7, Prop. 5.7], we have

N i
and therefore the spectral sequence (22) collapses to give
(25) HY(I,,E) = H*(I},Stg)".

Note first that we have
HO(I1,Sta) = Xiigns
HO(I4,€)

where x;gn = Xsign @ Nr_1 o det, Xsign denotes the sign character of # (see [OV18, Rmks. 2.23, 2.24(1)]),
and nr_; : Q; — C* denotes the unramified character sending p to —1. The first isomorphism comes from

[AHV18, Thm. 4.17] and [Abel9b, Prop. 3.12] (or [Vig04, Thm. 4.2]), while the second follows from the fact
that £ is a nonsplit extension. Applying (25) gives

H3(I,Ste) = H(11, €)Y 2 iy = Xoriv-

R

Xtriv,

We now discuss the remaining cohomology groups. Applying the functor of invariants to the exact sequence
defining St gives an exact sequence

0 — Xtriv — Ind}{_ (17) — Xfign — 0.

Substituting the results of Subsubsections 5.3.1 and 5.3.2, the long exact sequence for the higher cohomology
groups is

0 —— Ind%_ (@) @ Xeiv — Ind}_(17)%? @ Ind} (a) — H'(I1,Stc) 3

Q Ind} (@)% ——— Ind}_(1r) @ Ind} (@)®? —— H3(I1,Ste) 3

Q IndzT (a) @ Xtriv — IndzT (a) > Xtriv D

Q Xtriv 0

We therefore see that Hl(Il, Stg) is an extension

0 — Ind}{_ (17) & x}ign — H'(11,Ste) — Ind}{ (@)®* — 0,

where 0 < k£ < 2. Since the functor R%T is exact on finite-dimensional H-modules, [Abel9b, Lem. 5.2, Thm.
5.20] imply that
0— 12> — R¥% (H'(I1,Ste)) — a™* — 0.

This article is protected by copyright. All rights reserved.



FUNCTORIAL PROPERTIES OF PRO-p-IWAHORI COHOMOLOGY 25

On the other hand, by [Emel10b, Thm. 4.2.12(2)] we have Ord$_ (Stg) 2 17 and R*Ord$- (Ste) = 0. Hence,
Corollary 3.11 gives an isomorphism of Hp-modules

R (H'(I1,Ste)) 2 H (Ir, 17) 2 152
Consequently k£ must be equal to 0, and from the exact sequence above we deduce that
H'(I1, Ste) = Ind}, (17) @ Xign:

and that H?(I;, Stg) is a (possibly split) extension of iy by Ind%T (17). (Note also that this extension splits
when restricted to the pro-p-Iwahori-Hecke algebra of SL2(Q)).)

5.3.4. Supersingular representations. We now discuss supersingular representations.
For 0 <r <p-—1, we let w(r,0,1) denote the G-representation given by

c—indgézég”z)p) (Sym" (C®?)) /T,

where GL2(Z,) acts on Sym” (C®?) via reduction mod p, the matrix (S 2) € Z acts trivially on Sym" (C®?),
and T denotes a certain spherical Hecke operator. Up to twist, these representations constitute all absolutely
irreducible supersingular G-representations over C. Moreover, the two-dimensional space 7(r,0, 1)t is simple
as an ‘H-module, and we define

m(r,0,1) := 7(r,0,1)"* = H° (I}, n(r,0,1)).

The H-module H'(I;,n(r,0,1)) is computed in [Pasl0, Prop. 10.5, Eqn. (49)]. More precisely, the
dimension calculations of op. cit. are slightly different than ours, as they are stated in the case where the
central character is fixed throughout. When the central character is not fixed, the relevant differences are
the following (all references are to [Pas10]): in Lemmas 5.7, 5.8, and 7.1, we have dim(Extj,z (X, x)) = 2; in
Corollary 7.4, we have Ext?(y, x) = 0 and dim(Ext}(x, N)) = 2 (using the results of Subsubsection 5.3.1); in
Theorem 7.9, we have dim(Extj(x,7,)) = 3. With these modifications, we may proceed as in the proofs of
[Pas10, Prop. 10.5, Thm. 10.7] to obtain

Hl(Ila 7T(T‘, 07 1)) = m(T7 Oa 1)€93'

We now compute the higher cohomology. By [Koh17, Thm. 5.13], we have

Si(m(r,0,1)) = 1

where w : Q) — C* is the character zp® —— T (z € Z),a € Z). On the side of Hecke modules, by
unraveling the definitions in [Abel9a, Thm. 4.8] we obtain

{7'('(7’, 0,w ") :=7(r,0,1) Qc w " odet if j=1,

m(r,0,1)" 2 m(r,0,w™") := 7(r,0,w ")
Therefore, the spectral sequence (22) and the previous paragraphs give

H?(I;,7(r,0,1))
H3(I;,7(r,0,1))

1%

HY (I, 7(r,0,w™ "))
HO(Ila 7T(7“, 07 wfr))\/

1%

(r,0,1)%?,

m(r,
m(r,0,1).

1
1%

5.4. SL3(Q,). We now suppose G = SLy /g, with p > 5. As before, we let B = T x U be the upper-triangular
Borel subgroup, and I; the “upper-triangular mod p” pro-p Iwahori subgroup. Once again, the assumption
p > 5 implies I is torsion-free, and therefore has cohomological dimension dimg,(G) = 3. The calculations
below are similar to those for GL2(Q,), using the Poincaré duality spectral sequence (22) and Corollary 3.11;
we simply record the nonzero cohomology spaces.
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5.4.1. Trivial representation. We first let m = 15 denote the trivial representation. We have

HO(II7 1G) = Xtriv,

H'(I,1¢) = Ind} (@),
H*(I1,1¢) = Ind} (@),
H3(117 1G) = Xtriv-

zp? 0
0 z—lp—a,
from the two spectral sequences, using [Haul8, Lem. 3.1.1]. (See also [Koz18, Rmk. 6.6].)

Here @ : T' — C* denotes the character ( — T2 (T € Z),a € Z). This can quickly be obtained

5.4.2. Principal series. We now let y : T — C* denote a smooth character of the torus, and let Ind%(y)
denote the parabolically induced representation. We have

HO(I,Ind(x) = Ind}, (x),
H? (I, Ind%(x)) Ind% (x'@)V.

Furthermore, the results of [Koz19] can be adapted to show that we have an exact sequence

1%

0 — Ind¥_(x) — H'(I1,Ind%(x)) — Ind%_(x'a@)” — 0,

which is nonsplit if and only if y is equal to the character (wga $_1Op_a) T (z € Z),a € Z).

5.4.3. Steinberg. Suppose that m = St is the Steinberg representation of G. Using the previous two sections,
we obtain

HO(Ila StG) = Xsign
H'(I, Ste) Ind} (17),
H2 (117 StG’) = Xtriv-

1

5.4.4. Supersingular representations. Finally, we discuss cohomology of supersingular representations. Most
of the techniques of [Pas10] work mutatis mutandis in the SL2(Q,) setting, so we only outline the main ideas
(see also [Nadl9]).

Recall from Subsection 5.3.4 the supersingular representations 7(r, 0, 1) of GL2(Q,,). Define v := [1, X"], v’ :=
[(96),X"] €m(r,0,1), and let 7, denote the G-subrepresentation of 7(r,0, 1)|c generated by v. (Here X" de-
notes a vector spanning the one-dimensional vector space Sym” (C®2)11 'and [1, X"] € c—indgéﬁg”zl) (Sym" (C®2))
denotes the function with support £ZGLy(Z,) and value X" at 1; see [Bre03, §§2.3, 2.6].) The representa-
tions mg,m,...,Tp—1 are pairwise non-isomorphic, and constitute all absolutely irreducible supersingular
G-representations over C' (see [Abd14, Thm. 4.12(1)]). Further, by op. cit., Proposition 4.7, the space 7/t is
one-dimensional, and consequently simple as an H-module. We denote this H-module by m,., so that

H(I),7,) = m,

by definition. The forthcoming PhD thesis of Jake Postema shows that
Sj(’n'r) _ Tp—1—r lfj = 17
0 if 7 # 1.
Therefore, applying (22), we obtain

m,_1_, ifre{0,p—1},

H2(Iy,m) 2 H (I, mp_1—) 2mY , =
(£, 7r) (B mp-1-r) p=l=r m, fo<r<p-1,

where the last equality follows from [Abel9a, Thm. 4.8] (or an easy calculation by hand).
We now determine H'. Define the following subspaces of 7,

o= (B0
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war = (006 )0 )

Both M and II.M’ are in fact stable by I, and fit into an I-equivariant resolution

0—¢& — MoIllLM — 1, — 0,

z 0
0zt

7.9] to conclude that Ext}({r, 7y) is two-dimensional, and the analogous Ext spaces for other characters of
I are all 0. (Note that fixing the central character in the GL2(Q)) case in [Pas10] will produce the same
dimensions as the SL(Q,) case.) We conclude that H'(I,,7,) is two-dimensional, with the action of I given
by the character &.. When 0 < r < p — 1, this is enough to conclude

HY(I},7,) = m®?

where &, is the character ( ) — 2" (z € F)y), inflated to I. We may now proceed as in [Pas10, Thm.

(special care must be taken with the case r = (p — 1)/2). On the other hand, when r € {0,p — 1}, we have
Hl(ll,ﬂ'r) SEmydmy_q.

Note that these isomorphisms are consistent with the relation Hl(Il, ) =2 Hl(Il, wp,l,r)v.

5.5. Steinberg representation of GL3(Q,). Finally, let G = GL3/q,, let B denote the upper-triangular
Borel subgroup, and I; the “upper-triangular mod p” pro-p Iwahori subgroup. Suppose p > 5, so that [; is
torsion-free of cohomological dimension 9. Denote by P; and P2 the two standard parabolic subgroups for
which B C P; C G.

Let Stg denote the Steinberg representation of G = GL3(Q,). By [Kohl7, pf. of Prop. 5.6], we have
SI(Stg) =0 for j ¢ {2,3}, S?(Stg) = 1g, and S3(Stg) fits into a short exact sequence

0— Indg1 (xp,) ® Indg2 (xp,) — S3(Stg) — Ind%(x5) — 0.

(We shall soon show that this short exact sequence is nonsplit.)
We will determine some of the #-modules H'(I;,Stg). Note first that H(I1,Stg) = Ysign by [AHVIS,
Thm. 4.17]. To access higher cohomology groups, we will use the spectral sequence (22)

By =H' (I, 8 (Ste)) = H 7" (I1,Stg)".

By the above calculation of S7(St¢), this spectral sequence degenerates at the E3 page. In particular, we
obtain

H°(I;,Stg) = 0

H3(I,Stg) = O

H(I1,Ste) = HO(I,S%(Ste))”
=~ H(I1,1q)"
= Xtriv

Further, one can show that H6(I 1, Ste) has a quotient isomorphic to Xiyiv ®mY, where m,, is the 3-dimensional
simple supersingular H-module constructed in [Koz18, Thm. 6.4(b)].

We also obtain information about the pro-p-Iwahori cohomology of S3(Stg). Since Ey? = EiJ = 0 for
i+ j > 9, we obtain

H(I;,5%(Ste)) = 0
H®(I,5%(Ste)) = 0
H' (I, $*(Stg)) = H(I,5*(Ste))
~ H(I,1¢)
= Xtrivs

where the last isomorphism follows from Subsection 5.1. As above, we may also deduce that H®(I;, S3(Stq))
has a quotient isomorphic to Xty © mY.
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We now show how these results may be used to show that the extension defining S3(Stg) is nonsplit.
Assume the contrary, so that
StG @ Indp XP)-
PCG
By Subsection 5.2, we would then obtain

H' (L, $%(Sta)) = @D H (I, ndE(xp))
PCG

~ H'(I,Ind§(xp)) ® H' (I;,Ind§ (xp,)) ® H' (I;,Ind$, (xp,))
= H (11, ndf, (1ar,))” @ HO (11, ndf, (1ar,)) "

This would then imply that H (I, S3(St¢)) has dimension greater than 1, a contradiction. Thus, the short
exact sequence does not split, and we obtain

H® (11, 5%(Ste)) = Indjy,, (xp,) ©Ind},, (xP,)-

APPENDIX A.

In this appendix we slightly expand on results of Emerton and Pasktinas.
We maintain the same notation as in the body of the article. Namely, we let G denote a connected reductive

group over F, let Z denote the connected center of G, and let Z, denote the maximal compact subgroup of
Z=Z(F).

A.1. On Conjecture 3.1. Let G, denote the (open) subgroup of G generated by all parahoric subgroups
(equivalently, G.g is the kernel of the Kottwitz homomorphism). We also let I C G,g denote a choice of
Iwahori subgroup, that is, the stabilizer in G,g of a chamber of the semisimple Bruhat-Tits building of G.
Recall that the group Z/ 20 is free of finite rank s, and we have chosen central elements z;,...,z; € G
freely generating Z/ Zo. We define
H:={z1,...,25)Gas,

which is an open, normal, finite-index subgroup of G. Given c¢q,co,...,¢cs € C*, recall that %epi?;nci (@)
denotes the abelian category of admissible G-representations on which the z; act by ¢;.

Conjecture A.1. Let 7 € %epaqmi(G). Then there exists A € Rep?™ (G) and a G-equivariant injection

zZi=cC zZi=c;

m— A, such that Alr is injective in Rep™(I).
Theorem A.2. Suppose the semisimple F-rank of G is 0 or 1. Then Conjecture A.1 is true.

We prove the above theorem in a series of steps. If G’ is an open subgroup of G containing I, we will say
“Conjecture A.1 is true for G'” if the statement remains valid when G is replaced by G'. (When G’ does not
contain the elements z;, we omit the condition “z acts by ¢;.”)

Step 1. Suppose the semisimple F-rank of G is 0 or 1. Then Conjecture A.1 is true for Gag.

Proof. When the semisimple F-rank of G is 0, the semisimple Bruhat—Tits building of G is a point. Con-
sequently, G,g = [ is a profinite group, and we therefore we have the existence of an injective envelope
< injg . (7) in the category FMep™(Gag). It suffices to show that injg_ (7) is admissible. Note that
injg, . (m) = injg . (soca,, (7)), and the Gag-representation socg, () is semisimple and finite-dimensional
(by the admissibility of 7). We are now reduced to showing that inj (o) is admissible, where o denotes an
irreducible smooth G,g-representation. This follows from [Pas04, Lems. 6.2.4 and 6.3.2] (the proofs do not
require that the coefficient field be algebraically closed).

Suppose now that the semisimple F-rank of G is 1. In this case, the semisimple Bruhat—Tits building %
of GG is a tree, and we let ¢ denote the edge whose stabilizer is I, and let v and v’ denote the two vertices in
the closure of e. The group G.g acts on Z, with one orbit in the set of edges, and two orbits in the set of
vertices. If we let K and K’ denote the parahoric subgroups associated to v and v’ then [Ser03, §4, Thm. 6]
implies

Gaff =K *r K/.
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Since Gg is an amalgamated product of two parahoric subgroups, we may use the formalism of diagrams
utilized in [KX15]. In particular, the Gg-representation 7 gives a diagram

7T|K

7T|K/

with the property that Ho(%, D) = 7 as Gag-representations. Fixing injective envelopes of each representa-
tion, we obtain

|k inj e (7] x)

1 inj;(mr)

|k inj g/ (7| xr)

Note that inj;(«|;) is an admissible I-representation (and similarly for the groups K and K'), as in the first
paragraph. By [Pas04, Lem. 6.2.3], the I-equivariant injection m|; < (7|x)|r — injg(7|x)|r extends to
an injection « : inj;(7|;) — injx (7|x)|r (and similarly for K’). Therefore, we get a morphism of diagrams

|k inj e (7] )
id /
(J
1 inj;(m|r)
id X X
7|k inj g, ([ xr)

(that is, a diagram in which each square is commutative).

For J € {K,K',I}, we have inj;(r|;) = inj;(socs(w|s)). Since 7 is admissible, there exists an in-
teger ay such that socy(mw|;) «— C[J/J1]®%’, where J; denotes the pro-p radical of J, and therefore
inj; (7] ;) = inj s (socs(|y)) = inj;(C[J/J1])®%’. Note that we have injy (C[K/K1])|; = inj, (C[I/1;]) @]
(and similarly for K’). Indeed, by Pontryagin duality, it suffices to show C[K] = C[I]®*!]| which follows
from [Sch11, Cor. 19.4 iv.].

We may therefore choose the integers ax, aks, and a; such that we have injections

/ian<w|K> L inj e (LK) K ])®x
injf(wlﬁ\ ’ inj; (C[I/1,])®
inj g, (|57 L inj o, (C[K /K1) O

and such that we have isomorphisms of I-representations
inj g (C[K/K1]) ¥ |1 22 inj (C[I/1])®*" 22 inj ., (C[K'/K{])*"<'r.
Since inj;(7|7) is an injective I-representation, we have splittings
inj, (CIL/NL])®* = jr(inj, (7)) & Ap
inj e (CIK/K1)®* |1 = ji oa(inj,(n]n) ® Ax
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injg (CIK'/K])®*' |} = jgrod (inj (7)) & Ak

By construction, there exist I-equivariant isomorphisms 3 : A; — Agx and 8’ : Ay =5 Ags. Therefore, we
may construct I-equivariant isomorphisms

yi=(xoacj)@p: inj (CU/N)® = inji (CIK/KN])*™ ;s
V= (i od oji )@+ inj(CH/L])% 5 injg. (CIK'/K{])® .

This implies that we have a morphism of diagrams

inj (7 ) Ix inj (C[K /K1) @
o« vy
(26) inj, (1) “ inj, (C[1/1,])®
o s ’Y/
nj s (7] ) s inj e (CIK' /K]y @

Let us denote the diagram on the right of (26) by D. We have thus constructed a morphism of diagrams
D, — D in which all arrows are injections, and where all arrows of D, and D are isomorphisms. We
therefore obtain an injection of G,g-representations

= Ho(%, D,T) — Ho(f@, D)
By [Pas04, Prop. 5.3.5], we have

Ho(%, D)|r = inj; (C[I/1])®*,
which is injective as a smooth I-representation. Furthermore, since C[I/I1] is injective as a representation of
1/1;, we have

I o @a It [Pas04, Lem. 6.2.4] o ®a ®a
Ho(2,D)" = (inj, (C[I/1])*") = iy, (CU/L])™ = O/ TP,

and therefore Ho(#, D) is admissible. O
Step 2. If Conjecture A.1 is true for Ga.g, then it is true for H.

Proof. Let m € Repd™ (H). Assuming Conjecture A.1 is true for G.g, we can find an admissible G,g-

Zi;=C;q

representation A € mepadm(Gaff) and a G,g-equivariant injection

7T|Gaff — A,

such that A|; is injective in Rep®°(I). If we define an H-representation A by the conditions that .%T|Gaff =A
and that the z; act by ¢;, then the above injection extends to an H-equivariant injection

T A.
One easily checks that A satisfies the conditions of Conjecture A.1 for H. O

Step 3. If Conjecture A.1 is true for H, then it is true for G.

Proof. Suppose 7 € S)%padm (G). Assuming Conjecture A.l is true for H, we can find an admissible H-

representation A € %epi?ii (C}{ ) and an H-equivariant injection
7|y — A,
such that A|; is injective in Rep®(I). Taking inductions, we obtain G-equivariant injections
7 — Ind$ (7| ) — Ind$ (A).

Since H is of finite index in G, the representation Ind%(A4) = c-ind%(A) is admissible ([EP10, Lem. 2.2]),
and by normality of H we have

Indfy (A)lr = T] Wdingmy (Angme-) = [ A1
geG/H geG/H

We conclude that Ind$ (A4)|; is an injective I-representation. O
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A.2. On Conjecture 3.2. Our next task will be to investigate the derived functors of ordinary parts
R'Ord% . We let G9 denote the derived subgroup of G, and G*¢ the simply connected cover of G,
Recall that Z is the connected center of G and Zj is the maximal compact subgroup of Z.

Conjecture A.3 (cf. [EmelOb], Conjecture 3.7.2). Let P = M x N denote a standard parabolic subgroup of
G, and let T € Rep™™(G) be an injective object. Then 7T|NO— is injective in Rep™ (N; ). Consequently the
functors HiOrdgf are effaceable on the category D%epladm(G) for i > 0, and therefore HOrd%_ ~ R'Ord%_
fori>0.

Theorem A.4. Suppose G* = SLy,p. Then Congecture A.3 is true.

We again proceed in several steps. For the proof, it will be convenient to allow more general coefficient
rings. We therefore let R denote a local Artinian Z,-algebra with finite residue field, and suppose the residue
field of R contains C. We refer to [EmelOa, §2] for the relevant definitions of smooth, admissible, etc., G-
representations on R-modules. We denote the relevant categories by appending the subscript “R” to notation
already introduced; so, for example, Rep% (G) denotes the category of smooth G-representations over R.

Step 1. Conjecture A.5 is true when G = SLy/ k.
Proof. This follows in exactly the same way as the proofs of Theorem 3.4 and Corollary 3.8 of [EP10] (with G°

replaced by SLy(F)); in particular, if 7 € Rep'a®™(G) is an injective object, then TlsL,(0p) € Repr (SL2(OF))
is injective. The result then follows from [EmelOb, Prop. 2.1.11]. O

Step 2. Conjecture A.3 is true when G is semisimple and G> = SLy/p.

Proof. Let G*¢ P G denote the simply connected cover, and denote its (finite, central) kernel by A. We
then have a short exact sequence

1—wA—G* 2651,
taking Galois-fixed points, we get

1—A— GG —HY(FA).

Since F is of characteristic 0, the group H'(F, A) is finite ([PR94, Thm. 6.14]), and consequently H := pr(G=°)
is a finite index open subgroup of G. In particular, a locally admissible, injective G-representation remains
locally admissible and injective after restriction to H (cf. [EP10, Lem. 2.2, Prop. 2.3]). Since pr induces an
isomorphism between unipotent radicals of parabolic subgroups of G*¢ and G, it therefore suffices to prove
the claim with G replaced by H.

Let 7 denote an injective locally admissible H-representation over R. Since H = G¢/A, we may inflate 7
to a locally admissible G*¢-representation over R (denoted by the same symbol). Let

T— A

denote an injective envelope of 7 in the category S{eplﬁdm(GSC). Since A acts trivially on 7, this injection
factors as
Te— A® — A,

Note that we have an equivalence of categories between %epgdm’Azl(Gsc) (locally admissible representations
of G*¢ on which A acts trivially) and %epll?}dm(H ). Viewed in the latter category, the map 7 — A® is an
essential injection from an injective object. Therefore, we must have 7 = A® as H-representations (and thus
also as G*°-representations).

By the proof of step 1, we have that Algy, (o, is injective in Rep (SLa(OF)). Since AN, C SLa(Op),
[Emel0b, Prop. 2.1.11] implies that A‘ANO_ is injective in Rep7y (AN, ). Now, the functor

Repls (AN ) — Repl >~ (ANy)
T — TA

is right adjoint to the (exact) forgetful functor. In particular, the above functor preserves injectives, so
AA|AN(; is an injective object of ERepORO’A:l(ANJ) (cf. [EP10, pf. of Lem. 2.5]). Using the equivalence of

categories mep;’;’Azl(ANg) =~ Repx (Ny ) gives the result. O

Step 3. Conjecture A.3 is true when G = SLy,/p, and with “%epladm(G)” replaced by “D‘iepﬁdm(goGder)”.
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Proof. We let Z1 D Z5 D ... denote a decreasing sequence of open subgroups of 20 such that (), Z; = {1}
and Z; NG9 = {1} for every i > 1 (this is possible since Z NG9 is finite). Define H; := Z;G*. Then each
H; is a finite index open subgroup of ZoGder,

Let 7 € %epﬁdm(goGder) be an injective object. Since H; is of finite index in Z,G9°, the representation
7|g, is locally admissible and injective. As in the proof of part 2, the functor

Repip™ () — Repp™™ =7 (1)
T o— T

preserves injectives. Therefore, 7%¢|y, is an injective object of S)erlsdm’zi:l(Hi). Since this category is

equivalent to Sﬁeplgdm(Gder), part 2 implies that 7% Ny is injective in Rep® (N ).
By smoothness, we may write 7w as an inductive limit

7 =lim 7%.
g

Restricting to NV, , we obtain

7T|NO— = hgl (n%i NO—).
i
Since 7% Ny is injective, [Emel0b, Prop. 2.1.3] implies that 7T|NO— is injective in RepGy (N7 ). O

Step 4. Conjecture A.3 is true when G = SLy,p, and with “Rep'2™ (@) replaced by “Rep ™ (ZGder)”,

Proof. By induction on the rank of Z/ZNO, it suffices to assume Z/Zvo = (z1) @ Z. We outline the proof, which
closely follows the proof of [EP10, Cor. 3.9].
Let 7 € Rep'a®™(ZG9°7) be an injective object. We view 7 as a ZG9"-representation over R[t*!], with t
acting via z;. We may then write
= @ m[n°],

ne€m-Spec(R[tE1])

where m[n®] = lim, m[n]. Let us write n = (m, f), where m is the maximal ideal of R and f € R][t] is a monic
polynomial. Since R is Artinian, we obtain

[n>) = wf>] = lim w[f7].

We claim that 7[f’]|z qaer € Replad™ (Z,G4er) is injective. To see this, note first that 7[f] is injective in
the category i)%epllgdm’f l:O(ZGder) (locally admissible ZG9"-representations which are annihilated by f*), by

an argument similar to the proofs of parts 2 and 3. Set Q := R[tT!]/(f?). Then there is an equivalence of

categories between Rep'a™/ izO(ZGde") and E)‘{epgdm(goGder). Further, since Q is free of finite rank over R,
the functor

meplsdm(goGdcr) SN mepléxdm (gondcr)
T — Q®RT
is exact. Consequently, the forgetful right adjoint functor %epgdm(ZNOGder) — %epﬁdm(goGder) preserves

injectives. This gives the claim.

Finally, since ”[fi”z}cder is injective in Dﬁiep?dm(é}nger), part 3 implies that 7T[f1'”Ng is injective in

Rep (N, ). Since 7 is an inductive limit of the «[f?], for various monic polynomials f of R[t], [EmelOb,
Prop. 2.1.3] gives the result for W\NO_. ]

Step 5. Conjecture A.3 is true when G* = SLy/p.
Proof. We have the following short exact sequence of groups

1—ZNGY — Zx Gl 56 — 1,

where Z N G4 is finite. Taking Galois invariants, we obtain

1— ZNG¥ — Z x G4 5 G — HY(F, ZNn G,
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Appealing to [PR94, Thm. 6.14] once again, we get that H'(F, Z N G) is finite, so that ZG9" is a finite
index open subgroup of G.

Now let 7 € Rep'®d™ (@) be injective. As be