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ABSTRACT :  
Realistic construction estimating requires optimal decisions that not only minimize construction time and cost, but also 
address other important factors such as project risks. Probabilistic estimating is generally used to incorporate risk into 
estimated costs, the most common measure of which is the expected monetary value (EMV). Yet, EMV does not 
capture the way most people make decisions under uncertainty because it cannot reflect the decision maker’s risk 
sensitivity. This paper presents a probabilistic estimating model that can quantify and incorporate the contractor’s risk 
aversion. A highway tunneling project is presented to illustrate the application of the proposed model. Tunnel cost 
estimating is formulated as a risk-sensitive Markov decision process (MDP) where the contractor’s risk sensitivity is 
modeled by an exponential utility function. The contractor’s decisions depend on his risk aversion coefficient and the 
variability in tunneling costs, which in turn depend on geologic uncertainty. The risk-sensitive MDP is solved by 
maximizing the expected utility value (EUV) of tunneling costs. The final results include the optimal excavation and 
support sequence, and the risk-adjusted tunneling costs for the project, as functions of the contractor’s risk sensitivity. 
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1.   Introduction 
Construction estimating should account for future 
construction risks during the planning (bidding) phase. 
Realistic estimating involves optimal decisions that not 
only minimize construction cost and time, but also 
address other important factors such as potential risks 
associated with the project. Probabilistic estimating is 
commonly used to incorporate risk into estimated costs. 
However, its most common measure, expected monetary 
value (EMV), does not reflect the way most people make 
decisions under uncertainty because it does not consider 
the decision maker’s risk sensitivity. 
      In this paper, we present a probabilistic estimating 
model that can quantify and incorporate the contractor’s 
risk sensitivity. The proposed model is applied to tunnel 
estimating to illustrate its power to systematically 
integrate the contractor’s risk sensitivity into construction 
estimating. 
 
2.   Decision Making in Construction Estimating 
During the construction planning (bidding) phase, 
contractors use information obtained from a variety of 
sources (e.g., the bidding documents developed by the 
architect and engineer) for establishing a construction 
plan and estimating its associated costs. To develop an 
appropriate construction plan, a chief estimator needs to 
make several major decisions based on available  

 
information and personal experience, including site 
layout, construction methods, major construction 
equipment, and material and labor management. These 
decisions are usually left to the contractor because he has 
a better understanding of construction practices than the 
architect and engineer. Allowing the contractor to use 
construction plans that are most compatible with his 
expertise and available resources can significantly 
enhance the overall project economy. 
      Often, there are many feasible construction 
alternatives for a particular project. To be competitive, 
contractors must be able to measure and compare the 
performance of these alternatives. The most important 
attributes for appraising construction performance are 
construction cost and time, which can be determined by 
construction estimating. 
      Decision making in construction estimating is 
characterized by a variety of uncertainties, depending 
upon the nature of project. For example, risks in tunnel 
construction stem from three major factors: geologic 
uncertainty, geologic variability, and uncertainty in the 
productivity of tunneling operations. The probabilistic 
estimating approach can be used to quantify and 
incorporate these risks into construction estimating, as 
presented in detail in [1]. 
 
 



3.   Risk Sensitivity in Construction Estimating 
Decision making under uncertainty (e.g., construction 
estimating) can be described by an uncertain proposition, 
termed lottery. When a person participates in a lottery, he 
will receive one of a specified set of outcomes (e.g., 
construction costs). Each outcome has the associated 
probability that the decision maker will receive that 
outcome. Let us consider a lottery of a coin tossing, as 
illustrated in Figure 1. Suppose that the participant in this 
lottery will receive nothing if the coin falls heads, but he 
will receive $100 if the coin falls tails. Assume that the 
coin is fair; that is, P(Heads) = P(Tails) = 0.5. A common 
measure of the lottery for a risk-neutral decision maker is 
the expected monetary value (EMV), which is computed 
by multiplying the amount of each outcome by its 
corresponding probability and summing over all 
outcomes. Thus, the EMV of this coin-tossing lottery 
equals to 0.5($0) + 0.5($100) = $50. 
      Measuring a lottery by using EMV does not capture 
the way most people make decisions under uncertainty 
because it cannot reflect the decision maker’s risk 
sensitivity. Individual valuation of benefits and costs for 
decisions involving risk is often nonlinear. That is, 
decisions made regarding risky situations are not based 
on the maximization of EMV. When making decisions 
under uncertainty a decision maker is commonly 
sensitive to risk, either risk averse or risk preferring. An 
individual’s risk sensitivity is influenced by a variety of 
factors, especially his current financial position. 
Typically, as a person’s net asset position increases, the 
less risk averse his behavior toward the same risk. Risk 
sensitivity is also influenced by the magnitude, range, 
and likelihood of the outcomes. For example, a fair coin 
lottery with monetary outcomes equal to $49 and $51 
also has EMV=$50 but has much less variability and thus 
presents much less risk. 
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Figure 1 Coin-Tossing Lottery 

 
      In construction, a contractor’s decisions under 
uncertainty depend on his risk sensitivity, the range of 
monetary outcomes, and the associated probabilities. 
Thus, the factors influencing his decisions include: 

• The contractor’s current financial status; 
• The identity of the owner and the engineer; 
• The type and number of available projects; 
• Project conditions (e.g., size, location, and 

complexity); 
• The contractor’s state of uncertainty about the 

work, which is based primarily on available 
information; and 

• The amount of risk assumed by each party to the 
contract. 

      A contractor’s risk aversion and the degree of risk 
exposure can have a major influence on his construction 
decisions and the necessary amount of risks premium 
(contingency) embedded in his price in order to 
undertake the work. A more risk-averse contractor adopts 
a more conservative construction plan and includes a 
higher allowance as contingencies in his bid than a less 
risk-averse contractor does [2]. 
      A measure of a lottery that can reflect the decision 
maker’s risk sensitivity is the certain equivalent (CE). 
The CE of a lottery is defined as the minimum selling 
price of the lottery (i.e., the minimum amount of money a 
person would accept to give up a lottery he already 
owns). The CE of a particular lottery is different for 
different decision makers because of different personal 
risk attitudes. Suppose that the minimum amount of 
money a person wants to be paid to give up the coin-
tossing lottery in Figure 1 is $40. The CE of this lottery 
for this person is therefore $40. That is, this person is 
indifferent between playing this lottery and receiving the 
amount of money equal to the CE ($40) with certainty. 
Figure 2 illustrates the meaning of CE graphically. The 
symbol ~ means that the decision maker is indifferent 
between this coin-tossing lottery and another lottery that 
pays $40 (i.e., CE) with probability one. 
      If a lottery is described by a random variable X, 
where larger values of X are preferred, the difference 
between the EMV and the CE of the lottery is defined as 
the risk premium: 
 

[ ]pX E X X= −   (1) 
 
where Xp is the risk premium of the lottery X, E[X] is the 
EMV of the lottery, and X  is its certain equivalent. 
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Figure 2 Certain Equivalent (CE) of the Coin-Tossing Lottery 
 
      The risk premium can be considered the algebraic 
amount of money a person is willing to forgo to avoid the 
risk of the lottery. For example, it is the amount that a 
contractor would be willing to pay a subcontractor to do 
the work (above the expected cost) and thus avoid risk. If 
the risk premium is zero, the person is risk neutral. If the 
risk premium is not zero, the person is risk sensitive. For 
risk-averse persons, the risk premium is positive, whereas 
for risk preferring persons (gamblers) the risk premium is 
negative. A positive risk premium means that a risk-
averse decision maker would accept the lower but certain 
amount of money to give up the uncertain lottery with the 
higher EMV. In contrast, the gambler would give up his 
lottery only if he is offered with the higher amount of 
certain money than the EMV of the lottery. Thus, the risk 



premium for the above coin-tossing lottery is $50 – $40 = 
$10, so the person is risk averse. 
 
4.   Modeling Risk Sensitivity 
The risk sensitivity of a decision maker can be encoded 
by a unique utility function [3]. A utility function u(v) 
assigns a real number u in an ordinal scale to each of the 
possible lottery outcomes v. The utility function has two 
important properties: 

• The utility of any lottery is the expected utility 
value (EUV) of its outcomes. 

• If the decision maker prefers one lottery to 
another, it must have the higher utility. 

      Accordingly, the decision maker’s preference in 
ranking alternative lotteries with uncertain outcomes can 
be quantified by the EUV of each lottery [4]. If the larger 
value of v is preferred, then u(v) is a monotonically 
increasing function of v. When the decision maker has to 
choose between several lotteries, the one with the largest 
EUV is the most desirable choice. 
      The certain equivalent (CE) of a lottery v  is defined 
as the value of the outcome that has the same utility as 
the EUV of the lottery. 
 
( ) ( )u v E u v= ⎡ ⎤⎣ ⎦   (2) 

 
      Thus, the decision maker is indifferent between 
facing the uncertain outcomes of a lottery and receiving 
the CE with certainty. It should be noted that the CE of a 
lottery must be interpreted algebraically. For example, 
the CE (selling price) of a lottery involving monetary loss 
(e.g., construction costs) is negative, which represents the 
amount of money the decision maker is willing to “pay” 
(e.g., subcontract) in order to sell the risk of that lottery 
to other parties (e.g., subcontractors) [5]. 
      A utility function can be expressed by a utility curve, 
which assigns a utility number to every value of the 
lottery outcome. An individual’s utility curve can be 
developed by an assessment procedure [3]. The utility 
function of risk-neutral decision makers is linear, that of 
risk-averse persons is concave, and that of gamblers is 
convex, as shown in Figure 3. 
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Figure 3 Utility Curves of Three Types of Risk Preference 

5.   Risk-Sensitive Tunnel Cost Model 
In this paper, we illustrate the procedure for quantifying 
and incorporating an estimator’s (e.g., a contractor’s) risk 
sensitivity into construction estimating through the risk-
sensitive tunnel cost model. 
      Tunneling operations can be described as a risk-
sensitive Markov decision process (MDP) where the risk-
sensitive tunnel cost model is formulated by integrating 
utility theory with stochastic dynamic programming. 
      Modeling this risk-sensitive tunnel cost model also 
requires an additional assumption concerning risk 
preference known as the delta property [3]. An important 
implication of this assumption is that a multistage 
decision problem can be broken down into single-stage 
decision problems that are easier to solve. 
      Since the utility function of a decision maker who 
accepts the delta property is restricted to be either linear 
or exponential [3], the exponential utility function, which 
is the general case, is used to construct the tunneling cost 
function: 
 
( ) ( )sign vu v e γγ −= −   (3) 

 
where ( )u v  is the utility of tunneling costs v . The 
parameter γ  is the risk aversion coefficient, and (sign γ ) 
is the sign of γ . A positive γ  means the decision maker 
is risk averse. A negative γ  means the decision maker 
prefers risk. A detailed discussion about the formulation 
of this model can be found in [1]. 
 
6.   Application 
As an example, we applied the proposed model to 
determine tunneling costs and plans for the Hanging Lake 
Tunnel Project in Colorado, USA. We focused on the part 
of the westbound tunnel with the total length of 1.1 km 
(3,609 ft) excavated by the multiple-drift drill and blast 
method. 
      The anticipated tunnel geology was classified into 
three ground classes: GC1 (best), GC2 (medium), and 
GC3 (worst). The engineer specified three excavation 
methods (EM1, EM2, and EM3) and three primary 
support systems (SS1, SS2, and SS3) in accordance with 
the three ground classes. For example, EM3 and SS3 
represent the most conservative and the most expensive 
construction method for this project. There are nine 
possible combinations (called tunneling alternatives) of 
different excavation and support methods and the 
geologic conditions to which they may be applied in this 
example (i.e., 3 excavation and support methods ×           
3 possible ground classes). For example, the tunneling 
alternative (EM1,GC3) represents the decision to apply 
EM1 in a particular round and the actual ground class of 
that round after blasting to be GC3 (leading to excessive 
overbreak). The distributions of cost associated with 
different alternatives are different and are determined 
separately. 
      Based on available project information (e.g., [6]), the 
equipment, material, and labor costs for each alternative 
were organized and calculated by using a computer 



spreadsheet. These costs were then categorized into fixed 
costs and variable costs, as shown in Table 1. The 
calculated tunneling variable costs were then used as 
inputs for the probabilistic scheduling analysis of 
tunneling operations by Monte Carlo simulation, as 
discussed in [7]. The simulation results provided 
distributions of tunneling unit costs ($/m) for all nine 
alternatives, which can be approximated very well by 
normal distributions with parameters shown in Table 1. 
      As can be seen, the tunneling unit costs for applying 
an excavation method in a particular round depend upon 
the prevailing ground class after blasting. If the selected 
method is appropriate for the revealed geologic 
conditions, this decision will lead to the lowest unit cost 
for the geologic conditions in that round [e.g., 
(EM1,GC1), (EM2,GC2), and (EM3,GC3)]. In contrast, if 
the selected method is structurally inadequate [e.g., 
(EM1,GC2)], or overly conservative [e.g., (EM3,GC1)] 
for the actual ground conditions, the tunneling unit costs 
will be higher than those of the right decision cases. 
      Another input for the risk-sensitive tunnel cost model 
is the predicted geologic conditions of the project in the 
form of ground class transition probability matrices along 
the tunnel profile. Detailed discussion of this can be 
found in [1] and [8]. An example of the ground class 
transition probability matrix between locations 746.1 m 
(2,448 ft) and 749.8 m (2,460 ft) is: 
 

0.44522 0.46793 0.08685
(746.1,749.8) 0.11387 0.76330 0.12283

0.14624 0.63995 0.21380

GC

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

P  

 
      For example, given that the tunnel geology is ground 
class 2 at location 746.1 m, the probabilities that it will 
make a transition to ground class 1, ground class 2 
(remain the same), and ground class 3 at location 749.8 m 
are 11.39, 76.33, and 12.28 percent, respectively (i.e., the 
second row of the matrix). 
      The parameters of the tunneling unit cost normal 
distributions and the ground class transition probability 
matrices determined above provided inputs for the risk-
sensitive tunnel cost model. This model was then solved 
by using stochastic dynamic programming to determine 
the risk-adjusted tunneling costs (certain equivalents) and 
the optimal excavation and support sequence (optimal 
policy) for different degrees of risk sensitivity (i.e., 
different risk aversion coefficients γ ). 
      Figure 4 shows the CE of tunneling costs for different 
degrees of risk sensitivity of the contractor. As can be 
seen, the EMV of tunneling costs for this project ( 0γ = ) 
is approximately $30.3M. As the risk aversion coefficient 
γ  increases (i.e., a contractor becomes more risk averse), 
the risk-adjusted tunneling cost (CE) increases almost 
linearly.  For example, the CE of the tunneling cost for a 
risk-averse contractor with 25γ =  is approximately 
$35.6M (i.e., the risk premium is about 17%). In contrast, 
as the risk aversion coefficient γ  decreases (i.e., a 
contractor is more risk preferring), the risk-adjusted 

tunneling cost decreases almost linearly. For example, the 
risk-adjusted cost for a risk-preferring contractor with 

25γ = −  is $26.9M or about 11% below the EMV of 
tunneling cost. 
      Figure 5 illustrates the optimal tunneling policies for 
the west tunnel segment given that the contractor is risk 
averse with 5γ = . Nine bars in the figure correspond to 
the nine possible combinations (states) of ground classes 
and excavation methods during construction. For 
example, given that the tunnel geology encountered at 
location 40.2 m (132 ft) is GC1, and EM1 was used in the 
previous round, the optimal policy for the risk-averse 
contractor with 5γ =  is to use the same method (i.e., the 
first bar). However, if the geologic conditions at the same 
location are GC2, and EM1 was used in the previous 
round, the contractor should switch to EM2 for the next 
round (i.e., the fourth bar). 
      Figure 6 illustrates the optimal tunneling policies 
given that the contractor is risk preferring with 5γ = − . 
As can be seen, the optimal policies at several tunnel 
locations for this risk-preferring case are different from 
those in the previous risk-averse case such as for state 
(GC3,EM1), the seventh bar, at location 304.8 m (1000 
ft). 
 
7.   Conclusion 
The risk-sensitive tunnel cost model presented in this 
paper demonstrates the procedure to quantify and 
incorporate a contractor’s risk sensitivity into tunnel cost 
estimating in a systematic manner. The results show the 
influence of the contractor’s degree of risk aversion on 
the certain equivalent of tunneling cost and the optimal 
construction policies. These optimal decisions can be 
used not only for planning and estimating project prior to 
construction but also for choosing optimal construction 
methods based on actual construction conditions (e.g., 
prevailing ground conditions and current excavation 
method). The proposed model can be modified and 
applied to other types of construction projects such as 
buildings and highways as well.  
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Table 1 Summary of Tunneling Costs and Parameters of Tunneling Unit Cost Normal Distributions 
Parameters of Tunneling Unit Cost 

Normal Distribution ($/m) No Tunneling 
Alternative Consequence 

Material Unit 
Cost per Length 

($/m) 

Hourly cost 
($/hr) 

Mean SD 
1 (EM1,GC1) Right Decision 6,896 8,720 19,626 509 
2 (EM1,GC2) Exc. Overbreak 8,304 9,065 34,895 722 
3 (EM1,GC3) Exc. Overbreak 8,855 9,065 60,236 1,532 
4 (EM2,GC1) Underbreak 6,962 8,720 30,315 679 
5 (EM2,GC2) Right Decision 7,648 9,065 26,306 492 
6 (EM2,GC3) Exc. Overbreak 8,622 9,065 47,041 1,096 
7 (EM3,GC1) Underbreak 7,087 8,720 42,329 1,342 
8 (EM3,GC2) Underbreak 7,766 9,065 44,580 1,050 
9 (EM3,GC3) Right Decision 8,022 9,065 31,706 653 

Note: The total fixed cost is $874,347. If the entire project is in GC1, this cost could decrease to $867,137. 
 
 
 
 
 
 
 
 

 
Figure 4 Relation between Risk-Adjusted Tunneling Costs (Certain Equivalents) and Risk Aversion Coefficients ( γ ) 
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Figure 5 Optimal Tunneling Policies for 5γ =  (Risk-Averse Contractors) 
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Figure 6 Optimal Tunneling Policies for 5γ = −  (Risk-Preferring Contractors) 

 


