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Abstract  

Spatial patterns in ecology have an important role in the temporal dynamics of a system. Here, I 

analyze the arboreal nesting keystone species’, Azteca sericeasur, dynamic clustering patterns 

over time in a conventionally managed coffee farm and a certified organic coffee farm. A. 

sericeasur exhibits self-organized dynamics due to its density dependence and interactions with 

natural enemies. Environmental heterogeneity, in this case tree availability, also contributes to 

the nest distribution patterns.  

I explore the spatial patterns of A. sericeasur through cluster analyses to determine the impact 

of nest clustering on nest mortality over time. Using Ripley’s K analysis, I find there is clustering 

of ant nests at both farms but only at a small spatial scale (r < 100 m) in the conventionally 

managed farm and at all spatial scales analyzed (r < 150 m) in the organic farm. In addition, 

older nests in the conventional farm that died were observed to be more isolated from live 

nests. This study has implications for coffee farm management, as this system contains a 

biological control agent. Understanding the nesting patterns of A. sericeasur can guide farm 

managers in utilizing their ecosystem services more effectively.  
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Introduction  

In ecology, it is generally accepted that environmental heterogeneity impacts species 

distribution across a landscape (Deblauwe 2008). Variability in soil nutrients and water 

availability are some examples that result in non-random spatial patterns (John et al. 2007, 

Villalobos-Vega et al. 2014). However, sometimes species demonstrate self-organizing patterns 

under uniform environmental conditions (Vandermeer et al. 2008). Alan Turing’s concepts of 

diffusion (i.e. activation) and restriction (i.e. repression) in chemical reactions offer a process 

through which self-organizing patterns could emerge (Turing 1952). This Turing mechanism has 

been used in theoretical ecology to demonstrate non-random patterns over space and time 

(Bolker 2003). Observations in nature are found in semiarid vegetation (Klausmeier 1999) and 

mussel beds (van de Koppel 2008) where species demonstrate non-random spatial patterns.  

The distribution of nesting ant species can reveal an example of a Turing mechanism in tropical 

ecosystems. Azteca sericeasur is an arboreal nesting ant species common in coffee 

agroecosystems in Mesoamerica that nests in shade trees planted among coffee bushes 

(Vandermeer et al. 2010) in shaded coffee farms. A. sericeasur has been shown to form 

clustering spatial patterns following a Turing process involving instances of activation and 

repression (Vandermeer et al. 2008, Li et al. 2016). As the colony grows, it may ‘bud out’ and 

form a new colony in a nearby tree, which represents the activation process (Vandermeer et al. 

2008). Density dependent attacks from natural enemies, such as parasitoid phorid flies, can limit 

the expansion of nests, representing the Turing repression process (Philpott et al. 2009, Perfecto 

and Vandermeer 2008, Pardee and Philpott 2011, Hsieh et al. 2012). Phorid flies cause a decline 

in ant foraging activity limiting the amount of honey dew from hemipteran mutualists that the 

ants can bring back to feed the colony (Perfecto and Vandermeer 2006). Proximity to a nest 

attack by phorid flies may impact the ant behavior of nearby nests (Mathis et al. 2011).  

Understanding the spatial distribution of A. sericeasur ants is important to farmers as they 

provide important biological control services (Vandermeer et al. 2010, 2019). A. sericeasur is 

considered a keystone ant species in Mexican coffee farms due to their multitude of interactions 

with other organisms that result in pest control. One of those interactions is their mutualistic 

association with the green coffee scale, Cocus viridis, where they offer protection to the scale 
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insects in return for a food resource. As they forage and protect scale insects on coffee plants, 

they exhibit aggressive behavior towards many other insects, including the coffee berry borer, a 

common pest of coffee. As a result, A. sericeasur is considered an important biological control 

agent in coffee farms (Morris et al. 2015).  

Extensive work has focused on ant communities in a large certified organic and shaded farm 

(Jackson et al. 2009, Liere et al. 2012, Perfecto and Vandermeer 2008, Vandermeer et al. 2008, 

Vandermeer et al. 2010) where a 45 hectare plot allows for spatial analyses to be conducted. 

But less is known about the dynamics that influence nest distribution in a more intensive and 

conventionally managed farm. Here, I analyze the spatial distribution of A. sericeasur in the 45 

hectare plot in Finca Irlanda, the organic shaded farm, and compare it to the spatial distribution 

on a 30 hectare plot in Finca Hamburgo, a conventional farm with much lower density of shade 

trees. A previous study showed that the impact of phorid flies in reducing ant foraging activity 

was stronger in low shade sites than in sites with higher shade levels (Pardee and Philpott, 

2011). For this reason, I expect that the clustering pattern would be stronger in the conventional 

farm with low shade level than in the organic shaded farm. I hypothesize that (1) nest 

distribution is significantly clustered in both farms, but the conventional farm has a stronger 

clustering, and (2) that there is a significant clustering of live nests surrounding dead nests due 

to the density dependence dynamics between ants and phorid flies.   

Methods 

Study site 

The study was conducted in the Soconusco region of Chiapas, Mexico. Finca Irlanda (15◦ 11’N, 

92◦ 20’W), is a 280 ha certified organic coffee farm, with a high diversity and density of shade 

trees (for a description of the farm see, Perfecto and Vandermeer 2002; Philpott and Bichier 

2012). In 2004 a 50 ha plot was established in FInca Irlanda. Trees larger than 10 cm in 

circumference were tagged, georeferenced and identified to species. A census of the location 

(individual tree) of A. sericeasur nests is conducted on a yearly basis (Vandermeer et al. 2008, Li 

et al. 2016). Finca Hamburgo (15◦ 10’N, 92◦ 19’W) is a 300 ha conventionally managed coffee 

farm with low density of shade trees (for a description of the farm see, Perfecto and 
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Vandermeer 2002). In 2012, a 30 ha plot was established in Finca Hamburgo using the same 

methodology as the 45 ha plot in Finca Irlanda. Yearly data on A. sericeasur nest location was 

also collected from 2012 to 2015, and then sporadically. For this reason I only used data from 

2012 to 2015 for Finca Hamburgo.   

Cluster analysis 

I analyze A. sericeasur nest distribution in 2015 for both farms using Ripley’s K analysis in the 

spatstat package in R (Baddeley and Turner 2004). Ripley’s K is used to analyze the clustering of 

observed events (i.e. nests) at circles of radius r (see Fig. 1a) against a homogeneous Poisson 

process (Dixon 2014). To achieve a 95% confidence interval, we compared the observed 

patterns with 100 randomly-generated patterns based on the type of event (Table 1). This 

analysis gives the expected number of points of event j from event i (see Table 1) within radius r 

to determine distribution and clustering (see Fig. 2) patterns (Haase 1995).  

Mortality 

To examine the repression component in the Turing-like process, I analyzed the spatial 

arrangement of nest mortality for the year 2015 (i.e. nests that were present in previous census 

but were not present in the 2015 census). To achieve this, I performed a Ripley’s Kcross function 

(Dixon 2014) analysis to determine potential clustering of live nests around nests that died in 

2015. Each data point contained “marks” which represent qualitative or quantitative 

characteristics (Penttinen et al. 1992), in this case marks represent live or dead nest information 

(Fig. 1b).    

To further understand the activation and repression dynamics, I separated nests that died in 

2015 by their relative age and performed a Kcross function analysis based on nest age at death. 

For example, a new nest present in 2013 and 2014 that was no longer present in 2015 would be 

classified as a mortality of a two year old nest. In Hamburgo, two year old nests will consist of 

nests that were two years or older since we had no nest data prior to 2012 when the research 

plot was established.  
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Figure 1. The theoretical tests of a K function analysis (1a) and a Kcross analysis (1b). Circles 

represent tree locations, green circles are trees with no nests, yellow circles are trees with a 

nest, and the red circle represents a nest that died. The number of observed events ie. ant 

nests, are counted at increasing radius r from a focal point nest. 1a analyses the number of 

observed nests present while Kcross (1b) analyzes the number of live nests from a dead nest, 

shown as a red circle.  

a.              b.  

 

Figure 2. Visual representation of three potential observations using K analysis where each 

circle represents a tree location. Green circles show a tree with no nest and yellow circles 

represent trees with nests. 2a illustrates an expected number of nests, shown as yellow 

circles, within radius r; 2b illustrates less than expected observed nests; 2c illustrates more 

than expected nests within radius r.   

a.               b.         c.  
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Table 1. Variables used in the Ripley’s K and Kcross spatial analyses. Clustering patterns from i to 

j are compared with null patterns created with specific rules.  

Results  

2015 Nest Clustering  

Both farms showed clustering of A. sericeasur nests (Figure 3a and 3b) as the observed curve 

falls above the theoretical envelope of the random distribution curve. In Hamburgo, however, 

above a radius distance r = 100m clustering decreases as shown by the observed curve falling 

within the theoretical envelope of the random distribution curve (Fig. 3b).  

Kij Pattern i (from) Pattern j (to) Null pattern rule 

Kr All nests in 2015 none (univariate) Random relabeling of occupied 

and empty trees 

K0,1 Nests alive in 2014 

that died in 2015  

Nests alive in 2014 

and 2015   

Random relabeling of nests that 

died 

K1,0 1 year old nests 

that died in 2015 

Nests alive Random relabeling of one year 

old nests that died and live nests 

K2,0 2 year old ness 

that died in 2015 

Nests alive Random relabeling of two year 

old nests that died and live nests 

      

Figure 3. Ripley’s K analysis for Azteca sericeasur ant nests present in 2015 for Finca Hamburgo (a) 

and Finca Irlanda (b). 

a.           b.  
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Mortality 

In Hamburgo, the conventionally managed farm, there is no observed clustering of live nests 

around nests that died in 2015 (Fig. 4a). The observed curve falls within the envelope of 

expected nests present at a random distribution. In Irlanda, however, there were less live nests 

than expected at random around nests that died at all radius distances r (Fig.4b).  

 

 

Relative Age 

In Hamburgo, there was no significant clustering of live nests around one year old nests that 

died in 2015. In fact, the distribution of live nests surrounding dead nests was no different than 

random (Fig. 5a). However, there were less live nests than expected around two year old (or 

older) nests that died at all distances considered (Fig. 5c). Similarly, in Irlanda, there was no 

clustering of live nests around dead nests. Rather, there were less live nests than expected from 

a random distribution around one year old nests that died, at a scale of up to 40 meters (Fig. 

5b). However, for the 2 year old nests this pattern is reversed, with less live nests than expected 

      

Figure 4. Kcross function measuring clustering of live nests around nests that died in 2015 for Finca 

Hamburgo (a) and Finca Irlanda (b). 

a.      b.  
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from a random distribution around one year old nests that died in 2015, at a scale of more than 

30 meters (Fig. 5d). 

Discussion 

Clustering 

The Ripley’s K analysis demonstrates that the spatial distribution of A. sericeasur nests 

distribution is significantly clustered in both farms (Fig. 3). However, rather than finding a 

stronger clustering in Finca Hamburgo, due to higher phorid attacks in less shaded farms 

     

  

Figure 5. Kcross function measuring clustering of live nests surrounding dead nests for one year old 

nests in Hamburgo (a), one year old nests in Irlanda (b), two years old (or older) nests in Hamburgo (c) 

and two year old nests in Irlanda (d) 2015. 

          a.       b.  

 

 

 

 

 

 

 

          c.      d. 
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reported earlier (Pardee and Philpott, 2011), the clustering is less strong and it disappears at 

scales of 100 m and higher for Finca Hamburgo (Fig. 2b). Since phorid attacks were not 

measured between 2012 and 2015, we cannot assume that phorid attacks were indeed stronger 

in Finca Hamburgo than in Finca Irlanda for those years. The reported differences in phorid 

attacks between high shade and low shade habitats were based on a study conducted in 2009, 

six years before the collected data was used for the overall ant nest distribution. The lower 

density of shade trees in the low shade farm (Finca Hamburgo) do not explain these results 

either since the analysis takes into account the overall density of trees in each plot (as the 

comparison is with a random spatial distribution based on the same number of trees). However, 

these results (Fig. 3a and 3b) suggest tree location may impact the clustering of ant nests at a 

larger spatial scale due to ant’s potential difficulty to go from one cluster of trees to the next. 

Because Hamburgo is a conventionally managed farm with less shade tree density, it represents 

a low-quality matrix in which the agricultural landscape is less suitable and contains less 

opportunity for species habitats (Perfecto and Vandermeer 2002, Liere et al. 2012).  

Mortality  

In the conventionally managed farm (Finca Hamburgo), there is no clustering of live nests 

around dead nests at any radius. However, in the organic farm (Finca Irlanda), there are less live 

nests around nests that died compared to a random distribution. This may indicate the nests 

that died that year are isolated from most other nests since tree location is accounted for. When 

separating the relative age of the dead nests in Hamburgo, there were less live nests than 

expected around two year old (or older) nests that died at all distances (Fig. 5c) suggesting 

relatively older nests are more isolated. Although density dependent attacks from natural 

enemies, can limit the expansion of nests (Philpott et al. 2009, Perfecto and Vandermeer 2008, 

Pardee and Philpott 2011), this does not fully explain why older nests that died in Hamburgo 

were more isolated compared to a random distribution. In Finca Irlanda, where there are more 

shade trees, the clustering of live nests around a nest that died was less compared to a random 

distribution, potentially due to the higher availability of habitat (shade trees) throughout the 

study site. Furthermore, if there are fewer nests around nests that died in Finca Irlanda, this 
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may indicate less activity among a nest colony complex across multiple trees resulting in 

abandoned nests (ie. dead nests).  

The distribution of nesting ant species in this tropical ecosystem can reveal an example of a 

Turing mechanism. Density dependent attacks from natural enemies, such as parasitoid phorid 

flies, can limit the expansion of nests, representing the Turing repression process (Philpott et al. 

2009, Perfecto and Vandermeer 2008, Pardee and Philpott 2011, Hsieh et al. 2012). Although an 

earlier study reported higher phorid attacks in less shaded farms (Pardee and Philpott, 2011), 

this did not explain the spatial distribution observed in Finca Hamburgo, a conventionally 

managed farm with less shade trees. This analysis assumes phorid attacks are the main cause of 

nest deaths throughout the years of this study. However, future studies observing the intensity 

of phorid attacks on nest clusters and on varying nest ages is necessary to test the assumptions 

of this study. Collecting phorid attack data at observed clusters in both farms would be useful to 

determine the impact of phorid attacks on the clustering of live nest around nests that die.  

This study offers a comparison of observed A. sericeasur nest patterns over time in a certified 

organic farm and a conventionally managed farm. Finca Hamburgo represents a low-quality 

matrix in the agricultural matrix as it is a conventionally managed farm with less shade tree 

density, therefore contains less habitat opportunity for A. sericeasur (Perfecto and Vandermeer 

2002). On the other hand, Finca Irlanda is an organic farm with higher shade tree density and as 

a result, more opportunities for ant nests to establish. A. sericeasur is an important biological 

control agent in coffee farms (Morris et al. 2015, Vandermeer et al. 2010, 2019). Understanding 

the spatial distribution of A. sericeasur ants over time is important to farmers as it can guide 

farm managers in utilizing their ecosystem services more effectively.  
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