

Supporting Information

The Formal Cross-Coupling of Amines and Carboxylic Acids to Form sp³–sp³ Carbon–Carbon Bonds

Zirong Zhang and Tim Cernak*

ange_202112454_sm_miscellaneous_information.pdf

Supporting Information

- S-02 : General Information
- S-04 : Experimental
- S-61 : Spectra

General Information

All reactions were conducted in oven- or flame-dried glassware under an atmosphere of nitrogen unless stated otherwise. Reactions were set up in an MBraun LABmaster Pro Glove Box (H_2O level <0.1 ppm, O_2 level <0.1 ppm), or using standard Schlenk technique with a glass vacuum manifold connected to an inlet of dry nitrogen gas. Tetrahydrofuran and dichloromethane were purified using an MBraun SPS solvent purification system by purging with nitrogen, and then passing the solvent through a column of activated alumina. 1,4-Dioxane, acetonitrile and other solvents were purchased as the anhydrous solvents and used as received. Reagents were purchased from Sigma Aldrich, Alfa Aesar, Oakwood Chemical, or TCI Chemical. All chemicals were used as received. Glass 2 dram vials (ChemGlass #CG-4912-02) were used as reaction vessels, fitted with a screw-cap with a Teflon-coated silicone septa (CG-4910-02), and magnetic stir bars (Fisher Scientific #14-513-93 or #14-513-65).

Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Varian MR-500 MHz or Varian MR-400 MHz spectrometer and chemical shifts are reported in parts per million (ppm) using the solvent residual peak as an internal standard (CDCl₃ at 7.26 ppm). Data are reported using the abbreviations: app = apparent, s = singlet, d = doublet, t = triplet, g = guartet, m = multiplet, comp = complex, br = broad. Coupling constant(s) are reported in Hz. Proton-decoupled carbon nuclear magnetic resonance spectra (¹³C NMR) spectra were recorded on a Varian MR-500 MHz or Varian MR-400 MHz spectrometer and chemical shifts are reported in ppm using the solvent as an internal standard (CDCl₃ at 77.16 ppm). High resolution mass spectrometry data (HRMS) were obtained on a Micromass AutoSpec Ultima Magnetic Sector instrument. Reaction analysis was typically performed by thin-layer chromatography on silica gel, or using a Waters I-class ACQUITY UPLC-MS (Waters Corporation, Milford, MA, USA) equipped with in-line photodiode array detector (PDA) and QDa mass detector (ESI positive ionization mode). 0.1 µL sample injections were taken from acetonitrile solutions of reaction mixtures or products (~1 mg/mL). A partial loop injection mode was used with the needle placement at 1.0 mm from bottom of the wells and a 0.2 µL air gap at pre-aspiration and post-aspiration. Column used: Waters Cortecs UPLC C18+ column, 2.1mm × 50 mm with (Waters #186007114) with Waters Cortecs UPLC C18+ VanGuard Pre-column 2.1mm × 5 mm (Waters #186007125), Mobile Phase A: 0.1 % formic acid in Optima LC/MS-grade water, Mobile Phase B: 0.1% formic acid in Optima LC/MS-grade MeCN. Flow rate: 1 mL/min. Column temperature: 45 °C. The PDA sampling rate was 20 points/sec. The QDa detector monitored m/z 150-750 with a scan time of 0.06 seconds and a cone voltage of 30 V. The PDA detector range was between 210 nm – 400 nm with a resolution of 1.2 nm. 1 minute and 2 minute methods were used. The method gradients are below: 0 min: 0.8 mL/min, 95% 0.1% formic acid in water/5% 0.1% formic acid in acetonitrile; 1.5 min : 0.8 mL/min, 0.1% 0.1% formic acid in water/99.9% 0.1% formic acid in acetonitrile; 1.91 min : 0.8 mL/min, 95% 0.1% formic acid in acetonitrile.

Flash chromatography was performed on silica gel (230 – 400 Mesh, Grade 60) under a positive pressure of nitrogen. Thin layer chromatography was performed on 25 μ m TLC Silica gel 60 F₂₅₄ glass plates purchased from Fisher Scientific (part number: S07876). Visualization was performed using ultraviolet light (254 nm) or potassium permanganate (KMnO₄) stain.

Experimental

Figure S1. Plot of frequency of substructure occurrence in Drugbank versus reaction number of enumerated Acid-Amine coupling products. sp^3-sp^3 C-C coupling is the transformation with highest frequency.

General procedure for HTE screen preparation (GP-1)

Stock solutions, or suspensions, were prepared as shown in the heatmap preparation table. In an inert atmosphere glovebox, reagents were weighed and dissolved or suspended in anhydrous solvent to achieve their listed concentrations in table. Stock solutions of reagents were stirred until either a clear solution or a uniform slurry was achieved. A 24 or 96-well aluminum microvial plate (Analytical Sales & Services cat. no. 25243) was equipped with oven-dried shell vials (Analytical Sales & Services cat. no. 884001) and then moved into the glovebox. Stock solutions were dosed to the appropriate shell vials according to the plate map shown in table using single channel micropipetters. A parylene-coated stir dowel (Analytical Sales & Services cat. no. 13258) was then added to each vial. The microvial plate was sealed, removed from the glove box, and stirred on a tumble stirrer with heating to indicated temperature for planned reaction time in a heating block or under blue LED.

The reactions were quenched by opening the reaction block and adding 100 μ L saturated aqueous NaCl solution and 400 μ L EtOAc. Reactions were extracted by resealing the plate and shaking manually. From each reaction, a 40 μ L aliquot of the quenched reaction mixture was added into a 96-well polypropylene collection plate (Analytical Sales & Services cat. no. 17P687). The solvent was evaporated by blowing nitrogen down on the analytical plate. An acetonitrile solution of caffeine as internal standard (0.05 mg/mL, 800 μ L) was added, and mixed by pipetting up and down. The reactions were then analyzed by UPLC-MS. The assay yields was produced by measuring the UV absorbance (or mass signal strength) of desired product relative to the caffeine internal standard.

1,392 Machine readable reaction data points are deposited on github: <u>https://github.com/cernaklab/Zhang-Cernak-Cross-Coupling-of-Activated-Amines-and-Acids</u>

Figure S2. Calibration curve of UV integration of **4** relative to caffeine internal standard (0.050 mg/mL) versus concentration of **4**. Curve fit to y = 1.1 * x - 0.0040.

Reagents	C _{stock} (M)	V _{dose} (µL)	Wells
Benzyl Katritzky salt	0.60	17	All
Boc-Pro-OH	0.60	17	A1-4-H1-4
			A7-10-H7-10
Boc-Pro-OH NHPI ester	0.60	17	A5,6-H5,6
			A11,12-H11,12
Potassium carbonate	1.2	17	A1,7-H1,7
1,8-Diazabicyclo[5,4,0]undec-7-ene	1.2	17	A2,8-H2,8
1,4-Diazabicyclo[2,2,2]octane	1.2	17	A3,9-H3,9
2- ^t Bu-1,1,3,3-tetramethylguanidine	1.2	17	A4,10-H4,10
Zn	1.2	17	A5,11-H5,11
Tetrakis(dimethylamino)ethylene	1.2	17	A6,12-H6,12
Ni(cod) ₂	0.12	17	A1-6-H1-6
Ni(acac) ₂	0.12	17	A7-12-H7-12
4,4'-di- ^t Bu-2,2'-dipyridyl	0.18	17	A1-12-D1-12
4,4'-dimethoxy-2,2'-bipyridine	0.18	17	E1-12-H1-12
(Ir[dF(CF ₃)ppy] ₂ (dtbpy))PF ₆	0.012	17	A1-12 E1-12
Ru(bpy)₃PF ₆	0.012	17	B1-12 F1-12
Eosin Y	0.012	17	C1-12 G1-12
2,4,6-triphenylpyrylium tetrafluoroborate	0.012	17	D1-12 H1-12

Table S1. Photoredox screen.

zz191104_recipe.csv

—
1-Benzyl-2,4,6-triphenylpyridin-1-ium tetrafluoroborate
Bis(1,5-Cyclooctadiene)Nickel(0)
Ni(acac)2
4,4'-di-tert-Butyl-2,2'-dipyridyl
4-4'-Dimethoxy-2-2'-Bipyridine
Boc-L-Proline
Boc-Proline NHPI Ester
(Ir[dF(CF3)ppy]2(dtbpy))PF6
Ru(bpy)3PF6
EOSIN Y
2,4,6-Triphenylpyrylium Tetrafluoroborate
Potassium Carbonate
1,8-Diazabicyclo[5.4.0]undec-7-ene
1,4-Diazabicyclo(2.2.2)octane
2-tert-Butyl-1,1,3,3-tetramethylguanidine
Zinc
Tetrakis(dimethylamino)ethylene

Figure S3. Recipe and grid of photoredox screen.

Figure S4. Heatmap of photoredox screen. Following GP-1, stock solutions were prepared and dosed according to the concentrations and well locations in **Table S1**. Screen performed at 25 °C in MeCN under blue LED stirring at 300 rpm for 24 h.

Reagents	C _{stock} (M)	V _{dose} (µL)	Wells
Benzyl Katritzky salt	0.70	14	All
Boc-Pro-OH	0.70	14	A1-12-D1-12
Tosylpiperidine-4-carboxylic acid	0.70	14	E1-12-H1-12
K ₃ PO ₄	0.70	14	A,C,E,G1-12
2- ^t Bu-1,1,3,3-tetramethylguanidine	0.70	14	B,D,F,H1-12
Tricyclohexylphosphine	0.21	14	A,B,E,F1-12
1,3-Dimesitylimidazolidine	0.21	14	C,D,G,H1-12
Silver nitrate	0.70	14	A1-4-H1-4
Silver carbonate	0.70	14	A5-8-H5-8
Silver trifluoromethanesulfonate	0.70	14	A9-12-H9-12
Potassium persulfate	1.4	14	A1,5,9-H1,5,9
Ammonium persulfate	1.4	14	A2,6,10-H2,6,10
^t BuOO ^t Bu	1.4	14	A3,7,11-H3,7,11
(Bis(trifluoroacetoxy)iodo)benzene	1.4	14	A4,8,12-H4,8,12
NiBr ₂ •glyme	0.14	14	All

 Table S2. Minisci type decarboxylation screen.

Figure S5. Recipe and grid of Minisci type decarboxylation screen.

Figure S6. Heatmap of Minisci type decarboxylation screen. Following GP-1, stock solutions were prepared and dosed according to the concentrations and well locations in **Table S2**. Screen performed at 70 °C in dioxane stirring at 300 rpm for 24 h.

Reagents	C _{stock} (M)	V _{dose} (µL)	Wells
Benzyl Katritzky salt	0.50	20	All
Boc-Pro-OH NHPI ester	0.50	20	All
Zn	1.0	20	A1-6-H1-6
Tetrakis(dimethylamino)ethylene	1.0	20	A7-12-H7-12
4,4'-di- ^t Bu-2,2'-dipyridyl	0.15	20	A1,7-H1,7
3,4,7,8-Tetramethyl-1,10-phenanthroline	0.15	20	A2,8-H2,8
1,3-Dimesitylimidazolidine	0.15	20	A3,9-H3,9
Triphenylphosphine	0.15	20	A4,10-H4,10
1,2-Bis(dicyclohexylphosphino)ethane	0.15	20	A5,11-H5,11
2,2-Bis((4S)-(-)-4-	0.15	20	A6,12-H6,12
Isopropyloxazoline)propane			
Ni(cod) ₂	0.10	20	A1-12
NiBr ₂ •glyme	0.10	20	B1-12
Ni(acac) ₂	0.10	20	C1-12
CuBr	0.10	20	D1-12
Cu(MeCN)₄OTf	0.10	20	E1-12
Cu(OAc) ₂	0.10	20	F1-12
FeBr ₂	0.10	20	G1-12
CoBr ₂	0.10	20	H1-12

Table S3. Hit screen.

zz200127_recipe.csv

Figure S7. Recipe and grid of hit screen.

Figure S8. Heatmap of hit screen. Following GP-1, stock solutions were prepared and dosed according to the concentrations and well locations in **Table S3**. Screen performed at 60 °C in 1:1 MeCN:dioxane stirring at 300 rpm for 24 h.

Reagents	C _{stock} (M)	V _{dose} (µL)	Wells
Benzyl Katritzky salt	0.50	20	A,C,E,G1-12
Cyclohexyl Katritzky salt	0.50	20	B,D,F,H1-12
Boc-Pro-OH NHPI ester	0.50	20	A,B,E,F1-12
Tosylpiperidine-4-carboxylic acid NHPI	0.50	20	C,D,G,H1-12
Mn	1.0	20	A1-12-D1-12
Zn	1.0	20	E1-12-H1-12
1,10-Phenanthroline	0.15	20	A1-4-H1-4
4,4'-di- ^t Bu-2,2'-dipyridyl	0.15	20	A5-8-H5-8
4,4',4"-tri- ^t Bu-2,2':6',2"terpyridine	0.15	20	A9-12-H9-12
NiF ₂	0.10	20	A1,5,9-H1,5,9
NiCl ₂ •glyme	0.10	20	A2,6,10-H2,6,10
NiBr ₂ •glyme	0.10	20	A3,7,11-H3,7,11
Nil ₂	0.10	20	A4,8,12-H4,8,12

 Table S4.
 Substrate-reductant-catalyst-ligand screen.

zz210216_recipe.csv

1,10-Phenanthroline
4,4'-di-tert-Butyl-2,2'-Dipyridyl
4,4',4"-TRI-TERT-BUTYL-2,2':6',2"TERPYRIDINE
Nickel(II) fluoride
NiCl2(DME)
NiBr2(DME)
Nickel(II) Iodide
Manganese
Zinc
Boc-proline NHP ester
Ts-piperidine acid NHP ester
Benzyl Katritzky salt
Cyclohexyl Katritzky Salt

Figure S9. Recipe and grid of substrate-reductant-catalyst-ligand screen.

Figure S10. Heatmap of substrate-reductant-catalyst-ligand screen. Following GP-1, stock solutions were prepared and dosed according to the concentrations and well locations in **Table S4**. Screen performed at 60 °C in 1:1 MeCN:dioxane stirring at 300 rpm for 24 h.

Reagents	C _{stock} (M)	V _{dose} (µL)	Wells
Benzyl Katritzky salt	0.50	20	All
Boc-Pro-OH NHPI ester	0.50	20	All
Mn	1.0	20	All
NiBr ₂ •glyme	0.10	20	A1,2-H1,2
NiCl ₂ •glyme	0.10	20	A3,4-H3,4
Nil ₂	0.10	20	A5,6-H5,6
Ni(cod) ₂	0.10	20	A7,8-H7,8
Ni(acac) ₂	0.10	20	A9,10-H9,10
Ni(OAc) ₂	0.10	20	A11,12-H11,12
4,4'-di- ^t Bu-2,2'-dipyridyl	0.15	20	A1,3,5,7,9,11
2,2'-Bipyridyl	0.15	20	A2,4,6,8,10,12
4,4'-Dimethoxy-2,2'-bipyridine	0.15	20	B1,3,5,7,9,11
4,4'-Bis(trifluoromethyl)-2,2'-bipyridine	0.15	20	B2,4,6,8,10,12
2,2':6',2''-Terpyridine	0.15	20	C1,3,5,7,9,11
4,4',4''-Tri- ^t Bu-2,2':6',2''-terpyridine	0.15	20	C2,4,6,8,10,12
(2Z,6Z)-N'2,N'6-Dicyanopyridine-2,6- bis(carboximidamide)	0.15	20	D1,3,5,7,9,11
Pyridine-2,6-bis(carboximidamide) dihydrochloride	0.15	20	D2,4,6,8,10,12
2,2-Bis((4S)-(-)-4- Isopropyloxazoline)propane	0.15	20	E1,3,5,7,9,11
2,6-Bis[(4R)-(+)-Isopropyl-2-oxazolin-2- yl]pyridine	0.15	20	E2,4,6,8,10,12
1,10-Phenanthroline	0.15	20	F1,3,5,7,9,11
3,4,7,8-Tetramethyl-1,10-phenanthroline	0.15	20	F2,4,6,8,10,12
4,7-Dichlro-1,10-phenanthroline	0.15	20	G1,3,5,7,9,11
4,7-Dimethoxy-1,10-phenanthroline	0.15	20	G2,4,6,8,10,12
Neocuproine	0.15	20	H1,3,5,7,9,11
Blank	0.15	20	H2,4,6,8,10,12

 Table S5. Catalyst-ligand screen.

zz20	00916_recipe.csv
	NiBr2(DME)
	NiCl2(DME)
	Nickel(II) Iodide
	Ni(cod)2
	Ni(acac)2
	Ni(OAc)2
	4,4'-di-tert-Butyl-2,2'-dipyridyl
	2,2'-Bipyridyl
	4-4'-Dimethoxy-2-2'-Bipyridine
	4,4'-Bis(trifluoromethyl)-2,2'-bipyridyl
	2,2':6',2"-Terpyridine
	4,4',4"-tri-tert-Butyl-2,2':6',2"Terpyridine
	(2Z,6Z)-N'2,N'6-Dicyanopyridine-2,6-bis(carboximidamide)
	Pyridine-2,6-bis(carboximidamide) dihydrochloride
	2,2-Bis((4S)-(-)-4-isoprolyloxazolin)propane
	2,6-Bis[(4R)-(+)-isopropyl-2-oxazolin-2-yl]pyridine
	1,10-Phenanthroline
	3,4,7,8-Tetramethyl-1,10-Phenanthroline
	4,7-Dichloro-1,10-Phenanthroline
	4,7-Dimethoxy-1,10-Phenanthroline
	Neocuproine
	blank
	Boc-Proline NHPI ester
	Benzyl Katritzky Salt
	Manganese

Figure S11. Recipe and grid of catalyst-ligand screen.

Figure S12. Heatmap of catalyst-ligand screen. Following GP-1, stock solutions were prepared and dosed according to the concentrations and well locations in **Table S5**. Screen performed at 60 °C in 1:1 MeCN:dioxane stirring at 300 rpm for 24 h.

Reagents	C _{stock} (M)	V _{dose} (µL)	Wells
NiBr ₂ •glyme	0.10	20	All
4,4'-Bis(trifluoromethyl)-2,2'-bipyridine	0.10	20	All
Mn	1.0	20	All
Benzyl Katritzky salt	0.50	20	A1-12
4-Methylbenzyl Katritzky salt	0.50	20	B1-12
4-Trifluoromethylbenzyl Katritzky salt	0.50	20	C1-12
2,4-Dichlorobenzyl Katritzky salt	0.50	20	D1-12
Cyclohexyl Katritzky salt	0.50	20	E1-12
Cyclopentyl Katritzky salt	0.50	20	F1-12
Cyclobutyl Katritzky salt	0.50	20	G1-12
sec-Butyl Katritzky salt	0.50	20	H1-12
Boc-Pro-OH NHPI ester	0.50	20	A1-H1
Boc-Val-OH NHPI ester	0.50	20	A2-H2
Boc-Leu-OH NHPI ester	0.50	20	A3-H3
Boc-Nle-OH NHPI ester	0.50	20	A4-H4
Boc-Nva-OH NHPI ester	0.50	20	A5-H5
Boc-Ala-OH NHPI ester	0.50	20	A6-H6
Boc-Met-OH NHPI ester	0.50	20	A7-H7
Boc-Phe-OH NHPI ester	0.50	20	A8-H8
3,4-Dimethoxyphenylacetic acid NHPI ester	0.50	20	A9-H9
Indomethacin NHPI ester	0.50	20	A10-H10
Ibuprofen NHPI ester	0.50	20	A11-H11
Naproxen NHPI ester	0.50	20	A12-H12

Table S6. Substrate screen.

zz210406_recipe.csv

Figure S13. Recipe and grid of substrate screen.

Figure S14. Heatmap of substrate screen. Following GP-1, stock solutions were prepared and dosed according to the concentrations and well locations in **Table S6**. Screen performed at 60 °C in 1:1 MeCN:dioxane stirring at 300 rpm for 24 h.

Reagents	C _{stock} (M)	V _{dose} (µL)	Wells
Boc-Pro-OH	0.60	17	All
Benzyl Katritzky salt	0.60	17	All
2- ^t Bu-1,1,3,3-tetramethylguanidine	1.2	17	All
4,4'-di- ^t Bu-2,2'-dipyridyl	0.12	17	A1-4-H1-4
4,7-Dichlro-1,10-phenanthroline	0.12	17	A5-8-H5-8
BINAP	0.12	17	A9-12-H9-12
Ni(cod) ₂	0.12	17	A1,5,9-H1,5,9
NiCl ₂	0.12	17	A2,6,10-H2,6,10
Cu(OAc) ₂	0.12	17	A3,7,11-H3,7,11
CuOTf	0.12	17	A4,8,12-H4,8,12
(Ir[dF(Me)ppy] ₂ (dtbpy))PF ₆	0.012	17	A1-12
[lr(ppy)2](dtbpy))PF6	0.012	17	B1-12
lr(ppy)₃PF ₆	0.012	17	C1-12
(Ir[dF(CF ₃)ppy] ₂ (dtbpy))PF ₆	0.012	17	D1-12
Ru(bpy) ₃ PF ₆	0.030	17	E1-12
Perylene	0.060	17	F1-12
Benzophenone	0.060	17	G1-12
TiO ₂	0.30	17	H1-12

 Table S7. Photoredox screen of photocatalyst, catalyst, and ligand.

zz191122_recipe.csv

_ ·
4,4'-di-tert-Butyl-2,2'-dipyridyl
4,7-Dichloro-1,10-phenanthroline
2,2'-Bis(Diphenylphosphino)-1,1'-Binaphthalene
Ni(cod)2
NiCl2(DME)
Cu(OAc)2
Tetrakisacetonitrile Copper(I) Triflate
[Ir(dF(Me)ppy)2(dtbbpy)]PF6
[lr(dtbbpy)(ppy)2]PF6
lr(ppy)3
(Ir[dF(CF3)ppy]2(dtbpy))PF6
Ru(bpy)3(PF6)
Perylene
Benzophenone
TiO2
Boc-L-proline
1-Benzyl-2,4,6-triphenylpyridin-1-ium tetrafluoroborate
2-tert-Butyl-1,1,3,3-Tetramethylguanidine

Figure S15. Recipe and grid of photocatalyst-catalyst-ligand screen.

Figure S16. Heatmap of photocatalyst-catalyst-ligand screen. Following GP-1, stock solutions were prepared and dosed according to the concentrations and well locations in **Table S7**. Screen performed at 25 °C in MeCN under blue LED stirring at 300 rpm for 24 h.

Reagents	C _{stock} (M)	V _{dose} (µL)	Wells
Benzyltrimethylammonium triflate	0.60	17	A3-6-H3-6
			A9,10-H9,10
			A12-H12
Benzyl Katritzky salt	0.60	17	A1,2-H1,2
			A7,8-H7,8
			A11-H11
Tos-Pro-OH	0.60	17	A1-4-H1-4
Boc-Pro-OH	0.60	17	A5,6-H5,6
1-Tosylpiperidine-4-carboxylic acid	0.60	17	A7-10-H7-10
Potassium (tert-butoxycarbonyl)prolinate	0.60	17	A11,12-H11,12
2- ^t Bu-1,1,3,3-tetramethylguanidine	0.60	17	A1,3,5,7,9-
			H1,3,5,7,9
K ₂ CO ₃	1.2	17	A2,4,6,8,10-
			H2,4,6,8,10
Blank	-	17	A11,12-H11,12
Ni(cod) ₂	0.12	17	A,B,E,F1-12
NiBr ₂ •glyme	0.12	17	C,D,G,H1-12
4,4'-di- ^t Bu-2,2'-dipyridyl	0.18	17	A,C,E,G1-12
Triphenylphosphine	0.18	17	B,D,F,H1-12
(Ir[dF(CF ₃)ppy] ₂ (dtbpy))PF ₆	0.012	17	A-D1-12
[lr(ppy) ₂](dtbpy))PF ₆	0.012	17	E-H1-12

 Table S8. Photoredox screen including benzyltrimethylammonium triflate.

zz191214_recipe.csv

Tos-Pro-OH
Boc-L-proline
1-Tosylpiperidine-4-carboxylic acid
Potassium (tert-butoxycarbonyl)prolinate
1-Benzyl-2,4,6-triphenylpyridin-1-ium tetrafluoroborate
Benzyltrimethylammonium triflate
2-tert-Butyl-1,1,3,3-Tetramethylguanidine
Potassium carbonate
Blank
(Ir[dF(CF3)ppy]2(dtbpy))PF6
[lr(dtbbpy)(ppy)2]PF6
Ni(cod)2
NiBr2(DME)
4,4'-di-tert-Butyl-2,2'-dipyridyl
Triphenylphosphine

Figure S17. Recipe and grid of photoredox screen including benzyltrimethylammonium triflate.

Figure S18. Heatmap of photoredox screen including benzyltrimethylammonium triflate. Following GP-1, stock solutions were prepared and dosed according to the concentrations and well locations in **Table S8**. Screen performed at 25 °C in MeCN under blue LED stirring at 300 rpm for 24 h.

Reagents	C _{stock} (M)	V _{dose} (µL)	Wells
Potassium persulfate	0.80	13	All
Silver nitrate	0.160	13	All
Potassium phosphate	0.80	13	All
Boc-Pro-OH	0.80	13	A,B1-6
1-Tosylpiperidine-4-carboxylic acid	0.80	13	C,D1-6
Benzyl Katritzky salt	0.80	13	A,C1-6
Benzyltrimethylammonium Triflate	0.80	13	B,D1-6
Ni(cod) ₂	0.16	13	A1,3,5-D1,3,5
NiBr ₂ •glyme	0.16	13	A2,3,6-D2,4,6
4,7-Diphenyl-1,10-phenanthroline	0.24	13	A1,2-D1,2
Tricyclohexylphosphine	0.24	13	A3,4-D3,4
1,3-Bis(2,4,6-trimethylphenyl)imidazolinium chloride	0.24	13	A5,6-D5,6

 Table S9. Minisci type decarboxylation 24-well screen.

zz191219_recipe.csv

Boc-L-proline
1-Tosylpiperidine-4-carboxylic acid
1-Benzyl-2,4,6-triphenylpyridin-1-ium tetrafluoroborate
Benzyl Trimethyl Ammonium Triflate
Potassium Phosphate
Silver nitrate
Potassium persulfate
Ni(cod)2
NiBr2(DME)
4,7-Diphenyl-1,10-Phenanthroline
Blank
Tricyclohexylphosphine
Potassium tert-butoxide
1,3-Bis(2,4,6-trimethylphenyl)imidazolinium chloride

	1	2	3	4	5	6
A						
в						
С						
D						

Figure S19. Recipe and grid of Minisci type decarboxylation 24-well screen.

Figure S20. Heatmap of Minisci type decarboxylation 24-well screen. Following GP-1, stock solutions were prepared and dosed according to the concentrations and well locations in **Table S9**. Screen performed at 70 °C in dioxane stirring at 300 rpm for 24 h.
Reagents	C _{stock} (M)	V _{dose} (µL)	Wells
Benzyl Katritzky salt	0.50	20	All
Boc-Pro-OH NHPI ester	0.50	20	All
Mn	1.0	20	All
NiF ₂	0.10	20	A1-6
NiBr ₂ •glyme	0.10	20	B1-6
NiCl ₂ •glyme	0.10	20	C1-6
Nil ₂	0.10	20	D1-6
4,4'-di- ^t Bu-2,2'-dipyridyl	0.10	20	A1-D1
4,4'-Bis(trifluoromethyl)-2,2'-bipyridine	0.10	20	A2-D2
5,5'-Bis(trifluoromethyl)-2,2'-bipyridine	0.15	20	A3-D3
Dimethyl 2,2'-bipyridine-4,4'-dicarboxylate	0.15	20	A4-D4
4,4'-Dibromo-2,2'-bipyridine	0.15	20	A5-D5
2,2'-Bipyridine-5,5'-dicarboxylic Acid	0.15	20	A6-D6

 Table S10. Catalyst-ligand 24-well screen.

zz201013_recipe.csv

4,4'-di-tert-Butyl-2,2'-dipyridyl
4,4'-Bis(trifluoromethyl)-2,2'-bipyridyl
5,5'-Bis(trifluoromethyl)-2,2'-bipyridyl
Dimethyl 2,2'-bipyridine-4,4'-dicarboxylate
2,2'-Bipyridine-5,5'-dicarboxylic Acid
4,4'-Dibromo-2,2'-bipyridine
NiF2
NiCl2(DME)
NiBr2(DME)
Nil2
Boc-Pro-OH NHPI
Benzyl Katritzky Salt
Manganese

Figure S21. Recipe and grid of catalyst-ligand 24-well screen

Figure S22. Heatmap of catalyst-ligand 24-well screen. Following GP-1, stock solutions were prepared and dosed according to the concentrations and well locations in **Table S10**. Screen performed at 60 °C in 1:1 MeCN:dioxane stirring at 300 rpm for 24 h.

Solvents	(LC Yield) Isolated Yield
Dioxane	(36%)
MeCN	(25%)
DMF/Toluene/ ^t BuOH/H ₂ O	0%
DCE	(15%)
MeCN:Dioxane 3:7	(56%)
MeCN:Dioxane 1:1	(70%) 41%
MeCN:Dioxane 7:3	(61%)
THF	(30%)
MeCN:THF 1:1	(46%)
Diglyme	(10%)
MeCN:Diglyme 1:1	(60%)
DMF:Dioxane 1:1	11%
DMA: Dioxane 1:1	27%
NMP:Dioxane 1:1	32%
MeCN:Dioxane: ⁱ PrOH 2:2:1	37%

Table S11. Solvent study. Reaction run with Boc-proline NHPI ester (**2**, 0.10 M, 0.050 mmol), benzyl Katritzky salt (**3**, 0.10 M), NiBr₂•glyme (0.020 M), dtbbpy (0.030 M), and Mn (0.20 M) in various solvents at 60 °C for 24 hours. Reagents were first weighed into the reaction vessel, followed by addition of the solvent, and lastly placed on the heating plate.

Additives	(LC Yield) Isolated Yield
None	(51%) 48%
CsF	0
AgF	(29%)
LiCl	(32%)
TMSCI	(36%)
KBr	(45%) 38%
Diethyl bromomalonate	(41%) 40%
Nal	(24%)
Bu ₄ NI	(20%)
CH ₃ COOH	0
DBU	0
ⁱ PrOH	(42%) 33%

Table S12. Additive study. Reaction run with Boc-proline NHPI ester (**2**, 0.10 M, 0.050 mmol), benzyl Katritzky salt (**3**, 0.10 M), NiBr₂•glyme (0.020 M), dtbbpy (0.030 M), Mn (0.20 M) and indicated additive (0.10 M) in 1:1 MeCN:dioxane at 60 °C for 24 hours. Reagents were first weighed into the reaction vessel, followed by addition of the solvent, and lastly placed on the heating plate.

Premixed	First	Second	Last	(LC Yield) Isolated Yield
2 , 3 , NiBr ₂ , L1 , Mn	MeCN	Dioxane	-	(47%)
2, 3, NiBr ₂ , L1 , Mn	Dioxane	MeCN	_	(28%)
2, 3, NiBr ₂ , L1	MeCN	Dioxane	Mn	(39%)
2, 3, NiBr ₂ , L1	Dioxane	MeCN	Mn	(64%) 68%
2 , 3 , NiBr ₂ , Mn	MeCN	Dioxane	L1	(32%)
2 , 3 , NiBr ₂ , Mn	Dioxane	MeCN	L1	(24%)
NiBr ₂ , L1	MeCN	Dioxane	Mn, 2 , 3	(51%)
NiBr ₂ , L1	Dioxane	MeCN	Mn, 2 , 3	(61%) 61%

Table S13. Order of addition study. Reaction run with Boc-proline NHPI ester (**2**, 0.10 M, 0.050 mmol), benzyl Katritzky salt (**3**, 0.10 M), NiBr₂•glyme (0.020 M), dCF₃bpy (**L1**, 0.030 M), and Mn (0.20 M) in 1:1 MeCN:dioxane at 60 °C for 24 hours. Premixed reagents were first weighed into the reaction vessel, followed by sequential addition of the two solvents with stirring for 10 minutes in between, and lastly the final reagent, as in the order shown above.

2 (eq.)	3 (eq.)	Mn (eq.)	NiBr ₂ •glyme (mol%)	L1 (mol%)	(LC Yield) Isolated Yield
1.0	1.0	2.0	20%	30%	68%
2.0	1.0	2.0	20%	30%	74%
1.0	2.0	2.0	20%	30%	48%
1.0	1.0	1.0	20%	30%	58%
1.0	1.0	4.0	20%	30%	61%
1.0	2.0	2.0	10%	30%	(48%)
1.0	2.0	2.0	20%	20%	66%

Table S14. Stoichiometry study. Reaction run with Boc-proline NHPI ester (**2**), benzyl Katritzky salt (**3**), NiBr₂•glyme, dCF₃bpy, and Mn at the indicated stoichiometry (0.10 M, 0.050 mmol limiting reagent) in 1:1 MeCN:dioxane at 60 °C for 24 hours. Order of addition follows entry 4 of **Table S13**.

Temperature	Time	Yield
70 °C	12h	55%
0° 00	24h	68%
50 °C	36h	65%
50 °C	72h	70%

Table S15. Temperature study. Reaction run with Boc-proline NHPI ester (**2**, 0.10 M, 0.050 mmol), benzyl Katritzky salt (**3**, 0.10 M), NiBr₂•glyme (0.020 M), dCF₃bpy (0.020 M), and Mn (0.20 M) in 1:1 MeCN:dioxane at the temperature and time shown above. Order of addition follows entry 4 of **Table S13**.

Concentration	Yield
0.25 M	53%
0.10 M	68%
0.050 M	75%
0.025 M	81%

Table S16. Concentration study. Reaction run with Boc-proline NHPI ester (2, 1.0 eq., 0.050 mmol), benzyl Katritzky salt (**3**, 1.0 eq.), NiBr₂•glyme (20 mol%), dCF₃bpy (20 mol%), and Mn (2.0 eq.) in 1:1 MeCN:dioxane at the indicated concentration at 60 °C for 24 hours. Order of addition follows entry 4 of **Table S13**.

Variation	Result
No variation	81%
No NHPI ester	Ph Ph
No Katritzky salt	Side products
No Mn	No reaction
No NiBr₂•glyme	No reaction
No ligand	Trace product
Complete dark	77%
With TEMPO	No reaction
	Me Me Me Me
With 1,5-hexadiene	82% (81% at 10 mol% Ni loading)
NiCl ₂ , ttbtpy in NMP (Watson-Weix)	No C-C or ketone product observed
BnBr instead of Katritzky salt	No product observed

Table S17. Control experiments. Reaction run with Boc-proline NHPI ester (**2**, 0.050 M, 0.050 mmol), benzyl Katritzky salt (**3**, 0.050 M), NiBr₂•glyme (0.010 M), dCF₃bpy (0.010 M), and Mn (0.10 M) in 1:1 MeCN:dioxane at 60 °C for 24 hours with the shown variation. Order of addition follows entry 4 of **Table S13**.

Figure S23. Proposed mechanism of the deaminative decarboxylative coupling.

General procedure for NHPI ester synthesis (GP-2)

A 20 mL scintillation vial equipped with a magnetic stir bar was charged with carboxylic acid (5.0 mmol, 1.0 eq.), *N*-Hydroxyphthalimide (5.0 mmol, 815.7 mg, 1.0 eq.), and 4-Dimethylaminopyridine (0.50 mmol, 61.1 mg, 10 mol%). Dichloromethane (10 mL, 0.5 M) was added and the mixture was stirred for 5 minutes, after which *N*,*N'*-Diisopropylcarbodiimide (5.25 mmol, 822 μ L, 1.05 eq.) was added dropwise. The vial was capped and the reaction stirred at 25 °C for 12 h. The crude mixture was loaded on silica column and purified with 20-40% EtOAc/Hexanes to give the isolated product.

1-(*tert*-Butyl) 2-(1,3-dioxoisoindolin-2-yl) pyrrolidine-1,2-dicarboxylate (**2**) Following GP-2, using Boc-Pro-OH (1.1 g) affords 1.4 g (80%) **2**. ¹H NMR (500 MHz, CDCl₃) δ 7.89 (dt, *J* = 7.4, 3.8 Hz, 2H), 7.80 (dq, *J* = 7.2, 4.3 Hz, 2H), 4.61 (dd, *J* = 8.8, 3.7 Hz, 1H), 3.63 (ddd, *J* = 10.4, 7.9, 4.5 Hz, 1H), 3.49 (dt, *J* = 10.4, 7.5 Hz, 1H), 2.44 (dtd, *J* = 13.2, 9.2, 7.2 Hz, 1H), 2.36 (ddt, *J* = 13.3, 10.8, 4.0 Hz, 1H), 2.18 – 2.03 (m, 1H), 1.98 (dddd, *J* = 11.9, 8.8, 7.1, 4.5 Hz, 1H), 1.52 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 169.80, 161.86, 153.65, 134.95, 129.06, 124.12, 81.28, 57.34, 46.42, 31.58, 28.25, 23.71. [Ref1] HRMS (ESI): calculated C₁₈H₂₀N₂O₆ [M-C₅H₈O₂+H]⁺: 261.0875, found: 261.0870.

1,3-Dioxoisoindolin-2-yl (*tert*-butoxycarbonyl)valinate (**12**) Following GP-2, using Boc-Val-OH (1.1 g) affords 0.95 g (52%) **12**. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (dt, *J* = 7.6, 3.9 Hz, 2H), 7.79 (dd, *J* = 5.5, 3.1 Hz, 2H), 5.05 (d, *J* = 9.4 Hz, 1H), 4.66 (dd, *J* = 9.4, 4.9 Hz, 1H), 2.36 (dd, *J* = 12.6, 6.3 Hz, 1H), 1.50 (s, 9H), 1.11 (d, *J* = 8.0 Hz, 3H), 1.08 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.09, 161.69, 155.30, 134.97, 129.00, 124.16, 80.58, 57.23, 31.97, 28.43, 18.88, 17.52. [Ref2] HRMS (ESI): calculated C₁₈H₂₂N₂O₆ [M-C₅H₈O₂+H]⁺: 263.1032, found: 263.1025.

1,3-Dioxoisoindolin-2-yl (tert-butoxycarbonyl)leucinate (13)

Following GP-2, using Boc-Leu-OH (1.2 g) affords 1.5 g (80%) **13**. ¹H NMR (500 MHz, CDCl₃) δ 7.89 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.79 (dd, *J* = 5.5, 3.1 Hz, 2H), 4.91 (d, *J* = 8.9 Hz, 1H), 4.74 (dt, *J* = 12.9, 6.3 Hz, 1H), 1.98 – 1.80 (m, 2H), 1.71 (qd, *J* = 9.1, 8.7, 4.1 Hz, 1H), 1.50 (s, 9H), 1.10 – 0.98 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 170.11, 161.70, 155.04, 134.95, 129.03, 124.16, 80.66, 50.75, 42.03, 28.43, 24.89, 22.91, 22.01. [Ref3] HRMS (ESI): calculated C₁₉H₂₄N₂O₆ [M-C₅H₈O₂+H]⁺: 277.1188, found: 277.1183.

1,3-Dioxoisoindolin-2-yl 2-((*tert*-butoxycarbonyl)amino)hexanoate (**14**) Following GP-2, using Boc-Nle-OH (1.2 g) affords 1.1 g (60%) **14**. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (dt, *J* = 7.6, 3.8 Hz, 2H), 7.79 (dd, *J* = 5.5, 3.1 Hz, 2H), 5.01 (d, *J* = 8.8 Hz, 1H), 4.73 (d, *J* = 7.1 Hz, 1H), 2.02 (dq, *J* = 14.3, 7.3, 6.9 Hz, 1H), 1.86 (dq, *J* = 14.5, 7.4 Hz, 1H), 1.65 – 1.35 (m, 13H), 0.95 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.72, 161.67, 155.03, 134.96, 129.01, 124.16, 80.62, 52.10, 32.81, 28.43, 27.18, 22.37, 13.97. HRMS (ESI): calculated C₁₉H₂₄N₂O₆ [M-C₅H₈O₂+H]⁺: 277.1188, found: 277.1184.

1,3-Dioxoisoindolin-2-yl 2-((*tert*-butoxycarbonyl)amino)pentanoate (**15**) Following GP-2, using Boc-Nva-OH (1.1 g) affords 1.5 g (83%) **15**. ¹H NMR (500 MHz, CDCl₃) δ 7.89 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.80 (dd, *J* = 5.4, 3.1 Hz, 2H), 5.00 (d, *J* = 8.8 Hz, 1H), 4.74 (q, *J* = 7.4 Hz, 1H), 1.99 (q, *J* = 9.9, 6.2 Hz, 1H), 1.84 (dq, *J* = 14.2, 7.4 Hz, 1H), 1.69 – 1.55 (m, 2H), 1.55 (s, 9H), 1.02 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.74, 161.69, 155.01, 134.97, 129.02, 124.17, 80.63, 51.94, 35.19, 28.44, 18.54, 13.78. HRMS (ESI): calculated C₁₈H₂₂N₂O₆ [M-C₅H₈O₂+H]⁺: 263.1032, found: 263.1026.

1,3-Dioxoisoindolin-2-yl (*tert*-butoxycarbonyl)alaninate (**16**) Following GP-2, using Boc-Ala-OH (0.95 g) affords 1.3 g (75%) **16**. ¹H NMR (500 MHz, CDCl₃) δ 7.90 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.80 (dd, *J* = 5.5, 3.1 Hz, 2H), 5.03 (d, *J* = 7.7 Hz, 1H), 4.84 – 4.72 (m, 1H), 1.63 (d, *J* = 7.2 Hz, 3H), 1.47 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 170.15, 161.64, 154.79, 134.98, 129.02, 124.19, 80.69, 47.87, 28.43, 19.09. [Ref4] HRMS (ESI): calculated C₁₆H₁₈N₂O₆ [M-C₅H₈O₂+H]⁺: 235.0719, found: 235.0717.

1,3-Dioxoisoindolin-2-yl (*tert*-butoxycarbonyl)methioninate (**17**) Following GP-2, using Boc-Met-OH (1.3 g) affords 1.8 g (91%) **17**. ¹H NMR (500 MHz, CDCl₃) δ 7.90 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.80 (dd, *J* = 5.5, 3.1 Hz, 2H), 5.19 (d, *J* = 8.5 Hz, 1H), 4.91 (s, 1H), 2.69 (td, *J* = 14.0, 13.5, 7.3 Hz, 2H), 2.39 – 2.26 (m, 1H), 2.20 (s, 1H), 2.17 (s, 3H), 1.50 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 169.23, 161.61, 154.95, 135.04, 128.97, 124.23, 80.87, 51.48, 32.56, 29.70, 28.42, 15.61. [Ref2] HRMS (ESI): calculated C₁₈H₂₂N₂O₆S [M-C₅H₈O₂+H]⁺: 295.0753, found: 295.0747.

1,3-Dioxoisoindolin-2-yl (*tert*-butoxycarbonyl)phenylalaninate (**18**) Following GP-2, using Boc-Phe-OH (1.3 g) affords 1.9 g (90%) **18**. ¹H NMR (500 MHz, CDCl₃) δ 7.98 – 7.85 (m, 2H), 7.80 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.46 – 7.27 (m, 5H), 5.07 – 4.99 (m, 1H), 4.93 (d, *J* = 8.8 Hz, 1H), 3.36 (dd, *J* = 14.2, 6.0 Hz, 1H), 3.26 (dd, *J* = 14.2, 6.0 Hz, 1H), 1.44 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 168.77, 161.59, 154.77, 134.99, 134.84, 129.88, 128.97, 128.84, 127.51, 124.20, 80.66, 52.82, 38.38, 28.37. [Ref2] HRMS (ESI): calculated C₂₂H₂₂N₂O₆ [M-C₅H₈O₂+H]⁺: 311.1032, found: 311.1028.

1,3-Dioxoisoindolin-2-yl 2-(3,4-dimethoxyphenyl)acetate (19)

Following GP-2, using 2-(3,4-dimethoxyphenyl)acetic acid (0.98 g) affords 1.2 g (72%) **19**.

¹H NMR (500 MHz, CDCl₃) δ 7.91 (dd, J = 5.5, 3.1 Hz, 2H), 7.82 (dd, J = 5.5, 3.1 Hz, 2H), 7.00 – 6.92 (m, 2H), 6.89 (d, J = 8.1 Hz, 1H), 3.97 (s, 2H), 3.95 (s, 3H), 3.91 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.00, 162.00, 149.32, 148.76, 134.95, 129.04, 124.15, 124.04, 121.68, 112.26, 111.41, 56.09, 56.04, 37.50. [Ref5] HRMS (ESI): calculated C₁₈H₁₅NO₆ [M+Na]⁺: 364.0797, found: 364.0790.

1,3-Dioxoisoindolin-2-yl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)acetate (**20**)

Following GP-2, using Indomethacin (1.8 g) affords 0.91 g (36%) **20**. ¹H NMR (500 MHz, CDCl₃) δ 7.89 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.79 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.71 – 7.66 (m, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.03 (d, *J* = 2.5 Hz, 1H), 6.93 (d, *J* = 9.0 Hz, 1H), 6.71 (dd, *J* = 9.0, 2.5 Hz, 1H), 4.04 (s, 2H), 3.89 (s, 3H), 2.42 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.46, 167.17, 161.94, 156.38, 139.58, 136.61, 134.98, 133.83, 131.46, 130.90, 130.10, 129.33, 129.03, 124.18, 115.19, 112.62, 110.33, 100.78, 55.90, 27.29, 13.61. [Ref5] HRMS (ESI): calculated C₂₇H₁₉ClN₂O₆ [M+H]⁺: 503.1010, found: 503.1016.

1,3-Dioxoisoindolin-2-yl 2-(4-isobutylphenyl)propanoate (**21**) Following GP-2, using Ibuprofen (1.0 g) affords 1.3 g (71%) **21**. ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.77 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.34 – 7.28 (m, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 4.10 (q, *J* = 7.2 Hz, 1H), 2.47 (d, *J* = 7.2 Hz, 2H), 1.87 (dp, *J* = 13.6, 6.8 Hz, 1H), 1.66 (d, *J* = 7.2 Hz, 3H), 0.91 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 171.11, 162.03, 141.42, 135.70, 134.85, 129.76, 129.10, 127.40, 124.06, 45.21, 42.73, 30.30, 22.55, 19.17. [Ref6] HRMS (ESI): calculated C₂₁H₂₁NO₄ [M+Na]⁺: 374.1368, found: 374.1356.

1,3-Dioxoisoindolin-2-yl 2-(6-methoxynaphthalen-2-yl)propanoate (**22**) Following GP-2, using Naproxen (1.2 g) affords 1.4 g (72%) **22**. ¹H NMR (500 MHz, CDCl₃) δ 7.89 – 7.82 (m, 2H), 7.82 – 7.72 (m, 5H), 7.49 (dd, J = 8.4, 1.9 Hz, 1H), 7.17 (dd, J = 8.8, 2.5 Hz, 1H), 7.14 (d, J = 2.5 Hz, 1H), 4.26 (q, J = 7.2 Hz, 1H), 3.92 (s, 3H), 1.75 (d, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 171.05, 161.98, 158.00, 134.83, 134.11, 133.56, 129.56, 129.06, 129.03, 127.67, 126.49, 126.02, 124.02, 119.32, 105.76, 55.44, 43.05, 19.14. [Ref11] HRMS (ESI): calculated $C_{22}H_{17}NO_5 [M+H]^+$: 376.1185, found: 376.1182.

1,3-Dioxoisoindolin-2-yl 2-((*tert*-butoxycarbonyl)amino)-3-(perfluorophenyl)propanoate (**S1**) Following GP-2, using Boc-F₅Phe-OH (1.8 g) affords 1.8 g (72%) **S1**. ¹H NMR (500 MHz, CDCl₃) δ 7.91 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.82 (dd, *J* = 5.5, 3.1 Hz, 2H), 5.14 (d, *J* = 9.2 Hz, 1H), 5.08 – 4.96 (m, 1H), 3.55 – 3.39 (m, 1H), 3.24 (dd, *J* = 14.2, 9.8 Hz, 1H), 1.39 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 167.95, 161.39, 154.67, 154.19, 146.75, 144.78, 141.81, 139.79, 138.65, 136.62, 135.12, 128.84, 124.30, 109.40, 81.16, 51.17, 28.12, 26.63. HRMS (ESI): calculated C₂₂H₁₇N₂O₆F₅ [M-C₅H₈O₂+H]⁺: 401.0561, found: 401.0552.

1,3-Dioxoisoindolin-2-yl 2-(2-((2,6-dichlorophenyl)amino)phenyl)acetate (**S2**) Following GP-2, using Diclofenac (1.5 g) affords 1.9 g (88%) **S2**. ¹H NMR (500 MHz, CDCl₃) δ 7.89 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.79 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.37 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.19 (td, *J* = 7.7, 1.6 Hz, 1H), 7.09 – 7.04 (m, 1H), 6.98 (t, *J* = 8.0 Hz, 1H), 6.63 (d, *J* = 8.0 Hz, 1H), 6.29 (s, 1H), 4.20 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 168.43, 161.79, 142.96, 138.26, 134.95, 131.21, 129.39, 129.04, 128.98, 128.92, 124.21, 123.52, 123.24, 119.97, 35.12. HRMS (ESI): calculated C₂₂H₁₄Cl₂N₂O₄ [M+H]⁺: 441.0409, found: 441.0401.

General procedure for Katritzky salt synthesis (GP-3)

A round-bottom flask equipped with a magnetic stir bar was charged with triphenylpyrylium (1.98 g, 5.0 mmol, 1.0 eq.). Ethanol (5 mL, 1.0 M) was added and amine (6.0 mmol, 1.2 eq.) was added while the mixture was stirred. Reaction was heated to reflux for 5 hours with stirring. After reaction was allowed to cool to room temperature, Et_2O (25 mL) was added and the mixture was stirred rigorously overnight for precipitation. The desired product was collected by

filtration and washed with Et_2O (25 mL). If no solid formed with Et_2O addition, the mixture was concentrated in vacuo and the residue was purified by chromatography with 1-20% Acetone/DCM to give isolated product.

1-Benzyl-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (**3**) Following GP-3, using benzylamine (0.66 mL) affords 1.9 g (80%) **3**. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 1.8 Hz, 2H), 7.86 – 7.81 (m, 2H), 7.65 (d, *J* = 7.3 Hz, 4H), 7.62 – 7.53 (m, 3H), 7.53 – 7.44 (m, 6H), 7.17 (t, *J* = 7.4 Hz, 1H), 7.10 (dd, *J* = 8.3, 6.7 Hz, 2H), 6.47 (d, *J* = 7.6 Hz, 2H), 5.78 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 157.78, 156.46, 134.42, 134.00, 132.88, 132.52, 131.11, 129.95, 129.31, 129.20, 128.94, 128.36, 128.30, 126.74, 126.36, 58.36. [Ref7] HRMS (ESI): calculated C₃₀H₂₄N [M]⁺: 398.1909, found: 398.1929.

1-(4-Methylbenzyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (**5**) Following GP-3, using 4-methylbenzylamine (0.76 mL) affords 2.3 g (90%) **5**. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (s, 2H), 7.83 (dt, *J* = 6.9, 1.5 Hz, 2H), 7.65 (d, *J* = 7.3 Hz, 4H), 7.57 (ddd, *J* = 14.5, 7.9, 6.2 Hz, 3H), 7.53 – 7.43 (m, 6H), 6.90 (d, *J* = 7.9 Hz, 2H), 6.34 (d, *J* = 7.9 Hz, 2H), 5.73 (s, 2H), 2.24 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.74, 156.34, 138.33, 134.03, 132.93, 132.47, 131.38, 131.08, 129.94, 129.55, 129.28, 129.22, 128.29, 126.74, 126.27, 58.20, 21.19. [Ref8] HRMS (ESI): calculated C₃₁H₂₆N [M]⁺: 412.2065, found: 412.2048.

$$\stackrel{Ph}{\underset{Ph}{\underbrace{\|}}} \stackrel{Ph}{\underset{\Theta}{\underbrace{\|}}} \stackrel{CF_3}{\underset{\Theta}{\underbrace{\Theta}}}$$

2,4,6-Triphenyl-1-(4-(trifluoromethyl)benzyl)pyridin-1-ium tetrafluoroborate (**6**) Following GP-3, using 4-(trifluoromethyl)benzylamine (0.71 mL) affords 1.5 g (54%) **6**.

¹H NMR (500 MHz, CDCl₃) δ 8.00 (s, 2H), 7.87 – 7.81 (m, 2H), 7.65 (d, *J* = 7.4 Hz, 4H), 7.63 – 7.46 (m, 9H), 7.37 (d, *J* = 8.1 Hz, 2H), 6.64 (d, *J* = 8.0 Hz, 2H), 5.86 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 157.54, 156.87, 137.99, 133.80, 132.66, 132.59, 131.26, 129.90, 129.38, 129.17, 128.34, 126.88, 126.83, 125.90,

125.87, 125.84, 125.81, 124.75, 122.59, 57.81. [Ref8] HRMS (ESI): calculated $C_{31}H_{23}NF_3$ [M]⁺: 466.1783, found: 466.1789.

1-(2,4-Dichlorobenzyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (**7**) Following GP-3, using 2,4-dichlorobenzylamine (0.67 mL) affords 2.6 g (95%) **7**. ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 1.9 Hz, 2H), 7.84 (dd, *J* = 7.2, 2.0 Hz, 2H), 7.72 – 7.64 (m, 4H), 7.64 – 7.56 (m, 3H), 7.56 – 7.48 (m, 6H), 7.12 (d, *J* = 2.1 Hz, 1H), 7.02 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.55 (d, *J* = 8.4 Hz, 1H), 5.82 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 158.06, 156.98, 135.18, 133.90, 132.99, 132.77, 132.69, 131.49, 130.56, 130.38, 130.01, 129.57, 129.09, 128.37, 127.69, 126.83, 57.09. HRMS (ESI): calculated C₃₀H₂₂NCl₂ [M]⁺: 466.1129, found: 466.1126.

1-Cyclohexyl-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (**8**) Following GP-3, using cyclohexylamine (0.68 mL) affords 1.8 g (75%) **8**. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (s, 2H), 7.76 (m, 6H), 7.64 – 7.56 (m, 6H), 7.51 (ddt, *J* = 10.6, 8.5, 4.6 Hz, 3H), 4.63 (tt, *J* = 12.3, 2.9 Hz, 1H), 2.14 (d, *J* = 12.1 Hz, 2H), 1.59 (d, *J* = 14.0 Hz, 2H), 1.49 (qd, *J* = 12.3, 3.2 Hz, 2H), 1.35 (d, *J* = 13.3 Hz, 1H), 0.82 – 0.70 (m, 2H), 0.62 (dddd, *J* = 16.8, 13.1, 8.4, 3.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.20, 155.28, 134.26, 134.19, 132.00, 130.96, 129.72, 129.52, 129.03, 128.95, 128.44, 72.03, 33.73, 26.65, 24.80. [Ref9] HRMS (ESI): calculated C₂₉H₂₈N [M]⁺: 390.2222, found: 390.2205.

1-Cyclopentyl-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (**9**) Following GP-3, using cyclopentylamine (0.59 mL) affords 1.8 g (80%) **9**. ¹H NMR (500 MHz, CDCl₃) δ 7.84 (s, 2H), 7.78 (ddt, *J* = 8.4, 6.0, 2.8 Hz, 6H), 7.59 (dd, *J* = 5.1, 1.9 Hz, 6H), 7.51 (ddd, *J* = 14.4, 7.9, 6.1 Hz, 3H), 5.06 (p, *J* = 9.0 Hz, 1H), 2.23 (dt, *J* = 15.1, 7.3 Hz, 2H), 2.03 (td, *J* = 13.5, 5.7 Hz, 2H), 1.31 – 1.10 (m, 2H), 1.05 – 0.86 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 157.84, 155.15, 134.27, 134.18, 132.06, 130.89, 129.75, 129.73, 129.11, 128.46, 128.39, 70.75, 33.91, 24.73. [Ref8] HRMS (ESI): calculated C₂₈H₂₆N [M]⁺: 376.2065, found: 376.2050.

1-Cyclobutyl-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (**10**) Following GP-3, using cyclobutylamine (0.51 mL) affords 1.4 g (64%) **10**. ¹H NMR (500 MHz, CDCl₃) δ 7.94 – 7.85 (m, 4H), 7.85 – 7.76 (m, 4H), 7.62 – 7.47 (m, 9H), 5.64 – 5.51 (m, 1H), 1.81 (dt, *J* = 12.3, 6.1 Hz, 2H), 1.28 (d, *J* = 9.3 Hz, 1H), 1.23 – 1.11 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.43, 155.58, 134.19, 132.19, 131.59, 129.86, 129.67, 129.43, 128.19, 126.20, 126.17, 64.36, 33.19, 14.26. [Ref9] HRMS (ESI): calculated C₂₇H₂₄N [M]⁺: 362.1909, found: 362.1897.

1-(*sec*-Butyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (**11**) Following GP-3, using *sec*-butylamine (0.61 mL) affords 1.1 g (49%) **11**. ¹H NMR (500 MHz, CDCl₃) δ 7.83 – 7.74 (m, 2H), 7.74 – 7.62 (m, 6H), 7.56 (d, *J* = 8.8 Hz, 6H), 7.50 (d, *J* = 6.4 Hz, 1H), 7.44 (t, *J* = 7.9 Hz, 2H), 4.79 (p, *J* = 6.8 Hz, 1H), 1.86 (dp, *J* = 14.4, 7.3 Hz, 1H), 1.45 (dt, *J* = 14.9, 7.6 Hz, 1H), 1.38 (t, *J* = 5.5 Hz, 3H), 0.60 (q, *J* = 7.1, 6.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.32, 155.23, 134.05, 134.03, 133.98, 132.04, 130.99, 129.68, 129.37, 128.94, 128.38, 68.67, 30.17, 21.33, 11.29. [Ref10] HRMS (ESI): calculated C₂₇H₂₆N [M]⁺: 364.2065, found: 364.2048.

General procedure for decarboxylative deaminative coupling (GP4)

To a flame-dried 2-dram vial equipped with a magnetic stir bar in glovebox, NHPI ester (0.20 mmol, 1.3 eq.), Katritzky salt (0.15 mmol, 1.0 eq.), NiBr₂•glyme (9.3 mg, 0.030 mmol, 20mol%), and **L1** (8.8 mg, 0.030 mmol, 20mol%) were weighed. Dioxane (1.5 mL) was added and mixture was stirred for 10 minutes in glovebox before sequential addition of MeCN (1.5 mL) and Mn (16.5 mg, 0.30 mmol, 2 eq.). The vial was brought out of glovebox, sealed with parafilm and electrical tape, and heated at 60 °C for 24h with stirring at 300 rpm. The reaction was quenched by saturated NaCl (1 mL), extracted with EtOAc (3 × 1 mL), dried over MgSO₄ and evaporated under reduced pressure. The residue was purified by column chromatography (0-10% EtOAc/Hexanes) to give isolated product.

tert-Butyl 2-benzylpyrrolidine-1-carboxylate (**4**, 81%)

Following GP-4, using **2** (72 mg) and **3** (73 mg) affords 32 mg (81%) **4**. At 10 mol% Ni loading, 29 mg (74%) **4** is isolated.

¹H NMR (500 MHz, CDCl₃) δ 7.28 (m, 2H), 7.24 – 7.14 (m, 3H), 4.09 – 3.92 (m, 1H), 3.43 – 3.22 (m, 2H), 3.21 – 2.98 (m, 1H), 2.62 – 2.46 (m, 1H), 1.81 – 1.66 (m, 4H), 1.51 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 154.56, 139.24, 129.40, 128.42, 126.22, 79.27, 58.89, 46.32, 40.61, 29.66, 28.63, 22.66. HRMS (ESI): calculated C₁₆H₂₃NO₂ [M- C₄H₈+H]⁺: 206.1181, found: 206.1171.

tert-Butyl (1-(*p*-tolyl)pentan-2-yl)carbamate (**23**, 66%) Following GP-4, using **15** (72 mg) and **5** (75 mg) affords 28 mg (66%) **23**. ¹H NMR (500 MHz, CDCl₃) δ 7.09 (d, *J* = 7.8 Hz, 2H), 7.06 (d, *J* = 7.9 Hz, 2H), 4.37 – 4.23 (m, 1H), 3.79 (s, 1H), 2.72 (qd, *J* = 13.6, 13.0, 6.1 Hz, 2H), 2.32 (s, 3H), 1.50 – 1.18 (m, 13H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.63, 135.78, 135.29, 129.56, 129.08, 79.03, 51.47, 41.00, 36.41, 28.54, 21.14, 19.36, 14.06. HRMS (ESI): calculated C₁₇H₂₇NO₂ [M- C₄H₈+H]⁺: 222.1494, found: 222.1495

^{Boc} *tert*-Butyl 2-cyclohexylpyrrolidine-1-carboxylate (**24**, 47%) Following GP-4, using **2** (72 mg) and **8** (72 mg) affords 18 mg (47%) **24**. ¹H NMR (500 MHz, CDCl₃) δ 3.66 (q, J = 5.2 Hz, 1H), 3.52 – 3.38 (m, 1H), 3.19 (dt, J = 11.5, 5.8 Hz, 1H), 1.76 (tdd, J = 14.5, 10.4, 4.5 Hz, 6H), 1.70 – 1.54 (m, 4H), 1.45 (s, 9H), 1.27 – 1.05 (m, 3H), 0.96 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 155.24, 78.95, 61.98, 46.82, 41.32, 30.29, 28.70, 28.12, 27.21, 26.80, 26.71, 26.49, 24.11. HRMS (ESI): calculated C₁₅H₂₇NO₂ [M- C₄H₈+H]⁺: 198.1494, found: 198.1489.

tert-Butyl 2-cyclopentylpyrrolidine-1-carboxylate (**25**, 51%) Following GP-4, using **2** (72 mg) and **9** (69 mg) affords 18 mg (51%) **25**. ¹H NMR (500 MHz, CDCl₃) δ 3.87 – 3.77 (m, 1H), 3.45 (dt, *J* = 13.3, 7.1 Hz, 1H), 3.25 (td, *J* = 9.3, 7.5, 3.9 Hz, 1H), 2.05 (h, *J* = 8.1 Hz, 1H), 1.82 (m, 3H), 1.73 –

1.57 (m, 5H), 1.57 – 1.48 (m, 2H), 1.46 (s, 9H), 1.42 – 1.32 (m, 1H), 1.17 (dq, J = 12.2, 8.4, 7.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 155.35, 79.00, 60.86, 46.43, 44.50, 30.14, 29.02, 28.96, 28.71, 25.48, 25.23, 23.56. HRMS (ESI): calculated C₁₄H₂₅NO₂ [M- C₄H₈+H]⁺: 184.1338, found: 184.1338.

tert-Butyl 2-(4-(trifluoromethyl)benzyl)pyrrolidine-1-carboxylate (**26**, 60%) Following GP-4, using **2** (72 mg) and **6** (83 mg) affords 30 mg (60%) **26**. ¹H NMR (500 MHz, CDCl₃) δ 7.53 (t, *J* = 7.3 Hz, 2H), 7.29 (m, 2H), 4.00 (m, 1H), 3.52 – 3.24 (m, 2H), 3.14 (m, 1H), 2.63 (p, *J* = 11.1 Hz, 1H), 1.97 – 1.59 (m, 4H), 1.49 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 154.57, 143.48, 129.79, 128.89, 125.45, 123.35, 79.60, 58.70, 46.42, 40.66, 29.96, 28.69, 22.80. HRMS (ESI): calculated C₁₇H₂₂F₃NO₂ [M- C₄H₈+H]⁺: 274.1055, found: 274.1037.

tert-Butyl 2-(2,4-dichlorobenzyl)pyrrolidine-1-carboxylate (**27**, 53%) Following GP-4, using **2** (72 mg) and **7** (83 mg) affords 26 mg (53%) **27**. ¹H NMR (500 MHz, CDCl₃) δ 7.36 (s, 1H), 7.25 – 7.06 (m, 2H), 4.10 (m, 1H), 3.41 (p, *J* = 8.1, 6.3 Hz, 1H), 3.31 (dd, *J* = 17.6, 8.2 Hz, 1H), 3.08 (m, 1H), 2.93 – 2.69 (m, 1H), 1.94 – 1.71 (m, 3H), 1.67 (ddt, *J* = 12.3, 6.0, 2.7 Hz, 1H), 1.57 – 1.42 (m, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 154.64, 135.75, 135.17, 132.80, 132.52, 129.36, 127.17, 79.55, 57.26, 46.20, 37.18, 29.96, 28.64, 22.82. HRMS (ESI): calculated C₁₆H₂₁Cl₂NO₂ [M- C₄H₈+H]⁺: 274.0402, found: 274.0392.

tert-Butyl (1-(2,4-dichlorophenyl)pentan-2-yl)carbamate (**28**, 61%) Following GP-4, using **15** (72 mg) and **7** (83 mg) affords 31 mg (61%) **28**. ¹H NMR (500 MHz, CDCl₃) δ 7.35 (s, 1H), 7.21 – 7.09 (m, 2H), 4.33 (d, *J* = 9.3 Hz, 1H), 3.86 (d, *J* = 8.1 Hz, 1H), 2.91 (dd, *J* = 13.8, 5.5 Hz, 1H), 2.76 (dd, *J* = 13.9, 8.3 Hz, 1H), 1.55 – 1.16 (m, 13H), 0.90 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.45, 135.33, 135.20, 132.70, 132.26, 129.26, 127.01, 79.16, 50.91, 38.66, 37.29, 28.44, 19.39, 14.04. HRMS (ESI): calculated C₁₆H₂₃NO₂Cl₂ [M- C₄H₈+H]⁺: 276.0558, found: 276.0547

tert-Butyl (1-(2,4-dichlorophenyl)propan-2-yl)carbamate (**29**, 58%) Following GP-4, using **16** (67 mg) and **7** (83 mg) affords 26 mg (58%) **29**. ¹H NMR (500 MHz, CDCl₃) δ 7.36 (s, 1H), 7.16 (s, 2H), 4.42 (s, 1H), 3.97 (p, *J* = 7.2 Hz, 1H), 2.85 (d, *J* = 6.6 Hz, 2H), 1.37 (s, 9H), 1.15 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.18, 135.21, 135.17, 132.84, 132.30, 129.33, 127.07, 79.32, 47.00, 39.90, 28.46, 20.76. HRMS (ESI): calculated C₁₄H₁₉NO₂Cl₂ [M- C₄H₈+H]⁺: 248.0245, found: 248.0231

tert-Butyl 2-(4-methylbenzyl)pyrrolidine-1-carboxylate (**30**, 80%) Following GP-4, using **2** (72 mg) and **5** (75 mg) affords 33 mg (80%) **30**. At 10 mol% Ni loading, 32 mg (77%) **30** is isolated.

¹H NMR (500 MHz, CDCl₃) δ 7.08 (s, 4H), 4.01 – 3.91 (m, 1H), 3.32 (d, *J* = 6.4 Hz, 2H), 3.06 (dd, *J* = 13.0, 3.5 Hz, 1H), 2.50 (dd, *J* = 13.0, 9.5 Hz, 1H), 2.32 (s, 3H), 1.82 – 1.65 (m, 4H), 1.55 – 1.46 (m, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 154.56, 136.13, 135.63, 129.35, 129.06, 79.12, 58.90, 46.53, 39.72, 29.29, 28.64, 22.97, 21.06. HRMS (ESI): calculated C₁₇H₂₅NO₂ [M- C₅H₈O₂+H]⁺: 176.1439.1338, found: 176.1433.

tert-Butyl (4-methyl-1-phenylpentan-2-yl)carbamate (**31**, 72%) Following GP-4, using **13** (75 mg) and **3** (73 mg) affords 30 mg (72%) **31**. At 10 mol% Ni loading, 27 mg (64%) **31** is isolated.

¹H NMR (500 MHz, CDCl₃) δ 7.28 (t, J = 7.5 Hz, 2H), 7.24 – 7.20 (m, 1H), 7.17 (d, J = 7.5 Hz, 2H), 4.25 (d, J = 9.0 Hz, 1H), 3.91 (h, J = 7.2 Hz, 1H), 2.76 (d, J = 6.2 Hz, 2H), 1.68 (qd, J = 13.4, 6.7 Hz, 1H), 1.40 (s, 9H), 1.24 (t, J = 7.1 Hz, 2H), 0.88 (dd, J = 9.1, 6.6 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 155.50, 138.40, 129.74, 128.35, 126.30, 79.04, 49.68, 43.62, 41.92, 28.54, 24.95, 23.36, 22.10. HRMS (ESI): calculated C₁₇H₂₇NO₂ [M- C₄H₈+H]⁺: 222.1494 found: 222.1487.

tert-Butyl (3-methyl-1-phenylbutan-2-yl)carbamate (**32**, 44%)

Following GP-4, using **12** (72 mg) and **3** (73 mg) affords 17 mg (44%) **32**. ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.25 (m, 2H), 7.19 (dt, *J* = 7.4, 3.3 Hz, 3H), 4.33 (d, *J* = 9.7 Hz, 1H), 3.75 (m, 1H), 2.79 (dd, *J* = 13.9, 6.3 Hz, 1H), 2.67 (dd, *J* = 14.0, 8.0 Hz, 1H), 1.72 (ddd, *J* = 13.8, 9.5, 6.2 Hz, 1H), 1.36 (s, 9H), 0.96 (d, *J* = 6.8 Hz, 3H), 0.92 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.83, 138.89, 129.37, 128.44, 126.27, 79.02, 56.67, 38.82, 30.79, 28.50, 19.83, 17.37. HRMS (ESI): calculated C₁₆H₂₅NO₂ [M- C₄H₈+H]⁺: 208.1338, found: 208.1324.

Me NH

tert-Butyl (1-phenylpropan-2-yl)carbamate (**33**, 65%) Following GP-4, using **16** (67 mg) and **3** (73 mg) affords 23 mg (65%) **33**. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.26 (m, 2H), 7.24 – 7.20 (m, 1H), 7.20 – 7.14 (m, 2H), 4.38 (s, 1H), 3.91 (s, 1H), 2.84 (dd, *J* = 13.4, 5.5 Hz, 1H), 2.65 (dd, *J* = 13.4, 7.4 Hz, 1H), 1.43 (s, 9H), 1.08 (d, *J* = 6.7, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.31, 138.38, 129.63, 128.43, 126.41, 79.23, 47.55, 43.14, 28.54, 20.29. HRMS (ESI): calculated C₁₄H₂₁NO₂ [M- C₄H₈+H]⁺: 180.1025 found:

180.1033.

tert-Butyl (1-phenylpentan-2-yl)carbamate (**34**, 75%)

Following GP-4, using **15** (72 mg) and **3** (73 mg) affords 30 mg (75%) **34**. At 10 mol% Ni loading, 27 mg (68%) **34** is isolated.

¹H NMR (500 MHz, CDCl₃) δ 7.28 (t, *J* = 7.5 Hz, 2H), 7.23 – 7.20 (m, 1H), 7.18 (d, *J* = 7.5 Hz, 2H), 4.29 (d, *J* = 8.9 Hz, 1H), 3.83 (s, 1H), 2.75 (m, 2H), 1.49 – 1.22 (m, 13H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.60, 138.47, 129.68, 128.40, 126.33, 79.09, 51.45, 41.53, 36.51, 28.54, 19.37, 14.06. HRMS (ESI): calculated C₁₆H₂₅NO₂ [M- C₄H₈+H]⁺: 208.1338 found: 208.1319.

MeS NH

tert-Butyl (4-(methylthio)-1-phenylbutan-2-yl)carbamate (**35**, 42%) Following GP-4, using **17** (79 mg) and **3** (73 mg) affords 18 mg (42%) **35**. ¹H NMR (500 MHz, CDCl₃) δ 7.29 (m, 2H), 7.24 – 7.20 (m, 1H), 7.19 – 7.14 (m, 2H), 4.37 (d, *J* = 8.9 Hz, 1H), 3.92 (s, 1H), 2.82 (t, *J* = 9.8 Hz, 1H), 2.76 (dd, *J* = 13.4, 6.9 Hz, 1H), 2.56 (ddd, *J* = 12.9, 9.5, 5.2 Hz, 1H), 2.49 (ddd, *J* = 13.0, 9.3, 6.6 Hz, 1H), 2.05 (s, 3H), 1.85 – 1.75 (m, 1H), 1.59 (dhept, *J* = 9.3, 5.2 Hz, 1H), 1.40 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 155.57, 137.99, 129.60, 128.55, 126.57, 79.37, 51.24, 41.50, 34.01, 30.98, 28.51, 15.72. HRMS (ESI): calculated $C_{16}H_{25}NO_2S \left[M-C_5H_8O_2+H\right]^+$: 196.1160 found: 196.1150.

tert-Butyl (1,3-diphenylpropan-2-yl)carbamate (**36**, 64%) Following GP-4, using **18** (82 mg) and **3** (73 mg) affords 30 mg (64%) **36**. ¹H NMR (500 MHz, CDCl₃) δ 7.30 (t, *J* = 7.4 Hz, 4H), 7.23 (d, *J* = 7.2 Hz, 2H), 7.20 (d, *J* = 7.7 Hz, 4H), 4.47 – 4.29 (m, 1H), 4.22 – 4.07 (m, 1H), 2.82 (dd, *J* = 13.8, 6.2 Hz, 2H), 2.79 – 2.67 (m, 2H), 1.36 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 155.40, 138.31, 129.54, 128.52, 126.49, 79.22, 52.66, 40.36, 28.45. HRMS (ESI): calculated C₂₀H₂₅NO₂ [M- C₄H₈+H]⁺: 256.1338 found: 256.1329.

tert-Butyl (1-(perfluorophenyl)-3-phenylpropan-2-yl)carbamate (**37**, 51%) Following GP-4, using **S1** (100 mg) and **3** (73 mg) affords 31 mg (51%) **37**. ¹H NMR (500 MHz, CDCl₃) δ 7.32 (t, *J* = 7.5 Hz, 2H), 7.27 – 7.24 (m, 1H), 7.22 (t, *J* = 7.9 Hz, 2H), 4.40 (d, *J* = 9.3 Hz, 1H), 4.13 (s, 1H), 2.99 – 2.79 (m, 3H), 2.73 (dd, *J* = 13.9, 9.9 Hz, 1H), 1.31 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 155.27, 137.31, 129.31, 128.77, 126.93, 79.67, 51.45, 41.49, 28.24, 28.12. HRMS (ESI): calculated C₂₀H₂₀F₅NO₂ [M- C₄H₈+H]⁺: 302.0968, found: 302.1410.

1,2-Dimethoxy-4-phenethylbenzene (38, 48%)

Following GP-4, using **19** (68 mg) and **3** (73 mg) affords 17 mg (48%) **38**. ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 7.23 – 7.15 (m, 3H), 6.80 (d, *J* = 8.1 Hz, 1H), 6.73 (dd, *J* = 8.1, 2.0 Hz, 1H), 6.64 (d, *J* = 2.0 Hz, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 2.95 – 2.83 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 148.78, 147.32, 141.88, 134.51, 128.67, 128.44, 126.02, 120.35, 111.97, 111.25, 56.03, 55.88, 38.29, 37.65. HRMS (ESI): calculated C₁₆H₁₈O₂ [M+H]⁺: 243.1385, found: 243.1381.

(4-Chlorophenyl)(5-methoxy-3-phenethyl-1*H*-indol-1-yl)methanone (**39**, 51%) Following GP-4, using **17** (100 mg) and **3** (73 mg) affords 30 mg (51%) **39**. ¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.55 (m, 2H), 7.47 – 7.43 (m, 2H), 7.30 – 7.25 (m, 2H), 7.24 – 7.19 (m, 1H), 7.16 – 7.11 (m, 2H), 7.04 (d, *J* = 9.0 Hz, 1H), 6.91 (d, *J* = 2.5 Hz, 1H), 6.70 (dd, *J* = 9.0, 2.6 Hz, 1H), 3.85 (s, 3H), 2.99 – 2.88 (m, 4H), 1.98 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.42, 156.07, 141.74, 139.05, 134.39, 131.26, 131.22, 131.12, 129.13, 128.83, 128.47, 126.17, 118.91, 115.18, 111.15, 101.50, 55.89, 35.91, 26.45, 13.25. HRMS (ESI): calculated $C_{24}H_{20}CINO_2 [M+H]^+$: 404.1417, found: 404.1409.

2,6-Dichloro-*N*-(2-phenethylphenyl)aniline (**40**, 41%) Following GP-4, using **S2** (88 mg) and **3** (73 mg) affords 21 mg (41%) **40**. ¹H NMR (500 MHz, CDCl₃) δ 7.36 (d, *J* = 8.1 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.24 (m, 3H), 7.18 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.07 (td, *J* = 7.7, 1.6 Hz, 1H), 7.02 (t, *J* = 8.1 Hz, 1H), 6.94 (t, *J* = 7.4 Hz, 1H), 6.48 (d, *J* = 8.0 Hz, 1H), 5.69 – 5.40 (m, 1H), 3.06 (q, *J* = 3.1 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 141.91, 141.34, 137.70, 130.31, 130.26, 129.81, 129.00, 128.66, 128.61, 126.74, 126.22, 124.61, 121.88, 116.85, 35.75, 33.76. HRMS (ESI): calculated C₂₀H₁₇Cl₂N [M+H]⁺: 343.0816, found: 343.0830.

1-Isobutyl-4-(1-phenylpropan-2-yl)benzene (**41**, 46%) Following GP-4, using **21** (70 mg) and **3** (73 mg) affords 17 mg (46%) **41**. ¹H NMR (500 MHz, CDCl₃) δ 7.23 (dd, *J* = 8.1, 6.6 Hz, 2H), 7.19 – 7.14 (m, 1H), 7.11 – 7.03 (m, 6H), 2.95 (ddd, *J* = 17.0, 13.3, 6.5 Hz, 2H), 2.78 – 2.67 (m, 1H), 2.44 (d, *J* = 7.2 Hz, 2H), 1.85 (dh, *J* = 13.5, 6.8 Hz, 1H), 1.22 (d, *J* = 6.7 Hz, 3H), 0.90 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 144.38, 141.14, 139.42, 129.33, 129.14, 128.18, 126.83, 125.90, 45.33, 45.19, 41.59, 30.39, 22.55, 21.18. HRMS (ESI): calculated C₁₉H₂₄ [M]⁻: 252.1878, found: 252.1869.

tert-Butyl (1-phenylhexan-2-yl)carbamate (**S3**, 72%) Following GP-4, using **14** (75 mg) and **3** (73 mg) affords 30 mg (72%) **S3**. ¹H NMR (500 MHz, CDCl₃) δ 7.28 (t, *J* = 7.5 Hz, 2H), 7.23 – 7.13 (m, 3H), 4.29 (s, 1H), 3.81 (s, 1H), 2.76 (d, *J* = 6.6 Hz, 2H), 1.53 – 1.44 (m, 1H), 1.41 (s, 9H), 1.38 – 1.19 (m, 5H), 0.87 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.62, 138.50, 129.66, 128.39, 126.33, 79.09, 51.66, 41.50, 34.02, 28.53, 28.29, 22.66, 14.15. HRMS (ESI): calculated C₁₇H₂₇NO₂ [M- C₄H₈+H]⁺: 222.1494 found: 222.1486. Spectra

Figure S23. ¹H NMR of **4** in CDCl₃ at 25 °C *: Rotamer

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S24. ^{13}C NMR of 4 in CDCl3 at 25 °C

*: Rotamer

Figure S25. ¹H NMR of 23 in CDCl₃ at 25 °C

Figure S26. ¹³C NMR of 23 in CDCI₃ at 25 °C

Figure S27. ¹H NMR of 24 in CDCl₃ at 25 °C.

Figure S28. ¹³C NMR of 24 in CDCl₃ at 25 °C

Figure S29. ¹H NMR of 25 in CDCl₃ at 25 °C

Figure S30. ^{13}C NMR of 25 in CDCl3 at 25 °C

Figure S31. ¹H NMR of **26** in CDCl₃ at 25 °C *: Rotamer

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S32. ^{13}C NMR of 26 in CDCl3 at 25 °C

*: Rotamer

Figure S33. ¹H NMR of **27** in CDCl₃ at 25 °C *: Rotamer

Figure S34. ^{13}C NMR of 27 in CDCl3 at 25 °C

*: Rotamer

Figure S35. ¹H NMR of **28** in CDCl₃ at 25 °C *: Rotamer

Figure S36. ¹³C NMR of 28 in CDCI₃ at 25 °C

*: Rotamer

Figure S37. ¹H NMR of **29** in CDCl₃ at 25 °C

Figure S38. ¹³C NMR of 29 in CDCl₃ at 25 °C

Figure S39. ¹H NMR of 30 in $CDCI_3$ at 25 °C.

Figure S40. ^{13}C NMR of 30 in CDCl3 at 25 °C

Figure S41. ¹H NMR of **31** in CDCl₃ at 25 °C *: Rotamer

Figure S42. ¹³C NMR of 31 in CDCI₃ at 25 °C

Figure S43. ¹H NMR of **32** in CDCl₃ at 25 °C *: Rotamer

Figure S44. ¹³C NMR of 32 in CDCI₃ at 25 °C

Figure S45. ¹H NMR of 33 in CDCl₃ at 25 °C

Figure S46. ¹³C NMR of 33 in CDCI₃ at 25 °C

Figure S47. ¹H NMR of 34 in CDCl₃ at 25 °C

Figure S48. ¹³C NMR of 34 in CDCI₃ at 25 °C

Figure S49. ¹H NMR of 35 in CDCl₃ at 25 °C

Figure S50. ^{13}C NMR of 35 in CDCl3 at 25 °C

Figure S51. ¹H NMR of 36 in CDCl₃ at 25 °C

Figure S52. ¹³C NMR of 36 in CDCI₃ at 25 °C

Figure S53. ^1H NMR of 37 in CDCl3 at 25 °C

Figure S54. ^{13}C NMR of 37 in CDCl3 at 25 °C

Figure S55. ¹H NMR of **38** in CDCl₃ at 25 °C

Figure S56. ¹³C NMR of 38 in CDCI₃ at 25 °C

Figure S57. ¹H NMR of **39** in CDCl₃ at 25 °C

Figure S58. ^{13}C NMR of 39 in CDCl3 at 25 °C

Figure S59. ¹H NMR of 40 in CDCl₃ at 25 °C

Figure S60. ¹³C NMR of 40 in CDCl₃ at 25 °C

Figure S61. ¹H NMR of 41 in CDCl₃ at 25 °C

Figure S62. ¹³C NMR of 41 in CDCI₃ at 25 °C

Figure S63. ^1H NMR of S3 in CDCl3 at 25 °C

Figure S64. ^{13}C NMR of S3 in CDCl3 at 25 °C

Figure S65. ¹H NMR of **14** in CDCl₃ at 25 °C *: Rotamer

Figure S66. ¹³C NMR of 14 in CDCI₃ at 25 °C

Figure S67. ¹H NMR of **15** in CDCl₃ at 25 °C *: Rotamer

Figure S68. ^{13}C NMR of 15 in CDCl3 at 25 °C

Figure S69. ¹H NMR of **S1** in CDCl₃ at 25 °C *: Rotamer

Figure S70. ^{13}C NMR of S1 in CDCl3 at 25 °C

Figure S71. ¹H NMR of S2 in CDCI₃ at 25 °C

Figure S72. ^{13}C NMR of S2 in CDCl3 at 25 °C

Figure S73. 1 H NMR of 7 in CDCl₃ at 25 $^{\circ}$ C

Figure S74. ^{13}C NMR of 7 in CDCl3 at 25 °C

1. Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A. M.; Spiewak, A. M.; Johnson, K. A.; Dibenedetto, T. A.; Kim, S.; Ackerman, L. K. G.; Weix, D. J. Decarboxylative Cross-Electrophile Coupling of N-Hydroxyphthalimide Esters with Aryl lodides. *J. Am. Chem. Soc.* **2016**, *138* (15), 5016-5019.

2. Yang, Z.-P.; Freas, D. J.; Fu, G. C. The Asymmetric Synthesis of Amines via Nickel-Catalyzed Enantioconvergent Substitution Reactions. *J. Am. Chem. Soc.* **2021**, *143* (7), 2930-2937.

3. Chen, X.; Luo, X.; Peng, X.; Guo, J.; Zai, J.; Wang, P. Catalyst-Free Decarboxylation of Carboxylic Acids and Deoxygenation of Alcohols by Electro-Induced Radical Formation. *Chem. Eur. J.* **2020**, *26* (15), 3226-3230.

4. Shen, M.-L.; Shen, Y.; Wang, P.-S. Merging Visible-Light Photoredox and Chiral Phosphate Catalysis for Asymmetric Friedel–Crafts Reaction with in Situ Generation of N-Acyl Imines. *Org. Lett.* **2019**, *21* (9), 2993-2997.

5. Yang, T.; Jiang, Y.; Luo, Y.; Lim, J. J. H.; Lan, Y.; Koh, M. J. Chemoselective Union of Olefins, Organohalides, and Redox-Active Esters Enables Regioselective Alkene Dialkylation. *J. Am. Chem. Soc.* **2020**, *142* (51), 21410-21419.

6. Wang, D.; Zhu, N.; Chen, P.; Lin, Z.; Liu, G. Enantioselective Decarboxylative Cyanation Employing Cooperative Photoredox Catalysis and Copper Catalysis. *J. Am. Chem. Soc.* **2017**, *139* (44), 15632-15635.

7. Wu, J.; He, L.; Noble, A.; Aggarwal, V. K. Photoinduced Deaminative Borylation of Alkylamines. *J. Am. Chem. Soc.* **2018**, *140* (34), 10700-10704.

8. Zhu, Z.-F.; Liu, F.; Tu, J.-L. Ni-Catalyzed deaminative hydroalkylation of internal alkynes. *Chem. Commun.* **2019**, *55* (76), 11478-11481.

9. Martin-Montero, R.; Yatham, V. R.; Yin, H.; Davies, J.; Martin, R. Ni-catalyzed Reductive Deaminative Arylation at sp³ Carbon Centers. *Org. Lett.* **2019**, *21* (8), 2947-2951.

10. Klauck, F. J. R.; James, M. J.; Glorius, F. Deaminative Strategy for the Visible-Light-Mediated Generation of Alkyl Radicals. *Angew. Chem. Int. Ed.* **2017**, *56* (40), 12336-12339.

11. Zheng, C.; Wang, Y.; Xu, Y.; Chen, Z.; Chen, G.; Liang, S. H. Ru-Photoredox-Catalyzed Decarboxylative Oxygenation of Aliphatic Carboxylic Acids through N-(acyloxy)phthalimide. *Org. Lett.* **2018**, *20* (16), 4824-4827.