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1 INTRODUCTION

We congratulate the authors on a timely paper on covari-
ate adjustment for COVID-19 treatment trials. It clearly
demonstrates the great potential of leveraging covariates
in increasing precision and power for randomized trials.
Despite great advance in theory and methods, covariate
adjustment is still underused in practice. This is partly due
to that many practitioners remain skeptical of its useful-
ness or have other concerns. Some people think adjusted
estimator estimates the conditional, as opposed to the
desired marginal, treatment effect. This thought is nat-
urally influenced by the traditional adjustment method
where one directly models outcomes as a function of treat-
ment and covariates. Perhaps the biggest obstacle to lever-
aging covariate is the concern about model misspecifi-
cation. People may think that the validity of inference
and/or improvement in efficiency rely on the assumption
of correct modeling. Benkeser et al. (2020) alleviate these
concerns through intuitive explanations and convincing
empirical evidences. To further elucidate misunderstand-
ings, we elaborate the key points from a theoretical point
of view and discuss issues from a practical point of view.

2 A THEORETICAL PERSPECTIVE

The semiparametric framework of Zhang et al. (2008;
henceforth, ZTD) considers a trial with data on (𝑌,𝐴, 𝑋).
The outcome 𝑌 is general and can be continuous, binary,

ordinal, or other types. It starts with a relevant unadjusted
estimand, 𝛽, and seeks to identify all valid estimators by
studying influence functions. Then it characterizes all pos-
sible joint distribution of data without imposing any addi-
tional assumptions, except for that treatment𝐴 is indepen-
dent of covariates𝑋. The estimand is general and can be of
any form, for example, difference in means, odds ratio, rel-
ative risk, or the Mann–Whiteney (MW) estimand.
ZTD showed that, for𝐴 = 0 or 1, the class of all unbiased

estimating functions for 𝛽 is

𝑚∗(𝑌,𝑋,𝐴; 𝛽) = 𝑚(𝑌,𝐴; 𝛽) − (𝐴 − 𝜋)ℎ(𝑋), (1)

where𝑚(𝑌, 𝑍; 𝛽) is any unbiased estimating function used
in an unadjusted analysis, ℎ(𝑋) is an arbitrary function of
𝑋, and 𝜋 = 𝑃𝑟(𝐴 = 1). Given𝑚(𝑌,𝐴; 𝛽), the optimal ℎ(𝑋)
is

𝐸{𝑚(𝑌,𝐴; 𝛽) |𝑋,𝐴 = 1} − 𝐸{𝑚(𝑌,𝐴; 𝛽) |𝑋,𝐴 = 0}. (2)

According to (1), an adjusted estimator solving∑𝑛

𝑖=0
𝑚∗(𝑌𝑖, 𝑋𝑖, 𝐴𝑖; 𝛽) = 0 is consistent and asymptot-

ically normal regardless of the form of ℎ(𝑋) and therefore
is guaranteed to be robust. Result (2) says that the esti-
mator with the optimal ℎ(𝑋) is always more efficient
than the unadjusted one, which corresponds to ℎ(𝑋) = 0.
Result (2) suggests that to improve efficiency one needs
to model 𝐸{𝑚(𝑌,𝐴; 𝛽) |𝑋,𝐴 = 𝑎}. However, it may seem
less satisfying if efficiency gain relies on correct modeling.
Suppose one postulates a model, likely misspecified, for
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𝐸{𝑚(𝑌,𝐴; 𝛽) |𝑋,𝐴 = 𝑎} = 𝜁𝑇𝑎 𝑔(𝑋), where 𝑔(𝑋) is a vector
of known basis functions. Restricting the class in (1) to
the subclass with ℎ(𝑋) = 𝜁𝑇𝑔(𝑋) for some 𝜁, the optimal
𝜁 is the limit of the ordinary least square (OLS) estima-
tor in a regression with 𝑚(𝑌,𝐴; 𝛽) as the outcome and
(𝐴 − 𝜋)𝑔(𝑋) as covariates (Leon et al., 2003; ZTD). It is also
equivalent to fitting 𝐸{𝑚(𝑌,𝐴; 𝛽) |𝑋,𝐴 = 𝑎} = 𝜁𝑇𝑎 𝑔(𝑋)

using OLS. This adjusted estimator is guaranteed to
be as good and often better than the unadjusted esti-
mator. Therefore, efficiency gain also does not rely on
correct modeling.
To summarize, if done properly, (1) covariate-adjusted

estimator estimates the marginal treatment effect; (2)
the validity of adjusted analysis does not require the
assumption of correct modeling; (3) efficiency improve-
ment (smaller variance and better power) is guaranteed
without the assumption of correct modeling, as long as
covariates are predictive of outcomes.

3 A UNIFIED IMPLEMENTATION
STRATEGY

The theory leads to a simple unified covariate adjust-
ment method for all estimands, where one augments
the estimation equation used for an unadjusted analy-
sis by an augmentation term, −(𝐴 − 𝜋)ℎ(𝑋). It is easier
to see the augmentation term will not introduce bias as
𝐸{(𝐴 − 𝜋)ℎ(𝑋)} = 0. Obtaining estimators by solving esti-
mating equations is perhaps the most familiar approach
to statisticians, owing to the widespread use of likelihood-
based methods and score equations. We think it is a huge
advantage to embed covariate adjustment methods within
a familiar and well-accepted framework, as it promotes
understanding and use of it. Otherwise, learning how
to do covariate adjustment robustly can be a daunting
task for practitioners, as there are so many different esti-
mands of interest in practice and all kinds of adjustment
methods. In fact, all consistent and asymptotically nor-
mal adjusted estimators are in this class or asymptotically
equivalent to estimators in this class. So we do not lose by
focusing on one unified augmented estimating equation
framework.
In practice, one needs to replace 𝜋 with 𝜋 = 𝑛1∕𝑛 and

model 𝐸{𝑚(𝑌,𝐴; 𝛽) |𝑋,𝐴 = 𝑎}, treating 𝑚(𝑌𝑖, 𝐴𝑖; 𝛽) as
data and replacing 𝛽 in 𝑚 by the unadjusted estimator.
Often 𝑚(𝑌,𝐴; 𝛽) is linear in 𝑌. Then it is equivalent to
modeling for 𝐸(𝑌|𝑋,𝐴 = 𝑎). Examples for several com-
mon estimands are given in ZTD, including the adjusted
MW U/Kruskal Wallis test. To further illustrate the sim-
plicity of this approach, we provide explicit formula for the
adjusted MW estimator. By ZTD, the augmented estimat-

ing equation for 𝛽 is

𝑛∑
𝑖=1

{[
𝑛

𝑛0𝑛1

𝑛∑
𝑗=1

{(1 − 𝐴𝑖)𝐴𝑗𝐶(𝑌𝑖, 𝑌𝑗)} − 𝛽

]

− (𝐴𝑖 − 𝜋)ℎ(𝑋𝑖)

}
= 0,

where 𝐶(𝑌𝑖, 𝑌𝑗) = 𝐼(𝑌𝑖 < 𝑌𝑗) +
1

2
𝐼(𝑌𝑖 = 𝑌𝑗) and terms in

[.] are the usual estimating function for the MW estimator.
The covariate-adjusted MW estimator is

𝛽𝑎𝑑𝑗 =

{
1

𝑛0𝑛1

𝑛∑
𝑖=1

𝑛∑
𝑗=1

(1 − 𝐴𝑖)𝐴𝑗𝐶(𝑌𝑖, 𝑌𝑗)

}

−
1

𝑛

𝑛∑
𝑖=1

(𝐴𝑖 − 𝜋)ℎ̂(𝑋𝑖).

That is, it is simply the usual MW estimator in {.} plus
an augmentation term. As described previously, ℎ̂(𝑋𝑖) can
be obtained by 𝑔1(𝑋𝑖) − 𝑔0(𝑋𝑖), where 𝑔𝑎(𝑋𝑖), 𝑎 = 0, 1, is
the fitted model for𝑀𝑖 ≡

𝑛

𝑛0𝑛1

∑𝑛

𝑗=1
(1 − 𝐴𝑖)𝐴𝑗𝐶(𝑌𝑖, 𝑌𝑗) as

a function of covariates using data from group 𝑎. Instead
of two working models, alternatively one may fit a model
for 𝑀𝑖 including (𝐴𝑖 − 𝜋)𝑔(𝑋𝑖) as covariates, where 𝑔(𝑋𝑖)
includes 1 and other basis functions. Different strategies for
fitting working models are further discussed later.

4 PRACTICAL CONSIDERATIONS

Theoretical results on covariate adjustment methods,
including those studied in Benkeser et al., are mainly
based on asymptotics. Although empirical performances
have been evaluated in many simulation studies and real-
data analyses, questions and challenges remain in practice.
Below we discuss factors affecting practical performances,
attempting to address the question of how and when
to use covariate adjustment. The main goal is to foster
further discussions.

4.1 Finite sample effects

In addition to the strength of covariate associations with
outcomes, an important factor affecting the degree of effi-
ciency gain is sample size. For the same data-generating
scenario, that is, the same predictive strength of covariates
and treatment effect, efficiency gain decreases with sam-
ple size and the effect can be quite large. We see this phe-
nomenon in Benkeser et al. as well, although treatment
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effects in scenarios with different sample sizes are not kept
the same. Thus, there is a dilemma in that covariate adjust-
ment is more useful in improving efficiency of inferences
when sample size is large, in which case efficiency is of
less a concern. Therefore, one must take into account the
sample size in planning covariate-adjusted analysis and in
anticipating realistic benefit.
Amore useful perspective is to study better strategies on

building working models for outcomes. In Benkeser et al.,
adjustment was carried out by separately fitting two work-
ing models, one for each treatment group. Separate work-
ing models were used in implementing the augmentation
approach of ZTD as well. Benkeser et al. did not directly
use working models for augmentation, but asymptotically
it is equivalent to some working models in the augmenta-
tion framework. Therefore, our discussion below applies
more generally. In randomized trials, estimating parame-
ters in workingmodels will not introduce additional varia-
tion asymptotically relative to when the limiting values are
known. In finite samples it does matter, especially when
there are many covariates relative to the sample size. Tak-
ing the difference in means/risks as an example, there are
three strategies for building working models. The first two
strategies are to

(i) model 𝐸(𝑌|𝐴 = 𝑎,𝑋) separately for 𝑎 = 0, 1;
(ii) model 𝐸(𝑌|𝐴,𝑋), leaving out or partially including if

needed, interactions of𝐴 and𝑋, andmake predictions
for 𝐸(𝑌|𝐴 = 𝑎,𝑋) for each 𝑎.

Strategy (i) would be better when sample size is mod-
erate or large. However it may lead to less efficiency gain
in small samples and run into difficulty of even fitting the
models. If there are many covariates and not much inter-
actions with treatment, strategy (ii) may seem to have an
advantage when sample size is small. Based on our simu-
lations using same scenarios as in Table 2 of Benkeser et al.,
when 𝑛 = 100, the improvement of strategy (ii) relative to
(i) is very slight, about 1%(see below), where age was mod-
eled as a categorical variable. Strategy (ii) does not realize
the most efficiency gain when interaction does exist. We
also note it barely makes any difference whether logistic
or linear models were used.
Based on our experience, the strategy that has the best

performance overall is to
(iii) model 𝐸(𝑀𝑖|𝑋∗

𝑖
) = 𝜁𝑇𝑋∗

𝑖
, where 𝑀𝑖 = 𝐴𝑖𝑌𝑖∕𝜋 −

(1 − 𝐴𝑖)𝑌𝑖∕(1 − 𝜋), 𝑋∗
𝑖
= (𝐴𝑖 − 𝜋)𝑔(𝑋𝑖) and 𝑔(𝑋𝑖) is a vec-

tor including 1 and basis functions of 𝑋𝑖; e.g., 𝑔(𝑋𝑖) =
(1, 𝑋𝑖).
We can fit the model by the OLS. This strategy is

motivated by directly minimizing variance within a
subclass. As strategy (ii) it reduces the number of esti-
mated nuisance parameters, but it does not assume

no treatment covariate interactions. Asymptotically,
it is equivalent to separately fitting working models
but in small samples it can improve efficiency con-
siderably. Using scenarios in Table 2 (𝑛 = 100, 1000
replicates), MSE of Benkeser et al. and strategies (i)–(iii)
are (0.902, 0.932, 0.922, 0.834), (0.775, 0.820, 0.811, 0.744),

(0.746, 0.789, 0.780, 0.723), respectively. Strategy (iii)
improves about 10% relative to (i) and (ii) and improves up
to 8% relative to Benkeser et al. The improvement relative
to Benkeser et al. is smaller because in Benkeser et al. (see
details in their code) the age level (1–7) was treated as a
numeric variable, but to help illustrate the point results
for strategies (i)–(iii) are based on models where age was
categorical with six levels (groups 1 and 2 combined).
When age was modeled as numeric, results for strategies
(i)-(ii) are similar to Benkeser et al. and 2–3% better than
when age was categorical. When 𝑛 = 1000, strategy (iii)
has a very slight advantage. Strategy (iii) can improve
efficiency in situations when associations with outcomes
are weak and 𝑛 is small so that other methods even lose
efficiency slightly. For simplicity, our discussion focused
on estimating difference in means. These strategies work
for other estimands as well as long as the estimating
function of an unadjusted analysis is known; see ZTD
for details.

4.2 Stratified randomization

The authors briefly touched the issue of stratified random-
ization, an area worth more future study. It is generally
thought that it is important to adjust for stratifying vari-
ables in analysis. In our opinion, in terms of improving pre-
cision of estimation, adjusting for stratifying variables in
the analysis actually is less useful than variables not used
for stratification. The reason is that stratifying by prognos-
tic variables at the design stage already reduces variabil-
ity in estimation. As a result, there would be not much
room for further reducing variance by adjusting these vari-
ables in analysis. To illustrate this point, we conducted a
simple simulation using the same settings as in Table 2
of Benkeser et al. except that block randomization within
each age group was used to assign treatment. Across all
scenarios, for all sample sizes and for all methods, the rel-
ative efficiency in terms of MSE is close to 1. This is a
rather extreme case as the only predictive variable is the
age group, and we stratify exactly by the same age groups.
More realistically, within a stratum age is still predictive
of outcomes and we may still expect some improvement
by adjusting it in analysis. Certainly, we do not intend to
say that we should not adjust for stratifying variables. But
this factor worth careful consideration in deciding vari-
ables to adjust in analysis, especially when sample size is
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small. Based on our experience and intuition, prognostic
variables not used for stratification at the design stage offer
more utility in improving precision of estimation in analy-
sis. The discussion above is from the perspective of improv-
ing estimation precision. A main argument for adjusting
stratifying variables in the usual regression setting is that
the unadjusted variance estimator and inference would be
conservative and thus not realizing the efficiency bene-
fit of stratified randomization, whereas adjusted inference
mitigates the problem. This is a fair argument, but this is
from the perspective of how variance of estimation can
be accurately estimated when stratified randomization is
used. We think it is important to distinguish the different
roles played by different variables used in adjustment.

4.3 What variables to adjust

One natural question in practice is what variables we
should adjust. In principle all variables predictive of out-
comes can be leveraged to improve efficiency. However,
due to the finite sample effect, it is limited by the sam-
ple size. Technically, the convergence rate of estimating
nuisance parameters can be slower than the typical 𝑛1∕2
convergence rate. Thus one may include more variables in
working models than what is judged to be appropriate in a
usual regression setting. Yet, given the finite sample effect
on efficiency, it is reasonable to use the general wisdom
and experience on how many variables one may include
in a working model given a sample size. In general, the
stronger the association with outcomes, the more utility of
the variable in improving efficiency. When sample size is
small, one needs to prioritize variables or choose a func-
tional form that lead to larger improvement in R square
(more reduction in residual variance for outcomes) per
one degree of freedom. For example, Tsiatis et al. (2008)
showed when 𝑛 is small and nonlinear effect on outcomes
exists but weak, including many higher order terms may
not help much or even lose relative to including only lin-
ear terms.
Based on our previous discussion, it also seems that one

needs to prioritize adjusting for predictive variables that
are not being stratified by at the design stage. This state-
ment is under the condition that variances of estimators
can be correctly estimated through some way, for exam-
ple, bootstrapping. More studies are much needed in this
direction. Some people might think that one should only
adjust for variables shown imbalance between treatment
groups. We disagree with this and discourage the prac-

tice of choosing adjustment variables based on empirical
evidence of imbalance. We agree with the authors that
adjustment variables are better to be prespecified based on
anticipated predictive power.When sample size allows, we
also recommend the flexible strategy of Tsiatis et al. (2008)
and ZTD, which uses empirical evidence in working mod-
els to guide selection of covariates while avoiding fishing
expedition.

5 SUMMARY

As the authors, we are strong advocates of robust covari-
ate adjustment in analyzing randomized clinical trials.
Educating and encouraging practitioners thinking beyond
the traditionalmodel-based regression for covariate adjust-
ment is a key step.We thank the authors for their dedicated
effort on this. We think a convenient and unified imple-
mentation strategy within a familiar estimating equation
framework can help in this direction. Future research
focusing on practical issues is greatly needed.
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