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1. Introduction

We congratulate the authors on a timely paper on covariate adjustment for COVID-19

treatment trials. It clearly demonstrates the great potential of leveraging covariates in

increasing precision and power for randomized trials. Despite great advance in theory and

methods, covariate adjustment is still underused in practice. This is partly due to that many

practioners remain skeptical of its usefulness or have other concerns. Some people think

adjusted estimator estimates the conditional, as opposed to the desired marginal, treatment

effect. This thought is naturally influenced by the traditional adjustment method where one

directly models outcomes as a function of treatment and covariates. Perhaps the biggest

obstacle to leveraging covariate is the concern about model misspecification. People may

think that the validity of inference and/or improvement in efficiency rely on the assumption

of correct modeling. Benkeser et al alleviate these concerns through intuitive explanations

and convincing empirical evidences. To further elucidate misunderstandings we elaborate the

key points from a theoretical point of view and discuss issues from a practical point of view.

2. A Theoretical Perspective

The semiparametric framework of Zhang, Tsiatis and Davidian (2008, henceforth, ZTD)

considers a trial with data on (Y,A,X). The outcome Y is general and can be continuous,

binary, ordinal or other types. It starts with a relevant unadjusted estimand, β, and seeks

to identify all valid estimators by studying influence functions. Then it characterizes all

possible joint distribution of data without imposing any additional assumptions, except for

that treatment A is independent of covariates X. The estimand is general and can be of any

form, eg, difference in means, odds ratio, relative risk, or the Mann-Whiteney estimand.

ZTD showed that, for A = 0 or 1, the class of all unbiased estimating functions for β are

m∗(Y,X,A; β) = m(Y,A; β)− (A− π)h(X), (1)
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where m(Y, Z; β) is any unbiased estimating function used in an unadjusted analysis, h(X)

is an arbitrary function of X, and π = Pr(A = 1). Given m(Y,A; β), the optimal h(X) is

E{m(Y,A; β) |X,A = 1} − E{m(Y,A; β) |X,A = 0}. (2)

According to (1), an adjusted estimator solving
∑n

i=0 m
∗(Yi, Xi, Ai; β) = 0 is consistent and

asymptotically normal regardless of the form of h(X) and therefore is guaranteed to be

robust. Result (2) says that the estimator with the optimal h(X) is always more efficient

than the unadjusted one, which corresponds to h(X) = 0. Result (2) suggests that to

improve efficiency one needs to model E{m(Y,A; β) |X,A = a}. However, it may seem

less satisfying if efficiency gain relies on correct modeling. Suppose one postulates a model,

likely misspecified, for E{m(Y,A; β) |X,A = a} = ζTa g(X), where g(X) is a vector of known

basis functions. Restricting the class in (1) to the subclass with h(X) = ζT g(X) for some

ζ, the optimal ζ is the limit of the ordinary least square (OLS) estimator in a regression

with m(Y,A; β) as the outcome and (A − π)g(X) as covariates (Leon, Tsiatis, Davidian,

2003; ZTD). It is also equivalent to fitting E{m(Y,A; β) |X,A = a} = ζTa g(X) using OLS.

This adjusted estimator is guaranteed to be as good and often better than the unadjusted

estimator. Therefore, efficiency gain also does not rely on correct modeling.

To summarize, if done properly, 1) covariate adjusted estimator estimates the marginal

treatment effect; 2) the validity of adjusted analysis does not require the assumption of cor-

rect modeling; 3) efficiency improvement (smaller variance and better power) is guaranteed

without the assumption of correct modeling, as long as covariates are predictive of outcomes.

3. A Unified Implementation Strategy

The theory leads to a simple unified covariate adjustment method for all estimands, where

one augments the estimation equation used for an unadjusted analysis by an augmentation

term, −(A − π)h(X). It is easier to see the augmentation term will not introduce bias as
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E{(A − π)h(X)} = 0. Obtaining estimators by solving estimating equations is perhaps

the most familiar approach to statisticians, owing to the widespread use of likelihood-based

methods and score equations. We think it is a huge advantage to embed covariate adjustment

methods within a familiar and well-accepted framework, as it promotes understanding and

use of it. Otherwise, learning how to do covariate adjustment robustly can be a daunting

task for practioners, as there are so many different estimands of interest in practice and

all kinds of adjustment methods. In fact, all consistent and asymptotically normal adjusted

estimators are in this class or asymptotically equivalent to estimators in this class. So we do

not lose by focusing on one unified augmented estimating equation framework.

In practice, one needs to replace π with π̂ = n1/n and model E{m(Y,A; β) |X,A =

a}, treating m(Yi, Ai; β) as data and replacing β in m by the unadjusted estimator. Often

m(Y,A; β) is linear in Y . Then it is equivalent to modeling for E(Y |X,A = a). Examples

for several common estimands are given in ZTD, including adjusted Mann-Whitney (MW)

U/KruskalWallis test. To further illustrate the simplicity of this approach, we provide explicit

formula for the adjusted MW estimator. By ZTD, augmented estimating equation for β is

n∑

i=1

{[ n

n0n1

n∑

j=1

{(1− Ai)AjC(Yi, Yj)} − β
]
− (Ai − π̂)h(Xi)

}
= 0,

where C(Yi, Yj) = I(Yi < Yj)+
1
2
I(Yi = Yj) and terms in [.] are the usual estimating function

for the MW estimator. The covariate adjusted MW estimator is

β̂adj =
{ 1

n0n1

n∑

i=1

n∑

j=1

(1− Ai)AjC(Yi, Yj)
}
− 1

n

n∑

i=1

(Ai − π̂)ĥ(Xi).

That is, it is simply the usual MW estimator in {.} plus an augmentation term. As described

previously, ĥ(Xi) can be obtained by ĝ1(Xi) − ĝ0(Xi), where ĝa(Xi), a = 0, 1, is the fitted

model for Mi ≡ n
n0n1

∑n
j=1(1 − Ai)AjC(Yi, Yj) as a function of covariates using data from

group a. Instead of two working models, alternatively one may fit a model for Mi including

(Ai − π̂)g(Xi) as covariates, where g(Xi) includes 1 and other basis functions. Different

strategies for fitting working models are further discussed later.
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4. Practical Considerations

Theoretical results on covariate adjustment methods, including those studied in Benkeser et

al, are mainly based on asymptotics. Although empirical performances have been evaluated in

many simulation studies and real data analyses, questions and challenges remain in practice.

Below we discuss factors affecting practical performances, attempting to address the question

of how and when to use covariate adjustment. The main goal is to foster further discussions.

4.1 Finite sample effects

In addition to the strength of covariate associations with outcomes, an important factor

affecting the degree of efficiency gain is sample size. For the same data generating scenario,

ie, the same predictive strength of covariates and treatment effect, efficiency gain decreases

with sample size and the effect can be quite large. We see this phenomenon in Benkeser et

al as well, although treatment effects in scenarios with different sample sizes are not kept

the same. Thus, there is a dilemma in that covariate adjustment is more useful in improving

efficiency of inferences when sample size is large, in which case efficiency is of less a concern.

Therefore, one must take into account the sample size in planning covariate adjusted analysis

and in anticipating realistic benefit.

A more useful perspective is to study better strategies on building working models for

outcomes. In Benkeser et al adjustment was carried out by separately fitting two working

models, one for each treatment group. Separate working models were used in implementing

the augmentation approach of ZTD as well. Benkeser et al did not directly use working

models for augmentation, but asymptotically it is equivalent to some working models in

the augmentation framework. Therefore, our discussion below applies more generally. In

randomized trials, estimating parameters in working models will not introduce additional

variation asymptotically relative to when the limiting values are known. In finite samples it

does matter, especially when there are many covariates relative to the sample size. Taking
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the difference in means/risks as an example, there are three strategies for building working

models. The first two strategies are to

(i) model E(Y |A = a,X) separately for a = 0, 1;

(ii) model E(Y |A,X), leaving out or partially including if needed, interactions of A and X,

and make predictions for E(Y |A = a,X) for each a.

Strategy (i) would be better when sample size is moderate or large. However it may lead to

less efficiency gain in small samples and run into difficulty of even fitting the models. If there

are many covariates and not much interactions with treatment, strategy (ii) may seem to

have an advantage when sample size is small. Based on our simulations using same scenarios

as in Table 2 of Benkeser et al, when n = 100, the improvement of strategy (ii) relative

to (i) is very slight, about 1%(see below), where age was modeled as a categorical variable.

Strategy (ii) does not realize the most efficiency gain when interaction does exist. We also

note it barely makes any difference whether logistic or linear models were used.

Based on our experience, the strategy that has the best performance overall is to

(iii) model E(Mi|X∗
i ) = ζTX∗

i , where Mi = AiYi/π̂− (1−Ai)Yi/(1− π̂), X∗
i = (Ai− π̂)g(Xi)

and g(Xi) is a vector including 1 and basis functions of Xi; e.g., g(Xi) = (1, Xi).

We can fit the model by the OLS. This strategy is motivated by directly minimizing variance

within a subclass. As strategy (ii) it reduces the number of estimated nuisance parameters,

but it does not assume no treatment covariate interactions. Asymptotically it is equivalent to

separately fitting working models but in small samples it can improve efficiency considerably.

Using scenarios in Table 2 (n = 100, 1000 replicates), MSE of Benkeser et al and strategies (i-

iii) are (0.902, 0.932, 0.922, 0.834), (0.775, 0.820, 0.811, 0.744), (0.746, 0.789, 0.780, 0.723) respec-

tively. Strategy (iii) improves about 10% relative to (i) and (ii), and improves up to 8%

relative to Benkeser et al. The improvement relative to Benkeser et al is smaller because in

Benkeser et al (see details in their code) the age level (1-7) was treated as a numeric variable,
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but to help illustrate the point results for strategies (i-iii) are based on models where age

was categorical with 6 levels (groups 1 and 2 combined). When age was modeled as numeric,

results for strategies (i-ii) are similar to Benkeser et al and 2-3% better than when age was

categorical. When n = 1000, strategy (iii) has a very slight advantage. Strategy (iii) can

improve efficiency in situations when associations with outcomes are weak and n is small

so that other methods even lose efficiency slightly. For simplicity our discussion focused on

estimating difference in means. These strategies work for other estimands as well as long as

the estimating function of an unadjusted analysis is known; see ZTD for details.

4.2 Stratified Randomization

The authors briefly touched the issue of stratified randomization, an area worth more future

study. It is generally thought that it is important to adjust for stratifying variables in analysis.

In our opinion, in terms of improving precision of estimation, adjusting for stratifying

variables in the analysis actually is less useful than variables not used for stratification.

The reason is that stratifying by prognostic variables at the design stage already reduces

variability in estimation. As a result there would be not much room for further reducing

variance by adjusting these variables in analysis. To illustrate this point, we conducted a

simple simulation using the same settings as in Table 2 of Benkeser et al except that block

randomization within each age group was used to assign treatment. Across all scenarios,

for all sample sizes and for all methods, the relative efficiency in terms of MSE is close

to 1. This is a rather extreme case as the only predictive variable is the age group and

we stratify exactly by the same age groups. More realistically, within a stratum age is still

predictive of outcomes and we may still expect some improvement by adjusting it in analysis.

Certainly we do not intend to say that we should not adjust for stratifying variables. But this

factor worth careful consideration in deciding variables to adjust in analysis, especially when

sample size is small. Based on our experience and intuition, prognostic variables not used for
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stratification at the design stage offer more utility in improving precision of estimation in

analysis. The discussion above is from the perspective of improving estimation precision. A

main argument for adjusting stratifying variables in the usual regression setting is that the

unadjusted variance estimator and inference would be conservative and thus not realizing

the efficiency benefit of stratified randomization, whereas adjusted inference mitigates the

problem. This is a fair argument but this is from the perspective of how variance of estimation

can be accurately estimated when stratified randomization is used. We think it is important

to distinguish the different roles played by different variables used in adjustment.

4.3 What Variables to Adjust

One natural question in practice is what variables we should adjust. In principle all variables

predictive of outcomes can be leveraged to improve efficiency. However, due to the finite

sample effect, it is limited by the sample size. Technically the convergence rate of estimating

nuisance parameters can be slower than the typical n1/2 convergence rate. Thus one may

include more variables in working models than what is judged to be appropriate in a usual

regression setting. Yet, given the finite sample effect on efficiency, it is reasonable to use the

general wisdom and experience on how many variables one may include in a working model

given a sample size. In general, the stronger the association with outcomes, the more utility

of the variable in improving efficiency. When sample size is small, one needs to prioritize

variables or choose a functional form that lead to larger improvement in R square (more

reduction in residual variance for outcomes) per one degree of freedom. For example, Tsiatis

et al (2008) showed when n is small and nonlinear effect on outcomes exists but weak,

including many higher order terms may not help much or even lose relative to including only

linear terms.

Based on our previous discussion it also seems that one needs to prioritize adjusting for

predictive variables that are not being stratified by at the design stage. This statement is
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under the condition that variances of estimators can be correctly estimated through some

way, for example, bootstrapping. More studies are much needed in this direction. Some people

might think that one should only adjust for variables shown imbalance between treatment

groups. We disagree with this and discourage the practice of choosing adjustment variables

based on empirical evidence of imbalance. We agree with the authors that adjustment

variables are better to be prespecified based on anticipated predictive power. When sample

size allows, we also recommend the flexible strategy of Tsiatis et al (2008) and ZTD, which

uses empirical evidence in working models to guide selection of covariates while avoiding

fishing expedition.

5. Summary

As the authors, we are strong advocates of robust covariate adjustment in analyzing random-

ized clinical trials. Educating and encouraging pratitioners thinking beyond the traditional

model-based regression for covariate adjustment is a key step. We thank the authors for their

dedicated effort on this. We think a convenient and unified implementation strategy within

a familiar estimating equation framework can help in this direction. Future research focusing

on practical issues is greatly needed.
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