
1. Introduction
Flow and transport in porous media are typically investigated at four main length scales, namely, pore, core, 
lysimeter, and field scales. Accordingly, a long-standing problem in subsurface hydrology has been relating a 
property's value at one scale, for example, field, to its value at another scale, such as the core scale. This process, 
called scaling, has been a subject of active research in the past several decades (see, e.g., Das & Hassaniza-
deh, 2005; Gupta et al., 2012; Hopmans et al., 2002; Jury et al., 2011; Kalma & Sivapalan, 1995; Pachepsky 
et al., 2003; Sposito, 2008).

The influence of scale has been known for years, and it is well documented that physical and hydraulic properties 
of soils and rocks, such as porosity (Aslannejad et al., 2017; Ewing et al., 2010; Hewett, 1986; Yoon & Dew-
ers, 2013), surface area (Chen et al., 2015; Han et al., 2016; Ji et al., 2012; Navarre-Sitchler & Brantley, 2007), 
capillary pressure curve (Ghanbarian et al., 2015; Hirsch & Thompson, 1994; Larson & Morrow, 1981; Tinni 
et al., 2012), tortuosity (Duda et al., 2011; Ghanbarian et al., 2013; Matyka et al., 2008), permeability (Garbesi 
et al., 1996; Ghanbarian et al., 2017; Neuman, 1994; Pachepsky et al., 2014; Qian et al., 2007), and dispersivity 
(Ghanbarian-Alavijeh et al., 2012; Neuman, 2005; Wheatcraft & Tyler, 1988) are scale-dependent.

At the pore and core scales, transport is influenced by small-scale heterogeneities, such as pore space structure, 
pore connectivity, local mineralogy, and surface roughness. The average pore coordination number is probably 
one of the simplest concepts to characterize the topology of a pore network. In a disordered irregular pore space, 
such as natural porous materials, one should define the average pore coordination number as the average number 
of pore throats connected to a pore body. Jerauld et al. (1984) indicated that if the coordination number of a regu-
lar pore network equals the average coordination number of an irregular one, flow and transport properties of the 
two networks would be identical, as long as their other pore-scale characteristics are the same.
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At lysimeter and field scales, however, flow is dominated by large-scale spatial heterogeneities, including the 
spatial distribution of high- and low-permeability zones and their interconnectivity, as well as fractures, faults, 
and their orientations. Small-scale heterogeneities are captured by experiments or image analyses. For exam-
ple, direct measurement of pore-space characteristics has substantially advanced with the advent of micro- and 
nano-computed tomography, producing nondestructive 3D images of porous media with uniform resolution in 
various directions (Arns et al., 2001, 2002; Blunt et al., 2013; Cnudde & Boone, 2013; Wildenschild & Shep-
pard, 2013). Complete characterization of large-scale heterogeneities is, however, difficult due to spatial and tem-
poral variations. Nonetheless, direct core sampling (Rehfeldt et al., 1992; Sudicky, 1986) and indirect geophysical 
measurements, such as ground-penetrating radar (Hubbard et al., 1997; Lunt et al., 2005), electrical resistivity 
imaging (Crook et al., 2008; Vanderborght et al., 2005), well logging, and seismic surveys (Avseth et al., 2010; 
Kirsch, 2006) have been used to characterize aquifers and to better understand subsurface flow and transport in 
geological formations.

In the literature, inconsistent results have been reported regarding the effect of length scale on hydraulic prop-
erties. For example, experimental data from many sources indicate that the permeability would increase with 
increasing the scale of measurement or sample volume (Pachepsky et  al.,  2014; Qian et  al.,  2007; Rovey & 
Cherkauer, 1995; Schulze-Makuch et al., 1999). However, pore-network modeling (Bernabé et al., 2003; Sahimi 
et al., 1986) and some theoretical predictions (Davudov & Moghanloo, 2018) appear to imply the opposite. The 
latter can be understood as being the result of having more frequent tight pores that act as bottlenecks to flow, 
as the sample size increases. Such contradictory evidence clearly indicates that, despite numerous practical ap-
plications and recent progress, we are still far from having a comprehensive understanding of the effect of the 
length scale, and in particular small- and large-scale heterogeneities distributed over such scales, on fluid flow 
and transport in soils and rocks. One prime reason for the current knowledge gap in subsurface hydrology and 
many other related disciplines is the lack of a comprehensive theory for understanding precisely how hydrolog-
ical and hydrogeological properties vary with scale. Although two approaches from statistical physics, namely, 
percolation theory and finite-size scaling analysis, provide solid theoretical foundations for addressing the effect 
of the length scale, such concepts and approaches, particularly finite-size scaling analysis, are relatively new to 
subsurface hydrology and their concrete applications have been limited. Therefore, the objectives of this study are 
to, (a) provide a rigorous theoretical foundation for the interpretation of the scale-dependence of the permeability 
by integrating finite-size scaling and percolation theories; (b) compare the theory with numerical simulations in 
synthetic and actual pore networks, and (c) address the effect of pore-throat size distribution and pore coordina-
tion number, or connectivity, on the scale-dependence of the permeability.

2. Percolation Theory
Percolation theory (Hunt et al., 2014; Hunt & Sahimi, 2017; Sahimi, 1994; Sahimi & Hunt, 2021; Stauffer & 
Aharony, 1994) provides a rigorous theoretical framework based on statistical physics of disordered media for 
studying the effect of the interconnectivity and heterogeneity on flow and transport in porous media. A funda-
mental concept in percolation theory is the existence of a critical occupation fraction pc below which a network 
loses its macroscopic connectivity. In the context of flow and transport in porous media, “occupied” means open 
to flow and transport. That is, a bond is occupied if it is large enough to allow a fluid to pass through it. Thus, 
bond percolation is a problem in which a bond is either occupied–open to flow–or vacant–closed to fluid flow 
because its size is too small or, as in two phase flow, is occupied by a second, completely immiscible fluid. For-
mulated this way, the problem is isomorphic to resistor and pore networks in which the critical fraction of the 
bonds depends on the coordination number Z of the network, pc ≈ E/[Z(E – 1)] (Vyssotsky et al., 1961) in which 
E is the Euclidean dimension of the system. For example, for a square network, E = 2 and Z = 4, and, thus, if the 
network is infinitely large, pc = 0.5. Although pc ≈ E/[Z(E – 1)] predicts the exact result for the square network, it 
provides only approximate, albeit accurate, estimates of pc for other networks and complex porous media. No ex-
act value of the percolation threshold for any three-dimensional network is known. Thus, accurate determination 
of percolation threshold in three-dimensional porous media is done by numerical simulation.

Perhaps the most important feature of percolation theory is the fact that various morphological, flow, and trans-
port properties near the critical percolation threshold follow power laws. In particular, the correlation length, 𝐴𝐴 𝐴𝐴 , 
and the permeability, k, conform to the following power laws:
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𝜉𝜉 ∝ |𝑝𝑝 − 𝑝𝑝𝑐𝑐|−𝜈𝜈 , 0 ≤ 𝑝𝑝 ≤ 1 (1)

𝑘𝑘 ∝ (𝑝𝑝 − 𝑝𝑝𝑐𝑐)𝑡𝑡, 𝑝𝑝𝑐𝑐 < 𝑝𝑝 ≤ 1 (2)

where p is the occupation fraction, pc is the critical occupation fraction, and 𝐴𝐴 𝐴𝐴 ≈ 0.88 is the universal critical 
exponent in three dimensions (Kozlov & Laguës, 2010; Stauffer & Aharony, 1994).

Below the percolation threshold pc (p < pc), all clusters of occupied bonds have finite sizes, and there is no macro-
scopic connectivity and a spanning cluster. At the percolation threshold (p = pc), an incipient infinite (spanning) 
cluster forms along with other finite clusters, and the mass of the spanning cluster increases with the linear size, 
L, of the lattice as a power-law, 𝐴𝐴 𝐴𝐴𝐷𝐷𝑓𝑓 , in which Df is the mass fractal dimension of the fractal cluster. Above the 
percolation threshold (p > pc), there is the incipient infinite cluster, as well as finite clusters, and due to the pres-
ence of macroscopic connectivity the system percolates.

The correlation length, 𝐴𝐴 𝐴𝐴 , represents the mean size of the clusters of occupied (unoccupied) bonds below (above) 
the percolation threshold and, therefore, it diverges as the threshold is approached from below or above that point. 
More importantly, however, it represents the length scale for macroscopic homogeneity of a percolation network: 
any network or porous medium with linear size larger than the percolation correlation length may be considered 
as macroscopically homogeneous (though microscopically heterogeneous). Thus, it is similar to the linear size of 
a representative elementary volume (REV). In fact, when percolation disorder is present, the percolation correla-
tion length and the REV are essentially the same. In Equation 2, t is the critical exponent of the permeability. In 
contrast to the exponent 𝐴𝐴 𝐴𝐴 whose value is universal, that is, it depends only on the dimensionality of the system 
and not its microscopic details, the value of t can, in principle, depend on the broadness of the bond conduct-
ance distribution (Feng et al., 1987; Kogut & Straley, 1979) and, thus, its value may depend on the details of the 
distributions. If the conductance distribution satisfies certain constraints, however, t too is universal (Kogut & 
Straley, 1979). Sahimi et al. (1983b) argued that if the first inverse moment of conductance distribution, h(g), is 
finite, the value of the exponent t should be universal, which is about two in three dimensions. The first inverse 
moment is given by

𝑓𝑓−1 = ∫
ℎ(𝑔𝑔)
𝑔𝑔

𝑑𝑑𝑔𝑔 (3)

If 𝐴𝐴 𝐴𝐴−1 = ∞ , however, the scaling exponent t would be a function of the details of the structure of h(g). In Equa-
tion 3, h(g) can be determined from the pore-throat size distribution, h(rt), using Poiseuille's law and the rela-
tionship h(g)dg = h(rt)drt in which rt is the pore-throat effective radius. One may calculate the value of 𝐴𝐴 𝐴𝐴−1 by 
numerically integrating 𝐴𝐴 ℎ(𝑔𝑔)

𝑔𝑔
 from gmin to gmax where gmin and gmax are, respectively, the minimum and maximum 

conductances in the pore network.

3. Finite-Size Scaling Analysis
All the percolation properties, including the percolation thresholds, the power laws (Equations 1 and 2), and the 
critical exponents, are defined for systems that are infinitely large (Stauffer & Aharony, 1994; Sahimi, 1994). In 
practice, however, sample sizes and simulation domains are of finite extent. In such systems, as pc is approached, 
the correlation length 𝐴𝐴 𝐴𝐴 eventually exceeds the system's linear size L and, consequently, L becomes the dominant 
length scale. Fisher (1971) developed a theory for the scaling properties of a finite thermodynamic system near 
its critical temperature, called finite-size scaling. Since 𝐴𝐴 |𝑝𝑝 − 𝑝𝑝𝑐𝑐| ∝ 𝜉𝜉−

1
𝜈𝜈 , when 𝐴𝐴 𝐴𝐴 exceeds L, one must replace 𝐴𝐴 𝐴𝐴 with 

L. Thus, adopting Fisher's theory for percolation systems implies that permeability of a system of linear size L 
should be given by (Sahimi, 1994)

𝑘𝑘 = 𝐿𝐿− 𝑡𝑡
𝜈𝜈 𝑓𝑓 [𝐿𝐿

1
𝜈𝜈 (𝑝𝑝 − 𝑝𝑝𝑐𝑐)] (4)

where f is a nonsingular function. In the limit 𝐴𝐴 𝐴𝐴 → ∞ , 𝐴𝐴 𝐴𝐴 follows the power law given by Equation 2. At the per-
colation threshold (p = pc), the permeability becomes independent of p and pc, and, thus, Equation 4 reduces to 
the simple power law 𝐴𝐴 𝐴𝐴 ∝ 𝐿𝐿−𝑡𝑡∕𝜈𝜈 . Note the difference between Equations 2 and 4. While the former is strictly valid 
only near the percolation threshold, the scaling function f(x) in Equation 4 means that it is valid for any p in a 
network of linear size L.
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Finite-size scaling analysis has been successfully used to determine the critical exponents and even the percola-
tion threshold through simulations of finite systems (Sahimi, 2011; Sahimi et al., 1983a) and to scale the accessi-
ble fraction of bonds in percolation theory (Kirkpatrick, 1979; Stauffer & Aharony, 1994) and fractured networks 
(Masihi et  al.,  2008; Masihi & King, 2007), as well as fluid flow in single fractures (Pastewka et  al.,  2013; 
Petrovitch et al., 2013; Pyrak-Nolte & Nolte, 2016). For example, Pyrak-Nolte and Nolte (2016) recently used 
Monte Carlo simulation to compute the flow rate and fracture-specific stiffness. Using a finite-size scaling ap-
proach similar to Equation 4, Pyrak-Nolte and Nolte (2016) demonstrated that there exists a scaling relationship 
between flow and stiffness for fractures with strongly correlated aperture distributions, which continues to hold 
for deformed fractures.

In a network of pores, the average pore coordination number is a function of the number of pore throats and pore 
bodies (Vogel & Roth, 2001). For several two- and three-dimensional regular networks, such as square, hex-
agonal, triangular, simple cubic, body-centered cubic, and face-centered cubic networks, Bernabé et al. (2010) 
demonstrated that the occupation probability p is a linear function of the average pore coordination number Z 
(see their Figure 1). Accordingly, one may replace p and pc with Z/Zmax and Zc/Zmax, respectively, in Equation 4, 
which yields

𝑘𝑘 = 𝐿𝐿− 𝑡𝑡
𝜈𝜈 𝑓𝑓 [𝐿𝐿

1
𝜈𝜈 (𝑍𝑍 −𝑍𝑍𝑐𝑐)∕𝑍𝑍max] (5)

where Zc is the critical pore coordination number whose value in three dimensions is ∼1.5 (Bernabé et al., 2010), 
and Zmax is the maximum pore coordination number in the network. For example, Zmax = 6 in cubic networks.

4. Details of the Computations
We first describe generation of the pore networks, after which we explain the calculation of their effective perme-
ability, and estimating the value of the critical exponent t.

4.1. Pore Network Model Generation

To construct the pore networks composed of cylindrical pore throats and spherical pore bodies, we used the 
open-access code developed by Valvatne (2004). The code generates networks based upon the cubic network with 
a maximum coordination number of 6. Any desired average pore coordination number less than 6 can, however, 
be achieved by randomly removing pore throats from the network. The pore-throat radii were generated based on 
a truncated Weibull distribution with two shape parameters, 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 , as well as lower and upper bounds on the 
sizes, which is given by

𝑟𝑟t = (𝑟𝑟tmax − 𝑟𝑟tmin)(−𝛿𝛿ln[𝑥𝑥(1 − 𝑒𝑒(−1∕𝛿𝛿)) + 𝑒𝑒(−1∕𝛿𝛿)])1∕𝛾𝛾 + 𝑟𝑟tmin (6)

where x is a randomly generated number (0 < x < 1), and rtmin and rtmax are the smallest and largest pore-throat 
radii, respectively.

The pore-body radii were accordingly determined based on the following relationship (Valvatne, 2004):

�� = max
(

�
∑�

�=1 ���
�

,max(���)
)

 (7)

in which 𝐴𝐴 𝐴𝐴 is the number of pore throats connected to the same pore body and 𝐴𝐴 𝐴𝐴 is an aspect ratio whose distribu-
tion follows the truncated Weibull probability density function. We set 𝐴𝐴 𝐴𝐴 = 0 meaning that the pore-body radius 
has the same size as the largest connected pore throat. In the present work, three pore-throat radius ranges, name-
ly, 0.1–10, 1–50, and 10–75 µm were considered in order to generate different levels of pore-scale heterogeneity. 
Within each range, we used, 𝐴𝐴 𝐴𝐴 = 12, 18, 24, and 30, while setting 𝐴𝐴 𝐴𝐴 = 0.2. Overall, 12 synthetic pore networks 
with constant pore-throat length of 100 µm were generated; see Table 1. Such networks with Z = 6 exhibit trends 
in the porosity-permeability data similar to consolidated/unconsolidated sands and carbonate rocks (see Figure 
4.1 in Esmaeilpour, 2021). In addition to the 12 synthetic pore networks, we generated four other pore networks 
based on Fontainebleau sandstone samples reported by Lindquist et al. (2000). Using the pore-body and pore-
throat radii, as well as the pore-throat length distributions, we constructed the Fontainebleau pore networks by 
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matching their porosity at the average pore coordination number, that is, 3.37, 3.49, 3.66, and 3.75, respectively 
for Fontainebleau 7.5, 13, 15, and 22, reported by Lindquist et al. (2000).

Figures 1 and 2 show, respectively, the pore-body and pore-throat radius distributions for the synthetic and Fon-
tainebleau pore networks. The two distributions become broader as one moves from Network 1 to 3. Although 
the pore-throat radius spans two order of magnitude variations (𝐴𝐴 0.1 ≤ 𝑟𝑟𝑡𝑡 ≤ 10 ) in Network 1 (Table 1), the fre-
quencies of smaller pore throats are zero as shown in Figure 2, due to the values of shape parameters 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 . 
Note that the scales on the vertical and horizontal axes are identical for Networks 1–3 in Figures 1 and 2. The four 
Fontainebleau sandstones have the broadest distributions among all the pore networks generated in this study. We 
also present in Figure 3 the pore-throat length distribution for each Fontainebleau sandstone. As reported in Ta-
ble 1, the pore-throat length approximately varied between 10 and 1,000 µm in the Fontainebleau pore networks. 
For each pore network, we varied the average pore coordination number, Z = 1.5, 1.65, 1.75, 2, 3, 3.25, 3.5, 4, 5, 
and 6, and the network size, L = 1,130, 2,250, 3,380, 4,510, and 6,770 µm.

4.2. Simulation of Flow in Pore Networks

We simulated fluid flow in the pore networks using the “poreflow” code developed by Valvatne (2004), utilizing 
periodic boundary conditions. The permeability was determined using Darcy's law

𝑘𝑘 =
𝜇𝜇𝜇𝜇𝜇𝜇

𝐴𝐴(𝑃𝑃𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜)
 (8)

where A is the network cross-sectional area, 𝐴𝐴 𝐴𝐴 is the fluid viscosity, 𝐴𝐴 𝐴𝐴 is the network length, 𝐴𝐴 𝐴𝐴 is the total flow 
rate, 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 is the pressure at the inlet, and 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 at the outlet. The total flow rate was calculated by solving for the 
pressure distribution throughout the network under the steady-state condition, using mass conservation at each 
pore body (assuming a fluid with constant density):

∑

𝑗𝑗

𝑞𝑞𝑖𝑖𝑗𝑗 = 0 (9)

Network rb (µm) rt (µm) 𝐴𝐴 𝜸𝜸 𝐴𝐴 𝜹𝜹 lt (µm) 𝐴𝐴 𝐴𝐴 (%) 𝐴𝐴 𝒕𝒕

1.1 0.1–10 0.1–10 12 0.2 100 1.6–4.3 1.46

1.2 0.1–10 0.1–10 18 0.2 100 1.7–4.7 1.60

1.3 0.1–10 0.1–10 24 0.2 100 1.8–4.9 1.63

1.4 0.1–10 0.1–10 30 0.2 100 1.8–5.1 1.64

2.1 1–50 1–50 12 0.2 100 16.1–32.1 1.84

2.2 1–50 1–50 18 0.2 100 17.0–34.2 1.80

2.3 1–50 1–50 24 0.2 100 17.4–35.4 1.77

2.4 1–50 1–50 30 0.2 100 17.7–36.1 1.83

3.1 10–75 10–75 12 0.2 100 24.5–43.9 1.79

3.2 10–75 10–75 18 0.2 100 25.5–46.0 1.88

3.3 10–75 10–75 24 0.2 100 26.0–47.1 1.86

3.4 10–75 10–75 30 0.2 100 26.2–47.8 1.77

Fontainebleau 7.5 8–150 5–70 1.05 0.2 35–1000 4.6–7.1 2.40

Fontainebleau 13 8–183 5–70 1.3 0.2 25–1000 7.7–12.0 2.33

Fontainebleau 15 9–150 5–80 1.3 0.2 25–1000 8.1–13.3 2.60

Fontainebleau 22 11–260 4–100 1.3 0.2 10–900 18.4–23.2 2.74

Note. The lower and upper bounds of porosity correspond to Z = 1.5 and 6, respectively. rb is pore-body radius, rt is pore-
throat radius, 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are Weibull distribution parameters, lt is pore-throat length, 𝐴𝐴 𝐴𝐴 is porosity, and t is the permeability 
scaling exponent.

Table 1 
Salient Properties of the Sixteen Pore Networks Constructed in This Study
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in which 𝐴𝐴 𝐴𝐴 represents each of the pore bodies and 𝐴𝐴 𝐴𝐴 denotes all the pore throats connecting to pore body 𝐴𝐴 𝐴𝐴 . In Equa-
tion 9, 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 is the flow rate between two pore bodies that depends on the hydraulic conductance 𝐴𝐴 𝐴𝐴ℎ𝑖𝑖𝑖𝑖 , the distance 
between the centers of the two pore bodies 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 , and the pressure difference 𝐴𝐴 Δ𝑃𝑃𝑖𝑖𝑖𝑖 as follows

��� =
�ℎ��
���

Δ��� (10)

The fluid conductance between two pore bodies was determined using the harmonic mean of contributing 
conductances

���
�ℎ��

= ���
�ℎ�

+ ��
�ℎ�

+
���
�ℎ�

 (11)

where 𝐴𝐴 𝐴𝐴𝑏𝑏𝑏𝑏 and 𝐴𝐴 𝐴𝐴𝑏𝑏𝑏𝑏 represent the distance between the center of a pore body and the interface where the pore body 
and pore throat meet, and 𝐴𝐴 𝐴𝐴𝑡𝑡 is the pore-throat length (Valvatne, 2004). Assuming laminar flow, the hydraulic 
conductance of a pore with irregular cross section is given by

𝑔𝑔ℎ = 𝑐𝑐
𝐴𝐴2

𝑝𝑝𝐺𝐺
𝜇𝜇

 (12)

in which c is a constant whose value is 0.5 for circular pores, G is the shape factor, and Ap is the pore cross-sec-
tion. The governing equations for fluid-flow simulation in each pore network with a given pore coordination 

Figure 1. Pore-body radius distributions for 16 pore networks used in this study.
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number were iterated until convergence was reached, after which the permeability was determined by averaging 
over a hundred realizations.

4.3. Determining the Exponent t

To calculate the exponent t for flow in each pore network, we carried out the simulations at Z 𝐴𝐴 = 1.5 (∼Zc), that 
is, at the percolation threshold in a finite network of size L. We first plotted k against L on a log-log scale and 
then fitted 𝐴𝐴 𝐴𝐴 ∝ 𝐿𝐿−𝑡𝑡∕𝜈𝜈 to the data. Since the exponent 𝐴𝐴 𝐴𝐴∕𝜈𝜈 is positive, one should expect k to decrease as L increases 

Figure 2. Pore-throat radius distributions for 16 pore networks used in this study.

Figure 3. Pore-throat length distributions for four pore networks from Fontainebleau sandstones used in this study.
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at the percolation threshold (Z 𝐴𝐴 → Zc). Using the universal value of 𝐴𝐴 𝐴𝐴 in three 
dimensions, 𝐴𝐴 𝐴𝐴  = 0.88 (Kozlov & Laguës, 2010; Stauffer & Aharony, 1994), 
the value of the exponent 𝐴𝐴 𝐴𝐴 was determined from the optimized fit of 𝐴𝐴 𝐴𝐴∕𝜈𝜈 . The 
process is shown for Fontainebleau 7.5 in Figure 4, and the value of t for each 
pore network is reported in Table 1.

5. Results
In what follows, we present the results of finite-size scaling analysis for each 
pore network, and show that although the k-L plot, including simulations for 
various Z values, seem scattered, the data collapse onto a single quasi-univer-
sal curve after applying finite-size scaling equation, Equation 5.

5.1. Synthetic Networks1

The results for Network 1 are presented in Figure  5. Our simulations with 
Networks 1.1 to 1.4 indicated that the permeability increases with network 
size for Z = 5 and 6. Although its value did not vary much with the scale for 
Z = 4, we found that k decreases as network size increases for Z smaller than 4. 
Recall that large Z near 6 correspond to large p, the fraction of flow-carrying 

pores, near 1, whereas small values of Z near 1.5 correspond to p near pc. We also display the results of finite-size 
scaling analysis for each pore network in Figure 5. As can be seen, the data, corresponding to the simulations for 
all coordination numbers, Z = 1.65, 1.75, 2, 3, 3.25, 3.5, 4, 5, and 6, collapsed onto a single quasi-universal curve. 
This means that Equation 5, which is the modified form of the original finite-size scaling equation, Equation 4, is 
capable of capturing the effect of pore-scale heterogeneity, as reflected in the average pore coordination number Z.

The estimates of t computed for Networks 1.1 to 1.4 vary between 1.46 and 1.64 (Table 1). These values are, 
however, smaller than the universal value of t ≈ 2 in three dimensions (Kozlov & Laguës, 2010; Stauffer & Aha-
rony, 1994). The reason why the value of t is less than two in these networks is not clear. Recall that in random 
networks or those with short-range correlated, one should theoretically expect t ≈ 2, if the conductance distribu-
tion is narrow enough and the first inverse moment is finite (Equation 3); t < 2 may occur in networks with long-
range correlations (Sahimi, 2011), but that is not the case here, because the correlations are short-ranged in the 
pore networks that we simulated. Balberg et al. (2016) proposed another explanation for the exponent t being less 
than its universal value of about 2. The mean number of occupied bonds or pore throats per site of a network at its 
percolation threshold is Bc =  𝐴𝐴 𝐴𝐴𝑐𝑐𝑍𝑍𝑍 Thus, B = pZ varies linearly with p and one may write 𝐴𝐴 𝐴𝐴 ∝ (𝐵𝐵 − 𝐵𝐵𝑐𝑐)𝑡𝑡 . Balberg 
et al. (2016) suggested that in certain percolation network with a broad conductance distribution, B can depend 
on p sublinearly, which gives rise to measured, or computed through simulation, values of t less than its universal 
value. Another possible reason for the estimates t < 2 is finite-size effects. The pore networks used in our study 
are not very large, and it is known (Sahimi & Arbabi, 1991) that there are significant correction to scaling when 
estimating the exponent t by finite-size scaling at the percolation threshold. Their effect can be manifested only 
when one does simulation with very large networks.

Figure 6 shows the dependence on the network size of the computed permeability for various pore coordination 
numbers. Similar to the results of Network 1, we found the k-L plots are scattered. However, Equation 5 resulted in 
collapsed data shown in Figure 6, suggesting that the proposed modified finite-size scaling analysis is still valid for 
various Z and network sizes. Estimates of t range from 1.77 to 1.84, as shown in Table 1, which is again smaller than 
the universal value of 2 (Kozlov & Laguës, 2010; Stauffer & Aharony, 1994). More importantly, we find that the 
permeability of Networks 2.1–2.4 increases with increasing scale only when Z = 6. This is not clear in Figure 6 be-
cause the permeability is plotted on the logarithmic scale. k remains nearly constant for various network sizes with 
Z = 5. The computed permeabilities for Z < 5 indicate, however, a decreasing trend with the scale; see Figure 6.

Figure 7, similar to Figures 5 and 6, shows how the pore coordination number greatly affects the scale depend-
ence of the permeability in Network 3, and that Equation 5 leads to the collapse of the k-L curves onto a single 
universal curve, validating the modified finite-size scaling analysis. In this case the exponent t varied between 
1.77 and 1.88, shown in Table 1, with an average value of 1.83, again smaller than the universal value of two 
in three dimensions (Stauffer & Aharony, 1994). The results for Network three indicate that the permeability 

Figure 4. Permeability, k, versus network size, L, at the percolation threshed 
(Z = Zc ∼ 1.5) for the Fontainebleau sandstone with porosity 7.5%, on a 
double-logarithmic scale. The solid line represents the fitted power law 

𝐴𝐴 𝐴𝐴 ∝ 𝐿𝐿−𝑡𝑡∕𝜈𝜈 with R2 = 0.99. For this pore network, given that 𝐴𝐴 𝐴𝐴 = 0.88 in three 
dimensions, we found t = 2.4.
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increases with the increase in the network size for Z = 6, but remains almost constant for Z = 5, which is similar 
to Network 2. As Figure 7 indicates, however, k decreases with increasing network size when Z < 5. The decrease 
in the permeability is significant and is near one order of magnitude for Z = 1.65, close to the threshold, Zc ∼ 1.5. 
The increasing trend in the scale dependence of the permeability was reported by Esmaeilpour et al. (2021) who 
simulated flow in Networks 1 to 3 with Z = 6 (see their Figures 5–7). They did not, however, utilize finite-size 
scaling analysis to explain the scale dependence of the permeability in such networks.

5.2. Fontainebleau Sandstones

The results for the permeability of Fontainebleau pore networks are presented in Figure 8. We find that in all the 
Fontainebleau samples the permeability decreases as the network size increases from 1,130 to 6,770 µm, regard-
less of Z. This is not consistent with our results for the synthetic networks for which we found a transition in the 
scale dependence of the permeability. As in Figures 1 and 2, the Fontainebleau pore networks have the broadest 

Figure 5. (left) Simulated permeability at various pore coordination numbers versus network size, and (right) the data 
collapse for Network 1 with Zc = 1.5 and Zmax = 6.
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pore-size distributions among those studied here. This indicates that the presence of the transition might depend 
on the level of heterogeneity, represented by the broadness of the pore-throat radius distribution, as we discuss 
in the next section.

Figure 8 also shows the results of finite-size scaling analysis. All the data associated with various Z collapse 
perfectly using the appropriate t value. Interestingly, the modified finite-size scaling analysis led to more accu-
rate data collapses for Fontainebleau pore networks, representing natural porous media, than the synthetic ones, 
which can be seen by comparing Figure 8 with Figures 5–7. For pore networks representing the Fontainebleau 
sandstone, we find t between 2.33 and 2.74 (see Table 1) with an average of 2.52, which is greater than those in 
synthetic networks.

Figure 6. (left) Simulated permeability at various pore coordination numbers versus network size, and (right) the data 
collapse for Network 2 with Zc = 1.5 and Zmax = 6.
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6. Discussion
The average value of t is 1.58 for Network 1, 1.81 for Network 2, 1.83 for Network 3, and 2.52 for Fontainebleau 
sandstones. According to the continuum percolation theory (for a review see Balberg, 2021), the exponent t can 
be a function of the broadness of the conductance or pore-throat radius distribution, as was demonstrated for mod-
els of packing of spheres (Feng et al., 1987; Kogut & Straley, 1979). Figure 2 indicates that the pore-throat radius 
distribution becomes broader from top to bottom, in agreement with the observation that the average t increases 
from Network 1 to Fontainebleau pore networks.

For Networks 1 to 3, we found 𝐴𝐴 4.2 × 1016 ≤ 𝑓𝑓−1 ≤ 9.3 × 1022 and in Fontainebleau pore networks 
𝐴𝐴 5.9 × 1019 ≤ 𝑓𝑓−1 ≤ 1.3 × 1020 , which indicate that the exponent t should be nonuniversal (𝐴𝐴 𝐴𝐴 ≠ 2) in the pore net-

works. While the very large values of the first inverse moment of the flow conductance distribution may explain 
why the exponent t is not universal, the nonuniversal values reported in the past were typically larger than 2. 

Figure 7. (left) Simulated permeability at various pore coordination numbers versus network size, and (right) the data 
collapse for Network 3 with Zc = 1.5 and Zmax = 6.
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Therefore, as we stated earlier, it is not completely clear why the exponent t is found to be less than 2, as in the 
synthetic pore networks. We already offered two possible mechanisms for the estimates of t < 2. Another possi-
bility could be due to the pore-throat radius distributions being left-skewed in the synthetic networks, while being 
right-skewed in the Fontainebleau samples (Figure 2). This implies that the mode of the pore-throat radius dis-
tribution occurs at larger pore throats in the synthetic networks. In the Fontainebleau pore networks, however, it 
happens at smaller pore throats. A fourth possibility could be the truncation of the pore-throat radius distribution, 
meaning that the minimum pore-throat radius is a finite positive value (see Table 1), albeit very small, instead of 
approaching zero as presumed by Kogut and Straley (1979) and Feng et al. (1987), although that usually results in 
the exponent t being larger than 2. Therefore, further investigations are still required to study the effect of skew-
ness and truncation of the pore-throat radius or pore-conductance distribution on the exponent t.

Our results demonstrate clearly that if the small-scale heterogeneities of the network, as reflected in the permea-
bility scaling exponent 𝐴𝐴 𝐴𝐴 and pore coordination number, are accurately captured, the modified finite-size scaling 

Figure 8. (left) Simulated permeability at various pore coordination numbers versus network size, and (right) the data 
collapse for Fontainebleau sandstones with Zc = 1.5 and Zmax = 6.
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analysis, Equation 5, provides a promising framework to accurately scale the data over a wide range of variations 
in the length scale above the percolation threshold, as shown in Figures 5–8. We find that finite-size scaling anal-
ysis is applicable not only near the critical pore coordination number (Z 𝐴𝐴 → Zc), but also far above that (Z 𝐴𝐴 → Zmax). 
This is consistent with the results of Sadeghnejad et al. (2010) who investigated the effect of anisotropy on the 
connectivity and conductivity using the continuum percolation theory. They utilized, however, the original form 
of the finite-size scaling analysis, Equation 4, to illustrate the collapse of their data. Similar results were reported 
by Sadeghnejad et al. (2012) for field characterizations of conductivity in geologic formations.

The results demonstrate clearly that there might exist a transition in the scale-dependence of the permeability, 
depending on the broadness of the pore-throat radius distribution. Such a transition may very well address the 
contradictory observations reported in the literature, as to whether the permeability should increase or decrease 
with the increasing length scale. In Network 1 with the narrowest pore-throat radius distribution, the transition 
happened around Z = 4, whereas in Networks 2 and 3 with broader distributions it occurred around Z = 5. The 
Fontainebleau pore networks with the broadest pore-throat size distributions did not, however, exhibit any transi-
tion, and their permeability decreased with the network size, regardless of the pore coordination number.

Figure 9 highlights such a transition in the scale dependence of the permeability for Network 3.4. In the top plots, 
the pore-throat and pore-body radius distributions, as well as the scale dependence of k are shown for Z = 6, while 
the same are shown in the bottom plot for Z = 3.5. Although the two pore networks have statistically the same 
pore-body and pore-throat radius distributions, the permeability increases with the scale for Z = 6, whereas it 
decreases for Z = 3.5. These results demonstrate the effect of pore connectivity and small-scale heterogeneity on 
the scale dependence of the permeability. Bernabé et al. (2003) also simulated fluid flow in pore networks with 
various levels of heterogeneity. For this purpose, they constructed pore networks in which the pore-throat radius 
conformed to the log-uniform distribution with coefficient of variations (CVs) 0.06, 0.4, 0.8, 1.2, 1.6, and 1.9. For 
the square networks, Bernabé et al. (2003) showed that the permeability remained nearly constant as the network 
size increased in homogeneous networks with CV = 0.06 and 0.4 (see their Figure 1a). When the networks were 
more heterogeneous (with CV > 0.4), however, their permeability decreased with increasing the network size.

In porous media, the maximum pore coordination number, Zmax, can be as large as 10 for example, in Berea sand-
stones (Dong & Blunt, 2009), dolomites (Moaddel et al., 2018), and limestones (Ebrahimi et al., 2013) or even 
20, for example, in Fontainebleau sandstones (Lindquist et al., 2000) and glass bead packs (Yanuka et al., 1986). 
However, the average pore coordination number Z always stays around 3–4 (Blunt, 2017; Liang et al., 2000; Vo-
gel & Roth, 2001). This makes the ratio Z/Zmax (p) close to Zc/Zmax (pc) and, thus, implying that the porous media 
are near their percolation thresholds. Recall that the critical pore coordination number in three dimensions is 

Figure 9. Pore-body and pore-throat size distributions as well as scale-dependent permeability for Network 3.4 with pore coordination number Z = 6 (top plots) and 3.5 
(bottom plots). Permeability simulations were averaged over a hundred iterations.
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∼1.5. This means that Equations 1 and 2, as well as other power-law relationships of percolation theory that are 
theoretically valid above and near the percolation threshold, should be applicable to soils and rocks, as shown by 
Hunt et al. (2014), a result anticipated much earlier by Sahimi (1993).

Although our present study was limited to laboratory-scale porous materials, the same approach may be applied 
to media at much larger scales. In a field-scale porous medium, for example, the spatial distribution of the block-
scale permeabilities vary over orders of magnitude. Thus, although the percolation effect may not be obvious at 
the first glance, it does actually exist, since a finite fraction of the local permeabilities may be very small and, 
therefore, contribute very little to the overall fluid flow process. This was already hinted at in the early simula-
tions of flow and transport in field-scale porous media (for a discussion of this issue see Sahimi, 2011). Such 
simulations indicated that only a small fraction of all the pores or bond in the network contribute significantly to 
the fluid flow process, which implies a percolation effect, even at field scale. Work in this direction is in progress.

7. Conclusions
To study the effect of length scale on the permeability, we simulated fluid flow in pore networks with various 
levels of pore-scale heterogeneity, represented by the pore-throat radius distribution and pore coordination num-
ber. We modified the original form of the finite-size scaling analysis to rescale the k-L data for various average 
pore coordination numbers, Z = 1.5, 1.65, 1.75, 2, 3, 3.25, 3.5, 4, 5, and 6. The results demonstrated that the 
proposed finite-size scaling form accurately collapses data onto a single quasi-universal curve in each pore net-
work, although the k-L plot was scattered. We also found that depending on the broadness of pore-throat radius 
distribution, the trends of increasing permeability with the scale may crossover to the decreasing behavior as the 
average pore coordination number decreases. Further investigations are required to study the scale dependence of 
permeability on rock/soil images.

Data Availability Statement
The pore-network simulations are available at: http://www.hydroshare.org/resource/e3c1e6a8a9f04f90b8bc73d-
fd846bb02.
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