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Abstract 

A long-standing issue in subsurface hydrology and many other related disciplines has 

been the scaling problem. Although the effect of length scale has been known for years, 

inconsistent results have been reported in the literature. Experimental data mostly indicate that 

the permeability k should increase with increasing sample volume, whereas simulations and 

some theoretical predictions appear to imply the opposite. In this paper, we use the concept of 

finite-size scaling to propose a vigorous theoretical framework for addressing the effect of length 

scale on the permeability. We simulate fluid flow in twelve synthetic and four Fontainebleau 

pore networks to investigate the effect of small-scale heterogeneities, such as pore-throat size A
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distribution and pore connectivity. Simulations were carried out for ten pore coordination 

numbers, namely, Z = 1.5, 1.65, 1.75, 2, 3, 3.25, 3.5, 4, 5, and 6. For the synthetic pore networks 

we find a transition in the scale dependence of the permeability, with our results indicating that 

the permeability increases with the scale for larger pore coordination numbers, whereas the 

opposite is true for smaller Z. In Fontainebleau pore networks, on the other hand, the trends are 

decreasing permeabilities regardless of Z. Although the plot of the permeability versus the 

network size for each pore network appears scattered, through finite-size scaling analysis the 

data collapse onto a single quasi-universal curve. Our results demonstrate that finite-size scaling 

analysis is a powerful approach for addressing the effect of length scale on the permeability. 

Keywords: Finite-size scaling analysis, Heterogeneity, Pore networks, Scale-dependent 

permeability 

 

1. Introduction 

 Flow and transport in porous media are typically investigated at four main length scales, 

namely, pore, core, lysimeter, and field scales. Accordingly, a long-standing problem in 

subsurface hydrology has been relating a property’s value at one scale, e.g., field, to its value at 

another scale, such as the core scale. This process, called scaling, has been a subject of active 

research in the past several decades (see for example, Das & Hassanizadeh, 2005; Gupta et al., 

2012; Hopmans et al., 2002; Jury et al., 2011; Kalma & Sivapalan, 1995; Y. Pachepsky et al., 

2003; Sposito, 2008).  

The influence of scale has been known for years, and it is well documented that physical and 

hydraulic properties of soils and rocks, such as porosity (Aslannejad et al., 2017; Ewing et al., 

2010; Hewett, 1986; Yoon & Dewers, 2013), surface area (Chen et al., 2015; Han et al., 2016; Ji 

et al., 2012; Navarre-Sitchler & Brantley, 2007), capillary pressure curve (Ghanbarian et al., 
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2015; Hirsch & Thompson, 1994; Larson & Morrow, 1981; Tinni et al., 2012), tortuosity (Duda 

et al., 2011; Ghanbarian et al., 2013; Matyka et al., 2008), permeability (Garbesi et al., 1996; 

Ghanbarian et al., 2017; Neuman, 1994; Y. A. Pachepsky et al., 2014; Qian et al., 2007) and 

dispersivity (Ghanbarian-Alavijeh et al., 2012; Neuman, 2005; Wheatcraft & Tyler, 1988) are 

scale-dependent. 

At the pore and core scales, transport is influenced by small-scale heterogeneities, such as 

pore space structure, pore connectivity, local mineralogy, and surface roughness. The average 

pore coordination number is probably one of the simplest concepts to characterize the topology 

of a pore network. In a disordered irregular pore space, such as natural porous materials, one 

should define the average pore coordination number as the average number of pore throats 

connected to a pore body. Jerauld et al. (1984) indicated that if the coordination number of a 

regular pore network equals the average coordination number of an irregular one, flow and 

transport properties of the two networks would be identical, as long as their other pore-scale 

characteristics are the same. 

At lysimeter and field scales, however, flow is dominated by large-scale spatial 

heterogeneities, including the spatial distribution of high- and low-permeability zones and their 

interconnectivity, as well as fractures, faults, and their orientations. Small-scale heterogeneities 

are captured by experiments or image analyses. For example, direct measurement of pore space 

characteristics has substantially advanced with the advent of micro- and nano-computed 

tomography, producing nondestructive 3D images of porous media with uniform resolution in 

various directions (Arns et al., 2001, 2002; Blunt et al., 2013; Cnudde & Boone, 2013; 

Wildenschild & Sheppard, 2013). Complete characterization of large-scale heterogeneities is, 

however, difficult due to spatial and temporal variations. Nonetheless, direct core sampling 
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(Rehfeldt et al., 1992; Sudicky, 1986) and indirect geophysical measurements, such as ground-

penetrating radar (Hubbard et al., 1997; Lunt et al., 2005), electrical resistivity imaging (Crook et 

al., 2008; Vanderborght et al., 2005), well logging, and seismic surveys (Avseth et al., 2010; 

Kirsch, 2006) have been used to characterize aquifers and to better understand subsurface flow 

and transport in geological formations. 

In the literature, inconsistent results have been reported regarding the effect of length scale 

on hydraulic properties. For example, experimental data from many sources indicate that the 

permeability would increase with increasing the scale of measurement or sample volume 

(Pachepsky et al., 2014; Qian et al., 2007; Rovey & Cherkauer, 1995; Schulze-Makuch et al., 

1999). However, pore-network modeling (Sahimi et al., 1986, Bernabé et al., 2003) and some 

theoretical predictions (Davudov & Moghanloo, 2018) appear to imply the opposite. The latter 

can be understood as being the result of having more frequent tight pores that act as bottlenecks 

to flow, as the sample size increases. Such contradictory evidence clearly indicates that, despite 

numerous practical applications and recent progress, we are still far from having a 

comprehensive understanding of the effect of the length scale, and in particular small- and large-

scale heterogeneities distributed over such scales, on fluid flow and transport in soils and rocks. 

One prime reason for the current knowledge gap in subsurface hydrology and many other related 

disciplines is the lack of a comprehensive theory for understanding precisely how hydrological 

and hydrogeological properties vary with scale. Although two approaches from statistical 

physics, namely, percolation theory and finite-size scaling analysis, provide solid theoretical 

foundations for addressing the effect of the length scale, such concepts and approaches, 

particularly finite-size scaling analysis, are relatively new to subsurface hydrology and their 

concrete applications have been limited. Therefore, the objectives of this study are to, (1) provide 
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a rigorous theoretical foundation for the interpretation of the scale-dependence of the 

permeability by integrating finite-size scaling and percolation theories; (2) compare the theory 

with numerical simulations in synthetic and actual pore networks, and (3) address the effect of 

pore-throat size distribution and pore coordination number, or connectivity, on the scale-

dependence of the permeability. 

 

2. Percolation theory 

Percolation theory (Stauffer and Aharony, 1994; Sahimi, 1994; Hunt et al., 2014; Hunt & 

Sahimi, 2017; Sahimi & Hunt, 2021) provides a rigorous theoretical framework based on 

statistical physics of disordered media for studying the effect of the interconnectivity and 

heterogeneity on flow and transport in porous media. A fundamental concept in percolation 

theory is the existence of a critical occupation fraction pc below which a network loses its 

macroscopic connectivity. In the context of flow and transport in porous media, “occupied” 

means open to flow and transport. That is, a bond is occupied if it is large enough to allow a fluid 

to pass through it. Thus, bond percolation is a problem in which a bond is either occupied – open 

to flow – or vacant – closed to fluid flow because its size is too small or, as in two phase flow, is 

occupied by a second, completely immiscible fluid. Formulated this way, the problem is 

isomorphic to resistor and pore networks in which the critical fraction of the bonds depends on 

the coordination number Z of the network, pc ≈ E/[Z(E – 1)] (Vyssotsky et al., 1961) in which E 

is the Euclidean dimension of the system. For example, for a square network, E = 2 and Z = 4, 

and, thus, if the network is infinitely large, pc = 0.5. Although pc ≈ E/[Z(E – 1)] predicts the exact 

result for the square network, it provides only approximate, albeit accurate, estimates of pc for 

other networks and complex porous media. No exact value of the percolation threshold for any 
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three-dimensional network is known. Thus, accurate determination of percolation threshold in 

three-dimensional porous media is done by numerical simulation. 

Perhaps the most important feature of percolation theory is the fact that various 

morphological, flow, and transport properties near the critical percolation threshold follow power 

laws. In particular, the correlation length, 𝜉, and the permeability, k, conform to the following 

power laws: 

𝜉 ∝ |𝑝 − 𝑝𝑐|−𝜈 ,     0 ≤ 𝑝 ≤ 1         (1) 

𝑘 ∝ (𝑝 − 𝑝𝑐)𝑡,     𝑝𝑐 < 𝑝 ≤ 1         (2) 

where p is the occupation fraction, pc is the critical occupation fraction, and 𝜈 ≈ 0.88 is the 

universal critical exponent in three dimensions (Kozlov & Laguës, 2010; Stauffer & Aharony, 

1994).  

Below the percolation threshold pc (p < pc), all clusters of occupied bonds have finite 

sizes, and there is no macroscopic connectivity and a spanning cluster. At the percolation 

threshold (p = pc), an incipient infinite (spanning) cluster forms along with other finite clusters, 

and the mass of the spanning cluster increases with the linear size, L, of the lattice as a power-

law, 𝐿𝐷𝑓, in which Df is the mass fractal dimension of the fractal cluster. Above the percolation 

threshold (p > pc), there is the incipient infinite cluster, as well as finite clusters, and due to the 

presence of macroscopic connectivity the system percolates.  

The correlation length 𝜉 represents the mean size of the clusters of occupied (unoccupied) 

bonds below (above) the percolation threshold and, therefore, it diverges as the threshold is 

approached from below or above that point. More importantly, however, it represents the length 

scale for macroscopic homogeneity of a percolation network: any network or porous medium 

with linear size larger than the percolation correlation length may be considered as 
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macroscopically homogeneous (though microscopically heterogeneous). Thus, it is similar to the 

linear size of a representative elementary volume (REV). In fact, when percolation disorder is 

present, the percolation correlation length and the REV are essentially the same. In Eq. (2), t is 

the critical exponent of the permeability. In contrast to the exponent 𝜈 whose value is universal, 

i.e., it depends only on the dimensionality of the system and not its microscopic details, the value 

of t can, in principle, depend on the broadness of the bond conductance distribution (Feng et al., 

1987; Kogut & Straley, 1979) and, thus, its value may depend on the  details of the distributions. 

If the conductance distribution satisfies certain constraints, however, t too is universal (Kogut & 

Straley, 1979). Sahimi et al. (1983b) argued that if the first inverse moment of conductance 

distribution, h(g), is finite, the value of the exponent t should be universal, which is about 2 in 

three dimensions. The first inverse moment is given by  

𝑓−1 = ∫
ℎ(𝑔)

𝑔
𝑑𝑔          (3) 

If 𝑓−1 = ∞, however, the scaling exponent t would be a function of the details of the structure of 

h(g). In Eq. (3), h(g) can be determined from the pore-throat size distribution, h(rt), using 

Poiseuille’s law and the relationship h(g)dg = h(rt)drt in which rt is the pore-throat effective 

radius. One may calculate the value of 𝑓−1 by numerically integrating 
ℎ(𝑔)

𝑔
 from gmin to gmax 

where gmin and gmax are, respectively, the minimum and maximum conductances in the pore 

network.   

 

3. Finite-size scaling analysis 

All the percolation properties, including the percolation thresholds, the power laws (Eqs. 1 

and 2), and the critical exponents, are defined for systems that are infinitely large (Stauffer and 

Aharoni, 1994; Sahimi, 1994). In practice, however, sample sizes and simulation domains are of 
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finite extent. In such systems, as pc is approached, the correlation length 𝜉 eventually exceeds the 

system’s linear size L and, consequently, L becomes the dominant length scale. Fisher (1971) 

developed a theory for the scaling properties of a finite thermodynamic system near its critical 

temperature, called finite-size scaling. Since |𝑝 − 𝑝𝑐| ∝ 𝜉−
1

𝜈, when 𝜉 exceeds L, one must 

replace 𝜉 with L. Thus, adopting Fisher’s theory for percolation systems implies that 

permeability of a system of linear size L should be given by (Sahimi, 1994) 

𝑘 = 𝐿− 
𝑡

𝜈𝑓 [𝐿
1

𝜈(𝑝 − 𝑝𝑐)]         (4) 

where f is a non-singular function. In the limit 𝐿 → ∞, 𝑘 follows the power law given by Eq. (2). 

At the percolation threshold (p = pc), the permeability becomes independent of p and pc, and, 

thus, Eq. (4) reduces to the simple power law 𝑘 ∝ 𝐿−𝑡/𝜈. Note the difference between Eqs. (2) 

and (4). While the former is strictly valid only near the percolation threshold, the scaling 

function f(x) in Eq. (4) means that it is valid for any p in a network of linear size L. 

Finite-size scaling analysis has been successfully used to determine the critical exponents 

and even the percolation threshold through simulations of finite systems (Sahimi, 2011; Sahimi 

et al., 1983a) and to scale the accessible fraction of bonds in percolation theory (Kirkpatrick, 

1979; Stauffer & Aharony, 1994) and fractured networks (Masihi et al., 2008; Masihi & King, 

2007), as well as fluid flow in single fractures (Pastewka et al., 2013; Petrovitch et al., 2013; 

Pyrak-Nolte & Nolte, 2016). For example, Pyrak-Nolte & Nolte (2016)  recently used Monte 

Carlo simulation to compute the flow rate and fracture-specific stiffness. Using a finite-size 

scaling approach similar to Eq. (4), Pyrak-Nolte & Nolte (2016) demonstrated that there exists a 

scaling relationship between flow and stiffness for fractures with strongly correlated aperture 

distributions, which continues to hold for deformed fractures. 
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In a network of pores, the average pore coordination number is a function of the number 

of pore throats and pore bodies (Vogel & Roth, 2001). For several two- and three-dimensional 

regular networks, such as square, hexagonal, triangular, simple cubic, body-centered cubic and 

face-centered cubic networks, Bernabé et al. (2010) demonstrated that the occupation probability 

p is a linear function of the average pore coordination number Z (see their Fig. 1). Accordingly, 

one may replace p and pc with Z/ Zmax and Zc/Zmax, respectively, in Eq. (4), which yields 

𝑘 = 𝐿− 
𝑡

𝜈𝑓 [𝐿
1

𝜈(𝑍 − 𝑍𝑐)/𝑍𝑚𝑎𝑥]        (5) 

where Zc is the critical pore coordination number whose value in three dimensions is ~1.5 

(Bernabé et al., 2010), and Zmax is the maximum pore coordination number in the network. For 

example, Zmax = 6 in cubic networks. 

 

4. Details of the Computations 

We first describe generation of the pore networks, after which we explain the calculation 

of their effective permeability, and estimating the value of the critical exponent t. 

 

4.1 Pore network model generation 

To construct the pore networks composed of cylindrical pore throats and spherical pore 

bodies, we used the open-access code developed by Valvatne (2004). The code generates 

networks based upon the cubic network with a maximum coordination number of 6. Any desired 

average pore coordination number less than 6 can, however, be achieved by randomly removing 

pore throats from the network. The pore-throat radii were generated based on a truncated 

Weibull distribution with two shape parameters, 𝛿 and 𝛾, as well as lower and upper bounds on 

the sizes, which is given by 
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𝑟t = (𝑟tmax − 𝑟tmin)(−𝛿ln [𝑥(1 − 𝑒(−1/𝛿)) + 𝑒(−1/𝛿)])1/𝛾  + 𝑟tmin (6) 

where x is a randomly generated number (0 < x < 1), and rtmin and rtmax are the smallest and 

largest pore-throat radii, respectively. 

The pore-body radii were accordingly determined based on the following relationship 

(Valvatne, 2004): 

𝑟𝑏 = max (𝜁
∑ 𝑟𝑡𝑖

𝑛
𝑖=1

𝑛
, 𝑚𝑎𝑥(𝑟𝑡𝑖)) (7) 

in which 𝑛 is the number of pore throats connected to the same pore body and 𝜁 is an aspect ratio 

whose distribution follows the truncated Weibull probability density function. We set 𝜁 = 0 

meaning that the pore-body radius has the same size as the largest connected pore throat. In the 

present work, three pore-throat radius ranges, namely, 0.1-10, 1-50, and 10-75 𝜇𝑚 were 

considered in order to generate different levels of pore-scale heterogeneity. Within each range, 

we used, 𝛾 = 12, 18, 24, and 30, while setting 𝛿 = 0.2. Overall, twelve synthetic pore networks 

with constant pore-throat length of 100 𝜇𝑚 were generated; see Table 1. Such networks with Z = 

6 exhibit trends in the porosity-permeability data similar to consolidated/unconsolidated sands 

and carbonate rocks (see Fig. 4.1 in Esmaeilpour, 2021). In addition to the twelve synthetic pore 

networks, we generated four other pore networks based on Fontainebleau sandstone samples 

reported by Lindquist et al. (2000). Using the pore-body and pore-throat radii, as well as the 

pore-throat length distributions, we constructed the Fontainebleau pore networks by matching 

their porosity at the average pore coordination number, i.e., 3.37, 3.49, 3.66, and 3.75, 

respectively for Fontainebleau 7.5, 13, 15 and 22, reported by Lindquist et al. (2000). 

Figures 1 and 2 show, respectively, the pore-body and pore-throat radius distributions for 

the synthetic and Fontainebleau pore networks. The two distributions become broader as one 

moves from Network 1 to 3. Although the pore-throat radius spans two order of magnitude 
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variations (0.1 ≤ 𝑟𝑡 ≤ 10) in Network 1 (Table 1), the frequencies of smaller pore throats are 

zero as shown in Fig. 2, due to the values of shape parameters 𝛾 and 𝛿. Note that the scales on 

the vertical and horizontal axes are identical for Networks 1-3 in Figs. 1 and 2. The four 

Fontainebleau sandstones have the broadest distributions among all the pore networks generated 

in this study. We also present in Fig. 3 the pore-throat length distribution for each Fontainebleau 

sandstone. As reported in Table 1, the pore-throat length approximately varied between 10 and 

1000 𝜇𝑚 in the Fontainebleau pore networks. For each pore network, we varied the average pore 

coordination number, Z = 1.5, 1.65, 1.75, 2, 3, 3.25, 3.5, 4, 5, and 6, and the network size, L = 

1130, 2250, 3380, 4510 and 6770 𝜇𝑚.  

 

4.2 Simulation of flow in pore networks 

We simulated fluid flow in the pore networks using the “poreflow” code developed by 

Valvatne (2004), utilizing periodic boundary conditions. The permeability was determined using 

the Darcy’s law  

𝑘 =
𝜇𝑄𝐿

𝐴(𝑃𝑖𝑛−𝑃𝑜𝑢𝑡)
   (8) 

where A is the network cross-sectional area, 𝜇 is the fluid viscosity, 𝐿 is the network length, 𝑄 is 

the total flow rate, 𝑃𝑖𝑛 is the pressure at the inlet, and 𝑃𝑜𝑢𝑡 at the outlet. The total flow rate was 

calculated by solving for the pressure distribution throughout the network under the steady-state 

condition, using mass conservation at each pore body (assuming a fluid with constant density): 

∑ 𝑞𝑖𝑗

 

𝑗

= 0 (9) 

in which 𝑖 represents each of the pore bodies and 𝑗 denotes all the pore throats connecting to pore 

body 𝑖. In Eq. (9), 𝑞𝑖𝑗 is the flow rate between two pore bodies that depends on the hydraulic 
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conductance 𝑔ℎ𝑖𝑗, the distance between the centers of the two pore bodies 𝑙𝑖𝑗, and the pressure 

difference ∆𝑃𝑖𝑗 as follows 

𝑞𝑖𝑗 =
𝑔 ℎ𝑖𝑗 

𝑙𝑖𝑗
∆𝑃𝑖𝑗 (10) 

The fluid conductance between two pore bodies was determined using the harmonic mean of 

contributing conductances 

𝑙𝑖𝑗

𝑔ℎ𝑖𝑗
=

𝑙𝑏𝑖

𝑔ℎ𝑖
+

𝑙𝑡

𝑔ℎ𝑡
+

𝑙𝑏𝑗

𝑔ℎ𝑗
 (11) 

where 𝑙𝑏𝑖 and 𝑙𝑏𝑗 represent the distance between the center of a pore body and the interface 

where the pore body and pore throat meet, and 𝑙𝑡 is the pore-throat length (Valvatne, 2004). 

Assuming laminar flow, the hydraulic conductance of a pore with irregular cross section is given 

by 

𝑔ℎ = 𝑐
𝐴𝑝

2 𝐺

𝜇
 (12) 

in which c is a constant whose value is 0.5 for circular pores, G is the shape factor, and Ap is the 

pore cross section. The governing equations for fluid-flow simulation in each pore network with 

a given pore coordination number were iterated until convergence was reached, after which the 

permeability was determined by averaging over a hundred realizations. 

 

4.3 Determining the exponent t 

To calculate the exponent t for flow in each pore network, we caried out the simulations 

at Z = 1.5 (~ Zc), i.e., at the percolation threshold in a finite network of size L. We first plotted k 

against L on a log-log scale and then fitted 𝑘 ∝ 𝐿−𝑡 𝜈⁄  to the data. Since the exponent 𝑡/𝜈 is 

positive, one should expect k to decrease as L increases at the percolation threshold (Z → Zc). 
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Using the universal value of 𝜈 in three dimensions, 𝜈 = 0.88 (Kozlov & Laguës, 2010; Stauffer & 

Aharony, 1994), the value of the exponent 𝑡 was determined from the optimized fit of 𝑡/𝜈. The 

process is shown for Fontainebleau 7.5 in Fig. 4, and the value of t for each pore network is 

reported in Table 1. 

 

5. Results 

 In what follows, we present the results of finite-size scaling analysis for each pore 

network, and show that although the k-L plot, including simulations for various Z values, seem 

scattered, the data collapse onto a single quasi-universal curve after applying finite-size scaling 

equation, Eq. (5). 

     

5.1 Synthetic networks 

The results for Network 1 are presented in Fig. 5. Our simulations with Networks 1.1 to 

1.4 indicated that the permeability increases with network size for Z = 5 and 6. Although its 

value did not vary much with the scale for Z = 4, we found that k decreases as network size 

increases for Z smaller than 4. Recall that large Z near 6 correspond to large p, the fraction of 

flow-carrying pores, near 1, whereas small values of Z near 1.5 correspond to p near pc. We also 

display the results of finite-size scaling analysis for each pore network in Fig. 5. As can be seen, 

the data, corresponding to the simulations for all coordination numbers, Z = 1.65, 1.75, 2, 3, 

3.25, 3.5, 4, 5, and 6, collapsed onto a single quasi-universal curve. This means that Eq. (5), 

which is the modified form of the original finite-size scaling equation, Eq. (4), is capable of 

capturing the effect of pore-scale heterogeneity, as reflected in the average pore coordination 

number Z.  
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The estimates of t computed for Networks 1.1 to 1.4 vary between 1.46 and 1.64 (Table 

1). These values are, however, smaller than the universal value of t ≈ 2 in three dimensions 

(Kozlov & Laguës, 2010; Stauffer & Aharony, 1994). The reason why the value of t is less than 

2 in these networks is not clear. Recall that in random networks or those with short-range 

correlated, one should theoretically expect t ≈ 2, if the conductance distribution is narrow enough 

and the first inverse moment is finite (Eq. 3). t < 2 may occur in networks with long-range 

correlations (Sahimi, 2011), but that is not the case here, because the correlations are short-

ranged in the pore networks that we simulated. Balberg et al. (2016) proposed another 

explanation for the exponent t being less than its universal value of about 2. The mean number of 

occupied bonds or pore throats per site of a network at its percolation threshold Bc = 𝑝𝑐𝑍. Thus, B 

= pZ varies linearly with p and one may write 𝑘 ∝ (𝐵 − 𝐵𝑐)𝑡. Balberg et al. (2016) suggested 

that in certain percolation network with a broad conductance distribution, B can depend on p 

sublinearly, which gives rise to measured, or computed through simulation, values of t less than 

its universal value. Another possible reason for the estimates t < 2 is finite-size effects. The pore 

networks used in our study are not very large, and it is known (Sahimi and Arbabi, 1991) that 

there are significant correction to scaling when estimating the exponent t by finite-size scaling at 

the percolation threshold. Their effect can be manifested only when one does simulation with 

very large networks.  

 Figure 6 shows the dependence on the network size of the computed permeability for 

various pore coordination numbers. Similar to the results of Network 1, we found the k-L plots 

are scattered. However, Eq. (5) resulted in collapsed data shown in Fig. 6, suggesting that the 

proposed modified finite-size scaling analysis is still valid for various Z and network sizes. 

Estimates of t range from 1.77 to 1.84, as shown in Table 1, which is again smaller than the 
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universal value of 2 (Kozlov & Laguës, 2010; Stauffer & Aharony, 1994). More importantly, we 

find that the permeability of Networks 2.1 - 2.4 increases with increasing scale only when Z = 6. 

This is not clear in Fig. 6 because the permeability is plotted on the logarithmic scale. k remains 

nearly constant for various network sizes with Z = 5. The computed permeabilities for Z < 5 

indicate, however, a decreasing trend with the scale; see Fig. 6. 

 Figure 7, similar to Figs. 5 and 6, shows how the pore coordination number greatly 

affects the scale dependence of the permeability in Network 3, and that Eq. (5) leads to the 

collapse of the k-L curves onto a single universal curve, validating the modified finite-size 

scaling analysis. In this case the exponent t varied between 1.77 and 1.88, shown in Table 1, with 

an average value of 1.83, again smaller than the universal value of 2 in three dimensions 

(Stauffer & Aharony, 1994). The results for Network 3 indicate that the permeability increases 

with the increase in the network size for Z = 6, but remains almost constant for Z = 5, which is 

similar to Network 2. As Fig. 7 indicates, however, k decreases with increasing network size 

when Z < 5. The decrease in the permeability is significant and is near one order of magnitude 

for Z = 1.65, close to the threshold, Zc ~ 1.5. The increasing trend in the scale dependence of the 

permeability was reported by Esmaeilpour et al. (2021) who simulated flow in Networks 1 to 3 

with Z = 6 (see their Figs. 5-7). They did not, however, utilize finite-size scaling analysis to 

explain the scale dependence of the permeability in such networks.   

 

5.2 Fontainebleau sandstones 

The results for the permeability of Fontainebleau pore networks are presented in Fig. 8. 

We find that in all the Fontainebleau samples the permeability decreases as the network size 

increases from 1130 to 6770 𝜇𝑚, regardless of Z. This is not consistent with our results for the 
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synthetic networks for which we found a transition in the scale dependence of the permeability. 

As in Figs. 1 and 2, the Fontainebleau pore networks have the broadest pore-size distributions 

among those studied here. This indicates that the presence of the transition might depend on the 

level of heterogeneity, represented by the broadness of the pore-throat radius distribution, as we 

discuss in the next section. 

 Figure 8 also shows the results of finite-size scaling analysis. All the data associated with 

various Z collapse perfectly using the appropriate t value. Interestingly, the modified finite-size 

scaling analysis led to more accurate data collapses for Fontainebleau pore networks, 

representing natural porous media, than the synthetic ones, which can be seen by comparing Fig. 

8 with Figs. 5-7. For pore networks representing the Fontainebleau sandstone, we find t between 

2.33 and 2.74 (see Table 1) with an average of 2.52, which is greater than those in synthetic 

networks. 

 

6. Discussion 

The average value of t is 1.58 for Network 1, 1.81 for Network 2, 1.83 for Network 3, 

and 2.52 for Fontainebleau sandstones. According to the continuum percolation theory (for a 

review see Balberg, 2021), the exponent t can be a function of the broadness of the conductance 

or pore-throat radius distribution, as was demonstrated for models of packing of spheres (Feng et 

al., 1987; Kogut & Straley, 1979). Figure 2 indicates that the pore-throat radius distribution 

becomes broader from top to bottom, in agreement with the observation that the average t 

increases from Network 1 to Fontainebleau pore networks.  

For Networks 1 to 3, we found 4.2 × 1016 ≤ 𝑓−1 ≤ 9.3 × 1022 and in Fontainebleau 

pore networks 5.9 × 1019 ≤ 𝑓−1 ≤ 1.3 × 1020, which indicate that the exponent t should be non-
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universal (𝑡 ≠ 2) in the pore networks. While the very large values of the first inverse moment of 

the flow conductance distribution may explain why the exponent t is not universal, the non-

universal values reported in the past were typically larger than 2. Therefore, as we stated earlier, 

it is not completely clear why the exponent t is found to be less than 2, as in the synthetic pore 

networks. We already offered two possible mechanisms for the estimates of t < 2. Another 

possibility could be due to the pore-throat radius distributions being left-skewed in the synthetic 

networks, while being right-skewed in the Fontainebleau samples (Fig. 2). This implies that the 

mode of the pore-throat radius distribution occurs at larger pore throats in the synthetic networks. 

In the Fontainebleau pore networks, however, it happens at smaller pore throats. A fourth 

possibility could be the truncation of the pore-throat radius distribution, meaning that the 

minimum pore-throat radius is a finite positive value (see Table 1), albeit very small, instead of 

approaching zero as presumed by Kogut & Straley (1979) and Feng et al. (1987), although that 

usually results in the exponent t being larger than 2. Therefore, further investigations are still 

required to study the effect of skewness and truncation of the pore-throat radius or pore-

conductance distribution on the exponent t. 

Our results demonstrate clearly that if the small-scale heterogeneities of the network, as 

reflected in the permeability scaling exponent 𝑡 and pore coordination number, are accurately 

captured, the modified finite-size scaling analysis, Eq. (5), provides a promising framework to 

accurately scale the data over a wide range of variations in the length scale above the percolation 

threshold, as shown in Figs. 5-8. We find that finite-size scaling analysis is applicable not only 

near the critical pore coordination number (Z → Zc), but also far above that (Z → Zmax). This is 

consistent with the results of Sadeghnejad et al. (2010) who investigated the effect of anisotropy 

on the connectivity and conductivity using the continuum percolation theory. They utilized, 
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however, the original form of the finite-size scaling analysis, Eq. (4), to illustrate the collapse of 

their data. Similar results were reported by Sadeghnejad et al. (2012) for field characterizations 

of conductivity in geologic formations. 

The results demonstrate clearly that there might exist a transition in the scale-dependence 

of the permeability, depending on the broadness of the pore-throat radius distribution. Such a 

transition may very well address the contradictory observations reported in the literature, as to 

whether the permeability should increase or decrease with the increasing length scale. In 

Network 1 with the narrowest pore-throat radius distribution, the transition happened around Z = 

4, whereas in Networks 2 and 3 with broader distributions it occurred around Z = 5. The 

Fontainebleau pore networks with the broadest pore-throat size distributions did not, however, 

exhibit any transition, and their permeability decreased with the network size, regardless of the 

pore coordination number.  

Figure 9 highlights such a transition in the scale dependence of the permeability for 

Network 3.4. In the top plots, the pore-throat and pore-body radius distributions, as well as the 

scale dependence of k are shown for Z = 6, while the same are shown in the bottom plot for Z = 

3.5. Although the two pore networks have statistically the same pore-body and pore-throat radius 

distributions, the permeability increases with the scale for Z = 6, whereas it decreases for Z = 3.5. 

These results demonstrate the effect of pore connectivity and small-scale heterogeneity on the 

scale dependence of the permeability. Bernabé et al. (2003) also simulated fluid flow in pore 

networks with various levels of heterogeneity. For this purpose, they constructed pore networks 

in which the pore-throat radius conformed to the log-uniform distribution with coefficient of 

variations (CVs) 0.06, 0.4, 0.8, 1.2, 1.6, and 1.9. For the square networks, Bernabé et al. (2003) 

showed that the permeability remained nearly constant as the network size increased in 
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homogeneous networks with CV = 0.06 and 0.4 (see their Fig. 1a). When the networks were 

more heterogeneous (with CV > 0.4), however, their permeability decreased with increasing the 

network size. 

In porous media, the maximum pore coordination number, Zmax, can be as large as 10 

e.g., in Berea sandstones (Dong & Blunt, 2009), dolomites (Moaddel et al., 2018), and 

limestones (Ebrahimi et al., 2013) or even 20, e.g., in Fontainebleau sandstones (Lindquist et al., 

2000) and glass bead packs (Yanuka et al., 1986). However, the average pore coordination 

number Z always stays around 3 - 4 (Blunt, 2017; Liang et al., 2000; Vogel & Roth, 2001). This 

makes the ratio Z/Zmax (p) close to Zc/Zmax (pc) and, thus, implying that the porous media are near 

their percolation thresholds. Recall that the critical pore coordination number in three dimensions 

is ~1.5. This means that Eqs. (1) and (2), as well as other power-law relationships of percolation 

theory that are theoretically valid above and near the percolation threshold, should be applicable 

to soils and rocks, as shown by Hunt et al. (2014), a result anticipated much earlier by Sahimi 

(1993). 

Although our present study was limited to laboratory-scale porous materials, the same 

approach may be applied to media at much larger scales. In a field-scale porous medium, for 

example, the spatial distribution of the block-scale permeabilities vary over orders of magnitude. 

Thus, although the percolation effect may not be obvious at the first glance, it does actually exist, 

since a finite fraction of the local permeabilities may be very small and, therefore, contribute 

very little to the overall fluid flow process. This was already hinted at in the early simulations of 

flow and transport in field-scale porous media (for a discussion of this issue see Sahimi, 2011). 

Such simulations indicated that only a small fraction of all the pores or bond in the network 
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contribute significantly to the fluid flow process, which implies a percolation effect, even at field 

scale. Work in this direction is in progress. 

 

7. Conclusions 

To study the effect of length scale on the permeability, we simulated fluid flow in pore 

networks with various levels of pore-scale heterogeneity, represented by the pore-throat radius 

distribution and pore coordination number. We modified the original form of the finite-size 

scaling analysis to rescale the k-L data for various average pore coordination numbers, Z = 1.5, 

1.65, 1.75, 2, 3, 3.25, 3.5, 4, 5, and 6. The results demonstrated that the proposed finite-size 

scaling form accurately collapses data onto a single quasi-universal curve in each pore network, 

although the k-L plot was scattered. We also found that depending on the broadness of pore-

throat radius distribution, the trends of increasing permeability with the scale may crossover to 

the decreasing behavior as the average pore coordination number decreases. Further 

investigations are required to study the scale dependence of permeability on rock/soil images. 
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Table 1. Salient properties of the sixteen pore networks constructed in this study. The lower 

and upper bounds of porosity correspond to Z = 1.5 and 6, respectively. 

Network 
rb  

(𝝁𝒎) 

rt 

(𝝁𝒎) 
𝜸 𝜹 

lt 

(𝝁𝒎) 

𝝓  

(%) 
𝒕 

1.1 0.1-10 0.1-10 12 0.2 100 1.6-4.3 1.46 

1.2 0.1-10 0.1-10 18 0.2 100 1.7-4.7 1.60 

1.3 0.1-10 0.1-10 24 0.2 100 1.8-4.9 1.63 

1.4 0.1-10 0.1-10 30 0.2 100 1.8-5.1 1.64 

2.1 1-50 1-50 12 0.2 100 16.1-32.1 1.84 

2.2 1-50 1-50 18 0.2 100 17.0-34.2 1.80 

2.3 1-50 1-50 24 0.2 100 17.4-35.4 1.77 

2.4 1-50 1-50 30 0.2 100 17.7-36.1 1.83 

3.1 10-75 10-75 12 0.2 100 24.5-43.9 1.79 

3.2 10-75 10-75 18 0.2 100 25.5-46.0 1.88 

3.3 10-75 10-75 24 0.2 100 26.0-47.1 1.86 

3.4 10-75 10-75 30 0.2 100 26.2-47.8 1.77 

Fontainebleau 7.5 8-150 5-70 1.05 0.2 35-1000 4.6-7.1 2.40 

Fontainebleau 13 8-183 5-70 1.3 0.2 25-1000 7.7-12.0 2.33 

Fontainebleau 15 9-150 5-80 1.3 0.2 25-1000 8.1-13.3 2.60 

Fontainebleau 22 11-260 4-100 1.3 0.2 10-900 18.4-23.2 2.74 

* rb is pore-body radius, rt is pore-throat radius, 𝛾 and 𝛿 are Weibull distribution parameters, lt is pore-throat length, 

𝜙 is porosity, and t is the permeability scaling exponent. 
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Fig. 1. Pore-body radius distributions for sixteen pore networks used in this study.  
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Fig. 2. Pore-throat radius distributions for sixteen pore networks used in this study.  
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Fig. 3. Pore-throat length distributions for four pore networks from Fontainebleau sandstones 

used in this study.  
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Fig. 4. Permeability, k, versus network size, L, at the percolation threshed (Z = Zc ~ 1.5) for the 

Fontainebleau sandstone with porosity 7.5%, on a double-logarithmic scale.  The solid line 

represents the fitted power law 𝑘 ∝ 𝐿−𝑡/𝜈 with R2 = 0.99. For this pore network, given that 𝜈 = 

0.88 in three dimensions, we found t = 2.4.   
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Fig. 5. (left) Simulated permeability at various pore coordination numbers versus network size, 

and (right) the data collapse for Network 1 with Zc = 1.5 and Zmax = 6.  
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Fig. 6. (left) Simulated permeability at various pore coordination numbers versus network size, 

and (right) the data collapse for Network 2 with Zc = 1.5 and Zmax = 6.  
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Fig. 7. (left) Simulated permeability at various pore coordination numbers versus network size, 

and (right) the data collapse for Network 3 with Zc = 1.5 and Zmax = 6.  
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Fig. 8. (left) Simulated permeability at various pore coordination numbers versus network size, 

and (right) the data collapse for Fontainebleau sandstones with Zc = 1.5 and Zmax = 6.  
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Fig. 9. Pore-body and pore-throat size distributions as well as scale-dependent permeability for 

Network 3.4 with pore coordination number Z = 6 (top plots) and 3.5 (bottom plots). 

Permeability simulations were averaged over a hundred iterations. 




