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49 Abstract 

50 Terrestrial ecosystems regulate Earth’s climate through water, energy, and biogeochemical 

51 transformations. Despite a key role in regulating the Earth system, terrestrial ecology has 

52 historically been underrepresented in the Earth system models (ESMs) that are used to 

53 understand and project global environmental change. Ecology and Earth system modeling must 

54 be integrated for scientists to fully comprehend the role of ecological systems in driving and 

55 responding to global change. Ecological insights can improve ESM realism and reduce process 

56 uncertainty, while ESMs offer ecologists an opportunity to broadly test ecological theory and 

57 increase the impact of their work by scaling concepts through time and space. Despite this 

58 mutualism, meaningfully integrating the two remains a persistent challenge, in part because of 

59 logistical obstacles in translating processes into mathematical formulas and identifying ways to 
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60 integrate new theories and code into large, complex model structures. To help overcome this 

61 interdisciplinary challenge, we present a framework consisting of a series of interconnected 

62 stages for integrating a new ecological process or insight into an ESM. First, we highlight the 

63 multiple ways that ecological observations and modeling iteratively strengthen one another,  

64 dispelling the illusion that the ecologist’s role ends with initial provision of data. Second, we 

65 show that many valuable insights, products, and theoretical developments are produced through 

66 sustained interdisciplinary collaborations between empiricists and modelers, regardless of 

67 eventual inclusion of a process in an ESM. Finally, we provide concrete actions and resources to 

68 facilitate learning and collaboration at every stage of data-model integration. This framework 

69 will create synergies that will transform our understanding of ecology within the Earth system, 

70 ultimately improving our understanding of global environmental change and broadening the 

71 impact of ecological research. 

72

73 Keywords: global ecology, Earth system models, data-model integration, collaborative bridging, 

74 modeling across scales, history of models, interdisciplinary workflow

75 I. The need to integrate ecology and Earth system models 

76 Terrestrial ecosystems are an integral component of the Earth system. They govern the 

77 exchange of energy, water, and greenhouse gases between Earth’s land surface and atmosphere 

78 and provide numerous services for society, including climate regulation and mitigation. For 

79 example, terrestrial ecosystems absorb approximately a third of anthropogenic carbon emissions 

80 (Friedlingstein et al., 2019), mitigating the impact of these emissions on climate change. They 

81 also play an essential role in regulating global water fluxes, from moderating soil water 

82 availability to influencing precipitation patterns and evaporative cooling. The physical properties 

83 of terrestrial ecosystems, including their surface reflectivity (i.e., albedo) and surface roughness, 

84 also help control the amount of energy absorbed and released by the land surface (Bonan, 2008, 

85 2016). Human management of terrestrial ecosystems can change these biosphere-atmosphere 

86 interactions, for example by reducing carbon storage through deforestation and increasing 

87 greenhouse gas emissions through agricultural fertilization (Lade et al., 2019; Law et al., 2018). 

88 Given the importance of terrestrial ecosystems within the Earth system, modern ecological 

89 research papers frequently recommend updating existing ESMs to reflect new evidence or ideas 
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90 about ecology that may have large-scale impacts on climate. This integration, however, has been 

91 slow (Fisher & Koven, 2020). 

92 Historically, integration of ecological insights into ESMs has been hampered because of a 

93 disconnect between the scientists conducting empirical research and those engaging in modeling 

94 work (Fig. 1), a lack of cross-disciplinary training in modeling and empirical skills, and 

95 undervaluing of insights derived from modeling and data exercises completed along the way to 

96 incorporating an ecological process into an ESM. Although many scientists engage in both 

97 empirical and modeling work, the prevailing paradigm for integrating ecology into models tends 

98 to separate the tasks involved into the subdisciplines of empirical data collection and model 

99 development (Figs. 1, 2). Even when ecologists engage with model development, the models 

100 used in ecology often fall short of the global scale of ESMs. While these models generate 

101 valuable insights regardless of their ultimate contribution to ESMs, large-scale integrative 

102 understanding of global change impacts requires the use of ESMs because of the many 

103 interactions within and among the components of the Earth system. For clarity in terminology, 

104 we define “Earth system models” as models which represent the interactions among land, 

105 atmosphere, ocean, and cryosphere processes and follow the principles of energy and matter 

106 conservation. While we focus specifically on including ecology in the terrestrial component of 

107 ESMs, our recommendations can apply to similar challenges in other disciplines (e.g., marine 

108 ecology and modeling ocean-atmosphere interactions). The land component of ESMs can and 

109 should continue to incorporate ecological processes to improve model realism and to better 

110 understand the role of ecological processes within the larger Earth system. 

111 Scientists in both empirical and modeling communities are aware of the need for and 

112 benefits of collaborating around ESMs. ESM developers understand that ecology plays an 

113 important role in controlling terrestrial ecosystems and that ecological insights can generate 

114 models that more faithfully represent real systems, both conceptually and in terms of model 

115 uncertainty. Ecological processes, for example, can generate amplifying or stabilizing feedbacks 

116 that can fundamentally alter climate and when incorporated will change model performance (e.g. 

117 nitrogen constraints on CO2 fertilization of plant NPP changed the magnitude of model-projected 

118 future shifts in ecosystem carbon storage (Thornton et al., 2007)). Empiricists, on the other hand, 

119 understand the potential large-scale impact of their work and that ESMs can help to realize this 

120 impact (Fig. 3). For example, ESMs are useful for expanding the temporal and spatial scale of 

https://paperpile.com/c/wUP0mf/RFsE
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121 ecological research beyond the constraints of a particular set of sites or experiments. 

122 Additionally, models can be used to explore interactions and feedbacks between ecological and 

123 climate factors that might be prohibitively complex to measure directly. Models are an important 

124 means for ecologists to explore new concepts and generate insights about complex systems that 

125 can lead to testable hypotheses. Finally, models are a means to understand the impact of specific 

126 management and policy decisions and help stakeholders to make science-informed decisions.

127 Despite the mutual benefits that empirical and modeling communities receive from 

128 collaborating, obstacles remain to better integrating these communities (Leuzinger & Thomas, 

129 2011; Reed et al., 2015). While most empiricists are adept at developing ecological theory for 

130 their specific species or system, translating that theory into a generalized mathematical formula 

131 can be challenging without decades of research gathering long-term data over broad scales. Next, 

132 empiricists face the formidable task of integrating this mathematical formulation into an ESM. 

133 ESMs can exceed millions of lines of code (Danabasoglu et al., 2020), and hunting for the right 

134 place to insert new code without breaking the rest of the model can be daunting. Working within 

135 the particular computing language or framework of an ESM can also be intimidating without 

136 extensive training in computational science and applied mathematics, which university ecology 

137 programs typically do not offer. Additionally, the overwhelming complexity and ambiguity of 

138 large models can make it difficult, without training, to assess the reliability of model results. 

139 Given these obstacles, an empirically-focused ecologist might question whether it is a good use 

140 of their time to put in the training and work involved with modeling ecological processes in the 

141 Earth system.

142 Modelers working to integrate ecological processes into ESMs, many of whom have 

143 formal ecological training, also face challenges in this partnership. Modelers must strive for 

144 parsimony in model development (i.e. avoiding unnecessary model complexity; see Table 1), and 

145 balancing this against the push to continuously incorporate more and more ecological detail can 

146 be difficult. Incorporating new processes can sometimes increase rather than decrease model 

147 uncertainty. Ecological and biological processes are inherently more complex and challenging to 

148 quantitatively define than the physical and/or chemical processes that drive most atmospheric or 

149 ocean models. As an example, the physiology of stomata does not conform to the principles of 

150 fluid dynamics that underpin the atmospheric and ocean components of ESMs. Quantitative 

151 ecology is a robust field, but the math of ecology is often defined in units of genes or whole 

https://paperpile.com/c/wUP0mf/fSz4+m8QD
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152 organisms using statistical relationships, rather than the units of matter and energy and process 

153 representations that ESMs use, and translating between the two is persistently difficult. 

154 Even when ecology can be quantified in a way that can be incorporated into an ESM, 

155 ecological data can be time- and resource-intensive to gather, and model development can be 

156 limited by the availability of all the necessary data to drive, tune, or test a new process. Including 

157 all ecological processes that impact water, energy, or biogeochemical cycles can lead to models 

158 that are overly complex and lack adequate foundations in measured data. Modelers are 

159 sometimes reluctant to add a new process without convincing evidence that its impact outweighs 

160 the uncertainty it adds to the model. Most ESMs strive to balance ecological realism with 

161 excessive complexity, which can lead empiricists to be frustrated with the disconnect between 

162 model parameters, processes, and reality. Meanwhile, modelers may grow frustrated and 

163 overwhelmed by the abundance of ecological data that “should” but cannot easily be 

164 incorporated into models. Resolving the realism-complexity dilemma requires modelers to 

165 understand the principles and constraints of researching ecological processes, while empiricists 

166 should be more involved in model development and aware of the unique data needed to translate 

167 ecological concepts for ESMs.

168 We address these challenges by providing a clearly defined map of the stages involved in 

169 the incorporation of a new ecological idea into an ESM. We seek to pull back the curtain on the 

170 complex, multi-scale workflow of coupled model-data-theory development (Fig. 1, 2, 3) and 

171 lower the barriers to interdisciplinary collaboration by articulating various phases and 

172 considerations along the way (Fig. 4). Below, we discuss the history of incorporating ecology 

173 into ESMs to provide context for the characteristics of modern ESMs. We then present our 

174 suggested workflow for integrating ecological processes into ESMs (Fig. 4). In this workflow, 

175 we describe the iterative procedure of data collection and model development for understanding 

176 ecological processes and models at different scales (Fig. 3). We highlight three stages through 

177 this workflow and the valuable outcomes at each stage, regardless of whether the endpoint of 

178 incorporating an ecological process into an ESM is reached. Finally, we include a list of 

179 resources to guide scientists through all the stages of this workflow. These guidelines and the 

180 suggested workflow will facilitate stronger connections between empirical and modeling 

181 communities, improving ESMs through realistic process representation and increasing the impact 

182 of ecological research.
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183 II. History and context for current decision-making in ESM development

184  For many ecologists, Earth system modeling may seem a distant discipline, but in fact, 

185 ecology is already an important part of ESMs. The origin of ESMs is nearly 100 years old. In the 

186 early 20th century, an early model of weather forecasting (Richardson, 1922) required 

187 knowledge of land surface temperature, surface-absorbed radiation, and exchanges of heat, 

188 moisture, and momentum with the atmosphere. As a result, the model acknowledged the role of 

189 energy and moisture fluxes from plant canopies, and included rough representations of stomatal 

190 conductance and leaf fluxes in its calculations. In the 1960s, modelers expanded their work to the 

191 global scale with different labs and centers developing atmospheric general circulation models, 

192 which would form the foundation of some of our present-day ESMs (Edwards, 2011). As model 

193 development continued, terrestrial vegetation and human modification of the land became 

194 recognized as necessary aspects of climate science (Schneider & Dickinson, 1974), and 

195 prominent studies identified surface albedo, evapotranspiration, and deforestation as important 

196 climate regulators (Charney et al., 1975; Robert E. Dickinson & Henderson-Sellers, 1988; Sagan 

197 et al., 1979; Shukla & Mintz, 1982).

198 In the 1980s, attention turned to representing more than the atmosphere in global models. 

199 Models of the land surface, such as the Biosphere-Atmosphere Transfer Scheme (BATS; (R. E. 

200 Dickinson, 1986)) and Simple Biosphere model (SiB; Sellers et al., 1986), were developed for 

201 coupling with atmosphere models. These models initially focused on the biogeophysical 

202 processes of energy, moisture, and momentum fluxes and the associated hydrologic cycle. These 

203 models represented vegetation in more detail, including traits such as stomatal conductance, 

204 canopy height, leaf area index, and rooting depth. Photosynthesis was also recognized as an 

205 essential process to model, initially as a diagnostic (Robert E. Dickinson et al., 1981) and later as 

206 a predictor (Sellers et al., 1996) of carbon and water fluxes (Bonan, 1995; Denning et al., 1996). 

207 Building upon a history of ecosystem biogeochemical models first conceived during the 

208 International Biological Program (IBP) in the 1960s and 1970s, the carbon cycle was 

209 subsequently added to ESMs so that atmospheric CO2 concentration automatically changed over 

210 time rather than being manually specified (Cox et al., 2000; Fung et al., 2005). Bioclimatic rules 

211 and simplified equations for competition for space were also added to allow vegetation 

212 composition and biogeography to change in relation to the simulated climate (Bonan et al., 2003; 

213 Foley et al., 1996; Sitch et al., 2003). 
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214 The current generation of ESMs now also includes models with nitrogen and phosphorus 

215 cycles, wildfires, biogenic volatile organic compound emissions, mineral dust emissions, 

216 methane, wetlands, agricultural management, and land use/land cover change (Bonan, 2016). 

217 That many ecological and biogeochemical processes are now included in ESMs is a defining 

218 feature in the evolution of climate models, which initially focused on the physical system, to 

219 today’s more comprehensive ESMs that emphasize the interdisciplinary aspects of climate 

220 science (Bonan & Doney, 2018). For example, representations of the nitrogen and phosphorus 

221 cycles were added to some ESMs because of their role in regulating the carbon cycle (P. E. Thornton 

222 et al., 2009; Y. P. Wang et al., 2010; Yang et al., 2014; Zaehle & Friend, 2010). Similarly, more 

223 soil biogeochemical models are including direct representations of microbial populations because 

224 of their controls on nutrient and carbon cycling (Huang et al., 2021; Kyker-Snowman et al., 

225 2020; K. Wang et al., 2017; Wieder et al., 2018; Wieder, Grandy, et al., 2015). However, many 

226 important processes are still absent from ESMs; for example, herbivores are recognized in 

227 ecology as important ecosystem drivers, but are not widely included in ESMs.

228 Conversations about including ecology in models have become increasingly common in 

229 the modeling community, particularly as modelers seek to better match model projections with 

230 observations. ESMs continue to be modified to include ecology that impacts model calculations 

231 of surface fluxes of energy, moisture, carbon, and momentum. What conditions need to be met 

232 for a process to be considered for integration into an ESM? The ecological properties and 

233 processes that have made their way into ESMs reflect choices by the modeling community about 

234 where to focus its efforts, as well as the practical limitations of the modeling work itself. In 

235 general, new ecological processes enter an ESM if:

236

237 ● The process can (or is hypothesized to) influence climate on large spatiotemporal 

238 scales. Given the effort needed to code and test the addition of an ecological process into 

239 an ESM, the impact of this addition needs to be visible on large spatial scales or on long 

240 time frames. For example, explicit representations of vegetation were added to ESMs 

241 because they had a clear impact on and improved the performance of climate models 

242 through regulating water fluxes on long (e.g., decadal) timescales (Robert E. Dickinson, 

243 1984; Robert E. Dickinson & Henderson-Sellers, 1988; Sato et al., 1989; Sellers et al., 

244 1986).
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245 ● The process can be reasonably incorporated into existing model infrastructure.

246 New ESM developments build on earlier ones, which means there needs to be a clear 

247 plan for how to insert the code for the new process into the existing model code. In 

248 addition, this linking should be able to occur without major restructuring to the model’s 

249 existing structure. For example, in order to integrate nitrogen cycling into an ESM, code 

250 needed to be developed to link nitrogen fluxes to the physics of the land surface and 

251 calculations of carbon fluxes (Bonan & Levis, 2010; Peter E. Thornton et al., 2007).

252 ● Process understanding and data are available to model the process globally.

253 The equations representing the process need to be solvable on a three-dimensional global 

254 grid (latitude, longitude, height) as well as on short time scales representing the model’s 

255 timestep for calculations (e.g., 30 minutes). Ideally, any input data required by the new 

256 ecological process should be available globally as a gridded product or be calculable 

257 using existing variables simulated by the ESM. For example, the TRY database provides 

258 data that has been used to create global maps of plant traits that are used as the 

259 foundation for plant functional types (Kattge et al., 2011).

260 ● The mathematics of the process are tractable within the limits of current computing 

261 resources.

262 Computing resources have significantly expanded, allowing more ecological processes to 

263 enter models. However, there are still limits to numerical processing power. Processes 

264 must be reducible to a mathematical form that does not dramatically increase computing 

265 costs of the entire ESM, given that existing ESMs already push the capacity of the 

266 world’s most powerful supercomputers (Washington et al., 2009). For example, 

267 representing biodiversity by modeling a large number of individual plant species or soil 

268 microbial taxa would greatly increase computing costs, so simplified representations of 

269 plant functional types and soil decomposition are typically used.

270 ● There is a community of researchers dedicated to developing, testing, and 

271 maintaining the process in the model. Writing the code for a new ecological process is 

272 only one part of the process for integrating a new component into an ESM. Once code is 

273 written, it needs to be tested with different components of the ESM and under different 

274 simulation conditions before the process can be considered as an official addition to the 

275 ESM. In addition, the continued longevity of the process in the model requires there to be 

https://paperpile.com/c/wUP0mf/tZCm+4TuA
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276 one or more researchers continuing to maintain and update the modeled process as new 

277 data about the process and new changes to the ESM are made. As such, a community of 

278 researchers with the resources to both advocate for the inclusion of the process and 

279 support its inclusion in the model long-term is needed. 

280

281 With the origin of ESMs in the atmospheric and physics communities, it is perhaps not 

282 surprising that the incorporation of ecology into ESMs started in these communities. The 

283 modeling community has initiated several grassroots efforts to bring more ecologists into ESM 

284 work. These efforts range from creating conference workshops and research coordination 

285 networks (e.g., (Cheng, 2018; Leuzinger & Thomas, 2011; Rogers et al., 2014)  to leading 

286 tutorials and short courses to provide training for empiricists and modelers to bridge these 

287 subdisciplines (e.g., the CTSM tutorial at NCAR; FluxCourse; Bracco et al., 2015). However, 

288 these efforts are limited in the number of people they can reach. Larger, systematic changes in 

289 education and training, funding structures, and engagement across communities are critical to 

290 shifting the current siloed paradigm. We propose a new practical roadmap for empiricist-modeler 

291 collaboration that breaks down traditional disciplinary boundaries and fosters iterative, shared 

292 conceptual development.

293 III. Introducing the practical roadmap for integrating ecology and ESMs 

294 New efforts to close the gap between ecological empiricists and Earth system modelers 

295 are growing, but the two communities could still be better integrated. To do so, each community 

296 needs to understand the approaches used by the other and work together both to develop the 

297 technical advancements needed to expedite data-model integration (e.g., Fer et al., 2021) and to 

298 address the social dimensions of collaboration. Focusing only on technical or mathematical 

299 aspects of data-model integration can perpetuate barriers through the use of discipline-specific 

300 language and dismissal of non-technical obstacles to participation (Bernard & Cooperdock, 

301 2018; Duffy et al., 2021; Morales et al., 2020), which can lead to members feeling excluded and 

302 keep disciplines siloed (Marín-Spiotta et al., 2020; Mattheis et al., 2019). In general, effective 

303 cross-disciplinary collaboration depends on several key principles that facilitate team dynamics 

304 (O′Rourke et al., 2013) and need to be built into the start of a collaboration; namely: respect and 

305 trust among all team members, clear communication, common goals, and effective project 
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306 leadership (Nancarrow et al., 2013). Research shows that clear team communication is essential 

307 for optimizing project outcomes (Anderson-Cook et al., 2019; Kuziemsky et al., 2009), as it is 

308 the foundation for identifying shared objectives and building interpersonal relationships that are 

309 necessary for teams to remain cohesive during times of conflict (Cooley, 1994). Breaking down 

310 barriers to interdisciplinary collaboration requires researchers to adopt practices that not only 

311 improve their collaboration, but also dismantle the inequitable and exclusionary dimensions of 

312 their disciplines (Chaudhary & Berhe, 2020; Duffy et al., 2021; Emery et al., 2021). 

313 Additionally, computing tools and frameworks evolve rapidly, and solutions that focus on 

314 facilitating collaboration will outlast any particular technological tool. To achieve better 

315 integration and collaboration among empirical and modeling communities, we outline a few 

316 necessary foundational principles of collaboration and educational change (Fig. 2). We also 

317 propose a workflow that highlights one possible pathway to improve collaboration between 

318 fields to improve the work of each (Fig. 4). 

319 In addition to strengthening empiricist-modeler team dynamics, we emphasize the need to 

320 rethink ecological education to incorporate process modeling concepts and normalize regular 

321 collaboration between empirical and modeling subdisciplines. At many institutions, the ecology 

322 curriculum emphasizes field techniques and statistical analysis, but fewer options may exist for 

323 courses on ecological process-based modeling. While a given department may offer one or a few 

324 courses, often these are not required in ecological education, and programming skills 

325 development is limited to high-level statistics programs and languages like R and python that do 

326 not entirely prepare students for the computer science that powers modern ESMs. Conversely, 

327 educational requirements in other disciplines, such as atmospheric sciences, frequently include 

328 both field and modeling techniques and in-depth quantitative and programming skills in which 

329 computational science and applied mathematics are essential tools of the science. Ecologists 

330 wanting to learn modeling techniques often find themselves taking classes outside their 

331 discipline, attempting to separate content from technique and applying techniques to a different 

332 field, which is a challenging task. This can pose a large enough burden on the student that many 

333 do not follow through, finding it easier to continue with familiar skills. A detailed plan for 

334 modifying the way ecology programs teach quantitative skills is beyond the scope of this paper, 

335 but others have begun the difficult work of rethinking educational paradigms to address this 

336 problem (Hampton et al., 2017).
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337 ESM communities also need to identify opportunities for redesigning their training so 

338 they can learn more about ecological concepts and data collection frameworks. Ecological data is 

339 complex and filled with caveats, and modelers often encounter data after it has been processed 

340 and organized and thus may be unfamiliar with the nuances of data collection and analysis. 

341 Modeler training in ecological concepts could take place at the student level, with classwork 

342 focused on the impacts of living organisms on biogeochemical, water and energy cycles, or at 

343 later career stages via field site visits, shared seminars, interdisciplinary conference sessions, etc. 

344 One powerful approach is for a modeler to take a day trip with an ecologist to engage in 

345 fieldwork. While we recognize that the outdoors are not a comfortable space for many people 

346 and this can be a barrier to participation (Anadu et al., 2020; Giles et al., 2020; Morales et al., 

347 2020), direct experience with how an ecologist gathers data can be an invaluable insight into the 

348 the limitations and interpretation of data in a modeled context. Virtual site visits using recorded 

349 video are another alternative for those unable to visit in person. 

350 Beyond these foundational shifts, we propose a new workflow for modeler-empiricist 

351 collaboration with three specific stages (Fig. 4). This workflow is meant as one (but not the only) 

352 route for any empiricist or modeler to understand the stages involved in integrating a new 

353 process or idea into an ESM. We strive to break down traditional disciplinary barriers between 

354 modelers and empiricists and highlight the iterative collaboration and shared skill sets that are 

355 necessary at each stage. The first stage in this workflow (“Assess process & potential impact”) 

356 includes a list of questions that anyone (regardless of programming ability) can ask to assess the 

357 readiness of a process for incorporation into an ESM. The second stage (“Test process alone”) 

358 involves the quantification and scaling of the new ecological concept using simple models and 

359 large-scale parameter determination. Finally, the last stage of the flowchart (“Test process with 

360 ESM”) discusses the multiple steps involved in making modifications to an ESM, evaluating the 

361 impact of the new process on model-wide behavior, and projecting the large-scale impact of the 

362 new process within the Earth system. Importantly, each stage of this workflow generates 

363 valuable scientific products (e.g. hypotheses, new or improved theory, regional or ecosystem-

364 scale models), regardless of whether the endpoint of “inclusion in an ESM” is reached. We 

365 recognize that tackling any part of this workflow is challenging for aspiring and seasoned 

366 modelers alike, and we encourage researchers to see it through. We include specific illustrative 

https://paperpile.com/c/wUP0mf/0t2D+QgP9+8jl5
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367 examples for each stage of the workflow (Boxes 1-3) and one that illustrates stepping through 

368 the entire workflow (Box 4), as well as resources for accomplishing each step (Table 1).

369 Workflow part 1: Identifying and understanding a new process 

370 The first stage of the proposed workflow assesses the readiness of a new process for 

371 inclusion in an ESM based on how well the process can be quantified and understood in an 

372 ecosystem context. Many empiricists recognize the importance of their work for understanding 

373 global change and highlight the need to incorporate new processes into models. However, 

374 highlighting this need has minimal impact on ESMs unless coupled to an understanding of the 

375 stages of model development and the unique types of data necessary to progress through those 

376 stages. As such, the first part of the workflow provides three guiding questions empiricists 

377 should ask to assess whether a new process is ready for inclusion in an ESM, each of which will 

378 be discussed in more detail in the following paragraphs (Fig. 4, “Assess process & potential 

379 impact”). These questions can help identify data gaps and point to valuable targets for future 

380 experiments to facilitate downstream ESM integration. Importantly, these questions can be 

381 addressed by any empiricist without requiring formal modeling skills. While connecting with 

382 modelers is not required at this point, it can be helpful in co-designing future experiments to 

383 make process integration more streamlined (Fig. 2).

384 The first guiding question aims to evaluate the level of theoretical/empirical 

385 understanding of the targeted process: Do you expect your process to respond consistently to 

386 environmental drivers, enabling scaling across space and time? Consistent, quantified patterns 

387 are the heart of process modeling. Detailed understanding of a process or mechanism at a single 

388 location can help to identify whether the process is likely to scale. In order to develop a broad 

389 theoretical representation of a process, it can help to determine whether data are available across 

390 multiple sites and ecosystem types and at various timescales. For example, if a specific tropical 

391 soil owes its high carbon storage capacity to a unique volcanic mineral (Torn et al., 1997), it 

392 would be wise to evaluate the carbon storage capacity of soils without this mineral before 

393 generalizing observed patterns to a global scale. While it is not necessary at this stage to gather 

394 enough data to create a fully quantified global representation of a process, information gained in 

395 this step may help identify data gaps and guide the design of additional empirical experiments 

396 needed for large-scale modeling, such as repeating experiments across underexplored regions or 

https://paperpile.com/c/wUP0mf/yHfZ
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397 a wider range of environmental conditions. This step also helps to identify conceptual areas 

398 where a large amount of data may be available but consistent relationships with environmental 

399 factors and process rates have not yet been identified. For instance, soil microbial biodiversity is 

400 being rapidly catalogued through metagenomics, but these data do not yet provide critical 

401 information for representing process rates at large scales (Fierer et al., 2021).

402 The second question in this stage of the workflow requires ecologists to get familiarized 

403 with ESMs and the way processes are represented: Is your process already in or related to an 

404 existing process in an ESM? Investigating this question will help identify existing model 

405 frameworks that can be used as scaffolding for building simple models and ultimately 

406 incorporating the process into an ESM. ESMs represent similar environmental processes using a 

407 variety of different approaches and equations, so it might help to start by identifying one or more 

408 ESMs that you may be interested in and reading model documentation to determine how related 

409 processes are represented and whether the model will fit your needs. For example, if you want to 

410 improve the representation of foliar nitrogen acquisition, it is vital that the model you choose 

411 already has a terrestrial nitrogen cycle. This is also an ideal time to discuss collaborations with 

412 ESM developers. We encourage ESM developers at this stage to welcome ecologists interested 

413 in working with ESMs by taking the time to explain modeling concepts in jargon-free language 

414 and providing resources to work through technical challenges.

415 If the selected ESM already contains a model of the process, the empiricist can consider 

416 how it can be improved or revised using new data or theoretical understanding. Many times a 

417 process is represented implicitly (e.g. soil microbial activity is often represented using a 

418 cascading decomposition scheme (Wieder, Allison, et al., 2015; Wieder et al., 2018)). Illustrating 

419 that explicit representation of the process will fundamentally change model behavior will help to 

420 determine whether an explicit representation is needed. In addition, if the current representation 

421 of the process connects multiple cycles (e.g. carbon and nitrogen, water and energy), exploring 

422 existing model structures can help empiricists understand all the connections between their 

423 process and various cycles that must be elucidated and quantified when updating the ESM. Like 

424 hooking up speakers to a television or finding the right dongle to plug in your phone, the new 

425 process will only work within the ESM if all the appropriate ins and outs are connected. If the 

426 process is not currently in a model, it is worth investigating why not (perhaps connecting with an 

427 ESM modeler) and whether it might be implicitly included through other model process 

https://paperpile.com/c/wUP0mf/Ws4Z
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428 representations. For example, plant hydraulic stress is not always explicitly included in ESMs 

429 (Kennedy et al., 2019), but may be implicitly included by existing connections between soil 

430 moisture and stomatal conductance.

431 The third and final question helps to identify ecological concepts that may be more 

432 appropriate to a different type of modeling because they are unlikely to alter climate simulations 

433 within an ESM: Is the process likely to influence climate on scales of time and space consistent 

434 with other ESM processes? Put another way, is the process likely to change the results of global 

435 climate simulations using ESMs? Generally, ecology in ESMs impacts climate prediction in two 

436 major ways: through biogeochemical (carbon and nutrient cycling) and biogeophysical 

437 (evapotranspiration and energy fluxes) processes. Coupling these processes provides a means for 

438 assessing feedbacks between ecosystems and climate that distinguish ESMs from stand-alone 

439 ecosystem models. 

440 Simple estimates can be made to assess whether a process, when applied to large regions 

441 or the entire globe, has the potential to meaningfully influence climate. For example, the general 

442 process of insect herbivory, which responds to temperature (e.g., Deutsch et al., 2018; Edburg et 

443 al., 2011) and could meaningfully affect carbon fluxes through changing plant biomass, might 

444 influence climate (Box 1). On the other hand, temperature affects the distribution and abundance 

445 of mosquito species (Hunt et al., 2017), but if mosquitoes are not known to have a meaningful 

446 impact on climate, inclusion of mosquito species distributions would not change the outcome of 

447 ESM simulations, and may be better suited to a different type of model. In addition, new, 

448 climate-influencing processes must occur or change at a rate that is meaningful at ESM 

449 timescales. For example, changes in environmental conditions may alter the rates of soil 

450 microbial metabolic processes over the course of minutes or even seconds, but these rapid 

451 fluctuations are too fast to capture in the timestep of a typical ESM. On the other end of the 

452 spectrum, bedrock weathering is a process that releases nutrients for plants and may impact plant 

453 biomass (Morford et al., 2011), but it happens so slowly that it is unlikely to shift simulated plant 

454 productivity in an ESM over decade to century timescales. 

455 Apart from facilitating ESM incorporation, these questions produce valuable intellectual 

456 products on their own: greater understanding of how a process fits into the terrestrial system, 

457 identification of knowledge gaps and a clear path towards future empirical work, and 

458 determining whether an ESM is the appropriate modeling tool for the process of interest. 

https://paperpile.com/c/wUP0mf/ZLov
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459 Reflecting on these questions can help ecologists define “future directions” for their work with 

460 greater specificity than “inclusion in a model,” and also generate valuable insights into the scale 

461 of an ecological process and its connections to water, energy, or biogeochemical cycles. In a 

462 classroom setting, these questions can be an effective way to practice “thinking like a modeler” 

463 without requiring any involvement with programming. Regardless of whether the answer to all of 

464 these questions for a given ecological concept is “yes”, they are beneficial for ecologists to ask.

465

466 Box 1: 

467 Herbivores like insects and grazers have large impacts on plant biomass and 

468 productivity, yet they are still absent from ESMs. How do the conceptual questions in Part 1 of 

469 the workflow guide next steps in deciding whether to incorporate herbivores in ESMs? Although 

470 herbivores are broadly not yet included in ESMs (Question 2) and are known to have important 

471 impacts on plant biomass with feedbacks to climate (Question 3), ESMs also require that any 

472 new process behave consistently across space and time (Question 1) in a way that can be 

473 captured quantitatively. To move forward with incorporating herbivores into ESMs, the known 

474 impact of herbivores on plant biomass must be reduced down to quantifiable patterns that are 

475 consistent across space and time. For example, do herbivores reduce plant biomass by a fixed 

476 proportion, or by a proportion that depends on climate factors already present in ESMs like 

477 temperature and precipitation? Does the impact of herbivores vary in a predictable way across 

478 continents and ecoregions? If the answer is yes, then perhaps a simple model can be developed 

479 (Workflow part 2) or existing simple models can be considered for ESM incorporation 

480 (Workflow part 3). 

481 Workflow part 2: Beginning to work with simple models 

482 After assessing the theoretical understanding of a process and its likely importance for 

483 terrestrial ecosystems and climate, the next workflow steps involve the iterative development, 

484 implementation, and evaluation of simple models outside of the ESM, in addition to the 

485 collection and/or assembly of data necessary to apply the simple model at large scales (Fig. 4, 

486 “Test process alone”). The aim of these activities is to generate knowledge, highlight 

487 uncertainties, and refine understanding of the process(es) in question. At its core, this stage 

488 involves identifying formulas to represent our theoretical understanding of ecological systems. 
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489 This stage is a key precursor to working with ESMs because once a process is integrated into an 

490 ESM, it becomes harder to discern the cause of disagreement with observations, and uncertainty 

491 increases. For example, photosynthesis can be evaluated with leaf gas exchange data in highly 

492 controlled chambers. Gross primary productivity, on the other hand, is evaluated using eddy 

493 covariance flux towers. Errors can arise in the model’s scaling from leaf to canopy, soil moisture, 

494 nitrogen availability, leaf area index, and aspects of the model other than the photosynthesis 

495 parameterization (Rogers et al., 2017). The "test process alone" stage is essential to identify the 

496 adequacy of a process model before compensating errors occur within the ESM. Although not a 

497 strict requirement, this phase of the workflow is best accomplished with equal, collaborative 

498 contributions from both empiricists and modelers (Fig. 2) including someone familiar with ESMs 

499 who can craft a bridge for future process incorporation. 

500 Simple models are created at this stage by translating knowledge from conceptual models 

501 of organisms and ecosystems to mathematical representations of matter and energy. The 

502 development of simple models can start by creating a simple statistical model or using a pre-

503 existing model. For example, R has a photosynthesis package (Duursma, 2015) that can be used 

504 as a starting point for modifications to photosynthesis like temperature acclimation (e.g., (Smith 

505 et al., 2017)) or ozone damage (e.g., Lombardozzi et al., 2012). Simple models can also be 

506 developed using any coding language (both R and Python are free and open source), or even start 

507 by using a spreadsheet program like Excel, and can range in complexity from a single equation 

508 to a complex web of variables and parameters. Unlike the first phase of the workflow, testing 

509 theory with data at this phase requires some comfort with programming and data management 

510 (for resources, see Table 1). These activities can be easily integrated into ecological coursework, 

511 and a variety of resources have been developed to facilitate this (e.g., (Carey et al., 2020)). 

512 Additionally, cross-disciplinary collaboration is beneficial at this stage, as it helps to formalize 

513 conceptual models, clarify assumptions, evaluate ideas within the scientific community about a 

514 process, connect various components of ecosystems and the Earth system, and test the broader 

515 applicability of theories over space and time. 

516 In addition to simple model development, this phase of the workflow involves 

517 assembling the data necessary to estimate parameters and drive simple models at large scales. 

518 (Note: In a model, a “parameter” is the value of a variable in an equation. The word 

519 “parameterization” may seem like a derivative of “parameter”, but is in fact a separate concept 
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520 referring to representing a complex microscale process as an approximate bulk process. For 

521 example, model representations of photosynthesis are a parameterization of subcellular-level 

522 processes, and may use parameter values within the calculation (Bonan, 2019)). Necessary data 

523 fall into several distinct categories: data for parameter estimation during model development, 

524 driver data to feed into the model (e.g., climate or soil characteristics), and data for 

525 benchmarking the model following simulations (i.e., observational data to compare against 

526 model output). 

527 At this stage, it is worth making a “shopping list” of the data necessary for a given 

528 modeling exercise and evaluating the availability of values at the relevant scale (Fig. 3). These 

529 data may come initially from a single site or lab experiments, but to eventually scale model 

530 results globally, data gathered across multiple regions and experiments become useful. ESMs use 

531 a variety of large-scale datasets for parameter estimation and evaluation, and it can be helpful to 

532 seek out datasets already in use before attempting to assemble a new dataset from scratch. Large-

533 scale data can come from meta-analytical techniques and syntheses (e.g., Field & Gillett, 2010; 

534 Ainsworth & Long, 2005; Lombardozzi et al., 2013), pre-existing large synthesized datasets 

535 (e.g., SoDaH (Wieder et al., 2020), TRY (Kattge et al., 2011)), satellite data (e.g., Li & Xiao, 

536 2019), or model-derived products (e.g., Fluxnet-MTE (Jung et al., 2020)). Direct measurements 

537 are generally preferable for parameter estimation and model evaluation but are not always 

538 feasible to collect. As a result, parameter estimation and model evaluation often use data 

539 products (i.e., data that have been modified by models) to achieve the spatial and temporal scales 

540 required by the ESM. Data products can be closely connected to the original data (i.e., data 

541 averages) or less closely connected (i.e., output of another mechanistic model that uses data as an 

542 input).  Understanding the uncertainty of a data product is critical for determining the value of its 

543 use in parameter estimation and model evaluation (Dagon et al., 2020; Dietze, 2017). Simple 

544 models often get stuck here on the way to ESM incorporation because of gaps in data 

545 requirements to run models at global scales (e.g., lack of maps of soil edaphic properties or other 

546 input data that may be critical for further model development).

547 The creation and improvement of simplified mathematical models and large-scale 

548 synthesized datasets makes several valuable contributions to understanding and refining 

549 ecological theories, regardless of the eventual implementation in ESMs. Simple models help 

550 formalize, and make explicit, the underlying assumptions in the theories they represent and can 
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551 illustrate weaknesses in existing theory. As such, they can be used to generate testable 

552 hypotheses that can be interrogated with existing data or new experiments. Estimating 

553 parameters for simple models with available observations helps identify data and knowledge 

554 gaps that can be addressed with further study. Compared to larger ESMs, simple models have 

555 greater traceability, allowing scientists to explore and understand model complexity, their 

556 associated uncertainties, and emergent properties that can be evaluated with independent 

557 observations. These simpler models also have the advantage of being easier to use, with greater 

558 flexibility and lower computation costs than running a full ESM, and can potentially be 

559 implemented in ESMs in a modularized manner that allows for testing multiple ecological 

560 theories (e.g., Fisher & Koven, 2020). Finally, these models help to clarify theory and develop 

561 concepts through independent community efforts to use them and improve their process 

562 representation. 

563

564 Box 2: 

565 After establishing that a new process is appropriate to consider including in an ESM 

566 (Part 1), what comes next? Current models of soil microbial activity highlight Part 2 of the 

567 workflow: simple quantified models evaluated at a variety of scales but not yet incorporated into 

568 ESMs. As an example, the MIcrobial-MIneral Carbon Stabilization (MIMICS) model was 

569 motivated by theories highlighting interactions among soil microbes and minerals that are 

570 responsible for soil organic matter decomposition and persistence. A simple process model was 

571 initially developed in R using measurements from laboratory experiments and rates of leaf litter 

572 mass loss. This model was tested first at a single site (Wieder et al., 2014), and subsequent 

573 evaluation across continental and global scale gradients illustrated reasonable agreement with 

574 litter decay rates and soil carbon stocks (Wieder, Grandy, et al., 2015) and a higher 

575 vulnerability of Arctic soil C stocks, compared to models that implicitly represent microbial 

576 activity (Wieder et al., 2019). MIMICS continues to undergo further development (e.g. to include 

577 coupled C-N biogeochemistry (Kyker-Snowman et al., 2020) and vertical resolution (Y. Wang et 

578 al., 2021)), refinement (Zhang et al., 2020), and evaluation (Basile et al., 2020; Koven et al., 

579 2017; Shi et al., 2018; Sulman et al., 2018). All of these activities rely on conducting simulations 

580 across multiple study sites and at global scales, which is a valuable precursor to considering 

581 incorporating MIMICS into an ESM.

https://paperpile.com/c/wUP0mf/RFsE
https://paperpile.com/c/wUP0mf/X2k7
https://paperpile.com/c/wUP0mf/1UH5
https://paperpile.com/c/wUP0mf/3ALj
https://paperpile.com/c/wUP0mf/0n2Y
https://paperpile.com/c/wUP0mf/cgtA
https://paperpile.com/c/wUP0mf/cgtA
https://paperpile.com/c/wUP0mf/Erri
https://paperpile.com/c/wUP0mf/FKoB+smwP+n3pB+3Iy1
https://paperpile.com/c/wUP0mf/FKoB+smwP+n3pB+3Iy1


This article is protected by copyright. All rights reserved

582

583 Workflow part 3: Integrating processes into ESMs 

584 Developing and evaluating a simple model ultimately paves the way for integrating a 

585 process into an ESM, as illustrated in the final stage of the workflow (Fig. 4, “Test process with 

586 ESM”). The first step is deciding which ESM to use. Many ESMs exist and vary substantially in 

587 their ecological process representations (Fisher & Koven, 2020), and adding a new process 

588 requires an understanding of how processes of interest are currently represented in a given ESM 

589 (as in Stage 1) and a simple model that can be integrated within the framework of that ESM 

590 (developed in Stage 2). Additionally, some ESMs have proprietary or restricted access (e.g., 

591 GFDL-ESM, IPSL-CM5 (Dufresne et al., 2013; Dunne et al., 2020)) and require collaboration 

592 and/or approval by model developers, while others are open-source and community driven (e.g., 

593 CESM, E3SM (Danabasoglu et al., 2020; Golaz et al., 2019)). While not always required, 

594 incorporating new processes will be most efficient when building relationships with model 

595 developers who can help with technical aspects of code development. For example, developers 

596 with experience in running and testing the model can provide code structure guidance and 

597 highlight possible interactions or feedbacks among processes that might not be obvious to a 

598 novice model developer. ESM communities can be insular and siloed at times, and ESM 

599 developers at this stage can help build more integrated empirical-modeling collaborations by 

600 seeking out and remaining open to working with ecologists (see Table 1 for several 

601 opportunities).

602 Once access to model code is available, integrating the new process representation can 

603 begin. The first step is finding the location to integrate the new process. While this will vary 

604 depending on the ESM, code modules will often have descriptive names and the location of 

605 variables within the code can be searched using linux- and editor-based search tools (e.g., grep). 

606 It is also helpful to find a similar variable or process in the code (with similar inputs and outputs) 

607 that can be used as an example for how to structure the new process code. Having an example to 

608 mirror can be particularly useful in identifying other modules where the variables may be 

609 required (e.g., sometimes setting the initial value for variables happens in a different module). 

610 Additionally, it can be helpful to outline or diagram a work plan in advance, noting the modules 

611 and variables that will need to be added, modified, and connected. 
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612 Modifications should build on each other, starting with a simple change: for example, add 

613 a single variable, and then test that the code will compile and run for a short period of time. 

614 Sequentially add more complexity, connecting the new variable or process to existing model 

615 structure. Using this layered approach will help to identify any structural bugs early in the 

616 development process. Although the ultimate goal is to have a sophisticated representation that 

617 includes spatially-varying processes, simpler versions of the model can -- and should -- be tested 

618 to determine the sensitivity of the system to the new process. These simpler model iterations are 

619 excellent training tools for graduate students and postdoctoral trainees as they become more 

620 familiar with the model. Once the basic framework for the new process is in place, it can be 

621 tested to identify the magnitude of change in relevant processes, as well as any interactions with 

622 other ecosystem processes. Often, these proof-of-concept simulations can turn into publications 

623 that highlight the potential importance of the process at site or global scales and identify gaps in 

624 data that can help to improve the process representation.

625 Throughout the development, testing, and evaluation process, the simplest relevant 

626 version or component of the ESM available should be used. For example, if the new process does 

627 not rely on carbon cycling, it may be possible to leave out this portion of the model in your 

628 testing, allowing the model to run faster and reducing the complexity of model interactions. 

629 Often with ecological processes, the development process uses only the terrestrial component of 

630 an ESM driven by a gridded atmospheric data product (e.g., reanalysis), since fully coupled ESM 

631 runs are far more computationally expensive than smaller terrestrial-only runs. Additionally, 

632 running in the coarsest available resolution and for the smallest spatial domain possible (e.g., a 

633 single site) will expedite model testing. Once code is tested, running it globally (and eventually 

634 coupled to an atmospheric model) is necessary to ensure the simulation operates appropriately 

635 over the global domain. 

636 An approach called “modular development” can also be useful for testing and evaluating 

637 different ecological theories, and can be employed when implementing new processes in ESMs 

638 (Fisher & Koven, 2020; see also Clark et al., 2015). This involves adding an alternate 

639 representation of a process that is already simulated in a model (not removing the process) and 

640 letting the user specify which theory the model will use in a given simulation. For example, 

641 testing multiple representations of stomatal conductance (Franks et al., 2018), soil carbon and 

642 nitrogen cycling (Wieder, Cleveland, et al., 2015; Wieder et al., 2018), and hydrology (Clark et 

https://paperpile.com/c/wUP0mf/RFsE
https://paperpile.com/c/wUP0mf/2hbp+T9tF
https://paperpile.com/c/wUP0mf/4I9T
https://paperpile.com/c/wUP0mf/9mXR+0mcD
https://paperpile.com/c/wUP0mf/GxuH+UAv5


This article is protected by copyright. All rights reserved

643 al., 2008, 2011) have been helpful in testing different theories and highlighting when and where 

644 certain process representations perform best. This allows for refinement of existing theory and 

645 process representation, advancing the state of current knowledge. 

646 Once the new process is incorporated, the model must be tested and evaluated. A first 

647 step is to determine whether the new process fundamentally changes model behavior relative to a 

648 simulation without this process. Does it affect other simulated processes, and by how much? 

649 Many processes do not exist in isolation within a model and thus cannot be modified for only 

650 one purpose. Better models of photosynthesis, for example, may be desired to improve the 

651 carbon cycle, but also impact energy and water fluxes to the atmosphere through stomatal 

652 conductance (Bonan et al., 2011). A second step is to evaluate model behavior against 

653 observations. Model evaluation is most effective if multiple processes are assessed, and is most 

654 useful when compared to evaluation of a baseline model simulation where the new process is not 

655 simulated. This step is similar to simple model evaluation in the second stage of this workflow, 

656 but this evaluation process should be repeated once the simple model is embedded within an 

657 ESM. One simple form of evaluation is to run a simulation at a single location where relevant 

658 observational or experimental manipulation data have been collected, such as a field site or a flux 

659 tower (Cheng et al., 2019; Medlyn et al., 2015). These data can be used to assess whether the 

660 new model behavior fundamentally changes model performance (De Kauwe et al., 2013, 2014; 

661 Smith et al., 2015; Thomas et al., 2013; Zaehle et al., 2014). It is also important to evaluate 

662 global responses. While global data can be more challenging to access, several resources are 

663 currently available. Perhaps the most useful is the International Land Model Benchmarking 

664 (ILAMB; Collier et al., 2018) project, which has developed internationally accepted 

665 benchmarking standards for ESM performance. This project has compiled global datasets for a 

666 range of variables and can help to identify where model performance is enhanced or degraded. 

667 Remotely sensed data products can also help with model evaluation at regional to global scales.

668 One of the greatest challenges in ESM development is ensuring parsimony while 

669 capturing the full range of biological complexity. This is particularly challenging for community 

670 models with contributors from multiple fields and institutions, which commonly suffer from 

671 “feature fatigue”. Human instinct is to continue to add features to a solution, even when 

672 removing features may be more beneficial or efficient (Adams et al., 2021). While adding 

673 processes can improve model realism, care must be taken to avoid sacrificing model reliability, 
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674 which can be degraded with the addition of uncertain parameters (Prentice et al., 2015). Eco-

675 evolutionary optimality theory is one recent tool that can be used to improve model realism 

676 while limiting the number of new parameters (Box 3; Scott & Smith, 2021; H. Wang et al., 

677 2017). Unlike statistical approaches where environmental responses are hard-coded with 

678 parameters, a theoretical approach allows process responses to emerge with fewer parameters 

679 (Prentice et al., 2015). These responses can then be tested with data that might, in a more 

680 statistical approach, be needed to estimate parameters.

681 The workflow so far has presented guidelines for incorporating a new process into an 

682 ESM, which requires substantial work in developing and incorporating new code into a model 

683 and then evaluating the responses of terrestrial processes. Often, the ecological workflow ends 

684 here with the assessment of the global-scale impact of a process and how it may change 

685 ecological functioning through time. Beyond this, an exciting next step is to understand whether 

686 this new process has climate feedbacks by comparing land-only and coupled model simulations. 

687 Land models can be coupled to other ESM components (atmosphere, ocean, ice, etc.) to 

688 investigate global feedbacks in water, energy or biogeochemical cycles. Connecting land and 

689 atmosphere components allows investigation of unexpected feedbacks with the atmosphere that 

690 may be different from land-only simulations. 

691

692 Box 3: 

693 One example of how models have maintained parsimony (Part 3 of the workflow) is 

694 photosynthetic acclimation (Smith & Dukes, 2013). Initially, empirical models were developed to 

695 simulate temperature acclimation of photosynthetic biochemical capacity in ESMs based on 

696 observed responses (e.g., Kattge et al., 2009; Kattge & Knorr, 2007) and then incorporated in 

697 ESMs (Friend, 2010; Lombardozzi, Bonan, et al., 2015; Mercado et al., 2018; Smith et al., 2017; 

698 Smith & Dukes, 2013; Ziehn et al., 2011). However, more recently, eco-evolutionary optimality 

699 theory has been invoked to simulate photosynthetic biochemical capacity in a way that 

700 incorporates the processes without added parameters (configuration variables internal to a 

701 model that rely on observational data), thus increasing model realism without altering model 

702 reliability (Scott & Smith, 2021; Smith & Keenan, 2020; H. Wang et al., 2017). Eco-evolutionary 

703 optimality theory approaches rely on the assumption that natural selection will remove non-

704 competitive traits from an environment, thus providing testable, theoretical trait responses to the 
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705 environment over short and long time scales, and offer potential promising avenues for adding 

706 biological processes to ESMs with little to no added parameters (Franklin et al., 2020). Eco-

707 evolutionary optimality approaches are available to simulate processes at the leaf (Jiang et al., 

708 2020; Prentice et al., 2014; Smith et al., 2019; Smith & Keenan, 2020; H. Wang et al., 2020; H. 

709 Wang et al., 2017), plant (Dybzinski et al., 2015; Farrior et al., 2013; Weng et al., 2015) and 

710 ecosystem (Baskaran et al., 2017; Franklin et al., 2020) scales. 

711

712 Box 4:  

713 The following example illustrates the entire workflow, from initial conceptual 

714 development to simple modeling to working with ESMs. As part of her research, co-author 

715 Lombardozzi measured how leaf-level gas exchange changed in response to ground-level ozone. 

716 Upon analyzing her data, she found that leaf-level carbon (photosynthesis) and water 

717 (transpiration) fluxes decreased at different rates. Since these are both important greenhouse 

718 gases and affect fundamental plant processes (photosynthesis and stomatal conductance, which 

719 scale through time and space regardless of biome), she thought that ozone damage could have a 

720 global impact on climate feedbacks on model-relevant timescales and therefore should be 

721 included in large-scale models. Although Lombardozzi had no modeling or coding experience, 

722 she emailed several people working on the Community Land Model (CLM) to see if they might 

723 want to collaborate. She did some research about the photosynthesis and stomatal conductance 

724 models used in CLM and talked with modeling colleagues to decide how to best include this type 

725 of damage. After completing online Linux and Fortran tutorials, Lombardozzi started using a 

726 simple photosynthesis-stomatal conductance model provided by her colleagues. She applied 

727 linear regressions calculated from her experiment to the rates of maximum carboxylation 

728 (Vcmax) to simulate ozone damage to photosynthetic enzymes. She was able to show that 

729 including ozone damage improved simulated photosynthesis and stomatal conductance at the 

730 leaf scale (Lombardozzi et al., 2012). 

731 Did these changes matter globally? Lombardozzi worked with model developers to find 

732 out, using the simple model to update code in the CLM to account for ozone damage. Using data 

733 from her experiment and a constant ozone concentration, she showed that ozone did have large 

734 consequences for carbon and water cycling globally (Lombardozzi et al., 2013). While this 

735 experiment highlighted the sensitivity of global processes to ozone damage, it did not provide a 
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736 realistic assessment of how ozone changes carbon and water cycling. Lombardozzi therefore 

737 synthesized existing published literature to determine how photosynthesis and stomatal 

738 conductance change in relation to ozone exposure, and identified a complete lack of data for 

739 tropical forests (Lombardozzi et al., 2013). Despite missing data for large biomes, these data 

740 were then used to update the CLM code to capture responses across different plant functional 

741 categories (e.g., broadleaf trees, needleleaf trees, herbaceous vegetation), and when combined 

742 with realistic ozone data, simulated that ozone decreases global photosynthesis by 10.8% and 

743 transpiration by 2.2%, with larger impacts in Eastern US, Europe, and Southeast Asia 

744 (Lombardozzi, Levis, et al., 2015). 

745 IV. Creating community change across scales 

746 Empirical and modeling communities already work together and influence one another in 

747 many ways, yet integrating ecological processes into ESMs remains a persistently slow process 

748 with myriad challenges limiting efficient collaboration. Historically, ESMs have been developed 

749 by atmospheric and physical science communities while ecology has only been integrated 

750 relatively recently, and the disciplinary requirements in trainee education have not provided 

751 enough of a shared foundation to build strong conceptual bridges between ESMs and empirical 

752 ecologists. These communities must collectively address persistent obstacles including confusing 

753 technical language, lack of resources for skills development, and the need for better connections 

754 and integration across scientific communities. We provide resources to help expand terrestrial 

755 ecological process representation in ESMs (Table 1). With the advent of these and other tools, 

756 empiricists will be better poised to take advantage of technical workflows that can help 

757 streamline data-model integration (e.g., Fer et al., 2021). 

758 The interdisciplinary work of developing an Earth system model is not only technical, but 

759 also social. As such, in addition to the workflow presented above, we offer specific suggestions 

760 for restructuring ecological education and interactions within collaborations (see Section III), 

761 both of which are key to ensuring that the workflow does not break down. For bridge-building 

762 between communities to be inclusive, the modeling and empirical communities need to examine 

763 their community practices, values, and norms. This work includes understanding the 

764 demographics of who is (and is not) represented in the research communities (Bernard & 

765 Cooperdock, 2018), what processes our communities are willing to consider (or dismiss) as 
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766 valuable contributions to ESMs (e.g., microbes, moths, management), where data are collected 

767 and why some regions or ecosystems are over/under sampled (Martin et al., 2012; Metcalfe et 

768 al., 2018), when we overlook potential collaborators or fail to provide them with platforms for 

769 sharing their work, such as at conferences (Ford et al., 2019), and why we make the decisions 

770 that we do about where to focus efforts.

771 Improved collaboration between empirical and modeling communities will positively 

772 benefit each community. Adding modeling to empirical work can increase its impact while 

773 simultaneously advancing ecological theory, modeling capabilities, and model realism. To get 

774 started or go further with this work, we have assembled a list of resources for skills development 

775 at each stage of the workflow (Table 2). To maintain contemporary resources, please visit the 

776 regularly updated website (https://ecoesm.github.io/). Despite the many complex challenges 

777 involved in integrating terrestrial ecology and Earth system modeling, there has never been a 

778 better time to attempt such difficult work. Finding and communicating with scientists across the 

779 globe is getting easier every year, computing resources are rapidly evolving, and the internet 

780 provides an ever-growing assortment of free tools for developing new quantitative and 

781 programming skills. In addition, funding sources are increasingly recognizing the value of data-

782 model integration (e.g. the NASA Modeling, Analysis, and Prediction program 

783 (https://map.nasa.gov/) or the USDA NIFA Data Science for Food and Agricultural Systems 

784 program (https://nifa.usda.gov/program/dsfas)) and grassroots efforts are creating a framework 

785 for these collaborations using workshops and tutorials. Our insights into the history of ecology in 

786 ESMs, workflow for developing and incorporating ecological processes into ESMs, and specific 

787 resource suggestions will advance this exciting progress and provide a scaffold for building 

788 fruitful bridges between empirical and modeling communities.
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1249 Figures

1250 Table 1. Glossary of commonly used words in Earth System Modeling.

Term Definition

Benchmarking

Comparing models against a consistent set of observational data to document the performance of multiple 

models or improvements with newer versions of a particular model.

Calibration

Setting or adjusting model parameters based on model performance against a training dataset. Separate 

from validation.

Data 

assimilation Adjusting model states at regular time intervals based on observations.

Ensemble

Multiple model simulations from one or more models that follow a standard protocol, including "multi-

model" ensembles of multiple models and "multi-member" ensembles that differ in initial conditions or 

parameter values. Ensembles are used to understand model variability and uncertainty.

http://paperpile.com/b/wUP0mf/3ALj
http://paperpile.com/b/wUP0mf/RUqy
http://paperpile.com/b/wUP0mf/RUqy
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Equifinality The ability of multiple model configurations or parameter sets to explain the same set of observations.

Evaluation Assessing model performance, often using a validation or benchmarking approach.

Feature fatigue The continual addition of new model processes, often with diminishing returns on model performance.

Fluxes Movement of matter or energy between the components of a model. Alternatively: flows.

Forcing Driver inputs external to a model.

Forecasting

A type of prediction that generates model outputs of future conditions based on current knowledge and 

initial states.

Modularity

A property of models in which one representation of a process can be swapped out for another to allow 

comparison of model formulations.

Parameter Constant within an equation in a model.

Parameterize

To represent a complex process as a simplified equation that relates parameters and variables to one 

another.

Parsimony

Avoiding unnecessary model complexity; only including those model components that contribute to the 

goals of model development.

Prediction Model outputs beyond the scope of observed data.

Projection

Model outputs based on a certain scenario or set of conditions occurring as represented in the forcing 

data.

Realism The adherence of model representations to the actual properties and behavior of ecosystems.

Sensitivity How model output changes in response to shifts in inputs or individual model parameters.

States

The current values of components of a model system, which typically change through time. For example, 

soil moisture, soil temperature, biogeochemical pools.

Toy model A simple model that allows for exploration of a subset of ecosystem processes.

Traceability The ability to connect model sensitivity or uncertainty back to a particular model component.

Trait Property of an ecosystem component that maps onto model parameters.

Validation

Evaluating model performance against an independent dataset without modifying parameters. Separate 

from calibration.

1251 Table 2. Table of textbooks and free resources for developing cross-disciplinary skill sets in 

1252 empirical and modeling work and learning to traverse the stages of integrating new processes 

1253 into an Earth System model. For a regularly updated list of resources, visit 

1254 https://ecoesm.github.io/.

Skill/ Category Item Description Link

Programming

NCAR Python 

tutorials

Basic introduction to the Python 

language from the National Center for https://ncar.github.io/python-tutorial/
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Atmospheric Research

Programming

PEcAn project 

tutorials

Introduction to working with the 

Predictive Ecosystem Analyzer https://pecanproject.github.io/tutorials.html

Programming The Unix Shell The basics of file systems and the shell http://swcarpentry.github.io/shell-novice/

Programming Udacity

Free courses on basic programming 

competency with github, linux, R, 

python, and many others https://www.udacity.com/

Programming

Software 

Carpentry

Free courses on basic programming 

competency with github, linux, R, 

python, and many others https://software-carpentry.org/lessons/index.html

Programming R tutorial Basic introduction to working with R https://education.rstudio.com/learn/beginner/

Simple modeling InsightMaker

Tools for developing quantitative stock-

and-flow diagrams of processes https://insightmaker.com/

Simple modeling

Teaching 

Resources

Lessons and other resources developed 

for teaching basic principles of 

ecological modeling

https://matthesecolab.com/teaching/

http://www.maryheskel.com/teaching.html

https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.6757

Simple modeling

Modeling the 

Environment

Textbook on environmental modeling 

by Andrew Ford https://islandpress.org/books/modeling-environment-second-edition

Simple modeling EDDIE 

Modeling/forecasting teaching modules 

developed for NEON sites https://serc.carleton.edu/eddie/macrosystems/index.html

Simple modeling

Excel modeling 

tutorial

Tutorial on building simple models in 

Excel

http://www.mbaexcel.com/excel/how-to-build-an-excel-model-step-

by-step/

Earth system 

modeling

Climate Change 

and Terrestrial 

Ecosystem 

Modeling

Textbook on global-scale ecosystem 

modeling by Gordon Bonan

https://www.cgd.ucar.edu/staff/bonan/ecomod/index.html

https://www.cgd.ucar.edu/staff/bonan/ecoclim/index.html

Earth system 

modeling CESM tutorial

Workshop on working with the 

Community Earth System Model https://www.cesm.ucar.edu/events/tutorials/

Earth system 

modeling

Earth System 

Modeling 

Framework

Introduction to working with Earth 

System Models https://earthsystemmodeling.org/tutorials/

Earth system 

modeling CESM-Lab Cloud version of CLM https://github.com/NCAR/CESM-Lab-Tutorial
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1255

1256 Figure 1. Historically, the process of integrating ecology in Earth System models (ESMs) has 

1257 often separated tasks along disciplinary lines, with empirical ecologists feeding data into a 

1258 mysterious “modeling” process and modelers modifying and using data without a thorough 

1259 understanding of data collection procedures and caveats. The newest generation of scientists has 

1260 the opportunity to pull back the curtain by developing cross-disciplinary skill sets and building 

1261 stronger, more collaborative bridges between empirical and modeling communities, with the goal 

1262 of accelerating the integration of ecological concepts into ESMs.
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1263

1264 Figure 2. The prevalent existing paradigm in ecology-Earth System model (ESM) integration 

1265 separates tasks along disciplinary lines, with empirical scientists giving data and generalized 

1266 patterns to modelers who then develop quantitative models and work with ESMs. We 

1267 recommend a shift away from this historical paradigm towards a more collaborative one in which 

1268 empiricists and modelers are involved in co-producing knowledge (with differing degrees of 

1269 contribution) at every stage of data collection, theory development, and model integration. We 

1270 also emphasize the two-way exchange of ideas, insights, and data between empirical and 

1271 modeling driven activities. 
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1272
1273 Figure 3. In the hierarchy of model development, simple models of individual processes, classes 

1274 of organisms, and inorganic components (site/local scale) are often pieced together to form larger 

1275 models of ecosystems and regions (ecosystem scale) and ultimately combined to form Earth 

1276 system models (ESMs; global scale). Data gathered at each of these scales can be used to inform 

1277 model development at the same scale.
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1278

1279 Figure 4. Although scientists sometimes think “The Illusion” (top panel) is the way that ecological concepts are integrated into Earth 

1280 system models (ESMs), the reality is more like a complex metabolic cycle or eddy-filled stream, with different data inputs (gray 

1281 boxes) and valuable insights (tan boxes) throughout the process. We identify three key phases in integrating a new process into an 

1282 ESM, namely: “Assess process & potential impact”, which emphasizes conceptual skills (green boxes), “Test process alone”, which 

1283 involves simple programming (teal), and “Test process with ESM”, which involves more complex programing (blue). Within each 

1284 phase, we offer specific questions to guide empiricists and modelers along the way.
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