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ABSTRACT 

Aims

Tumors of the cutaneous adnexa arise from, or differentiate toward, structures in normal skin 

such as hair follicles, sweat ducts/glands, sebaceous glands, or a combination of these elements. 

This class of neoplasms includes benign tumors and highly aggressive carcinomas. Adnexal 

tumors often present as solitary sporadic lesions, but can herald the presence of an inherited 

tumor syndrome such as Muir-Torre Syndrome, Cowden Syndrome, or CYLD Cutaneous 

Syndrome. In contrast to squamous cell carcinoma and basal cell carcinoma, molecular changes 

in adnexal neoplasia have been poorly characterized, and there are few published reviews on the 

current state of knowledge. 

Methods and Results

We reviewed findings in peer-reviewed literature on molecular investigations of cutaneous 

adnexal tumors published through June 2021.

Conclusions

Recent discoveries have revealed diverse oncogenic drivers and tumor suppressor alterations in 

this class of tumors, implicating pathways including Ras/MAPK, PI3K, YAP/TAZ, beta-catenin, 

and NF-kappaB. These observations have identified novel markers, such as NUT for poroma and 
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porocarcinoma, and PLAG1 for mixed tumors. Here, we provide a comprehensive overview and 

update of the molecular findings associated with adnexal tumors of the skin.

 

INTRODUCTION

Tumors of the cutaneous adnexa are lesions that arise from, or differentiate toward, structures in 

normal skin such as regions of hair follicles, sweat ducts/glands, sebaceous glands, or a 

combination of these elements.1-3 This class of neoplasms includes benign tumors and highly 

aggressive carcinomas. Adnexal tumors often present as solitary sporadic lesions, but in some 

cases can herald the presence of an inherited tumor syndrome.1-4  In contrast to cutaneous 

squamous cell carcinoma (SCC) and basal cell carcinoma (BCC), molecular changes in adnexal 

neoplasia have been poorly characterized. However, recent discoveries have revealed diverse 

oncogenic drivers and tumor suppressor alterations in this class of tumors.3 Here, we provide a 

comprehensive overview and update of the molecular genetics and genomics associated with 

adnexal tumors of the skin.

Tumors with Sebaceous Differentiation

I. General Features

Sebaceous neoplasia exists on a spectrum from benign (sebaceous adenoma, sebaceoma) to 

malignant (sebaceous carcinoma, SC). These lesions present as a painless nodule with a 

predilection for the periocular region. SC has potential for recurrence and metastasis.2, 4, 5 

II. Histopathology

Sebaceous differentiation is characterized by multiple clear cytoplasmic vacuoles lending a 

microvesicular appearance and scalloping of the nucleus. Sebaceous adenoma is well-

circumscribed, with abnormal architecture but retained polarization (central sebocytes 

surrounded by unusually prominent peripheral basaloid germinative cells) (Fig 1A). Sebaceoma 

is circumscribed, with loss of polarization (mingling of sebocytes and basaloid cells) and >50% 
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basaloid cells (Fig 1B). In SC, malignant findings can include atypia, infiltrative growth, and 

pagetoid scatter within the overlying epidermis; sebaceous differentiation may be extensive, or 

focal and subtle (Fig 1C).1, 2, 5 

III. Molecular Features

Sebaceous tumors can be sporadic or syndromic. Muir-Torre Syndrome (MTS) is a subtype of 

Lynch Syndrome/ Hereditary Non-Polyposis Colon Cancer associated with germline mutation of 

MMR genes including MLH1, MSH2, and MSH6, manifested by sebaceous tumors and internal 

carcinomas (Tables 1, 2).5 Immunohistochemistry is highly sensitive for detecting loss of MMR 

protein expression related to MTS (Fig 1D), although this approach can display limited 

specificity for distinguishing sporadic from syndromic tumors (as low as 48%) when risk factors 

for MTS are not considered in case selection.6 MUTYH-associated polyposis syndrome, 

associated with germline mutation of the DNA damage repair gene MUTYH (previously known 

as MYH), can also be associated with sebaceous neoplasms.5, 7

Sporadic cutaneous (extraocular) SC can be divided into 3 molecular categories: MMR-deficient, 

UV-damaged, and pauci-mutational (Table 2).8 Highly recurrent mutations vary by subtype.  

TP53 mutations are a frequent finding in MMR and UV-damaged tumors.8, 9 Of note, ocular SC 

has similarities to extraocular SC but also displays distinct drivers in some tumors, including 

HPV or loss of ZNF750.5, 10, 11

Sporadic sebaceous adenomas and sebaceomas are less well characterized, but show similar 

aberrations to SC, including mutations of MMR genes, HRAS/KRAS, and/or TP53 (Table 2).9, 12  

Tumors with Follicular Differentiation

Fibrofolliculoma/Trichodiscoma

I. General Features

Fibrofolliculoma/trichodiscoma display hair follicle and stromal differentiation. The tumor 

classically presents on the nose, and can be associated with Birt-Hogg-Dube syndrome.1, 4 

II. Histopathology
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Tumors are characterized by a stromal nodule with collagenous, mucinous, and fibroblastic 

elements. In fibrofolliculoma, this is accompanied by a central distorted follicular infundibulum. 

Trichodiscoma consists predominantly of loose edematous stroma, often with an epidermal 

collarette or distorted sebaceous units at the periphery.1 

III. Molecular Features

Fibrofolliculoma/trichodiscoma can be sporadic, or associated with Birt-Hogg Dube syndrome 

linked to germline mutation in the folliculin (FLCN) gene that regulates the mammalian target of 

rapamycin complex 1 (mTORC1) signaling cascade (Tables 1, 3).1 

The spindle cell-predominant variant of trichodiscoma (SCPT) lacks association with Birt-Hogg-

Dube syndrome, and can bear close resemblance to spindle cell lipoma.13 Evaluation for RB1 

deletion (present in spindle cell lipoma, absent in SCPT) is helpful in this distinction.14 

Pilomatricoma and Pilomatrical Carcinoma

I. General Features

Pilomatricoma and pilomatrical carcinoma differentiate toward hair matrix.1 Tumors are 

typically found as large nodules on the head and neck (Fig 2A). Pilomatricoma is a relatively 

common tumor that usually arises on younger adults, whereas pilomatrical carcinoma is rare and 

tends to present after middle age. Multiple pilomatricomas may be associated with inherited 

tumor syndromes, as discussed below. Pilomatrical carcinoma can be associated with recurrence, 

metastasis, and death, although the risk of aggressive disease is unclear.1-3 

II. Histopathology 

Pilomatricoma is a well-circumscribed dermal tumor lesion composed of peripheral basophilic 

cells that transition into centrally located shadow cells, accompanied by frequent calcification 

and rupture reaction (Figure 2A, B). The “proliferating pilomatricoma” subtype can display 

cytologic atypia and high mitotic rate, but lacks infiltrative growth or significant tumor necrosis. 
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Pilomatrical carcinoma displays asymmetric, infiltrative growth; tumor necrosis; and a 

predominance of basophilic cells.1-3  

III. Molecular Features

Pilomatricoma and pilomatrical carcinoma harbor CTNNB1 mutations resulting in constitutive 

activation of the Wnt/beta-catenin pathway, with associated immunophenotypic findings (Table 

3, Fig 2C-G).15-17 Subclonal trisomy 18 (including the anti-apoptotic gene BCL2) has also been 

demonstrated.18 

Familial multiple pilomatricoma can be associated with a germline gain-of-function missense 

variant of PLCD1 that stimulates the protein kinase C pathway.19 Multiple pilomatricomas may 

also arise in association with germline APC variants.20 In mismatch repair deficiency or 

myotonic dystrophy, hypermutation phenotypes lead to secondary somatic mutations of CTNNB1 

that result in formation of multiple pilomatricomas (Table 3, Fig 2G).21, 22 

Pilomatrical carcinomas usually arise de novo rather than from a preexisting pilomatricoma, and 

genetic events that might trigger progression of pilomatricoma to pilomatrical carcinoma have 

not been identified. Pilomatrical carcinosarcoma can show clonal similarity between epithelial 

and mesenchymal components.23 

Trichoblastoma (including Trichoepithelioma) and Trichoblastic 

Carcinoma/Carcinosarcoma

I. General Features

Trichoblastoma recapitulates primitive hair follicle (hair germ) and follicular mesenchyme, and 

typically presents as a solitary nodule on the head and neck, or in association with nevus 

sebaceus. Malignant forms are rare, and include trichoblastic carcinoma and carcinosarcoma.1, 3, 4

II. Histopathology

Trichoblastoma is a circumscribed tumor in the deep dermis and/or subcutis, consisting of 

uniform basaloid cells arranged in retiform or racemiform patterns, accompanied by fine 

fibroblastic stroma (follicular mesenchyme). There is no significant tumor retraction or atypia, 
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unlike BCC. Variant morphologies include lymphadenoma, trichoepithelioma, and desmoplastic 

trichoepithelioma. Cells are positive for BerEp4, with scattered CK20-positive Merkel cells by 

immunohistochemistry in most cases.1, 3 

Trichoblastic carcinoma displays diagnostic features of trichoblastoma accompanied by 

epithelial atypia including pleomorphism with hyperchromasia, mitotic figures, and crowding. 

Carcinosarcoma demonstrates malignant atypia of both epithelial and stromal components.1, 2 

III. Molecular Features

Activating mutations in HRAS have been described in a subset (11%) of trichoblastomas (Table 

3).24 No classical PTCH1 mutations have been found in conventional trichoblastoma, unlike in 

BCC.3, 25 

The trichoepithelioma subtype can occur sporadically or in the setting of CYLD cutaneous 

syndrome and related entities (Brooke-Spiegler syndrome, familial cylindromatosis, and multiple 

familial trichoepithelioma), associated with germline variants in CYLD on chromosome 16q12-

q13 (Tables 1, 3).26-29 The product of CYLD is a deubiquitinase, the loss of which results in 

aberrant activation of the NF-B signaling pathway.30 Other syndromic associations include 

Rombo Syndrome (possibly associated with MYH9 germline variants) and Bazex–Dupré–

Christol Syndrome (ACTRT1 germline variants).31, 32   The dominant driver of sporadic 

trichoepithelioma remains unknown; occasional cases display somatic mutations in PTCH1 or 

CTNNB1 (Table 3).33, 34

Molecular findings in two cases of trichoblastic carcinosarcoma implicated inactivating tumor 

suppressor mutations (TP53, CDKN2A), and oncogene activation (TERT promoter mutation, and 

subclonal CTNNB1 mutation) (Table 3).35, 36 

Trichilemmoma and Trichilemmal Carcinoma

I. General Features

Trichilemmoma differentiates toward the hair follicle outer root sheath, and presents as a solitary 

lesion (most commonly on the central face) or within nevus sebaceus. Multiple trichilemmomas 

occur in Cowden syndrome (Table 1).1, 3, 4 
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Trichilemmal carcinomas tend to develop as solitary nodules on sun-exposed skin. Small studies 

suggest a favorable prognosis, with potential for rare metastasis.37 The existence of trichilemmal 

carcinoma as a distinct entity from SCC has been debated.1

II. Histopathology

Trichilemmomas are lobular tumors connected to the epidermis, composed of monomorphic 

clear cells and squamous cells, bordered by peripheral palisading and well-defined hyaline 

basement membrane material. Trichilemmal carcinoma displays cytologic and architectural 

similarity to trichilemmoma, with additional findings including infiltrative growth, cytologic 

atypia, prominent nucleoli, and frequent mitoses.3 

III. Molecular Features

Multiple trichilemmomas are included in the diagnostic criteria for Cowden syndrome, which is 

part of the PTEN hamartoma tumor syndrome associated with PTEN loss (10q23.31) resulting in 

disinhibition of the PI3-kinase pathway (Table 1).3, 4 Trichilemmomas arising sporadically or 

within nevus sebaceus can harbor HRAS mutations, and lack alteration of PTEN (Table 3).38, 39 

Thus, PTEN protein expression can distinguish sporadic from syndromic cases.39

NGS profiling of 4 trichilemmal carcinomas revealed frequent TP53 mutation, with variable 

additional alterations (Table 3).40 With the exception of TP53 mutation, these mutations were 

substantially different from recurrent changes previously described for SCC.41

Other Follicular Tumors

Molecular findings in additional follicular tumors, including basaloid follicular hamartoma, and 

trichilemmal cysts and tumors, are shown in Tables 1 and 3.3, 4, 42-47 Of note, one case of 

malignant proliferating trichilemmal tumor displayed an identical ALPK1 hotspot mutation to 

those described for spiradenomas (see below)43, 48. As of this writing, the molecular genetics of 

many follicular tumors (such as trichofolliculoma, pilar sheath acanthoma, melanocytic 

matricoma, and tumor of the follicular infundibulum) remain undescribed.
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Sweat Gland Tumors

Eccrine sweat glands are distributed throughout the body, and consist of a deep secretory coil 

that secretes sweat through a long duct onto the epidermal surface. In contrast, apocrine sweat 

glands are confined to specific body sites (including axilla, perineum, and eyelids) and are 

associated with hair follicles. Of note, adnexal tumors with mixed follicular and glandular 

differentiation have been historically designated as apocrine, even in the absence of specific 

apocrine morphology.1, 3

Cylindroma, Spiradenoma, Spiradenocylindroma, and the malignancies arising from these 

entities

I. General Features

Cylindromas, spiradenomas, and spiradenocylindromas are solitary when sporadic, but can be 

multiple when associated with CYLD cutaneous syndrome.4 Malignant forms are typically 

several centimeters in size and can grow rapidly from existing benign lesions. The prognosis of 

malignant lesions has been correlated to histologic grade, with low-grade tumors metastasizing 

less frequently than high-grade tumors.2, 3, 49 

II. Histopathology

Spiradenomas are characterized by well-circumscribed round dermal nodules consisting of two 

cell populations (small monomorphous basaloid cells, and larger clear cells), prominent 

infiltrating lymphocytes, and intratumoral basement membrane material and lumen formation 

(Fig 3A).  Cylindromas have numerous basaloid nests interconnecting in a “jigsaw puzzle” 

pattern, with basement membrane material surrounding individual nests (Fig 3B). Many lesions 

have hybrid features (spiradenocylindromas).1, 3 

Diagnosis of malignant counterparts (cylindrocarcinoma, spiradenocarcinoma) relies upon 

identification of a benign precursor (Fig 3C). Diagnostic features include cytologic atypia (which 

may be low-grade or high-grade), mitotic figures, and (for spiradenocarcinoma) loss of 

lymphocytes within the tumor (Fig 3D). Ki67 is typically elevated in malignant lesions, and Myb 

expression may be lost.1-3, 49
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III. Molecular Features

Cylindromas are associated with CYLD cutaneous syndrome and related syndromes (familial 

cylindromatosis, Brooke-Spiegler Syndrome), characterized by germline mutation of the CYLD 

gene resulting in aberrant activation of the NF-B pathway (Table 1, Fig 3E-H).29, 30, 50 Sporadic 

cylindromas can also harbor CYLD mutations (Table 4).29, 48 Alternatively, MYB-NFIB fusions 

have been reported in cylindromas (Table 4, Fig 3F,G),51 although the incidence is unclear as this 

finding was not further demonstrated in a subsequent genomic study.48 c-MYB (MYB) is a 

transcription factor associated with regulation of cell cycle, cell survival, and differentiation.52 

Interestingly, Myb expression occurs in CYLD-mutant cylindromas lacking the MYB fusion,48, 53 

suggesting that Myb may act downstream of NF-kB in such tumors (Fig 3H).54Additional 

mutations have been described in the epigenetic modifiers BCOR and DNMT3A, that are more 

traditionally associated with hematologic malignancy.48, 55 

Spiradenomas and spiradenocarcinomas are also associated with loss-of function mutations in 

CYLD, or gain-of-function mutations in ALPK1, resulting in NF-B activation (Fig 3H).48 TP53 

mutations are restricted to malignant tumors (spiradenocarcinoma/cylindrocarcinoma), 

supporting a role in progression from benign precursors (Table 4, Fig 3H).48, 56-58 

Digital Papillary Adenocarcinoma 

I. General Features

Digital Papillary Adenocarcinoma (DPA) is an adnexal neoplasm presenting as a slow-growing 

nodule in acral locations, with high rates of recurrence (up to 21%) and metastasis to lungs or 

lymph nodes (26-50% of cases).1-3, 59 

II. Histopathology

DPA is composed of multiple dermal nodules of mild-to-moderately atypical cuboidal cells 

lining cystic spaces with papillary invaginations.  Cribriform or solid growth may also be 

present.1, 3 

III. Molecular Features
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Driving mutations in DPA remain poorly understood. Somatic mutations in BRAF V600E60, 61 

and TP5356, 62 occur in a minority of cases (Table 4).

Endocrine mucin-producing sweat gland carcinoma

I. General Features

Endocrine mucin-producing sweat gland carcinoma (EMPSGC) is a low-grade neuroendocrine 

tumor, analogous to solid papillary carcinoma of the breast.  EMPSGC presents as a slow-

growing nodule that may clinically mimic a cyst. Metastasis has not been reported, however, 

there can be local recurrence with incomplete excision.2, 63, 64 

II. Histopathology

Tumors are composed of nodules of low-grade neuroendocrine cells displaying varying 

architecture including solid, cystic, papillary, or cribriform patterning. There may be associated 

mucinous carcinoma. Immunohistochemically, the tumor is positive for markers including 

cytokeratins, horomone receptors (AR, ER, and PR), neuroendocrine markers, and MUC2.1, 64, 65

III. Molecular Features

A recent next generation sequencing study analyzed three cases of EMPSGC and identified 

heterogeneous mutations affecting DNA damage response/repair (e.g. BRD4, PPP4R2, and 

RTEL1) and tumor-suppressor pathway (e.g. BRD4, TP53, TSC1, and LATS2) (Table 4).65 A 

separate case series described deletion on chromosome 6.66 Other limited molecular studies have 

been negative for driver alterations.67, 68 

Hidradenoma and Hidradenocarcinoma

I. General Features

Hidradenoma and hidradenocarcinoma are tumors with sweat duct secretory features. The typical 

presentation is as a solitary nodule.4 Malignant transformation is rare. Metastasis has been 

reported for both low and high-grade hidradenocarcinomas.1-3 
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II. Histopathology

Hidradenoma is a dermal tumor with solid and cystic configuration, composed of variable 

proportions of clear, polygonal, oncocytic, epidermoid, squamoid, and mucinous cells. There is 

ductal formation and associated hyalinized stroma. When significant atypia, infiltration, and 

mitoses are present, the lesion is best characterized as hidradenocarcinoma.1, 3 

III. Molecular Features

Approximately half of hidradenomas harbor the t(11;19) translocation resulting in the fusion of 

CRTC1 (previously known as TORC1 or MECT1) and MAML2 (Table 4).69, 70 CRTC1-MAML2 

fusions activate the cAMP Response Element Binding Protein (CREB) pathway to promote 

tumorigenesis. Fusions of CRTC3-MAML2 or EWSR1-POU5F1 have also been described.71, 72  

The poroid variant of hidradenoma displays genetic features of poroma (discussed below).

Hidradenocarcinomas can also display CRTC1-MAML2 fusions.73 In addition, AKT1 mutation, 

PIK3CA mutation, and ERBB2 (Her2/neu) amplification have been described in single cases.56, 73 

TP53 mutations occur, although these are not universal (Table 4).56, 58, 62, 73, 74 

Microcystic Adnexal Carcinoma (MAC)

I. General Features

Microcystic adnexal carcinoma (MAC) is a malignant sweat duct neoplasm usually presenting as 

a firm plaque. Tumors are locally aggressive, with frequent recurrence after excision, but rarely 

metastasize. Although multiple tumors can occur, a syndromic association has not been 

demonstrated.1-4 

II. Histopathology

MAC is an infiltrative carcinoma with superficial keratinizing cysts, deeper infiltrative bilayered 

strands with sweat duct differentiation, minimal cytologic atypia, and fibrotic to hyalinized 

stroma.1-3 

III. Molecular Features
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In a study of 18 tumors, approximately 39% of MACs harbored mutually exclusive alterations 

including either inactivation in TP53 (22%), or insertions affecting JAK1 (17%) associated with 

increased phospho-STAT3 expression by immunohistochemistry.75 Case reports have also 

described alterations of genes including TP53, CDKN2A, and CDKN2B,74, 76 and deletion of 6q 

(Table 4).77 There is no known syndromic association for multiple MACs; however, benign 

proliferations similar to MAC have been linked to elastin abnormalities and germline MYH9 

variants.31, 78 

Poroma and Porocarcinoma 

I. General Features

Poromas display dermal sweat duct differentiation. Clinically, poromas are solitary papules with 

a sessile, pedunculated, or papillomatous appearance.4 Porocarcinomas are often ulcerated 

nodules, that present de novo or as transformation of an existing poroma. Porocarcinomas carry 

significant risk of local recurrence/regional metastasis (up to 20%) and distant metastasis (up to 

12%).1-3, 79, 80 

II. Histopathology

Poromas are nodular tumors with broad connection to the epidermis, composed of two cell types: 

poroid and cuticular cells (Fig 4A, B). Poroid cells are small, monomorphous, round cells with 

uniform ovoid nuclei and little cytoplasm. Cuticular cells have a centrally placed nucleus with 

abundant eosinophilic cytoplasm. Ductal differentiation manifests as small vacuoles or true 

ducts. Variants include purely dermal tumors (dermal duct tumor), intraepidermal lesions 

(hidroacanthoma simplex), or those with hybrid features with hidradenoma (poroid 

hidradenoma). Porocarcinomas demonstrate similar morphology, accompanied by infiltration 

and cytologic atypia.1-3 

 Molecular Features

Poromas and porocarcinomas harbor activating mutations in HRAS,81, 82 or fusions of YAP/TAZ 

including YAP1-MAML2, YAP1-NUTM1, or (rarely) WWTR1-NUTM1 fusions (Table 4).83-85 

YAP is a key transcriptional regulator controlling essential functions such as proliferation and 
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apoptosis, that is negatively regulated by the Hippo pathway.86, 87  Notably, 

immunohistochemical expression of the fusion partner NUT represents a highly specific marker 

for poromas and porocarcinomas, although sensitivity is limited for classic poromas 

(approximately 17-20%), with higher sensitivity in poroid hidradenomas (93%) and 

porocarcinomas (50-58%)(Fig 4C).83-85, 88, 89  

Porocarcinomas have also been reported to harbor other oncogene mutations (including EGFR, 

ERBB2, FGFR3, KRAS, NRAS, or PIK3CA), or EWSR1 rearrangement (Table 4).74, 81-83, 90 

Mutations in tumor suppressor genes (TP53, RB1, CDKN2A) may be restricted to 

porocarcinomas rather than poromas (Table 4, Fig 4D), although reports have been mixed.81-83  

Aberrant immunohistochemical expression of p53, Rb, and p16 is a sensitive and specific finding 

for porocarcinoma relative to poroma.91 

Syringocystadenoma Papilliferum and Syringocystadenocarcinoma Papilliferum

I. General Features

Syringocystadenoma papilliferum (SCAP) may occur in isolation or in association with nevus 

sebaceus (discussed below). Clinically, SCAPs are solitary papules, predominantly on the head 

and neck.4 Malignant lesions (syringocystadenocarcinoma papilliferum, or verrucous carcinoma 

arising in SCAP) are rare. Complete surgical excision of carcinomas is typically curative.1, 3 

II. Histopathology

Syringocystadenoma papilliferum (SCAP) is a benign apocrine neoplasm associated with the 

epidermis or hair follicle, composed of papillary and cystic structures formed by a double layer 

of columnar luminal cells and ovoid basal cells (Fig 5A). The surrounding stroma is rich in 

plasma cells (Fig 5B). There may be overlying verrucous epidermal hyperplasia.1, 3

Syringocystadenocarcinoma papilliferum are similar to SCAP, with overtly malignant cytologic 

features including atypia, mitoses, loss of polarity, and areas of infiltrative growth.1, 3 

III. Molecular Features
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Mutations of BRAF V600E (approximately 52%)24, 92 and HRAS (approximately 26%)24, 93, 94   

are the most commonly identified drivers associated with SCAP (Table 4). BRAF V600E 

mutation is detectable in both the glandular and verrucous (keratinocytic) components of the 

tumor (Fig 5C).95 A SCAP arising within nevus sebaceus was found to harbor a PIK3CA 

mutation not present in the precursor lesion.93 

Genomic events in malignant tumors are poorly understood. Verrucous carcinomas arising in 

SCAP demonstrate corresponding BRAF mutations.96 One metastatic tumor classified as 

syringocystadenocarcina papilliferum demonstrated multiple mutations including TP53 and 

PIK3CA E453K (Table 4),97 although TP53 mutation may not be consistently present in these 

tumors.58

Other Sweat Gland Tumors

Molecular findings in additional sweat gland tumors are listed in Table 4, including adenoid 

cystic carcinoma, apocrine carcinoma, hidradenoma papilliferum, hidrocystoma, mammary 

analog secretory carcinoma, mucoepidermoid carcinoma, tubular adenoma, signet-

ring/histiocytoid carcinoma, syringoma, and syringofibroadenoma.1-4, 98-102  As of this writing, 

there are no well-characterized genomic aberrations in many sweat gland neoplasms, including 

mucinous carcinoma, cribriform carcinoma, or squamoid eccrine ductal carcinoma.

TUMORS WITH MIXED DIFFERENTIATION

Although many adnexal tumors can display mixed differentiation in a subset of cases, 

multilineage differentiation is a consistent feature of mixed tumor and nevus sebaceus (Table 5).

Mixed tumor (chondroid syringoma) and malignant mixed tumor

I. General Features

Mixed tumor (chondroid syringoma) is a benign neoplasm analogous to pleomorphic adenoma of 

the salivary gland. The tumor presents as a large solitary nodule, with no predilection for 



This article is protected by copyright. All rights reserved

anatomic location. Benign mixed tumor has an uneventful course. Malignant mixed tumors are 

rare, arise from benign mixed tumors, and have metastatic potential.1, 3, 4 

II. Histopathology

Apocrine mixed tumors have a prominent glandular component, arranged as tubules and cysts 

with two cell layers, as well as myoepithelial and mesenchymal (chondromyxoid) components 

(Fig 6A, B). Major subtypes are eccrine mixed tumor (EMT) and apocrine mixed tumor (AMT). 

EMTs have simple ductal structures in a chondromyxoid stroma, whereas glands are larger and 

more extensive in AMT. Malignant mixed tumor arises from a pre-existing benign mixed tumor, 

and can resemble adenocarcinoma, myoepithelial carcinoma, sarcomatoid carcinoma, or not 

otherwise specified (NOS).1, 3 

III. Molecular Features

Benign and malignant cutaneous mixed tumors harbor PLAG1 rearrangements (Table 5),103 with 

potentially different fusion partners (NDRG1 and TRPS1)104 from PLAG1 fusions in pleomorphic 

adenomas in the salivary gland.105   PLAG1 immunohistochemistry can thus be useful for 

identifying mixed tumors in cases with partial sampling or poor differentiation (Fig 6C)103, 105 

although this marker may be less sensitive for the eccrine subtype.106 PFH1-TFE3 fusion was 

reported in one case of malignant mixed tumor (Table 5), a fusion also associated with ossifying 

fibromyxoid tumors.107 

CONCLUSION

Our understanding of the molecular alterations in cutaneous adnexal neoplasms has advanced 

greatly in recent years. However, the rarity and diversity of these tumors has made large-scale 

definitive studies challenging; for many tumor types, molecular data is based only on case 

reports or small series. Further, there is little understanding of germline and somatic events 

related to adnexal tumorigenesis in populations of non-European descent. Finally, additional 

investigations of tumor progression, and functional characterization of potential driver genes, are 

necessary to place genomic findings in biological context. Together with the many recent 
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advances described in this review, such studies will significantly improve diagnosis, 

prognostication, and management of these challenging tumors.
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Figure Legends 

Figure 1. Sebaceous tumors. (A) Sebaceous adenoma, displaying normal polarization with 

prominent basaloid germinative layer. (B) Sebaceoma, with predominance of basaloid cells. (C) 

Sebaceous carcinoma, with mitotically active atypical cells and subtle sebaceous differentiation. 

(D) Example of mismatch repair gene immunohistochemistry, demonstrating the most common 

pattern (loss of MSH2 and MSH6). A-C: Hematoxylin and eosin (magnification 400x for A, B; 

200x for C). D: Immunohistochemistry with DAB brown chromogen detection (magnification 

25x).

Figure 2. Pilomatricoma. (A) Circumscribed tumor in dermis or subcutis. (B) Cell types include 

ghost cells (bottom left), basophilic cells (top right), and transitional cells. (C) Beta-catenin 

expression in pilomatricomas, with nuclear and cytoplasmic staining of peripheral basaloid cells. 

(D) Beta-catenin staining in background epidermis, demonstrating membranous staining of 

keratinocytes. (E) LEF1 nuclear expression consistent with activated beta-catenin signaling in 

basaloid cells of pilomatricoma. (F) CDX2 expression in pilomatricomas may be downstream of 

Wnt/beta-catenin signaling. (G) Gene alterations in pilomatricomas implicate Wnt/beta-catenin 

and Protein Kinase C pathways. A,B: hematoxylin and eosin (5x and 400x), C-F: 

Immunohistochemistry with DAB brown chromogen (400x). FAP: familial adenomatous 

polyposis. GOF: gain of function variant/mutation. LOF: Loss of function.

Figure 3. Spiradenoma and cylindroma. (A) Spiradenoma displaying small monomorphous 

cells with duct formation and intermingled lymphocytes. (B) Cylindroma. Interlocking “jigsaw 

puzzle” formation with prominent basement membrane. (C) Spiradenocarcinoma. Scanning 
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magnification of large infiltrative tumor. Dashed circle denotes precursor spiradenoma. (D) 

Spiradenocarcinoma, displaying poorly-differentiated tumor cells. (E) Nuclear and cytoplasmic 

p65 expression in spiradenoma, correlating with NF-B pathway activation. (F) Myb expression 

in cylindroma. (G) Fluorescence in situ hybridization for MYB (red) and NFIB (green) performed 

demonstrates fusion signals (yellow arrows) in some cylindromas. (H) Molecular drivers for 

spiradenomas and cylindromas implicate NF-B and Myb, with tumor suppressor loss-of-

function events (TSG LOF) associated with malignant progression. A-D: hematoxylin and eosin 

(A, B, D 400x; C scanning magnification). E, F: Immunohistochemistry with DAB brown 

chromogen (200x). GOF: gain of function variant/mutation. LOF: Loss of function 

variant/mutation.

Figure 4.  Poroma. (A) Nodular tumor with glandular differentiation and broad connection to 

epidermis. (B) Tumors consist of small poroid cells and larger cuticular cells, with lumen 

formation. (C) When NUTM1 is present as a fusion partner, NUT protein expression is a specific 

finding for poroma and related tumors. (D) Molecular drivers of poroma implicate Hippo/YAP 

and MAPK pathways, with tumor suppressor loss-of-function (TSG LOF) potentially related to 

malignant progression.

Figure 5. Syringocystadenoma papilliferum. (A) Cystic glandular proliferation with associated 

epidermal hyperplasia. (B) Papillary growth with plasma cell-rich stroma. (C) In the subset of 

tumors with BRAF V600E mutations, immunohistochemistry for BRAF-V600E can demonstrate 

presence of mutation in glandular (green arrow) and epidermal (black arrow) components.

Figure 6. Benign mixed tumor. (A) Circumscribed dermal nodule with glandular structures in 

chondromyxoid stroma (hematoxylin and eosin, 6x). (B) Glandular structures in myxoid stroma 

(hematoxylin and eosin, 100x). (C) PLAG1 immunohistochemical expression in mixed tumor 

(DAB chromogen, 200x).
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Table 1. Syndromic Associations with Cutaneous Adnexal Tumors 

Syndrome  Gene Function Cutaneous Tumors Extracutaneous 

Neoplasms 

Other Findings Estimated 

Prevalence 

Bazex–Dupré–

Christol (ACTRT1) 

 

Ciliary function BCC, less frequently 

trichoepitheliomas 

N/A Follicular atrophoderma, 

hypotrichosis, hypohidrosis, 

milia, facial 

hyperpigmentation, hair shaft 

anomalies 

<1/1000000 

Birt-Hogg-Dube 

(FLCN) 

 

Inhibition of mTOR 

pathway 

Fibrofolliculoma/trichodiscoma, 

acrochordon 

Pulmonary cysts, renal 

tumors (most 

commonly 

oncocytoma or renal 

cell carcinoma) 

Spontaneous pneumothorax Unknown 

CYLD cutaneous 

syndrome /Brooke-

Spiegler (CYLD) 

 

Deubiquitinase (NF-

B inhibition) 

Trichoepithelioma, 

spiradenoma, cylindroma, 

spiradenocylindroma with rare 

malignant transformation 

Membranous basal cell 

adenoma (salivary 

gland) 

N/A <1/100,000 

Clouston (GJB6, 

GJB2) 

 

Connexins Syringofibroadenoma N/A Palmoplantar keratoderma, 

hypotrichosis, nail dystrophy 

Unknown 

Cowden (PTEN) 

 

Inhibition of PI3K 

signaling 

Trichilemmoma, multiple 

hamartomatous lesions 

High risk for breast, 

thyroid, and 

endometrial carcinoma 

Acral keratoses, oral 

papillomas 

1/200000 

Familial 

Pilomatricoma 

(PLCD1) 

Phospholipase C 

(Protein kinase C, 

MAPK) 

Multiple pilomatricomas N/A N/A Unknown 
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FAP (APC) 

 

Inhibition of Wnt/-

catenin signaling 

Multiple pilomatricomas, 

epidermoid cysts, cutaneous 

fibromas, lipoomas 

Osteomas, colorectal 

adenomas, desmoid 

tumors, adrenal 

adenomas, 

nasopharyngeal 

angiofibroma 

 

Increased risk for 

colon, thyroid, 

hepatobiliary, and 

CNS malignancies 

N/A  (~1/8000).  

 

Generalized 

basaloid follicular 

hamartoma 

syndrome (PTCH1) 

Hedgehog signaling 

(less prominent 

activation than 

NBCCS) 

Basaloid follicular hamartomas; 

less frequently acrochordons, 

steatocystomas 

N/A Palmoplantar pitting, 

hypohidrosis, hypotrichosis, 

alopecia 

 

Happle-Tinschert 

Syndrome 

(unknown) 

Unknown Unilateral segmental basaloid 

follicular hamartoma 

N/A Cerebral, osseous, dental 

abnormalities 

Unknown 

Muir-Torre (MMR 

genes: MLH1, 

MSH2, and MSH6) 

 

DNA mismatch repair Sebaceous adenoma, 

sebaceoma, sebaceous 

carcinoma, keratoacanthoma 

Colonic 

adenocarcinoma (most 

common), 

genitourinary, breast, 

and hematologic 

malignancies 

N/A 1/300 

Malta Myosin heavy chain Syringoma, microcystic adnexal N/A Atrophoderma vermiculata, Unknown 
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syndrome/Nicolau-

Balus (MYH9, 

possible) 

 

carcinoma-like lesions milia 

NBCCS (PTCH1) 

 

Inhibition of 

Hedgehog signaling 

Numerous BCCs; basaloid 

follicular hamartomas 

(infrequent) 

Odontogenic 

keratocysts, CNS 

tumors, ovarian cysts  

Palmoplantar pits, skeletal 

anomalies, coarse facial 

features, hypertelorism, 

macrocephaly 

~1/31000 

Schimmelpenning–

Feuerstein–Mims 

(postzygotic 

HRAS/KRAS) 

 

RAS-MAPK signaling Nevus sebaceus CNS, ocular, and 

skeletal anomalies 

N/A Unknown 

Schöpf-Schulz-

Passarge (WNT10A) 

 

Wnt/-catenin 

signaling 

Syringofibroadenoma, eyelid 

apocrine hidrocystoma 

N/A Palmoplantar keratoderma, 

telangiectasia, dental 

anomalies, onychodystrophy, 

hypotrichosis 

<1/1000000 

Steatocystoma 

multiplex (KRT17) 

Keratin Steatocystomas, eruptive vellus 

hair cysts 

N/A Pachyonychia congenita Unknown 

BCC: basal cell carcinoma. FAP: familial adenomatous polyposis. MMR: mismatch repair. NBCCS: nevoid basal cell carcinoma syndrome.  
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Table 2. Molecular Findings in Cutaneous Sebaceous Tumors 

Tumor Molecular Findings Diagnostic Correlations 

sebaceous carcinoma Sporadic—3 subtypes: 

1) MMR (mismatch repair genes, HRAS/KRAS, TP53, RB1, RREB1, 

NOTCH1/2, FAT3, KMT2D) 

2) UV (TP53, RREB1, NOTCH1/2, FAT3, KMT2D) 

3) Paucimutational (HRAS, NOTCH1) 

 

Syndromes-2: 

Mismatch repair genes (MSH2>MLH1, MSH6): Muir-Torre Syndrome 

MUTYH: MUTY-Associated Polyposis 

UV signature correlates with poor 

differentiation, infiltrative growth, 

squamous differentiation 

 

MMR immunohistochemistry may 

show expression loss in syndromic or 

sporadic MMR-deficient tumors 

sebaceous adenoma, sebaceoma Sporadic (subtypes not established) 

MSH2, HRAS/KRAS, TP53, CDKN2A, EGFR, CTNNB1 

 

Syndromes—2: 

Mismatch repair genes (MSH2>MLH1, MSH6): Muir-Torre Syndrome 

MUTYH: MUTY-Associated Polyposis 

MMR immunohistochemistry may 

show expression loss in syndromic or 

sporadic MMR-deficient tumors 
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Table 3. Molecular Findings in Cutaneous Tumors with Hair Follicle Differentiation 

basaloid follicular hamartoma Sporadic: unknown 

Syndrome: PTCH1 (NBCCS, GBFHS) 

 

fibrofolliculoma/trichodiscoma Sporadic: unknown 

Syndrome: FLCN (Birt-Hogg-Dube Syndrome) 

No RB1 deletion (unlike spindle cell 

lipoma) 

pilomatricoma, pilomatrical carcinoma Sporadic: 

CTNNB1 activating mutation 

 

Syndromes/Inherited: 

APC (Familial Adenomatous Polyposis/Gardner) 

PLCD1 (familial pilomatricoma) 

CTNNB1 somatic mutation superimposed on germline mutation in other 

gene (MMR syndromes, myotonic dystrophy) 

IHC: Beta-catenin (nuclear and 

cytoplasmic), LEF1, CDX2 

expression 

trichoblastoma (TB), other than 

trichoepithelioma 

Sporadic: HRAS (subset)  

trichoblastic carcinoma Sporadic: TP53, CDKN2A, TERT promoter, CTNNB1  

trichoepithelioma (TB subtype) Sporadic: PTCH1, CTNNB1 

 

Syndromes—2: 

CYLD (CYLD Cutaneous Syndrome) 

ACTRT1 (Bazex–Dupré–Christol Syndrome) 

MYH9 (possible) (Rombo Syndrome) 

 

trichilemmoma Sporadic: HRAS 

Syndrome: PTEN (Cowden Syndrome) 

 

PTEN protein loss is specific to 

syndromic tumors 

trichilemmal carcinoma Sporadic: TP53, variable mutations and oncogenic fusions . 

trichilemmal cyst Sporadic: unknown 

Inherited: PLCD1 (familial) 

 

trichilemmal tumor (benign, malignant) Sporadic: Aneuploidy, (1 malignant case) PIK3CA and ALPK1 

mutations 

 

GBFHS: generalized basaloid follicular hamartoma syndrome. NBCCS: Nevoid basal cell carcinoma syndrome. 
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Table 4. Molecular Findings in Sweat Gland Tumors 

cylindroma Sporadic: CYLD mutation, MYB-NFIB fusion 

 

Syndrome: CYLD (CYLD Cutaneous Syndrome) 

 

Myb expression (not specific) 

spiradenoma Sporadic: CYLD mutation, ALPK1 mutation 

 

Syndrome: CYLD (CYLD Cutaneous Syndrome) 

 

Myb expression (not specific) 

carcinoma ex spiradenoma, cylindroma 

(spiradenocarcinoma, cylindrocarcinoma) 

Sporadic or syndromic: TP53 (secondary mutation in addition to 

molecular driver of precursor benign tumor) 

Loss of Myb expression may 

correlate with malignancy 

adenoid cystic carcinoma Sporadic: MYB-NFIB fusions, MYBL1-NFIB fusion Myb expression (not specific) 

apocrine carcinoma Sporadic: ERBB2 (HER2-neu) gene amplification (1 case)  

digital papillary adenocarcinoma Sporadic: BRAF V600E (minority), TP53 (minority)  

endocrine mucin-producing sweat gland 

carcinoma 

Sporadic: heterogeneous mutations affecting DNA damage 

response/repair (BRD4, PPP4R2, RTEL1) and tumor-suppressor 

pathway (BRD4, TP53, TSC1, LATS2) 

MUC2 expression suggestive of 

conjunctival origin 

hidradenoma Sporadic: CRTC1-MAML2 fusion (rarely CRTC3-MAML2), 

EWSR1-POU5F1 fusion 

 

hidradenoma papilliferum Sporadic: PIK3CA, other PI3K pathway mutations  

hidradenocarcinoma Sporadic: CRTC1-MAML2 fusion, ERBB2 amplification, TP53 mutation 

(minority) 

 

hidrocystoma Sporadic: unknown 

 

Syndrome: 

WNT10A (Schöpf-Schulz-Passarge Syndrome) 

 

mammary analog secretory carcinoma Sporadic: ETV6 fusions including ETV6-NTRK3; (rare) NFIX-FKN1 

fusion 

 

microcystic adnexal carcinoma Sporadic: TP53, JAK1, paucimutational Phospho-STAT3 and/or altered p53 

expression (majority)—unlike 

syringoma 

mucoepidermoid carcinoma Sporadic: CRTC1 rearrangements (non-MAML2)  

papillary eccrine adenoma (tubular Sporadic: BRAF V600E, KRAS  
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adenoma) 

poroma Sporadic: YAP1-MAML2, YAP1-NUTM1, or (rarely )WWTR1-NUTM1 

fusions 

NUT expression (minority) 

poroid hidradenoma Sporadic: YAP1-NUTM1 (majority) NUT expression (majority) 

porocarcinoma Sporadic: YAP1-MAML2, YAP1-NUTM1 fusions; TP53, RB1, 

CDKN2A, HRAS mutation 

NUT expression (majority) 

Aberrations of p53, Rb, and/or p16 

expression 

syringocystadenoma papilliferum Sporadic: BRAF V600E, HRAS  

signet-ring cell/histiocytoid carcinoma Sporadic: PIK3CA (2 cases), CDH1 (1 case)  

syringofibroadenoma Sporadic: HPV (1 of 2 cases with SCC) 

 

Syndromes—2: 

WNT10A (Schöpf-Schulz-Passarge Syndrome) 

GJB6, GJB2 (Clouston syndrome) 

 

syringoma Sporadic: unknown 

 

Syndromes/Inherited: 

Chr 16q22 (multiple syringomas) 

Trisomy 21 (Downs Syndrome) 

MYH9 (possible) (Nicolau-Balus Syndrome) 

 

tubular apocrine adenoma (tubular 

adenoma) 

Sporadic: BRAF V600E, KRAS  

   

 



 

This article is protected by copyright. All rights reserved 

Table 5. Molecular Findings in Cutaneous Tumors with Multilineage Differentiation 

nevus sebaceus Sporadic: HRAS, KRAS postzygotic mutation 

Additional mutations in secondary tumors (trichoblastoma, SCAP, etc.) 

 

Syndrome: Mosaic HRAS, KRAS, NRAS (Schimmelpenning–

Feuerstein–Mims Syndrome) 

HRAS (Costello Syndrome) 

KRAS (Noonan Syndrome) 

FGFR2 (various craniosynostosis syndromes) 

 

mixed tumor, benign (chondroid syringoma) Sporadic: PLAG1 fusions (partners include NDRG1, TRPS1 PLAG1 is sensitive and specific 

marker mixed tumor, malignant Sporadic: PLAG1 rearrangement, (single case) PFH1-TFE3 fusion 
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