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A1 Prior Distribution (8)-(10) in the Main Paper

A1.1 The Role of Hyperparameters c1 and c2

By Beta-Bernoulli conjugacy, we integrate the joint distribution in (8)-(9) in Main Paper
[{αk, k = 1, . . . , K} | p][p | c1, c2] over p to obtain the marginal prior:

pr({αk, k = 1, . . . , K} | c1, c2) =
M∏
m=1

(c1c2/M)Γ(nm1 + c1c2/M)Γ(K − nm1 + c2)

Γ(K + c2 + c1/M)
, (S1)

where Γ(·) is the Gamma function and nm1 =
∑K

k=1 αkm, m = 1, . . . ,M . Holding c2 constant,
the prior average number of positives among αk decreases with c1. Holding c1 constant, the
latent state vectors, αk and αk′ , k 6= k′, become a priori increasingly similar as c2 decreases.
In fact, the prior probability of P[αkm = αk′m | k 6= k′, c1, c2] = E{p2

m + (1− pm)2 | c1, c2} =

1− 2 c1
c1+M

(
1− c1c2+M

c1c2+c2M+M

)
approaches one when c2 approaches zero.
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A1.2 On Merging Clusters with Identical Draws of States

Define “scientific clusters” C̃ by merging clusters associated with identical latent states. That
is,

C̃ =
{
{i : ηi = α̃k, k = 1, . . . , T̃

}
where {α̃k, k = 1, . . . , T̃} collects T̃ (≤ T ) unique patterns among {αk, k = 1, . . . , T} that

are present in the sample. Let M : {ηi = αZi
, i = 1, . . . , N} 7→ C̃ represent this merge

operation, i.e., C̃ =M(H), where H = {ηi, i = 1, . . . , N}.
Define partial ordering “ � ” over partitions C1 � C2 if for any C1 ∈ C1, one can find

a C2 ∈ C2 satisfying C1 ⊆ C2. We have C � C̃, i.e., C̃ is coarser than C. Our procedure
for obtaining clusters C̃ differs from the kind of mixture models that distinct Zi values with
probability one correspond to distinct component parameters sampled from a continuous
base measure (e.g., Miller and Harrison, 2017, Proof of Theorem 4.2).

We specified priors on C. And for each cluster, we have {αk, k = 1, . . . , T}, where T ≤ K

and excludes empty component(s). We can then merge C to obtain C̃. Therefore a prior on

C induces a prior on C̃. Setting c2 = 1, we have

p(C̃ | c1, γ) =
∑
C:C�C̃

p(C̃ | C, c1) · p(C | γ) (S2)

=
∑
C:C�C̃

(
2M

T̃

)
(T̃ )!

{∫
p({αk, k = 1, . . . , T} | S,p)p(p | c1)dp

}
· p(S | γ) · T !,

(S3)

where S = {S1, . . . , ST} is a ordered partition of N subjects, obtained by randomly ordering
parts or blocks of C uniformly over T ! possible choices and p(S | γ) · T ! = p(C | γ).

A2 Marginal Likelihood g(C)

Given assignment of subjects to blocks in C, the model likelihood in a cluster C ∈ C is

pr
(
YC | α,θ+,θ−, Q

)
=

∏
`:Γ(Q,α)`=0

{θ−` }
nk`1

(
1− θ−`

)nk`0 ·
∏

`:Γ(Q,α)`=1

{θ+
` }

nk`1
(
1− θ+

`

)nk`0 ,

(S4)

where nk`1 =
∑

i∈C Yi` and nk`0 =
∑

i∈C(1 − Yi`) are the number of positive and negative
responses at dimension ` for subjects in cluster C. We obtain the marginal likelihood g(C)
by integrating out latent states α in (S4):

g(C) =
∑

α∈{0,1}M
pr
(
YC | α,θ+,θ−, Q

)
P(αk = α | p), (S5)

where P(αk = α | p) =
∏M

m=1 p
αm
m (1− pm)1−αm .

2



A3 Split-Merge Update

We adapt an existing recipe designed for models with priors conjugate to the component-
specific parameters (Jain and Neal, 2004). The goal of split-merge updates is to make global
changes to cluster configuration followed by further refinement of clusters via Gibbs update
one subject at a time. We sketch a complete round of split-merge update in the following;
see Jain and Neal (2004) for full details.

Step i: Randomly choose two observations i and j. Let S = {i′ : Zi′ = i or j, i′ = 1, . . . , N}.

Step ii: Based on (12) in the Main Paper, assign subject k in S \ {i, j} to either the cluster of
i or j with probability P(Zk = z | others):

(|Cz|+ γ)g(Cz ∪ {k})/g(Cz)

(|CZi
|+ γ)g(CZi

∪ {k})/g(CZi
) + (|CZj

|+ γ)g(CZj
∪ {k})/g(CZj

)
, (S6)

for z ∈ {Zi, Zj}. Repeat the intermediate Gibbs scan for r = 5 times and obtain
Z launch.

Step iii: Perform a final Gibbs scan restricted to observations S \ {i, j} using (S6), resulting in
updated clusters as the proposal states to be used in a Metroplis-Hasting step which we
denote by Zcand. Compute the proposal densities q(Zcand | Z) and q(Z | Zcand). The
details are in Jain and Neal (2004). For the non-trivial cases, the proposal densities
depend on the random launch state Z launch and are products of Gibbs update densities
in (S6). Z launch appears in the proposal densities, because it indexes the transition
kernel to Zcand.

Step iv: Accept or reject the proposed clustering Zcand with acceptance probability computed
from prior ratio (based on two sets of clusters induced by Zcand vs Z launch), likelihood
ratio (given clustersZcand vsZ launch and other population parameters), ratio of proposal
densities (from Step iii). See Jain and Neal (2004) for the general recipe of computing
the acceptance probability.

Step v: Perform one complete Gibbs scan (12) in the Main Paper for all observations to refine
the current state of cluster indicators.

The above is referred to as (5, 1, 1) split-merge update where 5 intermediate Gibbs scans
are used to reach launch states Z launch, one Metroplis-Hasting step to accept or reject a
candidate clustering Zcand, and one final complete Gibbs scan for all observations to refine
the newly obtained cluster (Jain and Neal, 2004).

A4 Convergence Check

In simulations and data analysis, we ran three MCMC chains each with a burn-in period of
10, 000 iterations followed by 10, 000 iterations stored for posterior inference. We look for
potential non-convergence in terms of Gelman-Rubin statistic (Brooks and Gelman, 1998)
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that compares between-chain and within-chain variances for each model parameter where
a large difference (Rc > 1.1) indicates non-convergence; We also used Geweke’s diagnostic
(Geweke and Zhou, 1996) that compare the observed mean for each unknown variable us-
ing the first 10% and the last 50% of the stored samples where a large Z-score indicates
non-convergence (|Z| > 2). In our simulations and data analyses, we observed fast conver-
gence (many satisfied convergence criteria within 2, 000 iterations) that led to well recovered
clusters and Q matrices (results not shown here).

A5 Details about Simulation Studies

A5.1 Simulation Setup

Simulation 1. We set N = 50, L = 100 and M = 3. We randomly generate a matrix Q (M

by L) where each row has on average s = 20% non-zero elements: Qm`
i.i.d∼ Bernoulli(0.2), ` =

1, . . . , L. In the rare event where a random Q /∈ Q defined by (4) in the Main Paper, we
randomly permute pairs of elements in Qm∗ until Q ∈ Q. We draw latent states for each

observation independently according to ηi
d∼ Categorical (A;π0 = πb) where

π0 = {P(ηi = (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1))},

and
πb = (1/6, 1/6, 1/6, 1/6, 1/12, 1/12, 1/12, 1/12).

We assume the response probabilities shift between two levels θ+
` = 0.8 and θ−` = 0.15. The

distinct subsets of features where shifts occur define eight classes |A| = 8 = (2M), which
upon enumeration by observation gives an N by L design matrix Γ.
Simulation 2. We simulated R = 60 replication data sets for each of 1, 920 combina-
tions of (#features, sample size, sensitivity, 1-specificity, mixing weights, sparsity level):
(L,N, θ+

0 , θ
−
0 ,π0, s) ∈ {50, 100, 200, 400} ⊗ {50, 100, 200} ⊗ {0.8, 0.9} ⊗ {0.05, 0.15} ⊗ {πa =

(1
8
, . . . , 1

8
),πb = (1

6
, . . . , 1

6
, 1

12
, . . . , 1

12
)} ⊗ {10%, 20%}. The parameter values are designed to

mimic what would be expected in the motivating example.
Simulation 3. We further compare clustering performance of the competing methods under
two simple representative sets of data generating mechanisms (DGM) with small and large
degrees of departures from model (1)-(3) in the main paper. The choices are guided by
their scientific relevance to the scleroderma application. The first set only perturbs the final
layer of the model. It assumes the same scientific structure as the main model and the
same parameter values in Simulation 2 except the measurement error parameters. This is
to mimic hypothetical variation in the GEA experiment conditions which might be missed
by the assumed model. More specifically, for subject i in class k, we set θi` ∼ θ+

` + Uk`
if Γi` = 1 and θi` ∼ θ−` + Vk` if Γi` = 0, where Uk` ∼ Uniform(−0.095, 0.095) and Vk` ∼
Uniform(−0.045, 0.045) independently for class k = 1 . . . , K and feature ` = 1, . . . , L. We
set other parameters prior to perturbation the same as in Simulation 2. The second set is
the classical LCM. Different from any RLCM, it does not specify any structure on how the
clusters are linked to the observables so the classes have flexible response probability profiles.
We simulated data under three- and six-class LCMs to investigate clustering performance.
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For three-class LCM, we set class prevalences π = (0.6, 0.2, 0.1) with the three dinstinct
response probability profiles (0.9, . . . , 0.9)︸ ︷︷ ︸

L

, (0.5, . . . , 0.5)︸ ︷︷ ︸
L

, (0.1, . . . , 0.1)︸ ︷︷ ︸
L

. For six-class LCM,

we set π = (0.2, 0.2, 0.2, 0.2, 0.1, 0.1) with distinct response probability profiles (0.9, . . . , 0.9)︸ ︷︷ ︸
L

,

(0.7, . . . , 0.7)︸ ︷︷ ︸
L

, (0.5, . . . , 0.5)︸ ︷︷ ︸
L

, (0.3, . . . , 0.3)︸ ︷︷ ︸
L

, (0.1, . . . , 0.1)︸ ︷︷ ︸
L

, (0.01, . . . , 0.01)︸ ︷︷ ︸
L

. We simulated R =

60 data replications under sample size N = 50, 100, dimension L = 50, 100 under all settings.

A5.2 Ajusted Rand Index (aRI)

We use adjusted Rand index (aRI, Hubert and Arabie, 1985) to assess the agreement between
two clustering allocations, e.g,. the estimated and the true clusters. aRI is defined by

aRI(C, C ′) =

∑
r,c

(
nrc

2

)
−
[∑

r

(
nr·
2

)∑
c

(
n·c
2

)]
/
(
N
2

)
0.5
[∑

r

(
nr·
2

)
+
∑

c

(
n·c
2

)]
−
[∑

r

(
nr·
2

)∑
c

(
n·c
2

)]
/
(
N
2

) ,
where nrc represents the number of observations placed in the rth cluster of the first partition
C and in the cth cluster of the second partition C ′,

∑
r,c

(
nrc

2

)
(≤ 0.5

[∑
r

(
nr·
2

)
+
∑

c

(
n·c
2

)]
) is

the number of observation pairs placed in the same cluster in both partitions and
∑

r

(
nr·
2

)
and

∑
c

(
n·c
2

)
calculates the number of pairs placed in the same cluster for the first and the

same cluster for second partition, respectively. aRI is bounded between −1 and 1 and corrects
for chance agreement. It equals one for identical clusterings and is on average zero for two
random partitions; larger values indicate better agreements.

A5.3 Additional Remarks about Simulation 2

We remark on the performance of the other three methods. Over all parameter settings
investigated here, the traditional LCA performed worst in the recovery of true clusters (aRI
< 0.68). The advantage of RLCM comes from the regularization of estimated response
probability profiles towards a scientific structure that improves finite-sample clustering per-
formance. The likelihood function of subset clustering is a special case of the RLCM that
assumes a non-parsimonious Q = IL and therefore loses power for detecting clusters com-
pared to RLCM that estimates a structured Q with multiple non-zero elements in its rows.
HC is fast and recovers the true clusters reasonably well (ranked second or first among the
four methods for more than two thirds of the parameter settings here). The performance
of HC is particularly good under a low level of measurement errors (θ−0 = 0.05) and a large
number of relevant features per machine and sometimes performs much better than tradi-
tional LCA and subset clustering (e.g., L = 200, N = 50, θ+

` = 0.8, θ−` = 0.05 in Figure
S1). The HC studied here requires a pre-specified number of clusters to cut the dendrogram
at an appropriate level and produces clusters that require separate methods for uncertainty
assessment (e.g., Suzuki and Shimodaira, 2006). The proposed Bayesian RLCM, in con-
trast, enjoys superior clustering performance and provides direct internal assessment of the
uncertainty of clusters and measurement error parameters through the posterior distribution.
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method RLCM HC LCA
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Figure S1: Similar to Figure 3 in the Main Paper, the proposed Bayesian RLCM
shows better finite-sample clustering performance than three alternatives over the
parameter settings in Simulation 2.
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Figure S2: Comparison of clustering performance under the first set of data gen-
erating mechanisms (DGM) that have small degrees of deviations from the main
model assumptions.
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Figure S3: Comparison of clustering performance under a second set of data generating
mechanisms (DGMs) that have large degrees of deviations from the assumed model: general
LCMs without structural restrictions (a: three-class LCM; b: six-class LCM; See A5.1 for
specific parameter values). Because RLCM is not flexible enough to capture the present data
generating mechanism, the clustering performance of RLCM is less competitive.
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Figure S5: Observed marginal positive rate (solid vertical line) plotted against the
posterior predictive distributions for L = 50 landmarks (Section 4.2 in the Main Paper).
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Figure S6: Significant deviations of model predicted log odds ratios (LOR) from the ob-
served LOR. A blank cell indicates a good model prediction for the observed pairwise LOR
(|SLORD| < 2); A red (blue) cell indicates model under- (over-) fitting SLORD > 2(< −2),
where standardized LOR difference (SLORD) is defined as the observed LOR for a pair of
landmarks minus the mean LOR for the predictive distribution value divided by the standard
deviation of the LOR predictive distribution. A red box indicate that the pair of landmarks
have cell counts in the 2 by 2 observed marginal table all greater than 5.
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