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Abstract
This paper presents a model-based method for clustering multivariate binary
observations that incorporates constraints consistent with the scientific context.
The approach is motivated by the precision medicine problem of identifying
autoimmune disease patient subsets or classes who may require different treat-
ments. We start with a family of restricted latent class models or RLCMs. How-
ever, in the motivating example and many others like it, the unknown number
of classes and the definition of classes using binary states are among the targets
of inference. We use a Bayesian approach to RLCMs in order to use informative
prior assumptions on the number and definitions of latent classes to be consis-
tent with scientific knowledge so that the posterior distribution tends to con-
centrate on smaller numbers of clusters and sparser binary patterns. The paper
derives a posterior sampling algorithm based on Markov chain Monte Carlo
with split-merge updates to efficiently explore the space of clustering allocations.
Through simulations under the assumed model and realistic deviations from
it, we demonstrate greater interpretability of results and superior finite-sample
clustering performance for our method compared to common alternatives. The
methods are illustrated with an analysis of protein data to detect clusters repre-
senting autoantibody classes among scleroderma patients.

KEYWORDS
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1 INTRODUCTION

Autoantibodies are the immune system’s response to spe-
cific cellular protein complexes or “machines” (e.g., Rosen
and Casciola-Rosen, 2016). Differential immune responses
mounted toward the machines may lead to strikingly
different clinical trajectories between autoimmune dis-
ease patients. Using autoantibodies as probes, a precision
medicine goal is to discover novel autoimmune disease
patient subsets that require different treatments prior to

major clinical manifestation. This paper is motivated by
the need to first formulate a model that respects the sci-
entific constraint that the immune system responds to
machines, that is to all components, rather than to indi-
vidual proteins, and second, based on the model, to per-
form clustering in a Bayesian framework using autoanti-
body test data.
To illustrate the scientific constraint, Figure 1 shows a

hypothetical patient with binary state vector 𝜼𝑖 = (1, 0, 1)𝖳

in the middle panel, indicating that her immune system
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F IGURE 1 The scientific constraint means that immune responses are mounted toward all protein components in each machine rather
than toward individual proteins. For illustrative purposes, the machine profiles here are orthogonal so the true presence or absence of
proteins can be represented by binary matrix factorization; the proposed approach covers general non-orthogonal cases (This figure appears
in color in the electronic version of this article, and any mention of color refers to that version.)

produced autoantibodies to the proteins (autoantigens) in
Machines 1 and 3 but not Machine 2. The right panel
of Figure 1 shows an illustrative example of three dif-
ferent machines (𝑀 = 3) with orthogonal machine pro-
files, though the proposed approach will cover general
nonorthogonal cases. The binary matrix 𝑄 specifies which
proteins constitute eachmachine.We refer to the rows of𝑄

as “machine profiles” where𝑄𝑚𝓁 = 1 if protein 𝓁 is a com-
ponent of machine𝑚. The left panel shows Γ𝑖𝓁, which rep-
resents the error-free true presence or absence of autoan-
tibody against protein 𝓁 = 1, … , 𝐿 for subject 𝑖 = 1, … , 𝑁.
The entire row Γ𝑖∗ = (Γ𝑖1, … , Γ𝑖𝐿) is highlighted for sub-
ject 𝑖. The multivariate binary data for subject 𝑖 (𝒀𝑖 , not
shown in the figure) are Γ𝑖∗ measured with error. The sta-
tistical goal is to incorporate the scientific constraint when
clustering patients into subsets with distinct responses to
the machines. The choice of binary rather than continu-
ous measures of autoantibodies is specific to the gel elec-
trophoresis and autoradiogram (GEA) technology that pro-
duced the datawhere the amount of protein is not informa-
tive about clustering patients (Wu et al., 2019).
The knowledge that the immune system attacks

machines of multiple proteins rather than single proteins
is why we refer to this approach as scientifically structured
clustering (SSC). We use “scientific structure” to refer to
latent binary variables that may be interpreted as having
a scientific meaning. For example, in the protein data
example, each element of the latent binary random vector
𝜼𝑖 represents the presence or absence of a machine. The
scientific meaning of a machine is defined by its compo-
nent proteins indicated by the corresponding row of 𝑄.
SSC for multivariate binary data has a number of potential
applications beyond the example here. For example,

in cognitive diagnosis, the latent states represent basic
cognitive abilities and the 1s in 𝑄 represent the test items
requiring each ability (e.g., Junker and Sijtsma, 2001); in
epidemiology, the latent states can indicate unobserved
disease-causing agents and the 1s in 𝑄 represent the
molecular targets tied to each causative agent (e.g., Wu
et al., 2016). Most importantly, in all these applications, the
resulting clusters conform to the existing scientific context
and therefore can be used to address relevant questions.
As detailed below, the model proposed to address the

motivating patient clustering problem is a member of
the family of restricted latent class models or RLCMs
(e.g., Xu and Shang, 2018). In our motivating example,
however, the possible combinations of machines that the
immune systems can target in the population of patients
are often unknown. This means not knowing the set of dis-
tinct population-level latent state patterns , neither the
size || nor its elements. In addition, the definitions of
machine profiles 𝑄 are often unknown.
In addressing the motivating problem, this paper makes

a primary contribution to the literature on RLCMs. In a
Bayesian framework, we allow an unknown number of
classes in a mixture of finite mixture (MFM; Miller and
Harrison, 2018) framework where each component has
multivariate discrete parameters, for example, the binary
states in our context. We then derive a posterior sampling
algorithm based on Markov chain Monte Carlo (MCMC)
featuring split-merge updates that directly and efficiently
sample the clustering allocations. The algorithm conve-
niently overcomes the hard constraint || ≤ 2𝑀 by post-
processing to merge sampled clusters having the same
sampled state vectors. The model works with an unknown
number of classes, unknown set of state patterns , and



WU et al. 1433

unknown𝑄-matrix.We use informative prior assumptions
on the number and definition of latent classes to be con-
sistent with the scientific knowledge, so that the posterior
distribution tends to concentrate on fewer clusters with
sparser latent state patterns.
The rest of the paper is organized as follows: Section 2

specifies the proposed model and prior distribution. Sec-
tion 3 derives theMCMCalgorithm for posterior inference.
Section 4.1 presents simulation studies to show the better
clustering performance of the proposed clustering method
when compared to three common alternatives. Section 4.2
illustrates the methods with an analysis of protein data for
subsetting scleroderma patients. The paper concludeswith
a discussion of model extensions and limitations.

2 MODELS

First formulated by Lazarsfeld (1950), latent class models
(LCMs) have become an important tool for modeling mul-
tivariate discrete responses (e.g., Goodman, 1974; Dunson
andXing, 2009) andmodel-based clustering (e.g., Vermunt
and Magidson, 2002). Alternative parametric approaches
focus on underlying continuous variable specifications
(e.g., Albert and Chib, 1993), which incorporate latentmul-
tivariate Gaussian random variables that are linked to the
categorical observations through thresholding. However,
these models do not directly perform clustering. In this
paper, we focus on extensions of the classical LCMs to
incorporate scientific constraints when clustering multi-
variate binary responses.
Notation. Let 𝒀𝑖 = (𝑌𝑖1, … , 𝑌𝑖𝓁)𝖳 be the vector of

binary measurements for subject 𝑖 = 1, … , 𝑁 and fea-
ture 𝓁 = 1, … , 𝐿. Let 𝐘 collect all the observations into
an 𝑁 × 𝐿 binary data matrix. Let Γ𝑖𝓁 indicate the true
presence/absence of feature 𝓁 for observation 𝑖. Let Γ be
an 𝑁 × 𝐿 binary matrix with (𝑖, 𝓁)-th element being Γ𝑖𝓁,
referred to as design matrix. We use Γ𝑖∗ = (Γ𝑖1, … , Γ𝑖𝐿) and
Γ∗𝓁 = (Γ1𝓁, … , Γ𝑁𝓁)𝖳 to represent the 𝑖-th row and 𝓁-th
column, respectively. Let 𝜼𝑖 = (𝜂𝑖1, … , 𝜂𝑖𝑀)𝖳 represent the
unobserved latent states for subject 𝑖 = 1, … , 𝑁. Let 𝜼𝑖

lie in an unknown population state space  ⊆ {0, 1}𝑀 .
We use || to denote the cardinality of . As a result,
there are || distinct patterns of latent states. We refer
to  = {0, 1}𝑀 that contains all binary patterns as “satu-
rated” and otherwise “unsaturated”. We collect the latent
states into an 𝑁 × 𝑀 matrix 𝐻 with (𝑖, 𝑚)-th entry being
𝜂𝑖𝑚. Let 𝑄 be an unknown 𝑀 × 𝐿 binary matrix with
each row specifying the scientific meaning of each latent
state. Let 𝑄𝑚∗ = (𝑄𝑚1, … , 𝑄𝑚𝐿) and 𝑄∗𝓁 = (𝑄1𝓁, … , 𝑄𝑀𝓁)𝖳

represent row 𝑚 and column 𝓁 of 𝑄, respectively. Let
[𝐴 ∣ 𝐵] represent the conditional distribution of random
quantity𝐴 given another random quantity𝐵. When𝐵 = ∅,

[𝐴] represents the distribution of 𝐴. Let I(𝐴) be an indi-
cator function which equals 1 if statement 𝐴 is true and
0 otherwise.

2.1 Proposed model

We specify the model for the motivating example in two
steps: (i) impose scientific structure upon the actual pres-
ence or absence of proteins (Γ𝑖∗) and (ii) parameterize [𝒀𝑖 ∣

Γ𝑖∗]. The first step is needed to respect existing biological
knowledge in the scientific context and the second step
characterizes the measurement process.
Let the true presence or absence of feature 𝓁 for subject

𝑖 = 1, … 𝑁 be

Γ𝑖𝓁 =

{
1 if 𝜼𝖳

𝑖
𝑄∗𝓁 ≥ 1;

0 otherwise, 𝓁 = 1, … , 𝐿. (1)

To emphasize the dependence of Γ𝑖𝓁 on 𝑄 and 𝜼𝑖 for
𝓁 = 1, … , 𝐿, we write the row vector Γ𝑖∗ = Γ(𝑄, 𝜼𝑖) so that
Γ(𝑄, 𝜼𝑖)𝓁 = Γ𝑖𝓁. In addition, let Γ(𝑄,) represent an || ×

𝐿 binary matrix with each row representing the true pres-
ence or absence of feature 𝓁 = 1, … , 𝐿 for a subject having
a particular latent state pattern in.
Next, we specify the measurement error model:

𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾 𝗉𝗋𝗈𝖻𝖺𝖻𝗂𝗅𝗂𝗍𝗒∶

𝜃𝑖𝓁 = 𝜃+
𝓁

⋅ I(Γ𝑖𝓁 = 1) + 𝜃−
𝓁

⋅ I(Γ𝑖𝓁 = 0), (2)

𝗆𝖾𝖺𝗌𝗎𝗋𝖾𝗆𝖾𝗇𝗍 𝖾𝗋𝗋𝗈𝗋∶ 𝑌𝑖𝓁 ∣ Γ𝑖𝓁 ∼ 𝖡𝖾𝗋𝗇𝗈𝗎𝗅𝗅𝗂{𝜃𝑖𝓁}, (3)

independently for feature 𝓁 = 1, … , 𝐿 and subject 𝑖 =

1, … , 𝑁. Borrowing the terminologies in the statistical lit-
erature for diagnostic testing, we characterize the stochas-
tic discrepancies between the actual Γ𝑖𝓁 and observed
presence/absence of autoantibodies by sensitivity (𝜃+

𝓁
)

and specificity (1 − 𝜃−
𝓁
). Let 𝜽+ = (𝜃+

𝓁
, … , 𝜃+

𝐿 )𝖳 and 𝜽− =

(𝜃−
1 , … , 𝜃−

𝐿 )𝖳. In this paper, we assume 𝜃+
𝓁

> 𝜃−
𝓁
, because

the diagnostic test based on immunoprecipitation (IP) is
known to be both sensitive and specific. The sensitivity for
a given protein is assumed to be the same regardless from
whichmachine(s) it comes. Importantly, both the sensitiv-
ities and specificities can vary across proteins.
Equations (1) to (3) assume the probability of observ-

ing a protein given that it is present does not depend on
how many machines it is present in, that is, it depends
only on I(𝜼𝖳

𝑖
𝑄∗𝓁 > 0) but otherwise not on the value of

𝜼𝖳
𝑖

𝑄∗𝓁. In our application, the choice is driven by the tech-
nology used. The ability to detect the protein does not
depend on how many machines produced it. In addition,
the amount is irrelevant for clustering patients. Further
the model assumes binary response/nonresponse to each
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protein, rather than quantifying the response as a real
value. This modeling choice follows the convention that
clinicians interpret the presence or absence of bands cor-
responding to each protein on the images obtained from
GEA (Wu et al., 2019).
Equations (1) to (3) are related to some existing models

proposed in cognitive diagnosis (e.g., Templin andHenson,
2006, known 𝑄) and epidemiology (e.g., Wu et al., 2016,
𝑄 = 𝐼𝐿×𝐿), which are examples of restricted LCMs (RLCM,
Xu, 2017). In addition, imposing symmetric error rates
𝜃+

𝓁
= 1 − 𝜃−

𝓁
, 𝓁 = 1, … , 𝐿, results in the one-layer model

of Rukat et al. (2017). The model can also be viewed as
Boolean matrix factorization (BMF; Miettinen et al., 2008)
because model (1) is equivalent to Γ𝑖𝓁 = ∨𝑀

𝑚=1𝜂𝑖𝑚𝑄𝑚𝓁,
where the logical “OR” operator “∨” outputs one if any
argument equals one. The rows in 𝑄 are basis patterns
for compactly encoding the 𝐿 dimensional Γ𝑖∗ vector by
𝑀(≪ 𝐿) bits in 𝜼𝑖 . When 𝑄 has orthogonal rows, BMF fur-
ther reduces to nonnegative matrix factorization (NMF)
Γ = 𝐻𝑄 (Lee and Seung, 1999). Zhang et al. (2007) pro-
posed optimization methods to obtain the best factoriza-
tion while Meeds et al. (2007) and Ni et al. (2019) took a
nonparametric Bayes approach. In contrast to these works,
we add a layer of mixture model in (5) to (10) that provides
additional parsimony and posterior inference of the num-
ber of classes.

2.2 Identifiability considerations for
posterior algorithm design

In general, identifiability conditions based onmodel likeli-
hood can guide the design of simulation studies by inform-
ing the choice of the simulation truths that are statisti-
cally identifiable. In real data analysis, although truth is
not expected to be known even if the model is a reasonable
approximation, identifiability conditions can still dramati-
cally reduce the size of parameter space.
Specifically, under a fixed 𝑀 and possibly unsaturated

, Gu and Xu (2019a) provided sufficient conditions
on Γ(𝑄,) for strictly identifying , 𝝅, 𝜽+, 𝜽−, and
Γ(𝑄,). Although Γ(𝑄,) is identifiable, 𝑄 may only
be identified up to its equivalence classes, where 𝑄1 and
𝑄2 are equivalent if Γ(𝑄1,) = Γ(𝑄2,) with equality
holds elementwise.
In our simulations and data application, we restrict the

inference algorithm to be performed on the set of 𝑀 × 𝐿

binary 𝑄-matrices:

 =
{

𝑄 = 𝑃1𝑄†𝑃2, 𝑄† = [𝐼𝑀; 𝑄], 𝑄 has distinct rows,

∀𝑚, 1𝖳
𝐿×1𝑄𝑚∗ ≥ 3

}
, (4)

where 𝑃1 and 𝑃2 are 𝑀- and 𝐿-dimensional permutation
matrices. First, under a saturated , the conditions in (4)
are based only on 𝑄, easy-to-check, and necessary and suf-
ficient for statistical identification of 𝝅, 𝜽+, 𝜽−, and 𝑄 (Gu
and Xu, 2019b). Second, the constraint also greatly facil-
itates posterior sampling by focusing on a small subset of
binary matrices. In fact, among all𝑀 by 𝐿 binary matrices,
the fraction of𝑄 ∈  is at most𝑀!

( 𝐿

𝑀

)
[2(𝐿−𝑀)𝑀]∕2𝐿⋅𝑀 and

quickly decays as the number of machines 𝑀 increases.
We now turn to inferring individual latent states based

on complete-data likelihood [𝐘 ∣ 𝐻, 𝑄, 𝜽+, 𝜽−]. Even given
𝑄, conditions for identifying 𝐻 exist but may fall short of
ensuring consistent estimation of𝐻 because the number of
unknowns in𝐻 diverges as the sample size increases. Con-
sistent estimation requires extra conditions, for example,
the number of measurements 𝐿 increases with the sample
size (Chiu et al., 2009). In finite samples and dimensions,
we address this issue in a Bayesian framework by encour-
aging𝐻 to be a priori of low complexity, that is, few classes
of distinct and sparse latent state vectors.
Finally, in real data analysis, incorporating informative

priors, for example, partially known 𝑄 or high sensitiv-
ity and specificity may alleviate theoretical identifiability
issues (e.g., Wu et al., 2016). The prior uncertainty for the
nonidentified parameters will propagate into the posterior
and not vanish even as the sample size approaches infinity
(e.g., Kadane, 1975).

2.3 Priors

We first specify a prior for allocating observations into clus-
ters and then a prior for the multivariate binary state vec-
tors in the clusters.
Prior with an unknown number of classes. Though used

interchangeably by many authors, we first make a distinc-
tion between a “component” that represents one of the
true mixture components in the specification of a mixture
model (referred to as “classes” in LCMs and this paper) and
a “cluster” that represents a block of observations grouped
together. Let 𝐾 be the number of mixture components in
the population and 𝑇 the number of clusters in the sample
(Miller and Harrison, 2018). We have 𝑇 ≤ 𝐾, which means
there exist 𝑇 − 𝐾 empty components not realized in a ran-
dom sample.
Additional notation is needed for our prior specifica-

tion. Let𝑍𝑖 ∈ {1, 2, … , 𝐾} be the component indicators, and
let 𝒁 = {𝑍𝑖, 𝑖 = 1, … , 𝑁}. Let 𝐶𝑘 = {𝑖 ∶ 𝑍𝑖 = 𝑘} be the sub-
jects in component 𝑘, and  = {𝐶𝑘 ∶ |𝐶𝑘| > 0, 𝑘 = 1, … , 𝑇}

be 𝑇 observed clusters. Note the partition  is invariant to
component relabeling. Let −𝑖 = {𝐶𝑘 ⧵ {𝑖} ∶ |𝐶𝑘 ⧵ {𝑖}| > 0}

be the clusters excluding subject 𝑖. Let 𝐘𝐶 = {𝒀𝑖, 𝑖 ∈ 𝐶} be
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the data in cluster 𝐶 ∈ . Finally let 𝜶𝑘 ∈ {0, 1}𝑀 be the
latent state vectors for component 𝑘 = 1, … , 𝐾.
We specify a prior distribution of clustering allocations

 as follows:

𝗇𝗎𝗆𝖻𝖾𝗋 𝗈𝖿 𝖼𝗈𝗆𝗉𝗈𝗇𝖾𝗇𝗍𝗌∶ 𝐾 ∼ 𝑝𝐾(𝐾; 𝜅), (5)

𝗆𝗂𝗑𝗂𝗇𝗀 𝗐𝖾𝗂𝗀𝗁𝗍𝗌∶

𝝅 = (𝜋1, … , 𝜋𝐾) ∼ 𝖣𝗂𝗋𝗂𝖼𝗁𝗅𝖾𝗍𝐾(𝛾, … , 𝛾), 𝛾 > 0, (6)

𝖼𝗅𝗎𝗌𝗍𝖾𝗋 𝗂𝗇𝖽𝗂𝖼𝖺𝗍𝗈𝗋𝗌∶

𝑍𝑖 ∼ 𝖢𝖺𝗍𝖾𝗀𝗈𝗋𝗂𝖼𝖺𝗅𝐾{𝝅}, 𝗂𝗇𝖽𝖾𝗉𝖾𝗇𝖽𝖾𝗇𝗍𝗅𝗒 𝖿𝗈𝗋 𝑖 = 1, … , 𝑁, (7)

where 𝑝𝐾(𝐾; 𝜅) is a distribution over 𝐾 = 1, 2, …, e.g.,
𝖦𝖾𝗈𝗆𝖾𝗍𝗋𝗂𝖼(𝜅). The prior for  is

𝑝𝑟( ∣ 𝛾, 𝑝𝐾) = 𝑉𝑁(𝑇)
∏
𝐶∈

𝛾(|𝐶|),

where 𝑉𝑁(𝑇) =
∑∞

𝑘=1

𝑘(𝑇)

(𝛾𝑘)(𝑁)
𝑝𝐾(𝑘), and 𝑘(𝑛) =

𝑘 ⋅ (𝑘 + 1) ⋯ (𝑘 + 𝑛 − 1), 𝑘(𝑛) = 𝑘 ⋅ (𝑘 − 1) ⋯ (𝑘 − 𝑛 + 1),
and 𝑘(0) = 𝑘(0) = 1, 𝑘(𝑛) = 0 if 𝑘 < 𝑛 (Miller and Harrison,
2018).
Prior for 𝜶𝑘 in each component. We specify a prior dis-

tribution for the component-specific parameters 𝜶𝑘 to
encourage sparser binary patterns:

𝗁𝗒𝗉𝖾𝗋𝗉𝗋𝗂𝗈𝗋∶ 𝑝𝑚 ∣ 𝑐1, 𝑐2 ∼ 𝖡𝖾𝗍𝖺(𝑐1𝑐2∕𝑀, 𝑐2), (8)

𝖼𝗈𝗆𝗉𝗈𝗇𝖾𝗇𝗍 𝗉𝖺𝗋𝖺𝗆𝖾𝗍𝖾𝗋𝗌∶

𝛼𝑘𝑚 ∣ 𝑝𝑚 ∼ 𝖡𝖾𝗋𝗇𝗈𝗎𝗅𝗅𝗂(𝑝𝑚), 𝗂𝗇𝖽𝖾𝗉. 𝖿𝗈𝗋 𝑘 = 1, … , 𝐾, (9)

𝖺𝗌𝗌𝗂𝗀𝗇 𝗂𝗇𝖽𝗂𝗏𝗂𝖽𝗎𝖺𝗅 𝗅𝖺𝗍𝖾𝗇𝗍 𝗌𝗍𝖺𝗍𝖾𝗌∶ 𝜂𝑖𝑚 ∣ 𝑍𝑖 = 𝛼𝑍𝑖,𝑚, 𝑖 = 1, … , 𝑁,

(10)

independently for 𝑚 = 1, … , 𝑀. Equations (8) to (10)
induce a marginal prior [𝜶1, … , 𝜶𝐾 ∣ 𝑐1, 𝑐2] upon integrat-
ing over 𝒑 = (𝑝1, … , 𝑝𝑚)𝖳 (Web Appendix A1.1) and is a
truncated Indian Buffet Process (Ghahramani and Grif-
fiths, 2006). In what follows, we set 𝜅 = 0.1 and 𝑐2 = 1,
which offer good clustering results in simulations and
data analysis. We reparameterize 𝑐1 in terms of 𝛽 =

𝑐1

𝑐1+1
∈

(0, 1) and specify the prior 𝛽 ∼ 𝖡𝖾𝗍𝖺(𝑎𝛽, 𝑏𝛽), where 𝑎𝛽 =

𝑏𝛽 = 1.

Remark 1. A reviewer raised a question about model spec-
ification that, given a finite 𝑀, by following (8) to (9) to
sample {𝜂𝑖𝑚, 𝑖 = 1, … , 𝑁} instead of 𝛼𝑘𝑚’s, there is already
a positive prior mass on the equality of two binary vec-
tors with finite length 𝜼𝑖 = 𝜼𝑖′ (hence 𝑖 and 𝑖′ belong to
the same cluster), why is it necessary to have an additional
layer of clustering structure through mixture models (5)

to (7)? In this paper, we choose the mixture model spec-
ification because it has a prior on the number of classes
which allows additional parsimony by a priori encourag-
ing few classes and posterior inference on the number of
classes. Although || ≤ 2𝑀 , 𝐾 in the prior is not upper
bounded.With an unbounded𝐾, we can build on the algo-
rithm of Miller and Harrison (2018) for inferring the num-
ber of classes. Because the component parameters aremul-
tivariate binary, we do need an additional step of merging
clusters with the same latent states via post hoc process-
ing at each MCMC iteration. The algorithm with merg-
ing is applicable to general MFM models with discrete
component parameters. Web Appendix A1.2 discusses the
merge operation.

For the rest of parameters, let the prior for 𝑄 be
the uniform distribution over  in (4). For 𝜽+ and
𝜽−, we specify 𝜃−

𝓁
∼ 𝖡𝖾𝗍𝖺(𝑁0𝑎0, 𝑁0(1 − 𝑎0)), 𝜃+

𝓁
∼

𝖡𝖾𝗍𝖺(𝑁1𝑎1, 𝑁1(1 − 𝑎1))I{(𝜃−
𝓁

, 1)}, independently for
𝓁 = 1, … , 𝐿. Taken together, the joint distribution is

𝑁∏
𝑖=1

𝐿∏
𝓁=1

[
Γ𝑖𝓁 ⋅ (𝜃+

𝓁
)𝑌𝑖𝓁 (1 − 𝜃+

𝓁
)1−𝑌𝑖𝓁

+ (1 − Γ𝑖𝓁) ⋅ (𝜃−
𝓁

)𝑌𝑖𝓁 (1 − 𝜃−
𝓁

)1−𝑌𝑖𝓁

]
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

(1) 𝗍𝗈 (3)∶𝗌𝖼𝗂𝖾𝗇𝗍𝗂𝖿 𝗂𝖼 𝖼𝗈𝗇𝗌𝗍𝗋𝖺𝗂𝗇𝗍 𝖺𝗇𝖽 𝗆𝖾𝖺𝗌𝗎𝗋𝖾𝗆𝖾𝗇𝗍 𝗆𝗈𝖽𝖾𝗅

× 𝑝𝑟(; 𝛾, 𝑝𝐾(⋅; 𝜅))
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

(5) 𝗍𝗈 (7)∶
𝗉𝗋𝗂𝗈𝗋 𝗈𝗇 𝖼𝗅𝗎𝗌𝗍𝖾𝗋𝗌

⋅ 𝖨𝖡𝖯𝑀(𝜶1, … , 𝜶𝐾; 𝑐1, 𝑐2)𝑝𝑟(𝑐1)
⏟ ⎴⎴⎴⎴⎴⎴⎴⎴ ⏟ ⎴⎴⎴⎴⎴⎴⎴⎴ ⏟

(8) 𝗍𝗈 (10)∶
𝗉𝗋𝗂𝗈𝗋 𝗈𝗇 𝖼𝗈𝗆𝗉𝗈𝗇𝖾𝗇𝗍−𝗌𝗉𝖾𝖼𝗂𝖿 𝗂𝖼 𝗌𝗍𝖺𝗍𝖾𝗌

× 𝑝𝑟(𝑄) ⋅

𝐿∏
𝓁=1

[
𝖳𝗋𝗎𝗇𝖼𝖺𝗍𝖾𝖽𝖡𝖾𝗍𝖺(𝜃−

𝓁
,1)(𝜃+

𝓁
; 𝑁1𝑎1, 𝑁1(1 − 𝑎1))

⋅𝖡𝖾𝗍𝖺(𝜃−
𝓁

; 𝑁0𝑎0, 𝑁0(1 − 𝑎0))
]

. (11)

Figure 2 shows a schematic representation of the
hierarchical model via directed acyclic graph (DAG)
describing the relationships between the parameters and
observations.

3 POSTERIOR INFERENCE

We develop inferential procedures to address the follow-
ing three questions: (1) how many scientific clusters are in
the data; (2) what are the unique latent states present in
the sample, and (3) what is the latent state vector for every
observation. To approximate the posterior distribution we
use anMCMC algorithm for the inference of any functions
of unknown parameters and latent variables (Gelfand and
Smith, 1990). We focus on presenting the posterior sam-
pling algorithm with a finite 𝑀, which is effective in our
application by treating 𝑀 as an upper bound, though the
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F IGURE 2 The directed acyclic graph representing the model structure. The quantities in squares are either data or hyperparameters;
the unknown quantities are shown in the circles. The double-stroke circle represents multiplexer variable, which copies the value of one of its
parent nodes chosen by the selector variable (shaded). The arrows connecting variables indicate that the parent parameterizes the distribution
of the child node (solid lines) or completely determines the value of the child node (dotted arrows). The rectangular “plates” where the
variables are enclosed indicate that a similar graphical structure is repeated over the index; the index in a plate indicates subjects, clusters,
machines, or features (This figure appears in color in the electronic version of this article, and any mention of color refers to that version.)

posterior algorithm for infinite 𝑀 is readily derived by fol-
lowing Teh et al. (2007).

3.1 MCMC algorithm

When the number of components 𝐾 is unknown, one
class of techniques updates component-specific param-
eters along with 𝐾. For example, the reversible-jump
MCMC (RJ-MCMC, Green, 1995) works by an update
to 𝐾 along with proposed updates to the model param-
eters, which together are then accepted or rejected.
However, designing good proposals for high-dimensional
component parameters can be nontrivial. Alternative
approaches include direct sampling of 𝐾 (e.g., Nobile and

Fearnside, 2007; McCullagh and Yang, 2008). Here we
build on the algorithm of Miller and Harrison (2018) for
sampling clusters with a prior on the number of mixture
components.

Step 0: Initialize all parameters from their priors except
for 𝑄 and clustering allocations . For 𝑄, we set
all elements to be zero except for columns 𝓁 that
satisfy 𝑁−1 ∑

𝑖
𝑌𝑖𝓁 > 𝜏1, for which we initialize

by 𝑄𝑚𝓁
𝑖𝑖𝑑
∼ 𝖡𝖾𝗋𝗇𝗈𝗎𝗅𝗅𝗂(𝑝), 𝑚 = 1, … , 𝑀, where 𝑝 and

𝜏1 are prespecified. We set 𝑝 = 0.1 and 𝜏1 = 0.3,
which work well in our simulations and data anal-
ysis. For , we initialize with one cluster com-
prised of all subjects.
For iteration 𝑏 = 1, … , 𝐵, repeat Steps 1–7:



WU et al. 1437

Step 1: Update  by directly sampling from its poste-
rior without the need for considering component
parameters or empty components. For subject 𝑖 =

1, … , 𝑁, we assign subject 𝑖 to an existing cluster
𝐶 ∈ −𝑖 or a new one on its own with probabili-
ties:

ℙ(𝑍𝑖 = 𝑘 ∣ 𝗈𝗍𝗁𝖾𝗋𝗌)

∝

⎧⎪⎨⎪⎩
(|𝐶| + 𝛾) ⋅

𝑔(𝐶∪{𝑖})

𝑔(𝐶)
, 𝗂𝖿 𝐶 ∈ −𝑖, 𝑘 = 1, … , |−𝑖|;

𝛾
𝑉𝑁 (𝑡+1)

𝑉𝑁 (𝑡)
⋅ 𝑔(𝐶), 𝗂𝖿 𝐶 = {𝑖}, 𝑘 = |−𝑖| + 1,

(12)

where 𝑔(𝐶) is the marginal likelihood for data
𝐘𝐶 and is computed in Web Appendix A2. The
update (12) favors forming a cluster of its own {𝑖}

if adding the 𝑖-th observation to any existing clus-
ter fits poorly with data in that cluster. Following
the split-merge recipe in Jain and Neal (2004) that
efficiently explores the large space of clustering
allocations (see details in Web Appendix A3), we
build on (12) to update  globally which creates or
removes clusters for multiple subjects at a time.

Step 2: Update 𝜶𝑘 by the distribution over {0, 1}𝑀 :

[𝜶𝑘 ∣ 𝗈𝗍𝗁𝖾𝗋𝗌] ∝

𝑀∏
𝑚=1

{𝑝𝑚}𝛼𝑘𝑚 {1 − 𝑝𝑚}1−𝛼𝑘𝑚

⋅
∏

𝑧=0,1

∏
𝓁∶Γ(𝑄,𝜶𝑘)𝓁=𝑧

(𝜃𝓁)𝑛𝑘𝓁1 (1 − 𝜃𝓁)
𝑛𝑘𝓁0 ,

for cluster 𝑘 = 1, … , 𝑇, where 𝜃𝓁 = 𝑧𝜃+
𝓁

+

(1 − 𝑧)𝜃−
𝓁
, and 𝑛𝑘𝓁1 =

∑
𝑖∶𝑍𝑖=𝑘

𝑌𝑖𝓁 and
𝑛𝑘𝓁0 =

∑
𝑖∶𝑍𝑖=𝑘

(1 − 𝑌𝑖𝓁). Set 𝜼𝑖 = 𝜶𝑍𝑖
, for subject

𝑖 = 1, … , 𝑁.
At the end of iterations, if some of the discretemix-
ture component parameters {𝜶𝑘, 𝑗 = 1, … , 𝑇} are
duplicated, we postprocess the posterior samples
by merging clusters in  associated with identical
latent states to obtain scientific clusters with dis-
tinct latent states; denote scientific clusters by ̃

and 𝑇 = |̃|.
Step 3: Update themeasurement error parameters for 𝓁 =

1, … , 𝐿:
[𝜃−

𝓁
∣ 𝗈𝗍𝗁𝖾𝗋𝗌] ∼ 𝖡𝖾𝗍𝖺(

∑
𝑖
{1 − Γ(𝑄, 𝜼𝑖)𝓁}𝑌𝑖𝓁 +

𝑎0,
∑

𝑖
{1 − Γ(𝑄, 𝜼𝑖)𝓁}(1 − 𝑌𝑖𝓁) + 𝑏0)I{(0, 𝜃+

𝓁
)},

[𝜃+
𝓁

∣ 𝗈𝗍𝗁𝖾𝗋𝗌] ∼ 𝖡𝖾𝗍𝖺(
∑

𝑖
Γ(𝑄, 𝜼𝑖)𝓁𝑌𝑖𝓁 +

𝑎1,
∑

𝑖
Γ(𝑄, 𝜼𝑖)𝓁(1 − 𝑌𝑖𝓁) + 𝑏1)I{(𝜃−

𝓁
, 1)}.

Step 4: Update hyperparameter 𝑐1 = 𝛽∕(1 − 𝛽) by updat-
ing 𝛽:

[𝛽 ∣ 𝗈𝗍𝗁𝖾𝗋𝗌] ∝ 𝑝𝑟(𝛽) ⋅

(
𝛽

1 − 𝛽

)𝑀

𝑀∏
𝑚=1

Γ(𝑛𝑚1 + 𝛽∕{𝑀(1 − 𝛽)})

Γ(𝑇 + 1 + 𝛽∕{𝑀(1 − 𝛽)}))
,

where 𝑛𝑚1 =
∑𝑇

𝑘=1
𝛼𝑘𝑚 is the number of observed

clusters with activated 𝑚-th state. The update can
be done based on a dense grid over (0,1) (Hoff,
2005).

Step 5: Update 𝑝𝑚 ∼ 𝖡𝖾𝗍𝖺(𝑛𝑚1 + 𝑐1∕𝑀, 𝑇 − 𝑛𝑚1 + 1),
independently for 𝑚 = 1, … , 𝑀.

Step 6: Update 𝑄 via constrained Gibbs sampler. For 𝓁 =

1, 2, … , 𝐿, 𝑚 = 1, 2, … , 𝑀, do not update 𝑄𝑚𝓁 if (i)
𝑄∗𝓁 = 𝒆𝑚 where 𝒆𝑚 is a column vector of with the
𝑚-th element being 1 and 0 for other elements, (ii)
1𝖳

𝐿𝑄𝑚∗ = 3 and 𝑄𝑚𝓁 = 1, or (iii) 𝑄𝑚𝓁 = 0 in a col-
umn of 𝒆𝑚′ with 𝑚′ ≠ 𝑚, and there is a single 𝒆𝑚′

in the columns of the current𝑄. Otherwise, we fol-
low an efficient update in Liu (1996) by flipping
𝑄𝑚𝓁 from 1 − 𝑧 to 𝑧 with probability ℙ(𝑄𝑚𝓁 = 𝑧 ∣

𝗈𝗍𝗁𝖾𝗋𝗌)∕{1 − ℙ(𝑄𝑚𝓁 = 𝑧 ∣ 𝗈𝗍𝗁𝖾𝗋𝗌)}, where

ℙ(𝑄𝑚𝓁 = 𝑧 ∣ 𝗈𝗍𝗁𝖾𝗋𝗌)

∝

𝑁∏
𝑖=1

[
𝑌𝑖𝓁 ∣ 𝐻, 𝑄𝑚𝓁 = 𝑧, {𝑄𝑚′𝓁′ ∶ 𝑚′ ≠ 𝑚,

𝓁′ ≠ 𝓁}, 𝜃+
𝓁

, 𝜃−
𝓁

]
=

∏
𝑖∶Γ𝑖𝓁=1

(𝜃+
𝓁

)𝑛′
1𝓁1 (1 − 𝜃+

𝓁
)𝑛′

1𝓁0

⋅
∏

𝑖∶Γ𝑖𝓁=0

(𝜃−
𝓁

)𝑛′
0𝓁1 (1 − 𝜃−

𝓁
)𝑛′

0𝓁0 , 𝑧 = 0, 1,

where 𝑛′
1𝓁1

=
∑𝑁

𝑖=1
Γ𝑖𝓁𝑌𝑖𝓁, 𝑛′

1𝓁0
=
∑𝑁

𝑖=1
Γ𝑖𝓁(1 −

𝑌𝑖𝓁), 𝑛′
0𝓁1

=
∑𝑁

𝑖=1
(1 − Γ𝑖𝓁)𝑌𝑖𝓁, 𝑛′

0𝓁0
=∑𝑁

𝑖=1
(1 − Γ𝑖𝓁)(1 − 𝑌𝑖𝓁). In this step, we also

identify “partner latent states” and merge the cor-
responding rows in𝑄. Specifically, we collapse two
states (𝑚, 𝑚′) that are present or absent together
among subjects (𝜂𝑖𝑚 = 𝜂𝑖𝑚′ , 𝑖 = 1, … , 𝑁). We set
𝜂𝑖𝑚′ = 0 for any 𝑖 and 𝑄𝑚𝓁 = max{𝑄𝑚𝓁, 𝑄𝑚′𝓁},
𝓁 = 1, … , 𝐿. It is easy to verify that this scheme
preserves conditions (4) for 𝑄 truncated to the
rows corresponding to active states. The merging
scheme readily generalizes to cases with more
than two partner states. Finally, we reset to zeros
for the rows of 𝑄 corresponding to the unused
latent states at an iteration.
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We have used a few practical strategies to improve the
sampling from many discrete parameters, for example,
{𝜶𝑘, 𝑘 = 1, … , 𝑇} and 𝑄. First, the prior that encourages
fewer clusters propagates into the posterior so large 𝑇s
are visited less frequently. Second, we put an upper bound
on 𝑀 in real applications followed by sensitivity analysis.
Third,𝑄 is restricted to lie in a subset of {0, 1}𝑀×𝐿 informed
by condition (4). Finally, in our experience, more efficient
exploration of clustering allocations among the observa-
tions by global split-merge updates helps the sampling of
𝑄. Convergence checks are presented inWebAppendixA4.

3.2 Posterior summaries

Let 𝜋𝑖𝑖′ = ℙ(𝑍𝑖 = 𝑍𝑖′ ∣ 𝐘) be the posterior coclustering
probabilities for any two subjects 𝑖 and 𝑖′. We estimate
𝜋𝑖𝑖′ by the empirical frequencies 𝜋𝑖𝑖′ of subjects 𝑖 and
𝑖′ being clustered together across MCMC iterations. For
point estimation, we compute the least square (LS) clus-
tering ̂(𝐿𝑆)by minimizing the squared distance to the
{𝜋𝑖𝑖′ }, arg min𝑏

∑
𝑖,𝑖′ {𝛿(𝑍

(𝑏)
𝑖

, 𝑍
(𝑏)

𝑖′ ) − 𝜋𝑖𝑖′ }2, where 𝛿(𝑎, 𝑎′) =

1 if 𝑎 = 𝑎′ and zero otherwise (Dahl, 2006). In addition,
because the interpretation of 𝜼𝑖 depends on 𝑄, we choose
an optimal 𝑄 from the posterior samples that minimizes
a loss function. We select an iteration 𝑏∗ that minimizes
the loss: 𝑏∗ = arg min𝑏 ‖𝑄(𝑏)𝖳𝑄(𝑏) −

1

𝐵

∑𝐵

𝑏′=1
𝑄(𝑏′)𝖳𝑄(𝑏′)‖𝐹

where ‖ ⋅ ‖𝐹 =
√∑

𝑎2
𝑖𝑗
is matrix Frobenius norm. We

denote it by 𝑄 = 𝑄(𝑏∗). Turning to the inference of 𝐻 =

{𝜼𝑖}, we rerun the algorithm by fixing 𝑄 = 𝑄 which pro-
duces additional posterior samples to reduce the Monte
Carlo error in approximating [𝐻 ∣  = ̂(𝐿𝑆), 𝑄 = 𝑄, 𝐘].

4 RESULTS

We illustrate the utility of Bayesian RLCM on both sim-
ulated and real data. First, we assess the performance of
Bayesian RLCM on cluster estimation under simulation
scenarios corresponding to varying levels of measurement
error, dimension, sparsity level of each machine, sample
size, and mixing weight. Using data simulated under the
assumed RLCM and realistic deviations from it, the pro-
posed inference algorithm performs clustering as well as
or better than common alternative binary-data clustering
methods. We first analyze a single randomly generated
data set to highlight differences among the methods. We
then use independent replications to evaluate frequentist
performance of Bayesian RLCM in cluster estimation and
contrast with the alternatives. Web Appendix A5.1 details
the simulation scenarios. To assess the chance-corrected
agreement between the true and estimated clustering allo-

cations of the same observations, we used the adjusted
Rand index (𝖺𝖱𝖨, Hubert and Arabie, 1985). See Web
Appendix A5.2 for details. The value of 𝖺𝖱𝖨 is between −1

and 1 with values closer to 1 indicating better agreement.
Finally, data from scleroderma patients are analyzed.

4.1 Simulated examples to study model
performance

Simulation 1:More accurate clustering through scientifically
structured classes. Figure 3 shows a random data set 𝐘,
the design matrix Γ, as well as the clusters obtained using
complete-linkage, Hamming distance hierarchical cluster-
ing (HC), standard eight-class Bayesian latent class analy-
sis (LCA, e.g., Garrett and Zeger, 2000), subset clustering
analysis (SC; Hoff, 2005), and our Bayesian RLCM with
unknown number of clusters fitted with truncation level
𝑀† = 5. In this setting, HC is sensitive to noise and tends
to split a true cluster or group observations from differ-
ent true clusters. Unlike the others, the Bayesian RLCM
automatically selects and filters subsets of features that dis-
tinguish eight classes (through scientific structures in (1))
and hence has superior clustering performance producing
clusters that agrees quite well with the truth. For illus-
trative purposes, we showed an extreme example to high-
light the different performances on a single random data
set. Although the proposed model-based approach does
not always perfectly reconstruct the clusters, this relative
advantage of Bayesian RLCM persists under data replica-
tions.
Simulation 2: Assess clustering performance under var-

ious parameter settings with replications. The ability of
Bayesian RLCM in recovering the true clusters varies by
the sparsity level (𝑠) in each machine, level of measure-
ment errors (𝜃+

𝓁
, 𝜃−

𝓁
), mixing weights and sample sizes (𝑁)

(the leftmost boxes in groups of four in Figure 4). First,
clustering performance improves by increasing the spar-
sity level in each machine from 𝑠 = 10% to 20% (com-
pare the 1st and 3rd, 2nd and 4th RLCM boxplots in each
panel of Figure 4). In the context of our motivating exam-
ple, given a fixed number of protein landmarks 𝐿, patients
will be more accurately clustered if each machine com-
prises more component proteins. This observation is also
consistent with simulation studies conducted in the spe-
cial case of 𝑄 = 𝐼𝐿 (Hoff, 2005, table 1). For a given 𝑠, a
larger 𝐿 means a larger number of relevant features per
machine and leads to better cluster recovery. Increasing 𝐿

from 50 to 400, the mean 𝖺𝖱𝖨 (averaged over replications)
increases from 0.7 to 0.98 at the sparsity level 𝑠 = 10%, 0.88
to 0.99 under 𝑠 = 20%. Second, more accurate clustering
results under larger discrepancies between 𝜃+

𝓁
and 𝜃−

𝓁
. The

𝖺𝖱𝖨 averaged over replications is higher under 𝜃−
0 = 0.05
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F IGURE 3 In the 100-dimension multivariate binary data example (a), the eight classes differ with respect to subsets of measured
features (b). In (c) HC, we indicate coclustering by filled cells. The true clusters are separated (dashed grids) and ordered according to the
truth; (d, e, f): For Bayesian LCA, RLCM, and subset clustering (SC), we plot the posterior coclustering probability matrix {𝜋𝑖,𝑖′ } for 𝑁

observations. Filled blocks on the main diagonal only indicate perfect recovery of the true clusters; Blank cells within the main diagonal
blocks indicate true cluster being split and blue cells in the off-diagonal blocks indicate two observations being incorrectly co-clustered.
Bayesian RLCM accounts for measurement errors, selects the relevant feature subsets and filters the subsets by a low-dimensional model (1)
and therefore yields superior clustering results. The clustering results are based on a randomly generated data set for illustration. Cluster
recovery by RLCM is not always perfect. The competing methods may show different relative performances under model misspecifications
(see Section 4.1) (This figure appears in color in the electronic version of this article, and any mention of color refers to that version.)

than 𝜃−
0 = 0.15 over all combinations of other parameters.

Finally we observe mixed relative performances at distinct
sample sizes as a result of two competing factors as the
sample size increases:more precise estimation ofmeasure-
ment error parameters that improve clustering and a larger
space of clusterings. Additional comparisons are in Figure
S1 of the Supporting Information.
Compared to three common alternatives, the Bayesian

RLCM on average most accurately recovers the clusters.
Bayesian RLCM produces the highest 𝖺𝖱𝖨s (boxes with
solid lines) compared to others (boxes with dotted lines).

For example, under 𝜃−
0 = 0.05, the ratio of the mean 𝖺𝖱𝖨s

(averaged over replications) for Bayesian RLCM relative to
subset clustering is 2.06, 2.04, 1.88, 1.71 for the sample-size-
to-dimension ratios 𝑁∕𝐿 = 1, 0.5, 0.25, 0.125, respectively.
As another example, under a higher 𝜃−

0 = 0.15, the relative
advantage of Bayesian RLCM to HC narrows as shown by
the smaller 𝖺𝖱𝖨 ratios 1.23, 1.62, 1.49, 1.16. Web Appendix
A5.3 provides further discussion about the three alterna-
tive methods.
Simulation 3. Competing methods are evaluated under

small and large degrees of model misspecifications for
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F IGURE 4 Based on 𝑅 = 60 replications for each parameter setting, from the left to the right in each group of four boxplots, Bayesian
RLCM (boxplots with solid lines) most accurately recovers the true clusters compared to subset clustering (SC), hierarchical clustering (HC),
and traditional Bayesian latent class analysis (LCA) (This figure appears in color in the electronic version of this article, and any mention of
color refers to that version.)

fairer comparisons. We consider two simple representa-
tive scenarios: (1) randomly perturbing only the final layer
of the model to have more than two levels of response
probabilities; (2) removing any restriction on how the clus-
ters are connected to the observables by assuming gen-
eral LCMs. See Web Appendix A5.1 for specific parame-
ter values. We observe that in the first set with relatively
minor misspecifications, the proposed model is still com-
petitive (Figure S2 in the Supporting Information). The
proposed approach can be viewed as regularization by
shrinking class-specific response probabilities toward the
assumed constraint. RLCM expectedly performs less well
under larger magnitudes of random perturbations. In the
second set, the main model is not as flexible as a gen-
eral LCM resulting in less competitive clustering perfor-
mance (Figure S3 in the Supporting Information). Large
degrees of model misspecifications may hurt clustering
performance. Our practical suggestion is to perform care-
ful model checking which we illustrate in Section 4.2.

4.2 Protein data application for
estimating scleroderma patient subsets

The applied goal is to estimate autoimmune disease patient
clusters via reconstructing machine components. We seek
to identify components of the machines and to quantify
the variations in their occurrence among individuals and

estimate patient subsets. The binary responses 𝒀𝑖 indi-
cate the observed presence or absence of proteins at equi-
spaced molecular weight landmarks as produced by a pre-
processing method (Wu et al., 2019) applied to GEA data.
We ran four gels, each loaded with IPs performed using
sera from 19 different patients, and one reference lane.
All sera were from scleroderma patients with cancer, and
were all negative for the three most common autoanti-
bodies found in scleroderma (anti-RNA polymerase III,
anti-topoisomerase I, and anti-centromere). The IPs were
loaded in random order on each gel; the reference sample
is comprised of known molecules of defined sizes (molec-
ular weights) and was always loaded in the first lane. The
left panel in Figure 5 shows for each sample lane (labeled in
the left margin; excluding the reference lanes) the binary
responses indicating the observed presence or absence of
autoantibodies at 𝐿 = 50 landmarks.
Patients differ in protein presence or absence patterns at

the protein landmarks. Eleven out of 𝐿 = 50 aligned land-
marks are absent among the patients tested. The rest of the
landmarks are observed with prevalences between 1.3%

and 94.7%. The GEA technologies are known to be highly
specific and sensitive for nearly all proteins studied in this
assay so we specify the hyperparameters in the Beta priors
by 𝑁1 = 10, 𝑎1 = 0.9, 𝑁0 = 100, 𝑎0 = 0.01 and conducted
sensitivity analyses varying these hyperparameter values.
In this application, the scientists had previously iden-

tified and independently verified through additional
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F IGURE 5 Results for GEA data. Left: Aligned data matrix for band presence or absence; row for 76 serum lanes, reordered into optimal
estimated clusters (not merged) ̂(𝐿𝑆) separated by gray horizontal lines “—–”; columns for 𝐿 = 50 protein landmarks. A blue vertical line “|”
indicates a band; Middle: lane-machine matrix for the probability of a lane (serum sample) having a particular machine. The blue cells
correspond to high probability of having a machine in that column. Smaller probabilities are shown in lighter blue. Right: The estimated
machine profiles. Here seven estimated machines are shown, each with component proteins shown by a blue bar “|” (This figure appears in
color in the electronic version of this article, and any mention of color refers to that version.)

protein chemistry the importance of a small subset of
protein bands in determining clusters among a subset
of subjects. They proposed that these subjects should be
grouped together. We therefore fitted the Bayesian RLCM
without further splitting these partial clusters (0) so that
the number of scientific clusters visited by the MCMC
chain has an upper bound 𝑇(𝑏) ≤ |(0)| + 𝑁 −

∑|(0)|
𝑗=1

𝐶
(0)
𝑗
,

where𝐶
(0)
𝑗
counts the number of observations in the initial

cluster 𝑗. We fittedmodels and compared the results under
multiple working truncation levels 𝑀† = 8, 9, … , 15 and
obtained identical clustering results.
Figure 5 shows the observations grouped by the RLCM-

estimated clusters (not merged) ̂(𝐿𝑆) (left), the estimated
𝑄-matrix 𝑄 (right), and the conditional posterior probabil-
ities of the machines ℙ(𝜂𝑖𝑚 = 1 ∣ ̂(𝐿𝑆), 𝑄, 𝐘) (middle).
The information for estimating matrix 𝑄 comes from

the observed marginal associations (positive or negative)
among the protein landmarks. Landmark protein pairs
observed with positive association tend to be placed in the
same estimated machine. For example, Landmarks 4, 7,
and 8 appear together inMachine 5. Subjects either have all
three landmarks or none at all, which induces strong posi-

tive pairwise associations among these landmarks. Indeed,
the estimated log odds ratio (LOR) is 3.13 (standard error
1.16) for Landmark 4 versus 7, 2.21 (s.e., 0.98) for Land-
mark 4 versus 8, and 2.92 (s.e. 1.2) for Landmark 7 versus 8.
The observed negative marginal associations between two
landmarks suggest existence of machines with discordant
landmarks. For example, Landmarks 10 and 27 are rarely
estimated to be present or absent together in a subject as
a result of (1) estimated machines with discordant land-
marks and (2) subject-specific machine assignments. First,
the model estimated that Landmark 10 (in Machine Set
A: 1, 3, and 4) belongs to machines not having Landmark
27 (it is in Machine Set B: 2). Second, with high posterior
probabilities, most observations have machines from one
of, not both Set A and B hence creating discordance (high
posterior probability ℙ(Γ𝑖10 ≠ Γ𝑖27 ∣ 𝐘)). In the presence of
measurement errors, strong negative marginal association
results (observed LOR for Landmark 10 versus 27: −1.98,
s.e. 0.8).
Our algorithm also directly infers the number of scien-

tific clusters in the data given an initial partial clustering
(0). The marginal posterior of the number of scientific
clusters 𝑇 can be approximated by empirical samples
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of {𝑇(𝑏)} which result in a posterior median of 12 (95%

credible interval: (8,16); Figure S4 in the Supporting
Information). The advantage of Bayesian RLCM is the
posterior inference about both the clusters and the distinct
latent state variables 𝜼𝑖 interpreted based on the inferred
𝑄 matrix. The middle panel of Figure 5 shows that clusters
differ in their posterior probabilities of having each of
the estimated machines. Among 76 subjects analyzed, 23
of them have greater than 95% posterior probabilities of
having both Machine 4 and 6. Finally, a group of seven
subjects are estimated to be enriched with Machine 4
and 7. This is expected because the two machines have
one or more of the Landmarks 35, 40, and 49 (33, 27,
and 18 kDa bands, respectively) and together explain the
distinctive observed combination of the raw bands in the
seven subjects. Such inference about 𝜼𝑖 is not available
based on hierarchical clustering or traditional latent class
analysis.
We performed posterior predictive checking to assess

model fit (Gelman et al., 1996). At each MCMC iteration,
given the posterior sample of model parameters, we sim-
ulated a data set of the same size as the original set. For
each replicated data set, we compute the marginal means
and marginal pairwise log odds ratios (0.5 adjustment for
zero counts). Across all replications, we compute the 95%

posterior predictive confidence intervals (PPCI) defined by
the 2.5% and 97.5% quantiles of the PPD. All the observed
marginal means are covered by their respective PPCIs; The
95% PPCIs cover all but 24 of

(𝐿

2

)
= 1, 225 landmark pairs

of observed pairwise log odds ratios (see Figure S5 and S6
in the Supporting Information). The proposed model ade-
quately fits the GEA data.

5 DISCUSSION

Modern scientific technologies give rise to measurements
of varying precision and accuracy that are better tar-
geted at the underlying state variables than ever before.
In this paper we have focused on finite-sample Bayesian
inference of an RLCM for analyzing dependent binary
data. The primary advantage of such models lies in their
expressive characterization of the between-class differen-
tial errors structured to respect specific scientific context
about the biological and measurement processes. Using
simulations and real data analysis, we studied the clus-
tering of observations with an unknown number of clus-
ters, uncertainty assessment of the clustering and the pre-
diction of individual latent states. We develop and apply
an MCMC algorithm for Bayesian RLCMs. The proposed
method addresses inferential issues unique to mixture
models with discrete component parameters and jointly
infers the number of clusters, the design matrix Γ and

other model parameters. We have illustrated its advan-
tage through simulations relative to three commonly used
binary-data clusteringmethods. Finally, viewed froma reg-
ularization perspective, the inferential procedure automat-
ically selects subsets of features for each latent class and fil-
ters them through a low-dimensional model that shrinks
class-specific response probability estimates toward one
that represents the scientific structure and improves our
ability to accurately estimate clusters.
RLCMs decompose the variation among multivariate

binary responses into structure that reflects constraints in
particular scientific context and stochastic variation with-
out a known explanation. In our motivating example, it is
certainly likely that there is some variability related tomea-
surement errors. However, it is also highly likely that there
are systematic biological and biochemical processes not
included in the structural part because they are unknown
to us today. RLCM analyses can be a useful tool in the
effort to uncover the unknown structure. One approach
would be to show that the latent classes are diagnostic
of specific diseases. Another is that we might uncover a
novel mechanism by defining distinct patterns of the same
autoantigen machine in patients with the same disease or
potentially in patients with different diseases that target
the same machines. Though the present paper focused on
an example in medicine, the developed method and algo-
rithms apply to many problems in psychology and epi-
demiology.
We are currently studying a few potentially useful exten-

sions. First, nested partially LCMs (Wu et al., 2017) incor-
porate local dependence and multiple sensitivity param-
eters that would improve the utility of Bayesian RLCMs.
Second, because the algorithm involves iterating over sub-
jects to find clusters, the computational time increases
with the number of subjects 𝑁. Divide–Cluster–Combine
schemes that estimate clusters in subsamples which are
then combined may improve the computational speed at
the expense of the approximation introduced by the mul-
tistage clustering (Ni et al., 2020). Third, in applications
where the clustering of multivariate binary data comprises
an important component of a hierarchical Bayesian model
with multiple components, the posterior uncertainty in
clustering propagates into other parts of the model and
can be integrated into posterior inference of other model
parameters (e.g., Jacob et al., 2017). Finally, under signif-
icant deviations from model assumptions, the constraints
in Γ may lead to less competitive clustering performance.
In real data applications, scientific context for cluster-
ing and careful model checking are therefore critical. The
degree to which the actual data generating mechanism
deviates from the assumed model can be characterized by
general RLCM formulations such as the all-effect model
(Equation (5); Gu and Xu, 2019a). Model selection under
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such settings may help with clustering performance. We
leave this for future work.
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