Supporting Information Loewen et al. Bioregions are predominantly climatic for fishes of northern lakes

Appendices

Appendix S1 Expanded details for bipartite network modularity analysis and estimation of connectivity by contemporary dispersal routes

Supporting Tables

Table S1.1 List of sampled fishes indicating their occurrence in our database, their native/nonnative status in our study region, whether they were considered species at risk, and whether they were used in analysis

 Table S1.2
 Summary of network modularity results across ten random trails

 Table S1.3 Summary statistics of environmental and spatial indicators

Table S1.4 Pearson correlation coefficients between raw environmental and spatial factors

Table S1.5 Detailed results of non-metric partial least-squares structural equation models for primary site modules

Table S1.6 Diagnostics of non-metric partial least-squares structural equation models

Table S1.7 Detailed results of multiple logistic regression analysis of each primary site module on biogeographic constructs (with scores calculated for each module by non-metric partial least-squares structural equation models)

Table S1.8 Detailed results of variation partitioning analysis based on explanatory power of biogeographic constructs (with scores calculated by non-metric partial least-squares structural equation modelling) in multiple logistic regression for each primary site module

Table S1.9 Summary of changes to site modules after removal of non-native species

Supporting Figures

Figure S1.1 Maps (presenting spatial data from Dyke et al. (2003) Deglaciation of North America. Geological Survey of Canada Open File, 1574. Thirty-two digital maps at 1:7,000,000 scale with accompanying digital chronological database and one poster (two sheets) with full map series) showing (**a**) time since glaciation (before present) and (**b**) glacial lake and marine

extents with most recent extents on top (chronological) and arrows representing major historical outflows (modified from Kehew et al. (2009) Proglacial megaflooding along the margins of the Laurentide Ice Sheet, *in* Burr, D., Carling, P.A., and Baker, V.R., eds., *Megaflooding on Earth and Mars*. Cambridge University Press, Cambridge, UK, p. 104–127; and Teller (2003) Controls, history, outburst, and impact of large late-Quaternary proglacial lakes in North America. *Developments in Quaternary Science*, 1:45–61)

Figure S1.2 Maps (presenting spatial data derived from ClimateNA v6.40; Wang, Hamann, Spittlehouse, & Carroll (2016) Locally downscaled and spatially customizable climate data for historical and future periods for North America. *PLoS ONE*, 11: e0156720) showing 30-year normals (1961–1990) at approximately 250 m resolution for (**a**) mean warmest month temperature, (**b**) mean coldest month temperature, (**c**) May to September precipitation, and (**d**) precipitation as snow

Figure S1.3 Map (presenting spatial data from Hartmann & Moosdoft (2012) The new global lithological map database GLiM: A representation of rock properties at the Earth surface. *Geochemistry, Geophysics, Geosystems*, 13:12) showing basic lithological classes used to derive proportion of shield lithology (metamorphic + acid plutonic + basic plutonic + intermediate plutonic + acid volcanic + basic volcanic + intermediate volcanic rocks)

Figure S1.4 Map showing network primary modularity results for individual site nodes

Figure S1.5 Maps showing network sub-modularity results for individual site nodes

Figure S1.6 Maps showing network primary modularity results for site nodes summarized by tertiary drainages to identify bioregions for our main analysis (**a**), after removal of non-native species from the species pool (**b**), and after removal of sites with non-native species from the site pool (**c**)

Figure S1.7 Results of NM-PLS-SEM and multiple logistic regression of primary site modules on biogeographic constructs after removal of non-native species from the species pool (see Table S1.1 for list of non-native species). Outer measurement model results (**a**) are presented as weights (darker bars; representing multiple ordinary least-squares regression coefficients) and loadings (lighter bars; representing Pearson correlation coefficients) for standardized indicators. Inner structural model results (**b**) are presented as path coefficients from multiple logistic regression for latent variables. Error bars show the lower 2.5th and upper 97.5th percentiles of bootstrap and profile likelihood confidence intervals for outer and inner model coefficients, respectively. See Figure 5 in main text for results of full analysis

Figure S1.8 Approximately area-proportional Euler plots showing the total, shared, and unique explanatory power of biogeographic constructs (connectivity, climate, and habitat) in logistic regression after removal of non-native species from the species pool (see Table S1.1 for list of non-native species). Fractions are expressed as Tjur's R^2 (coefficients of discrimination) from

models of primary site modules (binary responses) predicted by latent variable scores (calculated by NM-PLS-SEM). See Figure 6 in main text for results of full analysis

Figure S1.9 Results of NM-PLS-SEM and multiple logistic regression of primary site modules on biogeographic constructs after removal of sites with non-native species from the site pool (see Table S1.1 for list of non-native species). Outer measurement model results (**a**) are presented as weights (darker bars; representing multiple ordinary least-squares regression coefficients) and loadings (lighter bars; representing Pearson correlation coefficients) for standardized indicators. Inner structural model results (**b**) are presented as path coefficients from multiple logistic regression for latent variables. Error bars show the lower 2.5th and upper 97.5th percentiles of bootstrap and profile likelihood confidence intervals for outer and inner model coefficients, respectively. See Figure 5 in main text for results of full analysis

Figure S1.10 Approximately area-proportional Euler plots showing the total, shared, and unique explanatory power of biogeographic constructs (connectivity, climate, and habitat) in logistic regression after removal of sites with non-native species from the site pool (see Table S1.1 for list of non-native species). Fractions are expressed as Tjur's R^2 (coefficients of discrimination) from models of primary site modules (binary responses) predicted by latent variable scores (calculated by NM-PLS-SEM). See Figure 6 in main text for results of full analysis

Appendix S1 Expanded details for bipartite network modularity analysis and estimation of connectivity by contemporary dispersal routes

Expanded details for bipartite network modularity analysis

Modularity analysis of site-species networks has proven an effective tool for uncovering concise bioregions and their transitional zones across spatial scales (Bloomfield et al., 2018; McGarvey & Veech, 2018). The approach provides unsupervised learning of community structure based solely on network topology, where divisions are made to maximize the number of edges within, rather than between, resultant modules (Newman & Girvan, 2004). To protect against trivial solutions, modularity (Q) is quantified relative to a null expectation where edges are placed at random. Thus, modules are detected independent of site constraints, providing an opportunity to test spatial and environmental factors determining species assemblages. Module detection is complemented by calculation of the participation coefficient, which identifies transitional zones between groups (e.g. Bloomfield et al., 2018). Here, the participation coefficient measures among-module connectivity P_i of node i as:

$$P_i = 1 - \sum_{s=1}^{N_M} \left(\frac{k_{is}}{k_i}\right)^2$$

where N_M is the number of modules in the network, k_{is} is the number of links of *i* to nodes in its own module *s*, and k_i is the total degree of node *i* (Guimerà & Amaral, 2005). While modularity was initially developed for the unipartite case, we used the bipartite formulation of Barber (2007), which modifies that of Newman & Girvan (2004) to allow links only between nodes of opposing types. Barber's definition classifies both sets of nodes simultaneously and produces one-to-one node correspondence (i.e. it will produce the same number of modules for sites and species), which aids interpretation of bioregionalization by associating assemblages directly to their physical locations.

Modularity optimization is computationally challenging (NP-hard; Miyauchi & Sukegawa, 2015), necessitating heuristics to search through solution space of larger networks. We applied the DIRTLPAb+ algorithm of Beckett (2016), which is a label propagation approach to maximizing Barber's bipartite modularity. Briefly, the label propagation algorithm (LPA) for community detection was proposed by Raghavan, Albert, & Kumara (2007), where nodes were initialized with all unique labels, updated iteratively to adopt the most common labels of their neighbours (with ties broken uniformly), and grouped together once no further improvements could be made. The routine was subsequently modified to the bipartite case (LPAb); however, it had a tendency to become trapped in local maxima. To escape such traps, Liu & Murata (2010) incorporated a multistep greedy agglomerative algorithm (LPAb+). Their approach applied asynchronous label propagation (updating node labels of each type in turn) but added a step where resulting groups could be merged if doing so improved the solution, iterating between propagation and aggregation phases. Finally, because label propagation is inherently stochastic, and thus outcomes can vary depending on initialization, Beckett (2016) proposed that LPAb+ should be repeated under different node configurations (i.e. numbers of unique starting labels) and report the greatest ensuing score (DIRTLPAb+).

Expanded details for estimation of connectivity by contemporary dispersal routes

To estimate river network dispersal distances, network origins were obtained by snapping sampling locations to flowlines within each lake polygon. Lakes lacking connection to the broader surface drainage network were visually assessed with recent satellite imagery, and flowlines were manually adjusted where necessary to capture any missing links (i.e. visible drainages or culverts). Regional flowlines were also scanned for discernible errors, such as abrupt breaks along major rivers obscured by bridges or cloud cover. Potential network destination points were obtained by intersecting flowlines with polygons for the secondary drainage features and removing those lacking upstream sampling locations. Finally, we performed origin-destination cost matrix analysis using Network Analyst (an Esri ArcGIS toolbox extension) to calculate shortest paths along the spatial network. Isolated lakes (those lacking connection to the regional flowlines) were assigned distances equal to the longest paths measured among neighbours in their respective tertiary drainages. All waterbody features, flowlines, and drainage boundaries were obtained from the National Hydro Network in Canada (Government of Canada; available at: https://open.canada.ca/data/en/dataset/a4b190fe-e090-4e6d-881e-b87956c07977) and National Hydrologic Dataset in USA (U.S. Geological Survey; available at: https://viewer.nationalmap.gov/basic/#/). All geospatial analyses were estimated from remote sensing data projected to Ontario MNR Lambert (NAD 83 CSRS).

References

Barber, M.J. (2007). Modularity and community detection in bipartite networks. *Physical Review E*, 76, 066102.

Beckett, S.J. (2016). Improved community detection in weighted bipartite networks. *Royal Society Open Science*, 3, 140536.

Bloomfield, N.J., Knerr, N., & Encinas-Viso, F. (2018). A comparison of network and clustering methods to detect biogeographical regions. *Ecography*, 41, 1–10.

Guimerà, R., & Amaral, L.A.N. (2005). Functional cartography of complex metabolic networks. *Nature*, 433, 895–900.

Liu, X., & Murata, T. (2010). An efficient algorithm for optimizing bipartite modularity in bipartite networks. *Journal of Advanced Computational Intelligence and Intelligent Informatics*, 14, 408–415.

McGarvey, D.J., & Veech, J.A. (2018). Modular structure in fish co-occurrence networks: a comparison across spatial scales and grouping methodologies. *PLoS One*, 13, e0208720.

Miyauchi, A., & Sukegawa, N. (2015). Maximizing Barber's bipartite modularity is also hard. *Optimization Letters*, 9, 897–913.

Newman, M.E.J., & Girvan, M. (2004). Finding and evaluating community structure in networks. *Physical Review E*, 69, 026113.

Raghavan, U.N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. *Physical Review E*, 76, 036106.

Table S1.1 List of sampled fishes indicating their occurrence in our database, their native/nonnative status in our study region, whether they were considered species at risk, and whether they were used in analysis

Common Name	Scientific Name	Count	Status	Use	Notes
Alewife	Alosa pseudoharengus	45	Non-native	Yes	
American Eel	Anguilla rostrata	4		Yes	SAR
Banded Killifish	Fundulus diaphanus	568		Yes	
Bigmouth Buffalo	Ictiobus cyprinellus	83		Yes	
Black Bullhead	Ameiurus melas	622		Yes	
Black Crappie	Pomoxis nigromaculatus	1171		Yes	
Blackchin Shiner	Notropis heterodon	574		Yes	
Blacknose Shiner	Notropis heterolepis	2345		Yes	
Bluegill	Lepomis macrochirus	1409		Yes	
Bluntnose Minnow	Pimephales notatus	1876		Yes	
Bowfin	Amia calva	580		Yes	
Brassy Minnow	Hybognathus hankinsoni	84		Yes	
Brook Silverside	Labidesthes sicculus	184		Yes	
Brook Stickleback	Culaea inconstans	1337		Yes	
Brook Trout	Salvelinus fontinalis	1892		Yes	
Brown Bullhead	Ameiurus nebulosus	2013		Yes	
Brown Trout	Salmo trutta	46	Non-native	Yes	
Burbot	Lota lota	1467		Yes	
Central Mudminnow	Umbra limi	733		Yes	
Channel Catfish	Ictalurus punctatus	146		Yes	
Cisco	Coregonus	2408		Yes	Cisco spp. lumped together
Common Carp	Cyprinus carpio	490	Non-native	Yes	
Common Shiner	Luxilus cornutus	1278		Yes	
Creek Chub	Semotilus atromaculatus	1006		Yes	
Emerald Shiner	Notropis atherinoides	293		Yes	
Fallfish	Semotilus corporalis	97		Yes	
Fathead Minnow	Pimephales promelas	1712		Yes	
Finescale Dace	Chrosomus neogaeus	893		Yes	
Freshwater Drum	Aplodinotus grunniens	57		Yes	
Gizzard Shad	Dorosoma cepedianum	19		Yes	
Golden Redhorse	Moxostoma ervthrurum	36		Yes	
Golden Shiner	Notemigonus crysoleucas	1897		Yes	
Grass Pickerel	Esox americanus	56		Yes	SAR
Greater Redhorse	Moxostoma valenciennesi	35		Yes	
Green Sunfish	Lepomis cvanellus	637		Yes	
Iowa Darter	Etheostoma exile	2530		Yes	
Johnny Darter	Etheostoma nigrum	1951		Yes	
Lake Chub	Couesius plumbeus	577		Yes	SAR
Lake Chubsucker	Erimvzon sucetta	43		Yes	SAR
Lake Sturgeon	Acipenser fulvescens	59		Yes	SAR
Lake Trout	Salvelinus namavcush	1807		Yes	
Lake Whitefish	Coregonus clupeaformis	2094		Yes	
Largemouth Bass	Micropterus salmoides	1869		Yes	
Logperch	Percina caprodes	787		Yes	
Longnose Dace	Rhinichthys cataractae	321		Yes	
Longnose Gar	Lenisosteus osseus	87		Yes	
Longnose Sucker	Catostomus catostomus	512		Yes	
Mimic Shiner	Notropis volucellus	938		Yes	
Mooneve	Hiodon tergisus	23		Yes	SAR
Mottled Sculpin	Cottus bairdii	611		Yes	
r					

Common Name	Scientific Name	Count	Status	Use	Notes
Muskellunge	Esox masquinongy	259	Status	Yes	110100
Ninespine Stickleback	Pungitius nungitius	<u>2</u> 57 454		Yes	
Northern Pearl Dace	Margariscus nachtriehi	1042		Yes	Pearl Dace lumped in
Northern Pike	Esox lucius	5596		Yes	r cuit Duce tumped in
Northern Redbelly Dace	Chrosomus eos	1788		Ves	
Northern Sunfish	Lenomis peltastes	1700 49		Yes	SAR: Longear Sunfish lumped in
Orangespotted Sunfish	Lepomis periosies	т) ЛЛ	Non-native	Ves	Srik, Longear Sunnan Jumped In
Pugnose Shiner	Notronis anogenus	107	Non native	Ves	SAR
Pumpkinseed	Lenomis gibbosus	3100		Yes	57 11
Ouillback	Carniodes cynrinus	24		Ves	
Rainbow Smelt	Osmarus morday	2 4 1/6	Non-native	Ves	
Rainbow Trout	Oncorbynchus mykiss	331	Non-native	Ves	
Redear Sunfish	Lenomis microlophus	30	Non-native	Ves	
Rock Bass	Amblonlitas runastris	2087	Non-native	Vas	
Round Goby	Neogobius melanostomus	16	Non-native	Ves	
Round Whitefish	Prosopium cylindracaum	50	Non-native	Vas	
Sand Shiner	Notropis straminaus	101		Ves	
Sand Sinner	Sander canadensis	137		Vas	SAD
Shorthead Redhorse	Morostoma macrolepidotum	350		Ves	SAK
Silver Redhorse	Moxostoma anisurum	92		Ves	
Slimy Sculpin	Cottus cognatus	245		Vas	
Smill Scupin Smallmouth Bass	Micropterus dolomiau	245		Ves	
Splake	Salvalinus namavaush x	2008 53	Non native	Ves	
Бріакс	Salvelinus fontinalis	55	Non-nauve	105	
Spoonhead Sculpin	Cottus ricei	15		Ves	SAR
Spotfin Shiner	Cyprinella spiloptera	80		Yes	57 11
Spottail Shiner	Notronis hudsonius	2119		Yes	
Spotted Gar	Lenisosteus oculatus	2117		Yes	SAR
Starhead Topminnow	Eundulus dispar	22		Ves	SAR
Tadpole Madtom	Noturus gyrinus	<u>-</u> 476		Yes	57 HX
Tiger Muskellunge	$E_{\text{Sor}} masauinongy \times E_{\text{Sor}}$	11	Non-native	Yes	
inger muskenninge	lucius	11	iton nuive	105	
Trout-perch	Percopsis omiscomaycus	1206		Yes	
Walleve	Sander vitreus	2879		Yes	
Warmouth	Lepomis gulosus	99		Yes	SAR
Weed Shiner	Notropis texanus	15		Yes	SAR
White Bass	Morone chrysons	27		Yes	
White Crappie	Pomoxis annularis	<u>-</u> , 60		Yes	
White Perch	Morone americana	10	Non-native	Yes	
White Sucker	Catostomus commersonii	7548		Yes	
Yellow Bullhead	Ameiurus natalis	872		Yes	
Yellow Perch	Perca flavescens	7125		Yes	
Atlantic Salmon	Salmo salar	1		No	Single occurrence
Bigmouth Shiner	Notronis dorsalis	18		No	SAR: transient/poorly sampled
Black Buffalo	Ictiobus niger	58		No	SAR: transient/poorly sampled
Black Redhorse	Moxostoma duauesnei	2		No	SAR: transient/poorly sampled
Blacknose Dace	Rhinichthys atratulus	113		No	Transient/poorly sampled
Blackside Darter	Percina maculata	19		No	Transient/poorly sampled
Blackstripe Topminnow	Fundulus notatus	14		No	SAR: transient/poorly sampled
Bloater	Coregonus hovi	1		No	Single occurrence
Bluntnose Darter	Etheostoma chlorosomum	1		No	SAR: single occurrence
Bridle Shiner	Notropis hifrenatus	1		No	SAR: single occurrence
Brindled Madtom	Noturus miurus	1		No	SAR: single occurrence
Central Stoneroller	Campostoma anomalum	2		No	Transient/poorly sampled
Chestnut Lamprev	Ichthyomyzon castaneus	6		No	Transient/poorly sampled
		-		1.0	

Common Name	Scientific Name	Count	Status	Use	Notes
Chinook Salmon	Oncorhynchus tshawytscha	4	Non-native	No	Transient/poorly sampled
Coho Salmon	Oncorhynchus kisutch	3	Non-native	No	Transient/poorly sampled
Flathead Catfish	Pylodictis olivaris	3		No	Transient/poorly sampled
Goldfish	Carassius auratus	12	Non-native	No	Transient/poorly sampled
Greenside Darter	Etheostoma blennioides	7		No	Transient/poorly sampled
Hornyhead Chub	Nocomis biguttatus	48		No	Transient/poorly sampled
Least Darter	Etheostoma microperca	152		No	SAR; transient/poorly sampled
Northern Brook Lamprey	Ichthyomyzon fossor	1		No	SAR; single occurrence
Northern Hog Sucker	Hypentelium nigricans	11		No	Transient/poorly sampled
Pirate Perch	Aphredoderus sayanus	1		No	SAR; single occurrence
Plains Topminnow	Fundulus sciadicus	1		No	SAR; single occurrence
Pugnose Minnow	Opsopoeodus emilae	4		No	SAR; transient/poorly sampled
Rainbow Darter	Etheostoma caeruleum	19		No	Transient/poorly sampled
River Carpsucker	Carpiodes carpio	2		No	Transient/poorly sampled
River Chub	Nocomis micropogon	8		No	Transient/poorly sampled
River Darter	Percina shumardi	2		No	SAR; transient/poorly sampled
River Redhorse	Moxostoma carinatum	4		No	SAR; transient/poorly sampled
Rosyface Shiner	Notropis rubellus	10		No	Transient/poorly sampled
Ruffe	Gymnocephalus cernua	3	Non-native	No	Lost after site exclusions
Sea Lamprey	Petromyzon marinus	6		No	Transient/poorly sampled
Shortnose Gar	Lepisosteus platostomus	6		No	Transient/poorly sampled
Silver Lamprey	Ichthyomyzon unicuspis	4		No	SAR; transient/poorly sampled
Smallmouth Buffalo	Ictiobus bubalus	5		No	Transient/poorly sampled
Sockeye Salmon	Oncorhynchus nerka	1	Non-native	No	Single occurrence
Spotted Sucker	Minytrema melanops	5		No	SAR; transient/poorly sampled
Stonecat	Noturus flavus	4		No	Transient/poorly sampled
Striped Shiner	Luxilus chrysocephalus	1		No	Single occurrence
Threespine Stickleback	Gasterosteus aculeatus	27		No	Transient/poorly sampled
Yellow Bass	Morone mississippiensis	1		No	SAR; single occurrence

Notes: Counts based on number of occurrences in initial database (prior to site exclusions); use in analysis was based on avoiding species transient in lake communities or otherwise poorly sampled; SAR denotes species at risk, including those threatened, endangered, or of special concern.

Analysis	Number of computed	Lowest modularity (Q)	Greatest Modularity (Q)		
	modules				
Categorical	3-4 median = 4	0.3318334	0.3324972* (0.2800484)		
Module 1	4-9 median = 6	0.1753108	0.1813550* (0.1269607)		
Module 2	5-10 median = 7	0.290066	0.3025909* (0.2750079)		
Module 3	6-7 median = 6	0.2325408	0.2392342* (0.2327642)		
Module 4	4-8 median = 6	0.1778775	0.1883207* (0.1714832)		

 Table S1.2
 Summary of network modularity results across ten random trails

Notes: Number of computed modules from repeated analysis of unweighted network graphs using Beckett's DIRTLPAb+ algorithm to optimize Barber's bipartite formulation of Newman & Girvan's modularity index (with default settings for random initializations); * denotes P < 0.01 from one-sided randomization tests based on 100 null networks obtained using the curveball algorithm (mean modularity of simulations in brackets).

Variable	Units	Minimum	Median	Mean	Maximum	SD
Connectivity						
Regional habitat density	ha (inland habitat)	0.002	0.091	0.104	0.339	0.061
	/ ha (watershed)					
River network dispersal distance	m (shortest path)	0	325,953	376,413	1,244,527	285,933
Glacial lake/marine distance	m (Euclidean	0	10,230	19,562	214,550	24,652
	distance)					
Time since glaciation	millennia	8	11	11	17	1.5
Climate						
Mean warmest month	Celsius	14.1	18.3	18.4	23.0	1.5
temperature (mean 1957–2017)	(Kelvin)	(287.27)	(291.48)	(291.54)	(296.15)	(1.5)
Mean coldest month temperature	Celsius	-25.2	-15.5	-15.4	-5.0	3.6
(mean 1957–2017)	(Kelvin)	(247.92)	(257.65)	(257.74)	(268.13)	(3.6)
May to September precipitation	mm	307	420	420	536	26
(mean 1957–2017)						
Precipitation as snow	mm	67	251	235	406	71
(mean 1957–2017)						
Habitat						
Surface area	ha	0.2	76.5	373.74	140,943.3	2081.8
Maximum depth	m	0.3	13.5	16.8	213.5	13.9
Secchi depth	m	0.15	3.20	3.53	22.00	1.85
Proportion shield lithology	proportion	0.00	1.00	0.78	1.00	0.40

 Table S1.3 Summary statistics of environmental and spatial indicators

Notes: SD denotes standard deviation and temperature statistics are presented in both Celsius and Kelvin (in brackets), the latter of which was used in analysis to avoid negative values.

	Regional habitat density	River network dispersal distance	Glacial lake/marine distance	Time since glaciation	Mean warmest month temperature	Mean coldest month temperature	May to September precipitation	Precipitation as snow	Surface area	Maximum depth	Secchi depth	Proportion shield lithology
Regional habitat density	1.00	0.19	-0.13	0.02	0.05	-0.27	0.16	-0.16	0.08	0.22	0.11	0.27
River network dispersal distance	0.19	1.00	0.02	-0.30	-0.17	-0.54	0.10	-0.18	0.06	0.00	-0.02	0.15
Glacial lake/marine distance	-0.13	0.02	1.00	0.20	0.15	0.23	0.24	0.04	-0.04	-0.03	0.04	0.00
Time since glaciation	0.02	-0.30	0.20	1.00	0.81	0.66	0.33	-0.52	-0.06	-0.03	0.00	-0.26
Mean warmest month temperature	0.05	-0.17	0.15	0.81	1.00	0.61	0.26	-0.62	-0.03	-0.06	-0.08	-0.30
Mean coldest month temperature	-0.27	-0.54	0.23	0.66	0.61	1.00	0.02	0.02	-0.12	-0.08	0.07	-0.35
May to September precipitation	0.16	0.10	0.24	0.33	0.26	0.02	1.00	-0.16	-0.02	0.01	-0.06	0.06
Precipitation as snow	-0.16	-0.18	0.04	-0.52	-0.62	0.02	-0.16	1.00	-0.07	0.01	0.19	0.24
Surface area	0.08	0.06	-0.04	-0.06	-0.03	-0.12	-0.02	-0.07	1.00	0.19	-0.04	0.02
Maximum depth	0.22	0.00	-0.03	-0.03	-0.06	-0.08	0.01	0.01	0.19	1.00	0.48	0.08
Secchi depth	0.11	-0.02	0.04	0.00	-0.08	0.07	-0.06	0.19	-0.04	0.48	1.00	0.03
Proportion shield lithology	0.27	0.15	0.00	-0.26	-0.30	-0.35	0.06	0.24	0.02	0.08	0.03	1.00

 Table S1.4
 Pearson correlation coefficients between raw environmental and spatial factors

Variable	Stat.	Boot	Std.	2.5 th	97.5 th
		mean	error	perc.	perc.
Categorical					
Indicators (weights)					
Regional habitat density	-0.308	-0.308	0.012	-0.330	-0.285
River network dispersal distance	-0.116	-0.116	0.016	-0.148	-0.085
Glacial lake/marine distance	0.093	0.093	0.010	0.073	0.114
Time since glaciation	0.879	0.879	0.008	0.862	0.895
Mean warmest month temperature	-0.007	-0.007	0.026	-0.059	0.043
Mean coldest month temperature	0.705	0.704	0.018	0.670	0.737
May to September precipitation	0.135	0.135	0.011	0.113	0.157
Precipitation as snow	-0.649	-0.648	0.032	-0.713	-0.584
Surface area	0.035	0.035	0.046	-0.056	0.121
Maximum depth	0.054	0.056	0.040	-0.027	0.134
Secchi depth	0.146	0.143	0.044	0.054	0.228
Proportion shield lithology	0.962	0.960	0.009	0.942	0.975
Indicators (loadings)					
Regional habitat density	-0.340	-0.339	0.014	-0.366	-0.312
River network dispersal distance	-0.409	-0.409	0.017	-0.443	-0.378
Glacial lake/marine distance	0.293	0.292	0.012	0.267	0.316
Time since glaciation	0.934	0.934	0.004	0.926	0.942
Mean warmest month temperature	0.892	0.892	0.005	0.882	0.900
Mean coldest month temperature	0.725	0.725	0.020	0.685	0.763
May to September precipitation	0.300	0.299	0.018	0.264	0.334
Precipitation as snow	-0.702	-0.701	0.021	-0.743	-0.658
Surface area	0.105	0.106	0.044	0.020	0.195
Maximum depth	0.258	0.258	0.027	0.207	0.312
Secchi depth	0.259	0.256	0.036	0.188	0.327
Proportion shield lithology	0.982	0.980	0.006	0.968	0.990
Latent variables (path coefficients)					
Connectivity	-0.183	-0.183	0.021	-0.222	-0.142
Climate	-0.628	-0.627	0.021	-0.669	-0.590
Habitat	0.019	0.019	0.007	0.005	0.033
Module 1					
Indicators (weights)					
Regional habitat density	-0.389	-0.388	0.015	-0.417	-0.358
River network dispersal distance	0.037	0.037	0.017	0.002	0.068
Glacial lake/marine distance	0.028	0.028	0.011	0.007	0.049
Time since glaciation	0.923	0.923	0.007	0.908	0.937
Mean warmest month temperature	-0.273	-0.272	0.020	-0.312	-0.234

Table S1.5 Detailed results of non-metric partial least-squares structural equation models for primary site modules

Variable	Stat.	Boot	Std.	2.5 th	97.5 th
		mean	error	perc.	perc.
Mean coldest month temperature	0.550	0.549	0.016	0.520	0.580
May to September precipitation	0.214	0.214	0.010	0.195	0.236
Precipitation as snow	-1.005	-1.005	0.013	-1.029	-0.980
Surface area	-0.294	-0.295	0.029	-0.355	-0.240
Maximum depth	0.013	0.015	0.038	-0.056	0.092
Secchi depth	0.390	0.388	0.037	0.317	0.461
Proportion shield lithology	0.850	0.849	0.016	0.818	0.878
Indicators (loadings)					
Regional habitat density	-0.393	-0.392	0.016	-0.422	-0.360
River network dispersal distance	-0.285	-0.285	0.020	-0.323	-0.249
Glacial lake/marine distance	0.250	0.249	0.013	0.224	0.273
Time since glaciation	0.922	0.922	0.006	0.910	0.933
Mean warmest month temperature	0.790	0.789	0.007	0.776	0.802
Mean coldest month temperature	0.421	0.421	0.011	0.400	0.442
May to September precipitation	0.396	0.396	0.015	0.368	0.424
Precipitation as snow	-0.895	-0.894	0.004	-0.902	-0.886
Surface area	-0.251	-0.252	0.024	-0.298	-0.206
Maximum depth	0.240	0.240	0.025	0.191	0.286
Secchi depth	0.478	0.476	0.026	0.428	0.529
Proportion shield lithology	0.867	0.866	0.015	0.838	0.893
Latent variables (path coefficients)					
Connectivity	0.082	0.083	0.013	0.057	0.108
Climate	0.697	0.696	0.012	0.672	0.721
Habitat	-0.046	-0.046	0.008	-0.061	-0.031
Module 2					
Indicators (weights)					
Regional habitat density	-0.014	-0.009	0.042	-0.087	0.081
River network dispersal distance	-0.342	-0.298	0.170	-0.413	0.376
Glacial lake/marine distance	0.919	0.818	0.413	-0.878	0.951
Time since glaciation	-0.682	-0.600	0.325	-0.736	0.730
Mean warmest month temperature	-0.619	-0.619	0.051	-0.721	-0.518
Mean coldest month temperature	0.606	0.606	0.033	0.548	0.672
May to September precipitation	0.329	0.329	0.020	0.289	0.366
Precipitation as snow	0.580	0.580	0.038	0.501	0.653
Surface area	0.950	0.949	0.012	0.925	0.973
Maximum depth	-0.233	-0.233	0.027	-0.286	-0.179
Secchi depth	-0.298	-0.298	0.025	-0.347	-0.253
Proportion shield lithology	-0.087	-0.087	0.020	-0.125	-0.049
Indicators (loadings)					
Regional habitat density	-0.120	-0.102	0.075	-0.188	0.171

¥7	64.4	D ₂ 4	641	a sth	07 sth
v ariable	Stat.	Root	Std.	2.5	y/.5"
		mean	error	perc.	perc.
River network dispersal distance	-0.105	-0.087	0.070	-0.182	0.148
Glacial lake/marine distance	0.758	0.677	0.338	-0.711	0.805
Time since glaciation	-0.390	-0.342	0.192	-0.448	0.436
Mean warmest month temperature	-0.552	-0.552	0.018	-0.585	-0.517
Mean coldest month temperature	0.210	0.209	0.021	0.166	0.250
May to September precipitation	0.041	0.041	0.023	-0.006	0.086
Precipitation as snow	0.892	0.892	0.008	0.875	0.907
Surface area	0.873	0.873	0.010	0.853	0.892
Maximum depth	-0.097	-0.096	0.022	-0.142	-0.052
Secchi depth	-0.473	-0.473	0.019	-0.508	-0.436
Proportion shield lithology	-0.082	-0.082	0.022	-0.124	-0.039
Latent variables (path coefficients)					
Connectivity	0.065	0.058	0.030	-0.058	0.083
Climate	0.221	0.222	0.010	0.203	0.241
Habitat	-0.371	-0.371	0.009	-0.388	-0.355
Module 3					
Indicators (weights)					
Regional habitat density	0.172	0.169	0.047	0.101	0.242
River network dispersal distance	-0.634	-0.618	0.139	-0.685	-0.572
Glacial lake/marine distance	0.009	0.011	0.031	-0.051	0.072
Time since glaciation	0.617	0.603	0.128	0.551	0.670
Mean warmest month temperature	0.995	0.994	0.032	0.928	1.059
Mean coldest month temperature	0.224	0.224	0.025	0.171	0.272
May to September precipitation	-0.351	-0.351	0.016	-0.381	-0.321
Precipitation as snow	0.881	0.880	0.028	0.826	0.936
Surface area	0.284	0.280	0.097	0.117	0.440
Maximum depth	0.620	0.601	0.146	0.407	0.774
Secchi depth	-0.989	-0.954	0.225	-1.101	-0.821
Proportion shield lithology	0.398	0.385	0.108	0.223	0.544
Indicators (loadings)					
Regional habitat density	0.067	0.066	0.037	-0.007	0.137
River network dispersal distance	-0.782	-0.762	0.169	-0.819	-0.736
Glacial lake/marine distance	0.097	0.097	0.036	0.023	0.161
Time since glaciation	0.798	0.780	0.164	0.751	0.835
Mean warmest month temperature	0.456	0.457	0.012	0.432	0.480
Mean coldest month temperature	0.798	0.798	0.009	0.779	0.815
May to September precipitation	-0.311	-0.312	0.016	-0.342	-0.282
Precipitation as snow	0.293	0.293	0.012	0.269	0.317
Surface area	0.548	0.536	0.122	0.412	0.669
Maximum depth	0.165	0.165	0.073	0.022	0.307

Variable	Stat.	Boot	Std.	2.5 th	97.5 th
		mean	error	perc.	perc.
Secchi depth	-0.590	-0.567	0.153	-0.698	-0.436
Proportion shield lithology	0.399	0.387	0.105	0.227	0.547
Latent variables (path coefficients)					
Connectivity	0.059	0.058	0.016	0.042	0.077
Climate	0.538	0.537	0.011	0.516	0.557
Habitat	0.052	0.050	0.017	0.020	0.076
Module 4					
Indicators (weights)					
Regional habitat density	-0.221	-0.221	0.014	-0.246	-0.194
River network dispersal distance	-0.351	-0.351	0.013	-0.377	-0.326
Glacial lake/marine distance	0.370	0.370	0.014	0.342	0.398
Time since glaciation	0.658	0.657	0.013	0.632	0.683
Mean warmest month temperature	0.084	0.083	0.028	0.023	0.135
Mean coldest month temperature	0.941	0.941	0.017	0.910	0.978
May to September precipitation	0.129	0.129	0.012	0.106	0.151
Precipitation as snow	0.109	0.109	0.021	0.069	0.148
Surface area	0.827	0.827	0.014	0.800	0.855
Maximum depth	-0.083	-0.082	0.028	-0.138	-0.030
Secchi depth	-0.298	-0.300	0.024	-0.347	-0.253
Proportion shield lithology	0.458	0.456	0.018	0.418	0.489
Indicators (loadings)					
Regional habitat density	-0.306	-0.305	0.016	-0.334	-0.273
River network dispersal distance	-0.554	-0.554	0.012	-0.576	-0.530
Glacial lake/marine distance	0.506	0.506	0.016	0.475	0.536
Time since glaciation	0.838	0.837	0.009	0.820	0.854
Mean warmest month temperature	0.621	0.621	0.010	0.600	0.640
Mean coldest month temperature	0.990	0.990	0.002	0.986	0.993
May to September precipitation	0.137	0.136	0.014	0.109	0.163
Precipitation as snow	-0.012	-0.012	0.014	-0.038	0.016
Surface area	0.835	0.834	0.011	0.813	0.855
Maximum depth	0.071	0.071	0.022	0.028	0.113
Secchi depth	-0.334	-0.334	0.019	-0.370	-0.297
Proportion shield lithology	0.472	0.470	0.017	0.436	0.501
Latent variables (path coefficients)					
Connectivity	-0.192	-0.193	0.010	-0.211	-0.174
Climate	-0.405	-0.404	0.011	-0.426	-0.382
Habitat	0.232	0.233	0.009	0.217	0.251

Notes: Site modules were treated as either unordered multinomial (multilevel categorical) or binary dependent variables (modules 1–4); indicator weights and latent variable path coefficients are multiple ordinary least-squares regression coefficients; indicator loadings are Pearson

correlation coefficients; boot means are from bootstrap validation with 1,000 resamples (without replacement); Std. error is the standard error of bootstrap samples; and the lower 2.5th and upper 97.5th percentiles are bounds of bootstrap confidence intervals.

Variable	Categorical	Mod 1	Mod 2	Mod 3	Mod 4
Goodness-of-fit	0.477	0.451	0.259	0.282	0.390
\mathbf{R}^2	0.642	0.610	0.278	0.305	0.483
Connectivity Block Communality	0.310	0.287	0.188	0.315	0.339
Climate Block Communality	0.476	0.440	0.286	0.257	0.346
Habitat Block Communality	0.277	0.275	0.251	0.209	0.259

Table S1.6 Diagnostics of non-metric partial least-squares structural equation models

Model	Coefficient	Stat	Std. error	z score	2.5 th perc.	97.5 th perc.
Module 1						
ABC	Intercept	-3.830	0.084	-45.517	-3.999	-3.669
	Connectivity	0.517	0.069	7.508	0.382	0.652
	Climate	2.445	0.081	30.105	2.289	2.608
	Habitat	0.171	0.059	2.879	0.056	0.288
	AUC	0.965				
AB	Intercept	-3.814	0.084	-45.394	-3.983	-3.653
	Connectivity	0.449	0.064	7.001	0.323	0.575
	Climate	2.408	0.080	30.071	2.255	2.569
	AUC	0.965				
AC	Intercept	-3.082	0.058	-52.975	-3.198	-2.969
	Connectivity	1.918	0.053	36.278	1.816	2.024
	Habitat	-0.321	0.038	-8.345	-0.396	-0.245
	AUC	0.951				
BC	Intercept	-3.789	0.083	-45.466	-3.956	-3.629
	Climate	2.782	0.072	38.391	2.643	2.927
	Habitat	0.032	0.055	0.594	-0.074	0.140
	AUC	0.961				
А	Intercept	-3.126	0.059	-53.170	-3.243	-3.012
	Connectivity	2.098	0.051	41.370	2.000	2.199
	AUC	0.945				
В	Intercept	-3.788	0.083	-45.430	-3.955	-3.628
	Climate	2.766	0.067	41.010	2.637	2.902
	AUC	0.961				
С	Intercept	-2.274	0.038	-59.690	-2.350	-2.201
	Habitat	-0.939	0.029	-31.950	-0.996	-0.881
	AUC	0.756				
Module 2						
ABC	Intercept	-1.377	0.033	-41.573	-1.443	-1.313
	Connectivity	0.173	0.033	5.227	0.108	0.237
	Climate	0.827	0.039	21.112	0.750	0.904
	Habitat	-1.217	0.035	-34.587	-1.287	-1.149
	AUC	0.846				
AB	Intercept	-1.095	0.027	-40.679	-1.148	-1.043
	Connectivity	0.085	0.029	2.915	0.028	0.142
	Climate	1.125	0.035	32.150	1.057	1.194
	AUC	0.758				
AC	Intercept	-1.244	0.030	-41.500	-1.303	-1.185

Table S1.7 Detailed results of multiple logistic regression analysis of each primary site module on biogeographic constructs (with scores calculated for each module by non-metric partial least-squares structural equation models)

Model	Coefficient	Stat	Std. error	z score	2.5 th perc.	97.5 th perc.
	Connectivity	0.530	0.028	18.660	0.475	0.586
	Habitat	-1.382	0.034	-40.450	-1.450	-1.316
	AUC	0.823				
BC	Intercept	-1.371	0.033	-41.670	-1.436	-1.307
	Climate	0.921	0.035	26.440	0.853	0.990
	Habitat	-1.206	0.035	-34.430	-1.275	-1.138
	AUC	0.845				
A	Intercept	-0.908	0.023	-39.330	-0.953	-0.863
	Connectivity AUC	0.559 0.644	0.024	22.900	0.511	0.607
В	Intercept	-1.092	0.027	-40.720	-1.145	-1.040
	Climate AUC	1.168 0.757	0.032	36.680	1.106	1.231
С	Intercept	-1.172	0.028	-41.340	-1.228	-1.117
	Habitat	-1.406	0.034	-41.760	-1.472	-1.340
	AUC	0.804				
Module 3						
ABC	Intercept	-2.304	0.045	-50.897	-2.394	-2.216
	Connectivity	0.055	0.044	1.245	-0.032	0.142
	Climate	1.769	0.049	36.431	1.675	1.866
	Habitat	0.044	0.034	1.312	-0.022	0.110
	AUC	0.886				
AB	Intercept	-2.310	0.045	-51.143	-2.400	-2.223
	Connectivity	0.055	0.044	1.231	-0.033	0.141
	Climate AUC	1.761 0.885	0.048	36.471	1.668	1.858
AC	Intercept	-1.671	0.030	-56.270	-1.729	-1.613
	Connectivity	0.728	0.028	25.940	0.673	0.783
	Habitat AUC	-0.275 0.748	0.028	-9.780	-0.330	-0.220
BC	Intercept	-2.309	0.045	-51.099	-2.399	-2.222
	Climate	1.802	0.041	43.595	1.722	1.884
	Habitat AUC	0.044 0.886	0.034	1.299	-0.022	0.110
A	Intercept	-1 645	0 029	-56 580	-1 703	-1 589
	Connectivity	0 753	0.029	-50.500 26.830	0.698	0.808
	AUC	0.748	0.020	20.050	0.070	0.000
В	Intercept	-2.316	0.045	-51.370	-2.406	-2.229
	Climate AUC	1.794 0.885	0.041	43.850	1.715	1.875
С	Intercept	-1.518	0.027	-57.290	-1.570	-1.466
	Habitat	-0.331	0.027	-12.460	-0.383	-0.279

Model	Coefficient	Stat	Std. error	z score	2.5 th perc.	97.5 th perc.
	AUC	0.596				
Modulo 4						
Module 4	Intercent	0.022	0.024	27 400	0.000	0.957
ABC	Commontivity	-0.922	0.034	-27.490	-0.988	-0.857
	Connectivity	-0.808	0.038	-15.920	-0.924	-0.090
	Unitate	-1.450	0.062	-23.270	-1.575	-1.329
	Habitat	1.031	0.037	28.010	0.959	1.104
	AUC	0.923	0.022	27.024	0.050	0.022
AB	Intercept	-0.895	0.032	-27.934	-0.958	-0.833
	Connectivity	-0.449	0.053	-8.426	-0.555	-0.346
	Climate	-1.838	0.060	-30.487	-1.957	-1.720
	AUC	0.895				
AC	Intercept	-0.917	0.032	-28.680	-0.980	-0.855
	Connectivity	-1.984	0.043	-45.670	-2.071	-1.900
	Habitat	1.191	0.036	33.450	1.122	1.262
	AUC	0.909				
BC	Intercept	-0.910	0.033	-27.400	-0.975	-0.845
	Climate	-2.132	0.045	-47.280	-2.222	-2.045
	Habitat	0.905	0.035	26.130	0.838	0.974
	AUC	0.919				
А	Intercept	-0.826	0.029	-28.620	-0.883	-0.770
	Connectivity	-1.984	0.040	-49.550	-2.063	-1.906
	AUC	0.867				
В	Intercept	-0.900	0.032	-28.090	-0.963	-0.838
	Climate	-2.228	0.043	-52.180	-2.312	-2.145
	AUC	0.894				
С	Intercept	-0.588	0.024	-24.670	-0.635	-0.542
	Habitat	1.206	0.030	40.800	1.148	1.264
	AUC	0.778				

Notes: AUC denotes area under the curve and the lower 2.5th and upper 97.5th percentiles are bounds of profile likelihood confidence intervals.

Table S1.8 Detailed results of variation partitioning analysis based on explanatory power ofbiogeographic constructs (with scores calculated by non-metric partial least-squares structuralequation modelling) in multiple logistic regression for each primary site module

Latent construct	Fraction	Tjur R ²
Module 1		
Total Connectivity		0.4895
Total Climate		0.7282
Total Habitat		0.1431
Pure Connectivity	а	0.0052
Pure Climate	b	0.2335
Pure Habitat	с	0.0019
Pure Connectivity Climate overlap	d	0.3518
Pure Climate Habitat overlap	e	0.0087
Pure Connectivity Habitat overlap	f	-0.0017
Connectivity Climate Habitat overlap	g	0.1342
Unexplained	h	0.2663
Module 2		
Total Connectivity		0.0547
Total Climate		0.1760
Total Habitat		0.2440
Pure Connectivity	а	0.0034
Pure Climate	b	0.0424
Pure Habitat	C C	0.1431
Pure Connectivity Climate overlap	d	0.0306
Pure Climate Habitat overlap	e e	0.0803
Pure Connectivity Habitat overlap	f	-0.0021
Connectivity Climate Habitat overlap	σ	0.0021
Unexplained	5 h	0.6796
Chexplained	11	0.0790
Module 3		
Total Connectivity		0.0745
Total Climate		0.3401
Total Habitat		0.0151
Pure Connectivity	а	0.0002
Pure Climate	b	0.2571
Pure Habitat	с	0.0008
Pure Connectivity Climate overlap	d	0.0687
Pure Climate Habitat overlap	e	0.0087
Pure Connectivity Habitat overlap	f	< 0.0001
Connectivity Climate Habitat overlap	g	0.0057
Unexplained	h	0.6589
Module 4		
Total Connectivity		0.3927
Total Climate		0.4776
Total Habitat		0.2206
Pure Connectivity	a	0.0180

Latent construct	Fraction	Tjur R ²
Pure Climate	b	0.0503
Pure Habitat	с	0.0733
Pure Connectivity Climate overlap	d	0.2690
Pure Climate Habitat overlap	e	0.0416
Pure Connectivity Habitat overlap	f	-0.0110
Connectivity Climate Habitat overlap	g	0.1167
Unexplained	h	0.4421

Changes	Main analysis	Counts of changes after	Counts of changes after
		removal of non-native	removal of sites with
		species	non-native species
	<i>n</i> = 10,016	<i>n</i> = 9,993	n = 9,072
Module 1 total	1,258	1,297	2262
Module 1 to 2		1	0
Module 1 to 3		16	0
Module 1 to 4		4	0
Module 2 total	3.010	3.271	2938
Module 2 to 1	-,	38	19
Module 2 to 3		20	0
Module 2 to 4		57	0
Module 3 total	1,851	1,773	2
Module 3 to 1	,	10	1386
Module 3 to 2		134	170
Module 3 to 4		30	97
Module 4 total	3,897	3,652	3870
Module 4 to 1		12	73
Module 4 to 2		261	20
Module 4 to 3		63	1

Table S1.9 Summary of changes to site modules after removal of non-native species

Notes: See Table S1.1 for list of non-native species; 23 sites were lost after removal of nonnative species from the species pool (module 2 = 20 and module 3 = 3); 944 sites were lost after removal of sites with non-native species from the site pool (module 1 = 474, module 2 = 243, module 3 = 197, and module 4 = 30); and modularity (Q) values of sensitivity analyses after removal of non-native species from the species pool and removal of sites with non-native species from the site pool were 0.3284089 and 0.3258256, respectively.

Figure S1.1 Maps (presenting spatial data from Dyke et al. (2003) Deglaciation of North America. Geological Survey of Canada Open File, 1574. Thirty-two digital maps at 1:7,000,000 scale with accompanying digital chronological database and one poster (two sheets) with full map series) showing (**a**) time since glaciation (before present) and (**b**) glacial lake and marine extents with most recent extents on top (chronological) and arrows representing major historical outflows (modified from Kehew et al. (2009) Proglacial megaflooding along the margins of the Laurentide Ice Sheet, *in* Burr, D., Carling, P.A., and Baker, V.R., eds., *Megaflooding on Earth and Mars*. Cambridge University Press, Cambridge, UK, p. 104–127; and Teller (2003) Controls, history, outburst, and impact of large late-Quaternary proglacial lakes in North America. *Developments in Quaternary Science*, 1:45–61)

Figure S1.2 Maps (presenting spatial data derived from ClimateNA v6.40; Wang, Hamann, Spittlehouse, & Carroll (2016) Locally downscaled and spatially customizable climate data for historical and future periods for North America. *PLoS ONE*, 11: e0156720) showing 30-year normals (1961–1990) at approximately 250 m resolution for (**a**) mean warmest month temperature, (**b**) mean coldest month temperature, (**c**) May to September precipitation, and (**d**) precipitation as snow

Figure S1.3 Map (presenting spatial data from Hartmann & Moosdoft (2012) The new global lithological map database GLiM: A representation of rock properties at the Earth surface. *Geochemistry, Geophysics, Geosystems*, 13:12) showing basic lithological classes used to derive proportion of shield (metamorphic + acid plutonic + basic plutonic + intermediate plutonic + acid volcanic + basic volcanic + intermediate volcanic rocks) versus sedimentary rock (carbonate sedimentary + mixed sedimentary + siliciclastic sedimentary)

Figure S1.4 Map showing network primary modularity results for individual site nodes

Figure S1.5 Maps showing network sub-modularity results for individual site nodes

Figure S1.6 Maps showing network primary modularity results for site nodes summarized by tertiary drainages to identify bioregions for our main analysis (**a**), after removal of non-native species from the species pool (**b**), and after removal of sites with non-native species from the site pool (**c**)

Outer measurement (indicator) and inner structural (latent) variables

Figure S1.7 Results of NM-PLS-SEM and multiple logistic regression of primary site modules on biogeographic constructs after removal of non-native species from the species pool (see Table S1.1 for list of non-native species). Outer measurement model results (**a**) are presented as weights (darker bars; representing multiple ordinary least-squares regression coefficients) and loadings (lighter bars; representing Pearson correlation coefficients) for standardized indicators. Inner structural model results (**b**) are presented as path coefficients from multiple logistic regression for latent variables. Error bars show the lower 2.5th and upper 97.5th percentiles of bootstrap and profile likelihood confidence intervals for outer and inner model coefficients, respectively. See Figure 5 in main text for results of full analysis

Figure S1.8 Approximately area-proportional Euler plots showing the total, shared, and unique explanatory power of biogeographic constructs (connectivity, climate, and habitat) in logistic regression after removal of non-native species from the species pool (see Table S1.1 for list of non-native species). Fractions are expressed as Tjur's R^2 (coefficients of discrimination) from models of primary site modules (binary responses) predicted by latent variable scores (calculated by NM-PLS-SEM). See Figure 6 in main text for results of full analysis

Figure S1.9 Results of NM-PLS-SEM and multiple logistic regression of primary site modules on biogeographic constructs after removal of sites with non-native species from the site pool (see Table S1.1 for list of non-native species). Outer measurement model results (**a**) are presented as weights (darker bars; representing multiple ordinary least-squares regression coefficients) and loadings (lighter bars; representing Pearson correlation coefficients) for standardized indicators. Inner structural model results (**b**) are presented as path coefficients from multiple logistic regression for latent variables. Error bars show the lower 2.5th and upper 97.5th percentiles of bootstrap and profile likelihood confidence intervals for outer and inner model coefficients, respectively. See Figure 5 in main text for results of full analysis

Figure S1.10 Approximately area-proportional Euler plots showing the total, shared, and unique explanatory power of biogeographic constructs (connectivity, climate, and habitat) in logistic regression after removal of sites with non-native species from the site pool (see Table S1.1 for list of non-native species). Fractions are expressed as Tjur's R^2 (coefficients of discrimination) from models of primary site modules (binary responses) predicted by latent variable scores (calculated by NM-PLS-SEM). See Figure 6 in main text for results of full analysis