
 

 

 

This is the author manuscript accepted for publication and has undergone full peer review but has not 

been through the copyediting, typesetting, pagination and proofreading process, which may lead to 

differences between this version and the Version of Record. Please cite this article as doi: 

10.1002/jlb.10901. 

 

This article is protected by copyright. All rights reserved. 

 

Cellular Immune Responses in the Pathophysiology of Preeclampsia 

Derek Miller1,2, Kenichiro Motomura1,2, Jose Galaz1,2, Meyer Gershater1,2, Eun D. 

Lee3,4,  

Roberto Romero1,5-9, Nardhy Gomez-Lopez1,2,10 

 

1Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, 

Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child 

Health and Human Development, National Institutes of Health, U.S. Department of 

Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, 

Michigan, USA; 

2Department of Obstetrics and Gynecology, Wayne State University School of 

Medicine, Detroit, Michigan, USA; 

3Department of Microbiology and Immunology, Virginia Commonwealth University, 

Richmond, Virginia, USA; 

4Department of Obstetrics and Gynecology, Virginia Commonwealth University, 

Richmond, Virginia, USA; 

5Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, 

Michigan, USA; 

6Department of Epidemiology and Biostatistics, Michigan State University, East 

Lansing, Michigan, USA; 

7Center for Molecular Medicine and Genetics, Wayne State University, Detroit, 

Michigan, USA; 

8Detroit Medical Center, Detroit, Michigan, USA; 

https://doi.org/10.1002/jlb.10901
https://doi.org/10.1002/jlb.10901
https://doi.org/10.1002/jlb.10901


 

 

 
This article is protected by copyright. All rights reserved. 

2 
 

9Department of Obstetrics and Gynecology, Florida International University, Miami, 

Florida, USA; 

10Department of Biochemistry, Microbiology, and Immunology, Wayne State 

University School of Medicine, Detroit, Michigan, USA; 

 

Summary sentence 

Innate and adaptive immune cell responses in women with preeclampsia 

 

Short title 

Cellular Immune Responses in Preeclampsia 

 

Correspondence  

Nardhy Gomez-Lopez, MSc, PhD, Department of Obstetrics and Gynecology, 

Wayne State University School of Medicine, Perinatology Research Branch, 

NICHD/NIH/DHHS, 275 E. Hancock, Detroit, Michigan 48201, USA, Tel (313) 577-

8904, Email: nardhy.gomez-lopez@wayne.edu; ngomezlo@med.wayne.edu.  

 

Key words 

Pregnancy, hypertensive disorders of pregnancy (HDP), gestational hypertension, 

immune cell, T cell, NK cell, regulatory T cell, neutrophil, natural killer cell, 

macrophage, monocyte 

ABBREVIATIONS 

APC: antigen presenting cell 

cDC: conventional DC 

CM: central memory 

mailto:nardhy.gomez-lopez@wayne.edu
mailto:ngomezlo@med.wayne.edu


 

 

 
This article is protected by copyright. All rights reserved. 

3 
 

CTB: cytotrophoblast 

DC: dendritic cell 

EM: effector memory 

EVT: extravillous trophoblast 

HELLP: hemolysis, elevated liver enzymes, and low platelet count syndrome 

IL: interleukin 

iNKT: invariant Natural Killer T cell 

iTreg: induced Treg 

IUGR: intra-uterine growth restriction 

KIR: killer cell immunoglobulin-like receptor 

KLR: killer cell lectin-like receptor 

LPS: lipopolysaccharide 

LTi cell: lymphoid tissue inducer cell 

mDC: myeloid DC 

MDSC: myeloid-derived suppressor cell 

NET: neutrophil extracellular trap 

NK cells: Natural killer cell 

NKT: Natural killer T cell 

nTreg: natural Treg 

PBMCs: peripheral blood mononuclear cells 

pDC: plasmacytoid DC 

ROS: reactive oxygen species 

RTE: recent thymic immigrant 

RUPP: reduced uteroplacental perfusion 

STBM: syncytiotrophoblast microparticles 

TCR: T-cell receptor 



 

 

 
This article is protected by copyright. All rights reserved. 

4 
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ABSTRACT 

Preeclampsia, defined as new-onset hypertension accompanied by 

proteinuria occurring at 20 weeks of gestation or later, is a leading cause of perinatal 

morbidity and mortality worldwide. The pathophysiology of this major multi-systemic 

syndrome includes defective deep placentation, oxidative stress, endothelial 

dysfunction, the presence of an anti-angiogenic state, and intra-vascular 

inflammation, among others. In this review, we provide a comprehensive overview of 

the cellular immune responses involved in the pathogenesis of preeclampsia. 

Specifically, we summarize the role of innate and adaptive immune cells in the 

maternal circulation, reproductive tissues, and at the maternal-fetal interface of 

women affected by this pregnancy complication. The major cellular components 

involved in the pathogenesis of preeclampsia are regulatory T cells, effector T cells, 

natural killer cells, monocytes, macrophages, and neutrophils. We also summarize 

the literature on those immune cells that have been less characterized in this clinical 

condition, such as γδ T cells, invariant natural killer T cells, dendritic cells, mast cells, 

and B cells. Moreover, we discuss in vivo studies utilizing a variety of animal models 

of preeclampsia to further support the role of immune cells in this disease. Finally, 
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we highlight the existing gaps in knowledge of the immunobiology of preeclampsia 

that require further investigation. The goal of this review is to promote translational 

research leading to clinically relevant strategies that can improve adverse perinatal 

outcomes resulting from the obstetrical syndrome of preeclampsia.  

INTRODUCTION 

Preeclampsia is one of the most common pregnancy complications, occurring 

in 3-5% of all pregnancies [1-3], and is considered one of the “Great Obstetrical 

Syndromes” [4, 5]. Preeclampsia is diagnosed as new-onset hypertension (≥140/90 

mmHg) accompanied by proteinuria occurring at 20 weeks of gestation or later [6]. 

Preeclampsia can escalate to eclampsia, characterized by new-onset seizures [7, 8]. 

Yet, even if eclampsia does not occur, mothers with preeclampsia are at increased 

risk of stroke [9, 10], acute cardiovascular complications [11, 12], and hemolysis, 

elevated liver enzymes, and low platelet count (HELLP) syndrome [13], among 

others. Preeclampsia can also directly affect the fetus by causing fetal distress, fetal 

growth restriction, and even fetal death [14, 15]. Moreover, preeclampsia is 

associated with long-term adverse outcomes for the mother, such as increased risk 

of cardiovascular disease [16, 17], as well as for the offspring [18]. Therefore, 

preeclampsia is one of the primary causes of maternal and neonatal morbidity and 

mortality worldwide. 

Preeclampsia has been proposed to occur in two distinct stages [19-21]. The 

first is represented by poor placentation and defective remodeling of the spiral 

arteries, resulting in insufficient placental circulation [19-22]. The second stage 

results from such poor blood flow and is characterized by a placental stress 

response [19-21]. This chain of events culminates in a systemic maternal response 

that manifests as preeclampsia [19-21]. Thus, the pathophysiology of preeclampsia 
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is largely driven by the placenta, as evidenced by the fact that delivery of the 

placenta is the only effective treatment for this condition [2]. In addition, the systemic 

effects of preeclampsia are thought to result from the release of mediators by the 

placenta, which includes soluble factors [e.g. soluble FMS-like tyrosine kinase 1 

(sFlt-1) and endoglin] [23-25], trophoblast-derived extracellular vesicles and/or 

microparticles [26, 27], and reactive oxygen species (ROS) [28]. Such mediators 

exert specific immune functions, contributing to the maternal systemic inflammatory 

state associated with preeclampsia [29, 30]. Indeed, a large body of research has 

demonstrated that preeclampsia is characterized by quantitative and qualitative 

modifications of both systemic and local immune cell responses. Therefore, 

understanding the complex cellular immune changes and interactions underlying the 

pathophysiology of preeclampsia may foster research focused on the development 

of immune therapeutic strategies to tackle this syndrome. 

In this review, we provide a comprehensive overview of the cellular 

immunology of preeclampsia, given the large body of evidence implicating immune 

cells in the pathogenesis of this great obstetrical syndrome. Herein, we summarize 

prior reports of innate and adaptive immune cells in the circulation, reproductive 

tissues, and at the maternal-fetal interface of women with preeclampsia. The 

maternal-fetal interface includes multiple anatomically-distinct sites of immunological 

interaction between the mother and fetus: the decidua basalis, where maternal cells 

interact with the fetal extravillous cytotrophoblast; the intervillous space, where 

circulating maternal immune cells are in contact with the fetal syncytiotrophoblast; 

and the interface between the decidua parietalis and amniochorion [31, 32]. We have 

focused our attention on the immune cell subsets that are thought to be most 

involved in the pathogenesis of preeclampsia such as regulatory T cells, effector T 
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cells, and natural killer (NK) cells; yet, we also summarize literature on those subsets 

that have been less characterized in this clinical condition (Figure 1). Such research 

includes relevant studies demonstrating the putative functional contributions of 

different immune cell subsets to the pathogenesis of preeclampsia as well as their 

interactions with other physiological processes. Moreover, we lay out an overview of 

in vivo studies utilizing a variety of animal models of preeclampsia to offer further 

mechanistic evidence of immune cellular involvement in this pregnancy complication. 

Through this review, we provide insight into the immune cellular mechanisms of 

preeclampsia and potentially highlight gaps in knowledge that can drive future 

research. 

 

THE ROLE OF ADAPTIVE IMMUNE CELL SUBSETS IN PREECLAMPSIA 

Regulatory T cells 

Regulatory T cells or 'Tregs’ are specialized CD4+ T cells with 

immunosuppressive activity that are best characterized by their expression of the 

forkhead/winged-helix transcription factor 3 (Foxp3), which is essential for their 

development and function [33, 34]. Under physiological conditions, Tregs carry out 

important functions as part of the mechanisms of peripheral tolerance through the 

suppression of aberrant T-cell activation [35, 36]. During pregnancy, unique and 

specific immune interactions take place between the mother and the semi-allogeneic 

fetus, a concept that is referred to as “maternal-fetal tolerance” [37-39]. At the 

molecular level, maternal-fetal tolerance arises from maternal immune recognition of 

fetal antigens, which activates a series of immunological mechanisms to regulate 

subsequent maternal antigen-specific responses. Tregs are a central component of 

such mechanisms of maternal-fetal tolerance [40-47], not only throughout pregnancy 
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but also as part of successful implantation [45, 48, 49] and even prior to fertilization 

[50, 51]. 

Overall, current literature suggests that preeclampsia occurs in the context of 

a systemic and local reduction in Treg numbers and/or proportions. Several studies 

have consistently demonstrated a reduced presence of Tregs in the placental bed 

[52] and decidua [53, 54] of women with preeclampsia, although one report did not 

observe such a reduction [55]. In addition to cellular measurements, tissue-based 

gene expression analyses have also demonstrated a downregulation of Treg-related 

transcription factors such as FOXP3 and GATA3 in the decidua or placenta of 

women with preeclampsia compared to those with normotensive term pregnancies 

[56-58]. Thus, preeclampsia seems to be characterized by an overall reduction of 

Tregs in the decidua and placenta, and such deficiency is mirrored by a concomitant 

increase in effector T cells [53, 58], particularly T helper (Th)17 cells [54], as well as 

the upregulation of Th1-associated molecules such as TBET [56, 58]. Notably, early-

onset preeclampsia (preeclampsia diagnosed at <34 weeks of gestation) seems to 

be characterized by a more severe decrease in the proportion of decidual Tregs 

compared to late-onset preeclampsia [53], suggesting differences between the 

pathophysiology of these two disease subsets. 

Several potential explanations for the local reduction of Tregs in women with 

preeclampsia have been proposed. First, there may be reduced differentiation of 

decidual Tregs due to defective signaling and/or antigen presentation by local 

antigen presenting cells (APCs) [59]. This concept is supported by the demonstration 

that peripheral DCs from women with preeclampsia exhibit greater capacity for 

promoting Th1/Th17-like T-cell responses in vitro compared to those from healthy 

pregnant women [60], and that altered circulating DCs were associated with 
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decreased proportions of peripheral Tregs in women with preeclampsia [61] and with 

elevated proportions of Th17 cells in women with early-onset preeclampsia [62]. 

Second, the impaired formation of decidual lymphatic vessels described in 

preeclampsia may prevent the migration of immune cells into this compartment [63]. 

Indeed, decidual lymphatic vessel density was shown to correlate with decidual Treg 

numbers, and thus it is possible that in preeclampsia the routes by which circulating 

Tregs enter the decidua are impeded [63]. Lastly, recent investigation of the T-cell 

receptor (TCR) repertoires of Tregs in the decidua revealed that the fraction of 

clonally-expanded Tregs was significantly decreased in women with preeclampsia 

[64], possibly indicating a larger issue of impaired mechanisms of maternal-fetal 

tolerance. 

Consistent with the observed local deficiency of Tregs, decreased numbers of 

circulating Tregs [52, 61, 65-79] and CD8+CD25+Foxp3+ cells [80] have been 

reported in women with preeclampsia, although several studies did not observe 

differences [55, 81, 82], and such cells may also display lower suppressive capacity 

[55, 66, 70, 73, 78]. The changes in circulating Tregs are reflected by elevated 

proportions of conventional T cells, particularly Th17 cells [73, 75, 77, 79], as well as 

by the reduced FOXP3 expression and IL-35 levels accompanied by elevated RORC 

expression and IL-17A levels in women with preeclampsia [83]. In particular, women 

with early-onset preeclampsia show increased disparity between CD4+ T cells 

expressing RORC and those expressing FOXP3 compared to those with late-onset 

disease or healthy pregnancies [84]. The enhanced Th17-like responses observed in 

women with preeclampsia may not be solely driven by Th17 cells in all cases, but 

could also involve type 3 innate lymphoid cells (ILC3s) that have similar cytokine 

profiles and functions [85]. Regardless of origin, the administration of soluble IL-17 
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receptor C (IL-17RC) in a rat reduced uteroplacental perfusion (RUPP) model of 

preeclampsia was shown to at least partially mitigate the effects of an aberrant Th17 

response [86]. Thus, the combination of reduced Tregs and inefficient suppression 

may result in a systemic environment that encourages aberrant Th17-dominant 

inflammation in women with preeclampsia. 

One question that arises from the study of Tregs concerns the contributions of 

thymic/natural Tregs and peripheral/induced Tregs to pregnancy success, a topic 

that was recently reviewed [87]. Deficiency of conserved noncoding sequence 1 

(CNS1), a Foxp3 element with a prominent role in peripheral Treg generation, 

increased immune cell infiltration of the placenta and caused fetal loss [46], 

suggesting an important role for peripheral Tregs in pregnancy maintenance. More 

recent studies have indicated that the generation of thymic Tregs continues during 

pregnancy [88, 89], although this concept is still controversial [90]. Notably, in 

women with preeclampsia, the proportions of circulating recent thymic immigrant 

(RTE) and mature naïve Tregs were decreased while that of memory Tregs was 

elevated, suggesting that the differentiation process of circulating Tregs may be 

impaired [90, 91]. Further supporting these observations, the proportions of CD25hi 

Tregs were increased in women with preeclampsia while Foxp3hi Tregs decreased, 

and it was suggested that the Foxp3hi subset represents natural or thymic Tregs 

whereas the CD25hi subset may be induced from peripheral naïve T cells [66]. 

Moreover, another report showed that the proportions of naïve Tregs were 

decreased while those of CD45RA-HLA-DRhi and CD45RA-HLA-DRlo Tregs 

increased in preeclampsia [70], providing evidence that naïve Tregs may undergo an 

accelerated maturation or differentiation towards a highly suppressive phenotype 

[92, 93] in women with this condition. Finally, reports have indicated a general 
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reduction of Tregs [72] or the loss of specific subsets [94] in women with 

preeclampsia. Taken together, these studies point to the altered differentiation of 

circulating Tregs as a hallmark of the pathophysiology of preeclampsia. This concept 

has been recently strengthened by high-dimensional longitudinal studies 

investigating the dynamics of peripheral Tregs in women with preeclampsia [95]. 

Notably, signatures corresponding to Tregs and effector T cells stood out as being 

differentially modulated in women with preeclampsia [95]. Specifically, STAT5 

signaling in Th1 cells was consistently decreased in women who ultimately 

developed preeclampsia [95], which is notable since the IL-2/STAT5 pathway has 

been implicated in T helper [96] and Treg [97] differentiation, and may also inhibit 

Th17 differentiation [98]. In addition, p38 signaling (required for the suppressive 

function of Tregs [99]) was increased in Tregs from women with normal pregnancies, 

but not those with preeclampsia [95]. These observations provide a more 

translational perspective on Treg dysfunction and Treg/Th17 imbalance in women 

with preeclampsia, and demonstrate potential for the use of specific signatures in the 

maternal circulation to evaluate preeclampsia. 

The immune checkpoint PD-1/PD-L1 pathway has also been implicated in the 

aberrant Treg responses observed in women with preeclampsia [54]. Peripheral 

Tregs from women with preeclampsia demonstrated higher expression of PD-1 

together with reduced expression on Th17 cells compared to those from normal 

pregnancies [54]. In vitro experiments revealed that inhibition of the PD-1/PD-L1 

pathway promoted the expression of RORC and IL17A by Tregs, and 

supplementation with PD-L1 Fc skewed naïve CD4+ T-cell differentiation towards a 

Treg phenotype [54]. Similar findings were obtained using a rat model of L-NG-

Nitroarginine methyl ester (L-NAME)-induced preeclampsia, in which the 
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administration of PD-L1-Fc restored the imbalanced Treg/Th17 ratio and, more 

importantly, improved fetal outcomes [75]. Thus, dysfunctional or inhibited PD-1/PD-

L1 pathway signaling may contribute to the Treg/Th17 imbalance observed in 

women with preeclampsia. In addition to the PD-1/PD-L1 pathway, the altered 

expression of apoptotic molecules may predispose Tregs to premature deletion, 

thereby contributing in part to their diminished numbers in women with preeclampsia 

[71]. The proportion of Tregs expressing the anti-apoptotic molecule Bcl-2 was 

greatly reduced in women with preeclampsia compared to normal pregnancies, while 

the intensity of pro-apoptotic Bax expression was highly increased on those Tregs 

displaying this molecule [71]. These findings suggest that Tregs may be more 

susceptible to apoptotic cell death in the context of preeclampsia, which is in tandem 

with the reduced numbers of Tregs found in this clinical condition. 

Several in vivo studies have explored methods of boosting maternal Treg 

populations and/or function as part of ongoing efforts to find safe and effective 

treatments for preeclampsia [100, 101]. Treatment with an anti-CD28 “superagonist” 

has been tested in rats using both angiotensin-renin and RUPP models [100, 101]. In 

the former, anti-CD28 treatment resulted in an expansion of Tregs in the placenta, 

spleen, and periphery of affected rats and improved fetal outcomes [100], whereas in 

the latter model, increased proportions of circulating Tregs were observed together 

with elevated systemic concentrations of IL-10 and transforming growth factor β 

(TGFβ) without significantly improving neonatal weight [101]. Using the same RUPP 

rat model, the infusion of IL-10 [102] or the adoptive transfer Tregs derived from 

healthy pregnant rats [103] both improved maternal symptoms; yet, no benefits to 

impaired fetal growth were observed. Thus, while treatments that directly promote 

Treg expansion or function may have short-term benefits for women with 
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preeclampsia, additional investigation to determine potential fetal/neonatal benefits is 

required. 

Taken together, the evidence presented above demonstrates that a deficiency 

or imbalance of Tregs may contribute to the pathophysiology of preeclampsia. Tregs 

have been typically considered as most important in early pregnancy; indeed, the 

depletion of Tregs in early pregnancy causes preeclampsia and fetal loss. Yet, the 

studies summarized herein indicate that the adverse effects of impaired or defective 

Tregs can be detected throughout pregnancy. In line with this concept, we recently 

demonstrated that the loss of Tregs in late gestation causes preterm birth together 

with fetal growth restriction and bradycardia without altering umbilical or uterine 

arterial blood flow [104]. Moreover, the loss of Tregs causes dysregulation of multiple 

cellular and developmental processes in the placenta [104], providing further 

evidence that Tregs play an important role in fetal development in late pregnancy. 

Yet, whether Tregs represent a viable target for treatment in the second or third 

trimester, after the diagnosis of preeclampsia, remains unclear. It is likely that such a 

treatment may be most effective earlier in gestation; yet, given the demonstrated 

importance of Tregs for continued fetal growth, targeting Tregs in late pregnancy 

may also provide some benefits. Regardless, further research is required to 

determine whether therapies to boost Tregs or enhance their functions could be 

attainable in women with preeclampsia. 

 

Effector T cells 

Preeclampsia is characterized by a systemic and local imbalance between 

Tregs and effector T cells, resulting in a pro-inflammatory state that favors Th1/Th17 

cell activity. Yet, the details of how effector T cells are dysregulated are less clear. 
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Here, we focus on reports of the general CD4+ and CD8+ effector T-cell populations 

in women with preeclampsia as well as changes in Th1/Th2 balance, given that 

multiple Treg studies described above simultaneously reported on Th17 responses. 

Studies have indicated that the systemic effector T-cell pool is enhanced in 

women with preeclampsia, either in terms of increased numbers/proportions or a 

higher degree of activation [105-109]. The proportions of circulating CD4+ T-cells 

were increased in women with preeclampsia compared to those with healthy 

pregnancies [105], which is consistent with the observation that the proportion of Th1 

cells (and subsequently the Th1/Th2 ratio) is also higher in this disease [106]. This 

increase in CD4+ T cells may be driven by the expansion of memory T cells, as the 

proportion of this subset was higher (and that of naïve T cells reduced) in women 

with preeclampsia compared to normal pregnant women [107]. Besides CD4+ T 

cells, studies have also indicated dysregulation of CD8+ T cells in women with 

preeclampsia compared to normal pregnancies [108]. Moreover, CD8+ T cells 

demonstrated enhanced cytotoxic activity in women with preeclampsia compared to 

those from non-preeclamptic women [109], potentially due to the loss of Treg-

mediated suppression (as described above). Consistent with such enhanced 

cytotoxic activity, the fraction of circulating microparticles derived from cytotoxic T 

cells was significantly increased in women with preeclampsia compared to non-

pregnant controls [110].  

Together with the reported increases in peripheral T-cell populations and 

cytotoxic function, lymphocytes from women with preeclampsia were shown to 

display higher intracellular free Ca2+ [111], and CD3+ T cells showed greater 

expression of pyruvate kinase [112], suggesting enhanced activation of circulating T 

cells. The expression of the Th1- or Th17-associated transcription factors Tbet and 
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RORγt was increased in peripheral blood mononuclear cells (PBMCs) from 

preeclamptic women compared to those from normotensive pregnancies [113], and 

the in vitro knockdown of these factors caused a shift towards greater Foxp3 

expression [113], further supporting a preeclampsia-associated imbalance in the 

differentiation of effector and regulatory T cells. Accordingly, phenotypic changes in 

effector T cells from women with preeclampsia included the increased expression of 

activation-associated markers such as HLA-DR on both CD4+ and CD8+ T-cell 

subsets [114, 115] together with greater in vitro secretion of relevant cytokines such 

as IL-2, tumor necrosis factor alpha (TNF), and IFNγ [115]. Interestingly, the surface 

expression of CD40L by peripheral CD4+ T cells and serum concentrations of 

soluble CD40L were both elevated in women with preeclampsia [116], potentially 

promoting immune cell activation and increasing antigen-presenting cell activity, and 

the administration of anti-CD40L antibody alleviated maternal preeclampsia 

symptoms in a rat model of adoptive transfer of CD4+ T cells [117]. Together with 

human data, these in vivo studies provide further evidence that peripheral T cells 

may participate in the pathophysiology of preeclampsia; indeed, the adoptive transfer 

of Th1-differentiated splenocytes into pregnant mice has been used as an in vivo 

model of this syndrome due to the resulting preeclamptic features (e.g. elevated 

blood pressure and proteinuria) [118]. This model has since been replicated, as 

lymphocytes activated via culture with anti-CD3 antibody and IL-2/IL-12 were shown 

to induce hypertensive symptoms in mice [119], and both IL-12-stimulated and IL-4-

stimulated splenocytes were shown to cause fetal resorption and 

hypertension/proteinuria in mice [120]. These findings further indicate that skewed 

differentiation of peripheral T-cells towards pro-inflammatory subsets takes place in 
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women with preeclampsia, and that the aberrant activation of these cells can 

contribute to the disease pathophysiology. 

Although the majority of investigations have pointed to increased T-cell 

activity in women with preeclampsia, several reports have indicated the opposite 

phenomenon. An early study indicated low peripheral T cell/B cell counts in women 

with preeclampsia together with reduced in vitro T-cell responses to stimulation 

compared to normal pregnancies [121], and lymphocytic cytotoxic activity was also 

shown to decrease in preeclamptic women [122]. More recently, it was reported that, 

while total CD4+ and CD8+ T-cell proportions did not differ between normal and 

preeclamptic pregnancies, proportions of CD4+ memory, CD4+ effector memory 

(EM), and CD4+ central memory (CM) subsets were all decreased in women with 

preeclampsia compared to those with healthy pregnancies [123]. Such reports of 

decreased T-cell populations may reflect a diminished presence of specific subsets, 

rather than a general reduction. Indeed, the proportion of peripheral CD4+HLA-G+ T 

cells was specifically decreased in pregnancies complicated by preeclampsia [124], 

as were the maternal plasma concentrations of soluble HLA-G [125]. This 

observation is notable since HLA-G, which is primarily expressed by fetal tissues 

[126] and promotes immune tolerance [127, 128], can also be expressed by a subset 

of immunosuppressive T cells [129, 130]. Thus, in the context of preeclampsia a 

reduction of specific subsets of peripheral T cells may occur that is distinct from the 

enhanced presence of inflammatory T cells reported by other studies. 

It should be pointed out that several studies have not reported significant 

alterations in circulating T-cell proportions, phenotype, or function in women with 

preeclampsia [131-133]. These studies highlight the fact that, unlike Tregs, changes 

in the composition, proportion, or activity of peripheral T cells may not be a 
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ubiquitous phenomenon in women with preeclampsia, nor may the degree of such 

changes be consistent among patients. Similarly, a lack of detectable differences in 

the expression of lymphocyte markers between normal and preeclamptic pregnant 

rats [134] could be due to the specific markers investigated, or potentially the model 

utilized [lipopolysaccharide (LPS) infusion]. Thus, homogenization of patient groups 

or animal models, including in-depth characterization and categorization of 

patient/animal parameters, is essential for the determination of the specific immune 

changes taking place in preeclampsia. 

Investigations of effector T cells in the decidua and placenta largely provided 

inconsistent results, likely due to variation in patient groups, experimental methods, 

and the specific phenotypes or functions investigated. Flow cytometric [135] and 

immunohistochemical [136] studies of the decidual tissues demonstrated reduced 

proportions of T cells in women with preeclampsia compared to those who 

underwent preterm birth or delivery at term, respectively. However, a later 

immunohistochemistry study showed increased infiltration of CD8+ T cells in 

decidual tissues from preeclamptic women compared to those without this disease 

[137]. Similarly, the proportion of CD8+CD28+ T cells was elevated in the decidual 

tissues from preeclamptic women, despite an observed overall reduction in total T 

cell proportions [138]. Yet, another study reported increased numbers of both CD8+ 

T cells and total T cells in placental bed biopsies from women with preeclampsia 

compared to those with normotensive term pregnancies [139], and the volume 

fraction of CD8+ T cells was increased in placentas from pregnancies complicated 

by preeclampsia or fetal growth restriction [140]. Similar to changes observed in the 

periphery, preeclampsia-specific alterations in local effector T cells may be driven by 

individual subsets: flow cytometry studies of early-onset and late-onset preeclampsia 
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showed a reduction in the proportions of CD4+ CM T cells and CD8+CD45RO+ T 

cells in both study groups, but increased proportions of activated CD4+ and CD8+ 

memory cells in women with early-onset preeclampsia compared to those with 

normal term pregnancies [141]. Thus, not only do preeclampsia-associated 

alterations in the local T-cell repertoire seem to be based on individual subsets, but it 

seems that early-onset preeclampsia is characterized by more significant (and 

potentially more severe) immunological changes. 

The increased presence of effector T cells in the decidua of women with 

preeclampsia may also occur as a secondary response to other local events. A 

subset of clonally-expanded CD8+ EM T cells expressing reduced PD-1 was 

demonstrated to be present in the decidual tissues of women with preeclampsia 

compared to those from women with healthy term pregnancies [142], which is 

consistent with a previous report demonstrating that fetal antigen-specific CD8+ T 

cells persist throughout multiple pregnancies and typically display an exhausted-like 

PD-1+ phenotype [143]. Thus, in some cases of preeclampsia the local expansion of 

effector T cells may occur as a result of impaired suppressive activity. Alternatively, 

the development of placental histological lesions such as acute atherosis, which is 

associated with preeclampsia, may also promote T-cell infiltration. Indeed, increased 

numbers of such cells were observed in the decidual tissues of women with 

preeclampsia and acute atherosis compared to those from preeclamptic women 

without this lesion [144], highlighting the importance of considering confounding 

variables such as placental lesions when evaluating the immune changes that take 

place in women with preeclampsia. 

Collectively, the above reports indicate that T-cell activation in both the 

maternal circulation and in the decidua or placenta is a characteristic of 
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preeclampsia, likely driven by the prevalence of systemic inflammation together with 

the decreased presence and function of Tregs and immunosuppressive HLA-G+ T 

cells (Figure 2). Importantly, women with early-onset preeclampsia seem to present 

more severe T-cell responses, and the presence of associated conditions such as 

acute atherosis may also exacerbate T cell-driven pathology. Such variability 

highlights the complex and heterogeneous nature of the immunological responses 

that occur in preeclampsia, which should be taken into consideration when 

evaluating this disease and potential treatments. 

 

Gamma Delta (γδ) T cells 

A small proportion of the T-cell population [145] is composed of T cells that 

express a TCR composed of a γ-chain and δ-chain rather than the conventional α/β 

TCRs found on most T cells [146-148]. The investigation of such γδ T cells in the 

context of preeclampsia has been limited, but deserves discussion. One study found 

that the proportions of circulating Vγ9Vδ2+ γδ T cells, which form the majority of γδ T 

cells in humans [149], did not differ between women with preeclampsia and those 

with normal pregnancies [150]. However, such cells showed increased production of 

perforin and IFNγ in women with preeclampsia, suggesting polarization towards a 

pro-inflammatory state, and were less susceptible to apoptosis compared to those 

from women with normal pregnancies [150]. In contrast, the expression of the γδ 

TCR was increased in the placentas of women with preeclampsia compared to those 

from non-preeclamptic women, and in vivo studies using Toll-like receptor 3 (TLR3) 

or TLR7 activation-induced mouse models of preeclampsia suggested that splenic 

γδ T cells are enriched in this clinical condition [151]. The involvement of γδ T cells in 

preeclampsia was further supported by the in vivo deletion of such cells, which 
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reduced the maternal symptoms resulting from TLR activation [151]. Interestingly, a 

longitudinal systems biology approach demonstrated that p38 signaling decreased in 

γδ T cells from the first to second trimester in women who eventually developed 

preeclampsia [95]; however, mechanistic investigations are required to further 

establish the relevance of this finding. 

Taken together, the above studies provide a preview of γδ T-cell responses in 

women with preeclampsia, suggesting that this minor yet unique T-cell subset 

undergoes altered activation and signaling in the context of this pregnancy disease. 

Future studies may provide further insights into the relative contribution of these cells 

to local and systemic inflammation in women with preeclampsia. 

 

B cells 

B cells, particularly B1 cells, are considered capable of participating in 

autoimmune disease through the production of autoantibodies [152]; thus, given the 

relevance of autoantibody production in the pathophysiology of preeclampsia [153], 

multiple studies have investigated B cells in the context of this obstetrical syndrome. 

One of the earliest of these studies found that the total proportions of peripheral B 

cells did not differ between women with preeclampsia and those with healthy 

pregnancies [154]. However, the authors surmised that, if immunological changes 

occurred in preeclampsia, such changes were likely subtler than the parameters 

determined in the current study. Accordingly, later immunophenotyping studies 

showed that the proportions of peripheral memory B cells and plasma cell precursors 

were both elevated in women with preeclampsia compared to healthy pregnant 

women [155]. In vitro mitogenic stimulation assays also demonstrated that the 

proportions of generated plasma cells and the numbers of Ig-producing cells were 
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greater in samples from such preeclamptic women [155]. Subsequently, the 

frequencies of peripheral B1a cells [156] as well as memory B cells and non-class-

switched memory B cells [157] were also shown to increase in women with 

preeclampsia compared to those with normal pregnancies, and the general 

proliferative capacity of the latter cells was enhanced by in vitro LPS stimulation 

[157]. Thus, preeclampsia is associated with enhanced circulating B cells with 

potentially greater capacity for antibody production. 

A hallmark characteristic of preeclampsia is the production of agonistic 

autoantibodies directed against the angiotensin II type 1 receptor [153]. The elevated 

proportions of systemic B1a cells found in preeclamptic women were shown to 

participate in the production of such autoantibodies [156]. Notably, B1a cells were 

also found exclusively in placental samples from preeclamptic patients, but not in 

tissues from normal pregnancies [156]. In addition to autoantibody production, such 

B1a cells may be intrinsically dysfunctional in preeclampsia, as this B-cell subset in 

an abortion-prone mouse model failed to inhibit Th17 cell differentiation and induced 

Th1 polarization [158]. Moreover, in normal pregnant mice the proportion of 

peritoneal CD86+ B1a cells  was reduced compared to non-pregnant mice, but this 

population was maintained in the abortion-prone model [158]. The above studies 

suggest that specific B-cell subsets are expanded in women with preeclampsia and 

can produce autoantibodies, potentially including those against the angiotensin II 

type 1 receptor, thereby promoting hypertension and inflammation. Further in vivo 

studies have strengthened this concept by showing that treatment with the anti-CD20 

antibody Rituximab in a RUPP rat model reduced circulating angiotensin II type 1 

receptor autoantibodies, subsequently ameliorating some maternal symptoms 

without improving fetal outcomes [159]. Consistently, other reports in animals 
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confirmed that autoantibodies were produced by B cells as part of the hypertensive 

disorders caused by an environmental pollutant, cadmium [160, 161]. However, not 

all studies investigating the contribution of B cells to preeclampsia have been 

consistent, as peripheral, splenic, and placental B1 and B2 cells were largely 

unaltered in a RUPP rat model, and anti-CD20 B-cell depletion did not improve 

maternal symptoms [162]. The above studies, together with other reports using 

animal models of hypertensive disorders [163, 164], indicate that the depletion of B 

cells can improve some maternal parameters but may not be sufficient to rescue 

pregnancy outcomes. 

B cell-associated dysfunction may also have a genetic basis in some women 

with preeclampsia, as the presence of a polymorphism in the Fc fragment of IgG 

receptor IIb (FcγRIIB) was significantly associated with preeclampsia occurrence 

[165]. This finding is of particular interest, given that FcγRIIB is the only known 

inhibitory Fc receptor; moreover, it is the only FcγR found on B cells in mice [166]. 

FcγRIIB has thus been considered as an “antibody checkpoint”, mirroring in some 

ways the functions of multiple immune checkpoint markers found on T cells [167]. 

Therefore, it is plausible that the presence of polymorphisms that result in the 

reduced or impaired function of FcγRIIB may allow for uncontrolled B-cell responses 

such as the enhanced production of autoantibodies. 

The above studies demonstrate that B cells contribute to the pathophysiology 

of preeclampsia through the production of autoantibodies that can further exacerbate 

ongoing immune responses. Thus, the systemic immune response that characterizes 

preeclampsia is a multivariate condition involving the dysregulation of several distinct 

immune pathways. This is further highlighted by the fact that the use of treatments 

that target B cells was only partially successful in animal models. Therefore, future 
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efforts to prevent or treat preeclampsia will likely need to consider each individual 

immune pathway implicated in this clinical disease. 

 

THE ROLE OF INNATE IMMUNE CELL SUBSETS IN PREECLAMPSIA 

Natural Killer cells 

During early pregnancy, Natural Killer (NK) cells represent a large population 

of leukocytes in the decidual tissues [168] and perform a critical role in the 

remodeling of the spiral arteries during this period [169-171]. Thus, it was presumed 

that NK cells may be implicated in diseases related to poor placentation such as 

preeclampsia. However, there is some controversy surrounding the importance of 

NK cells in the pathogenesis of preeclampsia due to multiple studies that appear to 

provide conflicting data. One factor that may contribute to such seeming discrepancy 

could be that, since NK cells provide their most important contributions during early 

pregnancy, deficiencies in these cells leading to preeclampsia may not be reflected 

in the NK cell populations observed at delivery (when most studies of human 

preeclampsia are performed).  

Several studies have reported an increased NK cell numbers or frequencies in 

the gestational and reproductive tissues in women with preeclampsia [172-174], 

while others report a diminished presence [175, 176] compared to normal 

pregnancies. Alterations in specific NK cell phenotypes may contribute to such 

discrepancies; for example, the proportions of decidual CD56+NKp46+ cells were 

increased in women with preeclampsia, but subsets identified using other NK cell 

markers such as NKp44, NKp30, NKp80, or NKG2D were not [173]. Differences 

between the disease mechanisms of early-onset and late-onset preeclampsia could 

also contribute to disparities between studies, given that the increase in both 
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decidual and peripheral NK cell proportions was more significant in women with 

early-onset preeclampsia than in those with late-onset preeclampsia when compared 

to term pregnancies [174]. A potentially limiting factor when evaluating tissue-wide 

immune cell populations may be the use of microscopy-based techniques, as both 

immunohistochemistry [176] and immunofluorescence microscopy [175] of decidual 

tissues revealed lower numbers of NK cells in preeclamptic patients compared to 

healthy pregnancies. 

 Preeclampsia is also accompanied by alterations in local NK cell function. 

Decidual NK cells displayed a distinct gene expression profile compared to 

peripheral NK cells, and it was found that a subset of these transcripts were 

downregulated in chorionic villi tissue from women who subsequently developed 

preeclampsia compared to those with normotensive pregnancy [177]. Interestingly, 

the proportions of decidual NK cells expressing IFNγ, perforin, or granzyme B were 

shown to be elevated in early- and late-onset preeclampsia compared to those with 

healthy term pregnancies, with early-onset having the greatest increase [174]. In 

contrast, specific markers of decidual NK cell activation (IFNγ, IL-8, and CD107a) 

were shown to be decreased in women with preeclampsia compared to those with 

healthy term pregnancies [173]. Thus, the activation and functional status of local NK 

cells in women with preeclampsia remains to be established. Nonetheless, it has 

been suggested that the reduced expression of Fas on decidual NK cells leads to 

reduced NK cell apoptosis in women with preeclampsia [178], thereby prolonging 

any potential state of dysfunction. 

Aberrant NK cell responses during pregnancy may have a genetic basis in 

some cases. Mothers with the KIR genotype KIR AA showed an increased 

propensity to undergo pregnancy disorders such as preeclampsia when the fetus 
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presented more group 2 HLA-C genes than the mother [179]. In contrast, the 

presence of the telomeric (Tel-B) region in mothers with the KIR B haplotype was 

associated with a significant protective effect against pregnancy complications, 

particularly when paired with an HLA-C2 fetus [179]. Notably, the Tel-B region 

includes KIR2DS1, which binds HLA-C2+ trophoblasts and is expressed by uterine 

NK cells [179]. However, the complexity of the interactions between maternal KIRs 

and fetal HLA-C was heightened by observations showing the combination of 

maternal KIR B and fetal HLA-C2 to be a risk factor for acute atherosis in women 

with preeclampsia [180]. A separate report showed that both uterine and peripheral 

NK cells expressed KIR2DL1A and KIR2DL1B, with a predominance of KIR2DL1A 

variants being associated with enhanced NK cell function as well as an increased 

risk for preeclampsia [181]. In line with these findings, the expression of the immune 

tolerance-promoting HLA-G [127, 128] and its receptors such as LILRB1 [182] was 

decreased in placentas from women with preeclampsia [183]. A link between fetal 

HLA genotype and maternal preeclampsia risk was further supported by the reported 

association between a poly-T stretch within the downstream region of the HLA-

G*01:01:01:01 allele and the occurrence of preeclampsia [184]. Based on these 

observations, the determination of local NK cell status in early pregnancy (e.g. the 

evaluation of maternal KIRs and paternal/fetal HLA genotype) could potentially have 

predictive value for preeclampsia.  

Human and animal studies have identified specific factors that may participate 

in altered NK cell functions in women with preeclampsia. Placental expression of the 

adhesion molecule NECTIN4 was shown to be elevated in women with preeclampsia 

compared to those with normotensive pregnancies, and the overexpression of this 

molecule in a trophoblast cell line resulted in enhanced susceptibility to NK cell-
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mediated cytotoxicity [185]. In mice, uterine NK cells were shown to express 

placental growth factor (PlGF), with immature NK cells having greatest expression 

[186], and the deletion of PlGF resulted in the altered composition of local NK cells 

[186]. Given that PlGF has also been shown to promote apoptosis and exhaustion of 

effector T cells [187], altered levels of this factor may contribute to dysregulated T-

cell responses in women with preeclampsia. Lastly, mice with homozygous or 

heterozygous deficiency of heme oxygenase 1 (HMOX-1) had fewer uterine NK cells 

and presented IUGR and gestational hypertension, which were ameliorated by the 

application of carbon monoxide (the primary metabolite of HMOX-1) [188]. 

Several studies have provided a mechanistic link between NK cells and 

pathological changes during pregnancy by depleting NK cells using the anti-asialo 

GM1 antibody [189-191] in different models of preeclampsia. In a rat renin-

angiotensin model, deletion of NK cells resulted in the degeneration of vessels in the 

mesometrial triangle (the distinct lymphoid aggregate formed between the uterus and 

decidua in rodents and other species [192] that is comparable to the human 

placental bed) together with a reduced presence of trophoblasts in the vessel lumen 

[193]. The vasculopathy resulting from NK cell depletion manifested as lower fetal 

weight in normal wild type rats and a reduced brain/liver weight ratio in preeclamptic 

rats [193]. However, in a RUPP rat model, the depletion of NK cells improved the 

mean arterial pressure of dams and fetal weight [194], and a similar study also 

demonstrated improved maternal parameters upon depletion of NK cells [195]. 

These reports highlight key differences in the animal models utilized: in the renin-

angiotensin model, maternal hypertension, tissue damage, and fetal growth 

impairment begin early in pregnancy [196-199], and NK cell depletion was performed 

on 5 and 10 days post coitum (dpc) [193]. In the latter two studies, RUPP was 
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surgically performed at 14 dpc with NK cell depletion being carried out over the 

following days [194, 195]. Given that NK cells have been suggested to be more 

involved in early-onset preeclampsia [174], it is likely that interference with NK cell 

function in early pregnancy may have more severe outcomes than in a model of late-

onset preeclampsia. 

Circulating NK cells are also affected in women with preeclampsia, although 

the extent and direction of such changes are still under debate. Specifically, the 

cytotoxicity of NK cells has been separately reported to increase [200-202], decrease 

[203], or remain consistent [204] in women with preeclampsia compared to those 

with healthy pregnancies. Women who later developed preeclampsia had increased 

numbers of circulating NK cells in the first trimester compared to women who had 

uncomplicated pregnancies [205], while another report found that elevated 

proportions of NK cells were associated with postpartum preeclampsia, but not with 

preeclampsia during pregnancy [206]. Yet, it has also been shown that the 

proportions of specific NK cell subsets are increased in the third trimester in women 

with preeclampsia compared to normotensive pregnant women [207]. Thus, there 

seems to be some overall consensus that peripheral NK cells are enhanced in 

women who had or are at risk for preeclampsia. In line with this concept, several 

studies have indicated that the functionality of such cells is similarly enhanced. The 

expression of IFNγ by peripheral NK cells tended to increase in women with 

preeclampsia [208, 209], as did the expression of NKG2A and NKG2C [210, 211], 

compared to those from women with healthy pregnancies. The ratio of “type 1” to 

“type 2” NK cells also increased in the circulation of women with preeclampsia [133], 

whereas the proportions of such cells expressing protective factors such as vascular 

endothelial growth factor (VEGF) [212] and galectin-1 [213] were significantly 
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decreased. Mucin-16 (CA-125), a glycoprotein that can be expressed by decidual 

cells [214, 215], was more frequently bound to circulating NK cells in women with 

preeclampsia compared to those from term uncomplicated pregnancies [216]. 

Finally, the intracellular expression of multiple cytokines was enhanced in peripheral 

NK cells from women with severe early-onset preeclampsia compared to those from 

healthy pregnancies [211]. Together, these studies support a dysregulated and 

potentially activated status for peripheral NK cells in preeclamptic women. 

In search of potential treatments for preeclampsia, several studies 

investigating the beneficial effects of anti-inflammatory compounds have also 

reported alterations in local or systemic NK cell populations as secondary outcomes. 

The administration of the anti-inflammatory cytokine IL-4 in a RUPP rat model 

reduced the proportions of total and cytolytic NK cells in the placenta [217], as did 

treatment with hydroxyprogesterone caproate (17-OHPC) [218]. Targeting reactive 

oxygen species by treatment with the superoxide dismutase mimetic tempol also 

lowered the proportions of circulating total and cytotoxic NK cells [219]. Thus, one of 

the mechanisms by which anti-inflammatory treatments improved preeclampsia 

symptoms may be through the modulation of NK cells. 

Collectively, the studies described above provide evidence of two distinct but 

connected phenomena: first, dysfunctional local NK cell responses leading to poor 

placentation and/or lack of spiral artery remodeling may lay the groundwork for the 

eventual manifestation of preeclampsia later in pregnancy. Poor spiral artery 

remodeling alone may not lead to preeclampsia, and may require the 

superimposition of other insults or mechanisms for disease escalation [220]. This 

model is based on observations in Rag2-/-γc
-/- mice, in which the presence of 

thickened spiral artery walls and reduced lumen diameter was associated with the 
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loss of NK cells [221, 222] and did not lead to maternal hypertension [223]. Thus, 

while NK cells are important for proper remodeling of the spiral arteries in early 

pregnancy, disruption of this mechanism may not be the sole driver of preeclampsia. 

Yet, human studies demonstrated that a high uterine artery resistance index in the 

first trimester as determined by Doppler ultrasound was associated with reduced 

proportions of NK cells expressing specific KIRs and LILRB1, suggesting altered NK 

cell-trophoblast interactions in such cases [224]. Second, the studies of NK cells 

reviewed above suggest that the immunological manifestations of preeclampsia 

include elevated proportions and activity of peripheral NK cells as part of the overall 

inflammatory profile that characterizes this clinical condition. Therefore, changes in 

local or systemic NK cell populations observed after the diagnosis of preeclampsia 

(in late pregnancy) are likely the result of upregulated inflammatory signaling, rather 

than the cause, and should therefore be considered as distinct phenomena. 

 

Invariant Natural Killer T cells 

Natural Killer T (NKT) cells are a unique population of lymphocytes that 

express a TCR together with NK cell markers [225]. Among this population, invariant 

NKT (iNKT) cells represent the largest and best studied subset [226]. Although 

several studies have proposed a role for iNKT cells in the pathophysiology of 

pregnancy complications such as preterm birth [227-230], the contribution of these 

cells to preeclampsia is less well defined. The ratio of circulating type 1 to type 2 

iNKT cells was shown to increase in women with preeclampsia compared to those 

with a normal pregnancy, suggesting a balance shift towards a pro-inflammatory 

phenotype [133]. Moreover, the expression of the early activation marker CD69 and 

the effector molecules perforin and IFNγ was also shown to be increased in 
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circulating iNKT cells in women with preeclampsia compared to those with healthy 

pregnancies [231], further indicating cell activation. The expression of CD95 was 

reduced on such circulating iNKT cells [231], potentially indicating reduced rates of 

iNKT-cell apoptosis that could result in a more prolonged state of activation. 

However, a separate study found no differences in the counts, proportions, or CD69 

expression of iNKT cells between women with preeclampsia and those with normal 

pregnancies [232]. Based on these limited data, forming a firm conclusion as to the 

participation of iNKT cells in the pathophysiology of preeclampsia remains difficult. It 

is possible that iNKT-cell activity is altered (potentially enhanced) in preeclampsia 

without fluctuations in the overall population; yet, additional studies are required to 

establish this concept. 

 

Dendritic cells 

Dendritic cells (DCs) are professional antigen-presenting cells that play a 

critical role in both central and peripheral tolerance [233] and thus represent a 

central component of the innate immune system. A primary function of DCs during 

pregnancy is to uptake and present the paternal/fetal antigen to Tregs in the 

secondary lymphoid tissues, promoting maternal tolerance of the fetus [234]. Thus, 

multiple studies have proposed that alterations in the populations and functionality of 

local and circulating DCs may contribute to a breakdown of maternal-fetal tolerance, 

thereby promoting inflammation as part of the pathogenesis of preeclampsia. Indeed, 

the proportions of plasmacytoid DCs (pDCs) were decreased [235, 236] and those of 

myeloid DCs (mDCs) were increased [236] in women with preeclampsia compared 

to those with healthy pregnancies. As a result, the peripheral ratio of mDCs to pDCs 

was also shown to be elevated [61, 235]. Consistent with reports of other immune 
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cell subsets, early- and late-onset preeclampsia may each be associated with 

different DC responses, as one study found that pDCs were reduced only in women 

with early-onset preeclampsia compared to those with normal pregnancies [62].  

Peripheral DCs also exhibit a more activated phenotype in preeclampsia. 

Higher basal expression of TLR3 and TLR4 was observed on mDCs, and increased 

TLR9 on pDCs, in women with preeclampsia compared to those from healthy 

pregnancies. This was accompanied by elevated basal expression of cytokines such 

as IL-6, TNF, and IFNα by mDCs as well as elevated IFNα and TNF by pDCs [237]. 

Such high basal cytokine expression could indicate prior activation of circulating 

DCs, particularly since these cells isolated from women with preeclampsia showed 

weaker responses to in vitro stimulation with TLR ligands [237]. Notably, both mDCs 

and pDCs also showed greater expression of the immune checkpoint molecule 

CD200 in women with preeclampsia compared to those with normal pregnancies 

[238], potentially as a compensatory mechanism to restore immune regulation. 

However, the same authors showed that the expression of another immune 

checkpoint marker, PD-L1, was decreased on both subsets [239]. Thus, the 

expression of immune checkpoint markers by DCs seems to be dysregulated in a 

specific manner in women with preeclampsia. Finally, one report demonstrated 

upregulation of CD80, CD86, and CD83 on peripheral DCs in women with 

preeclampsia compared to those with uncomplicated pregnancies [60], indicating 

greater potential for antigen presentation. This observation was supported by in vitro 

evidence that VEGF, which is downregulated in women with preeclampsia, reduces 

the expression of CD80, CD86, and CD83 on DCs [236]. Therefore, these findings 

indicate an activated and pro-inflammatory state for circulating DCs in women with 
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preeclampsia, and suggest that reduced VEGF signaling may contribute to this 

process.  

Consistent with human studies, several investigations in animals have also 

reported altered systemic DC populations using preeclampsia models. Pregnant 

mice treated with Poly:IC (a TLR3 ligand) develop hypertension [240], which is in line 

with the increased placental expression of TLR3 in women with preeclampsia [241], 

and these mice displayed higher numbers of splenic DCs and other systemic 

immune changes that were largely abrogated by treatment with IL-4 and IL-10 [240]. 

In a model of arginine vasopressin-induced preeclampsia, increased expression of 

MHC-II, CD80, and CD86 was observed on splenic DCs together with reduced PD-

L1 and PIR-B [242], which is similar to the findings reported in pregnant women [60]. 

Preeclampsia has also been associated with local changes in DC populations. 

Placental bed biopsies revealed increased numbers of CD209+ or CD83+ leukocytes 

(termed immature DCs and activated DCs, respectively) in women with preeclampsia 

compared to tissues from normal pregnancies [243]. In the decidua, tissue-specific 

upregulation of the chemokines CCL2, CCL4, CCL7, and CCL20 was observed in 

women with preeclampsia, providing a potential mechanism whereby immune cells, 

including DCs, may migrate to this compartment [243]. Indeed, in vitro studies of first 

trimester decidual cells suggested that the upregulation of CCL2 and CCL5 is 

particularly impactful in promoting the chemotaxis of DCs and macrophages [244]. 

Decidual cells from women with preeclampsia also expressed high levels of GM-CSF 

compared to those from normal pregnancies, and stimulated first trimester decidual 

cells released GM-CSF that promoted the in vitro differentiation of peripheral 

monocytes to dendritic cells and macrophages [245]. Moreover, in vivo experiments 

revealed that the observed increase in decidual GM-CSF expression was 
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accompanied by the infiltration of DCs and macrophages into this compartment 

[245]. Dendritic cells may also respond to signals released by apoptotic extravillous 

trophoblasts (EVTs), as immunohistochemistry analyses showed the co-localization 

of these cells in the decidua/myometrium of women with IUGR [246]. The increased 

number of mature decidual DCs identified in women with preeclampsia was 

attributed in part to phosphorylated STAT3 and the DC-specific long noncoding RNA 

lnc-DC [247], both of which showed increased expression in the decidual tissue 

[248]. In addition, in vitro studies suggested that lnc-DC signaling by mature decidual 

DCs may participate in the regulation of trophoblast invasion [249].  

The combination of a greater number of infiltrating DCs together with their 

enhanced activation and/or accelerated maturation may contribute to the 

pathogenesis of preeclampsia. Yet, how the dysregulated activity of DCs in women 

with preeclampsia affects the processing and presentation of paternal/fetal antigens, 

and the extent of the relationship between DCs and impaired Tregs in such women, 

requires further research. 

 

Neutrophils 

 The majority of investigations into the role of neutrophils in preeclampsia have 

focused on these cells in the maternal circulation, given the systemic intravascular 

inflammation associated with this pregnancy complication [29, 30, 107, 250]. Early 

reports noted elevated numbers of polymorphonuclear cells expressing complement 

and immunoglobulins in the circulation of preeclamptic women compared to those 

with normal pregnancies [251] as well as elevated plasma concentrations of 

neutrophil elastase [252-255], suggesting neutrophil activation. Subsequently, 

several other studies provided demonstrations of neutrophilia in women with 



 

 

 
This article is protected by copyright. All rights reserved. 

34 
 

preeclampsia [256, 257] and noted that the systemic numbers of other immune cell 

subsets were not as drastically altered [257], given that the neutrophil to lymphocyte 

ratio was also significantly increased [258]. Moreover, preeclampsia-associated 

neutrophilia was likely further exacerbated by the reported impaired or delayed 

neutrophil apoptosis occurring in such patients [259]. Elevated neutrophil 

proportions, adhesion, and infiltration were reported in subcutaneous fat 

microvessels from women with preeclampsia compared to those from normal 

pregnant women [260, 261], further indicating the systemic nature of preeclampsia-

associated neutrophilia. Moreover, correlations between increased isovolumetric 

venous pressure and maternal plasma levels of neutrophil elastase, VCAM-1, and E-

selectin were also demonstrated [255]. 

 Peripheral neutrophils are phenotypically altered in women with preeclampsia 

as well [250, 262-265], showing greater nuclear translocation of NF-κB [264, 266] 

and increased expression of surface markers such as CD11b [250, 263] together 

with reduced expression of CD62L [250, 263-265] compared to those from normal 

pregnancies, thus indicating neutrophil activation. Circulating neutrophils were also 

shown to have reduced expression of TLR2 and TLR4 in women with preeclampsia 

compared to normal pregnant women [267]. However, a later study reported 

increased mRNA and surface protein expression of TLR2 and TLR4 in neutrophils 

from women with early onset preeclampsia and HELLP syndrome, whereas as those 

from women with late onset preeclampsia were similar to controls [268]. Thus, it is 

possible that the two studies differed due to heterogeneous study populations as well 

as disease severity. 

Neutrophil functions are also altered in women with preeclampsia, likely 

driven by the presence of circulating placenta-derived factors [269-271]. Indeed, 
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conditioned media obtained from placental explants from women with preeclampsia 

increased neutrophil-endothelial cell adhesion compared to that from healthy 

placentas, which seemed to be driven by the endothelial-derived platelet-activating 

factor (PAF) [269]. Circulating endothelial microparticles were linked to the greater 

systemic levels of dsDNA, myeloperoxidase, and histones (components of neutrophil 

extracellular traps or NETs) found in women with preeclampsia [271]. Consistently, it 

was recently reported that the elevated levels of the proteases neutrophil elastase 

and matrix metalloproteinase 1 (MMP-1) found in the plasma of women with 

preeclampsia can also contribute to enhanced neutrophil activation [272]. 

Superoxide production by circulating neutrophils is also increased in women with 

preeclampsia compared to those with healthy pregnancies [270, 273], and such a 

phenomenon was reproduced in vitro by the co-culture of neutrophils and 

syncytiotrophoblast microparticles (STBM) isolated from preeclamptic women [270]. 

One report noted that superoxide-anion production by circulating granulocytes 

typically decreases in normal pregnancy, but not preeclampsia, compared to the 

non-pregnant state, and may thus contribute to the subsequent systemic 

inflammation and/or endothelial damage [274]. Finally, neutrophil migration is 

affected by the excess levels of sFlt-1 in women with preeclampsia, since high 

concentrations of this molecule may prevent VEGF-mediated signaling in these cells 

[275]. Neutrophils themselves likely contribute to the systemic inflammatory 

response of preeclampsia in a positive feedback manner, as two studies have 

indicated an increase in neutrophil-derived microparticles in women with this 

obstetrical syndrome [276, 277]. Importantly, the contribution of placenta-derived and 

vascular circulating microparticles to the pathophysiology of preeclampsia is likely 
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further exaggerated by the reduced phagocytic clearance of such microparticles by 

circulating neutrophils [278, 279].  

The above studies strongly suggest that the factors initiating systemic 

neutrophil responses likely originate from the placenta. In line with this proposed 

model, an ex vivo study reported that activated neutrophils are found in the uterine 

vein, but not antecubital placental vein, of women who underwent cesarean section 

due to preeclampsia [280]. Moreover, the co-culture of neutrophils and endothelial 

cells in conditioned medium from the placentas of preeclamptic women resulted in 

enhanced neutrophil-endothelial cell adhesion compared to conditioned media from 

healthy pregnancies [281]. The stratification of preeclampsia cases into clusters 

based on their placental transcriptional signatures demonstrated an increased 

presence of neutrophils in the placentas of women with “immunological” 

(transcriptional/epigenetic signature corresponding to increased immune responses) 

preeclampsia compared to those from women with a milder form of preeclampsia 

(characterized by a healthy placenta and term delivery) [282]. In addition, one study 

demonstrated the formation of NETs in the placental intervillous space from women 

with preeclampsia, and placenta-derived IL-8 and STBM caused NET formation in 

vitro [283]. Thus, while the consideration of local mechanisms occurring in 

preeclampsia is important, understanding the systemic immune responses driven by 

placenta-derived factors or patient co-morbidities also warrants attention. Together, 

the above reports demonstrate the enhanced activation of circulating neutrophils in 

women with preeclampsia and emphasize the role of placenta-derived circulating 

factors in the activation of such cells. 

Mechanistic studies have explored whether neutrophils could be targeted to 

treat preeclampsia. The depletion of neutrophils using an anti-polymorphonuclear 
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leukocyte (anti-PMN) antibody in a RUPP rat model of preeclampsia lowered mean 

arterial pressure in RUPP rats without having noticeable effects in sham rats; 

however, systemic C3a levels and RUPP-induced fetal loss were unmitigated [284]. 

This finding suggests that neutrophils are not the major cause of fetal damage 

resulting from preeclampsia, and may be primarily involved in propagating maternal 

systemic responses.  

Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous 

population of immature neutrophils [granulocytic (g)-MDSCs] and monocytes 

[monocytic (m)-MDSCs] that display immunosuppressive properties [285, 286]. 

Several prior studies have implicated MDSCs in the maintenance of maternal-fetal 

tolerance [287-289], and one report demonstrated a significant reduction of g-

MDSCs in the circulation of preeclamptic women compared to those with healthy 

pregnancies, which was accompanied by a systemic decrease in arginase-1 (Arg1) 

levels [290]. Thus, the loss of g-MDSC-mediated immunomodulation may allow for 

the further dysregulation of peripheral neutrophil responses in preeclampsia; 

however, this concept requires further investigation. 

The above studies demonstrate the massive activation of neutrophils that 

occurs as part of the pathophysiology of preeclampsia and is likely exacerbated by 

reduced or impaired MDSC activity. Given their systemic dominance, neutrophils 

may act as important propagators of inflammation by rapidly responding to placenta-

derived factors present in the circulation in women with this clinical condition. 

 

Monocytes 

After neutrophils, monocytes are the most frequent circulating immune cells, 

and thus likely participate in the vascular immune responses that are a hallmark of 
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preeclampsia [250]. Indeed, the proportions of total CD14+ monocytes were elevated 

in women with preeclampsia or post-partum preeclampsia compared to 

normotensive controls [206]. Such an increase was likely driven by changes in the 

composition of the monocyte population, as the proportions of non-classical 

CD14loCD16hi monocytes were elevated in women with preeclampsia [291], and the 

proportions of this monocyte subset increased towards the end of pregnancy in a rat 

ATP infusion model of preeclampsia [292, 293]. In contrast, significantly higher 

proportions of intermediate (CD14hiCD16int) monocytes were reported in women with 

preeclampsia without changes in the classical or non-classical subsets [292]. 

Therefore, the proportions of systemic monocytes seem to be enhanced in women 

with preeclampsia, although the specific affected subsets remain to be confirmed. As 

an alternative approach, the categorization of monocytes as M1-like 

(CD14+CD11c+CD163-) or M2-like (CD14+CD11c-CD163+) cells demonstrated that 

a significant increase in the M1-like subset occurs in women with preeclampsia 

compared to normal pregnancies, which is accompanied by reduced levels of M2-

like monocytes [294]. Such a bias towards M1-like responses is supported by the 

decreased expression of CD163 on peripheral monocytes from women with 

preeclampsia [295]. Studies have also pointed out enhanced expression of TLR4 by 

monocytes in women with preeclampsia [291, 296]; moreover, total monocytes from 

preeclamptic women demonstrated significantly increased cytokine secretion in 

response to in vitro stimulation with TLR ligands [291, 296], further supporting the 

pro-inflammatory phenotype of such cells. Thus, the immune response in women 

with preeclampsia is characterized by alterations in the phenotypic composition of 

circulating monocytes. 
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Due to the importance of immune-endothelial interactions in the 

pathophysiology of preeclampsia, studies have also examined the monocyte-specific 

expression of potentially involved surface molecules. One report found no significant 

differences in the expression of integrins such as CD11a, CD11b, and CD11c 

between monocytes from women with preeclamptic or normal pregnancies; however, 

in vitro treatment of endothelial cells with serum from preeclamptic women increased 

their expression of ICAM-1, an adhesion receptor that regulates the recruitment of 

circulating leukocytes [297], suggesting that soluble factors in the maternal serum 

rather than monocyte-endothelial cell interaction may drive endothelial activation 

[298]. In contrast, other studies demonstrated increased CD11b expression [250, 

299, 300] together with decreased expression of CD62L [250, 299] on monocytes 

from women with preeclampsia. Interestingly, such a discrepancy may be explained 

by the fact that the expression of integrins CD11a, CD11c, and CD49d as well as the 

complement-related markers CD46 and CD59 on monocytes was significantly higher 

in samples obtained from uterine veins compared to antecubital veins in women with 

preeclampsia [280]. Thus, monocytes migrating in close proximity to the placenta 

may undergo greater exposure to factors released by this organ that may contribute 

to cellular activation. 

Elevated baseline levels of ROS production have also been observed in 

monocytes derived from women with preeclampsia compared to those from healthy 

pregnancies [250, 299]. Pregnancy is characterized by a physiological elevation in 

arginine uptake by peripheral leukocytes, mediated primarily through system y+ 

(encoded by the genes CAT1, CAT2, and CAT3) [301]. Notably, in peripheral 

leukocytes from preeclamptic women, system y+-mediated arginine uptake was 

significantly lower than in normal pregnancy despite increased transcription of CAT2, 
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thus suggesting impairment of this pathway [301]. It was proposed that such arginine 

deficiency would favor the production of harmful O2
- and ONOO- radicals [301], 

thereby contributing to systemic oxidative stress in women with preeclampsia. Yet, 

this phenomenon could be partially remedied by the activation of compensatory 

glutathione peroxidases (GPx), as elevated mRNA and protein levels of GPx-1 and 

GPx-4 were detected in peripheral mononuclear cells from preeclamptic women 

compared to those from normotensive pregnancies [302]. 

A large component of monocyte function is the production of cytokines. 

Multiple studies have shown that, in women with preeclampsia, monocyte cytokine 

production is heavily skewed towards the release of pro-inflammatory mediators 

such as TNF and IL-12 [27, 296, 303, 304] as well as IL-8, IL-6, and IL-1β [305, 306], 

typically accompanied by reduced IL-10 levels [296]. This general upregulation of 

inflammatory responses is likely driven by upstream signaling, which may include the 

silencing or inhibition of immunomodulatory factors such as α7 nicotinic acetylcholine 

receptors (α7nAChR) that suppress pro-inflammatory cytokine pathways [307]. 

Accordingly, monocytes isolated from women with preeclampsia displayed higher 

expression of inflammasome-related molecules (e.g. NLRP3, NLRP1, and caspase-

1) and NF-κB together with reduced expression of the NF-κB-inhibitor IκBα 

compared to those from normotensive women [308]. In vitro assays demonstrated 

that multiple alarmins (i.e. endogenous molecules that initiate non-infectious or 

sterile inflammation [309, 310]) such as monosodium urate [308], heat shock protein 

70 [306], and hyaluronan [306] can propagate pro-inflammatory monocyte 

responses, thereby implicating the inflammasome pathway in the pathophysiology of 

preeclampsia, a topic that was recently reviewed [311]. It is tempting to suggest that 

alarmins could be released from apoptotic trophoblasts or damaged endothelium in 
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women with preeclampsia, leading to monocyte activation; yet, this concept requires 

further investigation.  

In light of current knowledge of the pathogenesis of preeclampsia, the 

relationship between monocytes and other involved tissues (i.e. the 

placenta/trophoblast and vascular endothelium) is not entirely clear. Monocytes from 

preeclamptic women were shown to inhibit trophoblast proliferation in an in vitro 

system, and such monocytes also induced higher rates of trophoblast apoptosis than 

those from healthy pregnancies [303]. However, monocytes from both preeclamptic 

and normal pregnancies showed similar binding of syncytiotrophoblast-derived 

microparticles [27]; thus, it is possible that such microparticles are not the primary 

drivers of monocyte activation in this context. This concept is further suggested by 

the fact that incubation of peripheral monocytes with preeclamptic or normal 

pregnancy-derived STBMs caused only modest changes in surface marker 

expression or cytokine release [312].  

Another factor that adds to the complexity of monocyte interactions in women 

with preeclampsia is the involvement of the coagulation system. Both preeclamptic 

and healthy pregnant women had higher proportions of monocytes with bound 

platelets compared to non-pregnant women after in vitro adenosine diphosphate 

(ADP) stimulation, and the numbers of bound platelets per monocyte were also 

increased [313]. Moreover, platelet-monocyte aggregates from women with 

preeclampsia released higher levels of sFlt-1 than those from healthy pregnant or 

non-pregnant women [314]. Fibrinogen, an acute phase protein that is released 

during inflammation and displays multiple immune interactions [315], was elevated in 

the circulation of preeclamptic women and increased in vitro cytokine production by 

preeclampsia-derived monocytes compared to those from normotensive pregnancies 
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[316]. Interestingly, fibrinogen treatment also reduced the levels of sFlt-1 present in a 

co-culture system of preeclampsia-derived monocytes and endothelial cells, 

suggesting that fibrinogen exerts distinct and unrelated effects on the cytokine 

production and angiogenesis pathways as part of the pathophysiology of 

preeclampsia [305]. 

The above studies highlight the complex network of interactions that takes 

place between monocytes, the placenta, and the maternal vasculature, and how 

dysregulation or impairment of one component can affect monocytes and potentially 

other circulating immune cells, leading to systemic responses. An important topic of 

future research in the pathogenesis of preeclampsia will be the unraveling of such 

interactions to determine cause versus effect, specifically in regards to monocyte 

activation and polarization. 

 

Macrophages 

Distinct macrophage populations are well described in tissues such as the 

decidua [317-319] and placenta [320]. Such macrophages have also been implicated 

in several aspects of the pathophysiology of preeclampsia, including the progression 

of acute atherosis [321, 322], a lesion of the spiral arteries that often accompanies 

this pregnancy disease [5, 323-326]. One of the first examples of such involvement 

was the morphological identification of lipid-scavenging macrophages in the 

uteroplacental arteries [323]. Similarly, immunohistochemical analysis showed that 

macrophages surround and infiltrate the decidual spiral arteries in preeclamptic 

women [327, 328], potentially mediated by ICAM-1+ and HLA-DR+ endovascular 

cytotrophoblasts [328]. Finally, macrophage infiltration of the spiral arteries in the 

decidua [328] and myometrium [329] was greater in women with preeclampsia than 
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in those with healthy pregnancies. Whether such macrophage infiltration is a local or 

tissue-wide phenomenon in preeclampsia remains unclear, as some reports found 

similar numbers of CD14+ and/or CD68+ macrophages in the placental beds of 

preeclamptic women and those with healthy pregnancies [330], while others reported 

an increase in these cells [176, 331]. Regardless, the increased localization of 

macrophages to the spiral arteries appears to be a common feature in women with 

preeclampsia. 

Macrophages seem to be skewed towards a pro-inflammatory state in women 

with preeclampsia, although the question of cause versus effect remains. Placentas 

from women who had preeclampsia contained higher proportions of M1-like CD11b+ 

inducible nitric oxide synthase (iNOS)+ macrophages and simultaneously lower 

proportions of M2-like CD11b+Arg1+ macrophages compared to those from women 

with healthy pregnancies [294]. The expression of iNOS was noted in Hofbauer cells 

(placental macrophages), but no differences were shown among women with normal 

pregnancy, preeclampsia, or IUGR [332]. However, the decidual tissues from a 

preeclampsia-prone BPH/5 mouse model displayed elevated mRNA expression of 

iNOS [333]. Thus, changes in the expression of iNOS during the pathogenesis of 

preeclampsia may depend on macrophage polarization status as well as tissue-

specific differences. In line with this concept, flow cytometric analyses of decidual 

tissues with lesions of acute atherosis demonstrated increased proportions of M1-

like macrophages expressing CD80, iNOS, or IL-12 compared to unaffected tissues 

[322]. Similar tendencies were observed in an animal model of LPS-induced 

hypertension in which decidual M2-like macrophages were reduced, as was the 

expression of the immune checkpoint marker TIM-3 by such cells [334]. Notably, the 

administration of the TIM-3 ligand galectin-9 increased M2-like macrophage 



 

 

 
This article is protected by copyright. All rights reserved. 

44 
 

polarization and improved maternal/fetal parameters [334], suggesting that the TIM-

3/galectin-9 pathway could be implicated in altered macrophage functions in cases of 

preeclampsia. In tandem with these observations, the proportion of CD206+ M2-like 

macrophages was decreased in the mesometrial triangle in a rat model of ATP-

induced preeclampsia [292]. Thus, the pathogenesis of preeclampsia may be 

associated with an imbalance between M1-like and M2-like macrophages. Such 

imbalance could potentially be driven by placental defects, as it was recently 

reported that a first-trimester trophoblast cell line secretes soluble PD-L1 that 

promotes an anti-inflammatory M2-like macrophage phenotype in vitro [335]. 

Moreover, soluble PD-L1 levels increased throughout the first trimester in normal 

pregnant women [335]; yet, whether alterations in the relationship between 

trophoblasts and macrophages occur in women with preeclampsia requires further 

investigation. 

Outside of the strict M1-M2 paradigm, two less well described macrophage 

subsets have also been detected in decidual tissues from women with acute 

atherosis [322]: Mhem [336] and MOX [337] macrophages, both of which can 

express the anti-inflammatory molecule HMOX-1 [338]. HMOX-1 has been shown to 

play important roles in placental development [339] and maternal-fetal tolerance 

[340]; thus, the presence of macrophages expressing this molecule may represent a 

physiological response to the oxidative stress and inflammation occurring in women 

with preeclampsia. The molecule CD74 (MHC-II invariant chain Ii [341]) may also be 

an important regulator of these cells, as CD74+ macrophages were shown to be 

reduced in the placentas of preeclamptic women compared to those with 

normotensive pregnancies, and mice deficient for this molecule display disturbed 

placental development and spiral artery remodeling accompanied by fetal growth 
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restriction [342]. Such findings may be due in part to the shift towards a pro-

inflammatory phenotype that occurs in CD74-deficient macrophages [342]. 

Macrophage phenotypes were investigated in spontaneously preeclamptic BPH/5 

mice based on the decidual CD11c-expressing subsets originally described by 

Houser et al. [343], and the proportion of IL-10-producing CD11chi macrophages was 

decreased in the murine decidua while that of CD11clo macrophages were elevated 

[333]. Together, these reports further indicate the plasticity of macrophages in the 

decidua and placenta, and support the polarization of such cells towards more pro-

inflammatory phenotypes outside of the M1-M2 dichotomy in women with 

preeclampsia. 

Immunohistochemistry studies showed poor trophoblast invasion of the spiral 

arteries as well as the co-localization of apoptotic trophoblasts and macrophages in 

women with preeclampsia [344], suggesting that macrophages may promote 

trophoblast apoptosis in such cases. Several in vitro studies strengthened this 

concept by demonstrating that the co-culture of macrophages with a trophoblast cell 

line led to increased trophoblast apoptosis, which was reversed by the addition of 

antibodies against TNF receptor 1 (TNF-R1) and tryptophan [344]. Such functions 

may be restricted to activated or M1-primed macrophages, as LPS treatment of such 

cells greatly enhanced their TNF-mediated prevention of trophoblast invasion in vitro 

[345] and was largely reversed by exposure of LPS-activated macrophages to IL-10 

[346]. Dysregulated corticotropin-releasing hormone (CRH) may contribute to this 

process, as this molecule was increased in EVTs derived from the placentas of 

preeclamptic women compared to those from normal pregnancies and upregulated 

the expression of Fas ligand (FasL) by macrophages in vitro, resulting in apoptosis 

of a trophoblast cell line [347]. The mRNA and protein expression of 
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cyclooxygenase-1 (COX-1), an important component of the prostaglandin synthesis 

pathway, was also elevated in the placental beds of preeclamptic women and was 

localized to placental cells, including macrophages [348]. Such enhanced placental 

expression of COX-1 may indicate a compensatory response to local and/or 

systemic inflammation in women with preeclampsia. 

In addition to the apoptosis and prostaglandin pathways, previous studies 

have also implicated the complement system in the pathophysiology of preeclampsia 

[349-351]. Plasma levels of C5a were elevated in women with preeclampsia 

compared to non-preeclamptic pregnancies [254, 349, 352], and it was subsequently 

shown that this factor was localized to placental CD11b+ macrophages and caused 

dysregulation of trophoblast invasiveness [352]. Thus, it appears that multiple 

macrophage signaling pathways are affected in women with preeclampsia, 

subsequently resulting in altered functionality of these cells. 

Taken together, the above studies establish the accumulation of 

macrophages in response to impaired spiral artery remodeling and their enhanced 

polarization towards a pro-inflammatory phenotype as contributing factors in the 

pathogenesis of preeclampsia. Given that aberrant M1-like macrophage polarization 

has been associated with other pregnancy complications such as preterm labor and 

birth [317], the specific targeting of these cells or restoration of the overall pro-/anti-

inflammatory balance may represent potential strategies to improve pregnancy 

outcomes in women with preeclampsia. 

  

Mast cells 

Mast cells participate in the systemic responses observed in women with 

preeclampsia, although not likely to be primary players [353-355]. An early study 
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identified increased proportions of mast cells and higher histamine concentrations in 

placental tissues from preeclamptic women compared to those from normal 

pregnancies [353]. Such observations were strengthened by the increased mast cell 

density and reduced mean mast cell area in the placental tissues of preeclamptic 

women, potentially indicating mast cell degranulation or activation [354]. In contrast, 

the numbers of cells expressing human mast cell chymase were decreased in the 

placenta but elevated in the myometrial tissues of women with severe preeclampsia 

compared to healthy pregnant women [355]. Similarly, the number of cells positive 

for endothelin-1, a downstream product of human mast cell chymase cleavage of big 

endothelins [356], was also decreased in the placenta and increased in the 

myometrium from women with severe preeclampsia [355]. Together, these limited 

reports indicate the potential involvement of mast cells in the pathophysiology of 

preeclampsia; however, mechanistic studies are required to demonstrate the 

participation of these cells. 

CLOSING REMARKS 

In the current review, we summarize the critical involvement of the cellular 

immune system in the pathogenesis of preeclampsia. The reviewed literature reveals 

that preeclampsia involves a complex relationship between the maternal immune 

system and the placenta as well as other pathophysiological processes. Notably, 

women with preeclampsia are characterized by an exacerbated intravascular 

inflammatory response, which is likely triggered by factors released by the 

dysfunctional placenta. Such dysregulation also includes aberrant cellular immune 

responses in the reproductive tissues and maternal-fetal interface, which further 

contributes to the pathophysiology of preeclampsia. Yet, such immune responses 

may differ depending on disease severity and the early- or late-onset disease type, 
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which has implications for the diagnosis, management, and treatment of women with 

preeclampsia.  

Despite the large body of evidence demonstrating the close involvement of 

the cellular immune system in pathophysiology of preeclampsia, efforts to translate 

such findings and thereby improve the clinical care of women with this obstetrical 

syndrome are still lacking. Thus, future investigations should seek to generate 

translationally useful results and models that can advance the prevention, diagnosis, 

and/or treatment of preeclampsia. Specifically, the incorporation of recently emerging 

technologies such as single-cell RNA-sequencing together with large-scale 

longitudinal study designs [319, 357, 358] may be able to provide potential 

immunological biomarkers or novel therapeutic strategies to treat the devastating 

effects of this obstetrical syndrome. 
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FIGURE LEGENDS  

Figure 1. The role of innate and adaptive immune cells in the pathophysiology of 

preeclampsia. In the maternal circulation (upper image), a large body of evidence 

has implicated adaptive immune cells such as regulatory T cells, effector T cells, γδ 

T cells, and B cells as well as innate immune cells, namely natural killer cells, 

invariant natural killer T cells, neutrophils, monocytes, and dendritic cells, in the 

cellular mechanisms that take place in women with preeclampsia. In the decidua 

(lower image), studies have described alterations in natural killer cells, neutrophils, 

dendritic cells, mast cells, and tissue-resident macrophages as well as regulatory T 

cells, effector T cells, γδ T cells, and B cells that occur in women with preeclampsia. 

Future studies may focus on crosstalk between local and systemic immune cells to 

provide a more interconnected picture of cellular immune responses that occur as 

part of the pathophysiology of preeclampsia.  
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Figure 2. An imbalance between regulatory and effector T cells in the 

pathophysiology of preeclampsia. During normal pregnancy, regulatory T cells in the 

maternal circulation (upper panel) and the decidua (lower panel) mediate effector T 

cell activity to prevent aberrant immune responses. Such balance is disrupted in 

women with preeclampsia, where systemic and local proportions of regulatory T cells 

are decreased and effector T cells exhibit greater activation and function. 

 


