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Prognostic Approach to Class III Malocclusion through Case-Based Reasoning  

 

Abstract 

Objective: This investigation evaluates the evidence of Case-Based Reasoning (CBR) in providing 

additional information on the prediction of future Class III craniofacial growth. Settings and 

sample population: The craniofacial characteristics of 104 untreated Class III subjects (7-17 years 

of age), monitored with two lateral cephalograms obtained during the growth process, were 

evaluated. Materials and methods: Data were compared with the skeletal characteristics of 

suďjeĐts ǁho shoǁed a high degree of skeletal iŵďalaŶĐe ;͞prototypes͟Ϳ oďtaiŶed froŵ a large 

dataset of 1263 Class III cross-sectional subjects (7-17 years of age). Results: The degree of 

similarity of longitudinal subjects with the most unbalanced prototypes allowed the identification 

of subjects who would develop a subsequent unfavorable skeletal growth (accuracy: 81%). The 

angle between the palatal plane and the sella-nasion line (PP-SN angle) and the Wits appraisal 

were two additional craniofacial features involved in the early prediction of the adverse 

progression of the Class III skeletal imbalance. Conclusions: CBR methodology, which uses a 

personalized inference method, may bring additional information to approximate the skeletal 

progression of Class III malocclusion. 
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Introduction 

The current availability of innovative logical-mathematical algorithms derived from Artificial 

Intelligence (AI) has inspired the development of highly detailed prediction models in disparate 

fields, including ecology, economy, aerospace, and biomedicine.1,2  One of the basic outcomes of 

AI applied to medicine and biostatistics is the automatic modeling of underlying processes that 

generate data and allow for the implementation of decision support systems that attempt to 

anticipate the future health behavior of patients.3 While data from the past contain information 

that can be useful in estimating the future, a classic problem in AI is how to extract general 

uŶiǀersal ĐliŶiĐal rules or guideliŶes oŶ ǁhiĐh the patieŶt͛s ĐoŶditioŶ depeŶds.4,5   

In the specialty of orthodontics, general rules about the progression of skeletal disharmonies often 

are difficult to formalize, with the challenge unmanageably large and complex. During continued 

groǁth aŶd/or treatŵeŶt, the deŶtofaĐial systeŵ is put ͚out of ďalaŶĐe͛ repeatedly. CraŶiofaĐial 

growth is in a state governed by non-linear, non-predictive laws of cumulative occlusal trauma, 

adaptability, competition between tooth elements for space, and dentoalveolar optimization.6-10  

When the principles underlying a domain are not well understood, the rules governing that 

domain will be imperfect. When the rules that cause the progression of the system themselves 

become more apparent, disciplines become more complicated and demand complex knowledge 

structures, such as moving averages and temporal abstraction.4,5,11 In these situations, the solution 

suggested by the specifics of the individual patient may be more accurate than those suggested by 

a montage of general clinical rules. The individual patient synthesizes and better reflects what 

really happens in each set of clinical circumstances.11  

Case-Based Reasoning (CBR) offers a novel approach to this issue, providing an opportunity to fill 

the knowledge gap between the specifics of a single patient and general clinical guidelines or 

rules. The possibility of drawing conclusions from personalized data allows the operator to reason 
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by specific circumstances and episodes, making it unnecessary for the clinician to decompose his 

or her patient experiences and generalize individual patient findings into rules.12-15  

The theoretical foundations and basic inference mechanisms underlying CBR reside in the concept 

of similarity, and more particularly on the idea that situations recognized as similar in important 

characteristics may be similar in other characteristics as well.16,17-20  

It is known that after the completion of a Class III treatment that resulted in a skeletal correction, 

with continued and unfavorable mandibular growth the malocclusion may worsen, leading to 

relapse of the corrected incisor relationships, and the reappearance of reverse overjet.21 Thus, 

early evaluation and approximation of future growth characteristics of these subjects is of utmost 

importance. 

The current investigation evaluates evidence of the ability of CBR models to extract additional 

prognostic meaningful information from cephalometric data of growing juveniles and adolescents 

affected by Class III malocclusion, and to determine the ability of the CBR model to approximate 

future growth characteristics based on estimates of similar patients with known negative growth 

characteristics. 

 

Materials and methods 

Subjects 

The sample consisted of semi-longitudinal cephalometric data of 104 Caucasian subjects with 

untreated Class III malocclusion (56 females, 48 males, mean age at T1 9.4+-3.6 years, range 6.8-to 

20.1 years) collected from the Department of Orthodontics of the University of Florence and from 

the Graduate Orthodontic Program at the University of Michigan.  The same subjects were re-

evaluated a second time at T2 (mean age 12.6+-3.6 years, range from 7.1 to 20.3 years). These 

subjects were left untreated because they declined treatment or because their cephalometric 

records were derived from historical samples taken from Growth Center Studies conducted in the 

USA. These subjects were derived from a database of 144 Class III patients followed 

longitudinally.24 Of these, 40 subjects were discarded because the time span between T1 and T2 

measurements was less than one year and six months. Although the large difference in age at T1 

could have led to the recommendation not to eliminate any subject from the learning set, we felt 
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that a too short interval between T1 and T2 would not allow a reliable judgment on the actual 

quality of the facial development. 

  

 

 

In order to find examples of Class III subjects of different age and gender, and in an attempt to 

establish possible similarities between longitudinal and cross-sectional subjects, we collected a 

population of 1263 Class III cross-sectional subjects (7-17 years of age) obtained from the same 

Departments. Within this population we collected subjects of maximum and minimum Class III 

horizoŶtal ĐliŶiĐal iŵďalaŶĐe, for eaĐh age aŶd geŶder ;͞prototypes͟Ϳ. IŶ order to proǀide ĐliŶiĐal 

and algorithmic simplicity, the model was learned only in the horizontal dimension of skeletal 

imbalance, as expressed by the Wits appraisal. Six examples of female and male prototypes with 

the worst and the best Wits appraisal at 7, 11, and 17 years of age are reported in Table 3.  

Subjects who met criteria of maximum and minimum skeletal imbalance, calculated from the 

better and worse Wits appraisal for each age and gender, were considered prototypes. Cross-

sectional and longitudinal subjects were enrolled previously in estimates of craniofacial growth in 

subjects with Class III malocclusion.22-24  

To be included  in the current study, both longitudinal and cross-sectional subjects had to satisfy 

the following criteria: Caucasian ancestry, no orthodontic/orthopedic treatment prior to the initial 

cephalogram, no craniofacial syndromes, no congenitally missing or extracted teeth, diagnosis of 

Class III malocclusion based on accentuated mesial step relationship of the primary second molars, 

permanent first molar relationship of at least one-half cusp Class III, a negative Wits appraisal (<-

2mm), and ANB angle less than 0 degree.  

Cephalometric analysis 

A cephalometric analysis comprising 15 variables was performed (Table 1). A standardized 

enlargement factor of 8% was applied to all linear cephalometric measurements.  

The first step in the protocol was to delineate appropriate subsets of patients among the 

untreated Class III subjects followed longitudinally.  Among the available 104 longitudinal subjects, 

14 gave evidence of craniofacial growth that tended to become substantially worse with respect 
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to the following 3 criteria of maxillo-mandibular imbalance (very serious growing subjects, VS).  

The remaining 90 subjects experienced the usual slight worsening typical of the Class III 

malocclusion (mild subjects, M).  

 The criteria that distinguished VS from M patients were: 

- 1   The worsening of ANB angle > -0.35 degrees/year. 

- 2   The worsening of the Wits appraisal > -0.4 mm/year. 

- 3   CoGn (T2-T1) / CoA (T2-T1) >= 1.30 

Subjects that fulfilled these three requirements were considered VS. The average time between T1 

and T2 was 2.9 years for VS subjects, and 3.1 years for M subjects.  

Method error 

The method error for the cephalometric measurements was evaluated by repeating the measures 

iŶ 30 raŶdoŵly seleĐted Đephalograŵs ;Dahlďerg͛s forŵula). Error was on average 0.8 degrees for 

angular measures and 0.9 mm for linear measures. The current study was exempted from review 

by the Medical School Institutional Review Board of the University of the University of Michigan 

(HUM00143467). 

Estimation of future craniofacial growth 

For the prediction of the quality of growth and the feature importance in the logistic regression, 

the following 4 parameters were added to the panel of 15 variables listed in Table 1: age 

(years/months), gender, min_dist, max_dist. These two new variables (max_dist and min_dist) 

were created for each subject. These variables were computed as the Mahalanobis distance 

between each subject and the corresponding prototypes of maximum and minimum skeletal 

imbalance (as calculated from the better and worse Wits appraisal between 1263 cross-sectional 

data). The Mahalanobis distance is a distance function like the better-known Euclidean distance, 

but it is more suited from a mathematical point of view to measure the distance between points in 

high dimensional spaces and/or between points with coordinates with different unit of 

measurement. It is also less prone to be influenced by outliers in some coordinates (2,18).  The 

obtained Mahalanobis distances are used to define and codify the proximity to the most 

imbalanced and least imbalanced Class III subjects in the cross-sectional data. 
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The following 15 variables (Table 1) were added to max_dist and min_dist for the distance 

calculation:  S-N, SNA, SNB, ArGoMe, Co-Gn, Co-Go, ANB, Co-A, Wits appraisal, N-Me, Overjet (OJ), 

Overbite (OB), PP-SN, PP-MP, and U1-PP. 

The fitted logistic regression, with the new variables given by the Mahalanobis distances to the 

prototypes incorporating the knowledge obtained through the 1263 cross-sectional subjects, 

allows to forecast the risk of adverse growth. An analysis of the obtained model can be found in 

the Results section.   

Case-based reasoning 

CBR can be used to best characterize the information that the individual case contains, to define 

the representation of that information, and to select effective useful information from the 

available data.17,18  The first step in CBR is to determine which patients are similar and which 

features of the current patients are relevant. 

In the present study, a prototype can be defined as an ordered set of clinical and/or cephalometric 

entities representing the typical signs of the severity of a given malocclusion.  As mentioned 

above, we evaluated a data base of 1263 cross-sectional untreated Class III subjects derived from 

the same centers collecting patients followed over time (Table 2) in a search for the most 

appropriate prototypes matched by age and gender. From 7 to 17 years of age, we picked the 

maximally skeletal imbalanced patients (for the sake of simplicity, for each age and gender, the 

patient with the worst Wits appraisal score) and the least imbalanced patients (the patient with 

the best Wits appraisal score, Table 3).   

We imagined a prototype as a typical dysmorphic or typical mild Class III subject. To match a 

current case with prototypes, i.e., to determine the distance between cases, similarity functions 

were applied matching each longitudinal patient with prototypes. A diagnostic/prognostic 

problem of a new patient was resolved by finding a similar past case and reusing it in the new 

problem situation.19,20,25 

 

Results  

Descriptive statistics of means and standard deviations of cephalometric values from the 1263 

cross-sectional Class III subjects between 7 and 17 years are reported in Table 2. While the 
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maxillo-mandibular differential (CoGn-CoA) tended to worsen with age, the means of Wits and 

ANB values worsened only slightly. In Table 3 we showed six examples of  cephalometric values of 

Class III subjects indicated as prototypes of maximally and minimally skeletal imbalanced subjects 

for males and females at 7, 11, and 17 years of age (the best and the worst Wits appraisal for each 

age and gender), derived from 1263 cross-sectional subjects. As expected, the spanning of Wits 

values between maximally and minimally imbalanced prototypes tended to increase with age.  

On the contrary, the values of other cephalometric values such as CoA, CoGn, OJ, and ANB often 

tended to vary erratically in these subjects, regardless of age and of the extent of the sagittal 

skeletal imbalance. As an example, Co-A in two prototypical females at 7 years of age is almost 

similar between Max and Min imbalance, increased by nearly 6 mm between in two female 

prototypes at age 11, and 1.6 mm at 17 years (Table 3).  

Figure 1 displays some critical aspects about the robustness of predictive approaches to the Class 

III disharmony based on rules and data. 

A Confusion Matrix is a table that often is used to describe the performance of a classification 

model (i.e., classifier) on a set of test data for which the true values are known. Using the 

Confusion Matrix computed using Leave-One-Out (LOO) cross-validation, which is a standard 

procedure to evaluate out-of-sample errors, we checked to see if the classifier was performing 

correctly, as to the VS and M attribution of the 104 subjects followed longitudinally (Table 4). We 

wanted to discern to what extent the classification was correct. The related statistical metrics 

were reported: once the input data were entered, the classifier learned to recognize the subjects 

as M and VS.  

The following data represented what was learned:  

 From the totality of 104 subject, 14 were classified as VS subjects: 6 were recognized as VS 

(true positive), and 8 were recognized as M (false negative). 

 From the 90 M subjects, 79 were correctly classified M (true negative), and 11 were false 

negative. 

From the following we derived the evaluation metrics for the classifier: Accuracy, Sensitivity, 

Specificity, and Balanced Accuracy. 

 Accuracy: True Positive +True Negative/Total predictions 

 Sensitivity: True Positive/ True Positive+False Negative 
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 Specificity: True Negative/ True Positive+False Negative 

 Balanced Accuracy: (Sensitivity+Specificity)/2 

The relative importance of the cephalometric variables on the prediction of the quality of skeletal 

growth is reported in Table 5. Max-dist, PP-SN, and Wits appraisal coefficients were considered 

useful for the prediction (P<=0.05). The confidence interval showed a significant effect of these 

predictors even in the tails of the distribution. All other variables being equal, the increase of one 

unit in the Mahalanobis distance from the prototype of maximum imbalance matched for age and 

gender corresponded to an increase to the risk of very adverse skeletal growth of 9% (confidence 

interval from 1.6% to 18%; Table 5). 

The results of the logistic regression equation could be used to compute the risk for Class III 

skeletal worsening, provided the availability of adequate prototypes for the Mahalanobis distance 

to be computed. The evaluation for a new patient can be done by computing the Mahalanobis 

distances to the prototypes with any statistical software and then plugging all the needed 

variables in the equation resulting from the logistic regression fit using the coefficients given in 

Table 5. To be more precise the prediction process for a new patient would proceed as follows. 

Given that the formula for the Mahalanobis distance is  dሺx, yሻ = √ሺx − yሻTS−1ሺx − yሻ where x, y 

are vectors (each entry is a cephalometric variable) and S is the covariance matrix of the 

longitudinal data numeric variables: 

 Compute the variance/covariance matrix of the longitudinal data (or fetch it in order not to 

recompute it every time); 

 For the new patient, find the corresponding prototypes, i.e. the one with the same age and 

gender; 

 Compute the Mahalanobis distance between the patient and her prototypes using the 

specified variables and the above formula; 

 Plug all variables, including the computed distances, in the formula obtained from the 

logistic regression, using the coefficients in Table 5; 

 Obtain the corresponding probability of being VS. 
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Typically, in the logistic regression with a logit link function, the coefficients were interpreted 

easily; they represented the increase of the odds for each unit increase (or decrease) of the 

corresponding variable (Table 5).  

 

 

Discussion 

In the daily life of the practicing orthodontist, the logical formalization of diagnosis and treatment 

plaŶŶiŶg ĐaŶ eŶĐouŶter a series of proĐedural diffiĐulties. NoŶe of the patieŶt͛s ǀariaďles are 

crucial or negligible a priori (i.e., derived from theoretical deduction rather than from experience), 

and none always or never affect diagnosis and treatment.7,8 The traditional inductive approach to 

complex systems in biomedicine derives knowledge from an extensional description of concepts 

and cases, building most general rules and most general versions of concepts. 

 Malocclusions are i non-random combinations of different local dysmorphoses: to formulate a 

general inductive rule about the craniofacial growth of a patient, we would need to have 

significant insight into his or her growth history to be able to predict about his or her future. Each 

cephalometric variable contains its own progression, but it is influenced by its own past, by other 

variables, and by the past of other variables. 

To understand each clinical case better, the orthodontist must follow a rather meandering 

diagnostic path. Averages are not suitable for describing phenomena in which reciprocal 

iŶteraĐtioŶs are at ǁork. Moreoǀer, the proďleŵatiĐ ĐoŶĐeptual assuŵptioŶs of ͞harŵoŶy͟, 

͞ďalaŶĐe͟, aŶd ͞ŵultiharŵoŶy͟ related to floatiŶg aŶd oǀerlappiŶg pheŶotypiĐ ĐoŶtours of 

dysmorphosis also are crucial.6,7,26-28   Well known additional sources of uncertainty and biases 

derive from unspecific data collection, changing conditions, measurement errors, data coding 

mistakes, and missing data.16 

We would be able to know what the most important growth dimensions are, from which to derive 

the general rule that will predict the future. In rule-based systems, knowledge is represented as 

facts about the world. In an orthodontic domain this apparent simplicity is complicated by the 

problem that, as each diagnostic/prognostic rule is applied, many more rules may become 

applicable (new orthodontic facts can be inferred from existing orthodontic facts). As we see in 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

Figure 1A and 1B, rules are not sensitive enough to the specificity of the individual patient, thus 

the future probably will not be a linear function of the present. The practicing orthodontist could 

be unable to derive a global clinical rule and to articulate his/her knowledge and his/her 

prognostic needs to the programmer. 

 CBR procedure does not need to elicit rules from experts, it breaks a problem into a set of 

individual rules that each solves part of the problem. It starts with two rather different 

assumptions: 1) problems that arise tend to resemble themselves, so future problems are similar 

to past problems; 2) the similarity of inputs imposes a constraint on the similarity of associated 

outcomes (25).  At first glance this approach may seem superficial, but that is not the case. Data 

are patient-specific, while medical knowledge is patient-independent. The latter consists of 

generalizations that apply across patients. Experience consists in cases, typical and exceptional, 

and the practitioner takes them into account in his/her reasoning. The individual patient is a 

valuable source of information, and a prototype is an ordered set of morphological entities 

representing the typical signs of a disharmony.  

Machine Learning derives inductive rules from data that apply to the complete set of patients. 

These rules may then be generalized and applied to analyze new patients. In this process, any link 

with data of the individual patient is lost completely.29   

Predictive algorithms make binary decision (yes/no, healthy/sick), but the world is more 

complicated than any representation of it in an algorithm. In these circumstances, the way out of 

this trap could be to refer to the analysis derived from similarity to prototypes, or analogy 

between patients.12,29,30  

There still are controversies about the relevance of different proposed methods for abnormal 

growth prediction in Class III malocclusion.32-36 In the last 50 years, different linear and angular 

cephalometric characteristics have been proved to play a role in the etiology of Class III skeletal 

patterns. Different interaction of morphological traits aided in the early prediction of the 

disharmony: the development of the maxilla both in size and position,33 mandibular 

prognathism,34 the length of the cranial base, and others.32 Predictions would involve forecasting a 

change in direction and amount of different growth rates, which are different for several Class III 

subjects.34  
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In order to preserve the totality of the data and thus maintain the integrity of the morphology, a 

series of statistical multivariate approaches and hierarchical cluster analyses has been 

proposed.35,36 In the current study, by identifying the individual patient as an information unit, CBR 

preserved the integrity of the morphology. The knowledge unit was the case, not the rule.  

Following this approach, the unexpected combination of three cephalometric variables proved 

useful in the prediction of adverse growth:  the SN-PP angle, the Wits appraisal, and the similarity 

to the most imbalanced prototypes. Because the interdigitation of buccal segment tooth improves 

stability, the increase of SN-PP angle could have been determined the progressive 

maxillomandibular uncoupling and facilitated the unrestricted forward growth of the chin.  

The individual proximity to maximally imbalanced prototypes of Class III malocclusion entailed the 

risk of very severe adverse growth, in a stronger way compared to the individual distance from 

less imbalanced prototypes. Possibly, the less imbalanced prototypes can differ substantially from 

each other morphologically, while there were fewer ways to represent the growth and the 

convergence in the skeletal characteristics of very severe malocclusion. As such, the similarity to 

the morphology of a more uniform severe dysmorphosis could have been more informative about 

the quality of subsequent craniofacial growth.37  

Despite the success profitably achieved in the last 20 years by application of CBR in several field, as 

a note of caution it must be remembered that while traditional inductive computational 

procedures derive rules from large cohorts of patients, CBR exploits anecdotal evidence, not 

necessarily derived from statistical principles and certainly correct generalizations. This approach 

does not provide a predefined formalism. It is a particular kind of inductive reasoning, based on 

few cases, in which a prototypical case is an arbitrary subspace of the totality of patients. 

CBR do not need to resort to a global rule to know how to solve a problem, only to recognize if we 

have solved a similar problem in the past.38-40 In this study the 1263 cross-sectional subjects 

represeŶted the ͞storage͟, the ĐoŶĐepts of ǁhat ǁas represeŶted iŶ the proďleŵ spaĐe. 

 

Conclusions 

- CBR procedure is an additional approach for prognostic prediction about the progression of 

Class III malocclusion.   
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- The application of CBR to Class III childhood and adolescent subjects makes it easier to 

manage the complexity inherent in the growing dentoskeletal data.  

- The contributing results of the present study were that the proximity to the most 

imbalanced Class III subjects, along with critical values of cephalometric characteristics 

such as PP-SN angle and Wits appraisal, aided in the early prediction of the adverse 

progression of the disharmony.  
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Figure 1.  Looking for orthodontic rules in a world of exceptions. 

In orthodontics, too simple rules may be misleading. Using a simple general rule such as : If A then 

B; if B then C; if C then D, one can infer that, if A is true,  D is also true (Fig. 1A).  
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We live in a world of orthodontic rules full of exceptions. However, for Class III malocclusion more 

complex systems of empirical rules may exist (Fig. 1B): if Class III (A) is true, then in 20% of subjects  

the maxillomandibular imbalance counterintuitively improves (B1); if it is true that Wits appraisal 

gets worse (C), then average ANB angle gets worse, but often remains rather unchanged (C1)(see 

Table 2); If C is true, than OJ may worse (D), but often the dentoalveolar compensation maintains 

a correct incisal relationship (D1).  
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Table 1.  Cephalometric variables 

S-N (mm) anterior cranial base  

SNA (deg.) antero-posterior position of the maxilla to the anterior cranial base 

SNB (deg.) antero-posterior position of the mandible to the anterior cranial base 

ANB (deg.) angle between point A and B 

Wits (mm) Wits appraisal (distance between the projections of points A and B along the 

functional occlusal plane) 

SN-PP (deg.) palatal plane to anterior cranial base angle 

PP-MP (deg.) palatal plane to mandibular plane angle 

ArGoMe (deg.) gonial angle (Articulare-Gonion-Menton) 

Co-A (mm) maxillary length from Condylion to point A 

Co-Gn (mm) total mandibular length from Condylion to Gnathion 

Co-Go (mm) length of the mandibular ramus from condylion to gonion 

N-Me (mm) total anterior face height 

Overjet (mm) distance measured along the occlusal plane from the incisal edge of the maxillary 

central incisor to the most facial aspect in the incisal third of the mandible central 

incisor 

Overbite (mm) vertical distance between incisal edges of the maxillary and mandibular central 

incisors 

U1-PP (deg.) axis of the upper central incisor to the palatal plane 
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Table 2. Descriptive statistics of means and standard deviations of cephalometric values from 1263 cross-sectional Class III subjects between 7 

and 17 years 

 

  
7 years 

(n=114) 

8 years 

(n=183) 

9 years 

(n=160) 

10 years 

(n=116) 

11 years 

(n=90) 

12 years 

(n=114) 

13 years 

(n=119) 

14 years 

(n=104) 

15 years 

(n=78) 

16 years 

(n=48) 

17 years 

(n=137) 

  Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

ANB 0.8 2.2 0.7 2.2 0.5 2.2 0.2 2.3 0.1 2.2 0.2 2.5 0.0 2.7 -0.1 2.4 -0.9 3.1 -0.9 3.2 -1.1 3.0 

ArGoMe 130.5 5.4 129.7 6.0 129.4 6.1 130.0 6.2 129.9 5.0 129.9 6.8 129.2 6.3 128.5 7.1 126.8 7.0 129.0 7.3 128.6 7.4 

Co-A 80.5 4.6 82.9 4.9 83.3 4.7 84.8 5.2 86.0 5.7 88.2 6.4 88.7 6.0 90.8 5.6 90.1 6.7 93.1 6.8 93.6 6.7 

Co-Gn 104.1 6.2 107.8 6.2 109.0 6.4 112.1 6.7 115.6 6.7 119.0 7.8 120.9 7.4 125.0 6.6 125.6 7.7 129.3 8.2 133.4 10.3 

Co-Go 46.3 4.0 48.6 4.2 49.1 4.4 50.0 4.9 52.3 5.1 54.2 6.3 55.4 5.6 57.7 5.7 59.3 6.0 61.4 6.7 63.9 7.5 

N-Me 103.9 6.5 108.2 6.8 109.6 7.1 111.8 6.6 116.1 7.8 118.7 8.5 121.1 8.6 125.2 8.8 123.7 8.4 127.1 9.8 132.3 10.6 

OB 0.2 1.9 1.0 1.9 1.2 2.1 1.2 1.9 1.3 1.9 1.6 1.8 1.1 1.7 1.1 1.9 1.5 2.0 0.7 1.8 1.0 2.0 

OJ -0.6 1.7 -0.5 1.8 -0.4 1.9 0.0 1.8 -0.1 2.0 0.5 2.2 0.6 2.2 0.5 2.6 0.2 2.8 -0.1 3.0 -0.8 3.1 

PP-MP 26.9 4.7 26.7 5.1 26.6 4.9 26.4 5.0 27.7 5.7 26.9 6.0 26.7 4.8 26.6 5.6 25.1 6.0 25.1 6.8 25.0 6.3 

PP-SN 8.1 3.6 8.3 3.3 8.3 3.1 8.0 3.0 8.4 3.0 8.9 3.6 8.8 2.9 8.7 3.6 8.4 3.3 8.7 3.7 9.4 4.0 

SNA 80.2 3.5 79.7 3.6 80.0 3.4 80.6 4.1 80.0 3.9 80.4 4.0 80.6 3.5 80.7 4.2 80.8 4.2 80.9 3.9 80.6 4.0 

SNB 79.4 3.4 79.0 3.5 79.5 3.3 80.4 3.6 79.9 3.4 80.2 3.7 80.6 3.1 80.9 4.3 81.7 4.1 81.8 4.3 81.7 4.1 

U1-PP 104.3 5.6 104.9 6.2 106.2 6.7 108.7 6.3 108.6 6.6 110.6 6.8 114.5 7.6 114.7 7.2 116.3 7.0 116.1 6.8 118.3 7.1 

Wits -4.4 2.1 -4.5 3.0 -4.7 2.5 -4.8 2.4 -5.3 2.2 -5.1 3.1 -5.3 3.1 -5.2 3.4 -5.5 4.0 -5.0 4.5 -6.2 4.6 
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Table 3   Prototypes. First row: maximum imbalancement. Second row: minimum imbalancement.  

 

Female 7 years of age 

ANB ArGoMe Co-A Co-Gn Co-Go N-Me OB OJ PP-MP PP-SN S-N SNA SNB U1-PP Wits 

0.0 131.3 82.8 111.2 49.6 110.7 0.4 -0.1 28.8 7.5 68.9 79.7 79.6 110.0 -6.6 

2.5 133.0 83.0 101.0 44.4 103.0 0.6 0.9 24.6 11.5 67.0 78.9 76.4 104.3 -1.2 

               

Female 11 years of age 

ANB ArGoMe Co-A Co-Gn Co-Go N-Me OB OJ PP-MP PPS-N S-N SNA SNB U1-PP Wits 

-0.1 132.0 84.0 115.6 52.0 117.4 1.3 0.1 29.3 7.6 69.0 79.7 79.8 111.6 -8.7 

0.41 131.0 90.4 90.6 53.8 118.1 -2.4 2.0 27.0 8.5 72.2 80.7 80.3 117.0 -2.1 

Female 17 years of age 

ANB ArGoMe Co-A Co-Gn Co-Go N-Me OB OJ PP-MP PP-SN S-N SNA SNB U1-PP Wits 

-1.7 125.9 90.4 127.5 60.5 122.1 1.9 -2.1 22.2 9.2 72.8 82.2 84.5 115.0 -12.3 

-0.6 128.2 92.0 129.3 60.1 129.8 0.6 0.0 26.0 8.6 74.0 79.4 80.0 112.0 1.3 

Male  7 years of age 

ANB ArGoMe Co-A Co-Gn Co-Go N-Me OB OJ PP-MP PP-SN S-N SNA SNB U1-PP Wits 

0.0 134.9 83.2 108.1 47.7 107.9 0.7 -0.2 28.5 8.4 70.3 79.2 79.2 108.4 -7.5 

0.6 130.0 80.1 105.5 47.2 105.3 -0.1 -1.2 27.9 6.0 67.3 80.4 79.7 104.0 -1.5 

Male 11 years of age 

ANB ArGoMe Co-A Co-Gn Co-Go N-Me OB OJ PP-MP PP-SN S-N SNA SNB U1-PP Wits 

0.2 127.5 87.1 115.8 52.8 116.6 1.5 -0.4 25.5 8.1 71.2 81.2 80.9 111.0 -7.2 

1.9 130.8 87.2 115.5 52.2 118.3 2.1 -0.0 29.0 10.1 71.3 80.4 78.6 111.0 -2.7 

Male  17 years of age 

ANB ArGoMe Co-A Co-Gn Co-Go N-Me OB OJ PP-MP PP-SN S-N SNA SNB U1-PP Wits 

-2.6 132.1 99.0 143.4 70.1 139.5 0.7 -1.9 23.6 8.7 77.9 82.1 84 120.7 -16.3 

-0.14 131.0 94.0 136.3 64.9 140.6 0.4 -0.1 27.4 10.4 76.4 80.5 80.7 113.1 0.5 
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Table 4. Confusion Matrix and Statistics. M mild subjects, VS very serious growing subjects. 

 

Confusion Matrix 

Predicted/reference M subjects VS subjects 

M subjects 6 8 

VS subjects 11 79 

 

Confusion Matrix statistics 

 

Accuracy 0.8173 (C.I. 95% [0.7295, 0.8863]) 

Sensitivity 0.3529 

Specificity 0.9080 

Balanced Accuracy 0.6349 
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Table 5. Logistic regression coefficients, corresponding confidence intervals, and P-values 

 

Coefficient Estimate Std.Error Exponential CI 2.5 % CI 97.5 % Z value P value 

Intercept 26.28 28.88    0.910 0.3629 

Gender -1.4966 1.0703 2.238865e-01 2.203589e-02 1.608679e+00 -1.398 0.1620 

Age (years) 0.0816 0.2929 1.085063e+00 6.024466e-01 1.956710e+00 0.279 0.7805 

S-N -0.10275 0.2670 9.023527e-01 5.393023e-01 1.537995e+00 -0.394 0.6935 

SNA 8.3867 9.1396 4.388542e+03 6.755858e-05 6.742475e+11 0.918 0.3588 

SNB -8.63886 9.20789 1.770893e-04 1.038287e-12 1.321108e+04 -0.938 0.3481 

ArGoMe -0.0558 0.16 9.456397e-01 6.812727e-01 1.300601e+00 -0.349 0.7269 

Co-Gn -0.6571 0.3584 5.183476e-01 2.377938e-01 1.008351e+00 -1.833 0.0668 

Co-Go 0.2411 0.1448 1.272660e+00  9.716268e-01 1.740828e+00 1.665 0.0960 

ANB -7.86001 9.09525 3.858719e-04     2.885604e-12 2.453967e+04 -0.864 0.3875 

Co-A 0.63206 0.39483 1.881483e+00  8.905349e-01 4.362617e+00 1.601 0.1094 

Wits -1.15224 0.46810 3.159288e-01  1.089685e-01  7.173424e-01 -2.461 0.0138 

N-Me 0.19363 0.23109 1.213646e+00  7.774272e-01 1.973082e+00 0.838 0.4021 

Overbite 0.12586 0.28135 1.134128e+00  6.535970e-01 2.011082e+00 0.447 0.6546 

PP-MP -0.05005 0.32487 9.511795e-01  4.883720e-01 1.814873e+00 -0.154 0.8776 

PP-SN -0.78561 0.39640 4.558429e-01  1.867990e-01 9.340429e-01 -1.982 0.0475 

max_dist 0.10503 0.05253 1.110740e+00  1.013645e+00 1.252397e+00 1.999 0.0456 

min_dist -0.06919 0.05613 9.331535e-01  8.298477e-01  1.039495e+00 -1.233 0.2177 

Overjet 0.11846 0.28481 1.125760e+00  6.504009e-01  2.055101e+00 0.416 0.6775 
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