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Abstract
Timely diagnostic testing for active SARS-CoV-2 viral infections is key to con-
trolling the spread of the virus and preventing severe disease. A central public
health challenge is defining test allocation strategies with limited resources. In
this paper, we provide a mathematical framework for defining an optimal strat-
egy for allocating viral diagnostic tests. The framework accounts for imperfect
test results, selective testing in certain high-risk patient populations, practical
constraints in terms of budget and/or total number of available tests, and the pur-
pose of testing. Our method is not only useful for detecting infections, but can
also be used for long-time surveillance to detect new outbreaks. In our proposed
approach, tests can be allocated across population strata defined by symptom
severity and other patient characteristics, allowing the test allocation plan to
prioritize higher risk patient populations. We illustrate our framework using his-
torical data from the initial wave of the COVID-19 outbreak in New York City.
We extend our proposed method to address the challenge of allocating two dif-
ferent types of diagnostic tests with different costs and accuracy, for example,
the RT-PCR and the rapid antigen test (RAT), under budget constraints. We
show how this latter framework can be useful to reopening of college campuses
where university administrators are challenged with finite resources for com-
munity surveillance. We provide a R Shiny web application allowing users to
explore test allocation strategies across a variety of pandemic scenarios. This
work can serve as a useful tool for guiding public health decision-making at a
community level and adapting testing plans to different stages of an epidemic.
The conceptual framework has broader relevance beyond the current COVID-19
pandemic.
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1 INTRODUCTION

The importance of testing for SARS-CoV-2 viral infections has been widely accepted by public health profession-
als around the world.1-3 Identifying infections early in their infectious period through large-scale testing efforts
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can help prevent disease transmission, guide contact tracing and isolation strategies, reduce rates of severe down-
stream outcomes and contribute to estimation of expected healthcare needs. While immunoglobulin antibody tests
can evaluate past SARS-CoV-2 viral infections, many public health interventions such as contact tracing are based
on detection of active infections. Several testing options for detecting an active SARS-CoV-2 viral infection are cur-
rently available, and these tests have varying levels of accuracy (as characterized by their sensitivity and speci-
ficity) and different barriers to access. Expensive RT-PCR tests are based on nasopharyngeal swabs, whereas less
accurate rapid antigen tests (RATs) require only a saliva sample and are much less expensive.4,5 It is easy to per-
form RATs and at-home self-sampling rapid testing kits are available.6 Tests may be administered for many rea-
sons, including diagnostic testing for symptomatic or exposed individuals, population surveillance to detect an
outbreak, or enhanced screening in high-risk strata (eg, essential workers). A central public health challenge is
defining “optimal” test allocation strategies under resource constraints and/or multiple competing test options. The
conceptual framework in this paper is broadly applicable to test allocation designs, beyond the COVID-19 pan-
demic.

One testing strategy for estimating the population infection rate is universal random testing,7 where a large ran-
dom sample of the entire population is tested. This process is repeated regularly to track the pandemic over time.
However, this approach requires conducting an enormous number of tests and is impractical for countries or regions
such as the United States or India with large heterogeneous population and limited number of tests available. Sev-
eral approaches have been suggested for allocating tests under resource constraints. Cleevely et al8 proposed strat-
ified periodic testing, where tests are administered at different rates (in terms of test frequency and volume) for
patients at different levels of risk of infection. Combined with other mitigation strategies such as isolating individ-
uals who have tested positive, they determined the required testing rate for a targeted reduction in disease trans-
mission, which is in turn reflected by a reduction in the effective reproduction number. Although this approach
highlights the importance of stratifying the population and prioritizing testing of high-risk groups, the authors did
not consider how exactly to distribute the tests across different prioritization groups. Another approach that has been
suggested for finding cases or community surveillance is pooled/group testing,9-13 where a single test is applied to
merged samples from a group of people. Under pooled testing, the number of required tests is dramatically reduced.
Nevertheless, dilution due to combined samples is always one of the major concerns in the pooled/group testing
approach.10-12 Ely et al14 described allocation of fixed numbers of multiple different test types with different sensitiv-
ities and specificities to populations at high/low risk. Under this approach, tests are allocated by a decision-making
process for maximizing the value of the tests, mathematically defined as the sum of the test specificity and sensi-
tivity weighted by the loss of the corresponding decision error. Ely et al’s approach requires quantification of the
relative loss of false negatives and false positives for each individual. This problem setting is similar to ours, but the
two objective functions are very different, leading to different interpretation of the results and different allocation
strategies.

In this article, we develop a comprehensive mathematical framework illustrated in Figure 1 for defining an opti-
mal test allocation strategy, accounting for (1) imperfect viral test results, (2) intensified testing in certain patient
populations, (3) resource limitations in terms of budget and/or total number of available tests, and (4) the goal of
testing. In our proposed approach, tests are allocated across population strata defined by symptom severity and other
patient characteristics (eg, age, comorbidities, occupation), allowing our test allocation plan to prioritize higher risk
patient populations. Since the goal of testing may vary at different points of the pandemic, our proposed objective
function provides flexible testing strategies across different phases of a pandemic, for example finding as many cases
as possible during the growing phase of a surge/outbreak (called detecting mode) and long-term surveillance for new
outbreaks during decay/containment period of a pandemic (called surveillance mode). During the detecting mode,
our approach allocates tests with the goal of finding as many of the positive tests as we can to guide contact trac-
ing efforts and isolation interventions. During surveillance mode, our approach allocates tests to give a test positive
rate near a target threshold (eg, 3%). An observed test positive rate exceeding this threshold provides an indicator
of rising community prevalence. Unlike universal random testing procedures and many other existing approaches,
neither the detecting mode nor the surveillance mode aims to directly estimate the infection rate or prevalence in
the population. However, we show that control of the test positive rate at a target level implies an upper bound on
the population infection rate under certain conditions. Our framework assumes that the selection for testing is inde-
pendent of the true infection status, conditional on the symptoms and patient characteristics and that people with
severe symptoms are always tested. Defining population strata based on symptom severity and age group, we use
extensive simulation studies to evaluate the proposed method for test allocation strategy. We illustrate how these
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F I G U R E 1 Illustration of data structure at generation g with the incorporation of selection and misclassification. For a person i with
the characteristic information(or risk factors) Zi = z at the beginning of generation g, the true infection status D(g)

i is unobserved, with 1
indicating being infected and 0 being uninfected. The probability for an infected person of developing severe(s)/mild(m)/no(a) symptoms is
tj(z), where j ∈ {s,m, a}, which is based on the characteristics. An uninfected person may also develop similar symptoms due to other
diseases, for example, influenza, and the probability is fj(z). Often, people are tested/selected based on symptoms and some other risk factors.
𝛽 and 𝛼 are the false negative and positive rate for the test

methods can be applied to determine test allocation through different stages of the pandemic in New York City
(NYC).

We then extend this framework to address the question of how to allocate two different types of diagnostic tests with dif-
fering accuracy, for example, RT-PCR tests versus RATs. This approach can provide guidance about allocation of multiple
types of tests at the workplace level (eg, for colleges and universities) under budget constraints.

We provide a R Shiny app available at https://umich-biostatistics.shinyapps.io/Testing_Optimization/ that imple-
ments all of the proposed methods. In this app, users can specify their goals of testing as well as other key variables to
obtain a customized optimal test allocation strategy.

2 METHODS

2.1 Conceptual framework

Consider a population of size N, and let D(g)
i be a binary variable representing person i’s true (unobserved) infection

status (infected-1 vs not infected-0) at the gth generation of infectious disease circulation. Here, the length of a generation
is the time interval between the time when an individual is infected by a carrier and the time when this index carrier
was infected. For COVID-19, the generation interval is around 5 days.15 It is common to use “generation” for describing
infectious disease spread.15-17 Dividing the time period by generation intervals allows us to capture the variation in disease
prevalence, guided by transmission dynamics, which is critical to make public health interventions. At the gth generation,
some subset of the population will be tested, with binary indicator S(g)

i representing whether person i in the population
is tested during generation g. Let D⋆(g)

i denote the test result (positive-1 vs negative-0) for person i during generation g,
which may or may not be the correct result (may or may not equal D(g)

i ). If person i is not tested, D⋆(g)
i will be 0. Let

T(g) denote the number of tests available for generation g. With limited testing capacity, current test strategies prioritize
tests based (at least in part) on severity of symptoms. Let Sym(g)

i be a categorical variable which takes value in {s,m, a}
corresponding to severe, mild, and asymptomatic symptom levels respectively. We assume that testing may also depend
on other covariates, Zi, such as patient age.

https://umich-biostatistics.shinyapps.io/Testing_Optimization/
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T A B L E 1 A summary of notations

Notation Definition/Meaning

Zi Covariate vector for person i

D(g)
i True infection status for person i at generation g

Sym(g)
i Symptom level for person i at generation g

S(g)
i Selection indicator for testing person i at generation g

D⋆(g)
i Observed infection status for person i at generation g

tj(z) Probability of developing symptom j conditional on being infected with covariate z

fj(z) Probability of developing symptom j conditional on being uninfected with covariate z

𝛼 False positive rate of the diagnostic test

𝛽 False negative rate of the diagnostic test

N Total population eligible for testing

D(g) True total number of cases in generation g

P(g) Observed total number of positive tests in generation gP(g) =
∑N

i=1D⋆(g)
i

T(g) Total number of available tests in generation g

In modeling symptoms, we assume the probability P(Sym(g)
i = j|D(g)

i ,Zi = z) is the same for any g. Let tj(z) be the
probability of developing symptom j conditional on D(g)

i = 1 and Zi = z, and let fj(z) be the probability of developing
symptom j conditional on D(g)

i = 0 and Zi = z. Namely, tj(z) = P(Sym(g)
i = j|D(g)

i = 1,Zi = z) and fj(z) = P(Sym(g)
i = j|D(g)

i =
0,Zi = z). We summarize the notations in Table 1.

We further make the following independence assumption about the testing model:
A1. P(S(g)

i = 1|D(g)
i , Sym(g)

i ,Zi) = P(S(g)
i = 1|Sym(g)

i ,Zi), so S(g)
i is independent of D(g)

i given Sym(g)
i and Zi.

A summary of model notations at generation g is presented below:

Infection model: P(D(g)
i = d|Zi) d ∈ {0, 1}

Symptom model: P(Sym(g)
i = j|D(g)

i = 1,Zi = z) = tj(z)

P(Sym(g)
i = j|D(g)

i = 0,Zi = z) = fj(z)

Model for who is selected for testing: P(S(g)
i = 1|Sym(g)

i ,Zi)

Model for observed test results: P(D⋆(g)
i = 1|D(g)

i = 1, S(g)
i = 1, Sym(g)

i ,Zi)

P(D⋆(g)
i = 1|D(g)

i = 0, S(g)
i = 1, Sym(g)

i ,Zi).

Under this framework, we can establish the probabilistic relationship between obtaining a positive test (P(D⋆(g)
i =

1|S(g)
i = 1)) and the test allocation strategy (P(S(g)

i = 1|Sym(g)
i ,Zi)). We can use this relationship to predict the number

of people testing positive at generation g, denoted as P(g), as a function of test allocation strategy. Predicting the num-
ber of positive tests requires inputting probabilities from the infection model, symptom model and model for observed
test results. For example, if age is the covariate under consideration, P(D(g)

i = 1|Zi = z) in the infection model repre-
sents the infection rate in age group z. Although it is possible to obtain estimates for P(D(g)

i = 1|Zi = z) from the reported
age-stratified case number in some regions, for example, New York City, this approach would underestimate the true
infection rate in age group z due to a large proportion of asymptomatic cases. Moreover, in many other regions where
the age information of the infected individual is not publicly available, obtaining estimates for P(D(g)

i = 1|Zi = z) in the
infection model and P(D⋆(g)

i = 1|D(g)
i , S(g)

i = 1, Sym(g)
i ,Zi) in the model for observed test results would be difficult. There-

fore, to facilitate the calculation of predicted number of positive tests when reliable estimates for conditional probabilities
P(D(g)

i = 1|Zi = z) and P(D⋆(g)
i = 1|D(g)

i , S(g)
i = 1, Sym(g)

i ,Zi) are not available, we make the following assumptions:
A2. P(D(g)

i |Zi) = P(D(g)
i ), so D(g)

i is independent of Zi.
A3. P(D⋆(g)

i |D(g)
i , S(g)

i = 1, Sym(g)
i ,Zi) = P(D⋆(g)

i |D(g)
i , S(g)

i = 1), so D⋆(g)
i is independent of Sym(g)

i and Zi given D(g)
i and

S(g)
i = 1.
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Let 𝛼 = P(D⋆(g)
i = 1|D(g)

i = 0, S(g)
i = 1) be the test false positive rate and 𝛽 = P(D⋆(g)

i = 0|D(g)
i = 1, S(g)

i = 1) be the test
false negative rate. In the next section, we provide a general form of the expected number of positive tests, P̂(g), and a
specific expression under assumption A.1 to A.3.

2.2 Predicting P(g), the number of people who will test positive

For a tested/selected person i, we express the probability of testing positive as:

P(D⋆(g)
i = 1|S(g)

i = 1) =
∑
j,z

P(D⋆(g)
i = 1|S(g)

i = 1, Sym(g)
i = j,Zi = z) ⋅ P(Sym(g)

i = j,Zi = z|S(g)
i = 1). (1)

In this article, we consider Zi as a discrete variable so that the whole population is partitioned into several strata based
on the symptom severity and covariate levels. The first term of the summation captures the likelihood of a positive test in
the selected population given Sym(g)

i and Zi. The second term describes the joint distribution of symptoms and Zi in the
selected population. We now take a closer look at each of the terms in the summation.

The probability of person i testing positive can be expressed as a function of Sym(g)
i and Zi as follows:

P(D⋆(g)
i = 1|S(g)

i = 1, Sym(g)
i ,Zi) =

∑
d∈{0,1} P(D⋆(g)

i = 1,D(g)
i = d, S(g)

i = 1, Sym(g)
i |Zi)

P(S(g)
i = 1, Sym(g)

i |Zi)

=
∑

d P(D⋆(g)
i = 1|D(g)

i = d, S(g)
i = 1, Sym(g)

i ,Zi) ⋅ P(S(g)
i = 1|Sym(g)

i ,D(g)
i = d,Zi) ⋅ P(Sym(g)

i |D(g)
i = d,Zi) ⋅ P(D(g)

i = d|Zi)

P(S(g)
i = 1, Sym(g)

i |Zi)
.

(2)

The joint distribution of Sym(g)
i and Zi conditional on getting tested can be expressed as:

P(Sym(g)
i ,Zi|S(g)

i = 1) =
P(S(g)

i = 1, Sym(g)
i |Zi) ⋅ P(Zi)

P(S(g)
i = 1)

. (3)

Putting these two expressions together, the probability that person i in the selected population has a positive test can
be expressed as:

P(D⋆(g)
i = 1|S(g)

i = 1) = 1
P(S(g)

i = 1)
⋅
∑
j,z

(∑
d

P(D⋆(g)
i = 1|D(g)

i = d, S(g)
i = 1, Sym(g)

i = j,Zi = z)⋅

P(S(g)
i = 1|Sym(g)

i = j,D(g)
i = d,Zi = z) ⋅ P(Sym(g)

i = j|D(g)
i = d,Zi = z) ⋅ P(D(g)

i = d|Zi = z) ⋅ P(Zi = z)
)
. (4)

In our framework, we treat the selection indicator corresponding to each individual S(g)
i as random. Therefore, we

have the following expression for the expected number of positive tests, P̂(g):

P̂(g) = E(P(g)) = E

( N∑
i=1

D⋆(g)
i

)
=

N∑
i=1

E
(

D⋆(g)
i

)
.

The expectation E(D⋆(g)
i ) is taken with respect to the distribution of the selection indicator S(g)

i . Summing over the tested
people, the number of positive tests with population N is predicted as

P̂(g) = N ⋅
∑
j,z

(∑
d

P(D⋆(g)
i = 1|D(g)

i = d, S(g)
i = 1, Sym(g)

i = j,Zi = z)⋅

P(S(g)
i = 1|Sym(g)

i = j,D(g)
i = d,Zi = z) ⋅ P(Sym(g)

i = j|D(g)
i = d,Zi = z) ⋅ P(D(g)

i = d|Zi = z) ⋅ P(Zi = z)
)
. (5)
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Equation (5) is the general form for the expected number of positive tests. Under assumptions A.1 to A.3, Equation (5)
can be simplified as:

P̂(g) =
∑
j,z

(
(1 − 𝛽)tj(z)D(g) + 𝛼fj(z)(N − D(g))

)
⋅ P(S(g)

i = 1|Sym(g)
i = j,Zi = z) ⋅ P(Zi = z), (6)

where tj(z) = P(Sym(g)
i = j|D(g)

i = 1,Zi = z) and fj(z) = P(Sym(g)
i = j|D(g)

i = 0,Zi = z) are the probabilities of developing
symptom j conditional on the infection status and the covariate level. To predict the number of positive tests, some quan-
tities are needed as inputs, including the test false positive rate (𝛼), false negative rate (𝛽), total number of true cases
(D(g)), the covariate distribution (Zi), and the probabilities of developing symptom j conditional on the covariate infor-
mation and the infection status (tj(z) and fj(z)). Many studies have investigated the test false positive rate and test false
negative rate.18,19 Although the true number D(g) is unknown, predicted values for D(g) can often be obtained from fore-
casting models (such as SEIR model20,21). Taking age as the covariate, we obtained the empirical estimates for tj(z) and
fj(z) using the reported case counts and hospitalization data and the influenza surveillance data.22,23 Details of estimating
tj(z) and fj(z) can be found in Section 3.1. In addition, Equation (6) depends on P(S(g)

i = 1|Sym(g)
i = j,Zi = z), which is the

probability of testing in generation g for a person i with Sym(g)
i and Zi. This term represents the testing protocol in the pop-

ulation, and constraints on testing in terms of (1) test availability and (2) testing prioritization correspond to constraints
on P(S(g)

i = 1|Sym(g)
i = j,Zi = z).

Remark 1. In this paper, we consider the population that is eligible for testing as a constant N, ignoring potential changes
in this number across generations. For example, someone who is tested positive once may not get tested again within 90
days, due to immunity induced by past infections. Our model can be easily extended to incorporate such dependencies in
the number of tests across generations by subtracting the number of people ineligible for testing from the total population
N and using N(g) as the population eligible for testing in generation g. Mathematically speaking, N(g) = N −

∑K
k=1P(g−k),

where P(g−k) is the number of people tested positive at generation g − k, and where K is the number of generations for 90
days, say 18, if one generation interval is 5 days.

2.3 Optimal testing strategy

Since the number of positive tests is an important metric for measuring the extent of the pandemic, we use P̂(g), the
expected number of positive tests, for constructing our objective function. The quantity P̂(g) is directly related to the test
allocation strategy S(g)

i by the term P(S(g)
i = 1|Zi = z, Sym(g)

i = j) which we aim to calculate. Since the entire population is
divided into several strata based on symptom severity and covariate levels (covariates and symptom measures are both
assumed to be categorical), the selection probability within a population stratum is the same for all individuals. We thus
construct the following objective function:

min
P(S(g)

i =1|Sym(g)
i =j,Zi=z)

w||P̂(g) − D(g)||2 + (1 − w)||P̂(g) − cNP(S(g)
i = 1)||2 with constraints:

1© P(S(g)
i = 1|Sym(g)

i = s,Zi = z) = 1 for any z and i = 1,… ,N

2©
∑

j

∑
z

NP(Zi = z, Sym(g)
i = j) ⋅ P(S(g)

i = 1|Zi = z, Sym(g)
i = j) = NP(S(g)

i = 1) ≤ T(g) (7)

where c ∈ (0, 1) is a pre-fixed target test positive rate for detecting the outbreak of the pandemic and P(S(g)
i = 1) is the

marginal probability for a person in the entire population to be selected for testing. The first term ||P̂(g) − D(g)||2 controls
the difference between the number of positive tests and the true case counts. The second term ||P̂(g) − cNP(S(g)

i = 1)||2
controls the difference between test positive rate and the target outbreak threshold c. In our objective function, we use
P̂(g) which includes both true and false positive tests because in practice, the true infection status for someone with a
positive test is unknown and we have to use P̂(g) for public health decision making and intervention. w takes value 0 or
1, indicating the preference for either component in defining the optimal testing strategy. For example, when w = 1, the
objective function reduces to ||P̂(g) − D(g)||2, which corresponds to a goal of finding the test allocation strategy to detect the
greatest number of positive tests (detecting mode). By dividing the whole population into several strata based on symptom
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severity and covariate levels, our detecting mode assigns tests to each population stratum by the order of the likelihood of
detecting a positive test. On the other hand, w = 0 corresponds to a goal of detecting if the test positive rate has crossed a
predesignated outbreak threshold (surveillance mode). In Supplementary Material, we show that the population disease
prevalence is bounded by a function of the test positive rate under mild conditions, so a low test positive rate implies a low
disease prevalence in the population. Here, we do not take w between 0 and 1, because the loss function for the detecting
mode and for the surveillance mode are not on the same scale, and the average of the two losses has no practical meaning.
The first constraint in Equation (7) ensures that everyone with severe symptoms is prioritized for testing. Constraint 2 is
to guarantee that the expected number of people tested does not exceed the total number of available tests. We obtain the
optimal testing strategy in Equation (7) using R package optiSolve.24

Our objective function involves the most commonly-used information metrics for COVID-19, including the overall
number of positive tests and the overall test positive rate, which are straightforward and easy to understand for the gen-
eral public. Neither the detecting mode or the surveillance mode in our objective function aims for estimating the true
prevalence in the population, which is usually the goal of universal random testing. It is worthy to mention that if test-
ing is performed randomly in the population, for example, universal random testing, then an unbiased estimator of the

population prevalence would be

(∑
i∶S(g)i =1

D⋆(g)
i∑

i∶S(g)i =1
S(g)

i
− 𝛼

)
∕(1 − 𝛽 − 𝛼), where

∑
i∶S(g)i =1

D⋆(g)
i∑

i∶S(g)i =1
S(g)

i
is the observed test positive rate.

2.4 Extension to allocation of two different types of diagnostic tests

The above framework can be extended to handle allocation of two different types of tests with different costs and accuracy
constrained by a fixed total budget. We suppose the first test option is cheap but has low sensitivity (eg, rapid antigen
testing) and the second test option is more expensive but has higher sensitivity (eg, RT-PCR testing). Let S(g)

i ∈ {0, 1, 2}
represent whether an individual is untested or given the first or second type of test, respectively. Following Equation (6),
the predicted numbers of positive tests of each type, denoted as ̂P(g)

1 and ̂P(g)
2 are:

̂P(g)
1 =

∑
j,z

(
(1 − 𝛽1)tj(z)D(g) + 𝛼1fj(z)(N − D(g))

)
⋅ P(S(g)

i = 1|Sym(g)
i = j,Zi = z) ⋅ P(Zi = z),

̂P(g)
2 =

∑
j,z

(
(1 − 𝛽2)tj(z)D(g) + 𝛼2fj(z)(N − D(g))

)
⋅ P(S(g)

i = 2|Sym(g)
i = j,Zi = z) ⋅ P(Zi = z),

where 𝛼1, 𝛼2, 𝛽1, 𝛽2 are the false positive and negative rates corresponding to two tests. Suppose that costs for one test
of each type are y1 and y2. In the special case where our goal is to detect the greatest number of positive tests (w = 1 in
Equation (7)), we construct the following objective function for allocating two types of tests subject to a fixed total budget:

min
P(S(g)

i =1,2|Sym(g)
i =j,Zi=z)

||̂P(g)
1 + ̂P(g)

2 − D(g)||2 with constraints:

1© P(S(g)
i = 1|Sym(g)

i = s,Zi = z) + P(S(g)
i = 2|Sym(g)

i = s,Zi = z) = 1 for any z and i = 1,… ,N

2© y1NP(S(g)
i = 1) + y2NP(S(g)

i = 2) ≤ budget(g) (8)

The first constraint guarantees that all the severe patients will be tested, and the second constraint ensures that the
expected total spending does not exceed the budget. For the problem of assigning two tests, we do not consider to set
w = 0 because it would always recommend to use the less accurate test for a lower test positive rate.

3 SIMULATION

3.1 Simulation design

We first explore by simulation how the optimal strategy for allocating a single type of diagnostic test varies by 1) the
number of available tests; and 2) the probability of being asymptomatic for a truly infected individual, denoted as ta.
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Design phase for the test allocation strategy: We consider a hypothetical region of population 8 million similar to
New York City. Although the true proportion of asymptomatic infections is likely to be unknown, existing literature sug-
gests this proportion varies across regions, with estimates from around 30% to almost 90%.25-27 We estimate tj(z) and fj(z)
using the publicly available historical data.22,23 More specifically, let tj and f j denote the probabilities of developing symp-
tom j in the infected and uninfected populations; that is, P(Sym(g)

i = j|D(g)
i = 1) = tj and P(Sym(g)

i = j|D(g)
i = 0) = f j. For a

given value of ta, the probability for a truly infected person to be an asymptomatic carrier, the probability of developing
severe symptoms for an infected person is assumed to be roughly 1∕4 of all COVID-19 symptomatic cases (tm = 3 ∗ ts),
which is roughly the ratio of the number of hospitalizations to the cases until September 18, 2020 in New York City.28 For
the uninfected person, the probabilities of having severe (f s) or mild (f m) symptoms are set to 2.3 × 10−5 and 1.6 × 10−4,
respectively, using the data from the New York State Department of Health 2019-2020 Flu Monitoring Archives.22 In
obtaining these estimates, hospitalized patients with flu-like symptoms are treated as severe cases, and the remaining
laboratory-confirmed cases are treated as mild cases. We suppose Zi represents age and is grouped into four categories:

age 0 to 17, age 18 to 49, age 50 to 64 and age ≥ 65. From the probabilistic relationship tj(z) =
tj⋅P(Zi=z|Sym(g)

i =j,D(g)
i =1)

P(Zi=z)
, we

first estimate probabilities of having severe and mild symptoms for an infected person in age group z, namely, ts(z) and
tm(z), where P(Zi = z|Sym(g)

i = j,D(g)
i = 1) is the age distribution in symptom group j of COVID-19 case counts and hospi-

talized counts from the New York City Department of Health and Mental Hygiene through September 18, 2020.23 Next,
the probability of being asymptomatic for an infected person in age group z is 1 − ts(z) − tm(z). Similarly, fj(z) is estimated
using data from the New York State Department of Health 2019 to 2020 Flu Monitoring Archives by age group.22 Table
S1 provides estimates of tj(z) and fj(z) when ta = 0.55.

We consider settings with high and low infection rate separately, which correspond to being near or past the pan-
demic peak, respectively. We assume that 175 000 people are truly infected at generation g (D(g) = 175 000), which
mimics the situation of the peak of the pandemic. We suppose T(g), the number of available tests, to be either
50 000 or 200 000. These two scenarios correspond to the setting with limited testing resources and the setting
with relatively sufficient testing resources. Due to a large number of infections in the population, the test strategy
in this setting should be aimed at detecting cases, so the weight w in the objective function Equation (7) is set as
1. After the peak of the pandemic, we assume that the number of infected cases in the population decreases to
10 000 (D(g) = 10 000) with 200 000 tests available. In this setting, our goal is for long-term surveillance to detect out-
breaks, and we obtain optimal test allocation by setting w = 0 in Equation (7). We define the outbreak threshold c to
be 0.03.29

We compare our proposed optimal strategy to four alternative allocation strategies, named as the risk-based strategy,
the symptom-based strategy, the severe-only strategy, and the universal random testing strategy. The risk-based strategy
prioritizes the group with higher risk of being hospitalized; that is, it prioritizes the severe and mild symptomatic people,
but within each symptom group, elderly people are always tested first. The symptom-based strategy allocates tests based
only on the severity of symptoms, and tests are randomly assigned to individuals within symptom groups, regardless
of age or other risk factors. The severe-only strategy prioritizes testing the severely-ill patients and randomly assigns the
remaining tests to the rest of the population. The universal random testing strategy randomly tests the entire population
without prioritizing any selected group.

Evaluation of the allocation strategy to achieve its desired goal: After we obtain the test allocation strategy
from our strategy as well as other competing methods, we then generate the individual level data, including infection
status D(g)

i , covariate Zi, symptom information Sym(g)
i from the assumed distribution. We apply each strategy to the pop-

ulation and simulate the test result D⋆(g)
i to compare the performance of all strategies. More specifically, we generate the

individual-level data as follows. For the i-th person, i = 1, 2,… ,N:

1. Generate age information Zi from a multinomial distribution. The probability p = (p1, p2, p3, p4) corresponding to the
four age groups is (0.24, 0.43, 0.21, 0.12).

2. Under the assumption that D(g)
i ⟂⟂ Zi, we generate the true infection status, D(g)

i from a binomial distribution with
probability from the assumed infection rate, namely D(g)∕N.

3. Generate the symptom Sym(g)
i from a multinomial distribution with three symptom categories. The probability for

each symptom conditional on the true infection status D(g)
i and the covariate Zi is tj(z) or fj(z).

4. Generate the selection indicator S(g)
i . Conditional on Zi and Sym(g)

i , the selection indicator S(g)
i is generated from a

binomial distribution, whose probability is given by the allocation strategy P(S(g)
i = 1|Sym(g)

i ,Zi).
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5. Generate the testing result D⋆(g)
i . D⋆(g)

i = 0 if S(g)
i = 0. Otherwise, conditional on the true infection status, P(D⋆(g)

i =
1|D(g)

i = 1, S(g)
i = 1) = 1 − 𝛽, where 𝛽 is the test false negative rate; and P(D⋆(g)

i = 1|D(g)
i = 0, S(g)

i = 1) = 𝛼, where 𝛼 is
the test false positive rate.

In the fourth step, we apply our test allocation strategy as well as other competing strategies and summarize the num-
ber of true positive, true negative, false negative, false positive and the number of missing cases under the detecting mode.
For the surveillance mode, we report the total number of positive tests and test positive rate since these two measures are
critical targets. We repeat the above procedure 100 times and provide the mean and standard deviation for each measure.

3.2 Simulation results

Characteristic properties of allocation strategy, detecting mode: Figure 2A,B corresponds to the setting with limited
number of tests and high population infection rate. In this setting, the majority of tests are allocated to people with severe
and mild symptoms unless the probability of being asymptomatic among infected individuals is very high (eg,>0.75). This
is because, unless ta is very large, the probability of a random person with mild symptoms testing positive is larger than
the probability of a random person without symptoms testing positive. In contrast, when we have an abundance of tests
available (Figure 2C,D), the majority of the tests are allocated to asymptomatic patients, partially due to a limited number
of patients with severe and mild symptoms overall. When tests are scarce and the goal is to detect more cases, tests are
allocated across all four age groups based on the assumed marginal proportion of infected people who are asymptomatic,
ta. These age distributions among the tested patients are largely driven by differences in symptoms across age categories.
Since younger people are more likely to be asymptomatic,25 the majority of tests among asymptomatic people are allocated
to young (ages 0 to 17) people. For example, when the marginal probability of being asymptomatic for an infected person
is 0.55 (ta = 0.55) and when we have an abundance of tests as 200 000, 4.3% of tests are allocated to people aged 65+ with
mild symptoms compared to 1.5% to people aged 0 to 17 with mild symptoms. After satisfying the prioritized testing for the
severe and mild symptom groups, the remaining 59.5% of tests are allocated to the young (age 0 to 17) asymptomatic group.

Characteristic properties of allocation strategy, surveillance mode: Figure 3 shows the optimal test allocation
when the infection rate in the population is low and many tests are available. In this situation, we are in a surveillance
mode and want to monitor when the test positive rate exceeds a certain threshold (c), for example, 3%. A test positive rate
exceeding the threshold level c obtained under this testing strategy may provide a good indicator that the prevalence of
disease is going up in the population (Figure S1 in the Supplementary Material). The optimal testing strategy does not
require all available tests to be used, and the majority of allocated tests are given to people aged 50+. Close monitoring of
older asymptomatic patients may provide a good strategy for capturing an outbreak as indicated by a raising test positive
rate.

Evaluation of the allocation strategy, detecting mode: The test allocation strategies under the detecting mode
and from other approaches are provided in Table S2 and their performance is shown in Table 2. On average, our proposed
optimal allocation strategy under the detecting mode can identify more true cases in the population than all the other
allocation methods across most scenarios. In a limited testing resources scenario with ta = 0.55, the strategy determined
by our detecting mode finds 1.4 times more true cases than the severe-only strategy and 44.5 times more than the univer-
sal random testing strategy. In this scenario, our detecting mode strategy performs essentially similar as the risk-based
strategy. This is because these two approaches give the same allocation strategy when the number of tests are limited
and no asymptomatic people can be tested. However, there is a difference when we have a sufficient number of tests.
Our proposed strategy assigns 59.9% of available tests to the young (aged 0 to 17) asymptomatic people, rather than to
the elderly (aged 65+) asymptomatic people as the risk-based strategy does (Table S2). With a sufficient number of tests,
our detecting mode on average finds 2.7% more true cases than the risk-based strategy. At the same time, our strategy
misses fewer true infections than all the other methods, with 2.6%, 2.2%, 38.2%, 45.0% fewer than the risk-based strategy,
symptom-based strategy, severe-only strategy and universal random testing. In terms of the false negatives, the risk-based
method has fewer false negative tests than our method, which is because the former method overall select fewer true
cases. Our method outperforms all other approaches considered as the probability of being asymptomatic among true
cases increases, for example, ta = 0.9.

Evaluationof the allocation strategy, surveillance mode: Unlike the other testing strategies that use all available
tests, the proposed optimal test strategy uses only 51.5% of available tests when our goal is conducting disease surveillance
(Table S3). For comparison, we also present optimal test allocations obtained from our method under the detecting mode.
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(A) (B)

(C) (D)

F I G U R E 2 Tests allocated to each symptom and age group near the peak of the pandemic under the detecting mode, assuming either
50 000 or 200 000 tests are available and that the number of true infected cases is 175 000 in a region of eight million people

(A) (B)

F I G U R E 3 Tests allocated to each symptom and age group for surveillance past the peak of the pandemic, assuming 200 000 tests are
available and the number of true infected cases is low (10 000) in a region of eight million people. The test positive rate for the disease
outbreak is 0.03
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T A B L E 2 The mean and standard deviation of the true positive tests, true negative tests, false negative tests, false positive tests,
and the missing cases who are not tested in the population, using the test allocation strategy determined by the proposed detecting
mode and alternative allocation methods

True positive True negative False negative False positive Missing cases

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Limited number of tests as 50 000; ta=0.55

Detecting mode 34654 (178.3) 463 (23.7) 14833 (121.6) 5 (2.0) 125497 (336.3)

Risk-based 34654 (178.3) 463 (23.7) 14833 (121.6) 5 (2.0) 125497 (336.3)

Symptom-based 34415 (207.9) 795 (29.0) 14736 (122.0) 8 (2.9) 125834 (317.5)

Severe-only 14178 (108.7) 29425 (157.6) 6075 (70.4) 299 (18.6) 154732 (359.6)

Universal random 761 (27.4) 48412 (208.2) 331 (17.3) 491 (23.1) 173893 (400.0)

Sufficient number of tests as 200 000; ta=0.55

Detecting mode 56840 (248.6) 117589 (326.0) 24333 (162.1) 1186 (35.5) 93811 (265.0)

Risk-based 55364 (234.9) 119617 (314.4) 23720 (145.0) 1209 (31.8) 95901 (269.5)

Symptom-based 56128 (219.4) 118583 (311.7) 24046 (154.3) 1195 (34.0) 94811 (267.7)

Severe-only 16214 (118.0) 175026 (408.7) 6950 (79.8) 1766 (38.1) 151821 (352.2)

Universal random 3051 (49.9) 193643 (404.0) 1317 (36.4) 1954 (41.4) 170617 (397.3)

Limited number of tests as 50 000; ta=0.90

Detecting mode 12720 (105.6) 31528 (177.9) 5445 (80.5) 320 (19.4) 156820 (364.6)

Risk-based 12628 (122.4) 31609 (172.2) 5415 (75.5) 320 (20.1) 156942 (368.0)

Symptom-based 12676 (117.5) 31566 (168.9) 5430 (64.9) 321 (19.2) 156879 (365.3)

Severe-only 3728 (56.9) 44212 (193.4) 1605 (42.5) 448 (21.4) 169652 (401.7)

Universal random 759 (28.9) 48414 (207.1) 330 (17.8) 491 (23.3) 173896 (412.7)

Sufficient number of tests as 200 000; ta=0.90

Detecting mode 14988 (114.6) 176771 (385.7) 6419 (80.7) 1787 (41.1) 153578 (351.7)

Risk-based 14492 (123.9) 177427 (431.4) 6212 (80.3) 1790 (41.7) 154280 (364.3)

Symptom-based 14742 (119.0) 177124 (400.1) 6318 (70.9) 1788 (38.3) 153925 (365.3)

Severe-only 5971 (71.8) 189521 (388.4) 2561 (52.0) 1913 (41.2) 166453 (405.0)

Universal random 3048 (49.9) 193644 (396.6) 1315 (39.3) 1954 (41.4) 170621 (408.5)

Note: The assumed number of true infected cases near the peak of the pandemic is 175 000, and the population is eight million. The test false negative
rate 𝛽 is 0.3 and the test positive rate 𝛼 is 0.01. Results are based on 100 repetitions. ta is the probability for a person of being asymptomatic after being
infected.

Our surveillance model approach finds about 37% fewer cases than the proposed method under detecting mode and then
purely risk-based and symptom-based strategies, but it still finds more cases than the severe-only and universal random
testing strategies (Table 3). Even using fewer tests than other methods, our approach can obtain a nominal 3% test positive
rate, and observed deviations from this target positive rate can be used as an indicator that the population prevalence is
larger than expected.

Remark 2. To understand how the test allocation strategy will be affected by false positive tests, we compare the test
allocation with and without consideration of false positive tests. An easy way to obtain the test allocation strategy without
false positive tests is to set 𝛼 equal to 0 in the strategy design phase. For comparison purposes, we set 𝛼 = 0.01 and obtain
the test allocation strategy with false positive tests. Overall, our simulation studies indicate that low levels of false positive
tests will not affect the test allocation strategy under the detecting mode (Figure S2). Although we would need fewer tests
for the surveillance mode based only on true positive tests (Figure S3), the resulting test positive rate cannot be guaranteed
at the prefixed level if we ignore the false positives (Table S4).
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T A B L E 3 The mean and standard deviation of the true positive tests, true negative tests, false negative tests, false positive tests, the
missing cases who are not tested, the total number of positive tests and the test positive rate in the population, using the test allocation
strategy determined by the proposed surveillance mode and alternative allocation methods

True positive True negative False negative False positive Missing cases Total no of positive Positive rate

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Surveillance 2086 99098 905 1003 7027 3088 0.03

(43.9) (314.8) (31.4) (29.8) (78.8) (52.4) (5e-04)

Risk-based 3175 193456 1366 1951 5476 5126 0.02

(56.2) (435.5) (39.3) (41.7) (72.3) (69.7) (3e-04)

Symptom-based 3244 193386 1398 1952 5376 5195 0.03

(57.8) (392.1) (40.0) (41.5) (73) (74.2) (4e-04)

Severe-only 938 196642 408 1985 8672 2922 0.01

(29.7) (396.3) (20.7) (42.4) (88.8) (48.8) (2e-04)

Universal
random

175 197719 75 1996 9768 2171 0.01

(12.3) (397.4) (9.0) (42.5) (92.8) (42.7) (2e-04)

Detecting mode 3314 193262 1423 1951 5281 5264 0.03

(61.4) (419.7) (40.9) (44.6) (71.5) (76.4) (4e-04)

Note: The assumed number of true infected cases near the peak of the pandemic is 10 000, and the population is 8 million. The test false negative rate 𝛽 is 0.3
and the test positive rate 𝛼 is 0.01. Results are based on 100 repetitions. The probability for a person of being asymptomatic after being infected is 0.55 (ta).

4 A SAMPLE CASE-STUDY: TEST ALLOCATION STRATEGY
IN NEW YORK CITY

We illustrate how our framework can be applied to determine test allocation through different stages of the pandemic
in New York City (N = 8 175 133) between March 3 and November 1 in the year 2020. The case numbers and the total
available tests for each week/generation are obtained from data released by the New York City Department of Health and
Mental Hygiene.30 Existing work studying the magnitude of under-reported cases and the proportion of asymptomatic
cases suggest that the true number of cases is about 10 times the reported cases in the United States.31 However, since
New York City has tested nearly 70% of its population until November 11,30 which is far above the national level of
45%,32 the fraction of under-reported cases should be smaller. We assume the multiplicative under-reporting factor to
be 4, meaning we assume the true number of cases in the New York City to be 4 times the reported cases. Following
Rahmandad et al,31 we set the marginal probability that a true case is asymptomatic, ta, to be 55%. Although the accuracy
varies across different types of diagnostic tests, the false negative rate is known to be appreciable and depends on the type
of test.33 We set the false positive (𝛼) and false negative (𝛽) rates to 0.01 and 0.3,33 respectively. Other details regarding
assumed parameter settings can be found in Table S1 in the Supplementary Material. Alternative parameter values can
be explored dynamically using our R Shiny app.

Figure 4 shows the optimal test allocation strategy our method would have recommended for New York City through-
out the pandemic. We suppose we had allocated tests with the goal of detecting as many cases as possible between March
3 and July 21, during which the disease prevalence was high in the population. Under this method, we predict that the
test positive rate would have fallen below 0.03 during the week of July 21st. We then switched to the surveillance mode
for monitoring disease outbreaks thereafter. When the goal is to detect as many cases as possible (detecting mode), symp-
tomatic and the elderly patients should be prioritized, especially when we are short of tests. From March 3 to April 7, for
example, our method would test only people with severe and mild symptoms, and people of age 0 to 17 would be rarely
tested, because the probability of finding a positive test in the symptomatic group is higher than the asymptomatic group.
As the number of available tests gradually increased, more tests would have been allocated to asymptomatic patients
and to young people, because the younger people would be more likely to be asymptomatic and the symptomatic elderly
people would have already been offered a test. After switching to surveillance mode, our method would have allocated
just 53.9% of the tests that are actually conducted. These tests would primarily be allocated to older asymptomatic people.
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(A)

(B)

F I G U R E 4 Test allocation strategy for New York City in the year 2020 assuming a case under-reporting factor of 4, stratified by
symptoms and age

To validate our proposed method, we compare the number of cases and the test positive rate reported for New York
City to the predicted values under our optimal testing strategy method in Figure 5. Since in practice, the true infection
status is unknown, we do not distinguish the false positive tests from the true positive tests when obtaining the total
number of positive tests from our proposed strategy. Under our assumptions about the rate of case under-reporting, the
proposed testing strategy is able to detect a greater number of cases than were actually observed in New York City between
March 3rd to July 21st. After July 21st, the optimal test strategy detects a similar number of reported cases but uses far
fewer tests than were actually administered during this time period for New York City.

5 EXAMPLE OF ALLOCATING TWO DIFFERENT TYPES
OF DIAGNOSTIC TESTS

For universities and colleges, test allocation strategy needs to be customized according to the local disease rates and
community testing capacity,34 as are often characterized by the budget for testing, the total number of tests available, the
observed number of positive tests and test positive rate. As tests of different costs and accuracy become available, the
question of test allocation becomes even more challenging. Subject to budget constraints, we extend our proposed test
allocation method to address allocation of two competing tests with differing costs and accuracy as a function of symptoms
and patient characteristics. We consider the hypothetical scenario where we want to allocate a fixed budget to a mixture
of RATs and RT-PCR tests. The RT-PCR test, which is considered to be the gold-standard test in COVID-19 diagnosis,
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(A)

(B)

F I G U R E 5 Comparison of predicted positive test number and test positive rates under optimal testing strategy to values observed for
New York City in the year 2020 assuming a case under-reporting factor of 4

costs about $100 per test and has sensitivity as high as 0.9.35-37 RATs, in contrast, cost $ 5 per test but have much lower
sensitivity.35,36,38 Mirroring current market information, we set the price for the RAT and for the RT-PCR test as $5 and
$135, respectively, and we assume test sensitivity values are 0.45 and 0.9, respectively.37,38 Specificity is set to 0.99 for both
tests. We suppose that at a certain generation, the number of truly infected cases in a population of 8 million is 10 000
and the budget is one million. Alternative scenarios (including different budgets, population size, age distributions) can
be explored using our R Shiny app.

Figure 6 provides the optimal budget allocation between the two tests as a function of the marginal probability that a
true case is asymptomatic (ta). As seen in Supplementary Material Figure S4, RT-PCR tests are only allocated to people
with severe and mild symptoms, and the majority of RATs are allocated to asymptomatic people. Since the absolute
number of symptomatic people decreases when ta increases under a fixed number of total cases, the proportion of the
budget allocated to RT-PCR testing decreases with increased ta.

6 DISCUSSION

In this article, we provide a mathematical framework for developing test allocation strategy with imperfect diagnos-
tic tests. We develop a strategy for obtaining optimal allocation of diagnostic tests across population strata defined by
symptom severity and other risk factors such as age. This method adapts to different scenarios in terms of public health
objectives. For example, when the goal is to detect as many infected cases as possible in the acceleration phase of the
pandemic with high community prevalence, tests should be allocated with targeted testing in population strata most likely
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F I G U R E 6 A total of one million budge divided for RATs and RT-PCR tests. The price of a single antigen test and RT-PCR test are $ 5
and $ 135, respectively. The number of infected cases is assumed to be 10 000 in a region of population eight million

to contain cases. When our goal is to detect new disease outbreaks as part of population surveillance after a disease wave
has passed and we are in a state of containment, fewer tests may be needed, and a substantial proportion of tests should
be allocated to asymptomatic people. In the setting where we have a sufficient number of tests, we demonstrate that our
proposed detecting mode strategy can find 2.7% more cases than the risk-based strategy. Under the surveillance mode,
our strategy only uses 51.5% of tests that are available. Although our simulation results rely on the assumption that a per-
son’s infection status is independent of his/her characteristics, this assumption can be relaxed if the distribution of true
infection status given patient characteristics is known.

We demonstrate this optimal test allocation strategy in a special case where the population is stratified based on age
and the severity of symptoms, using New York City as a illustrative example. If tests had been allocated as suggested by our
method, we may have used only 53.9% of the tests that were actually conducted and have still found as many cases as were
reported. We provide a R Shiny web app (available at https://umich-biostatistics.shinyapps.io/Testing_Optimization/)
allowing users to explore the optimal test allocation as a function of test positive/negative rates, number of available tests,
and the true rate of infection among asymptomatic people.

In an extension of the proposed method, we develop a strategy for obtaining optimal allocation of two tests with
different false negative rates and cost (eg, cheap RATs vs expensive RT-PCR tests) subject to overall budget constraints. We
show that the expensive but more accurate RT-PCR tests should be used on the severe or mild symptomatic people, which
is in accordance with the finding in the existing work.14 This approach can be used to help inform test allocation decisions
currently being made by many universities, communities, businesses, etc. for planning their reopening. Through our R
Shiny app, users can explore the impact of comparative cost, total budget, population age profile, and other key factors
on the optimal test allocation at different points in a pandemic wave.

Our R Shiny web app can also be used to explore the problem of repeated testing, where RATs are repeatedly used to
improve sensitivity. We found that the probability of correctly identifying an infected individual goes up with repeated
rapid antigen testing, but the ability to detect cases in the entire population decreases as fewer different people are able
to be tested under a fixed overall test budget.

An advantage of the proposed test allocation method is that it directly incorporates test accuracy and can be applied
to allocation of different types of tests, including RATs and/or RT-PCR tests. We focus on the particular case where
population strata are defined based on age as well as symptom severity, but this method can be extended to also
incorporate occupation, geographical location, and other key factors into defining population strata. We provide an

https://umich-biostatistics.shinyapps.io/Testing_Optimization/
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example R script for implementing the methods with strata defined by age and symptoms in the Supplementary Mate-
rial. Users can adapt this code to apply our methods under different strata definitions. Care must be taken when
specifying model parameters, since the resulting test allocation may be sensitive to these choices. We recommend, there-
fore, that users explore test allocation across a spectrum of plausible input parameters to inform decision-making in
practice.

With the emergence of new variants of concern and global vaccine inequity, testing will play a key role in safely
reopening any nation for the foreseeable future. Assays for diagnostic tests will possibly need to be adapted to detect
new strains, but the fundamental problem of who to test given a limited number of available tests in a detection
or surveillance phase will remain relevant as we continue to combat this global pandemic. For any new infectious
virus such testing strategies and tools will prove to be useful beyond the ongoing pandemic. We hope this gen-
eral framework leads to cost-saving and effective strategies, particularly in developing countries where resources are
limited.

ACKNOWLEDGEMENTS
The work is supported by NSF DMS 1712933 and a pilot grant by the Michigan Institute of Data Science. The authors
would like to thank Mike Kleinsasser from the department of Biostatistics, University of Michigan for helping to build
the R Shiny application.

AUTHOR CONTRIBUTIONS
Jiacong Du, Lauren J. Beesley, and Bhramar Mukherjee: Conceptualized and formulated the mathematical frame-
work. Jiacong Du: Drafted the manuscript, collected data, and wrote codes. Lauren J. Beesley: Built the R Shiny app
and co-drafted the manuscript. Seunggeun Lee, Xiang Zhou, Walter Dempsey, and Bhramar Mukherjee: Revised
the manuscript. All participated in reading, editing, and revising the initial draft of the manuscript.

CONFLICT OF INTEREST
The authors declare no potential conflict of interests.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available. These data were derived from the following resources
available in the public domain:

1. New York City Department of Health and Mental Hygiene. Daily COVID-19 case counts and tests. https://www1.
nyc.gov/site/doh/covid/covid-19-data.page

2. New York City Department of Health and Mental Hygiene. Cases, Hospitalizations and Deaths. https://www1.nyc.
gov/site/doh/covid/covid-19-data.page

3. New York State Department of Health. Weekly Influenza Surveillance Report. https://www.health.ny.gov/diseases/
communicable/influenza/surveillance/

ORCID
Jiacong Du https://orcid.org/0000-0002-7768-9083
Lauren J Beesley https://orcid.org/0000-0002-3788-5944
Walter Dempsey https://orcid.org/0000-0002-7852-2269
Bhramar Mukherjee https://orcid.org/0000-0003-0118-4561

REFERENCES
1. Salathé M, Althaus CL, Neher R, et al. COVID-19 epidemic in Switzerland: on the importance of testing, contact tracing and isolation.

Swiss Med Weekly. 2020;150(1112).
2. Manabe YC, Sharfstein JS, Armstrong K. The need for more and better testing for COVID-19. Jama. 2020;324(21):2153-2154.
3. Grassly N, Pons Salort M, Parker E, et al. Report 16: role of testing in COVID-19 control; 2020.
4. U.S. Food & Drug Administration. Coronavirus testing basics. https://www.fda.gov/consumers/consumer-updates/coronavirus-testing-

basics. Accessed May 19, 2021.
5. Service RF. Coronavirus antigen tests: quick and cheap, but too often wrong; 2020. https://www.sciencemag.org/news/2020/05/

coronavirus-antigen-tests-quick-and-cheap-too-often-wrong. Accessed May 19, 2021.
6. U.S. Food & Drug Administration. Update: FDA authorizes first COVID-19 test for self-testing at home; 2020.

https://www1.nyc.gov/site/doh/covid/covid-19-data.page
https://www1.nyc.gov/site/doh/covid/covid-19-data.page
https://www1.nyc.gov/site/doh/covid/covid-19-data.page
https://www1.nyc.gov/site/doh/covid/covid-19-data.page
https://www.health.ny.gov/diseases/communicable/influenza/surveillance/
https://www.health.ny.gov/diseases/communicable/influenza/surveillance/
https://orcid.org/0000-0002-7768-9083
https://orcid.org/0000-0002-7768-9083
https://orcid.org/0000-0002-3788-5944
https://orcid.org/0000-0002-3788-5944
https://orcid.org/0000-0002-7852-2269
https://orcid.org/0000-0002-7852-2269
https://orcid.org/0000-0003-0118-4561
https://orcid.org/0000-0003-0118-4561
https://www.fda.gov/consumers/consumer-updates/coronavirus-testing-basics
https://www.fda.gov/consumers/consumer-updates/coronavirus-testing-basics
https://www.sciencemag.org/news/2020/05/coronavirus-antigen-tests-quick-and-cheap-too-often-wrong
https://www.sciencemag.org/news/2020/05/coronavirus-antigen-tests-quick-and-cheap-too-often-wrong


326 DU et al.

7. Romer P. Webinar: how to re-start the economy after COVID-19; 2021. https://bcf.princeton.edu/event-directory/covid19_04/. Accessed
May 19, 2021.

8. Cleevely M, Susskind D, Vines D, Vines L, Wills S. A workable strategy for Covid-19 testing: stratified periodic testing rather than universal
random testing1. Covid Economics. 2020;44.

9. Eliaz Y, Danovich M, Gasic GP. Poolkeh finds the optimal pooling strategy for a population-wide COVID-19 testing (Israel, UK, and US
as Test Cases). MedRxiv; 2020.

10. Crist C. Group screening could help COVID-19 test shortages; 2020. https://www.webmd.com/lung/news/20200514/group-screening-
could-help-covid-19-test-shortages. Accessed May 19, 2021.

11. Broadfoot M. Coronavirus test shortages trigger a new strategy: group screening; 2020. https://www.scientificamerican.
com/article/coronavirus-test-shortages-trigger-a-new-strategy-group-screening2/#:~:text=Such%20false%20negatives%20have
%20plagued,of%20a%20pathogen%20remains%20low. Accessed May 19, 2021.

12. Lefkowitz M. Group testing could screen entire US, research suggests; 2020. https://news.cornell.edu/stories/2020/06/group-testing-
could-screen-entire-us-research-suggests. Accessed May 19, 2021.

13. Jonnerby J, Lazos P, Lock E, et al. Maximising the benefits of an acutely limited number of COVID-19 tests; 2020. arXiv preprint
arXiv:2004.13650.

14. Ely J, Galeotti A, Steiner J. Optimal test allocation. Technical report. Mimeo; 2020.
15. Ganyani T, Kremer C, Chen D, et al. Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data.

Eurosurveillance. 2020;25(17):2000257.
16. Champredon D, Dushoff J. Intrinsic and realized generation intervals in infectious-disease transmission. Proc Royal Soc B Biol Sci.

2015;282(1821):20152026.
17. Griffin J, Casey M, Collins Á, et al. Rapid review of available evidence on the serial interval and generation time of COVID-19. BMJ Open.

2020;10(11):e040263.
18. Brooks ZC, Das S. COVID-19 testing: impact of prevalence, sensitivity, and specificity on patient risk and cost. Am J Clin Pathol.

2020;154(5):575-584.
19. Böger B, Fachi MM, Vilhena RO, Cobre AF, Tonin FS, Pontarolo R. Systematic review with meta-analysis of the accuracy of diagnostic

tests for COVID-19. Am J Infect Control. 2021;49(1):21-29.
20. Wang L, Zhou Y, He J, et al. An epidemiological forecast model and software assessing interventions on the COVID-19 epidemic in China.

J Data Sci. 2020;18(3):409-432.
21. Hao X, Cheng S, Wu D, Wu T, Lin X, Wang C. Reconstruction of the full transmission dynamics of COVID-19 in Wuhan. Nature.

2020;584(7821):420-424.
22. New York State Department of Health. Weekly influenza surveillance report; 2021. https://www.health.ny.gov/diseases/communicable/

influenza/surveillance/2019-2020/archive/. Accessed May 19, 2021.
23. New York City Department of Health and Mental Hygiene. Coronavirus case counts and hospitalized counts by age; 2021. https://www1.

nyc.gov/site/doh/covid/covid-19-data.page. Accessed May 19, 2021.
24. Wellmann R. R package optiSolve; 2020.
25. Dong Y, Mo X, Hu Y, et al. Epidemiology of COVID-19 among children in China. Pediatrics. 2020;145(6).
26. Gupta M, Mohanta SS, Rao A, et al. Transmission dynamics of the COVID-19 epidemic in India, and evaluating the impact of asymptomatic

carriers and role of expanded testing in the lockdown exit strategy: a modelling approach. medRxiv; 2020.
27. Subramanian R, He Q, Pascual M. Quantifying asymptomatic infection and transmission of COVID-19 in New York City using observed

cases, serology, and testing capacity. Proc Nat Acad Sci. 2021;118(9).
28. New York City Department of Health and Mental Hygiene. Cases, hospitalizations and deaths; 2021. https://www1.nyc.gov/site/doh/

covid/covid-19-data.page. Accessed May 19, 2021.
29. Siddarth D, Katz R, Graeden E, Allen D, Tsai T. Evidence roundup: why positive test rates need to fall below 3%; 2020.
30. New York City Department of Health and Mental Hygiene. Daily COVID-19 case counts and tests; 2021. https://www1.nyc.gov/site/doh/

covid/covid-19-data.page. Accessed May 19, 2021.
31. Rahmandad H, Lim TY, Sterman J. Estimating COVID-19 under-reporting across 86 nations: implications for projections and control;

2020.
32. The COVID Tracking Project. https://covidtracking.com/data/national. Accessed May 19, 2021.
33. Woloshin S, Patel N, Kesselheim AS. False negative tests for SARS-CoV-2 infection-challenges and implications. New Engl J Med.

2020.
34. Elbanna A, Wong GN, Weiner ZJ, et al. Entry screening and multi-layer mitigation of COVID-19 cases for a safe university reopening.

medRxiv; 2020.
35. Vandenberg O, Martiny D, Rochas O, Belkum vA, Kozlakidis Z. Considerations for diagnostic COVID-19 tests. Nature Rev Microbiol.

2020;1-13.
36. Nagura-Ikeda M, Imai K, Tabata S, et al. Clinical evaluation of self-collected saliva by quantitative reverse transcription-PCR (RT-qPCR),

direct RT-qPCR, reverse transcription–loop-mediated isothermal amplification, and a rapid antigen test to diagnose COVID-19. J Clin
Microbiol. 2020;58(9).

37. IGeneX, Inc. Description of COVID-19 tests; 2021. https://igenex.com/igenex-covid-19-testing/. Accessed May 19, 2021.
38. Abbott Laboratories. Abbott’s fast, $5, 15-minute, easy-to-use COVID-19 antigen test receives FDA emergency use authorization; mobile

app displays test results to help our return to daily life; ramping production to 50 million tests a month; 2020. https://abbott.mediaroom.

https://bcf.princeton.edu/event-directory/covid19_04/
https://www.webmd.com/lung/news/20200514/group-screening-could-help-covid-19-test-shortages
https://www.webmd.com/lung/news/20200514/group-screening-could-help-covid-19-test-shortages
https://www.scientificamerican.com/article/coronavirus-test-shortages-trigger-a-new-strategy-group-screening2/#:~:text=Such%20false%20negatives%20have%20plagued
https://www.scientificamerican.com/article/coronavirus-test-shortages-trigger-a-new-strategy-group-screening2/#:~:text=Such%20false%20negatives%20have%20plagued
https://www.scientificamerican.com/article/coronavirus-test-shortages-trigger-a-new-strategy-group-screening2/#:~:text=Such%20false%20negatives%20have%20plagued
https://news.cornell.edu/stories/2020/06/group-testing-could-screen-entire-us-research-suggests
https://news.cornell.edu/stories/2020/06/group-testing-could-screen-entire-us-research-suggests
https://www.health.ny.gov/diseases/communicable/influenza/surveillance/2019-2020/archive/
https://www.health.ny.gov/diseases/communicable/influenza/surveillance/2019-2020/archive/
https://www1.nyc.gov/site/doh/covid/covid-19-data.page
https://www1.nyc.gov/site/doh/covid/covid-19-data.page
https://www1.nyc.gov/site/doh/covid/covid-19-data.page
https://www1.nyc.gov/site/doh/covid/covid-19-data.page
https://www1.nyc.gov/site/doh/covid/covid-19-data.page
https://www1.nyc.gov/site/doh/covid/covid-19-data.page
https://covidtracking.com/data/national
https://igenex.com/igenex-covid-19-testing/
https://abbott.mediaroom.com/2020-08-26-Abbotts-Fast-5-15-Minute-Easy-to-Use-COVID-19-Antigen-Test-Receives-FDA-Emergency-Use-Authorization-Mobile-App-Displays-Test-Results-to-Help-Our-Return-to-Daily-Life-Ramping-Production-to-50-Million-Tests-a-Month#:~:text=ABBOTT%20PARK%2C%20Ill.%2C%20Aug


DU et al. 327

com/2020-08-26-Abbotts-Fast-5-15-Minute-Easy-to-Use-COVID-19-Antigen-Test-Receives-FDA-Emergency-Use-Authorization-
Mobile-App-Displays-Test-Results-to-Help-Our-Return-to-Daily-Life-Ramping-Production-to-50-Million-Tests-a-Month#:~:text=
ABBOTT%20PARK%2C%20Ill.%2C%20Aug,sell%20this%20test%20for%20%245. Accessed May 19, 2021.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Du J, J Beesley L, Lee S, Zhou X, Dempsey W, Mukherjee B. Optimal diagnostic test
allocation strategy during the COVID-19 pandemic and beyond. Statistics in Medicine. 2022;41(2):310-327. doi:
10.1002/sim.9238

https://abbott.mediaroom.com/2020-08-26-Abbotts-Fast-5-15-Minute-Easy-to-Use-COVID-19-Antigen-Test-Receives-FDA-Emergency-Use-Authorization-Mobile-App-Displays-Test-Results-to-Help-Our-Return-to-Daily-Life-Ramping-Production-to-50-Million-Tests-a-Month#:~:text=ABBOTT%20PARK%2C%20Ill.%2C%20Aug
https://abbott.mediaroom.com/2020-08-26-Abbotts-Fast-5-15-Minute-Easy-to-Use-COVID-19-Antigen-Test-Receives-FDA-Emergency-Use-Authorization-Mobile-App-Displays-Test-Results-to-Help-Our-Return-to-Daily-Life-Ramping-Production-to-50-Million-Tests-a-Month#:~:text=ABBOTT%20PARK%2C%20Ill.%2C%20Aug
https://abbott.mediaroom.com/2020-08-26-Abbotts-Fast-5-15-Minute-Easy-to-Use-COVID-19-Antigen-Test-Receives-FDA-Emergency-Use-Authorization-Mobile-App-Displays-Test-Results-to-Help-Our-Return-to-Daily-Life-Ramping-Production-to-50-Million-Tests-a-Month#:~:text=ABBOTT%20PARK%2C%20Ill.%2C%20Aug

