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Abstract
One central task in precision medicine is to establish individualized treatment
rules (ITRs) for patients with heterogeneous responses to different therapies.
Motivated from a randomized clinical trial for Type 2 diabetic patients on a com-
parison of two drugs, that is, pioglitazone and gliclazide, we consider a prob-
lem: utilizing promising candidate biomarkers to improve an existing ITR. This
calls for a biomarker evaluation procedure that enables to gauge added values of
individual biomarkers. We propose an assessment analytic, termed as net bene-
fit index (NBI), that quantifies a contrast between the resulting gain and loss of
treatment benefits when a biomarker enters ITR to reallocate patients in treat-
ments.We optimize reallocation schemes via outcomeweighted learning (OWL),
from which the optimal treatment group labels are generated by weighted sup-
port vector machine (SVM). To account for sampling uncertainty in assessing a
biomarker, we propose an NBI-based test for a significant improvement over the
existing ITR, where the empirical null distribution is constructed via themethod
of stratified permutation by treatment arms. Applying NBI to themotivating dia-
betes trial, we found that baseline fasting insulin is an important biomarker that
leads to an improvement over an existing ITR based only on patient’s baseline
fasting plasma glucose (FPG), age, and body mass index (BMI) to reduce FPG
over a period of 52 weeks.
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1 INTRODUCTION

Utility of the newly discovered biomarkers, such as omics-
markers, from basic sciences to facilitate better and more
cost-effective clinical practice is of critical importance in
translationalmedicine. In connection to the emerging field
of personalized medicine, one central task is to update the
existing individualized treatment rules (ITRs) using new
biomarkerswith the aim to receive better clinical benefit. A
noticeable shortcoming in the current statistical literature
of personalized medicine is a lack of suchmethods to eval-
uate the significance of individual biomarkers in improv-

ing the existing ITRs. Perhaps this has been regarded as
a small mathematical problem, but such methodological
need is not easy to be addressed appropriately given many
practical constraints involved, such as clinical benefit
and medical cost associated with the inclusion of such
biomarkers in daily clinical practice. This paper is intended
to fill in this technical gapwith a specific objective of devel-
oping a new statistical procedure to assess the usefulness
of a biomarker in the context of personalized medicine.
Motivated from a randomized clinical trial comparing

two drugs, that is, pioglitazone and gliclazide, on treat-
ing Type 2 diabetic patients, we propose, examine, and
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illustrate a new statistical framework, termed as net ben-
efit index (NBI), to analytically and numerically quantify
added values of candidate biomarkers when they are used
to update an existing ITR. We consider an existing ITR
involving age, bodymass index (BMI), and baseline fasting
plasma glucose (FPG) to maximize the reduction of FPG
after 52 weeks of treatment. With several new variables
like Hemoglobin A1c (HbA1c), fasting insulin, and so
forth, we want to evaluate their added values, and decide
which one or ones can significantly improve the existing
ITR. Added value of a promising biomarker is gauged by
a contrast between the resulting gain and loss of clinical
benefits from reallocations of treatments through a revised
ITR with the utility of this new biomarker. Reallocation
is optimized by outcome weighted learning (OWL) (Zhao
et al., 2012). In addition, we consider an NBI-based test
for significance of a certain added value in which the
empirical null distribution is generated via stratified
permutation by treatment arms. Through this procedure,
biomarkers that significantly improve an existing ITR are
sequentially selected to revise current allocation rules,
where the biomarker selection is controlled under false
discovery rate (FDR) to avoid the issue of overfitting. Note
that overfitting in terms of the number of biomarkers is
practically unattractive due to higher costs and longer
time spent on collecting samples that essentially pro-
duce redundant information, which may undermine the
accuracy and interpretation of an estimated ITR.
While NBI allows to evaluate the contribution of new

biomarkers under controlled FDR, it avoids some other
problems known in existing biomarker selection tech-
niques in the context of personalized medicine. In the
field of decision making, variable selection should target
primarily at prescriptive variables that help prescribe the
optimal action, instead of the predictive variables that
reduce the variability and increase the accuracy of an
estimator. A prescriptive variable has to have a qualitative
interaction with the treatment (Gunter et al., 2011). A vari-
able is said to qualitatively interact with the treatment if
there exists at least two distinct, nonempty sets within the
space of the variable, for which the treatment arms that
maximize the expected clinical benefit are distinct (Gunter
et al., 2011). Qian and Murphy (2011) propose a two-stage
Q-learning (Q denoting “quality”) (Watkins, 1989) proce-
dure that employs the l1-penalty for variable selection to
estimate an optimal ITR. Lu et al. (2013) develop a penal-
ized regression framework, known as a kind of A-learning
(A denoting “advantage”) (Murphy, 2003) that allows to
simultaneously estimate an optimal ITR and to select
an important variable. However, neither of these two
methods specifically targets at the selection of prescriptive
variables. Gunter et al. (2011) propose two variable-ranking
criteria, U-score and S-score, for variable selection via

quantitative interactions. But one limitation of these
criteria is the ignorance of the correlations between
the variables. To overcome this issue, Fan et al. (2016)
develop a sequential advantage selection (SAS) method
based on a modified version of S-score. SAS sequentially
evaluates additional values of new variables via qualitative
interactions, so that it can avoid identifying any variables
marginally important but jointly unimportant. However,
SAS lacks its direct relevance in clinical practice as it does
not directly optimize treatment benefit objective for ITR,
instead building models with sequentially added interac-
tion terms under a statistical criterion of mean squared
error. Different from these existing methods, NBI has the
following advantages: (a) NBI directly optimizes treatment
grouping labels to maximize the expected clinical benefit;
(b) NBI selects important prescriptive variables beneficial
for treatment allocation; (c) NBI is naturally applicable
for nonlinear decision rules due to the invocation of sup-
port vector machine (SVM); (d) NBI sequantially selects
biomarkers into an existing ITR through FDR control.
The remainder of the paper is organized as follows. Sec-

tion 2 introduces the motivating diabetes clinical trial, fol-
lowed by the framework of NBI for biomarker assessment
in Section 3. Section 4 evaluates the proposed NBI test
through simulation experiments. The NBI method is illus-
trated by the motivating clinical trial in Section 5. Sec-
tion 6 contains some concluding remarks. Some additional
results are available in the Supporting Information.

2 APPLICATION: A DIABETES
CLINICAL TRIAL

This is a randomized control and double-blind trial that
aims to compare the therapeutic effects of pioglitazone and
gliclazide in treating patients with Type 2 diabetes. Piogli-
tazone and gliclazide are two common oral medications
with different therapeutic mechanisms for the treatment
of Type 2 diabetic patients. A total of 1270 patients with
Type 2 diabetes were recruited into the trial. All the eligible
patients were randomized to a 52-week treatment period.
The outcomes of interest is the change of FPG between the
last posttreatment measurement and baseline. FPG was
measured repeatedly at baseline and at weeks 4, 8, 12 up
to 52. Other variables measured at baseline included age,
BMI, HbA1c, fasting insulin, high-density lipoproteins
(HDL), low-density lipoproteins (LDL), aspartate trans-
ferases (AST), alanine transferases (ALT), total cholesterol,
triglycerides, creatinine, and gamma-glutamyl transferase
(GGT). After deleting subjects with missing data, a sample
of 830 patients remains available for analysis, with 424
assigned to pioglitazone and 406 assigned to gliclazide.
Due to loss of follow-up, some of the patients had the last



1256 ZHOU et al.

F IGURE 1 (a) Effects of pioglitazone and gliclazide on reducing fasting plasma glucose (FPG) during the 52-week period; (b) Average
reduction rate of FPG by pioglitazone and gliclazide in the 52-week period

posttreatment measurement taken at week 32 or 42, result-
ing in a shorter period of treatment. Charbonnel et al.
(2005) perform a noninferiority test for the differential
treatment effects between these twodrugs on the reduction
of FPG and illustrate a significantly greater mean reduc-
tion of FPGby pioglitazone (2.4mmol/L) than by gliclazide
(2.0mmol/L), with a treatment difference of 0.4mmol/L in
favor of pioglitazone (95% CI 0.1 to 0.7 mmol/L). The com-
parison of FPG reduction rate illustrates that pioglitazone
leads to a more effective FPG reduction (0.049 mmol/L/
week) than gliclazide (0.038 mmol/L/week), with a treat-
ment difference of 0.011 mmol/L/week (95% CI 0.003 to
0.019 mmol/L/week) (Figure 1).
The previous analysis finds a significant treatment

difference on population average between pioglitazone
and gliclazide in reducing FPG. However, for individ-
ual patients, some taking pioglitazone may receive little
benefit, while some taking gliclazide may receive signifi-
cant benefit. Given such heterogeneous responses to these
drugs, an optimal ITR is deemed necessary to increase the
benefit by shuffling patients in a systematic way to assign
each patient to the “right” drug. This purpose of reallo-
cation may be formulated and achieved with the aim to
maximize the expected FPG reduction via a revised drug
allocation rule. Consider a simple preliminary ITR that
involves only baseline FPG, age, and BMI, denoted by
ITR(b.FPG, age, BMI). Age and BMI are two commonly
used demographics for treatment assignment, while base-
line FPG is a key clinical factor representing a personal
reference level for the target endpoint. Among the avail-
able additional candidate biomarkers, we want to deter-
mine which ones may provide significant added values
to improve ITR(b.FPG, age, BMI); if there are some, the

expanded ITR is expected to provide higher treatment ben-
efit than that given by the preliminary ITR.

3 FORMULATION

3.1 OWL and optimal ITR

Consider a two-armed randomized clinical trial
where each patient is randomly assigned a treatment
𝐴 ∈  = {−1, 1}. 𝐴 = −1 is the traditional treatment, say
gliclazide. 𝐴 = 1 is the new treatmnet, say pioglitazone.
Complete randomization implies that the treatment allo-
cation scheme is independent of patients’ prognostic vari-
ables, denoted as 𝑿 = (𝑋1, … , 𝑋𝑑)

𝑇 ∈  ⊆ ℝ𝑑. Potential
clinical benefit 𝐵∗(𝐴) is the outcome that would result if a
patient were assigned to 𝐴. Since each patient takes only
one treatment, the observed clinical benefit is given by 𝐵 =

𝐼(𝐴 = 1)𝐵∗(1) + 𝐼(𝐴 = −1)𝐵∗(−1), which is determined
by 𝐴. The other potential clinical benefit is latent with no
data captured. Suppose that 𝐵 is bounded with a larger
value of 𝐵 being clinically more desirable. The primary
aim of personalizedmedicine is to establish a decision rule
𝐷(𝑿), a mapping  → , that maximizes the expectation
of the clinical benefit. The following three assumptions
are typically required for computing the expectation of
the clinical benefit: (a) consistency assumption: 𝐵 =

𝐼(𝐴 = 1)𝐵∗(1) + 𝐼(𝐴 = −1)𝐵∗(−1); (b) no unmeasured
confounders assumption:𝐴 ⟂ {𝐵∗(𝑎)}𝑎∈|𝑿; (c) positivity
assumption: 𝑃{𝑃(𝐴 = 𝑎|𝑿) > 0} = 1, ∀𝑎 ∈  (Robins,
1997).
In this paper, the optimal ITR refers to the decision

rule 𝐷∗(𝑿) that maximizes the expected clinical benefit
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F IGURE 2 Changes of the subjects included in the calculation of 𝑉(𝐷) when new biomarker 𝑋2 is included in the estimation of the
decision function. Sizes of the circles and triangles reflect the magnitude of the clinical benefit 𝐵. Black circles and triangles are the subjects
included in the calculation of 𝑉(𝐷) since they have 𝐷(𝑿) = 𝐴. Subjects in group “gain” and “loss” are pointed by arrows. (a) Decision
function 𝑓(𝑋1) estimated only on the existing biomarker 𝑋1; (b) decision function 𝑓(𝑋1, 𝑋2) estimated on 𝑋1 and 𝑋2

𝑉(𝐷) = 𝐸{
𝐼(𝐴=𝐷(𝑿))

𝑃(𝐴|𝑿)
𝐵}, which according to Zhao et al.

(2012)may be formulated as aweighted classification prob-
lem that can be solved by SVM in the context of OWL
(see details in the Supporting Information). The optimiza-
tion problem of OWL has very relevant interpretations to
our definition of NBI. For patients with large observed
benefits, the optimality encourages to allocate the same
treatment type as the one previously assigned. Conversely,
for those receiving small observed benefits, the optimality
tends to assign the alternative treatment type. Note that
in the diabetes trial, the actually implemented allocation
is complete randomization, that is, 𝑃(𝐴|𝑿) = 𝑃(𝐴) = 1∕2.
But this might not give the best personalized drug alloca-
tion rule as randomization primarily aims to control con-
founding not to maximize treatment benefit. Clearly, the
optimal decision rule 𝐷∗(𝑿)will give a higher overall clin-
ical benefit in comparing to completely randomized trial.

3.2 Treatment reallocation

Let 𝐷(𝑿) be a decision rule based on features 𝑿. The opti-
mization for 𝐷(𝑿) imposed by OWL encourages concor-
dant treatment assignment on patient who receives clearly
treatment benefit. In other words, with the invocation of
OWL, patients who are assigned 𝐷(𝑿) = 𝐴 tend to have
larger benefit than those who receive 𝐷(𝑿) ≠ 𝐴. Denote
an existing decision function by 𝑓𝑒(𝑿𝑒) and the corre-
sponding decision rule by 𝐷𝑒(𝑿𝑒) based on the existing
variables 𝑿𝑒. Likewise, denote an updated decision func-
tion by𝑓𝑢(𝑿𝑒, 𝑿𝑢) and the corresponding updated decision

rule by 𝐷𝑢(𝑿𝑒, 𝑿𝑢) by involving new variables 𝑿𝑢. Under
decision rules 𝐷𝑒(𝑿𝑒) and 𝐷𝑢(𝑿𝑒, 𝑿𝑢), there exist two sub-
groups of patients who receive the same treatment alloca-
tion, that is, 𝐷𝑒(𝑿𝑒) = 𝐴 and 𝐷𝑢(𝑿𝑒, 𝑿𝑢) = 𝐴, respectively.
For those patients who are assigned the same treatment by
𝐷𝑒(𝑿𝑒) and 𝐷𝑢(𝑿𝑒, 𝑿𝑢), the inclusion of a new biomarker
does not lead to any benefit gain. Thus, they should be
excluded from the assessment of the difference caused by
the biomarker. In other words, only those patients who are
assigned a different treatment by 𝐷𝑢(𝑿𝑒, 𝑿𝑢) from that by
𝐷𝑒(𝑿𝑒) should be used to define an effective amount of
clinical benefit.
Figure 2 illustrates a simple example showing the dif-

ferent groups of subjects included in the calculation of
𝑉(𝐷)when new biomarker𝑋2 is used in the learning of an
updated decision function 𝑓(𝑋1, 𝑋2) compared to 𝑓(𝑋1).
Subjects randomly assigned to 𝐴 = 1 and 𝐴 = −1 in the
trial are denoted by circles and triangles. The sizes of cir-
cles and triangles reflect the magnitude of clinical benefit,
with a bigger size corresponding to a larger benefit. Only
those subjects in black are effectively included in the cal-
culation of 𝑉(𝐷) since they are assigned the concordant
treatment 𝐷(𝑿) = 𝐴. By comparing the black circles and
triangles in Figures 2(a) and 2(b), we can find that a cir-
cle and a triangle (pointed by arrows) are newly included
in the calculation of 𝑉(𝐷), indicating that there is a gain
as the consequence of reallocation by 𝑓(𝑋1, 𝑋2). At the
same time, another circle and another triangle (pointed by
arrows) are excluded from the calculation of 𝑉(𝐷), indi-
cating that there is a loss. Since the newly included sub-
jects have larger benefit (larger size), the gain exceeds the
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loss in the expected benefit value. Note that only sub-
jects with 𝑓(𝑋1) × 𝑓(𝑋1, 𝑋2) < 0 will be included into the
respective groups “gain” and “loss” since they have switch-
ing allocations from 𝐷(𝑿𝑒) to 𝐷(𝑿𝑒, 𝑿𝑢). Technically, they
are the ones responsible for a difference in the calculation
of 𝑉(𝐷). It is conceptually appealing to quantify the con-
trast between “gain” and “loss” to understand the influ-
ence of a new biomarker for added value in personalized
treatment allocation. We assume the following ethics con-
ditional on reallocation treatment.

Assumption 1. Let 𝐷(𝑿) be an allocation rule based
on variable 𝑿, and let 𝐵(𝐴|𝑿) be the observed bene-
fit when 𝐷(𝑿) = 𝐴. Suppose ∀𝜖 > 0, ∃𝛿(𝜖) < 𝜖, such that
𝑃{𝐵(𝐴𝑐|𝑿) ≥ 𝐵(𝐴|𝑿)|𝐵(𝐴|𝑿) < 𝜖} ≥ 1 − 𝛿(𝜖), where 𝐴𝑐 is
the alternative treatment to A.

Assumption 1 implies that when the clinical benefit of a
patient receiving treatment𝐴 tends to zero, with probabil-
ity approaching to 1 there is no loss of benefit for allocating
the alternative treatment 𝐴𝑐 to the patient.

3.3 Net benefit index (NBI)

Let 𝐵𝑖 be the observed benefit value for each patient, 𝑖 =

1, … , 𝑛. Denote gain as the sample of patients in group
“gain,” and loss as the sample of patients in group “loss.”
An NBI for a new biomarker 𝑋𝑢 is defined as follows:

Definition (NBI).

NBI(𝑋𝑢) =

∑
𝑖∈gain

𝐵𝑖∕𝑃(𝐴𝑖|𝑿𝑖)∑
𝑖∈gain

1∕𝑃(𝐴𝑖|𝑿𝑖)
−

∑
𝑖∈loss

𝐵𝑖∕𝑃(𝐴𝑖|𝑿𝑖)∑
𝑖∈loss

1∕𝑃(𝐴𝑖|𝑿𝑖)
.

(1)

Remark 1. In the case of a randomized clinical trial,
propensity 𝑃(𝐴𝑖|𝑿𝑖) = 𝑃(𝐴𝑖) ≡ 1∕2 for 𝑖 = 1, … , 𝑛. Let
𝑛gain = |gain| and 𝑛loss = |loss|, NBI becomes:
NBI =

∑
𝑖∈gain

𝐵𝑖∕𝑛gain −
∑

𝑖∈loss

𝐵𝑖∕𝑛loss = 𝐵gain − 𝐵loss ,

(2)
which is actually the difference of the average observed
benefits of gain and loss. Clearly, NBI > 0 suggests that
a new biomarker is potentially valuable to improve ITR.

Remark 2. To account for sampling variability, we propose
a standardized NBI as: standardized-NBI(𝑋𝑢) = (𝐵gain −

𝐵loss)∕

√
𝑠2gain

𝑛gain
+

𝑠2loss
𝑛loss

, where 𝑠2gain and 𝑠2loss are sample vari-

ances of observed benefits for gain and loss, respectively.

A l g o r i t hm 1 Calculation of standardized-NBI(𝑋𝑢)

1: Establish models 𝑓𝑒(𝐗𝑒) and 𝑓𝑢(𝐗𝑒, 𝑋𝑢) using OWL on a
training dataset.

2: Get classifications 𝐷𝑒(𝐗𝑒) and 𝐷𝑢(𝐗𝑒, 𝑋𝑢) for subjects in a
NBI evaluation dataset.

3: Characterize samples gain and loss by comparing 𝐷𝑒(𝐗𝑒)

and 𝐷𝑢(𝐗𝑒, 𝑋𝑢).
4: if 𝑛gain ≥ 5 and 𝑛loss ≥ 5 then
5: Calculate standardized-NBI(𝑋𝑢) based on the values of 𝐵

in gain and loss.
6: else Set standardized-NBI(𝑋𝑢)=0.

The calculation of NBI and standardized NBI for 𝑋𝑢 is
given by Algorithm 1. Note that the minimal sample size,
𝑛gain ≥ 5 and 𝑛loss ≥ 5, is required in the calculation of
standardized NBI to have numerical stability.

3.4 Test for significant NBI

NBI > 0 is only suggestive subjective to sampling uncer-
tainty, which may further be made rigorous by hypoth-
esis testing. For a practical point of view, we hypothe-
sized that 𝐷𝑢(𝑿𝑒, 𝑿𝑢) should not be inferior to 𝐷𝑒(𝑿𝑒).
Thus, we consider the following hypotheses: 𝐻0: the
new biomarker does not improve ITR; against 𝐻𝑎: the
new biomarker improves ITR. Let 𝜇gain and 𝜇loss be the
expected benefits in the “gain” and the “loss” popula-
tion, respectively. The hypotheses can be stated as a two-
sample mean comparison:𝐻0 ∶ 𝜇gain = 𝜇loss; against𝐻𝑎 ∶

𝜇gain > 𝜇loss. We will apply the standardized NBI to per-
form the hypothesis of the two-sample mean compar-
ison. However, it is difficult to derive the distribution
of standardized NBI. Therefore, we invoke the empirical
null distribution of the standardized NBI to generate the
𝑝-values.

Remark 3. Different from the standard two-sample
test, here gain and loss are random sets generated by
a resulting optimal reallocation of treatments under a
common overall optimal benefit objective function. Thus,
there exists a certain shared action in group membership
labeling, which leads to a dependence between these two
sets. However, when conditional on the memberships of
gain and loss, we have the conditional independence,
which leads to a standard unequal variance two-
sample 𝑡-statistic, 𝑡|gain,loss = {𝛿 − (𝐵gain − 𝐵loss)}∕√

𝑠2gain∕𝑛gain + 𝑠2loss∕𝑛loss ∼ 𝑡(𝜈), where 𝛿 = 𝜇gain − 𝜇loss

and 𝜈 = 𝜈(𝑛gain, 𝑛loss, 𝑠
2
gain, 𝑠

2
loss) is degrees of freedom.

Clearly, the sizes of both sets, 𝑛gain and 𝑛loss, are random
and correlated in 𝜈. Since the labels in gain and loss have
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a rather complicated and unknown joint distribution,
the marginal distribution of the 𝑡-statistic is not available
to make inference. Thus, we invoke the empirical null
distribution to obtain 𝑝-values.

To do so, we propose to create a null variable𝑋null via the
means of permutation with projected residuals 𝑟𝑖 = 𝑋𝑢,𝑖 −

𝐸(𝑋𝑢,𝑖|𝑿𝑒,𝑖), 𝑖 = 1, … , 𝑛 as detailed in Algorithm 2.

A l g o r i t hm 2 Generation of empirical null distribution for
standardized-NBI(𝑋𝑢)

1: if 𝑿𝑒 ≠ 𝑁𝑢𝑙𝑙 then
2: Model 𝑋𝑢 = 𝑔(𝑿𝑒) + 𝜖, where 𝑔(⋅) is a suitable function

independent of 𝐴 and 𝐵.
3: Get residuals 𝑟𝑖 = 𝑋𝑢,𝑖 − 𝐸̂(𝑋𝑢,𝑖|𝑿𝑒,𝑖), 𝑖 = 1, … , 𝑛.
4: else Let 𝑟𝑖 = 𝑋𝑢,𝑖 .
5: for 𝑙 = 1, … , 𝐿 do (𝐿 is the number of permutation replicates).
6: Permute the residuals conditional on 𝐴; get the permuted

residuals 𝑟
𝑝

𝑙,𝑖
, 𝑖 = 1, … , 𝑛.

7: Values of 𝑋null,𝑙 are generated as
𝑋null,𝑙,𝑖 = 𝐸(𝑋𝑢,𝑖|𝐗𝑒,𝑖) + 𝑟

𝑝

𝑙,𝑖
, 𝑖 = 1, … , 𝑛.

8: Calculate standardized-NBI(𝑋null,𝑙) using Algorithm 1.

Assumption 2. The new variable𝑋𝑢 can be expressed by an
additive model 𝑋𝑢 = 𝑔(𝑿𝑒) + 𝜖 of the existing variables 𝑿𝑒

and the error term 𝜖. Discussion of violations of Assumption
2 is included in Section 6.

Algorithm 2 outputs the empirical null distribution of
the standardized NBI, and the 𝑝-value is given as 𝑝 =

#{standardized-NBI(𝑋null) > standardized-NBI(𝑋𝑢)}∕𝐿.
The invocation of stratification by treatment arm in
the permutation test is to retain the difference between
the underlying distributions of the residuals across two
treatment groups. Pooling the residual distributions
together while performing permutation test would ruin
the interaction effect between treatment and biomarkers.
Since our major interest is to evaluate the added value
of a biomarker when we have an existing ITR, we will
focus our method on the situation when 𝑿𝑒 ≠ 𝑁𝑢𝑙𝑙 in
the following simulation studies and real data analysis.
Simulations results with 𝑿𝑒 = 𝑁𝑢𝑙𝑙 are included in Table
S.1 in the Supporting Information.
When there are several new variables under screening,

say 𝑚, it is necessary to control FDR to ensure a balance
of sensitivity and specificity. To proceed, we propose a
forward selection method, Algorithm 3, that sequentially
adds the currently most significant variable with the
smallest 𝑝-value into a current model at each step until no
more variables are to be added. The significant variables at
each step are identified as those passing the FDR control
through the Benjamini-Hochberg procedure.

4 SIMULATION EXPERIMENT

In this section, we conducted extensive simulations to
evaluate the finite sample performance of the proposed
NBI method.

A l g o r i t hm 3 Sequential forward variable selection based on
NBI test

1: Set𝑚 = dim(𝑿𝑢).
2: while𝑚 > 0 do
3: Get 𝑝𝑗 for 𝑋𝑢,𝑗, 𝑗 = 1, … ,𝑚 with the existing model

involving 𝑿𝑒 by NBI test.
4: Order 𝑝(1) ≤ ⋯ ≤ 𝑝(𝑚), each corresponding to 𝐻(𝑗): 𝑿𝑢,(𝑗)

does not improve ITR.
5: Find 𝑗max = max

𝑗
{𝑗 ∶ 𝑝(𝑗) ≤

𝑗

𝑚
𝑞}, where 𝑞 ∈ (0, 1) is the

chosen target FDR control.
6: if 𝑗max exists thenUpdate

𝑿𝑒 = {𝑿𝑒, 𝑋𝑢,(1)}, 𝑿𝑢 = 𝑿𝑢 ⧵ 𝑋𝑢,(1), and set𝑚 = 𝑚 − 1.
7: else Stop.

4.1 Single-variable–based decision rule
evaluation

The first simulation concerns a setting in which an exist-
ing ITR consists of two variables 𝑋1 and 𝑋2, where 𝑋𝑖

𝑖.𝑖.𝑑
∼

𝑈(0, 1), 𝑖 = 1, 2. Suppose that a new variable 𝑋𝑢 ∼ 𝑈(0, 1)

becomes available, which is correlated with 𝑋2, namely,
Corr(𝑋2, 𝑋𝑢) = 𝜌 with 𝜌 ∈ {0.0, 0.2, 0.5, 0.8}. The follow-
ing types of 𝑋𝑢 are considered: (i) 𝑋𝑢 = 𝑋3, an important
feature related to benefit 𝐵; (ii) 𝑋𝑢 = 𝑋4, a noise variable
unrelated to 𝐵. Our goal is to assess the sensitivity (ie,
rate of detecting 𝑋3) and specificity (ie, rate of not detect-
ing 𝑋4) by the proposed NBI test. Allocation of treatment
𝐴 ∈ {−1, 1} is independent of 𝑿 with 𝑃(𝐴|𝑿) = 1∕2. 𝐵 is
generated from a normal distributionwithmean 𝜇 = 0.5 +

𝑋1 + 2.0𝐴𝑓(𝑿) and standard deviation 𝜎 = 1.0. Interac-
tion term 𝐴𝑓(𝑿) specifies a bimodal expected benefit that
generates bifurcated benefit outcomes.We consider the fol-
lowing three scenarios of true decision function 𝑓:

(1) (Linear) 𝑓(𝑿) = 1 − 𝑋1 + 𝑋2 − 2𝑋3;
(2) (Binary) 𝑓(𝑿) = 4{𝐼(𝑋1 > 0.1 ∩ 𝑋2 < 0.75 ∩ 𝑋3 >

0.25) − 0.5};
(3) (Nonlinear) 𝑓(𝑿) = 2.5{(𝑋1 − 0.5)+ + (𝑋2 − 0.2)+ −

(𝑋3 − 0.1)+}.

The sample size is set at 𝑛 = 800, 1000, 1200. Fivefold
cross-validation is used to determine the training data set
to learn 𝑓 and the NBI evaluation data set to assess 𝑋𝑢.
We set type I error rate 𝛼 = 0.05. Simulation is repeated
for 1000 times.
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TABLE 1 Discovery rates for 𝑋3 and 𝑋4 in the single-variable–based decision rule evaluation (discovery rate for 𝑋4 equals 1-specificity)

𝝆 = 𝟎.𝟎 𝝆 = 𝟎.𝟐 𝝆 = 𝟎.𝟓 𝝆 = 𝟎.𝟖

Scenario 𝒏 𝑿𝟑 𝑿𝟒 𝑿𝟑 𝑿𝟒 𝑿𝟑 𝑿𝟒 𝑿𝟑 𝑿𝟒

Linear 800 0.987 0.047 0.991 0.056 0.984 0.057 0.931 0.053
1000 0.998 0.054 0.997 0.043 0.992 0.051 0.958 0.055
1200 0.999 0.059 1.000 0.051 0.998 0.052 0.974 0.053

Binary 800 0.932 0.051 0.946 0.049 0.956 0.050 0.815 0.050
1000 0.956 0.049 0.967 0.034 0.971 0.046 0.866 0.051
1200 0.968 0.054 0.975 0.048 0.972 0.045 0.927 0.050

Nonlinear 800 0.977 0.053 0.987 0.055 0.973 0.055 0.854 0.050
1000 0.984 0.055 0.996 0.058 0.983 0.042 0.906 0.044
1200 0.995 0.043 0.997 0.049 0.994 0.054 0.934 0.036

TABLE 2 NBI values for 𝑋3 and 𝑋4 in the single-variable–based decision rule evaluation

𝝆 = 𝟎.𝟎 𝝆 = 𝟎.𝟐

Scenario 𝒏 𝑿𝟑 mean (SD) 𝑿𝟒 mean (SD) 𝑿𝟑 mean (SD) 𝑿𝟒 mean (SD)
Linear 800 1.708 (0.547) −0.150 (0.636) 1.724 (0.556) −0.136 (0.653)

1000 1.700 (0.517) −0.139 (0.622) 1.693 (0.509) −0.194 (0.611)
1200 1.657 (0.445) −0.161 (0.614) 1.655 (0.442) −0.140 (0.611)

Binary 800 3.139 (1.553) −0.155 (1.922) 3.192 (1.489) −0.217 (1.815)
1000 3.090 (1.449) −0.127 (1.827) 3.121 (1.382) −0.160 (1.835)
1200 3.075 (1.386) −0.081 (1.779) 3.069 (1.287) −0.046 (1.776)

Nonlinear 800 1.793 (0.883) −0.224 (0.888) 1.862 (0.804) −0.265 (0.894)
1000 1.793 (0.791) −0.227 (0.883) 1.856 (0.740) −0.293 (0.889)
1200 1.770 (0.723) −0.228 (0.827) 1.855 (0.695) −0.277 (0.791)

𝝆 = 𝟎.𝟓 𝝆 = 𝟎.𝟖

Scenario 𝒏 𝑿𝟑 mean (SD) 𝑿𝟒 mean (SD) 𝑿𝟑 mean (SD) 𝑿𝟒 mean (SD)
Linear 800 1.594 (0.628) −0.127 (0.651) 1.125 (0.677) −0.158 (0.688)

1000 1.551 (0.552) −0.148 (0.626) 1.154 (0.563) −0.145 (0.626)
1200 1.503 (0.487) −0.171 (0.616) 1.152 (0.511) −0.132 (0.618)

Binary 800 3.329 (1.499) −0.224 (1.855) 2.285 (1.888) −0.208 (1.760)
1000 3.172 (1.318) −0.056 (1.751) 2.345 (1.685) −0.154 (1.813)
1200 3.252 (1.231) −0.029 (1.756) 2.573 (1.622) −0.139 (1.653)

Nonlinear 800 1.791 (0.796) −0.284 (0.903) 1.188 (0.832) −0.264 (0.932)
1000 1.801 (0.689) −0.329 (0.873) 1.293 (0.743) −0.343 (0.912)
1200 1.823 (0.672) −0.277 (0.841) 1.336 (0.692) −0.310 (0.811)

Table 1 summarizes the discovery rates of 𝑋3 and 𝑋4

across different 𝑓 based on the proposed NBI method. It
is shown that the sensitivity is high in detecting the use-
ful variable 𝑋3, and type I error has been well controlled
for the noise variable 𝑋4 at the nominal level 0.05. Table 2
reports the NBI values for 𝑋3 and 𝑋4. Aligned with the
high sensitivity, the correspondingNBI(𝑋3) are all positive,
implying that the inclusion of 𝑋3 results in an improved
ITR(𝑋1, 𝑋2, 𝑋3), in which more patients are assigned into
their beneficial treatment arm in comparison to the pre-
vious ITR(𝑋1, 𝑋2). In contrast, all the NBI(𝑋4) values are
negative, indicating that the inclusion of 𝑋4 results in a

worse updated ITR(𝑋1, 𝑋2, 𝑋4) that assigns more patients
into their nonbeneficial treatment arm. When FDR is con-
trolled, the chance of 𝑋4 entering the updated ITR is slim,
and the resulting decline in outcome of benefit is indeed
ignorable.

4.2 Multiple-variable–based decision
rule evaluation

The second simulation uses the same setup of the
base ITR(𝑋1, 𝑋2) specified in Section 4.1. Now we
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TABLE 3 Size, TDR, MCC, and CCR for variable selection based on NBI test, SAS, and riskRFE in the multiple-variable–based decision
rule evaluation

NBI
Scenario 𝒏 Size (SD) TDR (SD) MCC (SD) CCR (SD)
Linear 800 1.745 (0.709) 0.906 (0.222) 0.801 (0.242) 0.835 (0.081)

1000 1.813 (0.689) 0.922 (0.194) 0.828 (0.225) 0.852 (0.076)
1200 1.904 (0.622) 0.934 (0.170) 0.868 (0.202) 0.870 (0.070)

Binary 800 1.844 (0.747) 0.894 (0.232) 0.813 (0.248) 0.765 (0.098)
1000 1.917 (0.705) 0.906 (0.215) 0.847 (0.232) 0.786 (0.095)
1200 1.924 (0.650) 0.919 (0.199) 0.863 (0.222) 0.805 (0.090)

Nonlinear 800 1.805 (0.744) 0.904 (0.220) 0.802 (0.245) 0.818 (0.081)
1000 1.926 (0.738) 0.910 (0.199) 0.833 (0.225) 0.832 (0.075)
1200 1.913 (0.616) 0.929 (0.186) 0.869 (0.217) 0.847 (0.073)

SAS
Scenario 𝒏 Size (SD) TDR (SD) MCC (SD) CCR (SD)
Linear 800 2.817 (0.887) 0.774 (0.212) 0.831 (0.165) 0.971 (0.012)

1000 2.525 (0.732) 0.846 (0.193) 0.887 (0.146) 0.976 (0.010)
1200 2.339 (0.609) 0.898 (0.169) 0.926 (0.126) 0.979 (0.010)

Binary 800 3.662 (1.244) 0.613 (0.215) 0.693 (0.187) 0.743 (0.014)
1000 3.286 (1.095) 0.677 (0.219) 0.751 (0.180) 0.744 (0.014)
1200 3.052 (1.007) 0.723 (0.217) 0.790 (0.174) 0.744 (0.014)

Nonlinear 800 3.238 (1.102) 0.688 (0.219) 0.760 (0.180) 0.943 (0.013)
1000 2.915 (0.942) 0.752 (0.215) 0.813 (0.169) 0.948 (0.012)
1200 2.654 (0.817) 0.814 (0.205) 0.862 (0.157) 0.949 (0.011)

riskRFE
Scenario 𝒏 Size (SD) TDR (SD) MCC (SD) CCR (SD)
Linear 800 3.091 (1.003) 0.660 (0.222) 0.704 (0.222) 0.852 (0.056)

1000 2.815 (0.895) 0.732 (0.221) 0.773 (0.209) 0.869 (0.057)
1200 2.586 (0.781) 0.797 (0.218) 0.828 (0.204) 0.883 (0.052)

Binary 800 3.498 (1.135) 0.636 (0.211) 0.716 (0.178) 0.737 (0.123)
1000 3.200 (0.990) 0.686 (0.209) 0.761 (0.169) 0.755 (0.124)
1200 2.909 (0.847) 0.745 (0.206) 0.810 (0.159) 0.779 (0.117)

Nonlinear 800 3.142 (1.083) 0.651 (0.235) 0.689 (0.243) 0.834 (0.061)
1000 2.837 (1.009) 0.723 (0.230) 0.755 (0.219) 0.844 (0.059)
1200 2.576 (0.823) 0.791 (0.224) 0.812 (0.215) 0.857 (0.055)

consider multiple signal and noise candidate biomarkers
𝑋𝑗 ∼ 𝑈(0, 1), 𝑗 = 3,… , 12, in which only 𝑋3 and 𝑋4 are
signal biomarkers involved in the optimal ITR. The cor-
relation structure of the variables is that Corr(𝑋3, 𝑋5) =

Corr(𝑋4, 𝑋6) = 0.5, and Corr(𝑋𝑠, 𝑋𝑡) = 0.2, 𝑠, 𝑡

∈ {7, … , 12}, 𝑠 ≠ 𝑡. The mean parameter of benefit 𝐵

is set as 𝜇 = 0.5 + 𝑋1 + 2.0𝐴𝑓(𝑋), where 𝑓(𝑿) is given as
follows:

(4) (Linear) 𝑓(𝑿) = 0.5(1 + 𝑋1 + 𝑋2 − 1.8𝑋3 − 2.2𝑋4);
(5) (Binary) 𝑓(𝑿) = 6{𝐼(𝑋1 > 0.12 ∩ 𝑋2 < 0.88 ∩ 𝑋3 >

0.2 ∩ 𝑋4 < 0.8) − 0.5};
(6) (Nonlinear) 𝑓(𝑿) = (𝑋1 − 0.9)+ − (𝑋2 − 0.78)+ +

(𝑋3 − 0.1)+ − (𝑋4 − 0.22)+.

We draw summary statistics under the FDR control set
at 0.10. In addition to those basic performance measures
considered in Section 4.1, we add a comparison of our NBI
method on biomarker selection with SAS mentioned in
Section 1 and riskRFE (Dasgupta et al., 2019), a backward
elimination method for variable selection developed
for SVM.
Table 3 reports some summary statistics, including (a)

size: the total number of selected biomarkers; (b) true
discovery rate (TDR): the number of correctly selected
biomarkers over size; (c) Matthers correlation coefficient
(MCC): MCC =

(TP×TN−FP×FN)√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

, where TP
is true positive, TN is true negative, FP is false positive, and
FN is false negative; (d) correct classification rate (CCR).
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The gold numbers are size = 2, TDR = 1, MCC = 1, and
CCR = 1. Our NBI test tends to give slightly conservative
results with smaller size, a known consequence of FDR
control (Benjamini and Hochberg, 1995). Clearly, SAS and
riskRFE pay a price of overfitting with a large number of
noise features selected, resulting in larger size and smaller
TDR. One lesson we learn from the simulation is that
we may first run SAS or riskRFE to select a relatively
large pool of potential biomarkers, and then apply NBI
to control FDR. In this way, we could reach a desirable
balance of sensitivity and specificity. In regard to MCC,
the proposed NBI test outperforms SAS and riskRFE,
except for the linear scenario, where SAS gives the highest
MCC. In addition, the estimated ITR derived from the NBI
method gives the highest CCR for the binary scenario,
but not for the linear and nonlinear scenarios, which is a
limitation of OWL. Some additional simulation studies,
including the small sample cases where 𝑛 = 200, the
scenarios where 𝑿𝑒 = 𝑁𝑢𝑙𝑙 are included in the Supporting
Information.

5 ANALYSIS OF DIABETES TRIAL
DATA

We apply the proposed NBI methodology to analyze
the motivating diabetes trial described in Section 2. The
outcome of benefit is the average reduction rate of FPG
over the 52 weeks of treatment. The base ITR is driven
by three variables 𝑿𝑒 = {b.FPG, age, BMI}. Among those
candidate biomarkers listed in Section 2, we want to select
some important ones and evaluate their added values to
improve ITR.
We first performed a prescreening of these candidate

biomarkers using SAS. Under the cut-off point 0.01 for
the proportion of the incremental sequential advantage,
SAS selects five variables potentially useful to update ITR,
including baseline HbA1c, fasting insulin, AST, triglyc-
erides, and creatinine, denoted by𝑿SAS

𝑢 . The resulting deci-
sion rule is

𝑓SAS(𝑿𝑒, 𝑿
SAS
𝑢 ) = 0.13 − 0.14b.FPG − 0.02age − 0.17BMI

− 0.05HbA1c − 0.12b.fasting insulin

− 0.13AST + 0.04triglycerides

+ 0.18creatinine,

We would allocate a patient with Type 2 diabetes to
take pioglitazone if 𝑓 > 0 and to take gliclazide if
𝑓 < 0. 𝑓SAS(𝑿𝑒, 𝑿

SAS
𝑢 ) assigns 586 patients to pioglita-

zone and 244 patients to gliclazide. Following Murphy

et al. (2001), we further calculate the estimated value
function by 𝔼∗

𝑛[𝐼(𝐴 = 𝐷(𝑿))𝐵∕𝑃(𝐴|𝑿)]∕𝔼∗
𝑛[𝐼(𝐴 =

𝐷(𝑿))∕𝑃(𝐴|𝑿)], where 𝔼∗
𝑛 is the empirical average

value. In order to make the comparison from the same
baseline, the samemethod (eg, SVM, which is the learning
algorithm for both NBI and riskRFE) is used to calculate
the estimated value function. 𝑓SAS(𝑿𝑒, 𝑿

SAS
𝑢 ) gives an esti-

mated value function of 0.049, meaning that the expected
average FPG reduction rate would be 0.049 mmol/L/week
over 52 weeks if 𝑓SAS(𝑿𝑒, 𝑿

SAS
𝑢 ) were implemented for

the whole population. The estimated value functions
given by complete random allocation and 𝑓SAS(𝑿𝑒) are
0.048 and 0.052, respectively, indicating that 𝑿SAS

𝑢 does
not improve the existing decision rule as far as the esti-
mated value function concerns. We then performed a
biomarker screening using riskRFE, which selected three
variables potentially useful to update the existing ITR,
including baseline fasting insulin, creatinine, and GGT.
The estimated decision rule is

𝑓riskRFE(𝑿𝑒, 𝑿
riskRFE
𝑢 ) = −1.48 − 0.08b.FPG + 0.37age

+ 1.09BMI + 0.45b.fasting insulin

+ 0.53creatinine + 0.97GGT,

𝑓riskRFE(𝑿𝑒, 𝑿
riskRFE
𝑢 ) assigns 527 patients to take piogli-

tazone and 303 patients to take gliclazide. The estimated
value function given by 𝑓riskRFE(𝑿𝑒, 𝑿

riskRFE
𝑢 ) is 0.051, even

slightly smaller than that given by 𝑓riskRFE(𝑿𝑒), which is
0.052, indicating that𝑿riskRFE

𝑢 is not actually improving the
existing ITR.
A clinically relevant question to the above estimated

decision rules is whether the selected candidate vari-
ables in 𝑿SAS

𝑢 and 𝑿riskRFE
𝑢 are really influential to ITR,

or whether we may further reduce 𝑿SAS
𝑢 and 𝑿riskRFE

𝑢 to
achieve amore cost-effective ITR.We then applied the pro-
posed NBI test. It turns out that baseline fasting insulin is
the only candidate variable selected by our NBI method.
This gives a simpler decision rule,

𝑓NBI(𝑿𝑒, 𝑿
NBI
𝑢 ) = −1.30 − 0.07b.FPG + 0.39age

+ 2.04BMI + 0.35b.fasting insulin,

which assigns 481 patients to pioglitazone and 349 patients
to gliclazide. The estimated value function of this OWL-
updated treatment regime is 0.053, which is higher than
that given by 𝑓SAS(𝑿𝑒, 𝑿

SAS
𝑢 ) and 𝑓riskRFE(𝑿𝑒, 𝑿

riskRFE
𝑢 ),

although 𝑓NBI(𝑿𝑒, 𝑿
NBI
𝑢 ) only uses a single biomarker,

baseline fasting insulin, to improve ITR. The estimated
value functions given by 𝑓NBI(𝑿𝑒) is 0.052, indicating that
the inclusion of 𝑿NBI

𝑢 in the decision rule also improves
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the ITR with respect to the expected average FPG reduc-
tion rate.
Comparing the coefficients in the estimated decision

rules, we notice that the signs of the coefficients for
some common variables are different in 𝑓SAS(𝑿𝑒, 𝑿

SAS
𝑢 ),

𝑓riskRFE(𝑿𝑒, 𝑿
riskRFE
𝑢 ), and 𝑓NBI(𝑿𝑒, 𝑿

NBI
𝑢 ) (eg, age has a

negative coefficient in 𝑓SAS(𝑿𝑒, 𝑿
SAS
𝑢 ) but positive coeffi-

cients in 𝑓riskRFE(𝑿𝑒, 𝑿
riskRFE
𝑢 ) and 𝑓NBI(𝑿𝑒, 𝑿

NBI
𝑢 )). It may

due to the following reasons. First, loading coefficients are
estimated by conditioning on other variables in the deci-
sion rule, and thus signs of these coefficients are possi-
bly different with different sets of predictors (which are
correlated) used in the construction of the decision func-
tions.Whatmatters themost is indeed themaximum treat-
ment benefit, which is the primary objective of this learn-
ing procedure. Although the signs of the coefficients are
not directly interpretable in this type of methodology, we
would still see a great deal of concordance, in particu-
lar between𝑓riskRFE(𝑿𝑒, 𝑿

riskRFE
𝑢 ) and𝑓NBI(𝑿𝑒, 𝑿

NBI
𝑢 ). This

is because that NBI and riskRFE are both based on sup-
port vector machine (SVM), while SAS is based on reg-
ularized linear regression. Thus, the training procedures
and estimating criteria are different between SAS and
NBI/riskRFE. With the inclusion of the selected variables
𝑿NBI

𝑢 , 𝑓NBI(𝑿𝑒, 𝑿
NBI
𝑢 ) improves the estimated value func-

tion by about 10% compared to complete randomness. In
regard to the clinical impact of our results, we would think
that the demonstrated improvement is clinically meaning-
ful, especially for people on the border line of diabetes,
that is, the so-called prediabetes. It is known that approx-
imately 88 million adults—more than one in three—have
prediabetes in theUnited States. Of thosewith prediabetes,
more than 80% do not know they have it. The 10% change
may help prediabetic people whose diagnostic values just
cross the border line to be controlled at the normal level.
In addition to the expected reduction rate of FPG,

we also compare the expected reduction rate of HbA1c,
another outcome of interest in the trial. Preliminary anal-
ysis identifies no significant difference between the HbA1c
reduction rates for patients receiving pioglitazone or gli-
clazide. The inclusion of 𝑿NBI

𝑢 , 𝑿SAS
𝑢 , and 𝑿riskRFE

𝑢 does
not improve the existing ITRs with all the existing and
updated decisions rules giving the same estimated reduc-
tion of HbA1c, which is 0.031 mmol/L/week over the 52-
week treatment. But it is still slightly higher than the value
of 0.029 given by complete random allocation 𝐴.

6 CONCLUDING REMARKS

In this paper, we proposed a new biomarker assessment
tool, termed as NBI, that enables to evaluate added values
of biomarkers for improving existing ITRs. This new

method can be used in both single and multiple-variable–
based decision rule evaluations. Extensive simulation
studies demonstrate that our method can correctly
identify signal biomarkers under various scenarios with
desirable performances in comparison to existing meth-
ods. Application of the proposed method to a real diabetes
clinical trial reveals that baseline fasting insulin is an
important biomarker that can significantly improve an
existing ITR involving age, BMI, and baseline fasting FPG,
for the allocation of pioglitazone or gliclazide to patients
with Type 2 diabetes. It results significant clinical benefit
of average reduction rate of FPG during the 52 weeks of
treatment.
NBI is an analog to net reclassification improvement

(NRI), a seminal index that has been extensively used to
evaluate the usefulness of new markers for predicting risk
of developing diseases (Pencina et al., 2010). The proposed
NBI is fundamentally different from NRI in the sense that
NBI pertains to reclassification with respect to treatment
group when class labels are not directly observed, rather
based on outcome of treatment. Pepe et al. (2014) demon-
strated that false-positive conclusions based on the NRI
statistic were unacceptably high. However, our simulation
studies have illustrated that the FDR is well controlled
using the NBI method. Vickers and Pepe (2014) pointed
out that NRI weights reclassification (ie, false positive
and false negative) inappropriately, which may also be an
underlying problem of NBI. However, with no information
of true label available in the setting of NBI, appropriate
weighting of false positive and false negative may be infea-
sible in practice. Decision curve analysis (DCA) (Vickers
and Elkin, 2006) is another commonly used method for
comparing multiple treatment decision rules to select
the optimal one that maximizes the outcome of interest.
The formulation of DCA relies on the calculation of a net
benefit, which is the relative harm of a false positive and
a false negative. Similarly, it is infeasible to apply DCA in
our setting since we never know the underlying true labels
for patients in a clinical trial in practice.
NBI is naturally applicable for nonlinear decision rules

due to the invocation of SVM, in which different kernels
(eg, Gaussian kernel) can be easily applied. We would like
to clarify two points in the usage of kernels: (a) kernel is
used exclusively to model the conditional distribution of
𝑅 given 𝑿 and (b) the assumption of additive errors in
the generation of 𝑋null is imposed on the conditional dis-
tribution of 𝑿𝑢 given 𝑿𝑒. Thus, the additivity assumption
does not influence the relationship (or the decision rule)
between 𝑅 and 𝑿 characterized by kernel in the gener-
ation of the empirical null distribution. In order to gen-
erate the null distribution for NBI, a certain assumption
on the influence of random errors on signals is inevitable.
In this paper, we adopted the classical additive error
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assumption, which can be violated in practice. In order
to check the validity of the additive error assumption, we
suggest first to run a residual diagnosis. If it indicates
that the error is not additive, that is, 𝑋𝑢 = 𝑓(𝑿𝑒, 𝜖), we
can apply Taylor Expansion to the function 𝑓(𝑿𝑒, 𝜖) and
use a generalized additive model (GAM) to model 𝑋𝑢 on
𝑿𝑒. Then, permutation test can be performed based on
the new error term 𝜖′ = 𝑋𝑢 − ĜAM(𝑿𝑒), or 𝜖′′ = {𝑋𝑢 −

ĜAM(𝑿𝑒)}∕

√
𝜃(𝑿𝑒) if we assume the variance of 𝜖′ can be

modeled by a function 𝜃(𝑿𝑒).
One future direction of this study is to extend this

methodology to multiple treatment settings since clinical
trials sometimes have more than two treatments in prac-
tice. In addition, it may be desirable to extend the method
to situations where clinical benefit outcomes are categori-
cal or time-to-event. With increasing interest and research
in dynamic treatment regimes, wemay also extend theNBI
test to settings with multiple decision time points. Due to
the number of replicates required by the proposed permu-
tation test aswell as the computation timeneeded for SVM,
the proposed method may run into high computational
demand. The algorithm can become faster if a theoretically
justified null distribution is available for theNBI test statis-
tic, which is worth an exploration in our future research.
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