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Abstract
This paper studies load balancing for many-server (N servers) systems. Each server

has a buffer of size b− 1, and can have at most one job in service and b− 1 jobs

in the buffer. The service time of a job follows the Coxian-2 distribution. We focus

on steady-state performance of load balancing policies in the heavy traffic regime

such that the normalized load of system is λ = 1−N−α for 0< α< 0.5. We identify

a set of policies that achieve asymptotic zero waiting. The set of policies include

several classical policies such as join-the-shortest-queue (JSQ), join-the-idle-queue

(JIQ), idle-one-first (I1F) and power-of-d-choices (Po d) with d = O(Nα log N). The

proof of the main result is based on Stein’s method and state space collapse. A key

technical contribution of this paper is the iterative state space collapse approach that

leads to a simple generator approximation when applying Stein’s method.

KEYWORDS

Coxian-2 service, heavy traffic regime, load balancing, state space collapse,

steady-state analysis, Stein’s method

1 INTRODUCTION

The convergence of cloud computing and machine learning is

transforming society in unprecedented ways, and leading to

innovations in autonomous systems, healthcare, bioinformat-

ics, social networks, online and in-store retail industry, and

education. Data centers nowadays continuously process com-

plex queries and machine learning tasks in large server farms,

with tens of thousands of networked servers. Many of these

queries/tasks are time sensitive such as queries for products

on online retail platforms, real-time machine learning tasks

such as language translation and virtual reality applications.

In fact, the latency cost of a data center can be very high. In

2017, Akamai reported that 100-ms delay led to 7% drop in

sales (Akamai, 2017). Therefore, it is critical for a data cen-

ter to process these jobs/queries in a timely fashion, ideally

without any delay. This paper focuses on the following criti-

cal question: can we achieve almost zero-delay in large-scale
data centers? A critical step for achieving zero-delay is a

good load-balancing algorithm that can balance the load

across servers and assign an incoming job to an idle server

immediately. Assuming exponential service times, sufficient

conditions under which a load balancing algorithm achieves

asymptotic zero-delay have been obtain in Xin and Lei (2020)

for 0<𝛼 < 0.5 and in Xin and Lei (2019) for 0.5≤ 𝛼 < 1. The

results have also been extended to parallel-jobs (Wentao &

Wang, 2020), multi-server jobs (Weina et al., 2021) and jobs

with data locality (Wentao et al., 2020). This paper considers

jobs with Coxian-2 service times and identifies a set of load

balancing algorithms that achieve zero waiting at steady-state.

While Coxian-2 distribution is still a restricted service-time

distribution, it has been widely used in computer systems

(see, e.g., Tayfur, 1985; Miklós & Armin, 2003; Takayuki &

Mor, 2003). In particular, Tayfur (1985) showed the Coxian-2

distribution can well approximate a general distribution by fit-

ting its first three moments when the moments of the general

distribution satisfies m3∕m1 ≥
3

2
(c + 1)2 and c≥ 1, where m1,

m3, and c are the first-order moment, third-order moment and

the squared coefficient of variation, respectively (Takayuki &

Mor, 2003). also showed that the Coxian-2 distribution can

represent a large class of bounded Pareto distributions, which

model many real-world job service times in computing and

communication systems, including UNIX I/O time and the

duration of HTTP and FTP transfers.
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1.1 Related work

Performance analysis of systems with distributed queues is

one of the most fundamental and widely studied problems

in queueing theory. Assuming exponential service time, the

steady-state performance of various load balancing policies

has been analyzed using the mean-field analysis (fluid-limit

analysis) or diffusion-limit analysis. Among the most popular

policies are: (1) join-the-shortest-queue (JSQ) (Anton, 2020;

Patrick & David, 2018), which routes an incoming job to

the least loaded server; (2) join-the-idle-queue (JIQ) (Alexan-

der, 2015; Yi et al., 2011), which routes an incoming job

to an idle server if possible and otherwise to a server cho-

sen uniformly at random; (3) idle-one-first (I1F) (Varun &

Neil, 2019), which routes an incoming job to an idle server

if available and otherwise to a server with one job if avail-

able. If all servers have at least two jobs, the job is routed to a

randomly selected server; and (4) power-of-d-choices (Po d)

(Mitzenmacher, 1996; Vvedenskaya et al., 1996), which sam-

ples d servers uniformly at random and dispatches the job

to the least loaded server among the d servers. With general

service time distributions, performance analysis of load bal-

ancing policies with distributed queues is a much more chal-

lenging problem, and remains to be an active research area

in queueing theory (Mor, 2013) (Mitzenmacher, 1996). pro-

posed a mean-field model of the Po d policy under gamma ser-

vice time distributions without proving the convergence of the

stochastic system to the mean-field model (Reza et al., 2017;

Thirupathaiah et al., 2019; Tim & Benny, 2018). proposed

a set of PDE models to approximate load balancing polices

under general service times and numerically analyzed key per-

formance metrics (e.g., mean response time). They proved the

convergence of the stochastic systems to the corresponding

ODEs or PDEs at process-level (over a finite time interval

instead of at steady state).

To go beyond the process-level and establish steady-state

performance with general service times, a key challenge is

to prove that the mean-field system (fluid-system) is stable,

that is, the system converges to a unique equilibrium starting

from any initial condition. Under nonexponential service time

distributions, the proof of stability often relies on a so-called

“monotonicity property,” which requires a partial order of

two mean-field systems starting from two initial conditions to

be maintained over time. In particular, letting x(t, y) denote

the system state at time t with initial state y, given two ini-

tial conditions y1 ≻ y2, where “≻” is a certain partial order,

“monotonicity” states that the partial order x(t, y1)≻ x(t, y2)

holds for any t≥ 0.

Monotonicity does hold under several load balancing poli-

cies with nonexponential service time distributions that have

a decreasing hazard rate (DHR) (Alexander, 2015; Bram-

son et al., 2012; Foss & Stolyar, 2017). The hazard rate is

defined to be
f (x)

1−F(x)
, where f (x) is the density function of

the service time and F(x) is the corresponding cumulative

distribution function. With DHR (Bramson et al., 2012),

proved the asymptotic independence of queues in the

mean-field limit under the Po d load balancing policy, and

(Alexander, 2015) proved that JIQ achieves asymptotic delay

optimality (Benny, 2019). proved the global stability of the

mean-filed model of load balancing policies (e.g., Po d) under

hyper-exponential distributions with DHR. The key step in

Benny (2019) is to represent hyper-exponential distribution

by a constrained Coxian distribution, where 𝜇i(1− pi) is

decreasing in phase i (𝜇i is the service rate in phase i and

pi is the probability that a job finishing service in phase i
and entering phase i+ 1). With the alternative representation,

monotonicity holds in a certain partial order and the global

stability is established.

When service time distributions do not satisfy DHR, only

few works established the stability of mean-field systems for

very limited light-traffic regimes. For example, Foss and Stol-

yar (2017) relaxed DHR assumption in Alexander (2015) to

any general service distribution but the asymptotic optimality

of JIQ only holds when the normalized load 𝜆< 0.5. The sta-

bility of Po d with any general service time distributions with

finite second moment has also been established in Bramson

et al. (2012) when the load per server the normalized load

𝜆< 1/4.

The Coxian-2 distribution considered in this paper does not

necessarily satisfy DHR. Under the Coxian-2 service time

distribution, each job has two phases (phase 1 and phase 2).

When in service, a job finishes phase 1 with rate 𝜇1; and after

finishing phase 1, the job leaves the system with probability

1− p or enters phase 2 with probability p. If the job enters

phase 2, it finishes phase 2 with rate 𝜇2, and leaves the sys-

tem. Consider a simple system with two servers. Assume the

Coxian-2 service time distribution and JSQ is used for load

balancing. Consider two different initial conditions for this

system as shown in Figure 1, where jobs in phase 1 are in

red color, jobs in phase 2 are in green color and jobs before

processed by the server are in black color. The state of each

server can be represented by its queue length and the expected

remaining service time of the job in service. Let Q(i, 1)(t) and

Q(i, 2)(t) denote the queue length of server i at time t with

initial condition 1 and 2, respectively, and T (i,1)(t),T (i,2)(t) ∈{
1

𝜇1

+ p
𝜇2

,
1

𝜇2

, 0
}

denote the expected remaining service time

of the job in service at server i with initial condition 1 and

2, respectively. At time 0, we have Q(i, 1)(0)≥Q(i, 2)(0) and

T (i, 1)(0)≥ T (i, 2)(0) for all i = 1, 2. During the time period

(0, t1], two jobs arrived and were routed to servers according

to JSQ, which resulted in the state shown in Figure 1. Sup-

pose that (1− p)𝜇1 <𝜇2, then at time t1, we have T (2,1)(t1) =
1

𝜇2

< T (2,2)(t1) = 1

𝜇1

+ p
𝜇2

, so the system does not have

mononticity. Note the hazard rate of Coxian-2 distribution

is
f (x)

1−F(x)
= (1−p)𝜇1+𝜇2e(1+p)𝜇1x

1+e(1+p)𝜇1x , which is an increasing func-

tion for (1− p)𝜇1 <𝜇2, therefore, it does not satisfy the DHR

property.
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FIGURE 1 Nonmonotocity of JSQ under Coxian-2 distribution

1.2 Main contributions

In this paper, we analyze the steady-state performance of

many server systems assuming Coxian service time distribu-

tions and heavy traffic regimes (𝜆 = 1−N−𝛼 for 0<𝛼 < 0.5).

From the best of our knowledge, this is the first paper that

establishes the steady-state performance of general Coxian

distributions without DHR in heavy-traffic regimes. In this

paper, we develop an iterative state space collapse (SSC) to

show the steady-state “lives” in a restricted region (with a

high probability), in which the original system is coupled with

a simple system by Stein’s method. With iterative SSC and

Stein’s method, we are able to establish several key perfor-

mance metrics at steady state, including the expected queue

length, the probability that a job is allocated to a busy server

(waiting probability) and the waiting time. The main results

include:

• For any load balancing policy in a policy set Π
(the detailed definition is given in (2)), which includes

join-the-shortest-queue (JSQ), join-the-idle-queue (JIQ),

idle-one-first (I1F) and power-of-d-choices (Po d) with

d = O(N𝛼 log N), the mean queue length is 𝜆 + O
(

log N√
N

)
.

• For JSQ and Po d with d = O(N𝛼 log N), the waiting

probability and the expected waiting time per job are both

O
(

log N√
N

)
.

• For JIQ and I1F, the waiting probability is O
(

1

N0.5−𝛼 log N

)
.

2 MODEL AND MAIN RESULTS

We consider a many-server system with N homogeneous

servers, where job arrival follows a Poisson process with rate

𝜆N with 𝜆 = 1−N−𝛼 , 0<𝛼 < 0.5 and service times follow

Coxian-2 distribution (𝜇1, 𝜇2, p) as shown in Figure 2, where

𝜇m > 0 is the rate a job finishes phase m when in service and

0≤ p< 1 is the probability that a job enters phase 2 after fin-

ishing phase 1. We assume 𝜆= 1−N−𝛼 for ease of exposition.

Our results hold for 𝜆 = 1− 𝛽N−𝛼 with any constant 𝛽 > 0,

and the extension is straightforward.

FIGURE 2 Coxian-2 distribution

FIGURE 3 Load balancing in many-server systems

Without loss of generality, we assume the mean service

time to be one, that is

1

𝜇1

+
p
𝜇2

= 1.

Under this assumption, 𝜆 is also the load of the system.

As shown in Figure 3, an arrival job is colored with black

before processed by the server, and colored with red and green

when it is in phase 1 and phase 2 in service, respectively. Each

server has a buffer of size b− 1, so can hold at most b jobs

(b− 1 in the buffer and one in service).

Let Qj, m(t) (m = 1, 2) denote the fraction of servers which

have j jobs at time t and the one in service is in phase m. For

convenience, we define Q0, 1(t) to be the fraction of servers

that are idle at time t and Q0, 2(t) = 0. Furthermore, define

Q(t) to be a b× 2 matrix such that the (j, m)th entry of the

matrix is Qj, m(t). Define Si, m(t) =
∑

j≥ iQj, m(t) and Si(t) =∑2
m=1 Si,m(t). In other words, Si, m(t) is the fraction of servers

which have at least i jobs and the job in service is in phase m
at time t and Si(t) is the fraction of servers with at least i jobs

at time t. Furthermore define S(t) to be a b× 2 matrix such

that the (j, m)th entry of the matrix is Sj, m(t). Note Q(t) and

S(t) have an one-to-one mapping. We consider load balanc-

ing policies which dispatch jobs to servers based on Q(t) (or

S(t)) and under which the finite-state CTMC {Q(t), t≥ 0} (or

{S(t), t≥ 0}) is irreducible, and so it has a unique stationary

distribution. The load balancing policies include JSQ, JIQ,

I1F and Po d.

Let Qj, m denote Qj, m(t) at steady state. We further define

Si, m =
∑

j≥ iQj, m and Si =
∑

mSi, m. In other words, Si, m is the

fraction of servers which have at least i jobs and the job in ser-

vice is in phase m and Si is the fraction of servers with at least

i jobs at steady state. We illustrate the state representation Si, m
in Figure 4 and Table D1.
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FIGURE 4 Illustrations of states Si, m

Define S to be a b× 2 random matrix such that the (i, m)th

entry is Si, m and let s∈Rb× 2 denote a realization of S. Define

 (N) to be a set of s such that

 (N) =

{
s
||||| 1 ≥ s1,m ≥ · · · ≥ sb,m ≥ 0,

1 ≥

2∑
m=1

s1,m;Nsi,m ∈ N,∀i,m

}
. (1)

Let A1(s) denote the probability that an incoming job is routed

to a busy server conditioned on that the system is in state s ∈
 (N); that is

A1(s) = P(an incoming job is routed toa busy server|S(t) = s).

Among the load balancing policies considered in this paper,

define a subset

Π =

{
𝜋

|||||| Under policy 𝜋,A1(s) ≤
1√
N

forany s ∈  (N)

such that s1 ≤ 𝜆 + 1 + 𝜇1 + 𝜇2

min{(1 − p)𝜇1, 𝜇2}
log N√

N

}
. (2)

Our main result of this paper is the following theorem.

Theorem 1 Define wu = max{(1− p)𝜇1,𝜇2},

wl = min{(1− p)𝜇1,𝜇2}, 𝜇max = max{𝜇1,𝜇2},

and k =
(

1 + wub
wl

)(
1+𝜇1+𝜇2

wl
+ 2𝜇1

)
. Under

any load balancing policy in Π, the following
bound holds

E

[
max

{ b∑
i=1

Si − 𝜆 −
k log N√

N
, 0

}]
≤

7𝜇max√
N log N

, (3)

when N satisfies

wlN0.5−𝛼

1 + 𝜇1 + 𝜇2

≥ log N ≥
3.5

min
(

𝜇1

16𝜇max

,
𝜇2

12𝜇max

,
𝜇1𝜇2

40𝜇max

) . (4)

Note that the condition A1(s) ≤
1√
N

for s such that s1 ≤

𝜆 + 1+𝜇1+𝜇2

wl

log N√
N

means that an incoming job is routed to an

idle server with probability at least 1 − 1√
N

when at least

1

N𝛼
− 1+𝜇1+𝜇2

wl

log N√
N

fraction of servers are idle. There are several

well-known policies that satisfy this condition.

• Join-the-Shortest-Queue (JSQ): JSQ routes an incom-

ing job to the least loaded server in the system. Therefore,

A1(s) = 0 when s1 < 1.

• Idle-One-First (I1F) (Varun & Neil, 2019): I1F routes

an incoming job to an idle server if available; and otherwise

to a server with one job if available. If all servers have at

least two jobs, the job is routed to a randomly selected server.

Therefore, A1(s) = 0 when s1 < 1.

• Join-the-Idle-Queue (JIQ) (Yi et al., 2011): JIQ routes

an incoming job to an idle server if possible and otherwise,

routes to a server chosen uniformly at random. Therefore,

A1(s) = 0 when s1 < 1.

• Power-of-d-Choices (Pod) (Mitzenmacher, 1996; Vve-

denskaya et al., 1996): Po d samples d servers uniformly at

random and dispatches the job to the least loaded server

among the d servers. Ties are broken uniformly at ran-

dom. When d ≥𝜇1N𝛼 log N, A1(s) ≤
1√
N

when s1 ≤ 𝜆 +
1+𝜇1+𝜇2

wl

log N√
N
.

A direct consequence of Theorem 1 is asymptotic zero
waiting at steady state. Let  denote the event that an

incoming job is routed to a busy server in a system with

N servers, and P() denote the probability of this event at

steady-state. Let  denote the event that an incoming job is

blocked (discarded) and P() denote the probability of this

event at steady-state. Note that the occurrence of event 

implies the occurrence of event  because a job is blocked

when being routed to a server with b jobs. Furthermore, let

W denote the waiting time of a job (when the job is not

dropped). We have the following results based on the main

theorem.

Corollary 1 The following results hold when
N satisfies condition (4).
• Under JSQ and Pod with d ≥𝜇1N𝛼 log N

such that
√

N ≥
8k log N

b−𝜆
+ 8bN0.5−𝛼

(b−𝜆)𝜇1

, we have

E[W] ≤
2k log N√

N
+

14𝜇max +
16𝜇max

b−𝜆√
N log N

, (5)

P() ≤ 1

N
+ 𝜇max

𝜆

⎛⎜⎜⎝
k log N√

N
+

7𝜇max +
8𝜇max

b−𝜆√
N log N

⎞⎟⎟⎠ . (6)
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• Under JIQ and I1F such that
N0.5− 𝛼 ≥ 2k log N,

P() ≤ 14𝜇max

N0.5−𝛼 log N
. (7)

The proof of this corollary is an application of Little’s law

and Markov’s inequality, and can be found in Appendix D. We

remark that according to (5) and (6), asymptotic zero-waiting

is achieved under JSQ and Po d when k = o
( √

N
log N

)
;

and according to (7), asymptotic zero-waiting is achieved

under JIQ and I1F when k = O
(

N0.5−𝛼

log N

)
. Since Theorem 1

assumes k = Θ(b), the buffer size has to be O
(

N0.5−𝛼

log N

)
as

well, which results in the finite-buffer assumption in this

paper. This finite-buffer assumption, however, is a sufficient

condition. It remains open whether such a condition is neces-

sary.

3 PROOF OF THEOREM 1

In this section, we present the proof of our main theorem,

which is organized along the three key ingredients: genera-

tor approximation, gradient bounds, and iterative state space

collapse.

3.1 Generator approximation

Define ei, m ∈Rb× 2 to be a b× 2-dimensional matrix such that

the (i, m)th entry is 1/N and all other entries are zero. Further-

more, define Ai, m(s) to be the probability that an incoming job

is routed to a server with at least i jobs and the job in service

in phase m, when the system is in state s, that is

Ai,m(s) = Pr(an incoming job is routed to a server

with at least i jobsand the job in

service in phase m | S(t) = s).

Given the state s of the CTMC and the corresponding q, the

following events trigger a transition from state s.

• Event 1: A job arrives and is routed to a server that it

has i− 1 jobs and the job in service is in phase 1. When this

occurs, qi, 1 increases by 1/N, and qi− 1, 1 decreases by 1/N, so

the CTMC has the following transition:

q → q + ei,1 − ei−1,1,

s → s + ei,1.

This transition occurs with rate

𝜆N(Ai−1,1(s) − Ai,1(s)),

where Ai− 1, 1(s)−Ai, 1(s)) is the probability that an incoming

job is routing to a server with i− 1 jobs and the job in ser-

vice in phase 1. For example, under JSQ, we have Ai−1,1(s) −
Ai,1(s)) =

qi−1,1

qi−1

I{si−1=1,si<1}, where
qi−1,1

qi−1

is the probability that

the server which receives the job is serving a job in phase 1

conditioned on the job is routed to a server with i− 1 jobs,

and {si− 1 = 1, si < 1} implies that the shortest queue in the

system has length i− 1.

• Event 2: A job arrives and is routed to a server such that

it has i− 1 jobs and the job in service is in phase 2. When this

occurs, qi, 2 increases by 1/N, and qi− 1, 2 decreases by 1/N, so

the CTMC has the following transition:

q → q + ei,2 − ei−1,2,

s → s + ei,2.

This transition occurs with rate

𝜆N(Ai−1,2(s) − Ai,2(s)),

where Ai− 1, 2(s)−Ai, 2(s)) is the probability that an incoming

job is routing to a server with i− 1 jobs and the job in ser-

vice in phase 2. For example, under JSQ, we have Ai−1,2(s) −
Ai,2(s)) =

qi−1,2

qi−1

I{si−1=1,si<1}, where
qi−1,2

qi−1

is the probability that

the server which receives the job is serving a job in phase 2

conditioned on the job is routed to a server with i− 1 jobs,

and {si− 1 = 1, si < 1} implies that the shortest queue in the

system has length i− 1.

• Event 3: A server, which has i jobs, finishes phase 1 of the

job in service. The job leaves the system without entering into

phase 2. When this occurs, qi, 1 decreases by 1/N and qi− 1, 1

increases by 1/N, so the CTMC has the following transition:

q → q − ei,1 + ei−1,1,

s → s − ei,1.

This transition occurs with rate

𝜇1Nqi,1(1 − p),

where (1− p) is the probability that a job finishes phase 1 and

departures without entering phase 2.

• Event 4: A server, which has i jobs, finishes phase 1 of

the job in service. The job enters phase 2. When this occurs,

a server in state (i, 1) transits to state (i, 2), so qi, 1 decreases

by 1/N and qi, 2 increases by 1/N. Therefore, the CTMC has

the following transition:

q → q − ei,1 + ei,2,

s → s −
i∑

j=1

ej,1 +
i∑

j=1

ej,2,

where the transition of s can be verified based on the

definition si, m =
∑

j≥ iqj, m so sj, 1 decreases by 1/N for any

j≤ i and sj, 2 increases by 1/N for any j≤ i. This event occurs

with rate

𝜇1Nqi,1p,
where p is the probability that a job enters phase 2 after

finishing phase 1.

• Event 5: A server, which has i jobs, finishes phase 2 of the

job in service. The job leaves the system. When this occurs,

qi, 2 decreases by 1/N and qi− 1, 1 increases by 1/N (because

the server starts a new job in phase 1 and the event when

i = 1 means the fraction of idle server increase by 1/N), so the

CTMC has the following transition:



62 LIU ET AL.

q → q − ei,2 + ei−1,1,

s → s −
i∑

j=1

ej,2 +
i−1∑
j=1

ej,1.

This transition occurs with rate

𝜇2Nqi,2.

We illustrate local state transitions related to state s under JSQ

in Figure 5.

Let G be the generator of CTMC (S(t) : t≥ 0). Given func-

tion f ∶  (N) → R, we have

Gf(s) =
b∑

i=1

[𝜆N(Ai−1,1(s) − Ai,1(s))(f (s + ei,1) − f (s)) (8)

+𝜆N(Ai−1,2(s) − Ai,2(s))(f (s + ei,2) − f (s)) (9)

+(1 − p)𝜇1Nqi,1(f (s − ei,1) − f (s)) (10)

+p𝜇1Nqi,1

(
f

(
s −

i∑
j=1

ej,1 +
i∑

j=1

ej,2

)
− f (s)

)
(11)

+𝜇2Nqi,2

(
f

(
s −

i∑
j=1

ej,2 +
i−1∑
j=1

ej,1

)
− f (s)

)]
. (12)

For any bounded function f ∶  (N) → R,

E[Gf(S)] = 0, (13)

which can be easily verified by using the global balance

equations and the fact that S represents the steady-state of the

CTMC.

To understand the steady-state performance of a load bal-

ancing policy, we will establish an upper bound on the

distance function in (3):

max

{ b∑
i=1

Si − 𝜂, 0

}
,

with

𝜂 = 𝜆 +
k log N√

N
. (14)

The upper bound measures the quantity that the total number

of jobs in the system (N
∑b

i=1 Si) exceeds N𝜆 + k
√

N log N at

steady state, and can be used to bound the probability that an

incoming job is routed to an idle server in Corollary 1.

We consider a simple fluid system with arrival rate 𝜆 and

departure rate 𝜆 + log N√
N
, that is

ẋ = −
log N√

N
,

and function g(x) which is the solution of the following Stein’s

equation (Lei, 2016):

g′(x)

(
−

log N√
N

)
= max{x − 𝜂, 0},∀x, (15)

where g′(x) = dg(x)
dx

. The left-hand side of (15) can be

viewed as applying the generator of the simple fluid system

to function g(x), that is

dg(x)
dt

= g′(x)ẋ = g′(x)

(
−

log N√
N

)
.

It is easy to verify that the solution to (15) is

g(x) = −
√

N
2 log N

(x − 𝜂)2Ix≥𝜂, (16)

and

g′(x) = −
√

N
log N

(x − 𝜂)Ix≥𝜂. (17)

We note that the simple fluid system is a one-dimensional sys-

tem and the stochastic system is b× 2-dimensional. In order

to couple these two systems, we define

f (s) = g

( b∑
i=1

2∑
m=1

si,m

)
, (18)

and invoke f (s) in Stein’s method.

Since
∑b

i=1

∑2
m=1 si,m =

∑b
i=1 si ≤ b for s ∈  (N), and f (s)

is bounded for s ∈  (N), we have

E[Gf(S)] = E

[
Gg

( b∑
i=1

2∑
m=1

Si,m

)]
= 0. (19)

Now define

h(x) = max{x − 𝜂, 0}.

Based on (15) and (19), we obtain

E

[
h

( b∑
i=1

2∑
m=1

Si,m

)]

= E

[
g′

( b∑
i=1

2∑
m=1

Si,m

)(
−

log N√
N

)
− Gg

( b∑
i=1

2∑
m=1

Si,m

)]
.

(20)

Note that according to the definition of f (s) in (18), ej, 1 and

ej, 2, we have

f (s + ej,1) = g

( b∑
i=1

2∑
m=1

si,m + 1

N

)
,

f (s + ej,2) = g

( b∑
i=1

2∑
m=1

si,m + 1

N

)
and

f (s − ej,1) = g

( b∑
i=1

2∑
m=1

si,m − 1

N

)
,

f (s − ej,2) = g

( b∑
i=1

2∑
m=1

si,m − 1

N

)
for any 1≤ j≤ b. Therefore,

Gg

( b∑
i=1

2∑
m=1

si,m

)
= N𝜆(1 − Ab(S))
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FIGURE 5 Illustrations of state transitions under JSQ for any i with 1≤ i≤ b

×

(
g

( b∑
i=1

2∑
m=1

si,m + 1

N

)
− g

( b∑
i=1

2∑
m=1

si,m

))
+ N((1 − p)𝜇1s1,1 + 𝜇2s1,2)

×

(
g

( b∑
i=1

2∑
m=1

si,m − 1

N

)
− g

( b∑
i=1

2∑
m=1

si,m

))
,

where the first term represents the transitions when a job

arrives and the second term represents the transitions when

a job departures from the system. Note (1− p)𝜇1s1,1 and

𝜇2s1,2 are the rates at which jobs leave the system when

in phase 1 and phase 2, respectively in the state s. There-

fore, (1− p)𝜇1s1,1 +𝜇2s1,2 is the total departure rate. Define

d1 = (1− p)𝜇1s1,1 +𝜇2s1,2 and its stochastic correspondence

D1 = (1− p)𝜇1S1,1 +𝜇2S1,2 for simple notations.

Substituting the equation above to (20), we have

E

[
h

( b∑
i=1

2∑
m=1

Si,m

)]

= E

[
g′

( b∑
i=1

2∑
m=1

Si,m

)(
−

log N√
N

)
− N𝜆(1 − Ab(S))

×

(
g

( b∑
i=1

2∑
m=1

Si,m + 1

N

)
− g

( b∑
i=1

2∑
m=1

Si,m

))

−ND1

(
g

( b∑
i=1

2∑
m=1

Si,m − 1

N

)
− g

( b∑
i=1

2∑
m=1

Si,m

))]
.

(21)

From the closed-forms of g and g′ in (16) and (17), note that

for any x<𝜂,

g(x) = g′(x) = 0.

Also note that when x > 𝜂 + 1

N
,

g′(x) = −
√

N
log N

(x − 𝜂), (22)

so for x > 𝜂 + 1

N
,

g′′(x) = −
√

N
log N

. (23)

By using mean-value theorem in the region 1 ={
x | 𝜂 − 1

N
≤ x ≤ 𝜂 + 1

N

}
and Taylor theorem in the region

2 =
{

x | x > 𝜂 + 1

N

}
, we have

g
(

x + 1

N

)
− g(x) =

(
g
(

x + 1

N

)
− g(x)

)
(Ix∈1

+ Ix∈2
)

=
g′(𝜉)

N
Ix∈1

+
(

g′(x)
N

+
g′′(𝜁)
2N2

)
Ix∈2

(24)

g
(

x − 1

N

)
− g(x) =

(
g
(

x − 1

N

)
− g(x)

)
(Ix∈1

+ Ix∈2
)

= −
g′(𝜉)

N
Ix∈1

+

(
−

g′(x)
N

+
g′′(𝜁 )
2N2

)
Ix∈2

(25)

where 𝜉, 𝜁 ∈
(

x, x + 1

N

)
and 𝜉, 𝜁 ∈

(
x − 1

N
, x
)
. Substitute

(24) and (25) into the generator difference in (21), we have

E

[
h

( b∑
i=1

Si

)]
= J1 + J2 + J3, (26)

with

J1 = E

[
g′

( b∑
i=1

Si

)(
𝜆Ab(S) − 𝜆 −

log N√
N

+ D1

)
I∑b

i=1
Si∈2

]
,

(27)
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FIGURE 6 The roadmap of proving Theorem 1

J2 = E

⎡⎢⎢⎣
(

g′

( b∑
i=1

Si

)(
−

log N√
N

)

−𝜆(1 − Ab(S))g′(𝜉) + D1g′(𝜉)
)

I b∑
i=1

Si∈1

⎤⎥⎥⎦ , (28)

J3 = −E

[
1

2N
(𝜆(1 − Ab(S))g′′(𝜁) + D1g′′(𝜁 ))I∑b

i=1
Si∈2

]
.

(29)

Note that in (28) and (29), we have that

𝜉, 𝜁 ∈

( b∑
i=1

Si,

b∑
i=1

Si +
1

N

)
and 𝜉, 𝜁 ∈

( b∑
i=1

Si −
1

N
,

b∑
i=1

Si

)
are random variables whose values depend on

∑b
i=1 Si. We do

not include
∑b

i=1 Si in the notation for simplicity.

To establish the main result in Theorem 1, we need to pro-

vide the upper bounds on (27), (28) and (29). In the following

Section 3.2, we study g′ and g′′ to bound the terms in (28) and

(29); In Section 3.3, we study SSC to bound the term in (27).

We summarize the proof in a roadmap in Figure 6. Lemmas 1

and 2 establish gradient bounds, which are used to bound

J2 + J3 in Lemma 3. Lemmas 6, 7, 8 and 9 are iterative SSC

to show the system is in Sssc with a high probability, which

rely on Lemma 10 and are used to bound J1 in Lemmas 4 and

5. We finally prove Theorem 1 by combining Lemmas 3, 4

and 5.

3.2 Gradient bounds

To bound J2 in (28) and J3 in (29), we summarize bounds on

g′ and g′′ in the following two lemmas.

Lemma 1 Given x ∈
[
𝜂 − 2

N
, 𝜂 + 2

N

]
, we

have |g′(x)| ≤ 2√
N log N

.

Lemma 2 For x>𝜂, we have

|g′′(x)| ≤ √
N

log N
.

Based on the bounds on g′ in Lemma 1 and g′′ in Lemma 2,

we provide the upper bound on J2 + J3 in the following

lemma.

Lemma 3 For g(⋅) defined in (16), we have

J2 + J3 ≤
6𝜇max√
N log N

.

The proofs of the lemmas above are presented in

Appendix A.

3.3 State space collapse
In this subsection, we analyze J1 in (27):

E

[
g′

( b∑
i=1

Si

)(
𝜆Ab(S) − 𝜆 −

log N√
N

+ D1

)
I∑b

i=1
Si>𝜂+

1

N

]

= E

[ √
N

log N
h

( b∑
i=1

Si

)(
−𝜆Ab(S) + 𝜆 +

log N√
N

− D1

)

I∑b
i=1

Si>𝜂+
1

N

]

≤ E

[ √
N

log N
h

( b∑
i=1

Si

)(
𝜆 +

log N√
N

− D1

)
I∑b

i=1
Si>𝜂+

1

N

]
,

(30)

where the equality is due to Stein’s Equation (15), and the

inequality holds because√
N

log N
h

( b∑
i=1

Si

)
I∑b

i=1
Si>𝜂+

1

N
≥ 0.

We first focus on(
𝜆 +

log N√
N

− (1 − p)𝜇1s1,1 − 𝜇2s1,2

)
I∑b

i=1
si>𝜂+

1

N
, (31)

where we recall 𝜂 = 𝜆+ k log N√
N

and d1 = (1− p)𝜇1s1,1 +𝜇2s1,2

is the total departure rate when the system is in the state s.

We consider two cases: s ∈ ssc and s ∉ ssc, where

ssc = ssc1

⋃
Sssc2

,

and

ssc1
=

{
s
|||||| s1 ≥ 𝜆 +

(
1 + 𝜇1 + 𝜇2

wl
− 𝜇1

)
log N√

N

s1,1 ≥
𝜆

𝜇1

−
log N√

N
, and s1,2 ≥

p𝜆
𝜇2

−
𝜇1 log N√

N

}
,

ssc2
=

{
s
||||||

b∑
i=1

si ≤ 𝜆 +
k log N√

N

}
.
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FIGURE 7 State space collapse in ssc1
.

• Case 1: ssc1
is shown as the gray region in Figure 7. Any

s ∈ ssc1
satisfies

(1 − p)𝜇1s1,1 + 𝜇2s1,2 ≥ 𝜆 +
log N√

N
,

so
(
𝜆 + log N√

N
− (1 − p)𝜇1s1,1 − 𝜇2s1,2

)
I∑b

i=1
si>𝜂+

1

N
≤ 0 for

any s ∈ ssc1
. The details are presented in Lemma 4. When

s ∈ ssc2
,

I∑b
i=1

si>𝜂+
1

N
= 0,

so
(
𝜆 + log N√

N
− (1 − p)𝜇1s1,1 − 𝜇2s1,2

)
I∑b

i=1
si>𝜂+

1

N
= 0 for

any s ∈ ssc2
.

• Case 2: We will show that

P(S ∉ ssc) ≤
3

N2

in Lemma 5 using an iterative state space collapse approach.

Lemma 4 For any s ∈ ssc1
,(

𝜆 +
log N√

N
− (1 − p)𝜇1s1,1 − 𝜇2s1,2

)
I∑b

i=1
si>𝜆+

k log N√
N

+ 1

N
≤ 0.

The proof of Lemma 4 can be found in Appendix B.

Lemma 5 For a large N such that log N ≥
3.5

min
(

𝜇1

16𝜇max
,

𝜇2

12𝜇max
,

𝜇1𝜇2

40𝜇max

) , we have

P(S ∉ ssc) ≤
3

N2
.

Proof The proof of Lemma 5 is based

on an “iterative” procedure to establish state

space collapse, which is achieved by proving

a sequence of lemmas (Lemmas 6–9). The

detailed proof of four lemmas can be found in

Appendix C.

Define sets ̃1 and ̃2 such that

̃1 =

{
s
||||||s1,1 ≥

𝜆

𝜇1

−
log N√

N
and s1,2 ≥

p𝜆
𝜇2

−
𝜇1 log N√

N

}
(32)

̃2 =

{
s
||||||min

{
𝜂 − s1,

b∑
i=2

si

}
≤

(c1 + 𝜇1) log N√
N

}
.

(33)

According to the union bound and Lemmas 7–9,

we have

P(S ∉ ̃1 ∩ ̃2)

≤
5

𝜇1

√
N

log N
e−min

(
𝜇1

16𝜇max
,

𝜇1𝜇2

40𝜇max

)
log2N

+ 16

𝜇1𝜇2

N
log2N

e−min
(

𝜇1

16𝜇max
,

𝜇2

12𝜇max
,

𝜇1𝜇2

40𝜇max

)
log2N

,

+ 34

𝜇2
1
𝜇2

N1.5

log3N
e−min

(
𝜇1

16𝜇max
,

𝜇2

12𝜇max
,

𝜇1𝜇2

40𝜇max

)
log2N

≤
3

N2
,

where the second inequality holds for a suffi-

ciently large N such that

log N ≥
3.5

min
(

𝜇1

16𝜇max

,
𝜇2

12𝜇max

,
𝜇1𝜇2

40𝜇max

) .
We note that ̃1 ∩ ̃2 is a subset of ssc. This is

because for any s which satisfies

min

{
𝜂 − s1,

b∑
i=2

si

}
≤

(c1 + 𝜇1) log N√
N

,

we either have

𝜂 − s1 ≤
(c1 + 𝜇1) log N√

N
,

which implies

s1 ≥ 𝜆 +
(

1 + 𝜇1 + 𝜇2

wl
− 𝜇1

)
log N√

N
;

or
b∑

i=2

si ≤ 𝜂 − s1,

which implies

b∑
i=1

si ≤ 𝜂.

Note that

̃1 ∩

{
s
||||||s1 ≥ 𝜆 +

(
1 + 𝜇1 + 𝜇2

wl
− 𝜇1

)
log N√

N

}
= ssc1

and

̃1 ∩

{
s
||||||

b∑
i=1

si ≤ 𝜂

}
⊆ ssc2

.

We, therefore, have

̃1 ∩ ̃2 ⊆ ssc,
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and

P(S ∉ ssc) ≤ P(S ∉ ̃1 ∩ ̃2) ≤
3

N2
,

so Lemma 5 holds. ▪

We present “iterative” state space collapse procedure in

Lemmas 6–9.

Lemma 6 (An upper bound on S1,2).

P

(
S1,2 ≤

p
𝜇2

+
log N

2
√

N

)
≥ 1 − e−

𝜇1𝜇2log2N
40𝜇max .

Lemma 7 (A lower bound on S1,1).

P

(
S1,1 ≥

𝜆

𝜇1

−
log N√

N

)

≥ 1 − 5

𝜇1

√
N

log N
e−min

(
𝜇1

16𝜇max
,

𝜇1𝜇2

40𝜇max

)
log2N

.

Lemma 8 (A lower bound on S1,2).

P

(
S1,2 ≥

p𝜆
𝜇2

−
𝜇1 log N√

N

)
≥ 1 − 16

𝜇1𝜇2

N
log2N

e−min
(

𝜇1

16𝜇max
,

𝜇2

12𝜇max
,

𝜇1𝜇2

40𝜇max

)
log2N

.

Lemma 9 (A lower bound on S1 via
∑b

i=2 Si).

P

(
min

{
𝜆 +

k log N√
N

− S1,

b∑
i=2

Si

}
≤

(c1 + 𝜇1) log N√
N

)
≥ 1 − 34

𝜇2
1
𝜇2

N1.5

log3N
e−min

(
𝜇1

16𝜇max
,

𝜇2

12𝜇max
,

𝜇1𝜇2

40𝜇max

)
log2N

for log N ≥
1

min{𝜇1,𝜇2}
, where k =(

1 + wub
wl

)(
1+𝜇1+𝜇2

wl
+ 2𝜇1

)
and c1 =

wub
wl

(
1+𝜇1+𝜇2

wl
+ 2𝜇1

)
+ 2𝜇1.

Remark: An important contribution of this paper is the iter-

ative state collapse method we use to prove Lemma 5. The

method continues refining the state space in which the system

stays with a high probability at steady-state. Figure 8 illus-

trates the iterative state-space collapse in Lemmas 6–8. We

first show in Lemma 6 that with a high probability, S1,2 ≤
p
𝜇2

+ log N
2
√

N
at steady-state. Then in the reduced state space(

S1,2 ≤
p
𝜇2

+ log N
2
√

N

)
, we further show in Lemma 7 that S1,1 ≥

𝜆

𝜇1

− log N√
N

with a high probability at steady state. We then fur-

ther establish in Lemma 6 that S1,2 ≥
p𝜆
𝜇2

− 𝜇1 log N√
N

with a high

probability at steady state in the reduced state space.

3.4 Proof of Theorem 1

Based on Lemmas 4 and 5, we can establish the following

bound on (30), which is a upper bound on J1 in (27),

E

[ √
N

log N
h

( b∑
i=1

2∑
m=1

Si,m

)(
𝜆 +

log N√
N

− D1

)
I∑b

i=1
Si>𝜂+

1

N

]

= E

[ √
N

log N

( b∑
i=1

Si − 𝜂

)(
𝜆 +

log N√
N

− D1

)

IS∈sscI
∑b

i=1
Si>𝜂+

1

N

]

+ E

[ √
N

log N

( b∑
i=1

Si − 𝜂

)(
𝜆 +

log N√
N

− D1

)

IS∉sscI
∑b

i=1
Si>𝜂+

1

N

]
≤

3b
N1.5 log N

, (34)

where the last inequality holds because we have used the facts

that the average total number of jobs per server is at most b
and

(
𝜆 + log N√

N
− D1

)
IS∉sscI

∑b
i=1

Si>𝜂+
1

N
< 1.

Based on Lemma 3, we are ready to establish Theorem 1

under JSQ.

E

[
max

{ b∑
i=1

Si − 𝜂, 0

}]
= J1 + J2 + J3 ≤

3b
N1.5 log N

+ 6𝜇max√
N log N

,

which implies

E

[
max

{ b∑
i=1

Si − 𝜂, 0

}]
≤

7𝜇max√
N log N

.

4 CONCLUSIONS

In this paper, we considered load balancing under the

Coxian-2 service time distribution in heavy traffic regimes.

The Coxian-2 service time distribution does not have DHR

and the system considered in this paper lacks monotonicity.

We developed an iterative SSC and identified a policy set Π,

in which any policy can achieve asymptotic zero delay. The

set Π includes JSQ, JIQ, I1F and Po d with d = O
(

log N
1−𝜆

)
.

The proposed Stein’s method with iterative SCC is a gen-

eral method that can be used for steady-state analysis of other

queueing systems. The key idea of this method is to use an

iterative SSC to reduce the state space to a much smaller sub-

space, in which the system can be well approximated with

a simple fluid model, and the approximation error can be

quantified using Stein’s method. The iterative SSC approach

iteratively reduces the state space by focusing on one direction

at each iteration based on the system dynamics. This provides

an intuitive way to establish SSC results that may be diffi-

cult to obtain at once. For example, it remains open whether

the SSC result in this paper can be proved using a single Lya-

punov function. This method has already inspired and been

used in recent work (Wentao et al., 2020), which developed
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FIGURE 8 Iterative state-space collapse to show that S1,1 and S1,2 are in a smaller state-space (the gray region) at steady-state

zero-delay load balancing algorithms for networked servers

assuming exponential service times.

We also would like to remark it is nontrivial to extend

the results in this paper beyond Coxian-2. The analysis in

this paper utilized some simple yet critical properties of the

Coxian-2 distribution: a job in phase-1 either departs or enters

phase-2 immediately, and a job always starts its service from

phase-1. In a Coxian-M distribution or a general phase-type

distribution, the dependence between jobs in different phases

becomes more involved. In particular, it becomes more chal-

lenging to establish a result similar to Lemma 6. Recall that

for a Coxian-2 distribution, s1,2 decreases when its value

is large because a large s1,2 implies s1,1 is small (because

s1,1 + s1,2 ≤ 1) so the rate at which jobs move from phase-1

to phase-2 is small. However, for a Coxian-M distribution, a

large s1, M is not sufficient to guarantee that s1, M − 1 is small

enough so that s1, M will decrease. For a general phase-type

distribution, jobs in the queues can be in any phase, not nec-

essarily in phase-1, which makes it difficult to show that

S1, M will be close to its “equilibrium”. However, we believe

if a proper Lyapunov function could be found to establish a

“good” upper bound on S1, M , then we may apply the itera-

tive approach in this paper to establish SSC and to extend the

results in this paper to more general service distributions.
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APPENDIX A: GRADIENT BOUNDS

A.1 Proof of Lemma 1

Proof From the definition of g function in

(15), we have

g′(x) = max{x − 𝜂, 0}
− log N√

N

.

Hence, for any x ∈
[
𝜂 − 2

N
, 𝜂 + 2

N

]
, we have

|g′(x)| ≤ |x − 𝜂|
log N√

N

≤

2

N
log N√

N

= 2√
N log N

.

▪

A.2 Proof of Lemma 2

Proof From the definition of g function in

(15), we have

g′(x) = max{x − 𝜂, 0}
− log N√

N

.

For x>𝜂, we have

g′(x) = x − 𝜂

− log N√
N

,

which implies

|g′′(x)| = |||||||
1

− log N√
N

||||||| =
√

N
log N

.

▪

A.3 Proof of Lemma 3

Proof Note (1− p)𝜇1s1,1 +𝜇2s1,2 ≤𝜇maxs1 ≤𝜇max,

then we have

J2 + J3 ≤ E

[(
g′

( b∑
i=1

Si

)(
−

log N√
N

)
+𝜆|g′(𝜉)| + 𝜇max|g′(𝜉)

)
I∑b

i=1
Si∈1

]
(A1)

+E

⎡⎢⎢⎣ 1

N
(𝜆|g′′(𝜂)| + 𝜇max|g′′(𝜂))I b∑

i=1

Si∈2

⎤⎥⎥⎦ (A2)

≤
4𝜇max√
N log N

+ 𝜆 + 𝜇max

N

√
N

log N
(A3)

≤
6𝜇max√
N log N

(A4)
▪

APPENDIX B: PROOF OF LEMMA 4

We consider the following problem

min
(s1,1,s1,2)∈ssc1

(1 − p)𝜇1s1,1 + 𝜇2s1,2,

which is a linear programming in terms of variables s1,1 and

s1,2. Therefore, we only need to consider the extreme points

of set ssc1
. In fact, from Figure 7, it is clear that we only need

to consider the following two extreme points.

• Case 1: s1,1 = 𝜆

𝜇1

− log N√
N

and s1,2 = 𝜆 +(
1+𝜇1+𝜇2

wl
− 𝜇1

)
log N√

N
− s1,1 = p𝜆

𝜇2

+
(

1+𝜇1+𝜇2

wl
− 𝜇1 + 1

)
log N√

N
,

where we use the fact
1

𝜇1

+ p
𝜇2

= 1. In this case,

(1 − p)𝜇1s1,1 + 𝜇2s1,2
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= 𝜆 +
(
−(1 − p)𝜇1 + 𝜇2

(
1 + 𝜇1 + 𝜇2

wl
− 𝜇1 + 1

))
log N√

N
(B5)

≥ 𝜆 + (−(1 − p)𝜇1 + (1 + 𝜇1 − 𝜇1𝜇2 + 2𝜇2))
log N√

N
(B6)

= 𝜆 + (1 + 𝜇2)
log N√

N
(B7)

≥ 𝜆 +
log N√

N
, (B8)

where (B6) holds because wl = min{(1− p)𝜇1,𝜇2} and (B7)

holds because
1

𝜇1

+ p
𝜇2

= 1.

• Case 2: s1,1 = 𝜆 +
(

1+𝜇1+𝜇2

wl
− 𝜇1

)
log N√

N
− s1,2 = 𝜆

𝜇1

+
1+𝜇1+𝜇2

wl

log N√
N

and s1,2 = p𝜆
𝜇2

− 𝜇1 log N√
N

. At this extreme point, we

have

(1 − p)𝜇1s1,1 + 𝜇2s1,2

= 𝜆 +
(
(1 − p)𝜇1

(
1 + 𝜇1 + 𝜇2

wl

)
− 𝜇1𝜇2

)
log N√

N
(B9)

≥ 𝜆 + (1 + 𝜇1 + 𝜇2 − 𝜇1𝜇2)
log N√

N
(B10)

≥ 𝜆 +
log N√

N
, (B11)

where (B10) holds because wl = min{(1− p)𝜇1,𝜇2} and

(B11) holds because 𝜇1 +𝜇2 ≥ p𝜇1 +𝜇2 = 𝜇1𝜇2.

APPENDIX C: PROOF OF ITERATIVE STATE SPACE
COLLAPSE

We present the iterative SSC approach for proving Lem-

mas 6–9. The first three lemmas are on the upper and lower

bounds on S1,1 and S1,2, illustrated in Figure C1, which shows

that both S1,1 and S1,2 are close to its equilibrium values, in

particular, with a high probability, S1,1 ≥
𝜆

𝜇1

− log N√
N

and S1,2 ≥

p𝜆
𝜇2

− 𝜇1 log N√
N

. However, these two low bounds do not guaran-

tee the total departure rate, which is (1− p)𝜇1S1,1 +𝜇2S1,2, is

larger than the arrival rate 𝜆. Therefore, we need Lemma 9

to guarantee sufficient fraction of busy servers S1 such that

the total departure rate is “larger than” the arrival rate 𝜆. We

therefore need Lemma 9 to further establish a lower bound on

S1 unless the total normalized queue length
∑b

i=1 Si is small.

C.1 A tail bound from Wang et al. (2018)

To prove the space collapse results, we first introduce

Lemma 10, which will be repeatedly used to obtain

probability tail bounds. Lemma 10 allows us to apply

Lyapunov-drift-based heavy traffic analysis (Eryilmaz

Atilla, 2012) to reduced state spaces instead of to the entire

state space. The lemma is an extension of the tail bound

in Bertsimas et al. (2001). This Lyapunov drift analy-

sis on reduced state space enables us to iteratively refine

the state space at steady state. The lemma was proven in

Wang et al. (2018). We include the proof to make the paper

self-contained.

Lemma 10 Let (S(t) : t≥ 0) be a
continuous-time Markov chain over a finite
state space  and is irreducible, so it has a
unique stationary distribution 𝜋. Consider a
Lyapunov function V ∶  → R+ and define the
drift of V at a state s ∈  as

∇V(s) =
∑

s′∈∶s′≠s
qs,s′ (V(s′) − V(s)),

where qs,s′ is the transition rate from s to s′.
Assume

𝜈max ≔ max
s,s′∈∶qs,s′>0

|V(s′) − V(s)| < ∞ and

q ≔ max
s∈

(−qs,s) < ∞

and define
qmax ≔ maxs∈

∑
s′∈∶V(s)<V(s′)qs,s′ .

If there exists a set  with B> 0, 𝛾 > 0, 𝛿 ≥ 0

such that the following conditions satisfy:

(i) ∇V(s)≤ − 𝛾 when V(s)≥B and s∈  .

(ii) ∇V(s)≤ 𝛿 when V(s)≥B and s∉  .

Then

P(V(S) ≥ B + 2𝜈maxj) ≤ 𝛼j + 𝛽P(S ∉ ),∀j ∈ N,

with

𝛼 =
qmax𝜈max

qmax𝜈max + 𝛾
and 𝛽 = 𝛿

𝛾
+ 1.

Proof Let C ≥B− 𝜈max and consider Lya-

punov function.

V̂(s) = max{C,V(s)}.

At steady state, we have

0 =
∑

V(s)≤C−𝜈max

𝜋(s)
∑
s′≠s

qs,s′ (V̂(s′) − V̂(s))

+
∑

C−𝜈max<V(s)≤C+𝜈max

𝜋(s)
∑
s′≠s

qs,s′ (V̂(s′) − V̂(s))

+
∑

V(s)>C+𝜈max

𝜋(s)
∑
s′≠s

qs,s′ (V̂(s′) − V̂(s)). (C12)

Note ∇V̂(s) =
∑

s′≠sqs,s′ (V̂(s′) − V̂(s)). We

consider three terms in (C12) as follows:

• The first term is 0 because V(s)≤C − 𝜈max

and V(s′)≤C imply V̂(s) = V̂(s′) = C.

• The second term is bounded∑
C−𝜈max<V(s)≤C+𝜈max

𝜋(s)
∑
s′≠s

qs,s′ (V̂(s′) − V̂(s))
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FIGURE C1 Bounds (red lines) on S1,1 and S1,2

≤
∑

C−𝜈max<V(s)≤C+𝜈max

𝜋(s)qmax𝜈max

≤ qmax𝜈max(P(V(S) > C − 𝜈max) − P(V(S) > C + 𝜈max))

• The third term is divided into two regions

s∈  and s∉ ∑
V(s)>C+𝜈max

𝜋(s)
∑
s′≠s

qs,s′ (V̂(s′) − V̂(s))

=
∑

V(s)>C+𝜈max

s∈

𝜋(s)
∑
s′≠s

qs,s′ (V̂(s′) − V̂(s))

+
∑

V(s)>C+𝜈max

s∉

𝜋(s)
∑
s′≠s

qs,s′ (V̂(s′) − V̂(s))

≤ −𝛾P(V(S) > C + 𝜈max, s ∈ )
+ 𝛿P(V(S) > C + 𝜈max, s ∉ )

= −𝛾P(V(S) > C + 𝜈max)
+ (𝛿 + 𝛾)P(V(S) > C + 𝜈max, s ∉ )

where the inequality holds because of two con-

ditions (i) and (ii).

Combining three terms above, we have

(qmax𝜈max + 𝛾)P(V(S) > C + 𝜈max)
≤ qmax𝜈maxP(V(S) > C − 𝜈max)
+ (𝛿 + 𝛾)P(V(S) > C + 𝜈max, S ∉ )

which implies.

P(V(S) > C + 𝜈max)

≤
qmax𝜈max

qmax𝜈max + 𝛾
P(V(S) > C − 𝜈max)

+ 𝛿 + 𝛾

qmax𝜈max + 𝛾
P(V(S) > C + 𝜈max, S ∉ )

≤
qmax𝜈max

qmax𝜈max + 𝛾
P(V(S) > C − 𝜈max)

+ 𝛿 + 𝛾

qmax𝜈max + 𝛾
P(S ∉ )

= 𝛼P(V(S) > C − 𝜈max) + 𝜅P(S ∉ ),

where

𝛼 =
qmax𝜈max

qmax𝜈max + 𝛾
and 𝜅 = 𝛿 + 𝛾

qmax𝜈max + 𝛾
.

Let C = B+ (2j− 1)𝜈max,∀ j∈N and we have

P(V(S) > B + 2𝜈maxj)
≤ 𝛼P(V(S) > B + 2(j − 1)𝜈max) + 𝜅P(S ∉ ) (C13)

By recursively using the inequality (C13), we

have

P(V(S) > B + 2𝜈maxj) ≤ 𝛼j + 𝜅P(S ∉ )
j∑

i=0

𝛼i

≤ 𝛼j + 𝜅

1 − 𝛼
P(S ∉ )

= 𝛼j + 𝛽P(S ∉ ) ▪

As mentioned above, Lemma 10 is an extension of Theorem

1 in Bertsimas et al. (2001), where  =  (N) is the entire

state space and P(S∉ ) = 0. As suggested in Lemma 10,

constructing proper Lyapunov functions are critical to estab-

lish the tail bounds. In the following lemmas, we construct

a sequence of Lyapunov functions and apply Lemma 10 to

establish SSC results.

C.2 Proof of Lemma 6: An upper bound on S1,2

To prove Lemma 6, we first establish a Lyaponuv drift anal-

ysis for  =  (N) (the entire state space) in Lemma 11.

Lemma 11 Consider Lyapunov function
V(s) = s1,2 − p

𝜇2

.

When V(s) ≥ log N
4
√

N
, we have

∇V(s) ≤ −𝜇1𝜇2

4

log N√
N

.

Proof When V(s) = s1,2 − p
𝜇2

≥
log N
4
√

N
, we have

∇V(s) = p𝜇1s1,1 − 𝜇2s1,2 (C14)

≤ p𝜇1 − (p𝜇1 + 𝜇2)s1,2 (C15)

= 𝜇1(p − 𝜇2s1,2) ≤ −𝜇1𝜇2

4

log N√
N

(C16)

(C14) and (C15) holds because s1,1 = s1 −
s1,2 ≤ 1− s1,2 (note this structure is simple yet
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critical in proving Lemma 11 and driving iter-

ative SSC in Figure 6); (C15) and (C16) holds

because
1

𝜇1

+ p
𝜇2

= 1 implies p𝜇1 +𝜇2 =
𝜇1𝜇2. ▪

From Lemma 11, we know B = log N
4
√

N
and 𝛾 = 𝜇1𝜇2

4

log N√
N
.

According to the definition of qmax and 𝜈max, we have

qmax = 𝜇maxN and 𝜈max = 1

N
. Since  =  (N) is the entire

space, then P(S∉ ) = 0, we use Lemma 10 (or Theorem 1

in Bertsimas et al. (2001)) to obtain the following tail bound

with j =
√

N log N
8

,.

P(V(S) ≥ B + 2𝜈maxj) = P

(
S1,2 −

p
𝜇2

≥
log N

2
√

N

)
(C17)

≤

⎛⎜⎜⎝ 1

1 + 𝜇1𝜇2

4𝜇max

log N√
N

⎞⎟⎟⎠
√

N log N
8

(C18)

≤

(
1 − 𝜇1𝜇2

5𝜇max

log N√
N

)√
N log N

8

(C19)

≤ e−
𝜇1𝜇2log2N

40𝜇max (C20)

• (C17) holds by substituting B = log N
4
√

N
, 𝜈max = 1

N
and

j =
√

N log N
8

;
• (C17) and (C18) holds based on Lemma 12;

• (C18) and (C19) holds because
𝜇1𝜇2

𝜇max

≤

√
N

log N
for a large N

satisfying (4).

C.3 Proof of Lemma 7: A lower bound on S1,1

To prove Lemma 7, we first establish a Lyaponuv drift anal-

ysis in Lemma 12.

Lemma 12 Consider Lyapunov function

V(s) = 𝜆

𝜇1

− s1,1. (C21)

We have
• ∇V(s) ≤ −𝜇1

3

log N√
N
, when

V(s) ≥
log N

2
√

N
and s1,2 ≤

p
𝜇2

+
log N

2
√

N
;

• ∇V(s)≤ 1, when

V(s) ≥
log N

2
√

N
and s1,2 ≥

p
𝜇2

+
log N

2
√

N
.

Proof Assuming s1,2 ≤
p
𝜇2

+ log N
2
√

N
and

𝜆

𝜇1

−

s1,1 ≥
log N
2
√

N
, we have

s1 = s11 + s12 ≤
p
𝜇2

+ 𝜆

𝜇1

= 1 − 1

𝜇1N𝛼
≤ 𝜆 + 1 + 𝜇1 + 𝜇2

wl

log N√
N

< 1.

Therefore, the drift of V(s) is.

∇V(s) = −𝜆(1−A1(s))+𝜇1s1,1−(1−p)𝜇1s2,1−𝜇2s2,2 (C22)

≤
1√
N

− 𝜆 + 𝜇1s1,1 − (1 − p)𝜇1s2,1 − 𝜇2s2,2 (C23)

≤
1√
N

− 𝜆 + 𝜇1s1,1 (C24)

≤
1√
N

− 𝜇1

2

log N√
N

(C25)

≤ −𝜇1

3

log N√
N

, (C26)

where

• (C22) and (C23) holds because A1(s) ≤ 1√
N

under any policy in Π;

• (C24) and (C25) holds because s1,1 ≤
𝜆

𝜇1

−
log N
2
√

N
.

Assuming s12 >
p
𝜇2

+ log N
2
√

N
and s1,1 ≤

𝜆

𝜇1

− log N
2
√

N
,

we have

∇V(s) = −𝜆(1 − A1(s)) + 𝜇1s1,1 − (1 − p)𝜇1s2,1 − 𝜇2s2,2

≤ 𝜇1s1,1 < 1.
▪

Let  =
{

s | s ≤ p
𝜇2

+ log N
2
√

N

}
. we have V(s) = 𝜆

𝜇1

− s1,1

satisfying two conditions:

• ∇V(s) ≤ −𝜇1

3

log N√
N

when V(s) ≥ log N
2
√

N
and s1,2 ∈  .

• ∇V(s)≤ 1 when V(s) ≥ log N
2
√

N
and s1,2 ∉  .

Define B = log N
2
√

N
, 𝛾 = 𝜇1

3

log N√
N
, and 𝛿 = 1. Combining

qmax ≤𝜇maxN and 𝜈max ≤
1

N
, we have

𝛼 ≤
1

1 + 𝜇1

3𝜇max

log N√
N

and 𝛽 = 1
𝜇1

3

log N√
N

+ 1.

Based on Lemma 10 with j =
√

N log N
4

, we have

P(V(S) ≥ B + 2𝜈maxj) = P

(
𝜆

𝜇1

− S1,1 ≥
log N√

N

)
(C27)

≤

⎛⎜⎜⎝ 1

1 + 𝜇1

3𝜇max

log N√
N

⎞⎟⎟⎠
√

N log N
4

+ 𝛽P(S1,2 ∉ ) (C28)

≤

(
1 − 𝜇1

4𝜇max

log N√
N

)√
N log N

4

+ 4

𝜇1

√
N

log N
e−

𝜇1𝜇2log2N
40𝜇max (C29)

≤ e−
𝜇1log2N
16𝜇max + 4

𝜇1

√
N

log N
e−

𝜇1𝜇2log2N
40𝜇max (C30)

≤
5

𝜇1

√
N

log N
e−min

(
𝜇1

16𝜇max
,

𝜇1𝜇2

40𝜇max

)
log2N

, (C31)

where
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• (C27) holds by substituting B = log N
2
√

N
, 𝜈max = 1

N
and

j =
√

N log N
4

;
• (C27) and (C28) holds based on Lemma 7.3;

• (C28) and (C29) holds because (i) in the first term in

(C28),
𝜇1

𝜇max

≤

√
N

log N
for a large N satisfying (4), and (ii) the

second term in (C28) can be bounded by applying Lemma 6.

C.4 Proof of Lemma 8: A lower bound on S1,2

Lemma 13 Consider Lyapunov function

V(s) = p𝜆
𝜇2

− s1,2.

We have

• ∇V(s) ≤ −𝜇2

2

log N√
N
, when

V(s) ≥
(

p𝜇1

𝜇2

+ 1

2

)
log N√

N
and s1,1 ≥

𝜆

𝜇1

−
log N√

N
;

• ∇V(s)≤ 1, when

V(s) ≥
(

p𝜇1

𝜇2

+ 1

2

)
log N√

N
and s1,1 ≤

𝜆

𝜇1

−
log N√

N
.

Proof Assuming V(s) = p𝜆
𝜇2

− s1,2 ≥(
p𝜇1

𝜇2

+ 1

2

)
log N√

N
and s1,1 ≥

𝜆

𝜇1

− log N√
N
, we have

∇V(s) = −(p𝜇1s1,1 − 𝜇2s1,2) (C32)

≤ −

(
p𝜆 −

p𝜇1 log N√
N

− 𝜇2s1,2

)
(C33)

≤ −𝜇2

2

log N√
N

, (C34)

where

• (C32) and (C33) holds because s1,1 ≥
𝜆

𝜇1

−
log N√

N
;

• (C33) and (C34) holds because s1,2 ≤
p𝜆
𝜇2

−(
p𝜇1

𝜇2

+ 1

2

)
log N√

N
.

Next, assuming
p𝜆
𝜇2

− s1,2 ≥

(
p𝜇1

𝜇2

+ 1

2

)
log N√

N

and s1,1 <
𝜆

𝜇1

− log N√
N
, we have

∇V(s) = −(p𝜇1s1,1 − 𝜇2s1,2) ≤ 𝜇2s1,2 ≤ p𝜆 ≤ 1. (C35)
▪

Defining  =
{

s | s ≥ 𝜆

𝜇1

− log N√
N

}
, we have V(s) = p𝜆

𝜇2

−
s1,2 satisfying two conditions:

• ∇V(s) ≤ −𝜇2

2

log N√
N

when V(s) ≥

(
p𝜇1

𝜇2

+ 1

2

)
log N√

N
and

s1,1 ∈  .

• ∇V(s)≤ 1 when V(s) ≥
(

p𝜇1

𝜇2

+ 1

2

)
log N√

N
and s1,1 ∉  .

Define B =
(

p𝜇1

𝜇2

+ 1

2

)
log N√

N
, 𝛾 = 𝜇2

2

log N√
N

and 𝛿 = 1.

Combining qmax = 𝜇maxN and 𝜈max = 1

N
, we have

𝛼 ≤
1

1 + 𝜇2

2𝜇max

log N√
N

and 𝛽 = 2

𝜇2

√
N

log N
+ 1.

Based on Lemma 10 with j =
√

N log N
4

, we have

P(V(S) ≥ B+2𝜈maxj) = P

(
p𝜆
𝜇2

− S1,2 ≥

(
p𝜇1

𝜇2

+ 1

)
log N√

N

)
(C36)

≤

⎛⎜⎜⎝ 1

1 + 𝜇2

2𝜇max

log N√
N

⎞⎟⎟⎠
√

N log N
4

+ 2

𝜇2

√
N

log N
P(S1,1 ∉ ) (C37)

≤

(
1 − 𝜇2

3𝜇max

log N√
N

)√
N log N

4

+ 3

𝜇2

√
N

log N
P(S1,1 ∉ ) (C38)

≤ e−
𝜇2log2N
12𝜇max + 15

𝜇1𝜇2

N
log2N

e−min
(

𝜇1

16𝜇max
,

𝜇1𝜇2

40𝜇max

)
log2N

(C39)

≤
16

𝜇1𝜇2

N
log2N

e−min
(

𝜇1

16𝜇max
,

𝜇2

12𝜇max
,

𝜇1𝜇2

40𝜇max

)
log2N

, (C40)

where

• (C36) holds by substituting B, 𝜈max and j;
• (C36) and (C37) holds due to Lemma 13;

• (C37) and (C38) holds because
𝜇2

𝜇max

≤

√
N

log N
for N

satisfying (4) in the first term of (C38);

• (C38) and (C39) holds by Lemma 7 to obtain the tail

bound in the second term of (C39).

Recall
p𝜇1

𝜇2

+ 1 = 𝜇1 and the proof is completed.

C.5 Proof of Lemma 9: SSC on S1 and ∑b
i=2 Si

Define L1,1 = 𝜆

𝜇1

− log N√
N

and L1,2 = p𝜆
𝜇2

− 𝜇1 log N√
N

. Recall

wu = max((1− p)𝜇1,𝜇2), wl = min((1− p)𝜇1,𝜇2), k =(
1 + wub

wl

)(
1+𝜇1+𝜇2

wl
+ 2𝜇1

)
and c1 = wub

wl

(
1+𝜇1+𝜇2

wl
+ 2𝜇1

)
+

2𝜇1.

Lemma 14 Consider Lyapunov function

V(s) = min

{
𝜆 +

k log N√
N

− s1,

b∑
i=2

si

}
. (C41)

We have

• ∇V(s) ≤ −wu𝜇1 log N√
N

, when

V(s) ≥
c1 log N√

N
with s1,1 ≥ L1,1 and s1,2 ≥ L1,2;
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• ∇V(s)≤wu, when

V(s) ≥
c1 log N√

N
with s1,1 ≤ L1,1 or s1,2 ≤ L1,2.

Proof When V(s) ≥ c1 log N√
N

, the following two

inequalities hold.

s1 ≤ 𝜆 +
(k − c1) log N√

N
= 𝜆 + 1 + 𝜇1 + 𝜇2

wl

log N√
N

, (C42)

b∑
i=2

si ≥
c1 log N√

N
. (C43)

We have two observations based on (C42) and

(C43):

• (C42) implies A1(s) ≤ 1√
N

under any policy

in Π;

• (C43) implies s2 ≥
c1

b
log N√

N
because

s2 ≥ s3 ≥ · · ·≥ sb, and we have

(1 − p)𝜇1s2,1 + 𝜇2s2,2 ≥ wls2 ≥
wlc1

b
log N√

N
, (C44)

where a finite buffer size is required such that

the lower bound wls2 ≥
wlc1

b
log N√

N
is meaningful.

We study the Lyapunov drift and consider two

cases:

• Suppose 𝜆+ k log N√
N

− s1 ≥
∑b

i=2 si ≥
c1 log N√

N
.

In this case, V(s) =
∑b

i=2 si, and

∇V(s) ≤ 𝜆(A1(s) − Ab(s)) − (1 − p)𝜇1s2,1 − 𝜇2s2,2 (C45)

≤
1√
N

− (1 − p)𝜇1s2,1 − 𝜇2s2,2 (C46)

≤
1√
N

− wlc1

b
log N√

N
(C47)

≤
1√
N

−
2wu𝜇1 log N√

N
(C48)

≤ −
wu𝜇1 log N√

N
, (C49)

where

– (C45) and (C46) holds because A1(s) ≤ 1√
N

under any policy in Π;.

– (C46) and (C47) holds because (C44);

– (C47) and (C48) holds because c1 ≥
wub
wl

2𝜇1.

• Suppose
∑b

i=2 si > 𝜆+ k log N√
N

− s1 ≥
c1 log N√

N
.

In this case, V(s) = 𝜆 + k log N√
N

− s1, and

∇V(s) (C50)

≤ −𝜆(1 − A1(s)) + (1 − p)𝜇1s1,1 (C51)

+ 𝜇2s1,2 − (1 − p)𝜇1s2,1 − 𝜇2s2,2 (C51)

≤
1√
N

− 𝜆 + wus1 − (wu − (1 − p)𝜇1)s1,1

−(wu − 𝜇2)s1,2 − (1 − p)𝜇1s2,1 − 𝜇2s2,2

≤
1√
N

− 𝜆 + wu(s1 − L1,1 − L1,2)

+ ((1 − p)𝜇1L1,1 + 𝜇2L1,2)
− (1 − p)𝜇1s2,1 − 𝜇2s2,2 (C53)

= 1√
N

+ (wu(k − c1 + 1 + 𝜇1) − (1 − p)𝜇1 − 𝜇1𝜇2)
log N√

N
− (1 − p)𝜇1s2,1 − 𝜇2s2,2 (C54)

≤
1√
N

+ (wu(k − c1 + 1 + 𝜇1)

− (1 − p)𝜇1 − 𝜇1𝜇2)
log N√

N
− wlc1

b
log N√

N
(C55)

= wu

(
k −

(
1 + wl

wub

)
c1 + 𝜇1

)
log N√

N

+ 1√
N

− ((1 − p)𝜇1 + 𝜇1𝜇2 − wu)
log N√

N
(C56)

≤ wu

(
k −

(
1 + wl

wub

)
c1 + 𝜇1

)
log N√

N
(C57)

≤ −
wu𝜇1 log N√

N
, (C58)

where

– (C51) and (C52) holds by adding and sub-

structing wus1 = wu(s1,1 + s1,2);

– (C52) and (C53) holds because s1,1 and s1,2

taking the lower bounds at L1,1 and L1,2 gives an

upper bound;

– (C53) and (C54) holds by substituting

L1,1 = 𝜆

𝜇1

− log N√
N
, L1,2 = p𝜆

𝜇2

− 𝜇1 log N√
N

and

s1 ≤ 𝜆 + (k−c1) log N√
N

. We have s1 − L1,1 − L1,2 =

(k−c1+1+𝜇1) log N√
N

and (1−p)𝜇1L1,1+𝜇2L1,2 =

𝜆 − ((1 − p)𝜇1 + 𝜇1𝜇2) log N√
N

.

– (C54) and (C55) holds by substituting the

lower bound of (1− p)𝜇1s2, 1 +𝜇2s2, 2 in (C44);

– (C55) and (C56) holds by combining the

terms with c1;.

– (C56) and (C57) holds because

((1− p)𝜇1 +𝜇1𝜇2 −wu) log N = (𝜇1 +𝜇2 −wu) log N ≥ 1

when N satisfies (4);

– (C57) and (C58) holds because k −(
1 + wl

wub

)
c1 ≤ −2𝜇1.
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Next, we show∇V(s)≤wu based on the upper

bounds (C45) and (C51).

•Consider the upper bound in (C45). We have

∇V(s) ≤ 𝜆(A1(s) − Ab(s)) − (1 − p)𝜇1s2,1 − 𝜇2s2,2 ≤ 1 ≤ wu,

where 1≤wu holds because
1

𝜇1

+ p
𝜇2

= 1.

•Consider the upper bound in (C51). We have

∇V(s) ≤ −𝜆(1 − A1(s)) + (1 − p)𝜇1s1,1 + 𝜇2s1,2

− (1 − p)𝜇1s2,1 − 𝜇2s2,2

≤ (1 − p)𝜇1s1,1 + 𝜇2s1,2 ≤ wu,

where the last inequality holds because

s1,1 + s1,2 = s1 ≤ 1. ▪

Let  = {s | s1,1 ≥ L1,1, s1,2 ≥ L1,2}. We have V(s) =
min

{
𝜆 + k log N√

N
− s1,

∑b
i=2 si

}
satisfying the following two

conditions based on Lemma 14:

• ∇V(s) ≤ −wu𝜇1 log N√
N

when V(s) ≥ c1 log N√
N

and s∈  .

• ∇V(s)≤wu when V(s) ≥ c1 log N√
N

and s∉  .

Define B = c1 log N√
N

, 𝛾 = wu𝜇1 log N√
N

and 𝛿 = wu. Combining

qmax = 𝜇maxN and 𝜈max = 1

N
, we have

𝛼 ≤
1

1 + wu𝜇1 log N
𝜇max

√
N

and 𝛽 =
√

N
𝜇1 log N

+ 1.

Based on Lemma 10 with j = 𝜇1

√
N log N
2

, we have

P(V(S) ≥ B + 2𝜈maxj) (C59)

= P

(
V(S) ≥

c1 log N√
N

+
𝜇1 log N√

N

)
(C60)

≤

⎛⎜⎜⎝ 1

1 + wu𝜇1 log N
𝜇max

√
N

⎞⎟⎟⎠
𝜇1

√
N log N
2

+

( √
N

𝜇1 log N
+ 1

)
P(s ∉ )

(C61)

≤

(
1 − wu𝜇1

2𝜇max

log N√
N

) 𝜇1

√
N log N
2

+

( √
N

𝜇1 log N
+ 1

)
P(s ∉ )

(C62)

≤ e−
wu𝜇2

1
log2N

4𝜇max +

( √
N

𝜇1 log N
+ 1

)
32

𝜇1𝜇2

N
log2N

e−min
(

𝜇1

16𝜇max
,

𝜇2

12𝜇max
,

𝜇1𝜇2

40𝜇max

)
log2N

(C63)

≤
34

𝜇2
1
𝜇2

N1.5

log3N
e−min

(
𝜇1

16𝜇max
,

𝜇2

12𝜇max
,

𝜇1𝜇2

40𝜇max

)
log2N

, (C64)

where

• (C60) holds by substituting B, 𝜈max and j;
• (C60) and (C61) holds based on Lemma 14;

• (C61) and (C62) holds
wu𝜇1

𝜇max

≤

√
N

log N
for a large N for the

first term in (C62);

• (C62) and (C63) holds by applying the union bound on

P(S∉ ) such that

P(s ∉ ) ≤ P(s1,1 < L1,1) + P(s1,2 < L1,2)

≤
32

𝜇1𝜇2

N
log2N

e−min
(

𝜇1

16𝜇max
,

𝜇2

12𝜇max
,

𝜇1𝜇2

40𝜇max

)
log2N

.

APPENDIX D: PROOF OF THE COROLLARY

Under JSQ, a job is discarded or blocked only if all buffers are

full, that is, when N
∑b

i=1 Si = Nb. From Theorem 1, we have

P() = P

(
N

b∑
i=1

Si = Nb

)
= P

( b∑
i=1

Si ≥ b

)
(D65)

≤ P

(
max

{ b∑
i=1

Si − 𝜆 −
k log N√

N
, 0

}
≥ b − 𝜆 −

k log N√
N

)
(D66)

≤

E

[
max

{∑b
i=1 Si − 𝜆 − k log N√

N
, 0
}]

b − 𝜆 − k log N√
N

(D67)

≤
8𝜇max

b − 𝜆

1√
N log N

(D68)

where (D66) to (D67) holds due to the Markov inequality;

and (D67) to (D68) holds because of Theorem 1 and b − 𝜆 ≥
8k log N√

N
.

For jobs that are not discarded, the average queueing delay

according to Little’s law is.

E

[∑b
i=1 Si

]
𝜆(1 − P())

.

Therefore, the average waiting time is.

E[W] =
E

[∑b
i=1 Si

]
𝜆(1 − P()))

− 1

≤

k log N√
N

+ 7𝜇max√
N log N

+ 𝜆P()

𝜆(1 − P())

≤
2k log N√

N
+

14𝜇max +
16𝜇max

b−𝜆√
N log N

,

where the last inequality holds because 𝜆(1−P())≥ 0.5

under b − 𝜆 ≥
8k log N√

N
.

Next, we study the waiting probability P(). Define  to

be the event that a job entered into the system (not blocked)

and waited in the buffer and P() is the steady-state proba-

bility of  . Applying Little’s law to the jobs waiting in the

buffer,

𝜆P()E[TQ] = E

[ b∑
i=2

Si

]
,
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where TQ is the waiting time for the jobs waiting in the buffer.

Since E[TQ] is lower bounded by TQ = min
{

1

𝜇1

,
1

𝜇2

}
, we

have

P() ≤
E

[∑b
i=2 Si

]
𝜆TQ

.

We now provide a bound on E

[∑b
i=2 Si

]
. From the

work-conserving law, we have

E[S1] = 𝜆(1 − P()) ≥ 𝜆

(
1 − 8𝜇max

b − 𝜆

1√
N log N

)
.

Therefore, we have

E[S1] ≥ 𝜆 − 8𝜇max

b − 𝜆

1√
N log N

.

From Theorem 1, one has.

E

[ b∑
i=1

Si

]
≤ 𝜆 +

k log N√
N

+ 7𝜇max√
N log N

.

The above two inequalities give the following bound on

E

[∑b
i=2 Si

]
:

E

[ b∑
i=2

Si

]
≤

k log N√
N

+
7𝜇max +

8𝜇max

b−𝜆√
N log N

.

Finally, a job not routed to an idle server is either blocked

or waited in the buffer.

P() = P() + P() ≤ P() +
E

[∑b
i=2 Si

]
𝜆TQ

≤
1

𝜆TQ

k log N√
N

+ 1

𝜆TQ

7𝜇max +
8𝜇max

b−𝜆√
N log N

.

The analysis for Po d is similar, except that.

P() = P

(

||||Sb ≤ 1 − 1

𝜇1N𝛼

)
P

(
Sb ≤ 1 − 1

𝜇1N𝛼

)
(D69)

+P

(

||||Sb > 1 − 1

𝜇1N𝛼

)
P

(
Sb > 1 − 1

𝜇1N𝛼

)
(D70)

≤ P

(

||||Sb ≤ 1 − 1

𝜇1N𝛼

)
+ P

(
Sb > 1 − 1

𝜇1N𝛼

)
(D71)

≤

(
1 − 1

𝜇1N𝛼

)𝜇1N𝛼 log N

+ P

( b∑
i=1

Si > b − b
𝜇1N𝛼

)
(D72)

≤
1

N
+

E

[
max

{∑b
i=1 Si − 𝜆 − k log N√

N
, 0
}]

b − 𝜆 − k log N√
N

− b
𝜇1N𝛼

. (D73)

≤
1

N
+ 8𝜇max

b − 𝜆

1√
N log N

. (D74)

Table D1 Values of Qi, m and Si, m in Figure 4

Q1,1 Q2, 1 Q3, 1 Q1,2 Q2, 2 Q3, 2 Q4, 2 Q5, 2

0.2 0.2 0.1 0.1 0.1 0.1 0 0.2

S1,1 S2, 1 S3, 1 S1,2 S2, 2 S3, 2 S4, 2 S5, 2

0.5 0.3 0.1 0.5 0.4 0.3 0.2 0.2

(D71) and (D72) holds because it denotes the probabil-

ity of the event all sampled d servers have b jobs; (D72) to

(D73) holds because
(

1 − 1

x

)x
≤

1

e
for x≥ 1 and the Markov

inequality; (D73) to (D74) holds because of Theorem 1 and

b − 𝜆 ≥
8k log N√

N
+ 8b

𝜇1N𝛼
. The remaining analysis is the same.

Finally, for JIQ and I1F, we have not been able to bound

P(). However,

P() = P(S1 = 1) ≤ P

( b∑
i=1

Si ≥ 1

)
(D75)

≤ P

(
max

{ b∑
i=1

Si − 𝜆 −
k log N√

N
, 0

}
≥

1

N𝛼
−

k log N√
N

)
(D76)

≤

E

[
max

{∑b
i=1 Si − 𝜆 − k log N√

N
, 0
}]

1

N𝛼
− k log N√

N

(D77)

≤

E

[
max

{∑b
i=1 Si − 𝜆 − k log N√

N
, 0
}]

1

2N𝛼

(D78)

≤
14𝜇max

N0.5−𝛼 log N
. (D79)

(D76) and (D77) holds because of the Markov inequality;

(D77) and (D78) holds because 2k ≤
N0.5−𝛼

log N
; (D78)–(D79)

holds because of Theorem 1. Given the choice of k =(
1 + wub

wl

)(
1+𝜇1+𝜇2

wl
+ 2𝜇1

)
in Theorem 1, we need the buffer

size b to be at the same order, which leads to the finite-buffer

assumption.


