

Journal of Geophysical Research: Atmospheres

Supporting Information for

Reconciling Observed and Predicted Tropical Rainforest OH Concentrations using a Chemical Ionization Mass Spectrometer during the GoAmazon2014/5 Field Campaign

Daun Jeong^{1,a}, Roger Seco^{1,b}, Louisa Emmons², Rebecca Schwantes^{2,c}, Yingjun Liu^{3,d}, Karena A. McKinney3, Scot T. Martin^{3,4}, Frank N. Keutsch^{3,5,6}, Dasa Gu^{1,e},d, Alex B. Guenther¹, Oscar Vega⁷, Julio Tota⁸, Rodrigo A. F. Souza⁹, Stephen R. Springston¹⁰, Thomas B. Watson¹⁰, Saewung Kim¹

¹Department of Earth System Science, School of Physical Sciences, University of California, Irvine, California, USA.

²Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA.

³John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.

⁴Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA.

⁵Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.

⁶Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA.

⁷Instituto de Pesquisas Energéticas e Nucleares, Cidade Universitaria, São Paulo, Brazil.

⁸Universidade Federal do Oeste do Pará, Santarém, Brazil.

⁹Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil.

¹⁰Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Upton New York, USA.

^aNow at Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA.

^bNow at Department of Biology, University of Copenhagen, Copenhagen, Denmark.

^cNow at Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA

^dNow at College of Environmental Sciences and Engineering, Peking University, Beijing, China.

^eNow at Hong Kong University of Science and Technology, Hong Kong, China

Corresponding author: Saewung Kim (saewung.kim@uci.edu)

Contents of this file

Figures S1 to S10 Tables S1 to S2

Figure S1. Sensitivity tests of dilution rate and spin-up days. The first, second, tenth day of model simulation are shown with a (a) 6 h lifetime and (b) 24 h lifetime. (c) Correlation between 6 h and 24 h lifetime on the second day of the simulation.

Figure S2. (a) Diurnal variation and (b) scatter plot of box model simulated OH between F0AMv3.2 and BOXMOX. Both model frameworks were constrained with the same meteorology and trace gas measurements from Mar 18th 2014 during the GoAmazon2014/5. For the purpose of comparing the two box models, only O₃, CO, NO₂, CH₄, isoprene, and methanol were constrained in the models.

Figure S3. Time series of 5 minute averaged toluene, benzene, MVK and MACR, and monoterpenes, measured by PTR-MS during the GoAmazon2014/5 campaign.

Figure S4. Diurnal variation of NO_Y , NO_2 , and NO for the 14 days selected in this study. 30 minute averaged measured NOY is shown with interpolation as needed. NO_2 was estimated as 6 % of measured NO_Y and constrained in the model. NO was simulated from MCM v3.3.1 based on the constrained NO_2 .

Figure S5. OH reactivity from box model simulations embedded with MCM 3.3.1. Midday (11:00 – 13:00) OH reactivity averaged over the 14 days selected in this study are shown. Category 'Alkane + Alkene + Aromatic' consists of only trace gases (i.e., ethane, propane, n-butane, iso-butane, n-pentane, iso-pentane, hexane, heptane, ethene, propene, toluene, and benzene) constrained in the model runs from observations or previous literature.

Figure S6. Correlation between input NO_2 and observed and modeled OH. Markers are 5 minute averaged OH measurements and lines are median of observed or modeled OH for each NO_2 bin.

Figure S7. (a) Correlation of midday (11:00 – 13:00) modeled NO between MCM 3.3.1 and other mechanisms. Frequency of the modeled data is 5 min. (b) Production and Loss rates of O1D averaged over midday (11:00 – 13:00). Rate coefficients of O¹D + M at 298 K are : MCM v3.3.1 = 3.255×10^{-11} cm³ molecules⁻¹ s⁻¹, CB6r2 = 3.280×10^{-11} cm³ molecules⁻¹ s⁻¹, RAMC2 = 3.250×10^{-11} cm³ molecules⁻¹ s⁻¹, CB05 = 2.957×10^{-11} cm³ molecules⁻¹ s⁻¹.

Figure S8. (a) Correlation of midday (11:00 – 13:00) modeled (a) OH and (b) HO_2 between MCM 3.2 and 3.3.1.

Figure S9. Ozone photolysis rate constants (JO¹D) of the 14 days selected for this study, calculated by the FOAM box model.

Figure S10. Correlation between input NO2 and observed and modeled OH color coded with measured isoprene.

Trace Gas and Meteorology	Techniques	Manufacturer/Reference	
Carbon monoxide (CO)	Cavity Ring Down Spectroscopy	Los Gatos Research, Inc	
Nitrogen oxides (NO _x and NO _Y)	Chemiluminescence	Thermo Scientific 42i-TL	
Ozone (O ₃)	UV photometry	Thermo Scientific 49i	
Acetone (CH ₃ COCH ₃)		Graus et al. (2010); Jorden et al. (2000)	
Benzene (C ₆ H ₆)			
Toluene $(C_6H_5(CH_3))$	Proton Transfer Reaction-Time		
Isoprene (C ₅ H ₈)	of Flight-Mass Spectrometer		
Monoterpenes	(PTR-TOF-MS)	Jordan et al. (2007)	
^a Methyl vinyl ketone (MVK)			
^a Methacrolein (MACR)			
^b Ethane (C ₂ H ₆)		Greenberg and Zimmerman (1984); Zimmerman et al. (1988)	
^b Propane(C ₃ H ₈)			
^b n-Butane (n-C ₄ H ₁₀)			
^b i-Butane (i-C ₄ H ₁₀)			
^b n-Pentane (n-C ₅ H ₁₂)	Gas Chromatography-Flame		
^b i-Pentane (i-C ₅ H ₁₂)	Ionization Detection (GC-FID)		
^b n-Hexane (n-C ₆ H ₁₄)			
^b n-Heptane (n-C ₇ H ₁₆)			
^b Ethylene (C ₂ H ₄)			
^b Propene (C ₃ H ₆)			
Solar Radiation (0.4 – 4 μ m)	Shortwave Array	Flynn (2016)	
	Spectroradiometer		
Ambient Temperature	Aerosol Observing System	Chen et al. (2015)	
Relative Humidity	Surface Meteorology (AOSMET)		

^a The sum of MVK and MACR was measured

^b Mixing ratios used in box model simulations were taken from Zimmerman et al. (1988) and were: ethane = 0.98 ppb, propane = 0.37 ppb, n-butane = 0.09 ppb, i-butane = 0.08 ppb, n-pentane = 0.07 ppb, i-pentane = 0.13 ppb, n-hexane = 0.02 ppb, n-heptane = 0.03 ppb, ethylene = 0.97 ppb, propene = 0.31 ppb

Table S1. Summary of the analytical techniques and references of trace gases andmeteorological data used in this study

Trace Gases Constrained in the Box Model	Nomenclature and Lumping of each Mechanism					
	MCM v3.3.1	MOZART-T1	RACM2	CB05	CB6r2	
Ozone	O3	O3	O3	O3	O3	
Carbon Monoxide	СО	CO	CO	СО	СО	
Nitrogen Dioxide	NO ₂	NO ₂	NO ₂	NO ₂	NO ₂	
Methane	CH ₄	CH ₄	CH ₄	CH ₄	CH ₄	
Methyl Vinyl Ketone	MVK	MVK	MVK	ISPD	ISPD	
Methacrolein	MACR	MACR	MACR	ISPD	ISPD	
Isoprene	C_5H_8	ISOP	ISO	ISOP	ISOP	
Monoterpene	APINENE	APIN	API	TERP	TERP	
Ethane	C_2H_6	C_2H_6	ETH	ETHA	ETHA	
Propane	C3H8	C3H8	HC3	1.5 PAR, 1.5 NR	PRPA	
n-Butane	NC4H10	BIGALK	HC3	4 PAR	4 PAR	
iso-Butane	IC4H10	BIGALK	HC3	4 PAR	4 PAR	
n-Pentane	NC5H12	BIGALK	HC5	5 PAR	5 PAR	
Iso-Pentane	IC5H12	BIGALK	HC5	5 PAR	5 PAR	
n-Hexane	NC6H14	BIGALK	HC5	6 PAR	6 PAR	
n-Heptane	NC7H16	BIGALK	HC8	7 PAR	7 PAR	
Ethene	C_2H_4	C_2H_4	ETE	ETH	ETH	
Propene	C3H6	C3H6	HC8	1 PAR, 1 OLE	1 PAR, 1 OLE	
Toluene	TOLUENE	TOLUENE	TOL	TOL	TOL	
Benzene	BENZENE	BENZENE	BEN	1 Par, 5 NR	BENZ	
Acetone	CH ₃ COCH ₃	CH ₃ COCH ₃	ACT	3 PAR	ACET	
Methanol	CH ₃ OH	CH ₃ OH	MOH	MEOH	MEOH	
Acetaldehyde	CH ₃ CHO	CH ₃ CHO	ACD	ALD2	ALD2	

Table S2. Summary of the trace gases constrained in the box model simulations in this study and their lumping in each mechanism.