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1 Derivation of proposed variance estimator

In this section, we motivate our estimator for standard errors after analyzing data from stacked
multiple imputation (with weights). This estimator can be applied when we routinely impute
data using MICE and then stack with weights defined as 1 over the number of times each subject
appears in the stacked dataset or when we define imputations and weights as in Figure 1.

We first observe that we are interested in estimating the observed data information matrix,
Iobs. Following Louis (1982), we can express this as follows:

Iobs(θ) = Icom(θ)− Imis(θ)

where Icom is the expected complete data information given the observed data and Imis is the
expected missing information due to the missing data given the observed data. Let Jcom be
the negative of the second derivative matrix of the complete data log-likelihood function. Let
Ucom be the first derivative matrix of the complete data log-likelihood function. Following Louis
(1982), we can rewrite this expression as follows:

Iobs(θ) = Eθ(Jcom(θ)|Xobs, Y )−
[
Eθ(Ucom(θ)⊗2|Xobs, Y )− Eθ(Ucom(θ)|Xobs, Y )⊗2

]
= Eθ(Jcom(θ)|Xobs, Y )− V arθ(Ucom(θ)|Xobs, Y )

where the expectations are with respect to the distribution of the missing data. Now, we assume
that data are independent across i. In this case, we can rewrite the above as

Iobs(θ) =
∑
i

Eθ(J
i
com(θ)|Xobs, Y )−

∑
i

V arθ(U
i
com(θ)|Xobs, Y )

where J icom(θ) and U icom(θ) are the contributions to the complete data information matrix and
score matrix for subject i respectively.

In practice, these conditional expectations and variances are not simple to calculate. How-
ever, we can approximate these expression as averages of these expressions evaluated across
imputed datasets, which were imputed by drawing from distributions for the missing data given
the observed data. A similar approach is used in the context of Monte Carlo log-likelihood
maximization in Wei and Tanner (1990).

Suppose first that we give equal weight to multiple imputations within a particular subject.
Let Xim be the mth imputation of the missing covariates for subject i. For subjects without
missing values, define Xim to be all equal to fully-observed Xi, and suppose we apply data
analysis using the “tall stack” where each fully-observed subject appears in the stacked dataset
M times. A similar expression is also applicable for the “short stack” formulation, where each
fully-observed subject appears only once in the stacked data. We can approximate the above
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expression as follows:

Iobs(θ) ≈
∑
i

1

M

∑
m

J icom(Xim, Yi; θ)−
∑
i

1

M

∑
m

U icom(Xim, Yi; θ)−
1

M

∑
j

U icom(Xij , Yi; θ)

⊗2
where M is the number of multiple imputations. Now, suppose we give multiple imputations
within subject i unequal weight, where imputation m for subject i is given weight wim, where∑

mwim = 1. We propose the following reformulation of the above approximation with unequal
weights across multiple imputations within subjects:

Iobs(θ) ≈
∑
i

∑
m

wimJ
i
com(Xim, Yi; θ)−

∑
i

∑
m

wim
[
U icom(Xim, Yi; θ)− Ū icom(Xi, Yi; θ)

]⊗2
where Ū icom(X,Yi; θ) =

∑
j wimU

i
com(Xij , Yi; θ). We can evaluate this expression at the maxi-

mum likelihood estimator for θ, θ̂, obtained previously from fitting the model for Y |X to the
weighted, stacked dataset to obtain an estimate of the observed data information matrix. In-
verting this matrix will provide the estimate for the observed data covariance matrix for θ̂ in
Eq. 3 .
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2 Imputation strategy for linear regression

In order to make this estimation strategy clearer, we demonstrate how it works for linear
regression. Suppose we are interested in fitting a linear regression model for outcome Y using
covariates X and variance parameter σ2. Suppose further that we have missing data in X, and
we multiply impute these missing values using only other information in X to obtain Xim for
each subject i and imputations m = 1, . . . ,M .

Suppose we stack the M imputed datasets on top of each other to create a dataset of size
Mn × p, where p is the dimension of Xi. Using θ̂cc from fitting a linear regression model for
Y |X on the complete case data (subjects with X fully observed), we define weights

wim =

1√
2πσ2

cc

e
− (Yi−Ximβcc)

2

2σ2cc

∑M
j=1

1√
2πσ2

cc

e
−

(Yi−Xijβcc)2

2σ2cc

=
e
− (Yi−Ximβcc)

2

2σ2cc∑M
j=1 e

−
(Yi−Xijβcc)2

2σ2cc

For subjects with fully-observed Xi, this expression will equal 1/M for all m. Now, we define the
complete data log-likelihood, score and information matrices (just focusing on the part based
on β as follows:

licom(Xim, Yi; θ) = −(Yi −Ximβ)2

2σ2
− log

[√
2πσ2

]
U icom(Xim, Yi; θ) =

Yi −Ximβ

σ2
Xim

J icom(Xim, Yi; θ) =
XimX

T
im

σ2

so we have that

Iobs(θ) ≈
∑
i

∑
m

wim
XimX

T
im

σ2
−
∑
i

∑
m

wim

[
Yi −Ximβ

σ2
Xim − Ū icom(Xi, Yi; θ)

]⊗2
where Ū icom(Xi, Yi; θ) =

∑
j wij

Yi−Xijβ
σ2 Xij and we then plug in the final maximum likelihood

estimates for β and σ2 into the above expression.
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3 Example R code for implementation

In this section, we provide some example R code to demonstrate how we can implement our
proposed imputation approach. First, we provide some code to simulate outcome Y and co-
variates X and B from a multivariate normal distribution. We then generate missingness in B
under missing completely at random (MCAR) assumptions with a 50% missingness rate.

We use mice in R to impute missing values of B, but we impute B from a distribution that
does not condition on Y . We then take these 50 imputed datasets and stack them. Weights are
obtained by first fitting the outcome model (linear regression for Y |X,B) to the complete case
dataset. We use the resulting parameter estimates to obtain weights proportional to Y |X,B.
Weights are then scaled to sum to 1 across imputed datasets but within individuals. In the final
estimation step, we fit a weighted version of the same regression model to the stacked data. We
estimate corresponding standard errors using Eq. 3 available in the R package StackImpute.

### Download R package from GitHub

devtools :: install_github("lbeesleyBIOSTAT/StackImpute", build_vignettes = TRUE , build_

opts = c("--no -resave -data", "--no-manual"))

library(StackImpute)

### Simulate Data

Nobs = 2000

DAT = MASS:: mvrnorm(n = Nobs , mu = c(0,0,0), Sigma = rbind(c(1, 0.18, 0.42) , c(0.18 ,

0.09, 0.12) ,c(0.42, 0.12, 0.49 )))

Y = DAT[,1]

B = DAT[,2]

X = DAT[,3]

S = sample(x=c(0,1), size = Nobs , prob = c(0.5 ,0.5), replace = TRUE)

complete_cases = data.frame(Y, X, B, S)[S == 1,] #complete case subjects only

observed_data = data.frame(Y, X, B, S) #data with missingness in B

observed_data[S==0,’B’] = NA

### Step 1: Impute B|X

imputes = mice::mice(observed_data , m=50, method="norm", maxit = 1)

pred = imputes$predictorMatrix

pred[pred != 0] = 0

pred["B","X"] = 1

imputes = mice::mice(observed_data , m=50, predictorMatrix=pred , method="norm")

### Step 2: Stack imputed datasets

stack = mice:: complete(imputes , action="long", include = FALSE)

### Step 3: Obtain weights

library(dplyr)

fit_cc = glm(Y ~ X + B, family=’gaussian ’, data= complete_cases)

stack$wt = dnorm(stack$Y,mean = predict(fit_cc , newdata = stack), sd = sqrt(summary(fit_

cc)$dispersion))

stack = as.data.frame(stack %>% group_by(.id) %>% mutate(wt = wt / sum(wt)))

### Step 4: Estimation

fit = glm(Y ~X + B, data=stack , family=gaussian (), weights = stack$wt)

Info = StackImpute ::Louis_Information(fit , stack , M = 50, IMPUTED = unique(stack$.id[

stack$S==0]))

VARIANCE = diag(solve(Info))
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Alternatively, one can perform analysis using a short stack, where subjects with complete
case data only appear once and subjects with missing data appear M times as follows:

### Step 2: Stack imputed datasets

cc = unique(stack$.id[stack$S == 1])

stack_short = rbind(stack[stack$S==0,], stack[stack$S==1 & !duplicated(stack$.id) ,])

### Step 3: Obtain weights

stack_short$wt = dnorm(stack_short$Y,mean = predict(fit_cc, newdata = stack_short), sd =

sqrt(summary(fit_cc)$dispersion))

stack_short = as.data.frame(stack_short %>% group_by(.id) %>% mutate(wt = wt / sum(wt)))

### Step 4: Estimation

fit = glm(Y ~X + B, data=stack_short , family=gaussian (), weights = stack_short$wt)

Info = StackImpute ::Louis_Information(fit , stack_short , M = 50, IMPUTED = unique(stack_

short$.id[stack_short$S==0]))

VARIANCE = diag(solve(Info))
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4 Theoretical justification for stacking and f(Y |X)-weighting

Let R be a random variable corresponding to data completeness. We make a distinction
between this random variable and the observed value, R, which corresponds to whether each
subject is a complete case in the data. This distinction between theoretical missingness, R, and
the data realization, R, will be important later on. We will assume for now that there is no
missingness in Y .

In order to impute missing values of X (denoted X(mis)) we want to draw X(mis) from
f(X(mis)|X(obs), Y,R), where X(obs) denotes the observed part of X (Little and Rubin, 2002).
Conceptualizing these distributions in terms of X(obs) and X(mis) can be confusing, but we will
ground these results in practical implementation and in terms of the assumed data models later
on. For now, we will continue with this notation. Under missing at random (MAR) dependent
on X(obs) and/or Y , we have that

f(X(mis)|X(obs), Y,R) =
f(R|X,Y )

f(R|X(obs), Y )
f(X(mis)|X(obs), Y )

= f(X(mis)|X(obs), Y ). (SuppEq. 1 )

This result shows that we can ignore the mechanism generating MAR missingness when im-
puting X(mis). This argument serves as the backbone justifying standard multiple impu-
tation strategies, where missing values of X are imputed from distributions approximating
f(X(mis)|X(obs), Y ) and ignoring the missingness mechanism.

4.1 Imputation and weighting as a two-step procedure

Now, we focus on the structure of f(X(mis)|X(obs), Y ) in the setting where the outcome model
for Y |X is of interest. In the main paper, we note that

f(X(mis)|X(obs), Y ) =
f(Y |X)

f(Y |X(obs))
f(X(mis)|X(obs)) (SuppEq. 2 )

One approach to make inference about the distribution of Y |X is to (1) draw multiple imputa-
tions from the distribution f(X(mis)|X(obs), Y ) that is proportional to f(Y |X)f(X(mis)|X(obs)),
(2) analyze the resulting imputed datasets, and (3) apply Rubin’s combining rules. This is the
approach taken in Bartlett et al. (2014).

An alternative approach grounded in the importance sampling literature is to draw multiple
imputations from f(X(mis)|X(obs)) and then weight these multiple imputations proportional to
f(Y |X)

f(Y |X(obs))
. This will result in a sample representing approximate draws from f(X(mis)|X(obs), Y )

(Tanner, 1993; Little and Rubin, 2002). We can equivalently weight these draws proportional
to f(Y |X). This is the main idea behind our proposed imputation and weighting scheme.

Now, for the analysis. Let U icom represent the contribution of person i to the complete data
score matrix for our Y |X model likelihood. Let Xik represent the kth multiple imputation of X

for person i and define unit-scaled weights wik = f(Yi|Xik)∑M
j=1 f(Yi|Xij)

. For subjects with fully-observed

covariates, define Xik to equal Xi and wik to equal 1/M . Following importance sampling logic,
we can then estimate a function h(Xi, Yi) as h(Xi, Yi) ≈ 1

M

∑M
k=1wikh(Xik, Yi). Equivalently,

we can estimate the complete data score matrix for the ith subject as

U icom(θ) ≈ 1

M

M∑
k=1

wikU
i
com(Xik, Yi; θ),

which corresponds to a weighted average of the score matrix evaluated across the M multiple
imputations. We can then estimate θ, the parameter of interest, using the overall complete data
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score matrix

Ucom(θ) ∝
n∑
i=1

M∑
k=1

wikU
i
com(Xik, Yi; θ).

Solving this score equation for θ is equivalent to solving the weighted score equation using a
dataset obtained by stacking the weighted multiply imputed datasets on top of each other.
Corresponding standard errors for the maximum likelihood estimate of θ can be estimated as
in Section 1.

The above stacking approach involves obtaining a stacked dataset with n×M rows, where
each subject with fully-observed data is repeated across M rows with weights 1/M . We call this
approach the “long stack” approach. We could equivalently include only a single row for each
subject with fully-observed data and set corresponding weights to be 1. We call this approach
the “short stack” approach. The above logic applies in this latter case as well with M , the
number of rows in the stacked dataset, varying across subjects.

4.2 Practical Implementation

The proprosed two-step approach involves (1) drawing multiple values of the missing data from
f(X(mis)|X(obs)) and (2) weighting these draws proportional to f(Y |X). We note that these
distributions do not condition on their corresponding parameter values. Instead, they are de-
fined integrating over the parameter value. Therefore, some thinking is needed to determine
how we perform these steps in practice.

Step 1: Obtaining multiple imputations
First, we consider the imputation step, which is equivalent to performing multiple impu-

tation of missing X using only the observed data in X. Our approach for obtaining these
imputations is standard practice in the statistical literature for handling missing data (see Lit-
tle and Rubin (2002) for a good reference), but we will briefly highlight the main points for
readers less familiar with this literature. In practice, it is difficult to conceptualize the distri-
bution f(X(mis)|X(obs)), the distribution of the missing data given the observed data. Instead,
we often apply a Gibbs Sampling approach where we impute each variable with missingness
one-by-one in an iterative algorithm. Missing values of the pth covariate, Xp, can be imputed
from an assumed distribution for Xp given X−p, which consists of all covariates except the pth.
When each distribution f(Xp|X−p) is specified independently and may not correspond to a
valid joint distribution, this approach is called chained equations imputation. Covariates with
missingness are singly imputed one-by-one from their corresponding conditional distributions,
and the entire iterative algorithm is repeated multiple times to obtain multiple imputations.

At each step of the iterative imputation algorithm, we want to impute missing values of Xp

from f(Xp|X−p). However, this distribution does not condition on its corresponding parameter,
φp. A common approach for obtaining an approximate draw from is to first draw parameter φp
using the subjects with complete data on Xp (treating the most recent imputations of X−p as if
they had been observed) and then drawing Xp from f(Xp|X−p;φp) evaluated using the drawn
value of φp.

Step 2: Obtaining weights
Now, we consider the weighting step. In this step, we want to evaluate f(Yi|Xik) for each

subject. Again, this distribution does not condition on the parameter value. Instead, we can
draw a value of parameter θ related to the Y |X distribution and then define weights based on
f(Yi|Xik; θ) using the drawn θ. The question is then how we go about drawing θ. As a first
pass, one might imagine drawing θ by fitting models to the imputed data. However, we must
remember that we have imputed missing covariate values from the “wrong” distribution. By
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this, we mean that we have imputed from distributions that do not condition on Y . As a result,
draws of θ using the unweighted imputations will often produce bias.

Instead, we propose to draw θ using a fit of the Y |X model to the overall complete case
data consisting of subjects with fully-observed data. We can obtain a draw of θ by either a)
fitting this model to a bootstrap sample of the complete case data or by b) drawing from a
normal distribution using the point estimate and variance-covariance matrix of θ obtained by
a complete case fit to the original data (Little and Rubin, 2002). We note that complete case
analysis will produce bias in estimating θ when missingness depends on Y . We will address this
challenge later on.

Previously, we have discussed drawing θ for use in the weights, but a simple approach would
be to use the maximum likelihood estimate from the complete case data rather than a draw to
calculate the weights. In practice, we have found that this approach produces good results as
seen in our simulations in the main paper. Therefore, we present this strategy in our algorithm
below.

Algorithm for stacked and f(Y |X)-weighted imputation

(A) Obtain a single imputation of missing X values as follows. After randomly ini-
tializing the missing values, iterate the following for each covariate Xp with missingness
• Draw φp using fit of Xp|X−p model to subjects with fully observed Xp, treating the

most recently filled-in values of X−p as if they were observed
• Draw missing Xp from the assumed distribution of Xp|X−p (e.g. logistic regression

model) evaluated at the drawn φp.
(B) Repeat (A) M times to obtain M multiple imputations.
(C) Define weights proportional to f(Y |X; θ) using the complete case estimate of θ.
(D) Re-estimate θ by fitting the Y |X model to a stacked, weighted version of the data.
(E) Estimate standard errors for θ̂ using Eq. 3 .

4.3 MAR missingness dependent on Y

The proposed approach involves imputing missing values of X conditioning on observed values
of X but not conditioning on Y . When missingness depends on Y and we ignore Y in the
imputation models, we induce missing not at random (MNAR) missingness in X. This presents
a problem, since standard multiple imputation methods assume that missingness depends only
on observed data (MAR).

The primary challenge comes from how we draw parameters during the imputation and
weighting steps. In both steps, we perform parameter draws using some type of complete case
fit to the observed data. When missingness depends on Y , complete case analysis for the Y |X
model will often produce biased estimates of θ. Additionally, when we ignore Y in the imputa-
tion model Xp|X−p, we induce a dependence between missingness and Xp. Fitting a model for
Xp|X−p using only subjects with complete Xp will often result in biased parameter estimates.
Therefore, complete case-based parameter draws in both steps of the proposed imputation and
weighting procedure will be biased when missingness depends on Y .

Key Takeaway: Complete case analysis will produce biased estimates of φ = (φ1, . . . , φP )
and θ when missingness depends on Y

However, simulations provide little evidence of bias in the overall estimate of θ, and there is
a theoretical reason for this. Recall the distinction between R, the random variable correspond-
ing to missingness, and R, the realization R takes in the observed data. We noted in SuppEq.
1 that f(X(mis)|X(obs), Y,R) = f(X(mis)|X(obs), Y ) under MAR dependent on X(obs) and/or
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Y . This result means that the distribution of X(mis)|X(obs), Y is the same as the distribution
given R = 1 (again, this is the random variable R, not the data realization). However, we have
that

f(X(mis)|X(obs),R = 1) 6= f(X(mis)|X(obs))

f(Y |X,R = 1) 6= f(Y |X)

Therefore, missingness based on Y is not ignorable for either of these individual distributions.
We have that

f(X(mis)|X(obs), Y ) = f(X(mis)|X(obs), Y,R = 1) =
f(Y |X,R = 1)

f(Y |X(obs),R = 1)
f(X(mis)|X(obs),R = 1)

(SuppEq. 3 )

This last equality takes the same form as SuppEq. 2 except that it conditions on R = 1.
Following the same logic as in Section 4.1, we can impute missing covariate values from
f(X(mis)|X(obs),R = 1) and weight these imputations proportional to f(Y |X,R = 1).

Let θR and φR be the parameters related to Y |X,R = 1 and X(mis)|X(obs),R = 1 respec-
tively. As before, these distributions do not condition on parameters φR and θR. Recall, these
parameters come from distributions that condition on the random variable R = 1. In practice,
we can obtain valid draws of φR and θR using the data realization of R, R. In other words,
complete case analysis will produce unbiased estimates of φR and θR.

Key Takeaway: Complete case analysis will produce unbiased estimates of φR and θR when
missingness depends on Y

Next, suppose we can approximate f(Y |X,R = 1; θR) ≈ f(Y |X; θR) and f(X(mis)|X(obs),R =
1;φR) ≈ f(X(mis)|X(obs);φR) where θR and φR are the parameters from the distribution con-
ditioning on R. In other words, suppose we can approximate the distribution conditional on
R = 1 with the unconditional distribution evaluated at the parameter from the conditional
distribution. This will be reasonable if these distributions have similar structures (e.g. both are
linear regression) but with different parameter values.

As an example, suppose Y |X is a logistic regression. Unless missingness depends only on Y ,
the distribution of Y |X,R = 1 does not follow a standard logistic regression model structure.
Instead, we have

logit(P (Y = 1|X,R = 1)) = θT (1, X) + log

[
P (R = 1|X,Y = 1)

P (R = 1|X,Y = 0)

]
where θ is the parameter in the unconditional logistic regression for Y |X. However, suppose we
approximate the Y = 1|X,R = 1 distribution with a logistic regression. In this case, we can
define weights using the logistic regression model structure for Y |X evaluated at the complete
case point estimate for θR. We can make similar substitutions for complete case draws of φR in
the distribution for X(mis)|X(obs). We note that this assumes we draw parameters using global
complete case analysis (only subjects with fully-observed data) rather than partial complete
case analysis (using subjects with fully-observed Xp for imputing Xp) as is done in MICE. We
address this issue in Section 5.2.

Assuming we can make these approximations, we can impute missing data using the al-
gorithm in Section 4.2 involving complete case parameter draws even though the individual
distributions for Y |X and X(mis)|X(obs) are not equal to the distributions for Y |X,R = 1 and
X(mis)|X(obs),R = 1 respectively. This ultimately comes from the fact that f(X(mis)|X(obs), Y ) ∝
f(Y |X,R = 1)f(X(mis)|X(obs),R = 1). All of these subtle distinctions and approximations boil
down to the following.

Key Takeaway: If we can reasonably approximate the structures (e.g. logistic regression,
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linear regression with main effects only, etc.) of the distributions for the outcome and miss-
ing covariates conditional on R = 1 with the structures of the unconditional distributions,
then we can apply the imputation and weighting algorithm in Section 4.2 even with covariate
missingness dependent on Y .

4.4 Handling missingness in Y

Up until now, we have assumed that Y is fully observed. However, it may be that Y is only
partially observed. Here, we restrict our attention to settings where missingness is independent
of Y . Now, subjects with Y entirely missing do not really provide information regarding the
relationship between Y and X, so we may simply perform our analysis and imputation entirely
ignoring subjects with missing Y . However, there are many cases where we may have partial
information on Y . For example, suppose Y represents observations across multiple time-points
for each subject. If some subjects have missing observations at only some time-points, it is
inefficient to entirely drop those subjects from analysis. Instead, we may want to impute the
missing values of Y to include in our final analysis.

Our proposed imputation and weighting strategy can be easily adapted to handle missingness
in Y . Let Y (mis) and Y (obs) denote the missing and observed parts of Y respectively. We want
to impute missing Y and X from the joint distribution

f(X(mis), Y (mis)|X(obs), Y (obs)) = f(Y (mis)|X(obs), Y (obs), X(mis))f(X(mis)|X(obs), Y (obs))

= f(Y (mis)|X,Y (obs))f(X(mis)|X(obs), Y (obs))

∝
[
f(Y (obs)|X)

] [
f(Y (mis)|X,Y (obs))f(X(mis)|X(obs))

]
We can apply the same logic as before and obtain approximate draws from f(X(mis), Y (mis)|X(obs), Y (obs))
by obtaining (1) imputations ofX from f(X(mis)|X(obs)), (2) imputations of Y from f(Y (mis)|X,Y (obs)),
and (3) corresponding analysis weights from f(Y (obs)|X). Step 1 can proceed as in Section
4.2. We can implement Step 2 by imputing missing values of Y using the distribution of Y |X
fit to the global complete case data. Then, we calculate weights proportional to f(Y |X) with
the parameter obtained from the global complete case fit.
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5 Additional notes about missingness in covariates dependent
on Y

5.1 An illustrative example

An interesting feature of the proposed stacking and imputation approach involving weighting
by f(Y |X) is that complete case analysis in both the imputation and weighting stages produces
bias. However, the point estimates in the final data analysis show very little bias.

In Figure S1, we show the estimated parameters for the Y |X and X2|X1 model across 500
simulated datasets under simulation Scenario 1 and covariate missingness in X2 dependent on Y .
Under this missingness model, we expect complete case analysis to be biased for estimating both
the Y |X model (Figure S1a) and the X2|X1 model (Figure S1b). For both distributions, we
can see that complete case analysis (red) clearly results in substantial bias relative to analysis
of the full data (green) without missingness. When we are going to impute missing X2, we are
drawing parameters associated with the imputation model from the red distribution when we
perform complete case analysis. Similarly, estimation of the weights in stacked data analysis
based on complete case analysis uses the red distribution under complete case analysis. When
we put these pieces together and perform the proposed stacked and f(Y |X)-weighted analysis,
however, we obtain the yellow estimates in Figure S1a. These estimates (yellow) are centered
near the full data distribution (green). As motivated by our theoretical development, when we
put the imputation and weight stages together (both of which involve biased distributions from
complete case analysis as in Web Appendix Section 4.2) and perform our final data analysis
on the stacked and f(Y |X)-weighted data, the resulting outcome model parameters show very
little bias.

5.2 A note on parameter draws

Our theoretical justification for applying the proposed imputation and weighting approach under
MAR dependent on Y assumes that parameters used for covariate imputation are drawn using
the global complete case data (subjects with Ri = 1). However, users may often want to
apply existing MICE software for performing the covariate imputation. When imputing each
covariate Xp with missingness, most MICE imputation algorithms obtain parameter draws using
the partial complete case data with respect to Xp (data from all subjects with Xp observed)
rather than the global complete case data. In practice, we do not expect this to substantially
impact the performance of our proposed approach.

However, there is still a potential that parameter draws as implemented in the R package
mice could result in some small bias when missingness depends on Y , since the theoretical
justification in this setting relies on global complete case analysis for parameter draws. In
Table S1, we compare point estimates obtained from our f(Y |X)-weighted stacking approach
when imputation model parameters are drawn using the global complete case data vs. the
covariate-specific partial complete case data (termed MICE complete case draws here). We
compare the outcome model point estimates across 500 simulated datasets for two outcome
model scenarios: logistic and linear regression. In the logistic regression case, we do not see
any evidence of bias in parameter estimates due to the choice of parameter draws. In the
linear regression case, we see some small bias in estimating the intercept of the linear regression
model when parameters are drawn as in MICE rather than using the overall complete case data.
However, these biases are very small, and the covariate effects of interest appear unaffected. We
see this phenomenon throughout our simulations, where at most negligible bias can be seen to
result from the use of MICE-type parameter draws rather than parameter draws based on the
overall complete case data.
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Figure S1: Estimation of Y |X model parameters using full data, complete case data, and
stacked imputation with f(Y |X) weighting across 500 simulated datasets*

(a) Distribution of estimated Y |X1, X2 model parameter estimates
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(b) Distribution estimated X2|X1 model parameter estimates
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* Estimation using full data without missingness, complete case data, or estimated parameters after applying
our proposed stacked data analysis approach.
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Table S1: Impact of parameter drawing strategy on bias of outcome point estimates for the
Stacked, f(Y |X)-weighted approach across 500 simulated datasets.*

Missingness Method Intercept X1 X2 X3

Scenario 2: Logistic regression with missingness in X2 and X3

MAR X,Y MICE complete case draws** -0.007 0.003 -0.005 0.002
MAR X,Y Overall complete case draws 0.001 -0.001 -0.005 0.003
MAR Y MICE complete case draws 0.006 0.001 0.001 -0.003
MAR Y Overall complete case draws 0.001 0.001 0.001 -0.003

Scenario 5: Linear regression with missingness in X2 and X3
†

MAR X,Y MICE complete case draws -0.023 0.005 -0.007 -0.004
MAR X,Y Overall complete case draws 0.002 0.001 -0.005 -0.001
MAR Y MICE complete case draws 0.015 -0.001 -0.003 -0.005
MAR Y Overall complete case draws -0.002 0.004 -0.002 -0.003

* True values = 0.50 for all parameters. Covariate imputation used correctly-specified linear regression imputation
models.
† X1, X2, and X3 simulated as in Scenario 2. Y generated under linear regression model N(0.5+0.5X1 +0.5X2 +
0.5X3, 1), and missingness generated as in Scenario 2.
** “MICE complete case draws” refers to the practice of drawing the parameter for imputing covariate Xp using
the partial complete case data with respect to Xp as implemented in mice in R. “Overall complete case draws”
corresponds to drawing the parameter for imputing covariate Xp using the subjects with global complete case
data for all X.
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