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Abstract
Multiple imputation by chained equations (MICE) has emerged as a popular
approach for handling missing data. A central challenge for applying MICE is
determining how to incorporate outcome information into covariate imputation
models, particularly for complicated outcomes. Often, we have a particular anal-
ysis model in mind, and we would like to ensure congeniality between the impu-
tation and analysismodels.We propose a novel strategy for directly incorporating
the analysis model into the handling of missing data. In our proposed approach,
multiple imputations of missing covariates are obtained without using outcome
information. We then utilize the strategy of imputation stacking, where multiple
imputations are stacked on top of each other to create a large data set. The analy-
sismodel is then incorporated throughweights. Instead of applying Rubin’s com-
bining rules, we obtain parameter estimates by fitting a weighted version of the
analysis model on the stacked data set. We propose a novel estimator for obtain-
ing standard errors for this stacked andweighted analysis. Our estimator is based
on the observed data information principle in Louis’ work and can be applied for
analyzing stacked multiple imputations more generally. Our approach for ana-
lyzing stackedmultiple imputations is the first method that can be easily applied
(using R package StackImpute) for a wide variety of standard analysis models
and missing data settings.

KEYWORDS
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1 INTRODUCTION

Missing data are a common problem in modern observa-
tional data analysis, and the handling and treatment of
these missing data can often have a large impact on sta-
tistical inference (Little and Rubin, 2002). In response, a
suite of statistical methods has been developed to tackle
the various challenges that arise. In particular, a statistical
strategy called multiple imputation has emerged as a pop-
ular and attractive approach for handling missing data in

a wide variety of settings. For multiple imputation, we use
statistical models to draw multiple versions of the missing
data, resulting in 𝑀 complete data sets. Then, the desired
analysis is applied to each complete data set separately and
combined across data sets using Rubin’s combining rules
(Little and Rubin, 2002). The central challenge of multiple
imputation is specifying the statistical models or distribu-
tions used to obtain the draws of the missing data.
Traditional multiple imputation strategies involve fill-

ing in values for the missing data by drawing from
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distributions obtained from an assumed joint distribution
for all the variables of interest. Rather than specifying a
joint model, an alternative strategy called multiple impu-
tation by chained equations (MICE) involves specifying
conditional distributions for each variable with missing-
ness directly (Raghunathan, 2001; Van Buuren et al., 2006).
These imputation distributions can be very flexible (eg,
random forests), or they can be based on standard regres-
sion models. Generally, these imputation models will not
correspond to a valid joint distribution. Compared to impu-
tation using a valid joint distribution, MICE has fewer the-
oretical guarantees (Liu et al., 2013; Hughes et al., 2014).
However, MICE is often easy to implement and under-
stand, and it can accommodate complicated variable rela-
tionships such as bounds, nonlinearity, and interactions.
Software development has made MICE readily accessible
to analysts, leading MICE to become an essential tool in
the statistical toolbox for handling missing data.
With easy-to-use software at an analyst’s fingertips, it

can become tempting to throw MICE at any missing data
problem without careful thought about the imputation
distributions. Suppose our ultimate goal is to model the
relationship between some outcome, 𝑌, and covariates 𝑋.
Suppose we have missingness in 𝑋 and possibly also in 𝑌.
Literature suggests that we should somehow incorporate
information in 𝑌 into the distributions used to impute
missing values in 𝑋 (Moons et al., 2006). A particularly
tricky problem arises when 𝑌 is complicated. 𝑌 may be a
longitudinal or survival-type outcome, or the relationship
between 𝑌 and 𝑋 may involve interactions. Incorporating
complicated 𝑌 into imputation models for 𝑋 can be
challenging and can potentially have a large impact in
terms of bias in downstream analyses (Beesley et al., 2016).
Bartlett et al. (2014) proposes a strategy called SMC-FCS

(substantive model compatible fully conditional specifica-
tion) that uses the assumed 𝑌|𝑋 relationship directly to
incorporate 𝑌 into the imputation distributions. In partic-
ular, missing covariate 𝑋𝑝 is imputed from a distribution
proportional to the outcome model 𝑓(𝑌|𝑋) multiplied by
an assumed relationship between 𝑋𝑝 and the other covari-
ates, 𝑋−𝑝. An advantage of this approach over traditional
MICE is that the assumed relationship between 𝑌 and 𝑋

used for imputation is consistent with the assumed rela-
tionship in the analysis model, called congeniality (Meng,
1994). A lack of congeniality can sometimes produce bias in
the downstream estimation of standard errors by Rubin’s
rules (Robins and Wang, 2000). Additionally, this imputa-
tion strategy can substantially simplify the task of incor-
porating 𝑌 into the imputation of missing𝑋. However, the
resulting imputation distribution is often knownonly up to
proportionality, andmore advancedmethods such as rejec-
tion sampling or Metropolis-Hastings methods must often
be used to obtain imputed values for each 𝑋𝑝. Stata and

R packages titled smcfcs exist for implementing SMC-FCS
in certain outcomemodeling settings, but this method can
require additional work to implement in general (Bartlett
and Morris, 2015).
In this paper, we propose a novel strategy for incorpo-

rating the outcome model structure into the imputation
pipeline that maintains the advantages of the method
in Bartlett et al. (2014) but is more easily implemented,
particularly for complicated or nonstandard 𝑌|𝑋. We
utilize the strategy of imputation stacking, where multiple
imputations of the missing data are stacked on top of each
other to create a large data set (Robins and Wang, 2000;
Van Buuren, 2018). In our proposed approach, multiple
imputations of missing 𝑋 are obtained using imputation
distributions that do not involve the outcome 𝑌. While this
approachwill generally result in bias for standardmultiple
imputation, our method attains valid parameter estimates
by augmenting the stacked data set with weights defined
using the 𝑌|𝑋 model structure. We then estimate param-
eters in the analysis model by fitting a weighted model for
𝑌|𝑋 on the stacked data set. This strategy allows imputa-
tion and data analysis to be easily performed by separate
analysts without concerns about uncongeniality between
the imputation and analysis models and the potential neg-
ative impact on inference. Additionally, this imputation
stacking strategy is particularly useful in settings wherewe
want to impose restrictions across imputed data sets such
as when variable selection is of primary interest (Wood
et al., 2008). This work is the first to propose a statistical
strategy for chained equations imputation that (a) directly
incorporates the outcomemodel structure and (b) involves
imputation from standard models such as regression
models.
While imputation stacking can produce valid parameter

estimates when the imputation models are well specified,
additional work is needed to obtain valid standard error
estimates (Robins and Wang, 2000; Van Buuren, 2018).
Robins andWang (2000) and Kim (2011) provide strategies
for estimating standard errors using stacked, imputed data.
As we will discuss later on, both approaches have substan-
tial limitations that may reduce their usage in practice.
Wood et al. (2008) proposes an approach for estimating
standard errors that is easy to implement but weakly jus-
tified in settings where missingness is not completely ran-
dom. In this paper, we develop an alternative strategy for
estimating standard errors for data analysis using stacked
multiple imputations, and this estimator can be applied in
general imputation settings. Our approach for estimating
standard errors based on stacked multiple imputations is
the first proposed method that can be easily and routinely
applied for a wide variety of standard analysis models and
missing data settings. We have developed an accompany-
ing R package StackImpute that will allow the proposed
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TABLE 1 Summary of some existing and proposed imputation and data analysis strategies

Standard MICE Bartlett et al. (2014) Stacked, 1/M weighted Stacked, 𝑓(𝑌|𝑋) weighted
Covariate imputation 𝑓(𝑋𝑝|𝑋−𝑝, 𝑌),

specified as
regression model

𝑓(𝑋𝑝|𝑋−𝑝, 𝑌) ∝

𝑓(𝑌|𝑋)𝑓(𝑋𝑝|𝑋−𝑝),
where 𝑓(𝑋𝑝|𝑋−𝑝) is a
regression model

Often, same as MICE.
Could also apply other
imputation methods.

𝑓(𝑋𝑝|𝑋−𝑝), specified as
regression model

Point estimation Fit model to each
imputed data set
separately

Fit model to each imputed
data set separately

Fit single weighted model
to stacked imputations.a

Fit single weighted model to
stacked imputations.
Weights ∝ 𝑓(𝑌|𝑋)

Standard errors Rubin’s rules Rubin’s rules Previously, unclear how to
estimate.b We propose
new approach in 3.

We propose new approach
in 3.

Comments Easy to implement
Tricky to specify
imputation
regressions

Limited outcome models
supported by current
software

Easy to implement for
supported models

Outcome model built into
imputation

Inherits properties of
imputation approach
chosen

Different data analysis
Proposed new standard
errors

Imputation ignores 𝑌. Easy
to implement.

Imputation and analysis
separated. Easy to
compare outcome models.

R packages mice smcfcs mice, StackImputec mice, StackImputec

aTall stack corresponds to stack of 𝑀 imputed data sets, with complete cases listed 𝑀 times. All rows given weight 1∕𝑀. Short stack corresponds to stack with
complete cases listed only once. Imputed rows given weight 1∕𝑀 and complete cases given weight 1.
bSandwich estimator applied to weighted, stacked data known to underestimate standard errors. Wood et al. (2008) proposed largely untested ad hoc correction
method for stacked analysis standard errors. Bootstrap methods for estimating standard errors are computationally expensive.
cR package for estimating standard errors using 3. Development version available at https://github.com/lbeesleyBIOSTAT/StackImpute. Can be implemented for
additional outcome models using custom software. See Web Supplemental Section 3 for details.

estimation to be easily implemented for many popular
regression models including generalized linear models
and Cox proportional hazards models. Table 1 provides
a breakdown of the advantages and disadvantages of the
proposed approach relative to existing methods.
In Section 2 of this paper, we detail our proposed impu-

tation algorithm and its theoretical motivation. In Sec-
tion 3, we provide a strategy for estimating standard errors.
In Section 4, we demonstrate the potential of our pro-
posedmethod through a simulation study. In Section 5, we
apply this imputation approach to handlemissing data in a
study of overall survival and time to recurrence for patients
with head and neck cancer. In Section 6, we present a
discussion.

2 IMPUTATION STRATEGY

Suppose we are interested in the relationship between out-
come 𝑌 and covariate variables represented by matrix 𝑋.
We will assume for now that 𝑌 is fully observed, and we
will extend to the setting with missing 𝑌 later on. Let
binary 𝑅𝑖 indicate whether subject 𝑖 is a complete case (all
𝑋𝑖 observed), where 𝑖 = 1, … , 𝑛. Let 𝑋(𝑚𝑖𝑠)

𝑖
and 𝑋

(𝑜𝑏𝑠)

𝑖
cor-

respond to the missing and observed entries in 𝑋𝑖 , respec-
tively. We will assume that observations are independent

across 𝑖, although our results can be extended to settings
with correlation across 𝑖. Additionally, we will assume that
the data are missing at random (MAR) as defined in Lit-
tle and Rubin (2002), where missingness may depend only
on fully observed variables. We suppose our interest is in
parameter 𝜃 corresponding to the assumed distribution for
𝑌|𝑋.
Multiple imputation strategies attempt to drawmultiple

potential values for𝑋(𝑚𝑖𝑠)

𝑖
from the posterior predictive dis-

tribution 𝑓(𝑋
(𝑚𝑖𝑠)

𝑖
|𝑋(𝑜𝑏𝑠)

𝑖
, 𝑌𝑖) as follows:

𝑓(𝑋
(𝑚𝑖𝑠)

𝑖
|𝑋(𝑜𝑏𝑠)

𝑖
, 𝑌𝑖) ∝ 𝑓(𝑌𝑖|𝑋𝑖)𝑓(𝑋

(𝑚𝑖𝑠)

𝑖
|𝑋(𝑜𝑏𝑠)

𝑖
). (1)

Obtaining a draw from Equation (1) directly can be diffi-
cult, since the distribution is only known up to proportion-
ality. Usual MICE imputation would attempt to approxi-
mate a draw from (1) by drawing missing covariates from a
series of simpler distributions. An alternative strategy for
approximating a draw from (1) is via importance sampling
as discussed in Little and Rubin (2002) and Tanner (1993),
where we first draw multiple times from 𝑓(𝑋

(𝑚𝑖𝑠)

𝑖
|𝑋(𝑜𝑏𝑠)

𝑖
).

Note that this distribution does not condition on 𝑌. Then,
we choose a single imputation of 𝑋(𝑚𝑖𝑠)

𝑖
from these draws

using a multinomial distribution where we select the 𝑗th
draw with probability proportional to 𝑓(𝑌𝑖|𝑋𝑖𝑗) and where
𝑋𝑖𝑗 corresponds to the 𝑗th draw of 𝑋

(𝑚𝑖𝑠)

𝑖
. Inference for

https://github.com/lbeesleyBIOSTAT/StackImpute
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ESTIMATE

Step 1: Impute X Step 2: Stack 
imputed datasets

Step 3: Calculate 
weights using 

f(Y|X) from CCA
Step 4: Estimation

Impute X (ignoring Y) 

n x p

n x p

n x p n x p

n x p

w
ei

gh
ts

   
   

co
lu

m
n

Fit weighted Y|X model 
to stacked dataset

Create M complete datasets

Point estimate
+

Standard errors

Mn x p Mn x (p+1)

STACK AUGMENT

F IGURE 1 Diagram of proposed covariate imputation strategy
Note.Missing Y , if any, can be imputed separately from 𝑓(𝑌|𝑋) fixing imputed X from Step 1. Abbreviation: CCA, complete case analysis.

either approach could then proceed by constructing mul-
tiple imputed data sets, fitting the model of interest to
each data set, and combining inference across imputed
data sets using Rubin’s combining rules (Little and Rubin,
2002). This approach can work well, but it can involve tak-
ing many, many draws from 𝑓(𝑋

(𝑚𝑖𝑠)

𝑖
|𝑋(𝑜𝑏𝑠)

𝑖
), which can

increase the computational burden.

2.1 Proposed imputation strategy

Rather than taking multiple draws from 𝑓(𝑋
(𝑚𝑖𝑠)

𝑖
|𝑋(𝑜𝑏𝑠)

𝑖
)

to obtain a single imputation from (1), we propose using
all those draws as our multiple imputations and weighting
them proportional to 𝑓(𝑌𝑖|𝑋𝑖) in the final analysis, where
weights are scaled to sum to 1 across imputations.Weights,
therefore, are defined across imputed data sets rather than
within imputed data sets. In order to make inference about
𝜃, we perform the steps detailed below and shown in
Figure 1. We provide example R code for implementation
in Web Supplemental Section 3, and we provide a detailed
theoretical justification for this approach in Web Supple-
mental Section 4. Table 1 provides a comparison of the
proposed approach with existing methods.

∙ Step 1: Impute missingness in covariates ignoring 𝑌

In this step, we obtain the multiple imputations of
𝑋𝑖 from an assumed distribution for 𝑓(𝑋

(𝑚𝑖𝑠)

𝑖
|𝑋(𝑜𝑏𝑠)

𝑖
),

which in practice can be implemented using MICE by
specifying regression models for each covariate with
missingness given the other covariates but not including
the outcome. An additional complication arises when
we also have missingness in 𝑌. In this case, we can

proceed as above to obtain imputations of 𝑋 ignoring
𝑌 and then impute missing values of 𝑌 from 𝑓(𝑌|𝑋)

for each imputed data set. See Web Supplemental
Section 4.4 for details.

∙ Step 2: Stack imputations
We obtain a stacked version of the data, where each
of the 𝑀 imputed data sets of size 𝑛 × 𝑝 are stacked
on top of each other to form a 𝑀𝑛 × 𝑝 data set, called
the “tall stack.” An alternative stacking strategy is to
include subjects with fully observed data only once in
the stacked data set. If 𝑛1 is the number of subjects with
fully observed data, this will result in a stacked data
set with 𝑛1 + (𝑛 − 𝑛1)𝑀 rows, called the “short stack.”
In settings where 𝑛 or 𝑀 is large, this may be a more
memory- and computationally efficient stacking strat-
egy and should have no impact on resulting inference
for appropriately defined weights.

∙ Step 3: Assign weights
In the existing point estimation strategy using stacked
multiple imputations (see Table 1), we augment the
stacked data set with weights defined for each row as
1 divided by the number of times that subject appears
in the stacked data set. In our modified imputation
stacking approach, we augment the stacked data set
with a weight column, where weights are defined to
be proportional to 𝑓(𝑌𝑖|𝑋𝑖). In practice, this may be
hard to calculate, since it involves integrating out the
corresponding parameter. Instead, we replace 𝑓(𝑌𝑖|𝑋𝑖)

with 𝑓(𝑌𝑖|𝑋𝑖; �̂�𝑐𝑐), where �̂�𝑐𝑐 is the estimated 𝜃 obtained
from complete case analysis (CCA) for 𝑌|𝑋 (fit 𝑌|𝑋 to
data from subjects without any missingness). We define
weights using complete case data following logic in Sec-
tion 2.2 and Web Supplemental Section 4. For the row
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corresponding to the𝑚th imputation for the 𝑖th subject
and corresponding imputation 𝑋𝑖𝑚, assign weight

𝑤𝑖𝑚 =
𝑓(𝑌𝑖|𝑋𝑖𝑚; �̂�𝑐𝑐)∑𝑀

𝑗=1
𝑓(𝑌𝑖|𝑋𝑖𝑗; �̂�𝑐𝑐)

.

If we define the stack using the short stack method,
define the weight to be 1 for all subjects with fully
observed data. Weights for fully observed subjects
should be set to 1∕𝑀 for the tall stack method. An
alternative weighting strategy is to define weights
as 𝑤𝑖𝑚 =

𝑓(𝑌𝑖|𝑋𝑖𝑚;𝜃𝑚
𝑐𝑐)∑𝑀

𝑗=1 𝑓(𝑌𝑖|𝑋𝑖𝑗;𝜃
𝑗
𝑐𝑐)
, where 𝜃

𝑗
𝑐𝑐 is a draw of the

complete-case 𝜃 rather than the MLE. In simulations
(not shown), we saw little difference between the two
approaches, but the difference will likely be larger for
smaller complete case samples. We use point estimates
of 𝜃𝑐𝑐 in our simulations in Section 4.

∙ Step 4: Estimate 𝜃

Estimate 𝜃 by fitting a weighted model for 𝑌|𝑋 to the
stacked data set withweights𝑤.We describe how to esti-
mate corresponding standard errors in Section 3.

2.2 Missingness dependent on Y

Now, we consider the particular case where missingness
is MAR dependent on 𝑌. In this case, the proposed impu-
tation strategy ignoring 𝑌 induces a missing not at ran-
dom (MNAR) mechanism when missingness is expressed
only as a function of𝑋 (Little and Rubin, 2002). Therefore,
additional thought is needed to assess whether it is appro-
priate to impute missing 𝑋 using the proposed approach
when missingness depends explicitly on 𝑌. Let 𝑹𝒊 repre-
sent the random variable indicating missingness, where
the observed 𝑅𝑖 is the data realization of 𝑹𝒊. Under MAR
dependent on 𝑌,

𝑓(𝑌𝑖|𝑋𝑖, 𝑹𝒊 = 1) ≠ 𝑓(𝑌𝑖|𝑋𝑖)

and

𝑓(𝑋
(𝑚𝑖𝑠)

𝑖
|𝑋(𝑜𝑏𝑠)

𝑖
, 𝑹𝒊 = 1) ≠ 𝑓(𝑋

(𝑚𝑖𝑠)

𝑖
|𝑋(𝑜𝑏𝑠)

𝑖
).

CCA will produce biased results for the parameters
related to 𝑓(𝑌𝑖|𝑋𝑖) and 𝑓(𝑋

(𝑚𝑖𝑠)

𝑖
|𝑋(𝑜𝑏𝑠)

𝑖
) when missingness

depends on 𝑌. However, we have that

𝑓(𝑋
(𝑚𝑖𝑠)

𝑖
|𝑋(𝑜𝑏𝑠)

𝑖
, 𝑌𝑖) = 𝑓(𝑋

(𝑚𝑖𝑠)

𝑖
|𝑋(𝑜𝑏𝑠)

𝑖
, 𝑌𝑖, 𝑹𝒊 = 1)

∝ 𝑓(𝑌𝑖|𝑋𝑖, 𝑹𝒊 = 1)𝑓(𝑋
(𝑚𝑖𝑠)

𝑖
|𝑋(𝑜𝑏𝑠)

𝑖
, 𝑹𝒊 = 1). (2)

We can obtain a draw from 𝑓(𝑋
(𝑚𝑖𝑠)

𝑖
|𝑋(𝑜𝑏𝑠)

𝑖
, 𝑌𝑖) by first

drawing missing 𝑋 from 𝑓(𝑋
(𝑚𝑖𝑠)

𝑖
|𝑋(𝑜𝑏𝑠)

𝑖
, 𝑹𝒊 = 1) and then

weighting these draws proportional to 𝑓(𝑌𝑖|𝑋𝑖, 𝑹𝒊 = 1).
We can apply CCA (using realization 𝑅 of 𝑹) to estimate
parameters related to the distributions for 𝑌|𝑋,𝑹 = 1

and 𝑋(𝑚𝑖𝑠)|𝑋(𝑜𝑏𝑠), 𝑹 = 1. Suppose we can assume that the
structure of the conditional and unconditional distribu-
tions in (2) and (1), respectively, are approximately the
same. For example, if 𝑌|𝑋 is a linear regression, suppose
𝑌|𝑋,𝑹 = 1 approximately follows a linear regression with
different parameter values. Under this assumption, we can
also apply the strategy in Figure 1 to obtain approximate
draws from 𝑓(𝑋

(𝑚𝑖𝑠)

𝑖
|𝑋(𝑜𝑏𝑠)

𝑖
, 𝑌𝑖), allowing us to handle

MAR missingness related to 𝑌 using the same strategy as
before.
In summary, we can use themethod in Figure 1 to obtain

essentially unbiased estimates of the outcome model
parameters under MAR dependent on 𝑌 even though we
have bias in (a) the estimated weights 𝑓(𝑌𝑖|𝑋𝑖) from Step 3
and (b) the parameter draws performed within the covari-
ate imputation in Step 1. Ultimately, these biases in the
individual stages of imputation and weighting wash out in
the final proposed data analysis. Additional commentary
can be found in Supplementary Section 4.
In order to apply the method in Figure 1 under MAR

dependent on 𝑌, we assume imputation is performed by
drawing parameters using the overall complete case data,
but this is not how parameters are often drawn within the
MICE imputation algorithm. Instead, the algorithm usu-
ally draws parameters for imputation of a given covariate
𝑋𝑝 using data from subjects with 𝑋𝑝 fully observed, treat-
ing the most recent sampled values of 𝑋−𝑝 as observed.
This difference in how parameters are drawn results in a
potential for residual bias in estimating outcome model
parameters downstream, but we expect this bias to be
generally small (see Supplementary Section 5.2 for more
information).

3 ESTIMATING STANDARD ERRORS

A major drawback of the stacked imputation approach
in general is the difficulty in estimating standard errors.
Conventional estimators such as sandwich estimators only
account for the so-called “within-imputation” variation,
ignoring the “between-imputation” variation (Wood et al.,
2008). Wood et al. (2008) proposed a strategy for scaling
up the standard errors obtained from fitting a model to the
stacked data. Standard errors associated with covariate 𝑋𝑝

are obtained by fitting amodel for𝑌|𝑋 andweighting each
row of the stacked data by 1−𝑓𝑝

𝑀
, where 𝑓𝑝 is the fraction

of missing information in 𝑋𝑝. The fraction of missing
information 𝑓𝑝 is roughly estimated as the proportion of
subjects with missing values for 𝑋𝑝. This strategy requires
the model of interest to be refit multiple times to obtain
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standard errors for each 𝑋𝑝. Alternatively, we can obtain
similar standard errors by postmultiplying the variance
associated with covariate 𝑋𝑝 by

𝑀

1−𝑓𝑝

after fitting a single

regression model weighted by 1∕𝑀. This approach from
Wood et al. (2008) is motivated under MCAR missingness
and simple to implement, but its ability to estimate
standard errors in other missingness settings is unclear.
Yang andKim (2016) andKim (2011) developed a stacked

imputation strategy in the survey sampling context called
fractional multiple imputation. Estimation proceeds using
an iterative algorithm in which we define weights as a
function of the analysis/imputation methods and survey
weights, estimate parameters of interest, re-estimate
weights, and so forth. Standard errors are then estimated
using a jackknife-type approach. This estimator can be
complicated and computationally expensive to estimate,
and the lack of available software for general parametric
fractional imputation severely limits its ability to be used
in practice.
Another strategy in the literature for estimating stan-

dard errors for stackedmultiple imputation was developed
in Robins and Wang (2000) and more recently applied
in Hughes et al. (2016). This estimator requires score and
information matrices for both the imputation and analy-
sis models. Additionally, the estimator itself can be com-
plicated to conceptualize and compute, and no standard
software exists to make such calculations routine. This
approach also requires that the imputation models are
standard parametric models from which we can obtain
score and information matrices, which excludes many
popular non-parametric imputation strategies such as ran-
dom forests or predictive mean matching. Given the com-
plexity that serves as a barrier to general use of this estima-
tor, we chose not to implement the methods in Robins and
Wang (2000) and Kim (2011) in our simulations later on.
We propose an alternative strategy for estimating

standard errors that, like the method in Robins and Wang
(2000), involves the score and information matrices from
the outcome model. Unlike Robins and Wang (2000),
however, we do not require information about the imputa-
tion distributions. Our proposed estimator can be applied
(a) when multiple imputations are obtained using existing
imputation methods (eg, MICE, joint modeling, SMC-
FCS) and then stacked or (b) when we apply our modified
imputation and weighting approach in Figure 1. Like
standard errors from Rubin’s rules (but unlike Robins and
Wang, 2000), our estimator is not guaranteed to have good
performance when imputation and analysis models are
uncongenial.
In obtaining an estimator, we use the complete infor-

mation principle discussed in Louis (1982), namely,
𝐼𝑜𝑏𝑠(𝜃) = 𝐼𝑐𝑜𝑚(𝜃) − 𝐼𝑚𝑖𝑠(𝜃), where 𝐼𝑜𝑏𝑠 is the observed

data information matrix (the target), 𝐼𝑐𝑜𝑚 is the expected
complete data information matrix given the observed
data, and 𝐼𝑚𝑖𝑠 is the expected missing information given
the observed data. While 𝐼𝑜𝑏𝑠 can be difficult to estimate
directly, 𝐼𝑐𝑜𝑚 and 𝐼𝑚𝑖𝑠 may bemore readily estimated. First,
we will assume data are independent across values of 𝑖. Let
𝐽𝑖𝑐𝑜𝑚 correspond to the complete data Fisher information
matrix contribution for subject 𝑖, and let𝑈𝑖

𝑐𝑜𝑚 be the corre-
sponding score matrix contribution for subject 𝑖. See Web
Supplemental Section 2 for an example. Wei and Tanner
(1990) proposed a Monte Carlo version of the estimator
developed in Louis (1982) that involves averaging the
estimated 𝐼𝑐𝑜𝑚 and 𝐼𝑚𝑖𝑠 across multiple imputations of the
data. Using a similar strategy, we propose a generalization
of the estimator in Louis (1982) that allows for individual
and imputation-specific weights, 𝑤𝑖𝑚, and involves aver-
aging across multiple imputations. With imputation as
in Figure 1, 𝑤𝑖𝑚 corresponds to the augmented weight in
Step 3. When applying standard imputation strategies that
incorporate 𝑌 (eg, MICE, joint modeling, SMC-FCS), we
can define 𝑤𝑖𝑚 for each 𝑖 as the number of times that the
subject appears in the stacked data set (𝑀 for tall stack,
1 for short stack). Let 𝑋𝑖𝑚 denote the 𝑚th imputation of
𝑋𝑖 . For subjects with fully observed 𝑋𝑖 , define 𝑋𝑖𝑚 = 𝑋𝑖 .
As shown in Web Supplemental Section 1, we can
express

𝐼𝑜𝑏𝑠(�̂�) ≈
∑
𝑖

𝐸�̂�

[
𝐽𝑖𝑐𝑜𝑚(𝑋𝑖, 𝑌𝑖)|𝑋𝑜𝑏𝑠

𝑖
, 𝑌𝑖

]

−
∑
𝑖

𝑉𝑎𝑟�̂�
[
𝑈𝑖

𝑐𝑜𝑚(𝑋𝑖, 𝑌𝑖)|𝑋𝑜𝑏𝑠
𝑖

, 𝑌𝑖

]

≈
∑
𝑖

∑
𝑚

𝑤𝑖𝑚𝐽𝑖𝑐𝑜𝑚(𝑋𝑖𝑚, 𝑌𝑖)

−
∑
𝑖

∑
𝑚

𝑤𝑖𝑚

[
𝑈𝑖

𝑐𝑜𝑚(𝑋𝑖𝑚, 𝑌𝑖) − �̄�𝑘
𝑐𝑜𝑚

]⊗2
, (3)

where �̄�𝑘
𝑐𝑜𝑚 =

∑
𝑗
𝑤𝑘𝑗𝑈

𝑘
𝑐𝑜𝑚(𝑋𝑘𝑗, 𝑌𝑘) and where �̂� is the

point estimate obtained from fitting the weighted model
for 𝑌|𝑋 on the stacked data. The first element in the
above equation is the weighted complete data information
matrix for the outcome model evaluated using the stacked
data set. The second term is the weighted variance of
𝑈𝑖

𝑐𝑜𝑚 summed over subjects. Given the equations for
the complete data score and information matrix for an
individual under the outcome model, these quantities
can be easily calculated using the stacked data. We have
developed an accompanying R package StackImpute that
provides functions for calculating these standard errors for
several common regression models including generalized
linear models and Cox proportional hazards models.
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4 SIMULATIONS

In this section, we provide results from a simulation study
exploring the performance of the proposed imputation
strategy and corresponding standard error estimator in
terms of bias, coverage, and empirical variances of point
estimates. This simulation study is broken up into four
scenarios: (a) Gaussian 𝑌 with missingness in a single
covariate, (b) binary 𝑌 with missingness in two covariates,
(c) Gaussian 𝑌 with missingness in a single covariate
and interactions in the outcome model, and (d) censored
survival-type 𝑌 with missingness in a single covariate. We
consider four different missingness mechanisms: MCAR,
MAR dependent on 𝑋, MAR dependent on 𝑌, and MAR
dependent on both 𝑋 and 𝑌.

4.1 Simulation set-up

In all four scenarios, we generated 500 simulated data
sets of 2000 subjects each. Simulations then proceeded as
follows:

Scenario 1:Gaussian𝑌|𝑋1, 𝑋2withmissingness in𝑋2

We generate covariates 𝑋1 and 𝑋2 from
a multivariate normal distribution with
mean 0, Var(𝑋1) = 0.49, Var(𝑋2) = 0.09,
and covariance of 0.12. We then generated
𝑌|𝑋1, 𝑋2 ∼ 𝑁(0.53𝑋1 + 1.25𝑋2, 0.55). Roughly
50% missingness was generated in 𝑋2 under
the model logit(𝑃(𝑋2 observed|𝑋1, 𝑌)) = 𝜙0 +

𝜙1𝑋1 + 𝜙2𝑌 with values 𝜙 = {(0, 0, 0), (0, 1, 0),

(0, 0, 1), (0, 1, −1)}. These values of 𝜙 correspond to
MCAR, MAR dependent on 𝑋1, MAR dependent
on 𝑌, and MAR dependent on 𝑋1 and 𝑌, respec-
tively.

Scenario 2: Binary 𝑌|𝑋1, 𝑋2, 𝑋3 with missingness in
𝑋2, 𝑋3

We generate covariates 𝑋1, 𝑋2, and 𝑋3 from
a multivariate normal distribution with mean
0, unit variances, and pairwise covariance of
0.3. We then generated binary 𝑌 using the rela-
tion logit(𝑃(𝑌 = 1|𝑋1, 𝑋2, 𝑋3)) = 0.5 + 0.5𝑋1 +

0.5𝑋2 + 0.5𝑋3. Missingness in 𝑋2 was gener-
ated using the model from Scenario 1 with
𝜙 = {(0.5, 0, 0), (0.5, 1, 0), (0.5, 0, 1), (0.5, 1, −1)}

and independent of 𝑋3. We then induced 30%
MCAR missingness for 𝑋3. This resulted in
roughly 40% of subjects having complete data.

Scenario 3:Gaussian𝑌|𝑋1, 𝑋2, 𝑋1 × 𝑋2 withmissing-
ness in 𝑋2

We generate covariates 𝑋1 and 𝑋2 from a mul-
tivariate normal distribution with mean 0,

Var(𝑋1) = 0.81, Var(𝑋2) = 1.21, and covari-
ance of 0.59. We then generated 𝑌|𝑋1, 𝑋2 ∼

𝑁(0 + 𝑋1 + 𝑋2 + 𝑋1 × 𝑋2, 1). We generate miss-
ingness in 𝑋2 as in Scenario 1.

Scenario 4:Exponential𝑇|𝑋1, 𝑋2 withmissingness in
𝑋2 and uniform censoring
We generate covariates𝑋1 and𝑋2 from amultivari-
ate normal distribution with mean 0, Var(𝑋1) =

1, Var(𝑋2) = 1, and covariance of 0.5. We then
generated 𝑇|𝑋1, 𝑋2 to have an exponential
distribution with scale parameter 𝑒0.5𝑋1+0.5𝑋2 .
Uniform(0.2, 3) censoring was then imposed on
𝑇. Roughly 50% missingness was generated in 𝑋2

under the model logit(𝑃(𝑋2 observed|𝑋1, 𝑌)) =

𝜙0 + 𝜙1𝑋1 + 𝜙2𝛿 with values 𝜙 = {(0, 0, 0),

(0, 1, 0), (−0.7, 0, 1), (−0.7, 1, −1)}, where 𝛿 cor-
responds to the event/censoring indicator and is
a part of 𝑌. Missingness dependent on 𝛿 could
be induced by missingness related to unobserved
variable 𝑈 related to the outcome.

Once the data were simulated, we performed multiple
imputation of the missing values of 𝑋 using methods
described in Table 1 to obtain 𝑀 = 50 multiple impu-
tations. We then analyzed the results fitting the correct
outcome model either using Rubin’s combining rules or
the proposed stacking method. In analyzing stacked data,
standard errors were estimated using various strategies
including the standard sandwich estimator from the R
package sandwich, the method in Wood et al. (2008), and
our estimator in Equation (3). In Scenario 4, stacked anal-
ysis weights were defined based on a Cox model fit to the
complete case data. From this fit, we obtained the Breslow
estimator for the cumulative baseline hazard and defined a
piecewise constant baseline hazard that integrated to pro-
duce the estimated cumulative baseline hazard. Weights
proportional to 𝑓(𝑌|𝑋; 𝜃) could then be calculated. In
Scenario 3, we considered MICE imputation with 𝑌 incor-
porated into the imputation model through a main effect
only or through main effects and an interaction with 𝑋1.

4.2 Simulation results

Table 2 shows the average estimated bias of outcome
model parameters across 500 simulated data sets. CCA
shows substantial bias in Scenarios 1, 3, and 4 whenever
missingness depends on 𝑌. In Scenario 3, where the true
outcome model included interactions, inclusion of inter-
actions in the covariate imputation models did not reduce
bias in estimating outcome model parameters. In Scenario
2, CCA is biased only when missingness depends on both
𝑌 and covariate values, followingwell-knownproperties of
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TABLE 2 Bias of outcome model parameters under various imputation strategies and outcome model settings. Results across 500
simulations are presented. Biases greater than 0.05 are shaded. In all settings, 𝑋1 was fully observed and 𝑋2 and possibly 𝑋3 were imputed. All
biases were multiplied by 100

Bias ×𝟏𝟎𝟎 in effect of 𝑿𝟏 Bias ×𝟏𝟎𝟎 in effect of 𝑿𝟐

Missingnessa MCAR 𝑿𝟏 𝒀 𝑿𝟏, 𝒀 MCAR 𝑿𝟏 𝒀 𝑿𝟏, 𝒀

Scenario 1: Linear regression
Full data 0.02 0.01 0.14 0.28 −0.05 −0.15 −0.17 −0.20
Complete case −0.03 −0.05 −5.18 5.29 −0.16 0.18 −13.11 −13.59
MICE with 𝑌

b

Rubin’s rules 0.08 0.03 0.28 0.36 −0.41 0.02 −0.75 −0.30
Stacked, 1/M weighted 0.11 0.07 0.32 0.39 −0.53 −0.12 −0.88 −0.41

MICE without 𝑌b

Rubin’s rules 16.1 16.1 18.48 18.0 −62.6 −62.3 −69.09 −69.4
Stacked, 𝑓(𝑌|𝑋) weighted 0.32 0.27 0.60 0.66 −1.36 −0.88 −1.85 −1.46

Bartlett et al. (2014)c 0.14 0.11 0.47 0.47 −0.61 −0.21 −1.38 −0.72
Scenario 2: Logistic regression

Full data 0.34 −0.03 0.09 0.13 0.24 −0.09 0.22 0.12
Complete case 0.75 0.37 −0.12 21.0 0.18 −0.09 0.56 0.32
MICE with 𝑌

Rubin’s rules 0.35 −0.08 0.05 −0.07 −0.17 −0.60 0.17 −0.53
Stacked, 1/M weighted 0.35 −0.08 0.04 −0.09 −0.26 −0.73 0.10 −0.72

MICE without 𝑌
Rubin’s rules 5.85 5.87 5.01 6.49 −18.49 −20.8 −14.5 −26.6
Stacked, 𝑓(𝑌|𝑋) weighted 0.49 0.11 0.13 0.30 −0.25 −0.61 0.12 −0.43

Bartlett et al. (2014) 0.42 0.05 0.09 0.08 0.12 −0.31 0.30 −0.19
Scenario 3: Linear regression with interaction

Full data 0.10 0.10 0.29 −0.22 −0.14 −0.04 −0.30 0.26
Complete case 0.21 −0.10 −8.97 −0.58 −0.36 −0.09 −9.90 −14.88
MICE with 𝑌

Rubin’s rules −2.12 −13.9 −4.73 −7.99 −12.28 13.14 −1.35 −3.97
Stacked, 1/M weighted −2.07 −13.95 −4.70 −7.82 −12.40 13.11 −1.38 −4.29

MICE with 𝑌 + interactionb
−2.75 18.93 −10.05 −17.52 −10.28 21.35 5.93 −10.14

MICE without 𝑌
Rubin’s rules 36.8 24.13 16.84 81.70 −50.20 −32.75 −35.32 −70.16
Stacked, 𝑓(𝑌|𝑋) weighted 0.05 0.05 −1.22 −1.24 −0.10 −0.08 −1.37 0.01

Bartlett et al. (2014) 0.38 0.19 0.35 0.40 −0.49 −0.22 −0.50 0.16
Scenario 4: Cox proportional hazards regression

Full data 0.12 0.04 −0.07 0.21 0.18 0.10 −0.01 0.15
Complete case 0.12 0.07 −5.69 −9.07 0.07 0.26 −5.29 −4.31
MICE with 𝑌

Rubin’s rules −1.62 −1.65 −2.04 −1.83 −4.18 0.37 −3.42 0.94
Stacked, 1/M weighted −1.61 −1.59 −2.02 −1.75 −4.30 0.27 −3.54 0.83

MICE without 𝑌
Rubin’s rules 0.48 1.58 0.95 2.59 −27.2 −25.02 −29.69 −27.47
Stacked, 𝑓(𝑌|𝑋) weighted 0.15 0.56 −0.18 0.91 −0.30 −2.43 −1.26 −2.47

Bartlett et al. (2014) 0.15 −0.05 −0.08 0.12 0.03 0.25 0.11 0.22
aaMissingness is MCAR or MAR dependent on the fully observed terms listed.
bMICE either including or excluding 𝑌 from the linear regression imputation models. An interaction between 𝑌 and 𝑋1 was included in one setting for Scenario
3. MICE with 𝑌 for Scenario 4 followed recommendations in White and Royston (2009). Unless otherwise specified, MICE imputations were analyzed using
Rubin’s rules.
c𝑋𝑝 imputed from distribution proportional to 𝑓(𝑌|𝑋)𝑓(𝑋𝑝|𝑋−𝑝) using R package smcfcs. Then, apply Rubin’s rules.
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F IGURE 2 Empirical and average estimated variances (bars and points respectively) for 𝑋2 parameter across 500 simulated data sets for
various data analysis strategies and simulation settings
Note. Coverage of 95% confidence intervals is printed along each bar. White boxes correspond to four different point estimation strategies
considered. Both stacked approaches rely on standard MICE imputations (with or without including 𝑌). For the two stacked approaches,
three different methods were applied to estimate standard errors: (i) Huber-White sandwich estimation (Freedman, 2006), (ii) the proposed
method in Equation (3), and (iii) the method fromWood et al. (2008). For Scenario 3, MICE with 𝑌 corresponds to imputation without
interactions. Some estimated variances were very large and were truncated, denoted by the red arrows. This figure appears in color in the
electronic version of this article, and any mention of color refers to that version.

logistic regression under case-control sampling (Scott and
Wild, 1986).MICEwith𝑌 in the imputationmodel resulted
in correctly specified imputation models in Scenario 1
only. Evidence of resulting bias can be see for Scenario 3
and, to a lesser extent, Scenario 4. Similar bias is not seen
in Scenario 2. In all scenarios, imputation using SMC-FCS
as in Bartlett et al. (2014) tends to produce little bias since
imputation was performed using the “correct” distribu-
tions. Similarly, the proposed analysis based on stacking
MICE imputations obtained without 𝑌 and then weight-
ing rows by 𝑓(𝑌|𝑋) produced little bias across simulation
scenarios. When these same imputations (obtained with-
out 𝑌) were analyzed using Rubin’s rules, bias resulted in
all scenarios. These simulations demonstrate the ability of
the proposed imputation and 𝑓(𝑌|𝑋) weighting strategy
to produce unbiased point estimates comparable to those
obtained using the method in Bartlett et al. (2014).
Table 3 shows the relative empirical variance of point

estimates (compared to analysis of the full data) across

500 simulated data sets. Empirical variances were calcu-
lated as the sample variance of the point estimates across
500 simulated data sets. Stacking of MICE imputations
ignoring𝑌 and thenweighting by𝑓(𝑌|𝑋) produces similar
empirical variances to the SMC-FCS method from Bartlett
et al. (2014). When the MICE imputation model is cor-
rectly specified as a function of 𝑌 as in Scenario 1, meth-
ods explicitly incorporating the outcome model structure
(Bartlett et al. (2014) method and MICE without 𝑌 with
subsequent stacking and 𝑓(𝑌|𝑋) weighting) produce sim-
ilar results to standard MICE with 𝑌 analysis. Empirical
variances for SMC-FCS can be higher or lower than those
seen with MICE when the chained equations regressions
are misspecified as a function of 𝑌 (Scenarios 2–4).
Figure 2 shows the average estimated standard errors

and the 95% confidence interval coverage rates for differ-
ent variance estimation strategies based on stacked data
analysis. These are also compared to Rubin’s rules-based
standard errors for imputations based on the Bartlett et al.
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TABLE 3 Relative empirical variance of outcome model parameters under various imputation strategies and outcome model settings
(relative to full data without missingness). Results across 500 simulations are presented. In all settings, 𝑋1 was fully observed and 𝑋2 and
possibly 𝑋3 were imputed

Relative variance for effect of 𝑿𝟏 Relative variance for effect of 𝑿𝟐

Missingnessa MCAR 𝑿𝟏 𝒀 𝑿𝟏, 𝒀 MCAR 𝑿𝟏 𝒀 𝑿𝟏, 𝒀

Scenario 1: Linear regression
Full data 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Complete case 2.06 2.07 1.87 1.85 1.88 2.09 1.75 1.73
MICE with 𝑌

b

Rubin’s rules 1.35 1.37 1.45 1.31 1.70 1.85 1.98 1.90
Stacked, 1/M weighted 1.35 1.37 1.45 1.31 1.70 1.85 1.97 1.90

MICE without 𝑌b

Rubin’s rules 0.86 0.87 0.85 0.86 0.55 0.54 0.48 0.48
Stacked, 𝑓(𝑌|𝑋) weighted 1.34 1.37 1.45 1.31 1.69 1.83 1.95 1.89

Bartlett et al. (2014)c 1.39 1.45 1.50 1.33 1.74 1.95 2.07 1.99
Scenario 2: Logistic regression

Full data 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Complete case 2.52 2.29 2.02 4.08 2.36 2.46 2.15 3.66
MICE with 𝑌

Rubin’s rules 1.08 1.08 1.04 1.13 1.64 1.64 1.45 2.35
Stacked, 1/M weighted 1.08 1.07 1.04 1.12 1.63 1.63 1.45 2.33

MICE without 𝑌b

Rubin’s rules 0.93 0.95 0.92 0.94 0.54 0.45 0.60 0.43
Stacked, 𝑓(𝑌|𝑋) weighted 1.09 1.08 1.03 1.14 1.78 1.82 1.55 2.77

Bartlett et al. (2014) 1.09 1.09 1.05 1.14 1.73 1.74 1.52 2.58
Scenario 3: Linear regression with interaction

Full data 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Complete case 2.14 2.13 1.78 2.37 2.11 2.04 1.83 2.50
MICE with 𝑌

Rubin’s rules 2.85 2.12 1.34 5.20 3.16 3.35 1.62 4.02
Stacked, 1/M weighted 2.85 2.12 1.34 5.21 3.16 3.35 1.62 4.05

MICE with 𝑌 + interactionb 2.92 2.45 1.81 4.40 4.96 4.51 2.79 5.81
MICE without 𝑌
Rubin’s rules 2.25 1.69 1.16 4.54 1.03 0.77 0.86 0.85
Stacked, 𝑓(𝑌|𝑋) weighted 1.50 1.40 1.26 2.07 1.74 1.71 1.60 2.06

Bartlett et al. (2014) 1.52 1.46 1.29 2.07 1.75 1.60 1.55 1.99
Scenario 4: Cox proportional hazards regression

Full data 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Complete case 1.85 2.20 1.64 2.05 2.13 1.81 2.12 1.79
MICE with 𝑌

Rubin’s rules 1.06 1.13 1.02 1.17 1.62 1.57 2.02 1.95
Stacked, 1/M weighted 1.07 1.24 1.02 1.17 1.62 1.64 2.01 1.94

MICE without 𝑌
Rubin’s rules 0.97 1.01 0.95 0.99 0.42 0.42 0.45 0.44
Stacked, 𝑓(𝑌|𝑋) weighted 1.14 1.21 1.08 1.17 1.91 1.61 2.18 1.81

Bartlett et al. (2014) 1.15 1.27 1.11 1.19 2.02 1.83 2.39 2.01
aMissingness is MCAR or MAR dependent on the fully-observed terms listed.
bMICE either including or excluding 𝑌 from the linear regression imputation models. An interaction between 𝑌 and 𝑋1 was included in one setting for Scenario
3. MICE with 𝑌 for Scenario 4 followed recommendations in White and Royston (2009). Unless otherwise specified, MICE imputations were analyzed using
Rubin’s rules.
c𝑋𝑝 imputed from distribution proportional to 𝑓(𝑌|𝑋)𝑓(𝑋𝑝|𝑋−𝑝) using R package smcfcs. Then, apply Rubin’s rules.
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(2014) and standard MICE with 𝑌 methods. The sandwich
estimator applied to the stacked and weighted data tends
to strongly underestimate variance. This is because this
estimator accounts for “within-imputation” variation but
does not appropriately address “between-imputation” vari-
ation. The method in Wood et al. (2008) is an improve-
ment over the sandwich estimator, but this estimator can
result in suboptimal coverage even in the MCAR setting.
The Wood et al. (2008) method produced overly conserva-
tive standard errors for imputed covariates. The proposed
estimation strategy was applied in two cases: (a) covari-
ates imputed using MICE with 𝑌 and then stacking and
weighting by 1∕𝑀 and (b) covariates imputed using MICE
without 𝑌 and then stacking and weighting by 𝑓(𝑌|𝑋).
In Case 1, estimated standard errors behaved similarly to
Rubin’s rules-based estimates for MICE with 𝑌 imputa-
tions. In Case 2, the proposed strategy produced nominal
coverage and standard error estimates near those obtained
using the Bartlett et al. (2014) method, here viewed as a
gold standard. In the proposed algorithm, weights were
obtained using parameter estimates from a complete case
fit for 𝑓(𝑌|𝑋) rather than parameter draws. Although not
shown, drawing the corresponding parameter when defin-
ing weights produced very similar results.

5 ILLUSTRATIVE EXAMPLE: HEAD
AND NECK CANCER SURVIVAL

In this section, we illustrate the proposed methods for
handling covariate missingness when we have a time-
to-event outcome. In particular, we consider data from
a study of 1226 patients treated for head and neck can-
cer at the University of Michigan. After initial treat-
ment, consenting patients were followed for cancer recur-
rence and death. Smoking status (none, former, never),
ACE27 comorbidities (none, mild, moderate, severe), HPV
(human papillomavirus) status (positive, negative), age,
cancer site (hypopharynx, larynx, oral cavity, oropharynx),
and T stage (T0, T1, T2, T3) were recorded at baseline for
the majority of patients, but T stage and HPV status were
missing for roughly 30% and 45% of patients, respectively.
Small amounts of missingness were also present in smok-
ing status and comorbidities. Additional study details can
be found in Duffy et al. (2008) and Peterson et al. (2016).
We explore the impact of different imputation strategies

on Cox proportional hazards model fits for overall sur-
vival and time to cancer recurrence. We note that a Cox
proportional hazards mixture cure model would be more
appropriate for time to cancer recurrence for head and
neck cancer, but we will explore a standard Cox model
fit for simplicity (Beesley et al., 2016). For each outcome
model, our observed outcome can be written as𝑌 = (𝑇, 𝛿),

where 𝑇 is the event or censoring time for a given out-
come event, and 𝛿 is the corresponding event/censoring
indicator. We are interested in imputing missing values
in 𝑋 (particularly, HPV status and T stage) using chained
equations and somehow incorporating information in 𝑌.
Severalmethods exist in the literature for imputingmiss-

ing covariates with time-to-event outcomes. Van Buuren
et al. (1999) suggest imputing missing values in 𝑋𝑝 using a
regressionmodel with𝑋−𝑝 and log(𝑇) as predictors, where
𝑋−𝑝 represents the covariates in 𝑋 excluding 𝑋𝑝. White
and Royston (2009) proposes imputation using predictors
𝑋−𝑝, 𝛿, and 𝐻0(𝑇) as predictors, where 𝐻0(𝑇) is an esti-
mate of the cumulative baseline hazard for the event of
interest. In practice, White and Royston (2009) suggest
using the Nelson-Aalen estimate of the marginal cumu-
lative hazard for imputation. We compared these impu-
tation strategies to MICE imputation that entirely ignores
the outcome variables 𝑇 and 𝛿. Imputation of HPV status
assumed a logistic regression model structure, and impu-
tation of all other variables assumed a multinomial regres-
sion. We then fit the outcome models of interest to each of
the imputed data sets and obtained a single set of param-
eter estimates and standard errors for each model using
Rubin’s combining rules (Little and Rubin, 2002).
Using imputations that were generated ignoring 𝑌 =

(𝑇, 𝛿), we applied our proposed stacking and weighting
strategy in Figure 1, where we weighted each row pro-
portional to 𝑓(𝑇𝑖, 𝛿𝑖|𝑋𝑖) = [𝜆0(𝑇𝑖)𝑒

𝜃𝑋𝑖 ]𝛿𝑖 𝑒−Λ0(𝑇𝑖)𝑒
𝜃𝑋𝑖 , where

𝜆0(𝑡) and Λ0(𝑡) are the baseline and cumulative baseline
hazard functions, respectively. These were obtained by fit-
ting aCox proportional hazardsmodel to the complete case
data. From there, we obtained the Breslow estimator for
Λ0(𝑡) and defined 𝜆0(𝑡) to be piecewise constant so that it
integrated to Λ0(𝑡). Standard errors for the stacked analy-
ses were estimated using the method in 3.
Figure 3 presents the resulting estimatedHPV status log-

hazard ratio from Cox regressions for overall survival and
time to recurrence outcomes adjusting for other patient-
related factors. In both cases, imputation was performed
using the overall survival outcome, so we might treat
the time-to-recurrence analysis as a secondary analysis
applied to previously imputed data, where the imputation
and analyses models are not congenial. For the overall sur-
vival outcome, the proposed methods produced HPV sta-
tus confidence intervals very near those obtained using
Rubin’s rules andMICE imputation using𝐻(𝑡) as inWhite
and Royston (2009). However, the stacked imputation
methodproduces a larger hazard ratio estimate for the time
to recurrence outcome compared to all other methods.
This difference may be because, unlike the other methods,
our proposed method incorporates the assumed time-to-
recurrencemodel structure into the imputation and, there-
fore, does not suffer from uncongeniality.
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F IGURE 3 HPV log-hazard ratio from Cox modeling of overall
survival and time to recurrence using imputed head and neck
cancer data
Note. Five imputation strategies are considered: (1) MICE based only
on 𝑋, (2) MICE based on 𝑋 and the log of the event/censoring time,
(3) MICE based on 𝑋, the event indicator Delta, and the
Nelson-Aalen estimate of the cumulative hazard𝐻(𝑡), (4) method of
Bartlett et al. (2014), and (5) proposed strategy, where covariates are
imputed ignoring the outcome and analysis involves stacking the
imputations and weighting by 𝑓(𝑌|𝑋). Imputation for strategies
(2)-(4) use the overall survival outcome. For all methods, we present
log-hazards ratios associated with HPV status from a Cox
proportional hazards regression model for (A) overall survival and
(B) time to recurrence based on the imputed data. This figure
appears in color in the electronic version of this article, and any
mention of color refers to that
version.

6 DISCUSSION

Multiple imputation using chained equations (MICE) is a
popular and attractive approach for handling missing data
in a variety of settings. A substantial challenge, however,
is determining how to properly incorporate complicated
outcome 𝑌 into imputation models for missing covari-
ates 𝑋, since the way in which the outcome is incorpo-
rated can have substantial impact on downstream anal-
ysis (Beesley et al., 2016). Bartlett et al. (2014) developed
an imputation strategy that directly uses the target analy-
sis model structure (eg, 𝑓(𝑌|𝑋)) to impute missing covari-
ate values. This approach is appealing since it ensures that
the imputation and analysis models are compatible with
respect to the assumed relationship between 𝑌 and 𝑋.
However, the approach in Bartlett et al. (2014) can often
be challenging to apply in many practical data analysis

strategies, since the imputation distributions may only be
known up to proportionality. Existing R and Stata soft-
ware implements the Bartlett et al. (2014)method formany
standard regression modeling settings (eg, Weibull, linear,
and logistic regressions). However, implementation of this
method for unsupported models requires custom software
and may involve more advanced sampling methods (eg,
rejection sampling, Metropolis Hastings algorithms) that
require tuning, making this approach challenging to apply
for routine imputation.
In this paper, we propose a novel imputation and data

analysis strategy that involves (a) imputingmissing covari-
ates ignoring the outcome 𝑌; (b) stacking the multiple
imputations to form a single data set; (c) augmenting
the data set with weights based on the assumed analysis
model structure, 𝑓(𝑌|𝑋); and (d) analyzing the weighted,
stacked data using a novel estimator for standard errors.
This imputation strategy avoids the problem of incorpo-
rating 𝑌 into covariate imputation models entirely, but it
still can produce valid estimates for the analysis model
parameters through the use of weights. Additionally, the
covariate imputation and outcomemodeling steps are sep-
arated in this data analysis pipeline, allowing these steps to
be implemented independently by different analysts. This
is particularly useful when the outcome model includes
interactions, polynomial terms, or takes a complicated
form, and it facilitates comparison of multiple competing
outcome models without concerns about uncongeniality
with covariate imputation models. The proposed method
also inherits the flexibility of chained equations imputa-
tion model specification in terms of incorporating bounds,
auxiliary variables, or complex models such as random
forests into the imputation procedure.
A limitation of data analysis based on stacked multiple

imputations in general is the lack of convenient estima-
tors for corresponding standard errors. In this paper, we
develop a novel approach for estimating standard errors
for stacked multiple imputations in 3. This estimator can
be applied in our particular substantive model compatible
imputation strategy, but it can also be applied for general
data analysis of multiply imputed data as an alternative to
Rubin’s rules. An advantage of the proposed data analysis
approach over separate analysis of the imputed data sets
as in Rubin’s rules is that we can easily impose restrictions
in model estimates acrossmultiple imputations such as in
analyses with variable selection (Wood et al., 2008). A dis-
advantage of our approach is that is requires calculation of
the score and information matrices for a given parametric
model. However, these can be easily calculated using exist-
ing software inR formany popular parametricmodels. Our
proposed estimator can be easily implemented for several
analysis models (eg, generalized linear models, Cox pro-
portional hazards models) using our R package StackIm-
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pute. Additional work is needed to extend this estimator to
the setting with penalized likelihood estimation, particu-
larly when the penalty function is not differentiable.
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