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missing data. A central challenge for applying MICE is determining how to incorporate outcome information into

covariate imputation models, particularly for complicated outcomes. Often, we have a particular analysis model

in mind, and we would like to ensure congeniality between the imputation and analysis models.

We propose a novel strategy for directly incorporating the analysis model into the handling of missing data.

In our proposed approach, multiple imputations of missing covariates are obtained without using outcome

information. We then utilize the strategy of imputation stacking, where multiple imputations are stacked on

top of each other to create a large dataset. The analysis model is then incorporated through weights. Instead of

applying Rubin’s combining rules, we obtain parameter estimates by fitting a weighted version of the analysis

model on the stacked dataset. We propose a novel estimator for obtaining standard errors for this stacked and

weighted analysis. Our estimator is based on the observed data information principle in Louis (1982) and can be

applied for analyzing stacked multiple imputations more generally. Our approach for analyzing stacked multiple

imputations is the first method that can be easily applied (using R package StackImpute) for a wide variety of

standard analysis models and missing data settings.
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1 Introduction

Missing data is a common problem in modern observational data analysis, and the

handling and treatment of these missing data can often have a large impact on statistical

inference (Little and Rubin, 2002). In response, a suite of statistical methods has been

developed to tackle the various challenges that arise. In particular, a statistical strategy

called multiple imputation has emerged as a popular and attractive approach for handling

missing data in a wide variety of settings. For multiple imputation, we use statistical

models to draw multiple versions of the missing data, resulting in M complete datasets.

Then, the desired analysis is applied to each complete dataset separately and combined

across datasets using Rubin’s combining rules (Little and Rubin, 2002). The central

challenge of multiple imputation is specifying the statistical models or distributions used

to obtain the draws of the missing data.

Traditional multiple imputation strategies involve filling in values for the missing data

by drawing from distributions obtained from an assumed joint distribution for all the

variables of interest. Rather than specifying a joint model, an alternative strategy called

multiple imputation by chained equations (MICE) involves specifying conditional dis-

tributions for each variable with missingness directly (Raghunathan, 2001; Van Buuren

et al., 2006). These imputation distributions can be very flexible (e.g. random forests), or

they can be based on standard regression models. Generally, these imputation models will

not correspond to a valid joint distribution. Compared to imputation using a valid joint

distribution, MICE has fewer theoretical guarantees (Liu et al., 2013; Hughes et al., 2014).

However, MICE is often easy to implement and understand, and it can accommodate

complicated variable relationships such as bounds, nonlinearity, and interactions. Software

development has made MICE readily accessible to analysts, leading MICE to become an

essential tool in the statistical toolbox for handling missing data.

With easy-to-use software at an analyst’s fingertips, it can become tempting to throw

MICE at any missing data problem without careful thought about the imputation distri-
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butions. Suppose our ultimate goal is to model the relationship between some outcome, Y ,

and covariates X. Suppose we have missingness in X and possibly also in Y . Literature

suggests that we should somehow incorporate information in Y into the distributions

used to impute missing values in X (Moons et al., 2006). A particularly tricky problem

arises when Y is complicated. Y may be a longitudinal or survival-type outcome, or the

relationship between Y and X may be involve interactions. Incorporating complicated Y

into imputation models for X can be challenging and can potentially have a large impact

in terms of bias in downstream analyses (Beesley et al., 2016).

Bartlett et al. (2014) proposes a strategy called SMC-FCS (substantive model com-

patible fully conditional specification) that uses the assumed Y |X relationship directly

to incorporate Y into the imputation distributions. In particular, missing covariate Xp

is imputed from a distribution proportional to the outcome model fpY |Xq multiplied

by an assumed relationship between Xp and the other covariates, X´p. An advantage of

this approach over traditional MICE is that the assumed relationship between Y and X

used for imputation is consistent with the assumed relationship in the analysis model,

called congeniality (Meng, 1994). A lack of congeniality can sometimes produce bias in

the downstream estimation of standard errors by Rubin’s rules (Robins and Wang, 2000).

Additionally, this imputation strategy can substantially simplify the task of incorporating

Y into the imputation of missing X. However, the resulting imputation distribution is

often known only up to proportionality, and more advanced methods such as rejection

sampling or Metropolis-Hastings methods must often be used to obtain imputed values for

each Xp. Stata and R packages titled smcfcs exist for implementing SMC-FCS in certain

outcome modeling settings, but this method can require additional work to implement in

general (Bartlett and Morris, 2015).

In this paper, we propose a novel strategy for incorporating the outcome model structure

into the imputation pipeline that maintains the advantages of the method in Bartlett

et al. (2014) but is more easily implemented, particularly for complicated or non-standard
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Y |X. We utilize the strategy of imputation stacking, where multiple imputations of the

missing data are stacked on top of each other to create a large dataset (Robins and

Wang, 2000; Van Buuren, 2018). In our proposed approach, multiple imputations of

missing X are obtained using imputation distributions that do not involve the outcome

Y . While this approach will generally result in bias for standard multiple imputation,

our method attains valid parameter estimates by augmenting the stacked dataset with

weights defined using the Y |X model structure. We then estimate parameters in the

analysis model by fitting a weighted model for Y |X on the stacked dataset. This strategy

allows imputation and data analysis to be easily performed by separate analysts without

concerns about uncongeniality between the imputation and analysis models and the

potential negative impact on inference. Additionally, this imputation stacking strategy

is particularly useful in settings where we want to impose restrictions across imputed

datasets such as when variable selection is of primary interest (Wood et al., 2008). This

work is the first to propose a statistical strategy for chained equations imputation that

(1) directly incorporates the outcome model structure and (2) involves imputation from

standard models such as regression models.

While imputation stacking can produce valid parameter estimates when the imputation

models are well-specified, additional work is needed to obtain valid standard error esti-

mates (Robins and Wang, 2000; Van Buuren, 2018). Robins and Wang (2000) and Kim

(2011) provide strategies for estimating standard errors using stacked, imputed data. As

we will discuss later on, both approaches have substantial limitations that may reduce

their usage in practice. Wood et al. (2008) proposes an approach for estimating standard

errors that is easy to implement but weakly justified in settings where missingness is

not completely random. In this paper, we develop an alternative strategy for estimating

standard errors for data analysis using stacked multiple imputations, and this estimator

can be applied in general imputation settings. Our approach for estimating standard

errors based on stacked multiple imputations is the first proposed method that can be
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easily and routinely applied for a wide variety of standard analysis models and missing

data settings. We have developed an accompanying R package StackImpute that will

allow the proposed estimation to be easily implemented for many popular regression

models including generalized linear models and Cox proportional hazards models. Table

1 provides a breakdown of the advantages and disadvantages of the proposed approach

relative to existing methods.

In Section 2 of this paper, we detail our proposed imputation algorithm and its theo-

retical motivation. In Section 3, we provide a strategy for estimating standard errors. In

Section 4, we demonstrate the potential of our proposed method through a simulation

study. In Section 5, we apply this imputation approach to handle missing data in a study

of overall survival and time to recurrence for patients with head and neck cancer. In

Section 6, we present a discussion.

2 Imputation Strategy

Suppose we are interested in the relationship between outcome Y and covariate variables

represented by matrix X. We will assume for now that Y is fully observed, and we

will extend to the setting with missing Y later on. Let binary Ri indicate whether

subject i is a complete case (all Xi observed), where i “ 1, . . . , n. Let X
pmisq
i and X

pobsq
i

correspond to the missing and observed entries in Xi respectively. We will assume that

observations are independent across i, although our results can be extended to settings

with correlation across i. Additionally, we will assume that the data are missing at random

(MAR) as defined in Little and Rubin (2002), where missingness may depend only on

fully-observed variables. We suppose our interest is in parameter θ corresponding to the

assumed distribution for Y |X.

Multiple imputation strategies attempt to draw multiple potential values for X
pmisq
i

from the posterior predictive distribution fpXpmisq
i |Xpobsq

i , Yiq as follows:

fpXpmisq
i |Xpobsq

i , Yiq 9 fpYi|XiqfpXpmisq
i |Xpobsq

i q. (Eq. 1 )
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Obtaining a draw from Eq. 1 directly can be difficult, since the distribution is only

known up to proportionality. Usual MICE imputation would attempt to approximate a

draw from Eq. 1 by drawing missing covariates from a series of simpler distributions. An

alternative strategy for approximating a draw from Eq. 1 is via importance sampling as

discussed in Little and Rubin (2002) and Tanner (1993), where we first draw multiple

times from fpXpmisq
i |Xpobsq

i q. Note that this distribution does not condition on Y . Then,

we choose a single imputation of X
pmisq
i from these draws using a multinomial distribution

where we select the jth draw with probability proportional to fpYi|Xijq and where Xij

corresponds to the jth draw of X
pmisq
i . Inference for either approach could then proceed

by constructing multiple imputed datasets, fitting the model of interest to each dataset,

and combining inference across imputed datasets using Rubin’s combining rules (Little

and Rubin, 2002). This approach can work well, but it can involve taking many, many

draws from fpXpmisq
i |Xpobsq

i q, which can increase the computational burden.

2.1 Proposed imputation strategy

Rather than taking multiple draws from fpXpmisq
i |Xpobsq

i q to obtain a single imputation

from Eq. 1 , we propose using all those draws as our multiple imputations and weighting

them proportional to fpYi|Xiq in the final analysis, where weights are scaled to sum

to 1 across imputations. Weights, therefore, are defined across imputed datasets rather

than within imputed datasets. In order to make inference about θ, we perform the steps

detailed below and shown in Figure 1. We provide example R code for implementation in

Web Appendix 3, and we provide a detailed theoretical justification for this approach

in Web Appendix 4. Table 1 provides a comparison of the proposed approach with

existing methods.

[Figure 1 about here.]

[Table 1 about here.]

‚ Step 1: Impute missingness in covariates ignoring Y
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In this step, we obtain the multiple imputations of Xi from an assumed distribution

for fpXpmisq
i |Xpobsq

i q, which in practice can be implemented using MICE by specifying

regression models for each covariate with missingness given the other covariates but not

including the outcome. An additional complication arises when we also have missingness

in Y . In this case, we can proceed as above to obtain imputations of X ignoring Y

and then impute missing values of Y from fpY |Xq for each imputed dataset. See Web

Appendix 4.4 for details.

‚ Step 2: Stack imputations

We obtain a stacked version of the data, where each of the M imputed datasets of size

nˆ p are stacked on top of each other to form a Mnˆ p dataset, called the “tall stack.”

An alternative stacking strategy is to include subjects with fully-observed data only once

in the stacked dataset. If n1 is the number of subjects with fully-observed data, this

will result in a stacked dataset with n1 ` pn ´ n1qM rows, called the “short stack.” In

settings where n or M is large, this may be a more memory- and computationally-efficient

stacking strategy and should have no impact on resulting inference for appropriately

defined weights.

‚ Step 3: Assign weights

In the existing point estimation strategy using stacked multiple imputations (see Table

1), we augment the stacked dataset with weights defined for each row as 1 divided by the

number of times that subject appears in the stacked dataset. In our modified imputation

stacking approach, we augment the stacked dataset with a weight column, where weights

are defined to be proportional to fpYi|Xiq. In practice, this may be hard to calculate, since

it involves integrating out the corresponding parameter. Instead, we replace fpYi|Xiq with

fpYi|Xi; θ̂ccq where θ̂cc is the estimated θ obtained from complete case analysis (CCA) for

Y |X (fit Y |X to data from subjects without any missingness). We define weights using

complete case data following logic in Section 2.2 and Web Appendix 4. For the row

corresponding to the mth imputation for the ith subject and corresponding imputation
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Xim, assign weight

wim “ fpYi|Xim; θ̂ccqřM
j“1 fpYi|Xij; θ̂ccq

.

If we define the stack using the short stack method, define the weight to be 1 for all

subjects with fully-observed data. Weights for fully-observed subjects should be set to

1{M for the tall stack method. An alternative weighting strategy is to define weights as

wim “ fpYi|Xim;θmccqřM
j“1 fpYi|Xij ;θjccq

where θjcc is a draw of the complete-case θ rather than the MLE.

In simulations (not shown), we saw little difference between the two approaches, but the

difference will likely be larger for smaller complete case samples. We use point estimates

of θcc in our simulations in Section 4.

‚ Step 4: Estimate θ

Estimate θ by fitting a weighted model for Y |X to the stacked dataset with weights w.

We describe how to estimate corresponding standard errors in Section 3.

2.2 Missingness dependent on Y

Now, we consider the particular case where missingness is MAR dependent on Y . In

this case, the proposed imputation strategy ignoring Y induces a missing not at random

(MNAR) mechanism when missingness is expressed only as a function of X (Little and

Rubin, 2002). Therefore, additional thought is needed to assess whether it is appropriate

to impute missing X using the proposed approach when missingness depends explicitly

on Y . Let Ri represent the random variable indicating missingness, where the observed

Ri is the data realization of Ri. Under MAR dependent on Y ,

fpYi|Xi,Ri “ 1q ‰ fpYi|Xiq and fpXpmisq
i |Xpobsq

i ,Ri “ 1q ‰ fpXpmisq
i |Xpobsq

i q.

Complete case analysis will produce biased results for the parameters related to fpYi|Xiq
and fpXpmisq

i |Xpobsq
i q when missingness depends on Y . However, we have that

fpXpmisq
i |Xpobsq

i , Yiq “ fpXpmisq
i |Xpobsq

i , Yi,Ri “ 1q
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9fpYi|Xi,Ri “ 1qfpXpmisq
i |Xpobsq

i ,Ri “ 1q. (Eq. 2 )

We can obtain a draw from fpXpmisq
i |Xpobsq

i , Yiq by first drawing missing X from

fpXpmisq
i |Xpobsq

i ,Ri “ 1q and then weighting these draws proportional to fpYi|Xi,Ri “ 1q.
We can apply complete case analysis (using realization R of R) to estimate parameters

related to the distributions for Y |X,R “ 1 and Xpmisq|Xpobsq,R “ 1. Suppose we can

assume that the structure of the conditional and unconditional distributions in Eq. 2 and

Eq. 1 respectively are approximately the same. For example, if Y |X is a linear regression,

suppose Y |X,R “ 1 approximately follows a linear regression with different parameter

values. Under this assumption, we can also apply the strategy in Figure 1 to obtain

approximate draws from fpXpmisq
i |Xpobsq

i , Yiq, allowing us to handle MAR missingness

related to Y using the same strategy as before.

In summary, we can use the method in Figure 1 to obtain essentially unbiased estimates

of the outcome model parameters under MAR dependent on Y even though we have bias

in (1) the estimated weights fpYi|Xiq from Step 3 and (2) the parameter draws performed

within the covariate imputation in Step 1. Ultimately, these biases in the individual stages

of imputation and weighting wash out in the final proposed data analysis. Additional

commentary can be found in Supplementary Section 4.

In order to apply the method in Figure 1 under MAR dependent on Y , we assume

imputation is performed by drawing parameters using the overall complete case data,

but this is not how parameters are often drawn within the MICE imputation algorithm.

Instead, the algorithm usually draws parameters for imputation of a given covariate Xp

using data from subjects with Xp fully observed, treating the most recent sampled values

of X´p as observed. This difference in how parameters are drawn results in a potential for

residual bias in estimating outcome model parameters downstream, but we expect this

bias to be generally small (see Supplementary Section 5.2 for more information).



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

A stacked approach for chained equations multiple imputation incorporating the substantive model 9

3 Estimating Standard Errors

A major drawback of the stacked imputation approach in general is the difficulty in

estimating standard errors. Conventional estimators such as sandwich estimators only ac-

count for the so-called “within-imputation” variation, ignoring the “between-imputation”

variation (Wood et al., 2008). Wood et al. (2008) proposed a strategy for scaling up

the standard errors obtained from fitting a model to the stacked data. Standard errors

associated with covariate Xp are obtained by fitting a model for Y |X and weighting each

row of the stacked data by 1´fp
M

, where fp is the fraction of missing information in Xp. The

fraction of missing information fp is roughly estimated as the proportion of subjects with

missing values for Xp. This strategy requires the model of interest to be re-fit multiple

times to obtain standard errors for each Xp. Alternatively, we can obtain similar standard

errors by post-multiplying the variance associated with covariate Xp by M
1´fp after fitting

a single regression model weighted by 1{M . This approach from Wood et al. (2008) is

motivated under MCAR missingness and simple to implement, but its ability to estimate

standard errors in other missingness settings is unclear.

Yang and Kim (2016) and Kim (2011) developed a stacked imputation strategy in the

survey sampling context called fractional multiple imputation. Estimation proceeds using

an iterative algorithm in which we define weights as a function of the analysis/imputation

methods and survey weights, estimate parameters of interest, re-estimate weights, etc.

Standard errors are then estimated using a jackknife-type approach. This estimator can

be complicated and computationally expensive to estimate, and the lack of available

software for general parametric fractional imputation severely limits its ability to be used

in practice.

Another strategy in the literature for estimating standard errors for stacked multiple

imputation was developed in Robins and Wang (2000) and more recently applied in

Hughes et al. (2016). This estimator requires score and information matrices for both the

imputation and analysis models. Additionally, the estimator itself can be complicated to
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conceptualize and compute, and no standard software exists to make such calculations

routine. This approach also requires that the imputation models are standard parametric

models from which we can obtain score and information matrices, which excludes many

popular non-parametric imputation strategies such as random forests or predictive mean

matching. Given the complexity that serves as a barrier to general use of this estimator,

we chose not to implement the methods in Robins and Wang (2000) and Kim (2011) in

our simulations later on.

We propose an alternative strategy for estimating standard errors that, like the method

in Robins and Wang (2000), involves the score and information matrices from the outcome

model. Unlike Robins and Wang (2000), however, we do not require information about

the imputation distributions. Our proposed estimator can be applied (1) when multiple

imputations are obtained using existing imputation methods (e.g. MICE, joint modeling,

SMC-FCS) and then stacked or (2) when we apply our modified imputation and weighting

approach in Figure 1. Like standard errors from Rubin’s rules (but unlike Robins

and Wang (2000)), our estimator is not guaranteed to have good performance when

imputation and analysis models are uncongenial.

In obtaining an estimator, we use the complete information principle discussed in Louis

(1982), namely Iobspθq “ Icompθq ´ Imispθq, where Iobs is the observed data information

matrix (the target), Icom is the expected complete data information matrix given the ob-

served data, and Imis is the expected missing information given the observed data. While

Iobs can be difficult to estimate directly, Icom and Imis may be more readily estimated.

First, we will assume data are independent across values of i. Let J icom correspond to

the complete data Fisher information matrix contribution for subject i, and let U i
com be

the corresponding score matrix contribution for subject i. See Web Appendix 2 for

an example. Wei and Tanner (1990) proposed a Monte Carlo version of the estimator

developed in Louis (1982) that involves averaging the estimated Icom and Imis across

multiple imputations of the data. Using a similar strategy, we propose a generalization of
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the estimator in Louis (1982) that allows for individual and imputation-specific weights,

wim, and involves averaging across multiple imputations. With imputation as in Figure 1,

wim corresponds to the augmented weight in Step 3. When applying standard imputation

strategies that incorporate Y (e.g. MICE, joint modeling, SMC-FCS), we can define wim

for each i as the number of times that subject appears in the stacked dataset (M for tall

stack, 1 for short stack). Let Xim denote the mth imputation of Xi. For subjects with

fully-observed Xi, define Xim “ Xi. As shown in Web Appendix 1, we can express

Iobspθ̂q «
ÿ

i

Eθ̂
“
J icompXi, Yiq|Xobs

i , Yi
‰´

ÿ

i

V arθ̂
“
U i
compXi, Yiq|Xobs

i , Yi
‰

«
ÿ

i

ÿ

m

wimJ
i
compXim, Yiq ´

ÿ

i

ÿ

m

wim
“
U i
compXim, Yiq ´ Ūk

com

‰b2
(Eq. 3 )

where Ūk
com “

ř
j wkjU

k
compXkj, Ykq and where θ̂ is the point estimate obtained from fitting

the weighted model for Y |X on the stacked data. The first element in the above equation

is the weighted complete data information matrix for the outcome model evaluated using

the stacked dataset. The second term is the weighted variance of U i
com summed over

subjects. Given the equations for the complete data score and information matrix for an

individual under the outcome model, these quantities can be easily calculated using the

stacked data. We have developed an accompanying R package StackImpute that provides

functions for calculating these standard errors for several common regression models

including generalized linear models and Cox proportional hazards models.

4 Simulations

In this section, we provide results from a simulation study exploring the performance of

the proposed imputation strategy and corresponding standard error estimator in terms

of bias, coverage, and empirical variances of point estimates. This simulation study is

broken up into four scenarios: (1) Gaussian Y with missingness in a single covariate,

(2) binary Y with missingness in two covariates, (3) Gaussian Y with missingness in a

single covariate and interactions in the outcome model, and (4) censored survival-type Y



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

12 Biometrics, October 2019

with missingness in a single covariate. We consider four different missingness mechanisms:

MCAR, MAR dependent on X, MAR dependent on Y , and MAR dependent on both X

and Y .

4.1 Simulation set-up

In all four scenarios, we generated 500 simulated datasets of 2000 subjects each. Simula-

tions then proceeded as follows:

Scenario 1: Gaussian Y |X1, X2 with missingness in X2

We generate covariates X1 and X2 from a multivariate normal distribution with mean 0,

Var(X1) = 0.49, Var(X2) = 0.09, and covariance of 0.12. We then generated Y |X1, X2 „
Np0.53X1`1.25X2, 0.55q. Roughly 50% missingness was generated in X2 under the model

logitpP pX2 observed|X1, Y qq “ φ0`φ1X1`φ2Y with values φ “ tp0, 0, 0q, p0, 1, 0q, p0, 0, 1q, p0, 1,´1qu.
These values of φ correspond to MCAR, MAR dependent on X1, MAR dependent on Y ,

and MAR dependent on X1 and Y respectively.

Scenario 2: Binary Y |X1, X2, X3 with missingness in X2, X3

We generate covariates X1, X2, and X3 from a multivariate normal distribution with mean

0, unit variances, and pairwise covariance of 0.3. We then generated binary Y using the

relation logitpP pY “ 1|X1, X2, X3qq “ 0.5`0.5X1`0.5X2`0.5X3. Missingness in X2 was

generated using the model from Scenario 1 with φ “ tp0.5, 0, 0q, p0.5, 1, 0q, p0.5, 0, 1q, p0.5, 1,´1qu
and independent of X3. We then induced 30% MCAR missingness for X3. This resulted

in roughly 40% of subjects having complete data.

Scenario 3: Gaussian Y |X1, X2, X1 ˆX2 with missingness in X2

We generate covariates X1 and X2 from a multivariate normal distribution with mean 0,

Var(X1) = 0.81, Var(X2) = 1.21, and covariance of 0.59. We then generated Y |X1, X2 „
Np0`X1 `X2 `X1 ˆX2, 1q. We generate missingness in X2 as in Scenario 1.

Scenario 4: Exponential T |X1, X2 with missingness in X2 and uniform censoring

We generate covariates X1 and X2 from a multivariate normal distribution with mean 0,

Var(X1) = 1, Var(X2) = 1, and covariance of 0.5. We then generated T |X1, X2 to have
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an exponential distribution with scale parameter e0.5X1`0.5X2 . Uniform(0.2, 3) censoring

was then imposed on T . Roughly 50% missingness was generated in X2 under the model

logitpP pX2 observed|X1, Y qq “ φ0`φ1X1`φ2δ with values φ “ tp0, 0, 0q, p0, 1, 0q, p´0.7, 0, 1q, p´0.7, 1,´1qu
where δ corresponds to the event/censoring indicator and is a part of Y . Missingness

dependent on δ could be induced by missingness related to unobserved variable U related

to the outcome.

Once the data were simulated, we performed multiple imputation of the missing values

of X using methods described in Table 1 to obtain M “ 50 multiple imputations.

We then analyzed the results fitting the correct outcome model either using Rubin’s

combining rules or the proposed stacking method. In analyzing stacked data, standard

errors were estimated using various strategies including the standard sandwich estimator

from the R package sandwich, the method in Wood et al. (2008), and our estimator

in Eq. 3 . In Scenario 4, stacked analysis weights were defined based on a Cox model

fit to the complete case data. From this fit, we obtained the Breslow estimator for

the cumulative baseline hazard and defined a piecewise constant baseline hazard that

integrated to produce the estimated cumulative baseline hazard. Weights proportional to

fpY |X; θq could then be calculated. In Scenario 3, we considered MICE imputation with

Y incorporated into the imputation model through a main effect only or through main

effects and an interaction with X1.

4.2 Simulation results

Table 2 shows the average estimated bias of outcome model parameters across 500

simulated datasets. Complete case analysis shows substantial bias in Scenarios 1, 3, and

4 whenever missingness depends on Y . In Scenario 3, where the true outcome model

included interactions, inclusion of interactions in the covariate imputation models did not

reduce bias in estimating outcome model parameters. In Scenario 2, complete case analysis

is biased only when missingness depends on both Y and covariate values, following well-
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known properties of logistic regression under case-control sampling (Scott and Wild,

1986). MICE with Y in the imputation model resulted in correctly-specified imputation

models in Scenario 1 only. Evidence of resulting bias can be see for Scenario 3 and, to a

lesser extent, Scenario 4. Similar bias is not seen in Scenario 2. In all scenarios, imputation

using SMC-FCS as in Bartlett et al. (2014) tends to produce little bias since imputation

was performed using the “correct” distributions. Similarly, the proposed analysis based

on stacking MICE imputations obtained without Y and then weighting rows by fpY |Xq
produced little bias across simulation scenarios. When these same imputations (obtained

without Y ) were analyzed using Rubin’s rules, bias resulted in all scenarios. These

simulations demonstrate the ability of the proposed imputation and fpY |Xq weighting

strategy to produce unbiased point estimates comparable to those obtained using the

method in Bartlett et al. (2014).

Table 3 shows the relative empirical variance of point estimates (compared to analysis

of the full data) across 500 simulated datasets. Empirical variances were calculated as

the sample variance of the point estimates across 500 simulated datasets. Stacking of

MICE imputations ignoring Y and then weighting by fpY |Xq produces similar empirical

variances to the SMC-FCS method from Bartlett et al. (2014). When the MICE imputa-

tion model is correctly specified as a function of Y as in Scenario 1, methods explicitly

incorporating the outcome model structure (Bartlett et al. (2014) method and MICE

without Y with subsequent stacking and fpY |Xq weighting) produce similar results to

standard MICE with Y analysis. Empirical variances for SMC-FCS can be higher or lower

than those seen with MICE when the chained equations regressions are misspecified as a

function of Y (Scenarios 2-4).

Figure 2 shows the average estimated standard errors and the 95% confidence interval

coverage rates for different variance estimation strategies based on stacked data analysis.

These are also compared to Rubin’s rules-based standard errors for imputations based on

the Bartlett et al. (2014) and standard MICE with Y methods. The sandwich estimator
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applied to the stacked and weighted data tends to strongly under-estimate variance. This

is because this estimator accounts for “within-imputation” variation but does not appro-

priately address “between-imputation” variation. The method in Wood et al. (2008) is an

improvement over the sandwich estimator, but this estimator can result in sub-optimal

coverage even in the MCAR setting. The Wood et al. (2008) method produced overly-

conservative standard errors for imputed covariates. The proposed estimation strategy

was applied in two cases: (1) covariates imputed using MICE with Y and then stacking

and weighting by 1{M and (2) covariates imputed using MICE without Y and then

stacking and weighting by fpY |Xq. In Case 1, estimated standard errors behaved similarly

to Rubin’s rules-based estimates for MICE with Y imputations. In Case 2, the proposed

strategy produced nominal coverage and standard error estimates near those obtained

using the Bartlett et al. (2014) method, here viewed as a gold standard. In the proposed

algorithm, weights were obtained using parameter estimates from a complete case fit for

fpY |Xq rather than parameter draws. Although not shown, drawing the corresponding

parameter when defining weights produced very similar results.

[Table 2 about here.]

[Table 3 about here.]

[Figure 2 about here.]
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5 Illustrative example: head and neck cancer survival

In this section, we illustrate the proposed methods for handling covariate missingness

when we have a time-to-event outcome. In particular, we consider data from a study of

1226 patients treated for head and neck cancer at The University of Michigan. After initial

treatment, consenting patients were followed for cancer recurrence and death. Smoking

status (none, former, never), ACE27 comorbidities (none, mild, moderate, severe), HPV

(human papillomavirus) status (positive, negative), age, cancer site (hypopharynx, lar-

ynx, oral cavity, oropharynx), and T stage (T0, T1, T2, T3) were recorded at baseline for

the majority of patients, but T stage and HPV status were missing for roughly 30% and

45% of patients respectively. Small amounts of missingness were also present in smoking

status and comorbidities. Additional study details can be found in Duffy et al. (2008)

and Peterson et al. (2016).

We explore the impact of different imputation strategies on Cox proportional hazards

model fits for overall survival and time to cancer recurrence. We note that a Cox pro-

portional hazards mixture cure model would be more appropriate for time to cancer

recurrence for head and neck cancer, but we will explore a standard Cox model fit for

simplicity (Beesley et al., 2016). For each outcome model, our observed outcome can

be written as Y “ pT, δq, where T is the event or censoring time for a given outcome

event, and δ is the corresponding event/censoring indicator. We are interested in imputing

missing values in X (particularly, HPV status and T stage) using chained equations and

somehow incorporating information in Y .

Several methods exist in the literature for imputing missing covariates with time-to-

event outcomes. Van Buuren et al. (1999) suggests imputing missing values in Xp using a

regression model with X´p and logpT q as predictors, where X´p represents the covariates

in X excluding Xp. White and Royston (2009) proposes imputation using predictors X´p,

δ, and H0pT q as predictors, where H0pT q is an estimate of the cumulative baseline hazard

for the event of interest. In practice, White and Royston (2009) suggests using the Nelson-
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Aalen estimate of the marginal cumulative hazard for imputation. We compared these

imputation strategies to MICE imputation that entirely ignores the outcome variables T

and δ. Imputation of HPV status assumed a logistic regression model structure, and

imputation of all other variables assumed a multinomial regression. We then fit the

outcome models of interest to each of the imputed datasets and obtained a single set

of parameter estimates and standard errors for each model using Rubin’s combining rules

(Little and Rubin, 2002).

Using imputations that were generated ignoring Y “ pT, δq, we applied our proposed

stacking and weighting strategy in Figure 1, where we weighted each row proportional

to fpTi, δi|Xiq “
“
λ0pTiqeθXi

‰δi e´Λ0pTiqeθXi where λ0ptq and Λ0ptq are the baseline and

cumulative baseline hazard functions respectively. These were obtained by fitting a Cox

proportional hazards model to the complete case data. From there, we obtained the

Breslow estimator for Λ0ptq and defined λ0ptq to be piecewise constant so that it integrated

to Λ0ptq. Standard errors for the stacked analyses were estimated using the method in

Eq. 3 .

Figure 3 presents the resulting estimated HPV status log-hazard ratio from Cox

regressions for overall survival and time to recurrence outcomes adjusting for other

patient-related factors. In both cases, imputation was performed using the overall survival

outcome, so we might treat the time-to-recurrence analysis as a secondary analysis applied

to previously imputed data, where the imputation and analyses models are not congenial.

For the overall survival outcome, the proposed methods produced HPV status confidence

intervals very near those obtained using Rubin’s rules and MICE imputation using Hptq
as in White and Royston (2009). However, the stacked imputation method produces a

larger hazard ratio estimate for the time to recurrence outcome compared to all other

methods. This difference may be because, unlike the other methods, our proposed method

incorporates the assumed time-to-recurrence model structure into the imputation and,

therefore, does not suffer from uncongeniality.
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[Figure 3 about here.]

6 Discussion

Multiple imputation using chained equations (MICE) is a popular and attractive approach

for handling missing data in a variety of settings. A substantial challenge, however, is

determining how to properly incorporate complicated outcome Y into imputation models

for missing covariates X, since the way in which the outcome is incorporated can have

substantial impact on downstream analysis (Beesley et al., 2016). Bartlett et al. (2014)

developed an imputation strategy that directly uses the target analysis model structure

(e.g. fpY |Xq) to impute missing covariate values. This approach is appealing since it

ensures that the imputation and analysis models are compatible with respect to the

assumed relationship between Y and X. However, the approach in Bartlett et al. (2014)

can often be challenging to apply in many practical data analysis strategies, since the

imputation distributions may only be known up to proportionality. Existing R and Stata

software implements the Bartlett et al. (2014) method for many standard regression

modeling settings (e.g. Weibull, linear, and logistic regressions). However, implementation

of this method for unsupported models requires custom software and may involve more

advanced sampling methods (e.g. rejection sampling, Metropolis Hastings algorithms)

that require tuning, making this approach challenging to apply for routine imputation.

In this paper, we propose a novel imputation and data analysis strategy that involves

(1) imputing missing covariates ignoring the outcome Y , (2) stacking the multiple impu-

tations to form a single dataset, (3) augmenting the dataset with weights based on the

assumed analysis model structure, fpY |Xq, and (4) analyzing the weighted, stacked data

using a novel estimator for standard errors. This imputation strategy avoids the problem

of incorporating Y into covariate imputation models entirely, but it still can produce valid

estimates for the analysis model parameters through the use of weights. Additionally,

the covariate imputation and outcome modeling steps are separated in this data analysis
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pipeline, allowing these steps to be implemented independently by different analysts. This

is particularly useful when the outcome model includes interactions, polynomial terms,

or takes a complicated form, and it facilitates comparison of multiple competing outcome

models without concerns about uncongeniality with covariate imputation models. The

proposed method also inherits the flexibility of chained equations imputation model

specification in terms of incorporating bounds, auxiliary variables, or complex models

such as random forests into the imputation procedure.

A limitation of data analysis based on stacked multiple imputations in general is the

lack of convenient estimators for corresponding standard errors. In this paper, we develop

a novel approach for estimating standard errors for stacked multiple imputations in

Eq. 3 . This estimator can be applied in our particular substantive model compatible

imputation strategy, but it can also be applied for general data analysis of multiply

imputed data as an alternative to Rubin’s rules. An advantage of the proposed data

analysis approach over separate analysis of the imputed datasets as in Rubin’s rules is

that we can easily impose restrictions in model estimates across multiple imputations

such as in analyses with variable selection (Wood et al., 2008). A disadvantage of our

approach is that is requires calculation of the score and information matrices for a given

parametric model. However, these can be easily calculated using existing software in R for

many popular parametric models. Our proposed estimator can be easily implemented for

several analysis models (e.g. generalized linear models, Cox proportional hazards models)

using our R package StackImpute. Additional work is needed to extend this estimator to

the setting with penalized likelihood estimation, particularly when the penalty function

is not differentiable.
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Figure 1: Diagram of Proposed Covariate Imputation Strategy*:
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*CCA = complete case analysis.
: Missing Y , if any, can be imputed separately from fpY |Xq fixing imputed X from Step 1.
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Figure 2: Empirical and average estimated variances (bars and points respectively)
for X2 parameter across 500 simulated datasets for various data analysis strategies and
simulation settings. Coverage of 95% confidence intervals is printed along each bar.* :
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* White boxes correspond to four different point estimation strategies considered. Both stacked approaches rely on standard
MICE imputations (with or without including Y ). For the two stacked approaches, three different methods were applied to
estimate standard errors: (1) Huber-White sandwich estimation (Freedman, 2006) (2) the proposed method in Eq. 3 , and
(3) the method from Wood et al. (2008). For Scenario 3, MICE with Y corresponds to imputation without interactions.
: Some estimated variances were very large and were truncated, denoted by the red arrows. This figure appears in color in
the electronic version of this article, and any mention of color refers to that version.
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Figure 3: HPV log-hazard ratio from Cox modeling of overall survival and time to
recurrence using imputed head and neck cancer data*
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* Five imputation strategies are considered: (1) MICE based only on X, (2) MICE based on X and the log of the
event/censoring time, (3) MICE based on X, the event indicator Delta, and the Nelson-Aalen estimate of the cumulative
hazard Hptq, (4) method of Bartlett et al. (2014), and (5) proposed strategy, where covariates are imputed ignoring the
outcome and analysis involves stacking the imputations and weighting by fpY |Xq. Imputation for strategies (2)-(4) use the
overall survival outcome. For all methods, we present log-hazards ratios associated with HPV status from a Cox regression
model for (A) overall survival and (B) time to recurrence based on the imputed data. This figure appears in color in the
electronic version of this article, and any mention of color refers to that version.
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Table 1: Summary of some existing and proposed imputation and data analysis strate-
gies. Proposed methods highlighted in gray.

Standard MICE Bartlett et al. (2014) Stacked,
1/M weighted

Stacked,
fpY |Xq weighted

Covariate
Imputation

fpXp|X´p, Y q,
specified as regression
model

fpXp|X´p, Y q9
fpY |XqfpXp|X´pq,

where fpXp|X´pq is a
regression model

Often, same as MICE.
Could also apply other
imputation methods.

fpXp|X´pq, specified
as regression model

Point
Estimation

Fit model to each
imputed dataset
separately

Fit model to each
imputed dataset
separately

Fit single weighted
model to stacked
imputations.*

Fit single weighted
model to stacked
imputations.
Weights 9fpY |Xq

Standard
Errors

Rubin’s rules Rubin’s rules Previously, unclear
how to estimate.** We
propose new approach
in Eq. 3 .

We propose new
approach in Eq. 3 .

Comments ë Easy to implement
ë Tricky to specify
imputation regressions

ë Limited outcome
models supported by
current software
ë Easy to implement
for supported models
ë Outcome model
built into imputation

ë Inherits properties
of imputation
approach chosen
ë Different data
analysis
ë Proposed new
standard errors

ë Imputation ignores
Y . Easy to implement.
ë Imputation and
analysis separated.
Easy to compare
outcome models.

R Packages mice smcfcs mice, StackImpute: mice, StackImpute:

* Tall stack corresponds to stack of M imputed datasets, with complete cases listed M times. All rows given weight 1{M .
Short stack corresponds to stack with complete cases listed only once. Imputed rows given weight 1{M and complete cases
given weight 1.
** Sandwich estimator applied to weighted, stacked data known to under-estimate standard errors. Wood et al. (2008)
proposed largely untested ad hoc correction method for stacked analysis standard errors. Bootstrap methods for estimating
standard errors are computationally expensive.
: R package for estimating standard errors using Eq. 3 . Development version available at https://github.com/
lbeesleyBIOSTAT/StackImpute. Can be implemented for additional outcome models using custom software. See Web
Appendix Section 3 for details.
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Table 2: Bias of outcome model parameters under various imputation strategies and
outcome model settings. Results across 500 simulations are presented. Biases greater
than 0.05 are shaded. In all settings, X1 was fully-observed and X2 and possibly X3 were
imputed. All biases were multiplied by 100.

Bias ˆ100 in effect of X1 Bias ˆ100 in effect of X2

Missingness:: MCAR X1 Y X1, Y MCAR X1 Y X1, Y

Scenario 1: Linear Regression
Full Data 0.02 0.01 0.14 0.28 -0.05 -0.15 -0.17 -0.20
Complete Case -0.03 -0.05 -5.18 5.29 -0.16 0.18 -13.11 -13.59
MICE with Y *

ë Rubin’s rules 0.08 0.03 0.28 0.36 -0.41 0.02 -0.75 -0.30
ë Stacked, 1/M weighted 0.11 0.07 0.32 0.39 -0.53 -0.12 -0.88 -0.41

MICE without Y *
ë Rubin’s rules 16.1 16.1 18.48 18.0 -62.6 -62.3 -69.09 -69.4
ë Stacked, fpY |Xq weighted 0.32 0.27 0.60 0.66 -1.36 -0.88 -1.85 -1.46

Bartlett et al. (2014) ’ 0.14 0.11 0.47 0.47 -0.61 -0.21 -1.38 -0.72

Scenario 2: Logistic Regression
Full Data 0.34 -0.03 0.09 0.13 0.24 -0.09 0.22 0.12
Complete Case 0.75 0.37 -0.12 21.0 0.18 -0.09 0.56 0.32
MICE with Y

ë Rubin’s rules 0.35 -0.08 0.05 -0.07 -0.17 -0.60 0.17 -0.53
ë Stacked, 1/M weighted 0.35 -0.08 0.04 -0.09 -0.26 -0.73 0.10 -0.72

MICE without Y
ë Rubin’s rules 5.85 5.87 5.01 6.49 -18.49 -20.8 -14.5 -26.6
ë Stacked, fpY |Xq weighted 0.49 0.11 0.13 0.30 -0.25 -0.61 0.12 -0.43

Bartlett et al. (2014) 0.42 0.05 0.09 0.08 0.12 -0.31 0.30 -0.19

Scenario 3: Linear Regression with Interaction
Full Data 0.10 0.10 0.29 -0.22 -0.14 -0.04 -0.30 0.26
Complete Case 0.21 -0.10 -8.97 -0.58 -0.36 -0.09 -9.90 -14.88
MICE with Y

ë Rubin’s rules -2.12 -13.9 -4.73 -7.99 -12.28 13.14 -1.35 -3.97
ë Stacked, 1/M weighted -2.07 -13.95 -4.70 -7.82 -12.40 13.11 -1.38 -4.29

MICE with Y + interaction* -2.75 18.93 -10.05 -17.52 -10.28 21.35 5.93 -10.14
MICE without Y

ë Rubin’s rules 36.8 24.13 16.84 81.70 -50.20 -32.75 -35.32 -70.16
ë Stacked, fpY |Xq weighted 0.05 0.05 -1.22 -1.24 -0.10 -0.08 - 1.37 0.01

Bartlett et al. (2014) 0.38 0.19 0.35 0.40 -0.49 -0.22 -0.50 0.16

Scenario 4: Cox Proportional Hazards Regression
Full Data 0.12 0.04 -0.07 0.21 0.18 0.10 -0.01 0.15
Complete Case 0.12 0.07 -5.69 -9.07 0.07 0.26 -5.29 -4.31
MICE with Y

ë Rubin’s rules -1.62 -1.65 -2.04 -1.83 -4.18 0.37 -3.42 0.94
ë Stacked, 1/M weighted -1.61 -1.59 -2.02 -1.75 -4.30 0.27 -3.54 0.83

MICE without Y
ë Rubin’s rules 0.48 1.58 0.95 2.59 -27.2 -25.02 -29.69 -27.47
ë Stacked, fpY |Xq weighted 0.15 0.56 -0.18 0.91 -0.30 -2.43 -1.26 -2.47

Bartlett et al. (2014) 0.15 -0.05 -0.08 0.12 0.03 0.25 0.11 0.22

: Missingness is MCAR or MAR dependent on the fully-observed terms listed.
* MICE either including or excluding Y from the linear regression imputation models. An interaction between Y and X1
was included in one setting for Scenario 3. MICE with Y for Scenario 4 followed recommendations in White and Royston
(2009). Unless otherwise specified, MICE imputations were analyzed using Rubin’s rules.
’ Xp imputed from distribution proportional to fpY |XqfpXp|X´pq using R package smcfcs. Then, apply Rubin’s rules.
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Table 3: Relative empirical variance of outcome model parameters under various impu-
tation strategies and outcome model settings (relative to full data without missingness).
Results across 500 simulations are presented. In all settings, X1 was fully-observed and
X2 and possibly X3 were imputed.

Relative variance for effect of X1 Relative variance for effect of X2

Missingness:: MCAR X1 Y X1, Y MCAR X1 Y X1, Y

Scenario 1: Linear Regression
Full Data 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Complete Case 2.06 2.07 1.87 1.85 1.88 2.09 1.75 1.73
MICE with Y *

ë Rubin’s rules 1.35 1.37 1.45 1.31 1.70 1.85 1.98 1.90
ë Stacked, 1/M weighted 1.35 1.37 1.45 1.31 1.70 1.85 1.97 1.90

MICE without Y *
ë Rubin’s rules 0.86 0.87 0.85 0.86 0.55 0.54 0.48 0.48
ë Stacked, fpY |Xq weighted 1.34 1.37 1.45 1.31 1.69 1.83 1.95 1.89

Bartlett et al. (2014) ’ 1.39 1.45 1.50 1.33 1.74 1.95 2.07 1.99

Scenario 2: Logistic Regression
Full Data 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Complete Case 2.52 2.29 2.02 4.08 2.36 2.46 2.15 3.66
MICE with Y

ë Rubin’s rules 1.08 1.08 1.04 1.13 1.64 1.64 1.45 2.35
ë Stacked, 1/M weighted 1.08 1.07 1.04 1.12 1.63 1.63 1.45 2.33

MICE without Y *
ë Rubin’s rules 0.93 0.95 0.92 0.94 0.54 0.45 0.60 0.43
ë Stacked, fpY |Xq weighted 1.09 1.08 1.03 1.14 1.78 1.82 1.55 2.77

Bartlett et al. (2014) 1.09 1.09 1.05 1.14 1.73 1.74 1.52 2.58

Scenario 3: Linear Regression with Interaction
Full Data 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Complete Case 2.14 2.13 1.78 2.37 2.11 2.04 1.83 2.50
MICE with Y

ë Rubin’s rules 2.85 2.12 1.34 5.20 3.16 3.35 1.62 4.02
ë Stacked, 1/M weighted 2.85 2.12 1.34 5.21 3.16 3.35 1.62 4.05

MICE with Y + interaction* 2.92 2.45 1.81 4.40 4.96 4.51 2.79 5.81
MICE without Y

ë Rubin’s rules 2.25 1.69 1.16 4.54 1.03 0.77 0.86 0.85
ë Stacked, fpY |Xq weighted 1.50 1.40 1.26 2.07 1.74 1.71 1.60 2.06

Bartlett et al. (2014) 1.52 1.46 1.29 2.07 1.75 1.60 1.55 1.99

Scenario 4: Cox Proportional Hazards Regression
Full Data 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Complete Case 1.85 2.20 1.64 2.05 2.13 1.81 2.12 1.79
MICE with Y

ë Rubin’s rules 1.06 1.13 1.02 1.17 1.62 1.57 2.02 1.95
ë Stacked, 1/M weighted 1.07 1.24 1.02 1.17 1.62 1.64 2.01 1.94

MICE without Y
ë Rubin’s rules 0.97 1.01 0.95 0.99 0.42 0.42 0.45 0.44
ë Stacked, fpY |Xq weighted 1.14 1.21 1.08 1.17 1.91 1.61 2.18 1.81

Bartlett et al. (2014) 1.15 1.27 1.11 1.19 2.02 1.83 2.39 2.01

: Missingness is MCAR or MAR dependent on the fully-observed terms listed.
* MICE either including or excluding Y from the linear regression imputation models. An interaction between Y and X1
was included in one setting for Scenario 3. MICE with Y for Scenario 4 followed recommendations in White and Royston
(2009). Unless otherwise specified, MICE imputations were analyzed using Rubin’s rules.
’ Xp imputed from distribution proportional to fpY |XqfpXp|X´pq using R package smcfcs. Then, apply Rubin’s rules.


