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ABSTRACT 

 
Moving towards renewable and environmental-friendly energy resources has intensified 

the importance of power electronic converters in future power systems. The issue of reliability 

becomes more critical than ever before. This research proposes a hierarchical reliability framework 

to evaluate the electric power system reliability from the power electronic converter level to the 

overall system level. In the first stage, the reliability of each power converter is modeled in an 

accurate manner. Dynamic behaviors of various integrated semiconductor devices and the 

converter topology are considered. In the second stage, we calculate system-level reliability 

indicators such as expected energy not served (EENS) and loss of load expectation (LOLE) are 

estimated through a non-sequential Monte Carlo simulation. Machine learning regression models 

such as support vector regression (SVR) and random forests (RF) are implemented to bridge the 

nonlinear reliability relationship between two stages. Moreover, a variance-based global sensitivity 

analysis (GSA) is conducted to rank and identify the most influential converter uncertainties with 

respect to the variance of system EENS. Based on the GSA conclusions, system operators can take 

proactive actions to mitigate the potential risk of the system. Furthermore, Bayesian network (BN) 

structure learning and scoring algorithms are applied to visualize a converter-based BN structure. 

Reliability interdependencies among different nodes are quantified through information entropy 

theory such that reliability causal relations can be revealed. This dissertation also studies and 

discusses opportunities of various emerging technologies. Some improvements and suggestions of 

the proposed framework are included as well. 
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CHAPTER 1 

Introduction 

 
1.1. Background 

The incorporation of renewable energy resources (RES) including solar photovoltaic (PV) 

generators, wind turbines (WTs) and combined heat and power units (CHPs), have been more 

favorable, compared to traditional centralized controlled power systems. However, utilizing the 

power generated from RESs has brought several challenges to realizing a reliable power delivery. 

That said, the proliferation of RES has been significantly accompanied by the penetration of 

various power electronic converters. Notably, the power electronic converter plays a fundamental 

role during energy conversion. Consequently, from a reliability point of view, the system has 

become more complicated compared with a traditional system. 

Meanwhile, various uncertain parameters are introduced in power systems due to 

intermittent RESs and the operational structure. These uncertainties may have a significant 

influence on the system’s reliability performance. Implementing an appropriate SA on the 

proposed reliability framework is essential in order to interpret the system reliability behavior and 

identify the effects that emerging power converters will have on system reliability. Identifying the 

most critical uncertainties, i.e., the most influential pair of a RES and its connected power 

converter on the system reliability, will help system operators and stakeholders to better arrange 

the maintenance schedule and facilitate better system operation.  
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1.2. Research Objectives 

In terms of reliability assessment, power electronic interfaces, namely power converters, 

play an increasingly important role in recent years with their foreseeable penetration in modern 

power systems. The main purpose of this research is to evaluate the reliability in a power system 

while considering the reliability impact from power electronic converters. We bridge the gap 

between converter and system level reliability and conduct several quantitative analyses with 

various indices for improving system operation and future planning.  

Moreover, the proposed framework presents for the first time the application of the 

variance-based GSA to identify the contribution of each converter uncertainty to the variance of 

the system reliability indicator. This novel application is also intended to promote the development 

of the implementation of more advanced SA methods in power systems so that interested 

researchers can further interpret the system reliability behavior. 

Another purpose of this research is to graphically reveal the reliability inter-dependencies 

between two power converters through Bayesian Network. Moreover, Information Entropy theory 

is applied to quantify the uncertainty of each converter and each node. The information or 

uncertainty transferred from a converter failure event to system reliability performance is also 

estimated. 

1.3. Organization 

The Introduction about the Ph.D. dissertation written report was presented in chapter 1. 

Chapter 2 presents a hierarchical reliability framework to evaluate the electric power system 

reliability from the power converter level to the overall system level. Chapter 3 introduces a 

variance-based sensitivity analysis to rank and identify the most influential converter uncertainties 
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with respect to the variance of system EENS. Chapter 4 presents the investigation of reliability 

interdependencies among different nodes where each reliability causal relation is quantified with 

entropy indicators. Chapter 5 summarizes conclusions and future works. 
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CHAPTER 2 

A Three-layer Framework to Assess System Reliability 

 
2.1. Introduction  

In recent years, modern power system structures deployed with local available renewable 

energy resources (RESs), including solar photovoltaic (PV) generators, wind turbines (WTs), and 

combined heat and power units (CHPs), have been more favorable, compared to traditional 

centralized controlled power systems. Utilizing the power generated from RESs can reduce the 

carbon emissions in the environment and significantly increase system operation flexibility [1]. As 

illustrated in Fig. 1, it is foreseeable that conventional generators will be replaced by different 

RESs in the future and RESs with smaller capacity, such as rooftop PVs will be widely 

implemented. As a result, however, the entire system reliability will become more complicated. 

Specifically, more power conversions will be inevitably required between different energy levels. 

Whether the generated power from RESs can be efficiently, desirably, and reliably converted to 

the load side is greatly dependent on the performance of the connected power electronic interfaces. 

The penetration of power electronic converters has brought a huge challenge to the existing power 

system structure from a reliability point of view.  

The main purpose of conducting reliability evaluation in power systems is to provide 

quantitative analysis with various indices for improving system operation and future planning [2]. 

Different methods have been applied for power system reliability evaluation. Analytical methods, 

such as fault tree analysis (FTA) [3] have been utilized for optimal transmission 
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system planning. The authors in [4] proposed a system evaluation method based on the minimum 

path and calculated the reliability indicator on various load points. Simulation methods, such as 

the Monte Carlo method, have been used [5] to sample the component states in a power system. 

In [6], an artificial neural network (ANN) was implemented to predict the future reliability of a 

distribution system through historical data. 

 

Figure 1. A prediction of the future power system structure 

Many of the aforementioned methods have been refined to accommodate the RES 

contingencies and diverse load demands in power systems. However, failures caused by power 

converters connected to RESs have been mostly considered as constant or even ignored in most 

published research works. Authors in [7] investigated the age-related failure of power transformers 

and assumed 100% reliable for other units. In [8], the authors proposed time-varying reliability 

models for generating units under high penetration of wind power but didn’t consider the potential 

failure of those connected converters. A reliability assessment was conducted in [9] for 

components in large scale PV systems, and the inverter failure rate was a constant throughout a 
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year. In addition, the reliability evaluation of power systems is also dependent on various defined 

indicators. In addition, the reliability evaluation of power systems is also dependent on various 

defined indicators. Classic system reliability indices, such as expected energy not supplied (EENS) 

and loss of load expectation (LOLE), have been widely used for system reliability evaluation [9]. 

In [11], a series of novel metrics is proposed to understand system reliability performance from 

various perspectives, including resiliency and power planning. Meanwhile, reliability metrics 

related to power electronic interfaces, such as semiconductor failure rates and converters’ overall 

power availability have not generated much attention. 

That said, researchers in the power electronics field, have concentrated on evaluating the 

reliability model from both the semiconductor device level and the overall converter level for years. 

The paper [12] provided a comprehensive review on the reliability issues of semiconductor devices 

in power converters. Authors in [13]-[14] investigated the reliability of a DC-DC converter where 

time-to-failure models of semiconductors such as MOSFET and IGBT are included. In [15], the 

authors presented a reliability comparison among three types of converters used in the grid-

connected wind turbines. Meanwhile, many papers have investigated power converter reliability 

performance when a system is connected to uncertain RES supplies [16]-0. In [16]-[17], reliability 

and cost analyses of a DC-DC boost converter connected to PV panels were conducted. Authors 

in [18] proposed a back-to-back power converter for wind turbines to improve the system reliability. 

Considering the thermal loading and lifetime estimation, a reliability evaluation for critical devices 

under a typical WT converter topology was performed in [19]. In 0, converters connected to a 

hybrid PV-wind system were evaluated from efficiency and reliability perspectives. To 

mathematically estimate power converter reliability, several quantitative methodologies were 

presented in 0-0. In 0, novel or optimized converter designs were proposed to enhance not only 
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the device but also the RES reliability performance. In summary, many papers mainly focus on 

whether the power converter can reliably convert the input power to the grid when faced with the 

fluctuation on the generation side; however, efficient power conversion from RESs can only 

guarantee that all the available energy from the environment is injected into the power system. 

Whether the generated power can be successfully delivered, and is sufficient enough to satisfy the 

load demand, are still questionable.  

Based on the above-mentioned surveys, it can be concluded that many research works have 

investigated reliability from a specific aspect either the power system or the power electronics 

field. In terms of reliability assessment, power electronic interfaces, namely power converters, 

play an increasingly important role in recent years with their foreseeable penetration in modern 

power systems. Thus, the reliability modeling of power converters is essential when evaluating the 

system reliability. Meanwhile, the failure-related reliability of power converters is greatly 

dependent on the semiconductor devices. The proposed framework, therefore, builds a library of 

failure rates for different semiconductor devices, and calculates all converters’ reliability 

considering different converter topologies.  

The overall system reliability is greatly dependent on all converters’ performance. However, 

there is a lack of research regarding how the converter level reliability will affect the system 

reliability, i.e., the reliability relationship between converter and system level. Further, due to the 

increasing complexity of modern power systems, this reliability impact from converter to system 

level remains unknown and cannot be analytically solved. 

Thus, another purpose is to bridge this gap between two levels by implementing machine 

learning (ML) regression analysis. It is well known that regression analysis can establish a 

relationship among input features and output labels 0, so we consider applying this methodology 
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for two reasons. First, the reliability indicators of the device and system level are all continuous 

instead of categorized variables. Second, it is certain that the relationship between two levels is 

nonlinear. Regression modeling has much better capability to build a nonlinear relationship among 

input/output data compared with using a look-up table 0. Besides, the complexity of input features 

increases when more power converters are considered in a power system. The regression method 

can handle adding any parameter as an input feature of the model, such that the modeling 

scalability and flexibility are greatly improved.  

 

Figure 2. The proposed hierarchical power system reliability assessment framework 
In this chapter, we propose a machine learning-based model for the system reliability 

assessment. As shown in Fig. 2, in the device level, the failure rate model of component is 

employed under given climate conditions. Several semiconductor devices such as IGBT and diode 

are included. Then, in the converter level, based on those components’ failure rates and converter 

Device Failure Rate
𝜆𝜆1,𝜆𝜆2… 𝜆𝜆𝑁𝑁

Converter Reliability
𝑅𝑅1… 𝑅𝑅𝑃𝑃……

System Reliability
𝐸𝐸𝐸𝐸𝑁𝑁𝑆𝑆, 𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸

Utility PV

Wind Turbine

Rooftop PV

Reliability modeling

ML regression

……
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topologies, we consider modeling the reliability of different power electronic converters connected 

to all RESs. After modeling all converters reliability, the system reliability is generated and 

evaluated by applying system reliability indicators. ML regression techniques are integrated to 

explore the reliability relationship between converter and system level. This comprehensive 

procedure is explained in the following sections. The main contributions of this chapter can be 

summarized as follows.  

1) The proposed hierarchical reliability framework consists of three levels. We build a 

comprehensive library of failure models of a wide range of semiconductor devices, considering 

their thermal/physical dynamics and environmental conditions. Based on the power converter 

topology, we apply a combination of device failure rates to build a composite reliability model of 

each power converter.  

2) Due to the proliferation of power converters in a modern power system, their 

individual reliability indices greatly affect the overall power system performance. Therefore, the 

ability to generalize the reliability evaluation of converter-dominated power systems is highly 

valuable and could accelerate the deployment of new power electronics technologies. We present 

for the first time an integrated three-layer framework to obtain a fundamental understanding of the 

inter-relationships among device failure rates, power converter reliability, and power system 

reliability.  

A modern power system usually involves a large number of components and sub-systems. 

A fundamental understanding of the reliability impacts from converter failure to the overall system 

performance is still an unsolved puzzle. Conventional approaches are reliant on human-expert 

prior knowledge that may not be quantitative. To collectively solve these challenges, we leverage 

modern machine learning (ML) techniques to provide a baseline tool that can capture the 
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dependence structure for a large group of components and evaluate the reliability indices of 

converter-dominated power system at scale. The knowledge obtained from ML can provide 

theoretically sound yet easy-to-implement guidelines for power system operators to mitigate 

eventual failures. It is worth noting that it is not our focus to deliver a commercial-grade ML tool. 

The goal is, rather, to provide a baseline platform to the research society so that interested users 

can further study the reliability performance of converter-dominated power systems by 

incorporating more advanced ML algorithms. 

2.2. Reliability Concepts  

Reliability is a specific measurement and an inherent characteristic of a device or system 

which describes its ability to perform its intended function within a period of time [1]. According 

to this definition, a device/system is considered reliable if its regular performance can be retained 

during a specified time interval. On the contrary, if failures happen during the interval and the 

performance cannot meet the pre-defined requirement, the device/system is considered unreliable, 

and maintenance is required to improve its reliability. To quantitatively measure the reliability of 

a device or system, different reliability indicators have been developed. Furthermore, if a system 

is composed of several sub-systems, its reliability evaluation becomes complicated because each 

sub-system should be evaluated first with corresponding reliability indicators. 

An electric power system is a typical complex system that consists of various components 

and sub-systems. The system function that is, meeting the power demand on all load points should 

be guaranteed at all times. As a result, classic indices such as EENS and LOLE were developed to 

evaluate system reliability from energy and load loss perspectives. A system with a high value of 

EENS/LOLE is considered an unreliable system. For an ideal power system, the power generation 

is sufficient, and the load demand is satisfied all the time, such that both EENS and LOLE can 
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reach zero; however, contingencies and failures can happen at any component during any time 

under a modern power system, resulting in an increase on those indices. Components, including 

generators, transmission lines, and load points, can fail due to random outages or aging issues.  

Moreover, with the development of renewable energy technology, RESs such as WTs and 

PV systems are replacing traditional diesel generators in today’s power systems. Their power 

generations are largely dependent on time-variant ambient conditions, though, which introduces 

more uncertainty into power systems and may ultimately affect system reliability. Thus, evaluating 

the components’ reliability is essential when assessing the reliability performance of a power 

system.  

As one of components in a power system, the power electronic converter has not garnered 

much attention when evaluating system reliability performance. However, accompanied by 

increasing RES implementation in modern power systems, the power electronic converter is 

necessarily equipped as an interface to deal with power conversion. The generated power from a 

WT or PV source can be successfully injected into the grid only if the power converter operates 

correctly at all times. Thus, the reliability of power converters is of great importance as it may 

affect the entire system’s reliability. In addition, a power converter is composed of various semi-

conductor devices. For each of these devices, the device failure rate is usually used as one of the 

reliability indices to evaluate its reliability. Furthermore, the time-varying operating condition and 

thermal stress on a device will greatly affect its failure rate. In conclusion, the reliability of a power 

converter should be modeled based on its critical devices and should be taken into consideration 

when evaluating power system reliability.  

Therefore, with the increased penetration of RESs and power converters in modern power 

systems, reliability can be modeled hierarchically with two levels. First, the WT/PV converter 
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reliability modeling is built based on various devices considering thermal effects and operating 

conditions. The converter topologies are also considered to determine the total number of devices. 

Then, together with other components’ reliability, the converter reliability is incorporated into the 

system level analysis and the system reliability indices, including EENS and LOLE are estimated. 

The detailed reliability modeling for the converter level is described in the next section. 

2.3. Converter Reliability Formulation 

First, the reliability of each power converter connected to a RES (WT or PV system) should 

be practically quantified. As in equation (2.1), the reliability value R(t) is traditionally calculated 

from the failure rate 𝜆𝜆, where 𝜆𝜆 is independent of time and treated as a constant value [10]. 

𝑅𝑅(𝑡𝑡) = 𝑒𝑒−𝜆𝜆𝜆𝜆 (2.1) 

However, surveys show that the values of failure rates are greatly affected by various 

factors, including ambient variations and device thermal loading [11]. To consider those factors 

which have potential reliability impact on a power converter, the general FIDES model is used in 

this chapter, and expressed in the following equation (2.2) [25], where Π𝑃𝑃𝑃𝑃 is the contribution 

from quality and technical control over manufacturing of the component. Π𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 consists of all 

processes, from specification to field operation and maintenance. These two parameters are 

assumed to be one in the proposed modeling process. 

𝜆𝜆 = Π𝑃𝑃𝑃𝑃Π𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝜆𝜆𝑃𝑃ℎ𝑦𝑦 (2.2) 

𝜆𝜆𝑃𝑃ℎ𝑦𝑦 is of paramount importance in this equation which takes all component states into account, 

and is calculated by: 

𝜆𝜆𝑃𝑃ℎ𝑦𝑦 = � �
𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑇𝑇

�
𝑖𝑖
Π𝑖𝑖𝜆𝜆𝑖𝑖

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑖𝑖

 (2.3) 
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where 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  is the duration of the ith state throughout the time span T. Π𝑖𝑖  is the induced 

overstress electrical factor which is defined by the user and are specific to each component 0. 𝜆𝜆𝑖𝑖 

is calculated depended on the specific component and is used to estimate its final component 

failure rate. The detailed process is presented below. 

2.3.1. Reliability Model of WT Converters 

A typical wind power system is considered, consisting of a permanent magnet synchronous 

generator (PMSG), a generator-side inverter, a dc link, and a grid-side inverter, as shown in Fig. 3. 

The WT output power varies with the wind speed and angle. This results in the variation of device 

power losses, and ultimately affects the device failure rate. Thus, hourly based wind speed data is 

collected to determine the output power 𝑃𝑃𝑤𝑤𝑤𝑤,𝑡𝑡 at hour t which is estimated in equation (2.4), where 

𝑣𝑣𝑡𝑡 is the wind speed, 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 represents the rated capacity, 𝑣𝑣𝑐𝑐𝑐𝑐, 𝑣𝑣𝑟𝑟 , and 𝑣𝑣𝑐𝑐𝑐𝑐 are the cut-in, rated, and 

cut-out wind speeds of the WT system, respectively. Thus, hourly based wind speed data is 

collected to determine the output power 𝑃𝑃𝑤𝑤𝑤𝑤,𝑡𝑡 at hour t [26]. 

 

Figure 3. Typical wind power system 

𝑃𝑃𝑤𝑤𝑤𝑤,𝑡𝑡 = �

0,
(𝐴𝐴 + 𝐵𝐵𝑣𝑣𝑡𝑡 + 𝐶𝐶𝑣𝑣𝑡𝑡2)𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,
0,

     

0 ≤ 𝑣𝑣𝑡𝑡 ≤ 𝑣𝑣𝑐𝑐𝑐𝑐
𝑣𝑣𝑐𝑐𝑐𝑐 ≤ 𝑣𝑣𝑡𝑡 ≤ 𝑣𝑣𝑟𝑟
𝑣𝑣𝑟𝑟 ≤ 𝑣𝑣𝑡𝑡 ≤ 𝑣𝑣𝑐𝑐𝑐𝑐
𝑣𝑣𝑡𝑡 ≥ 𝑣𝑣𝑐𝑐𝑐𝑐

 (2.4) 

PMSG

Wind Turbine

AC-DC converter DC-AC converterVDC

Filter

Transformer

Grid
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As shown in equation (2.4), a second-order function is applied to estimate this non-linear 

function where 𝑣𝑣𝑡𝑡 is the wind speed, 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 represents the rated capacity, 𝑣𝑣𝑐𝑐𝑐𝑐 , 𝑣𝑣𝑟𝑟 , and 𝑣𝑣𝑐𝑐𝑐𝑐 are the 

cut-in, rated, and cut-out wind speeds of the WT system, respectively [27].  

Then, the power losses of power electronic devices in the WT can be estimated. Critical 

semiconductors considered here are diodes and IGBTs. The total device power losses consist of 

conduction loss and switching loss. Both losses are determined by various parameters. For example, 

the diode/IGBT conduction loss is related to its resistance and voltage drop, while switching loss 

is related to the switching frequency [19].  

𝑃𝑃𝑊𝑊𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐼𝐼𝑤𝑤𝑤𝑤𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶 �
1

2𝜋𝜋
+
𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜

8
� + 𝐼𝐼𝑤𝑤𝑤𝑤2𝑟𝑟𝐶𝐶𝐶𝐶(

1
8

+
𝑀𝑀
3𝜋𝜋

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) (2.5) 

𝑃𝑃𝑊𝑊𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐
= 𝐼𝐼𝑤𝑤𝑤𝑤𝑉𝑉𝐹𝐹0 �

1
2𝜋𝜋

−
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

8
� + 𝐼𝐼𝑤𝑤𝑤𝑤2𝑟𝑟𝐹𝐹(

1
8
−
𝑀𝑀
3𝜋𝜋

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) (2.6) 

Equations (2.5) and (2.6) express the calculation of the conduction loss of a diode and an 

IGBT, respectively, where 𝐼𝐼𝑤𝑤𝑤𝑤 represents the peak phase current and can be calculated from 𝑃𝑃𝑤𝑤𝑤𝑤; 

𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑉𝑉𝐹𝐹0 are the threshold voltage drops on the IGBT and diode respectively; 𝑟𝑟𝐶𝐶𝐶𝐶 , 𝑟𝑟𝐹𝐹 denotes the 

resistances of the IGBT and diode; 𝑀𝑀 represents the modulation ratio; and φ is the angle between 

the voltage and current. 

𝑃𝑃𝑊𝑊𝑊𝑊_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑠𝑠𝑠𝑠 =
1
𝜋𝜋
𝑓𝑓𝑠𝑠𝑠𝑠(𝐸𝐸𝑜𝑜𝑜𝑜 + 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜)

𝐼𝐼𝑤𝑤𝑤𝑤𝑉𝑉𝐷𝐷𝐷𝐷
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

 (2.7) 

𝑃𝑃𝑊𝑊𝑊𝑊_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑠𝑠𝑠𝑠 =
1
𝜋𝜋
𝑓𝑓𝑠𝑠𝑠𝑠𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟

𝐼𝐼𝑤𝑤𝑤𝑤𝑉𝑉𝐷𝐷𝐷𝐷
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (2.8) 

The switching loss can be calculated as in (2.7) and (2.8), where 𝐸𝐸𝑜𝑜𝑜𝑜  and 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜  are the 

IGBT energy losses of the ON and OFF state; 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  and 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  are the reference 

commutation voltage and current of the IGBT; 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   and 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  are the reference 
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commutation voltage and current of the diode; and 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 is the rated switching energy loss of the 

diode. 

The total power loss of a diode/IGBT can be derived by adding its conduction loss and 

switching loss, shown in (2.9) and (2.10), where the subscript cd stands for the conduction loss, 

and sw indicates the switching loss. The detailed equations for calculating 

𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑐𝑐𝑐𝑐 ,𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑠𝑠𝑠𝑠,𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑐𝑐 and 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑠𝑠𝑠𝑠 are provided below.  

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑐𝑐𝑐𝑐 + 𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑠𝑠𝑠𝑠 (2.9) 

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑐𝑐 + 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑠𝑠𝑠𝑠 (2.10) 

There are two converters in this WT system, namely the generator-side inverter and the 

grid-side inverter. Based on the converter topology shown in Fig.3, the number of diode/IGBT can 

be determined. All components are connected in series from a reliability point of view. Thus, the 

total power loss on these two converters 𝑃𝑃𝑊𝑊𝑊𝑊_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 can be estimated by the power loss of all 

diodes and IGBTs: 

𝑃𝑃𝑊𝑊𝑊𝑊_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝑛𝑛𝐷𝐷

𝑛𝑛=1

+ �𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑛𝑛𝐺𝐺

𝑛𝑛=1

 (2.11) 

where 𝑛𝑛𝐷𝐷 and 𝑛𝑛𝐺𝐺  represent the total number of diode and IGBT, respectively.  

Since the thermal behavior is one of the important factors that has an influence on the 

device failure rate, the calculated 𝑃𝑃𝑊𝑊𝑊𝑊_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  and hourly based ambient temperature data are 

applied to estimate the junction temperature and the thermal stress factor of a diode and of an IGBT. 

The thermal resistance and the temperature cycling factor for each diode and IGBT are also 

considered. 

𝑇𝑇𝑗𝑗𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑇𝑇𝐶𝐶 + 𝑅𝑅𝑠𝑠𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃𝑊𝑊𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑗𝑗ℎ_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃𝑊𝑊𝑊𝑊_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (2.12) 
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𝑇𝑇𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑇𝑇𝐶𝐶 + 𝑅𝑅𝑠𝑠𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑊𝑊𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑅𝑅𝑗𝑗ℎ_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑊𝑊𝑊𝑊_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (2.13) 

Equation (2.12) and (2.13) calculate the junction temperature of a diode and an IGBT, 

where 𝑇𝑇𝐶𝐶 is the ambient temperature, and 𝑅𝑅𝑠𝑠𝑠𝑠 and 𝑅𝑅𝑗𝑗ℎ are the thermal resistances from heat sink 

to ambient/from junction to heat sink, respectively. The thermal stress factor 𝜋𝜋𝑇𝑇 for a diode or an 

IGBT can be derived in (2.14) and (2.15). 

𝜋𝜋𝑇𝑇_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = exp �1925 �
1

298
−

1
𝑇𝑇𝑗𝑗𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 273

��                      (2.14) 

𝜋𝜋𝑇𝑇_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = exp �3091 �
1

298
−

1
𝑇𝑇𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 273

��                   (2.15) 

The temperature cycling factor 𝜋𝜋𝑇𝑇𝑇𝑇 for a diode or an IGBT can be expressed by (2.16). 

𝜋𝜋𝑇𝑇𝑇𝑇𝑇𝑇 = 𝛾𝛾 �
12𝑁𝑁𝑠𝑠
𝑡𝑡(𝑖𝑖)

�𝑓𝑓(∆𝑇𝑇𝑏𝑏) × exp [1414(
1

313
−

1
𝑇𝑇𝑏𝑏_𝑚𝑚𝑚𝑚𝑚𝑚 + 273

)] (2.16) 

where γ and 𝑓𝑓(∆𝑇𝑇𝑏𝑏) have a specific value/expression for a diode or an IGBT, and their values can 

be found in 0.  

Then, the failure rate model for a semiconductor can be derived, by utilizing all the 

calculated results from above and the method in 0, where the above-mentioned factors that 

potentially affect the reliability performance for the component failure rate estimation are 

considered. Other factors such as radiation, heat and electrical stresses, wear-out effect, and 

production quality are also included. The failure rate models of a diode or an IGBT are expressed 

in (2.17): 

𝜆𝜆𝑗𝑗,𝑡𝑡 = �(𝜆𝜆0𝑇𝑇ℎ𝜋𝜋𝑇𝑇𝑗𝑗,𝑡𝑡 + 𝜆𝜆0𝑇𝑇𝑇𝑇𝜋𝜋𝑇𝑇𝑇𝑇𝑗𝑗,𝑡𝑡)𝜋𝜋𝐼𝐼𝐼𝐼𝜋𝜋𝑃𝑃𝑃𝑃𝜋𝜋𝑃𝑃𝑃𝑃

𝑁𝑁𝑠𝑠

𝑖𝑖

               (2.17) 

where 𝜆𝜆𝑗𝑗,𝑡𝑡  represents the failure rate of component 𝑗𝑗  at time t, 𝑁𝑁𝑠𝑠  is the number of component 

states; 𝜆𝜆0𝑇𝑇ℎ and 𝜆𝜆0𝑇𝑇𝑇𝑇 are two base failure rate elements of a component, respectively; 𝜋𝜋𝑇𝑇𝑗𝑗,𝑡𝑡 and 
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𝜋𝜋𝑇𝑇𝑇𝑇𝑗𝑗,𝑡𝑡  are the thermal stress factor and the temperature cycling factor of component j at time t, 

respectively; 𝜋𝜋𝑙𝑙𝑙𝑙 is the overstress factor used to represent the overstress contribution, determined 

by the coefficient sensitivity to overstress and the component application field; 𝜋𝜋𝑃𝑃𝑃𝑃 represents the 

factor of component quality; and 𝜋𝜋𝑃𝑃𝑃𝑃 is the factor of reliability control reflecting the aging status 

in the component’s life cycle.  

𝑅𝑅𝑊𝑊𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) = 𝑒𝑒−�∑ 𝜆𝜆𝑗𝑗,𝑡𝑡
𝑁𝑁𝑗𝑗
𝑗𝑗=1 �𝑡𝑡                                  (2.18) 

Finally, the failure rate of the WT converter can be derived, and the converter reliability 

can be expressed as in (2.18), where 𝑁𝑁𝑗𝑗 represents the total number of devices. 

2.3.2. Reliability Model of PV Converters 

As shown in Fig.4, a typical PV system, as considered in this chapter consists of a PV array, 

a dc-dc boost converter, and a dc-ac inverter.  

 

Figure 4. PV system with dc-dc boost converter and dc-ac inverter 
Similar to a WT system, the output power of the PV system has a close relationship with 

the device failure rate. Thus, hourly based input data, such as solar radiance and ambient 

temperature are collected. Assuming a maximum power point tracking (MPPT) mechanism, the 

PV panels

Boost converter DC-AC converter

Grid
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power produced by PV panels is calculated in equation (2.19), where 𝑃𝑃𝑝𝑝𝑝𝑝,𝑡𝑡 is the power generated 

by the PV panels at time t; 𝑆𝑆𝑡𝑡 is the input solar radiation intensity; 𝑆𝑆0 represents the maximum 

radiation; 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum power under standard test conditions; 𝛾𝛾  is the temperature 

coefficient; 𝑇𝑇𝑡𝑡 is the input ambient temperature, and 𝑇𝑇0 represents the standard temperature.  

      𝑃𝑃𝑝𝑝𝑝𝑝,𝑡𝑡 = 𝑆𝑆𝑡𝑡
𝑆𝑆0
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚[1 + 𝛾𝛾0(𝑇𝑇𝑡𝑡 − 𝑇𝑇0)] (2.19) 

Converters considered in this PV system include a boost, and a dc-ac inverter. Three 

components, namely a diode, an IGBT and an inductor, are considered in the PV boost converter. 

The components power losses in the dc-dc boost converter, including conduction loss and 

switching loss, are calculated similarly compared to WT converter modeling and are presented in 

(2.20)-(2.22), where 𝑅𝑅𝐷𝐷𝐷𝐷(𝑜𝑜𝑜𝑜) is the resistance between the drain and source when the switch is on; 

𝑓𝑓𝑠𝑠 is the switching frequency; 𝑟𝑟𝐹𝐹 is the equivalent resistance of the diode; 𝑉𝑉𝐹𝐹 is the forward voltage 

drop; and 𝑟𝑟𝑒𝑒𝑒𝑒 is the equivalent resistance for the main inductor. 

𝑃𝑃𝑝𝑝𝑣𝑣𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑅𝑅𝐷𝐷𝐷𝐷(𝑜𝑜𝑜𝑜)𝐼𝐼𝑖𝑖𝑖𝑖2 +
1
2
𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝐼𝐼𝑖𝑖𝑖𝑖�𝐸𝐸𝑜𝑜𝑜𝑜 + 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜�𝑓𝑓𝑠𝑠 (2.20) 

𝑃𝑃𝑝𝑝𝑝𝑝_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜2 𝑟𝑟𝐹𝐹 + 𝐼𝐼𝑝𝑝𝑝𝑝𝑉𝑉𝐹𝐹0 (2.21) 

𝑃𝑃𝑝𝑝𝑝𝑝_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐼𝐼𝑖𝑖𝑖𝑖2 𝑟𝑟𝑒𝑒𝑒𝑒 (2.22) 

The operating temperature of the main inductor is determined by equations (2.23) - (2.24), 

where 𝑇𝑇𝐻𝐻𝐻𝐻 is the hot spot temperature of the inductor, which is a function of its power dissipation 

and radiating surface area A. 𝑇𝑇𝐶𝐶 represents the case temperature.  

𝑇𝑇𝐻𝐻𝐻𝐻 = 𝑇𝑇𝐶𝐶 + 1.1∆𝑇𝑇 (2.23) 

∆T = 125𝑃𝑃𝑝𝑝𝑝𝑝_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖/𝐴𝐴 (2.24) 

The reliability of PV converter is then presented in (2.25), where 𝑁𝑁𝑚𝑚 represents the total 

number of devices used in the PV converter, and 𝜆𝜆𝑚𝑚,𝑡𝑡 is the failure rate of component m at time t.  
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𝑅𝑅𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) = 𝑒𝑒−(∑ 𝜆𝜆𝑚𝑚,𝑡𝑡
𝑁𝑁𝑚𝑚
𝑗𝑗=1 )𝑡𝑡 (2.25) 

2.4. System Level Non-sequential Sampling and Overview 

In the proposed power system network, the system-level reliability modeling is realized 

through a non-sequential Monte Carlo sampling method, which requires less computational time 

and memory compared with a sequential sampling method [28]-[29].  

For each hour, the entire system state is determined through sampling the probability of all 

components’ states. It is assumed that the WT/PV generators have multi states depending on their 

power output level, and other component has two states: up and down, and that the components 

are independent from each other. It is worth noting that the components are assumed to be 

independent because our main focus is to investigate the reliability effect from a power converter 

perspective. Partially dependent scenarios, such as a cascading failure, are not considered in this 

chapter.  

Since the failure rate is calculated through hourly based data, each component i has a failure rate 

𝜆𝜆𝑖𝑖,𝑡𝑡 at hour t. The repair rate 𝜇𝜇𝑖𝑖 is relatively stable and considered as a constant. Each 

component’s up and down state probability can be calculated using (2.26) and (2.27).  

                  𝑃𝑃𝑈𝑈(𝑖𝑖, 𝑡𝑡) =
𝜇𝜇𝑖𝑖

𝜆𝜆𝑖𝑖,𝑡𝑡 + 𝜇𝜇𝑖𝑖
 (2.26) 

           𝑃𝑃𝐷𝐷(𝑖𝑖, 𝑡𝑡) =
𝜆𝜆𝑖𝑖,𝑡𝑡

𝜆𝜆𝑖𝑖,𝑡𝑡 + 𝜇𝜇𝑖𝑖
 (2.27) 

Thus, when conducting a non-sequential sampling each hour, each component state can be 

sampled independently, and the entire system state is determined by the combination of all 

components’ states. Then, DC load flow based linear programming is adopted each hour to 

calculate the power flows, with the advantages of easy implementation and relatively low 
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computational cost. Repeat the sampling procedure for a number of simulations until the stopping 

rule is satisfied. Finally, the estimated system reliability indicators, such as EENS and LOLE are 

calculated for system analysis. 

 

Figure 5. The flowchart of the proposed power system reliability assessment 
In Fig. 5, an overview of the proposed framework is presented. First, we collect the hourly-

based input data including wind speed, wind angle, solar radiance, and ambient temperature, to 

estimate the generation power of the WT/PV system throughout one year. Since the power 

converter consists of various devices, each component’s power loss and thermal stress are 

calculated to derive the time-variant failure rate for each component. Afterwards, the number of 

each component used in a WT/PV converter is determined based on the converter topology such 

that all components failure rates are accumulated, and the converter reliability can be predicted. 

Then, we also consider other reliability data to estimate all component states in the power system.  

As shown in Fig. 5, other system components include, but are not limited to, diesel 

generators, transformers, transmission lines, and load demand. The failure rates of other system 
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components are assumed to be constant. Thus, after estimating the hourly failure rates of all power 

converters, all components availability/unavailability can be calculated through the equation (2.26) 

and (2.27). After determining all component states, we conduct the DC power flow to check the 

balance of power supply and demand. DC power flow method is a widely used tool for power 

system analysis which substantially save the computational cost. If part of the load demand is not 

satisfied, the energy loss will be converted and added onto the system reliability indicators (EENS, 

LOLE). The reliability mapping between the device and system level is realized through ML 

regression techniques, which are introduced in the next section with details.  

The proposed PDP-based optimization problem for a single EV can be extended to multiple 

EVs. Besides, the emerging Uber-like EVs will introduce a great amount of temporal-spatial 

uncertainties to power systems. There is an urgent need to develop sophisticated demand in 

response to more frequent charging requests. 

2.5. Reliability Mapping Through ML Regression Techniques 

The development of data science has introduced more applications of artificial intelligence 

(AI), and ML techniques in diverse fields in recent years [30]. In this chapter, ML regression 

techniques are implemented for converter level and system level reliability due to the following 

reasons.  

First, to examine the potential effect on system reliability from a power converter 

perspective, the relationship between power converters and the overall system reliability data are 

worth investigating; however, due to the high system complexity, this kind of relationship is 

usually nonlinear such that it is difficult to derive an analytical expression. The ML method is 

capable of dealing with the nonlinear data relationship, though, because one of the impressive ML 

capabilities is to approximate the input/output data relationship with arbitrary precision [31]. 
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Second, the relationship may vary as more converters are considered in the power system 

reliability analysis. ML provides the flexibility for additional parameters to be embedded as 

another input feature such that the nonlinear relationship can be generalized [32]. Third, system 

reliability indicators such as EENS and LOLE are considered as the system output labels and they 

are all continuous. In this work, regression models are preferable compared to classification 

techniques where the output variable is usually discrete. In this section, basic fundamentals of ML 

regression and the proposed reliability mapping model are presented. 

2.5.1. Theory 

From a statistic perspective, the relationship mapping between device and system level 

reliability data can be modeled as a regression problem. The system reliability indicators are 

usually treated as system outputs and the reliability of each power converter is considered as one 

of the input features. The regression logic is described as follows.  

Assume that there are n pairs of training data in a set {(𝑥𝑥𝑘𝑘,𝑦𝑦𝑘𝑘),𝑘𝑘 = 1, 2, … , 𝑛𝑛}, where 𝑥𝑥𝑘𝑘 

is the input feature vector. 𝑥𝑥𝑘𝑘 usually contains an array of data where all data are surrounding a 

target sample point [28]. The value of this target sample point is calculated from 𝑥𝑥𝑘𝑘 during the 

testing procedure and is compared with 𝑦𝑦𝑘𝑘 (𝑦𝑦𝑘𝑘 is continuous), the true value of this sample point. 

Thus, accuracy is achieved through this comparison. The mapping between input features and 

output labels is used to investigate an appropriate function from x to y such that when 𝑥𝑥𝑘𝑘 is known, 

the value of 𝑦𝑦𝑘𝑘 can be predicted. In the proposed RTS network, all converters reliability data are 

considered as the input features which are injected into a regression model, and the system 

reliability indicators are the output labels. The selected ML regression methods are support vector 

regression (SVR) and random forests (RF). It is worth noting that there are other ML algorithms, 
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and they may have comparative performance. The purpose of this research is not to find the optimal 

regression model, but to provide a potential reliability mapping from the device level to the system 

level through ML techniques.  

Algorithm 1 Reliability Mapping Through ML Regression 
Techniques 

Input:   Calculated power converter reliability data x, system 
         reliability indices y. 
Output: Predicted system reliability indices 
Training: 
1 A data set is created where vector x denotes all power converter 

reliability at hour t and y stands for the system reliability index 
(i.e., EENS, LOLE). 

2 Create two ML regression models: 
3 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆 =SVR () 
4 𝑓𝑓𝑅𝑅𝑅𝑅 =RandomForestRegression () 

5 Input all the x and y pairs to each model for training. 
The ratio of training to testing data is 8:2.  

Testing: 
6 The trained models are applied to the remaining x data and 

derive the prediction of 𝑦𝑦�. 

7 Use typical indices, such as RMSE and R-squared, to evaluate the 
mapping models  

The main steps of the proposed regression mapping are provided in Algorithm 1. The root-

mean-square error (RMSE) and R-squared are used to evaluate the performance of both regression 

models. RMSE is a standard measure of error when a model predicts quantitative data [32]. The 

lower RMSE value is, the better prediction is indicated in this regression model. On the other hand, 

R-squared is a statistical measure that indicates how much a variation of a dependent variable is 

explained and it ranges from 0 to 1.  
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In general, if the R-squared value reaches 1, it represents that the implemented regression 

model is well fitted to the input/output data set. On the contrary, when the R-squared reaches 0, it 

indicates that the regression model does not fit the data at all. 

2.5.2. Support Vector Regression 

SVR has mainly been developed for handling nonlinear regression problems. This 

algorithm is adapted from the ML classification paradigm, namely the support vector machine 

(SVM) which is operated by maximizing the margin of the decision boundary [33]. In SVR, the 

first step is to map the input features 𝑥𝑥 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} (with n power converters considered, for 

example) into an n-dimensional kernel-induced feature space through a fixed mapping method 

where they are linearly correlated with the output labels. Thus, the SVR model can be described 

by the following notation: 

𝑓𝑓(𝑥𝑥) = �𝑦𝑦�𝑘𝑘𝑔𝑔𝑘𝑘(𝑥𝑥) + 𝑏𝑏
𝑛𝑛

𝑘𝑘=1

                                                  (2.28) 

where 𝑦𝑦�𝑘𝑘 is the predicted system reliability value, 𝑔𝑔𝑘𝑘(𝑥𝑥) denotes the nonlinear transformation, and 

𝑏𝑏 stands for the predicted bias value. A cost function is required for the SVR formulation. A robust 

ε-insensitive loss function is adopted. Detailed mathematical information can be found in [33]. 

2.5.3. Random Forests 

RF is an ensemble learning method developed for improving classification and regression 

trees through combining a large set of decision trees [34]. Each individual tree is built based on a 

random subset of the input variables and the predicted output value depends on the average 

prediction of all aggregated trees. Specifically, an input vector 𝑥𝑥 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} is given to build 
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the forest. A set of m trees {𝑇𝑇1(𝑥𝑥),𝑇𝑇2(𝑥𝑥), … ,𝑇𝑇𝑚𝑚(𝑥𝑥)} is created and all trees predict the output {𝑦𝑦�1 =

𝑇𝑇1(𝑥𝑥), … ,𝑦𝑦�𝑚𝑚 = 𝑇𝑇𝑚𝑚(𝑥𝑥)}. To derive the final result, all trees’ predictions are aggregated, and the 

average value is calculated as in (29). The growing procedure of each tree can be found in [35]. 

𝑓𝑓(𝑥𝑥) =
1
𝑚𝑚
�𝑦𝑦�𝑘𝑘(𝑥𝑥)
𝑚𝑚

𝑘𝑘=1

                                             (2.29) 

2.6. Numerical Analysis 

 
Figure 6. The illustration of RES/power converter penetration in the RTS network 

Generators are all conventional in scenario I. Several RESs and connected power converters are 
implemented in scenario II. More RESs, including rooftop PVs, and power converters are 

considered in scenario III. 
 

The proposed framework was validated on a system with the following configuration: 

Intel(R) Core(TM) 16 GB 2.30GHz. The non-sequential MC simulation was performed in Matlab 

2019b, and ML regression models were implemented through Python scikit-learn. The collected 

hourly based data, such as wind speed, solar radiance, and ambient temperature, are provided in 

[36]. 
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2.6.1. System Description 

In numerical analysis, a modified IEEE RTS-24 bus network as shown in Fig.6, is used as 

the test system. To investigate the penetration of RESs and power electronic converters, three 

scenarios are considered to reflect converter penetration in a power system: 

1) Scenario I: In this scenario, the original RTS is applied as shown on the left side of Fig. 

6, where all generators are conventional (e.g., diesel, thermal). Thus, traditional 

generators dominate the power system generation in this case, and the system reliability 

is evaluated without considering the RESs and power converters. Other components 

such as transmission lines and load points are equipped with constant failure rates. The 

detailed reliability data and load model are provided in [36].  

2) Scenario II: This scenario mimics the proliferation of RESs in an RTS network that 

renewable technology has been developing rapidly in recent years. Specifically, two 

WT and seven PV systems are implemented to replace conventional generators on 

different buses, as shown in the middle of Fig. 6. The WT and PV converter reliability 

models were presented in Section 2.3 with a small rated capacity, such as 2 MW and 

0.5 MW, respectively. Thus, the reliability model of each power converter implemented 

in this scenario can be obtained by combining the reliability of each individual WT/PV 

converter. For instance, the reliability of a 25.9MW PV on bus 1 can be obtained by 

combining 52 small converter reliability models where each has a capacity of 0.5MW. 

3) Scenario III: This scenario assumes that renewable technologies are sufficiently 

developed for industrial/residential use in the future, as presented on the right side of 

Fig. 6. Two more WT systems are considered on buses 17 and 23, respectively. 

Furthermore, six rooftop PV systems with smaller capacities (around 9 to 12 MW) are 
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implemented, which results in the total number of power converters considered in this 

scenario reaching 17. Similar to the previous scenario, a converter reliability with a 

large capacity can be derived from several converter reliability models where each has 

a small capacity.  

2.6.2. Importance of Considering Converter Reliability 

To highlight the importance of considering power converters when evaluating system 

reliability, traditional system indicators are calculated for all three scenarios, including EENS, and 

LOLE.  

Table 1: Reliability indicator under all scenarios 

Scenario EENS (MWh/yr) LOLE 
(days) Number of Converters 

I 695.74 1.94 \ 
II 4070.38 10.85 9 
III 18025.91 22.68 17 

 
Fig. 7 illustrates the accumulated EENS and LOLE for all three scenarios, respectively. 

The annual values of EENS and LOLE are also summarized in Table 1. In Fig. 7, the EENS and 

LOLE increase quickly in the last two scenarios while they are maintained at relatively low values 

in scenario I. This is because of the uncertainty of WT and PV systems, and the power converter 

failures being introduced in the last two scenarios. Additionally, the EENS in scenario I finally 

reaches 695.74 MWh/year and LOLE reaches 1.94 days, which are 17.1% and 17.9%, respectively, 

compared with scenario II, and 3.9% and 8.6% compared with scenario III. 
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Figure 7. Accumulated EENS of all three scenarios 
This shows that the power converter has a non-negligible effect on system reliability. As 

the number of power converters considered in the power system increases, both EENS and LOLE 

reach a relatively high value which indicates the system becoming unreliable.  

2.6.3. The Reliability Effect of Converter Topologies 

The converter topology not only determines how many power electronic devices are used 

but also reveals how they are connected with each other. Consequently, converter reliability 

performance can be greatly affected by the choice of converter topology. Thus, only scenario II 

and III are considered. Three typical converter topologies for high-power WTs and PVs are 

selected: a three-level cascaded H-bridge (CHB), a neutral point clamped (NPC), and a flying 

capacitor converter (FCC) [37]-[38]. The total number of various devices used in these topologies 

are summarized in Table 2. NPC is also known as diode-clamped and more diodes are applied in 

this topology compared with in the other two topologies. The three-level FCC needs a minimum 

of four independent capacitors, i.e., a total of two auxiliary capacitors per phase leg in addition to 

two main dc bus capacitors [37]. The detailed topology information of all three converter 

topologies can be reviewed in [38].  
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Fig. 8 illustrates the system EENS while three topologies are applied in scenario II and III, 

respectively, where the blue dotted line represents CHB, the red dash-dot line is NPC, and the 

green solid line depicts the FCC topology. The EENS value among all three topologies grow 

steadily and finally reaches 4070.38 MWh (CHB), 4164.07 MWh (NPC), and 4315.58 MWh (FCC) 

in Fig.8, which indicates that the converter topologies do have an influence on system reliability, 

though, this influence is not very critical. Notably, in scenario III, the system EENS with FCC 

topology grows rapidly during 3000 to 5000 hours (summertime) and then slows down, which 

indicates an outage is more likely to happen during the summer and more maintenance may be 

required.  

 

Figure 8. Scenario II EENS under three converter topologies 
Table 2: Total number of devices used in different converter topologies 

Topology IGBTs Diodes Capacitors 

CHB 12 12 3 

NPC 12 18 2 

FCC 12 12 9 

 
There are other power converter topologies that can be connected with RESs and 

implemented in a power system. It is to be noted, however, that the purpose of this case is not to 
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find the optimal converter topology for power converters/system reliability performance, but to 

investigate system reliability when different converter topologies are applied. 

2.6.4. The Regression Mapping between Two Levels 

To investigate the hidden relationship between device level and system level reliability, 

SVR and RF regression models are implemented. In general, 80% of the device/system reliability 

data is used for training as input variables to the model for intrinsic parameters selection. The 

remaining 20% is used for testing. The computational time of SVR and RF are 42.78s and 45.64s, 

respectively. Two statistical measurements: Root Mean Square Error (RMSE), and R-squared, are 

used to evaluate the effectiveness of the implemented regression methods.  

Table 3: ML regression results of SVR and RF 

Model Scenario RMSE R-
squared 

SVR 
II 1.943 0.947 

III 2.719 0.892 

RF 
II 2.221 0.921 

III 2.895 0.883 

 

 

Figure 9. Comparison of the predicted and the actual EENS 
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In the numerical analysis, the RMSE values under scenario II are all lower than those values 

in scenario III. This is due to the system complexity, i.e., fewer number of power converters is 

considered in scenario II. On the other hand, both R-squared values of SVR and RF methods reach 

above 0.9 in scenario II and 0.88 in scenario III, respectively. As shown in Fig.9, 60 samples of 

testing data are collected to compare the predicted EENS and the corresponding actual value. The 

difference between the predicted and actual value is also shown in the same figure.  

In general, the predicted EENS follows the actual EENS pattern across all samples, and the 

maximum difference only reaches 4.31(absolute value). This indicates that it is possible to 

implement a reliability mapping between the power converter and system level through ML 

techniques.  

2.7. Conclusions 

We propose a two-level reliability framework to bridge the gap between power converters 

and power systems. The reliability performance of a power system is evaluated considering the 

impact of power converters’ reliability. The reliability model of each converter is built from the 

device level, where critical semi-conductor devices are included. Each converter reliability is used 

as one of the input features and the system reliability indicators are defined to be the outputs. 

Furthermore, to investigate the relationship between converter and system reliability, ML 

regression techniques are used as it is a useful tool to determine nonlinear relationships. The 

numerical results show that the converter reliability has a non-negligible effect on the modern 

power system performance, and a nonlinear relationship between multiple power converters and 

overall system reliability can be built using regression techniques. Future works will focus on 

investigating the applications of parallel computing to speed up the proposed reliability analysis. 
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The reliability impact of power converters’ internal connections in a RES is also worth 

investigating. The influence on the power system network changes (i.e., different network 

topologies) will change the power flow and ultimately affect the system reliability performance. 

Once the real-world or synthetic transmission networks become available for reliability analysis, 

one will be able to investigate the scalability of the proposed reliability assessment framework. 

Moreover, since ML encapsulates the relationship and acts like a ‘black box’, the integration of 

ML interpreting methods will be investigated to improve the reliability explanation and provide 

useful information for system operators. Appropriate reliability requirements on the converter level, 

and corresponding system maintenance strategies could be investigated.  
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CHAPTER 3 

Reliability Ranking and Quantification of Multiple Power Converters 

 
3.1. Introduction 

This chapter presents a two-stage methodology to comprehensively assess the reliability 

performance of a converter-dominated power system. In the first stage, the reliability of each 

power converter is modeled in an accurate manner. Dynamic behaviors of various integrated 

semiconductor devices and the converter topology are considered. In the second stage, we calculate 

system-level reliability indicators through a non-sequential Monte Carlo simulation. Machine 

learning regression algorithms are integrated between the converter and system level reliability 

data to establish a nonlinear reliability relationship. Moreover, a variance-based sensitivity 

analysis is conducted to rank and identify the most influential converter uncertainties with respect 

to the variance of system reliability indicator. Based on the analyzed conclusions, system operators 

can take proactive actions to mitigate the potential risk of the system.  

The incorporation of renewable energy resources (RES) in power systems has brought 

several challenges to realizing a reliable power delivery. That said, the proliferation of RES has 

been significantly accompanied by the penetration of various power electronic converters. Notably, 

the power electronic converter plays a fundamental role during energy conversion [2]. 

Consequently, from a reliability point of view, the system has become more complicated compared 

with a traditional system.  
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A power system’s reliability is defined as a measurement of its ability to cope with 

customer demands. Reliability assessment of conventional power systems has been widely studied 

[4]. The reliability of power systems with RESs such as WTs or solar PVs is investigated in [6], 

[7]. The authors in [8] and [9] conducted a system reliability assessment considering diverse load 

demands in a large-scale WT system or PV system. However, failures associated with power 

converters have not raised much attention in most published research works. According to field 

data and industrial experiences, power converters are one of the frequent sources of failure in many 

electrical applications [9].  

From a power electronics perspective, a power converter reliability is largely determined 

by the performance of critical components. Many researchers have indeed initiated the reliability 

evaluation of a power converter from its device composition in the last decade. In [11], the authors 

conducted efficiency and cost estimations for a typical boost converter under a solar panel system. 

A reliability assessment for critical devices was performed in [9] considering the topology of a WT 

converter and its thermal loading. Power converters have been implemented to realize actual power 

conversions in a power system. However, sufficient power conversion can only increase the 

amount of power available in a power system. Whether these power inputs can be successfully 

delivered to the load side and satisfy the demand in future power systems is still questionable. 

Based on these surveys from both the power system and power electronics fields, it can be 

concluded that more uncertainty and complexity are introduced in these power systems compared 

with traditional methods due to the increasing implementation of converters. A lousy reliability 

performance on the device/converter level may ultimately result in a system-level failure. In [2] 

and [13], a fundamental exploration of the reliability impacts on the overall system performance 

from converter failures is investigated. It is necessary to intensify the importance of power 
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electronic converters and explore their potential effects when evaluating the system reliability 

under the proliferation of RESs and power electronic interfaces. 

Meanwhile, various uncertain parameters are introduced in power systems due to 

intermittent RESs and the operational structure. These uncertainties may have a significant 

influence on the system’s reliability performance. The authors in [14] highlighted that a 

conservative power system assessment or non-optimal maintenance solutions would be made by 

decision-makers if spatiotemporal uncertainties are neglected. In [15], the authors implemented 

several numerical sensitivity analysis (SA) methods to investigate the most critical uncertainty 

affecting the reliability of power systems. Therefore, implementing an appropriate SA on the 

proposed reliability framework is essential in order to interpret the system reliability behavior and 

identify the effects that emerging power converters will have on system reliability. Identifying the 

most critical uncertainties, i.e., the most influential pair of a RES and its connected power 

converter on the system reliability, will help system operators and stakeholders to better arrange 

the maintenance schedule and facilitate better system operation.  

SA is mainly categorized into two classes: local SA (LSA) and global SA (GSA). GSA has 

a variety of applications in power systems, such as reconfiguring power networks [16], allocating 

voltage control devices [18], and improving transmission capacity [19]. However, most 

conventional GSAs neglect the uncertain parameters from RESs and power converters and may 

not provide accurate results in terms of system reliability characteristics. In the last decade, a 

variety of implementations of the variance-based GSA have been presented, which indicates that 

the variance is a universal and proper index to depict the output variability. Another advantage of 

variance-based GSA over other GSA method is that system variance has been validated as an 
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adequate index to quantify the contribution of each input uncertainty without any hypothesis on 

the linearity or monotonicity of the model 0.  

Fig. 10 generalizes each step of the proposed reliability assessment framework. The first 

stage of the proposed framework utilizes a group of failure rates for various semiconductor devices. 

After considering various topologies, each power converter’s reliability is estimated. In step three, 

system reliability indicators are calculated through a set of Monte Carlo simulations. Further, in 

step four, we establish a relationship between the converter and the system stage from the 

reliability perspective by utilizing machine learning (ML) regression algorithms to capture the 

converter dependence structure for several devices and calculate the reliability indicators of a 

converter-dominated power system.  

 

Figure 10. Six steps of the proposed two-stage reliability assessment framework 
From the power converter perspective, the second stage of the proposed framework 

presents for the first time the application of the variance-based GSA to identify the contribution of 

each converter uncertainty to the variance of the system reliability indicator. This novel application 

is of critical importance as future power systems become increasingly implemented with RESs and 

power converters. The research purpose of this stage is to provide instructive information to system 
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operators, achieve better system operation planning, and promote the application of more advanced 

SA methods in power systems. 

According to the aforementioned reliability and uncertainty issues posed by the 

proliferation of RESs and power electronic converters in future power systems, this chapter has 

the following contributions: 

1) The reliability performance of each power converter is associated with 

physical/thermal dynamics of several semiconductor devices and environmental 

uncertainties. Therefore, the reliability modeling of power converters should be 

achieved in a more accurate manner. In the first stage of the proposed reliability 

assessment of a power system, we consider a wide range of semiconductor devices and 

formulate a reliability model for each device. After considering each power converter 

topology, we collect the failure rate of each device accordingly, and a comprehensive 

reliability model of each power converter is derived.  

2) Since the increasing integration of power converters in a power system, the impact of 

converter reliability on the system-level performance is of great importance. This 

chapter presents a methodology that utilizes ML regression algorithms as a bridge to 

establish a reliability dependence between the power converter and system-level 

reliability. The theoretical analyses obtained from this scheme illustrate the significant 

role of power converters when evaluating system reliability. 

3) The uncertainty parameters coming from power converters are yet to be considered 

when conducting traditional GSA. In the second stage, the variance-based GSA method 

is applied to the proposed power system to provide instructive information to system 

operators and stakeholders such that better operational planning can be achieved. This 
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novel application is also intended to promote the development of the implementation 

of more advanced SA methods in power systems so that interested researchers can 

further interpret the system reliability behavior.  

In the following, first, the formulation of power converter reliability is summarized in 

Section 3.2. Concepts about ML and two regression algorithms are introduced in Section 3.3. 

Section 3.4 introduces the fundamental procedure of how the variance-based GSA is integrated 

into the power system. Next, we conclude the Monte Carlo simulation and illustrate a system 

overview. The proposed reliability framework is verified on the IEEE 24-bus RTS in Section 3.5. 

Conclusions and future works are summarized in Section 3.6. 

3.2. Formulation of Converter Reliability 

The reliability of every power electronic converter should be quantified in an accurate 

manner. The reliability value R(t) is conventionally estimated by (3.1), where 𝜆𝜆 is the failure rate, 

which was time-invariant and usually defined as a constant throughout the year [9]. 

𝑅𝑅(𝑡𝑡) = 𝑒𝑒−𝜆𝜆𝜆𝜆 (3.1) 

However, the failure rate value is mostly affected by various uncertainties, such as ambient 

variations and component thermal loadings. To consider these factors, we collect hourly based 

ambient data and assume each uncertainty follows a pre-defined probability distribution over a 1-

year time span such that in each converter, the values of 𝜆𝜆  and R(t) are determined in a more 

accurate manner. General steps of converter reliability modeling are shown in Algorithm 2. An 

explanation of the formulation procedure is also provided. The detailed converter schematic and 

calculations can be found in [13]. 
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Both wind power and PV systems are included in the proposed network. Two converters 

are considered in each WT system: the grid-side and the generator-side inverter. Meanwhile, a DC-

DC boost converter and a DC-AC inverter are considered in the PV system.  

In each hour, the WT output power 𝑃𝑃𝑊𝑊𝑊𝑊 depends on the wind speed [6], while the PV output 

power 𝑃𝑃𝑃𝑃𝑃𝑃 is determined by the solar radiance and the ambient temperature. Consequently, the 

power loss of each semiconductor device varies and ultimately affects its failure rate value.  

Based on the observation of WT/PV converter topologies, diodes, and IGBTs are mainly 

considered as critical semiconductors. The number of diodes/IGBTs used in each converter can be 

determined accordingly.  

Algorithm 2: Reliability of WT/PV converters 
Input:  Hourly based data, including wind speed 𝒗𝒗 , ambient 
temperature 𝑻𝑻, and solar radiance 𝑺𝑺𝑺𝑺 
Output: WT/PV converter reliability 𝑹𝑹𝑾𝑾𝑻𝑻𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄  / 𝑹𝑹𝑷𝑷𝑽𝑽𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄   and 
availability 𝑨𝑨𝑾𝑾𝑻𝑻𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄/𝑨𝑨𝑾𝑾𝑻𝑻𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄  
Steps: 
1 An hourly-based data set of 𝑣𝑣 , 𝑇𝑇,  and 𝑆𝑆𝑆𝑆  is collected with a 

one-year time span.  
2 Calculate the input power of WT/PV: 𝑃𝑃𝑊𝑊𝑊𝑊/𝑃𝑃𝑃𝑃𝑃𝑃 
3 Determine the type and number of each semiconductor device 

considering the topologies of WT/PV converter 
4 Estimate the power loss of each device (conduction or 

switching loss) 
5 Calculate other parameters such as thermal stress and device 

aging factors 
6 Determine the failure rate of each semiconductor device   
7 Based on the WT/PV converter topologies, calculate 

𝑅𝑅𝑊𝑊𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑅𝑅𝑃𝑃𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and 𝐴𝐴𝑊𝑊𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝐴𝐴𝑊𝑊𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  
 

Afterward, we estimate the total power losses of each device in each converter. The total 

power losses are determined by the combination of conduction loss 𝑃𝑃𝑐𝑐𝑐𝑐 and switching loss 𝑃𝑃𝑠𝑠𝑠𝑠, 

and they are calculated through a variety of parameters such as voltage drops, resistance, and the 



43 
 

switching frequency [1]. The detailed equations for calculating 𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑐𝑐𝑐𝑐 ,𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑠𝑠𝑠𝑠,𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑐𝑐 and 

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑠𝑠𝑠𝑠 are also provided in [13].  

Device thermal behaviors such as stress factor and junction temperature are critical 

parameters having an impact when calculating a device failure rate. Hence, together with the 

ambient temperature, the calculated power losses are collected to calculate those factors of either 

a diode or of an IGBT. Temperature cycling factor and thermal resistance are also considered for 

each device.  

Afterward, the device failure rate model is built through the method mentioned in 0 and all 

the calculated results from above and where various factors which potentially affect the reliability 

performance are considered. The failure rate model of a semiconductor device can be estimated by 

(3.2): 

𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �(𝜆𝜆0𝑇𝑇ℎ𝜋𝜋𝑇𝑇ℎ𝑖𝑖 + 𝜆𝜆0𝑇𝑇𝑇𝑇𝜋𝜋𝑇𝑇𝑇𝑇𝑇𝑇)𝜋𝜋𝐼𝐼𝐼𝐼𝜋𝜋𝑃𝑃𝑃𝑃𝜋𝜋𝑃𝑃𝑃𝑃

𝑁𝑁𝑠𝑠

𝑖𝑖

 (3.2) 

where 𝑁𝑁𝑠𝑠 denotes the number of component states; both 𝜆𝜆0𝑇𝑇ℎ and 𝜆𝜆0𝑇𝑇𝑇𝑇 are base failure rate of a 

component under the design condition, respectively; 𝜋𝜋𝑇𝑇ℎ𝑖𝑖  and 𝜋𝜋𝑇𝑇𝑇𝑇𝑇𝑇   are temperature-dependent 

coefficients under state 𝑖𝑖, namely thermal stress factor and temperature cycling factor, respectively; 

The overstress factor 𝜋𝜋𝑙𝑙𝑙𝑙 is applied to represent the contribution of overstress; 𝜋𝜋𝑃𝑃𝑃𝑃 denotes the 

device quality and its value is assumed to be between 1.6 and 1.7; A normal device life age is 

assumed and 𝜋𝜋𝑃𝑃𝑟𝑟 is used to reflect the device’s aging effect. 

The WT/PV converter failure rate can be derived after applying (3.2) to each 

semiconductor device, and then the reliability of each converter can be estimated. It is worth noting 

that various uncertainties are considered during the converter formulation, not only for a 

comprehensive converter reliability estimation but are further utilized to help conduct the system 
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SA in the numerical analyses, where the most influential converter to the system reliability 

performance is identified. 

3.3. Applying ML Algorithms for Reliability Mapping 

In the proposed framework, we integrate ML regression algorithms between the power 

electronic converter and power system stage for a reliability mapping due to the following reasons.  

Firstly, the potential reliability effect on the system scale from a power converter 

perspective is worth investigating. However, the complexity of a system reliability 

assessment/evaluation increases if more power converters are implemented in this system. This 

type of relationship is assumed to be nonlinear, and hence, it is tough to analytically achieve a 

general expression or quantify the reliability effect. However, ML techniques are capable of 

handling this type of relationship. An impressive feature of ML techniques is their capabilities of 

establishing a relationship between multiple input features and output labels with arbitrary 

precision 0. Secondly, this relationship may need an update if new converters will be implemented 

in the power system in the future. ML can guarantee flexibility when additional input features are 

embedded. Consequently, we can generalize this nonlinear relationship without too much 

additional computational cost. Thirdly, we calculate the system LOLE and EENS as the system 

reliability indicators. They are also performed as ML output labels, and both of them are 

continuous parameters. Thus, regression algorithms are more appropriate instead of classifications, 

where the output category is usually discrete. The following three subsections introduce the 

fundamental logic of ML and two regression algorithms applied in the proposed framework. 

In ML techniques, the mapping refers to investigate an appropriate function from 𝑋𝑋 to 𝑌𝑌 

where 𝑋𝑋 represents the set of input features and 𝑌𝑌 is the set of output labels, such that the value of 

𝑌𝑌𝑘𝑘 can be predicted when 𝑋𝑋𝑘𝑘 is given. In this research, each power converter’s reliability data is 
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collected as one of the input features, while system EENS or LOLE are assumed as the output 

labels.  

In the following, the logic of the regression algorithm is introduced. Assume that a set of 

{(𝑥𝑥𝑘𝑘,𝑦𝑦𝑘𝑘),𝑘𝑘 = 1, 2, … ,𝑛𝑛}  contains n pairs of data where 𝑥𝑥𝑘𝑘  is the input feature vector and  𝑦𝑦𝑘𝑘 

represents the system output vector. 𝑥𝑥𝑘𝑘 consists of a data array where all data is surrounding a 

sampling target 𝑦𝑦𝑘𝑘′  0. During each testing iteration, we calculate the value of this sampling target 

based on 𝑥𝑥𝑘𝑘. The true value of this sampling point 𝑦𝑦𝑘𝑘 is then applied to compare with the calculated 

𝑦𝑦𝑘𝑘′ .  

Two ML regression methods are selected as candidates to conduct the reliability mapping: 

support vector regression (SVR) and random forests (RF). The reason for selecting these two 

algorithms includes accessible guidelines and well-established tools. There exist other regression 

techniques that are capable of handling this condition. However, the proposed framework's main 

target is not to define the most effective regression algorithm but explore the possibility of 

reliability mapping from the converter to system scale.  

As defined in 0, SVR is adapted from the support vector machine, which is an ML 

classification paradigm, and utilizes a subset of the provided dataset to build a function estimator. 

For the training data {(𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛)} , the 𝜀𝜀 -insensitive SVR is capable of finding a loss 

function where the deviation from the target output is limited within 𝜀𝜀 at all times. Hence, the SVR 

model is described in equation (3.3) and (3.4): 

𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜙𝜙(𝑥𝑥) + 𝑏𝑏 (3.3) 

𝐿𝐿(𝜉𝜉) = � 0,
|𝜉𝜉| − 𝜀𝜀,

|𝜉𝜉| ≤ 𝜀𝜀
|𝜉𝜉| > 𝜀𝜀

 (3.4) 
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where 𝑤𝑤 ∈ 𝑅𝑅𝑛𝑛  is a weighting vector, 𝜙𝜙(𝑥𝑥)  indicates the mapping transforming function, and 𝑏𝑏 

represents the intercept value. 𝜉𝜉 represents the deviation. The detailed formulation can be referred 

to in 0. 

Algorithm 3: Conduct a Reliability Mapping by utilizing SVR & 
RF 
Inputs:  Reliability data x of all power converters, calculated 
              system reliability indicators y. 
Outputs: Prediction of system reliability indicators 
Training: 
1 Create a data array X= {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}  where each vector 𝑥𝑥𝑛𝑛 

denotes the No.𝑛𝑛 power converter reliability index at time 
t. 

2 Create a data set Y for the system EENS and LOLE. 
3 Apply ML regression algorithms: 
 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆 =SVR () 
 𝑓𝑓𝑅𝑅𝑅𝑅 =RandomForestRegression () 
4 Train the 𝑋𝑋 and Y pairs through SVR and RF. The training and 

testing ratio are set as 8:2.  
Testing: 
5 Apply both trained models to the remaining data and 

calculate the predicted output 𝑦𝑦�. 
6 Calculate RMSE and R-squared values to evaluate the 

effectiveness of both mappings  

RF is defined as an ensemble algorithm that combines the prediction of several decision 

trees. The principle of RF is called bootstrap aggregation, where bootstrap samples are randomly 

selected from the training data and fitted to a regression tree. As shown in equation (3.5), after all 

individual trees in an ensemble are fitted, the final decision is determined by aggregating over the 

ensemble, i.e., calculating the average of the predicted output 𝑦𝑦�𝑘𝑘. The detailed generation of each 

decision tree is listed in 0. 

𝑓𝑓(𝑥𝑥) =
1
𝑚𝑚
�𝑦𝑦�𝑘𝑘(𝑥𝑥)
𝑚𝑚

𝑘𝑘=1

 
(3.5) 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛
�(𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘)2
𝑛𝑛

𝑘𝑘=1

                                                    (3.6) 

𝑅𝑅−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1 −
∑ (𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘)2𝑛𝑛
𝑘𝑘=1

∑ (𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘)2𝑛𝑛
𝑘𝑘=1

                                             (3.7) 

The proposed regression mapping procedure is provided in the Algorithm 3. The root-

mean-square-error (RMSE) and R-squared 0 are calculated through (3.6) and (3.7), respectively, 

to evaluate the mapping performance of both regression models.  

3.4. Variance-based Global Sensitivity Analysis 

Since various uncertain parameters are involved in the nonlinear reliability relationship 

built in the first stage, an appropriate SA is essential to interpret the system behavior based on the 

information revealed by this relationship. More uncertainty parameters will be involved due to the 

proliferation of RESs and power electronic converters. However, it is computationally expensive, 

and it may not be necessary to monitor all uncertainties. Hence, identifying the most critical 

uncertainties, i.e., the most influential pair of a RES and its connected power converter on the 

system reliability, will help system operators and stakeholders to better arrange the maintenance 

schedule and facilitate better system operation. The variance is a universal and useful index to 

depict the output variability without any hypothesis on the linearity or monotonicity of the model 

0. Therefore, in this stage, we apply the variance-based GSA to the proposed power system.  

The variance-based GSA investigates the contribution of each uncertain input to the 

selected output variance, either a single input variable or multiple-input combinations. This 

method has been applied to a variety of problems in the power system field, such as 

generators/loads ranking and distributed generation allocation. However, there are few papers that 
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take power converter uncertainties into consideration when applying variance-based GSA. It is 

necessary to conduct an importance ranking from the power converter perspective, to improve the 

understanding of the power system reliability and further provide useful advice for the system 

operator.  

The theoretical background of the variance-based GSA algorithm is first introduced. The 

detailed specifications, such as the input uncertainties and sensitivity indices are also defined. 

3.4.1. Theoretical Background 

From a black-box perspective, any model can be described by equation (3.8), where 𝑿𝑿 =

{𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛} is a vector of 𝑛𝑛 uncertain inputs, and 𝑌𝑌 is a selected univariate output.  

𝑌𝑌 = 𝑔𝑔(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛) (3.8) 
  

         𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) = �𝑉𝑉𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ � 𝑉𝑉𝑖𝑖,𝑗𝑗

𝑛𝑛

1≤𝑖𝑖<𝑗𝑗

+ ⋯+ 𝑉𝑉1,2,…,𝑛𝑛 (3.9) 

Each input 𝑋𝑋𝑖𝑖  follows a specific probability density function (PDF) and the variance 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) of 𝑌𝑌 can be decomposed as in equation (3.9) where 𝑉𝑉𝑖𝑖 is the variance of 𝑌𝑌 caused by 𝑋𝑋𝑖𝑖 

without considering its interaction with other uncertain inputs, and 𝑉𝑉1,2,… ,𝑛𝑛  represents the 

proportion of 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) caused by {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛}.  

From a power electronic converter perspective, the operating condition of a power 

converter can be described from the following parameters [9]: peak current, switching frequency, 

mean junction temperature, etc. In stage I, we can conclude that the converter voltage/current can 

be calculated from environmental data such as wind speed 𝑣𝑣 and solar radiance 𝑆𝑆, and the junction 

temperature can be obtained from equation (X) given the ambient temperature value. Thus, 

regarding a WT converter 𝑖𝑖, the input uncertainties consist of wind speed 𝑣𝑣 and temperature 𝑇𝑇, i.e., 
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𝑋𝑋𝑖𝑖 = {𝑣𝑣𝑖𝑖,𝑇𝑇𝑖𝑖} . The solar irradiance 𝑆𝑆  and temperature 𝑇𝑇  represents the uncertainties in a PV 

converter 𝑗𝑗 (𝑋𝑋𝑗𝑗 = {𝑆𝑆𝑆𝑆𝑗𝑗 ,𝑇𝑇𝑗𝑗}). The switching frequency of a power converter is assumed stable and 

not considered as an uncertainty.  

The traditional reliability index 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 is used as the system output in the first stage, and 

its variance can be easily obtained. Thus, the variance of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 is selected as the output 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) 

in the second stage.  

3.4.2. Sensitivity Indices 

As described in equation (3.10), we have the Sobol’ indices 0 defined as follows: 

𝑆𝑆𝑖𝑖 =
𝑉𝑉𝑖𝑖

𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌)
, 𝑆𝑆𝑖𝑖𝑖𝑖 =

𝑉𝑉𝑖𝑖,𝑗𝑗
𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌)

, 𝑆𝑆1…𝑘𝑘 =
𝑉𝑉1,2…,𝑘𝑘

𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌)
 (3.10) 

where 𝑆𝑆𝑖𝑖  is the first-order index, 𝑆𝑆𝑖𝑖,𝑗𝑗  is the second-order index, and 𝑆𝑆1,2,…,𝑘𝑘  is the higher-order 

index corresponding to {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑘𝑘}. Interactions of this kind will continue up to 𝑛𝑛𝑛𝑛ℎ order for 

𝑛𝑛 uncertainties.  

Thus, the number of indices and computational cost will increase dramatically if 

calculating the higher-order index. As a result, the first-order and total-effect Sobol’ indices are 

commonly used.  

1) First-order index—𝑆𝑆𝑖𝑖: According to equation (3.10), the first-order index describes the 

contribution to the output variance of the effect from 𝑋𝑋𝑖𝑖 , i.e., the effect of a single 

converter uncertainty to the system variance of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 . Equation (3.11) is used to 

calculate each 𝑆𝑆𝑖𝑖 0: 

                   𝑆𝑆𝑖𝑖 = 1 −
𝐸𝐸[𝑉𝑉(𝑌𝑌|𝑋𝑋𝑖𝑖)]
𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) ,     𝑆𝑆𝑖𝑖 ∈ [0,1] (3.11) 
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where 𝐸𝐸[𝑉𝑉(𝑌𝑌|𝑋𝑋𝑖𝑖)]  denotes the expectation of the conditional variance of 𝑌𝑌  given 𝑋𝑋𝑖𝑖 

has a fixed value. This conditional expected variance is taken over all 𝑋𝑋𝑗𝑗 , 𝑗𝑗 ≠ 𝑖𝑖 , 

weighted by the density of 𝑋𝑋𝑖𝑖.  

2) Total effect index—𝑇𝑇𝑇𝑇𝑖𝑖: As described in equation (3.10), there exist interaction terms 

such as 𝑉𝑉𝑖𝑖,𝑗𝑗 and higher-order variance that represent the combined effect of multiple 

inputs. For a system with independent inputs, the total output variance can be described 

in (12): 

                     �𝑆𝑆𝑖𝑖
𝑖𝑖

+ ��𝑆𝑆𝑖𝑖,𝑗𝑗
𝑖𝑖<𝑗𝑗𝑖𝑖

+ ���𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗<𝑘𝑘𝑖𝑖<𝑗𝑗𝑖𝑖

+ ⋯ = 1 
(3.12) 

where 𝑆𝑆𝑖𝑖  is the first-order index. 𝑆𝑆𝑖𝑖,𝑗𝑗  is the second-order interaction index related to 

input 𝑖𝑖 and 𝑗𝑗. Similarly, 𝑆𝑆𝑖𝑖,𝑗𝑗,𝑘𝑘 is the third-order interaction index. 

The total effect index 𝑇𝑇𝑇𝑇𝑖𝑖  is defined as the sum of all terms in (3.12) that contain the 

subscript 𝑖𝑖 , which describes the percentage of variance that remains if all inputs except 𝑋𝑋𝑖𝑖  are 

specified and only 𝑋𝑋𝑖𝑖  is a random variable. Thus, the total effect index can be calculated by 

equation (3.13): 

              𝑇𝑇𝑇𝑇𝑖𝑖 =
𝐸𝐸[𝑉𝑉(𝑌𝑌|𝑋𝑋−𝑖𝑖)]
𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌)

 (3.13) 

in which 𝑋𝑋−𝑖𝑖 represents the vector of all 𝑋𝑋𝑗𝑗 where 𝑗𝑗 ≠ 𝑖𝑖 (i.e., all parameters except 𝑋𝑋𝑖𝑖). 

3.5. Numerical Analysis 

In this section, the proposed two-stage framework is validated on the modified 24-bus 

IEEE reliability test system (RTS). The computations, including non-sequential Monte Carlo 

simulations, are conducted in Matlab 2020a on an Intel Core at 2.90GHz with 16 GB RAM. ML 
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regression algorithms are integrated through Python sckit-learn. A well-established software called 

SIMLAB 0 is adopted for the GSA calculations.  

 

Figure 11. The modified 24-bus IEEE RTS with RES and power converter penetration 

3.5.1. The Modified 24-bus IEEE RTS 

Fig.11 presents the modified 24-bus IEEE RTS network. The generation and load data are 

available in 0. Three WT and six PV generators and connected power converters have been added 

to the system. They are located on different buses with different capacities.  
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3.5.2. The Reliability Mapping between Two Stages 

To conduct the reliability mapping between converter and system scale, SVR and RF 

algorithms are utilized. As predefined in Algorithm 2, we collect 80% of the converter/system 

reliability data for the training procedure. The other 20% data set is consequently applied for 

testing both models. The computational costs are 41.76s and 43.52s for the SVR and RF, 

respectively. Two statistical measurements, namely RMSE and R-squared, are applied to assess 

the effectiveness of both implementations.  

 

Figure 12. Comparison between the predicted and actual EENS 
The RMSE derived from the SVR method is 1.943, which is lower than the value calculated 

by the RF method (2.221), while the R-squared value under SVR has a higher value, which reaches 

0.947 (0.921 under RF). Both R-squared values are above 0.9, which indicates that the predicted 

and actual system EENS values are basically matched with minimal error. As illustrated in Fig.12, 

the predicted and the corresponding real EENS are compared in 100 samples of testing data. As a 

result, the prediction values basically follow the actual pattern under most selected samples. The 

largest deviation reaches only 1.2%, which indicates that establishing a nonlinear reliability 
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mapping is possible with the power converter reliability data as inputs and system reliability 

indicators as outputs through regression algorithms.  

3.5.3. Variance-based GSA Results and Maintenance Suggestions 

To thoroughly conduct an importance ranking for converter uncertainties on the proposed 

power network, three cases are considered when implementing variance-based GSA:   

Case Study 1. To focus on the analysis of each type of power converter, we consider the 

uncertainties of all six PVs and their converters which are marked as “PV_conv” in 

Fig.3. 

Case Study 2. We consider new uncertainties from three WT systems (“WT_conv” in 

Fig.12) such that all converter uncertainties are considered in this case.  

Case Study 3. The network is divided into three sections as shown in Fig.11, where each 

area includes both WT and PV converters. Moreover, we consider the load perturbation 

on each bus, e.g., between 2% and 5% 0. The uncertainties in each section are grouped 

together to investigate their importance. 

The analyzed results, i.e., the importance ranking under all three cases, can provide system 

reliability evaluation from the converter perspective so that system operators or stakeholders can 

identify the most uncertain/vulnerable converter or area and make proactive decisions. 

Case study 1: In the first case, utility solar panels and rooftop PV systems are considered. 

The solar radiance 𝑆𝑆𝑆𝑆 and temperature 𝑇𝑇 are used to represent the PV converter uncertainties. Beta 

and normal distributions are adopted for solar radiance and ambient temperature through [𝑎𝑎, 𝑏𝑏] and 

[𝜇𝜇,𝜎𝜎], respectively 0.  
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Table 4 presents the 𝑆𝑆1 and 𝑇𝑇𝑇𝑇 values of all six PV converter uncertainties under different 

numbers of samples. The subscripts with parentheses indicate the rank of each PV converter. Both 

𝑆𝑆1 and 𝑇𝑇𝑇𝑇 values provide almost identical results that the uncertainties of “PV_conv3” located at 

bus 14 have the largest values, i.e., 0.128 and 0.481, respectively, which indicates that this 

converter is of the most importance among all PV converters. From the results of 𝑇𝑇𝑇𝑇, “PV_conv1”, 

“PV_conv3” and “PV_conv5” have higher values, so that these three PV converters are more 

important compared with the remaining three converters, in terms of the effect on system EENS 

variation. This is consistent with the fact that rooftop PVs such as “PV_conv6” has a smaller 

capacity and its failure results in less EENS compared with other utility PVs.  

From the system reliability point of view, it can be concluded that the utility PV converters 

at buses 13, 22, and 1 are more important compared with the remaining three rooftop PV systems. 

Table 4: Sensitivity indices of PV converters under different sample sizes 
(e.g., 𝑆𝑆𝑃𝑃𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 = 0.103(3) indicates the first-order index is 0.103 and this PV converter is ranked 

No.3 among all PV converters) 

No. of 
Samples 

First-order indices 
[𝑆𝑆𝑃𝑃𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 ,𝑆𝑆𝑃𝑃𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 , … , 𝑆𝑆𝑃𝑃𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐6] 

Total-effect indices 
[𝑇𝑇𝑇𝑇𝑃𝑃𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 ,𝑇𝑇𝑇𝑇𝑃𝑃𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 , … ,𝑇𝑇𝑇𝑇𝑃𝑃𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐6] 

50 [0.103(3), 0.079(6), 0.119(1), 0.094(4), 0.113(2), 0.091(5)] [0.456(3), 0.313(6), 0.477(1), 0.382(4), 0.468(2), 0.341(5)] 

100 [0.102(3), 0.082(6), 0.114(1), 0.092(5), 0.113(2), 0.093(4)] [0.452(3), 0.314(6), 0.480(1), 0.391(4), 0.462(2), 0.342(5)] 

500 [0.105(3), 0.086(6), 0.124(1), 0.100(4), 0.111(2), 0.093(5)] [0.448(3), 0.308(6), 0.478(1), 0.390(4), 0.464(2), 0.340(5)] 

1000 [0.107(3), 0.084(6), 0.127(1), 0.098(4), 0.114(2), 0.095(5)] [0.449(3), 0.311(6), 0.481(1), 0.398(4), 0.462(2), 0.341(5)] 

2000 [0.110(3), 0.083(6), 0.128(1), 0.097(4), 0.112(2), 0.094(5)] [0.449(3), 0.312(6), 0.480(1), 0.394(4), 0.462(2), 0.343(5)] 
 

Case study 2: Based on case study 1, we add the uncertainties of all three WT systems in 

the second case. As described in Section IV, the wind speed 𝑣𝑣 and temperature 𝑇𝑇 are modeled as 

WT converter uncertainties. Weibull and normal distributions are adopted for wind speed and 

ambient temperature through [𝛼𝛼,𝛽𝛽] and [𝜇𝜇,𝜎𝜎], respectively 0.  
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As shown in Fig. 13 and Fig. 14, the sensitivity indices such as first-order 𝑆𝑆1 and total-

effect index 𝑇𝑇𝑇𝑇 are calculated for all converter uncertainties under 1000 and 2000 sample size. 

The 𝑆𝑆1 and 𝑇𝑇𝑇𝑇 indices provide identical results that WT converter 1 located at bus 15 has the 

largest 𝑆𝑆1 (0.173) and 𝑇𝑇𝑇𝑇 (0.380) values among all the converters, which indicates “WT_conv1” 

is the most important among all converters. “WT_conv3” located at bus 13 and “PV_conv3” at 

bus 14 are ranked at 2nd and 3rd place, respectively.   

 

Figure 13. First-order indices of PV/WT converter uncertainties 

 

Figure 14. Total-effect indices of PV/WT converter uncertainties 
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To explain the simulation results from the system network perspective, the “WT_conv1” 

has the largest capacity, while the “PV_conv2” has the lowest. Further, the WT generation on bus 

15 normally will deliver power to several loads on different buses, such as bus 14, 16 and 18, while 

the “PV_conv2” supplies only a small load on bus 6. Thus, the system EENS does not vary much 

if a generation fluctuation occurs on “PV_conv2” or a failure happened on this converter. 

In conclusion, the converter uncertainty of “WT_conv1” is ranked as the most important 

affecting the system EENS variance, and the system operator should pay more attention to the WT 

system located at bus 15. 

Case study 3: The system EENS may vary significantly due to a group of uncertainties in 

a specific geographical area. With increasing converters and loads integrated into the power system, 

it is desirable to conduct variance-based GSA in different areas, in which multiple converters’ 

uncertainties and load perturbations are considered. In this case, the system network is divided into 

three sections, I, II, and III, as shown in Fig. 12. Each section contains WT, and PV converters and 

several loads. Moreover, we introduce a 3% load perturbation on each bus. All uncertainties in 

each section, hence, are grouped together for consideration in this case. Since the first-order and 

total-effect indices provided almost identical results in previous cases, only the total-effect index 

is used in this case to save computational cost. This case is intended to highlight which area should 

receive more attention and where the maintenance should be primarily scheduled.  

Table 5: Bus information of each section 
 Involved Buses 

Section I 14, 15, 16, 17, 18, 19, 21 
Section II 13, 20, 22, 23 
Section III 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

 

Table 5 lists the distribution of all buses in each section, and Table 6 presents the total-

effect index under different sampling sizes. Each subscript indicates the section ranking. All 𝑇𝑇𝑇𝑇 
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values are stable and the 𝑇𝑇𝑇𝑇  value on section I is the highest among all three sections under 

different sample sizes since both “WT_conv1” and “PV_conv3” are located within Section I and 

are top-ranked based on the results from the previous two cases, which significantly increases the 

importance of this section. Section III contains more buses compared to the other two sections. 

However, it has the lowest 𝑇𝑇𝑇𝑇 value. The average load demand in I is the highest, while section 

III has the smallest load requirement. Thus, intuitively, the system EENS variance is more sensitive 

to section I.  

Table 6: Total-effect indices for each divided area 

No. of 
Samples 

Sections 
I II III 

50 1.271(1) 1.065(2) 0.874(3) 
100 1.276(1) 1.041(2) 0.865(3) 
500 1.272(1) 1.040(2) 0.853(3) 
1000 1.296(1) 1.057(2) 0.870(3) 
2000 1.289(1) 1.053(2) 0.860(3) 

 

Since resources are limited, maintenance efforts should be optimally distributed into 

multiple sections. Thus, the results from this area-based analysis provide a more comprehensive 

importance ranking, which can help the system operator understand the ultimate effect on system 

reliability resulting from the uncertainties of a geographical area. This case evaluates the converter 

uncertainty and load fluctuation of each section and thus, is critical for system operators in 

scheduling better maintenance and mitigating potential failure risk.  

3.6. Conclusions 

A two-stage framework is proposed for evaluating the reliability of a power system. In the 

first stage, we model the reliability of each power converter comprehensively, considering its 

topology and critical semiconductor devices it is composed of. Afterward, a nonlinear relationship 
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is established through ML regression techniques. A variance-based GSA is applied in the second 

stage to conduct an importance ranking for different groups of power converters. The numerical 

results validate the premise that converter uncertainties have a significant effect on system 

reliability performance. Future works include but are not limited to focus on investigating 

reliability’s influence on specific converter failures (i.e., aging effects). Moreover, the 

implementation of ML interpreting algorithms will be explored and provide an explanation of each 

consequence which results in the system failure. 
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CHAPTER 4 

Node Reliability Interdependencies and Causal Relation Investigation 

 
4.1. Introduction 

In this chapter, BN structure searching and scoring algorithms are utilized to identify 

critical nodes and investigate their reliability interdependencies for a power system under great 

converter penetration. As more converters are integrated into the system, reliability interactions 

among various converters will frequently emerge and consequently introduce system reliability 

concerns. However, reliability causal relations have rarely been explored and demonstrated in a 

clear manner. Therefore, BN structure learning is applied to visualize the proposed converter-based 

BN structure. Moreover, reliability interactions among different nodes are quantified through 

information entropy theory. Numerical case studies illustrate the causal reliability relations among 

various nodes while considering the reliability of all integrated converters. Critical nodes are 

identified such that system operators can improve the converter maintenance scheduling.  

With the deepening integration of renewable energy sources (RES), the complexity of 

evaluating a power system’s reliability has been increasing progressively in recent years. 

Compared to traditional power generation, for example, RESs are easily influenced by ambient 

conditions. Intermittency of an RES may cause uncertainty issues in system operation and weaken 

the system’s reliability [2]-[6]. On the other hand, the power electronic converter is essentially 

integrated and performs the underpinning role of power conversion between RES/battery storage 

and the main system. Moving toward one hundred percent RES integration 
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has further intensified the importance of analyzing the reliability performance of converter-

penetrated power systems. 

Table 7 provides a brief literature summary on both component and system level reliability 

analysis. From the component perspective, identifying critical components in a power system has 

raised much research attention [7]-[13]. Various components, including transmission lines [7], 

transformers [8]-[9], energy storage systems [9] and load points [11], have been considered most 

critical when conducting system reliability evaluation. However, converter reliability has rarely 

been considered as one of the potential causes of system failures in the existing literature. 

Converter reliability impacts on the overall system reliability have spurred only limited research 

attention [19]-0. The authors in [19] considered the power converter one of the most frequently 

failed components in various applications and thus that increasing converter implementation will 

have great impact on system reliability performance. A DC-DC converter reliability model was 

formulated in [9] in evaluating the reliability of an energy storage system, but its impact on other 

components’ reliability was not investigated and different types of converters were not considered. 

The authors in 0 provided a reliability ranking for multiple converters based on their impacts on 

system reliability, but the reliability relations among different converters were not explored.  

Table 7: Literature summary of reliability analysis 
Research 

Areas Ref. Research Focus Consider Converter 
Reliability? 

Reliability 
Quantification 

Component 

[7] Transmission lines No Customer Interruption 
Cost 

[8], [9] Transformer No EENS 

[9] Battery Systems Yes (DC-DC converter 
only) Failure rate 

[11] Critical loads No Cumulative service 
time 

[13] RES No Cost of Energy 

System 

[14] Structural improvement No Node clusters 

[15] Electric/Information 
system interdependency No Node coupling rate 

[16]- [18] Cascading failure No Failure probability 
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From the system-level perspective, illustrating a system network through a graph that is 

composed of many nodes with various mutual relations [15] can clearly demonstrate the risk points 

such that the system reliability can be improved. Today’s power system network is clearly 

amenable to such description. Reference [14] utilized complex network theory to conduct node 

clustering and visualized the system network augmentation. The authors in [16] investigated 

various scenarios of system cascading failure, with all failed load points graphically presented. In 

terms of the system reliability correlation, the authors in [15] claimed that there is a clear reliability 

interdependency between the power system and the information and communication technology 

(ICT) systems. However, the other type of interaction, namely, the causal relation/connectivity 

between components has rarely been investigated in the existing literature. A signal directed graph 

was used in 0 to describe a system with a graphical representation of causal relations amongst 

variables that can be applied to find fault propagation paths and explain the causes of a fault. 

However, this method was greatly dependent on human effort and only suitable for linear models. 

Complex network theory was used in 0 for detecting variable correlations, but its electrical 

explanation of each node was not straightforward. A more universal approach should be utilized if 

those interactions and the system itself have strong nonlinearity. 

This chapter mainly focuses on learning the skeleton structure and investigating the causal 

reliability relations among the integrated converters of a converter-penetrated power system. Fig. 

15 illustrates an overview of the proposed reliability evaluation framework. The electric power 

system is implemented with multiple renewable generators such as wind energy and solar power 

sources. Specific power converters are integrated with each RES to properly convert the generated 

renewable power and transfer it to the main grid. As more RESs and converters penetrate the 

system, it is technically difficult and less efficient to observe the state of every component when 
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evaluating/analyzing the system reliability. However, converters are greatly distributed across the 

system and as mentioned before, are one of the most vulnerable components/sub-systems in a 

power system. Therefore, we utilize both BN 0 structure learning algorithms and information 

entropy theory 0 to construct a converter-based BN structure where: 

• Each node considers the reliability of multiple components, including the generator, 

transformer and especially, the reliability of the converter connected on it. Probabilistic 

data of each converter’s reliability are collected, and we apply Shannon entropy 𝐻𝐻 to 

quantify the uncertainty of each node. 

• Each oriented edge refers to the causal reliability relation between two nodes. The 

existence of each edge is addressed by calculating mutual information and we 

determine the edge orientation by calculating transfer entropy such that each causal 

reliability relation between two nodes can be quantified.  

• Those nodes that have high uncertainty and wide influential relations on other nodes 

are identified as critical to help the system operator optimize schedule prior 

maintenance/inspections. 

It is worth noting that the generated converter-based BN structure is unique from the 

original physical power system network. Information such as the level of uncertainty on each node, 

the quantified causal relations among multiple nodes can only be revealed under the generated BN 

structure instead of the original physical network. We aim to enhance the importance of 

considering power converters reliability effects and causal interactions when evaluating the 

reliability of today’s power system. The proposed BN structure demonstrates these focuses and 

can perform as an evaluation enrichment compared to existing system reliability assessment. 
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Figure 15. An overview of the proposed reliability evaluation framework 

This chapter has the following contributions: 

1) We propose a converter-based BN that performs as the skeleton structure of a 

converter-penetrated power system and utilizes BN structure learning to visualize 

identified causal relations among different nodes. The reliability of each power 

converter is enhanced during the learning procedure. As more RESs and energy storage 

systems are integrated into the system, power converters are heavily distributed and 

play a very important role in today’s power system. Their importance should be further 

enhanced. 

2) For the first time, we integrate information entropy theory to quantify the uncertainty 

of each node and each causal relation such that the criticality/vulnerability of all nodes 

can be provided for system operators to better schedule operations and maintenance. 

3) We utilize BN structure learning and transfer entropy estimation methods 

collaboratively to illustrate comprehensively the causality among various nodes. The 
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reliability interdependency and failure propagation are clearly illustrated to enrich the 

understanding of the reliability performance of a converter-penetrated power system. 

The rest of this chapter is organized as follows. First, the concept of BN structure learning 

and information entropy concepts are presented. Subsection 4.3 provides the reliability modeling 

of WT/PV converters and an overview of the proposed system reliability evaluation framework. 

In Subsection 4.4, several case studies are conducted on a modified IEEE 24-bus RTS to 

demonstrate the effectiveness of the proposed methodology. Conclusions are summarized in 

Subsection 4.5. 

4.2.  Transfer Entropy-integrated BN Structure Learning 

In this work, Bayesian network (BN) structure learning and transfer entropy are 

collaboratively applied to the proposed converter-penetrated power system for investigating the 

causal relationships among different converter reliability performance. Basic concepts and the 

proposed transfer entropy-integrated BN structure learning are introduced in this section. 

4.2.1. BN Structure Learning 

The BN has been proven to be a versatile tool in various fields 0. It has been considered 

one of the most effective and classic graphical models in power system reliability studies as well 

as providing probabilistic information and inferences via a directed acyclic graph (DAG). The 

proposed BN structure consists of three components: (𝑉𝑉,𝐸𝐸,Θ) , where a set of nodes 𝑉𝑉 =

{𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁} represent 𝑁𝑁 power converters’ reliability, and we can assess the reliability of each 

converter from system Monte Carlo simulation and observe the physical/thermal behavior of each 

converter. As more power converters are integrated into the power system, the scale of 𝑉𝑉  will 
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increase; 𝐸𝐸 denotes the set of edges. Each element  𝑒𝑒𝑖𝑖𝑖𝑖 in 𝐸𝐸 represents an edge directed from 𝑋𝑋𝑖𝑖 to 

𝑋𝑋𝑗𝑗, which represents the causal relation between two converters’ reliability performance; Each 

element 𝜃𝜃𝑖𝑖 ∈ Θ denotes the conditional probability distributions of the converter reliability 𝑋𝑋𝑖𝑖.  

4.2.2. Search & Score Functions 

Currently, search & score-based methods are usually applied to construct BN structures 0-

0. Search algorithms together with several scoring functions are applied to evaluate the goodness 

of each explored feasible BN structure. The objective of utilizing this method is to find a DAG 

which maximizes the selected scoring function. The search algorithm determines the structure 

learning efficiency while the scoring function affects the learning accuracy.  

With a given data set D, the problem of BN structure learning from D can be described as 

follows: finding a DAG (G) which is the best fit for the data set D in some senses. The scoring 

function is applied to evaluate the fitness of a candidate DAG to D. The scoring criteria is shown 

in equation (4.1) where the value of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐷𝐷) can be determined by the data set D.  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐺𝐺,𝐷𝐷) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐺𝐺|𝐷𝐷)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐷𝐷) (4.1) 

𝐺𝐺∗ = arg max
𝐺𝐺∈𝐺𝐺𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐺𝐺|𝐷𝐷) (4.2) 

Equation (4.2) states that the objective is to find the optimal BN structure 𝐺𝐺∗ where 𝐺𝐺𝑛𝑛 is 

the set of all feasible DAGs.  

The BIC scoring function was proposed based on an assumption that samples are subject 

to independence and an identical distribution. In BIC, the fitness of a DAG for the given data set 

D is evaluated based on log likelihood. The formula of the BIC scoring function is shown in 

equation (4.3), where 𝑁𝑁  is the number of variables in the DAG; 𝑃𝑃𝑖𝑖  is the number of possible 
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configurations of the parent set 𝑃𝑃𝑃𝑃𝐺𝐺(𝑋𝑋𝑖𝑖) of 𝑋𝑋𝑖𝑖; 𝑆𝑆𝑖𝑖 is the number of states of the variable 𝑋𝑋𝑖𝑖; 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 

is the number of observations in the data set D where the variable 𝑋𝑋𝑖𝑖 is under the state 𝑘𝑘 and the 

parent set is in the 𝑗𝑗𝑗𝑗ℎ configuration; 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖

𝑚𝑚𝑖𝑖𝑖𝑖
 (0 ≤ 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1,∑ 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 = 1𝑘𝑘 ,𝑚𝑚𝑖𝑖𝑖𝑖 = ∑ 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖
𝑘𝑘=1 ) 

is the likelihood conditional probability; 𝑚𝑚 is the number of samples in D. The first item of this 

BIC scoring is the log likelihood, and the second item performs as a penalty function to avoid 

overfitting.  

𝐵𝐵𝐵𝐵𝐵𝐵(𝐺𝐺|𝐷𝐷) = ���𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 log𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖

𝑆𝑆𝑖𝑖

𝑘𝑘=1

𝑃𝑃𝑖𝑖

𝑗𝑗=1

𝑋𝑋𝑁𝑁

𝑖𝑖=1

−
1
2
�𝑃𝑃𝑖𝑖(𝑆𝑆𝑖𝑖 − 1) log𝑚𝑚
𝑋𝑋𝑁𝑁

𝑖𝑖=1

 (4.3) 

Another scoring function named BDe is proposed based on Bayesian statistics and is shown 

in equation (4.4), where 𝛼𝛼𝑖𝑖𝑖𝑖 = ∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖
𝑆𝑆𝑖𝑖
𝑘𝑘=1   and 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖  describes the prior distribution. The main 

principle of BDe is to find a DAG that can maximize the posterior probability considering both 

data characteristics and prior knowledge.  

𝐵𝐵𝐵𝐵𝐵𝐵(𝐺𝐺|𝐷𝐷) = ��[log
Γ�𝛼𝛼𝑖𝑖𝑖𝑖�

Γ�𝛼𝛼𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑖𝑖𝑖𝑖�
+ � log

Γ(𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖)
Γ(𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖)

𝑆𝑆𝑖𝑖

𝑘𝑘=1

]
𝑃𝑃𝑖𝑖

𝑗𝑗=1

𝑋𝑋𝑁𝑁

𝑖𝑖=1

 (4.4) 

In terms of the search algorithm, however, searching the optimal network structure is a 

non-deterministic polynomial-hard problem. Thus, widely used score-based algorithms, namely 

K2 and MMHC algorithms, are selected as the search strategy. 

4.2.3. Transfer Entropy 

Information entropy is a well-known signal processing technique, and it has recently 

proved its suitability for evaluating complex system reliability such as fault detection 0 and 

uncertainty quantification 0. The concept of information entropy was proposed as a measure of 

information and uncertainty of a variable. Suppose there are two variables 𝐴𝐴 and 𝐵𝐵 and their states 
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(𝑎𝑎𝑗𝑗𝑡𝑡, 𝑏𝑏𝑘𝑘𝑡𝑡) are observed at each hour 𝑡𝑡. An entropy rate ℎ1 is defined as the amount of additional 

information required to represent the value of the next observation of 𝐴𝐴: 

ℎI = −��𝑃𝑃(𝑎𝑎𝑗𝑗𝑡𝑡+1,𝑎𝑎𝑗𝑗𝑡𝑡 , 𝑏𝑏𝑘𝑘𝑡𝑡)
𝑆𝑆𝑘𝑘

𝑘𝑘=1

log𝑃𝑃(𝑎𝑎𝑗𝑗𝑡𝑡+1|𝑎𝑎𝑗𝑗𝑡𝑡, 𝑏𝑏𝑘𝑘𝑡𝑡)

𝑆𝑆𝑗𝑗

𝑗𝑗=1

 (4.5) 

On the other hand, if 𝑎𝑎𝑗𝑗𝑡𝑡+1 is independent of the current observation 𝑏𝑏𝑘𝑘𝑡𝑡 , the entropy rate is 

calculated as in equation (4.6): 

ℎII = −��𝑃𝑃(𝑎𝑎𝑗𝑗𝑡𝑡+1,𝑎𝑎𝑗𝑗𝑡𝑡, 𝑏𝑏𝑘𝑘𝑡𝑡)
𝑆𝑆𝑘𝑘

𝑘𝑘=1

log𝑃𝑃(𝑎𝑎𝑗𝑗𝑡𝑡+1|𝑎𝑎𝑗𝑗𝑡𝑡)

𝑆𝑆𝑗𝑗

𝑗𝑗=1

 (4.6) 

In general, the quantity of ℎI represents the entropy rate when the current state of 𝐵𝐵 can 

affect the future state of 𝐴𝐴, while ℎ2 assumes the future state of 𝐴𝐴 is independent from the current 

state of 𝐵𝐵.  

Thus, the transfer entropy is defined as the deviation from independence of the state 

transition of an information destination 𝐵𝐵  from the previous state of an information source 𝐴𝐴 . 

When the observation delay is 1 hour, the transfer entropy can be calculated by (4.7): 

𝑇𝑇𝐴𝐴→𝐵𝐵(𝑗𝑗, 𝑘𝑘) = ℎII − ℎI = ��𝑃𝑃�𝑎𝑎𝑗𝑗𝑡𝑡+1,𝑎𝑎𝑗𝑗𝑡𝑡 , 𝑏𝑏𝑘𝑘𝑡𝑡�| log(
𝑃𝑃(𝑎𝑎𝑗𝑗𝑡𝑡+1|𝑎𝑎𝑗𝑗𝑡𝑡, 𝑏𝑏𝑘𝑘𝑡𝑡)
𝑃𝑃(𝑎𝑎𝑗𝑗𝑡𝑡+1|𝑎𝑎𝑗𝑗𝑡𝑡)

)
𝑆𝑆𝑘𝑘

𝑘𝑘=1

𝑆𝑆𝑗𝑗

𝑗𝑗=1

 (4.7) 

where 𝑡𝑡 is the time index, 𝑎𝑎𝑗𝑗𝑡𝑡 and 𝑏𝑏𝑘𝑘𝑡𝑡  indicate the 𝑗𝑗th and 𝑘𝑘th state of variable 𝐴𝐴 and 𝐵𝐵 at time 𝑡𝑡, 

respectively.  

It is assumed in both ℎI and ℎII that 𝑎𝑎𝑗𝑗𝑡𝑡+1 can be influenced by 𝑎𝑎𝑗𝑗𝑡𝑡 (i.e., the future state of 

𝐴𝐴  is influenced by its current state). The value of 𝑇𝑇𝐴𝐴→𝐵𝐵  quantifies the information difference 

between “assume 𝑏𝑏𝑘𝑘𝑡𝑡   can affect 𝑎𝑎𝑗𝑗𝑡𝑡+1 ” and “𝑏𝑏𝑘𝑘𝑡𝑡   is independent from 𝑎𝑎𝑗𝑗𝑡𝑡+1 ”. In this way, 𝑇𝑇𝐴𝐴→𝐵𝐵 

indicates the causal relation between 𝐴𝐴  and 𝐵𝐵 . This formulation is a directional and dynamic 
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measure of information transfer from 𝐴𝐴  to 𝐵𝐵 . It shows that the uncertainty changes of 𝑎𝑎𝑗𝑗𝑡𝑡+1 

between given conditions of 𝑏𝑏𝑘𝑘𝑡𝑡  and unknown 𝑏𝑏𝑘𝑘𝑡𝑡  can be described using transfer entropy. In other 

words, the information transferred from 𝑏𝑏𝑘𝑘𝑡𝑡  to 𝑎𝑎𝑗𝑗𝑡𝑡+1 can be represented by transfer entropy. The 

transfer entropy formulation is a generalization of the entropy rate to more than one variable. It is 

worth noting that transfer entropy remains a measure of the observed correlation rather than of the 

direct effect between variables. 

4.2.4. Transfer Entropy-integrated Scoring Function 

The causal relations among multiple converters can be complicated since the reliability of 

each converter can be corelated by many other converters’ performance and vice versa. For 

example, A WT converter failure would terminate the power conversion and the power generated 

from this WT cannot be transferred into the main grid and also the load side. To supplement power 

for the affected area, either the battery storage system (BSS) or other available power generations 

will be required to provide more power compared to their regular power contributions. As a result, 

this kind of burden will affect the reliability performance of those converters connected with BSS 

and other renewable generators.  

As stated in subsection A.2, 𝑃𝑃𝑃𝑃𝐺𝐺(𝑋𝑋𝑖𝑖)  refers to the parent set of 𝑋𝑋𝑖𝑖 , which means each 

element in 𝑃𝑃𝑃𝑃𝐺𝐺(𝑋𝑋𝑖𝑖) can potentially affect the reliability of 𝑋𝑋𝑖𝑖. Thus, multiple edges would exist 

and all of them would be directed to 𝑋𝑋𝑖𝑖 in the DAG. Moreover, since transfer entropy quantifies 

the information exchange, it can be utilized as a weighting index on each directed edge and 

describes the degree of each causal relation. Thus, the total transfer entropy from 𝑃𝑃𝑃𝑃𝐺𝐺(𝑋𝑋𝑖𝑖) to 𝑋𝑋𝑖𝑖 is 

described in equation (4.8), which is used to quantify the reliability causality between each 

converter 𝑋𝑋𝑖𝑖 and its parent set 𝑃𝑃𝑃𝑃𝐺𝐺(𝑋𝑋𝑖𝑖). 
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 (4.8) 

In terms of the scoring function, as shown in equation (3), the log likelihood term 

(∑ ∑ ∑ 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 log𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖
𝑆𝑆𝑖𝑖
𝑘𝑘=1

𝑃𝑃𝑖𝑖
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1 )  in the BIC scoring function indicates the fitness between the 

learned DAG and the given data set D, which can be rewritten in equation (4.9), where the term 

within the square bracket represents the entropy when 𝑃𝑃𝑃𝑃𝐺𝐺(𝑋𝑋𝑖𝑖) is given, and can be replaced by 

ℎ𝐼𝐼 in equation (4.5). Thus, the log likelihood term in the scoring function can be determined during 

the transfer entropy calculation. 

𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑜𝑜𝑜𝑜𝑜𝑜(𝐺𝐺|𝐷𝐷) = ���𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 log𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖
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(4.9) 

In general, each transfer entropy value is calculated to quantify the causal relation between 

each element of 𝑃𝑃𝑃𝑃𝐺𝐺(𝑋𝑋𝑖𝑖)  and 𝑋𝑋𝑖𝑖 . The accumulated transfer entropy 𝑇𝑇𝑃𝑃𝑃𝑃𝐺𝐺(𝑋𝑋𝑋𝑋)→𝑋𝑋𝑖𝑖 which helps 

determine the log likelihood function, can be calculated after exploring all elements in 𝑃𝑃𝑃𝑃𝐺𝐺(𝑋𝑋𝑖𝑖). 

The BIC scoring function is then utilized to evaluate the fitness of each feasible structure. 

4.3. An Overview of the Proposed Framework 

An overview of the proposed reliability evaluation framework is illustrated in Fig.16. In 

the proposed reliability evaluation framework, the first step is to construct an undirected structure, 

and a set of training data is required. The data set consists of state vectors 𝑇𝑇 =

{𝑋𝑋𝑖𝑖, … ,𝑋𝑋𝑁𝑁 ,𝐿𝐿1, … , 𝐿𝐿𝑡𝑡𝑡𝑡 , 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿}, where 𝑋𝑋𝑖𝑖 denotes the 𝑖𝑖th converter reliability. 𝐿𝐿𝑖𝑖 is the state of 𝑖𝑖th 

transmission line, and its value equals one if it is under a failed state; otherwise, it is zero. 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 
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represents the typical reliability indicator, namely, loss of load expectation in the power system. 

𝑁𝑁, 𝑡𝑡𝑡𝑡  are the number of integrated converters and transmission lines, respectively. The hourly-

based input data such as wind angle, wind speed, ambient temperature and solar radiance are 

applied to calculate the reliability of WT/PV converter while reliability data of other components 

are also collected. State sampling of Monte Carlo simulation 0 is used to determine the state of 

each component in the system. We summarize the steps of generating the training data as follows: 

First, the reliability state of each component is determined by generating uniformly distributed 

random numbers between 0 and 1, which is further compared with the component reliability or 

forced outage rate (FOR). If the sampled value is smaller than the FOR value, the component is 

under an outage state. Otherwise, the component is under a normal state. After all components’ 

states are determined, the overall system can be under a normal/contingency state and the value of 

𝐿𝐿𝑂𝑂𝐿𝐿𝐿𝐿  can be calculated. As introduced in Section 4.2, BN structure searching algorithms and 

scoring functions are applied to generate a BN from the original electrical network. 

Meanwhile, given the probability distribution of each converter reliability, the Shannon 

entropy 𝐻𝐻(𝑋𝑋𝑖𝑖) can be calculated to quantify the uncertainty level of each 𝑋𝑋𝑖𝑖. Based on the training 

data and expert knowledge, values of mutual information are calculated to determine the existence 

of edges in the structure. 

To investigate the causal relation between converter reliabilities, transfer entropy is further 

calculated on each edge. It is worth noting that both 𝑇𝑇𝑋𝑋→𝑌𝑌 and 𝑇𝑇𝑌𝑌→𝑋𝑋 should be calculated in terms 

of variable 𝑋𝑋 and 𝑌𝑌. In general, it is asymmetry between 𝑇𝑇𝑋𝑋→𝑌𝑌 and 𝑇𝑇𝑌𝑌→𝑋𝑋. If 𝑇𝑇𝑋𝑋→𝑌𝑌 ≫ 𝑇𝑇𝑌𝑌→𝑋𝑋, then 

the causal relation is considered as: 𝑋𝑋 → 𝑌𝑌 , which means that given the information of 𝑋𝑋  will 

greatly help predict the reliability performance of 𝑌𝑌 at that moment, and vice versa. Even 𝑋𝑋 and 𝑌𝑌 

are greatly coupled in reality and they affect each other throughout a year. At a certain time 𝑡𝑡, 
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however, the causal relation is considered uni-directional if the values of 𝑇𝑇𝑋𝑋→𝑌𝑌 and 𝑇𝑇𝑌𝑌→𝑋𝑋 are not 

equal.  

Since 𝐻𝐻(𝑋𝑋) denotes the uncertainty of each converter and 𝑇𝑇𝑇𝑇 explores all causal relations 

among all converters, a reliability criticality of converters can be generated by comprehensive 

comparison/analysis of these entropy values. The vulnerability/criticality of each converter is then 

determined. Identified critical converters should have priority to have maintenance or get equipped 

with a reliability sensor such that their reliability information can be fully observed/monitored. 

The overall system entropy, i.e., the system uncertainty, is further reduced. 

 

Figure 16. An overview of the proposed framework  
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4.4. Numerical Analysis 

In this section, the proposed reliability evaluation framework is validated on the modified 

24-bus IEEE reliability test system (RTS). The computations, including MC simulations, are 

performed in Matlab 2020a on an Intel Core at 2.90GHz with 16 GB RAM. BN structure learning 

is realized through Bayes Net Toolbox 0 and Python pgmpy 0. A Matlab toolbox called cTE 0 is 

modified for the transfer entropy estimations. Fig.17 presents the modified 24-bus IEEE RTS 

network. RTS was first published in 1979 as a benchmark for testing various reliability analysis 

methods. 

 
Figure 17. The modified 24-bus IEEE RTS network 
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4.4.1. Information about the System Physical Network 

In all case studies, we use the updated version of RTS data 0 where some conventional oil-

fueled generating units were replaced by RESs and energy storage systems. Four wind turbines 

(WT), five photovoltaic (PV) generators and seven rooftop PVs (RFPV) have been added to the 

system. Table 8, 9 and 10 provide all RES locations and capacity information. 

Table 8: Location and capacity information for WT converters 
No. of WT Bus ID Capacity (MW) 

1 1 148.3 
2 21 217.5 
3 15 155.0 
4 7 191.1 

 

Table 9: Location and capacity information for PV converters 
No. of PV Bus ID Capacity (MW) 

1 23 51.6 
2 14 51.6 
3 13 92.7 
4 24 49.7 
5 22 51.7 

 

Table 10: Location and capacity information for RFPV converters 
No. of RFPV Bus ID Capacity (MW) 

1 4 27.0 
2 5 28.2 
3 6 9.7 
4 8 11.2 
5 19 10.3 
6 18 27.2 
7 3 9.4 

 

4.4.2. BN Structure Learning Results 

As introduced in previous subsections, the Shannon entropy represents the level of 

uncertainty on each variable and transfer entropy quantifies the information transferred between 

two variables. Since each converter reliability performs as a variable, and any converter reliability 
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performance can be passively affected by or can affect other converters, we not only estimate the 

Shannon entropy but also calculate the value of delivered and received transfer entropy of each 

converter to comprehensively evaluate its importance/criticality. 

 
Figure 18. Calculated entropy values of each variable 

For example, as shown in Fig.18, in a network with three variables {𝐴𝐴,𝐵𝐵,𝐶𝐶}, we consider 

the Shannon entropy of all variables {𝐻𝐻(𝐴𝐴),𝐻𝐻(𝐵𝐵),𝐻𝐻(𝐶𝐶)} to quantify the level uncertainty of each 

variable. Since each variable 𝑥𝑥 will normally deliver/receive some information to/from another 

variable 𝑦𝑦, namely, both 𝑇𝑇𝑥𝑥→𝑦𝑦 and 𝑇𝑇𝑦𝑦→𝑥𝑥 will exist, we also calculate these two transfer entropy 

values to determine the orientation of each causal relation. As shown in Fig.19, since the variable 

𝐵𝐵 delivers more information to 𝐴𝐴 and does not receive much information from 𝐴𝐴, we can conclude 
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that the variable 𝐵𝐵  tends to affect 𝐴𝐴  rather than gets influenced by it. Therefore, the edge 

orientation between 𝐴𝐴 and 𝐵𝐵 is 𝐵𝐵 → 𝐴𝐴. 

 
Figure 19. An example of determining the edge orientation 

In the proposed network, some causal relations (e.g., node 1 → 2 , 6 → 10, 7 → 8  and 

21 → 18) are obvious by applying prior knowledge. The learning results based on integrated three 

scoring functions of these assumptions are listed in Table 11. “Y” indicates that the causal relation 

between two nodes is correctly learned while “N” indicates the causal relation is not 

learned/considered not significant. The proposed function learned all four causal relations 

correctly while one or two relation was not detected by BIC and BDe, respectively.  

Table 11: Learning comparisons among different scoring functions 
Causal relations 𝟏𝟏 → 𝟐𝟐 𝟔𝟔 → 𝟏𝟏𝟏𝟏 𝟕𝟕 → 𝟖𝟖 𝟐𝟐𝟐𝟐 → 𝟏𝟏𝟏𝟏 
BDe Y N Y N 
BIC Y Y Y N 
Transfer entropy-integrated BIC Y Y Y Y 

 

Fig.20 presents the BN structure learned from the original 24-bus electrical network, where 

each node represents the bus reliability, considering the reliability of generator, integrated 

converter, load and other components, and each directed edge represents the reliability causal 

relation between two nodes. K2 and MMHC algorithm are applied as the searching strategies to 

explore the BN structure. Prior knowledge such as bus generation and load information, converter 

FOR 0-0, and MC simulation data is used to help generate a set of node orders. To avoid structure 
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overfitting and remove weak connections, the threshold value of mutual information is adjusted to 

0.10. It can be observed that most nodes have multiple causal relations (edges). For example, node 

5 has two edges which indicate its reliability performance can potentially affect the performance 

of node 10 and can be influenced by the reliability performance of node 1. 

 
Figure 20. The learned BN structure based on the proposed scoring function 

(Left figure: Node - bus, edge – physical connection Right figure: Node – reliability of each bus, 
edge – causal relation) 

It is not a one-to-one mapping between the original physical RTS network and the learned 

BN structure. It is worth noting that this is a one-to-one mapping between the original physical 

network and the learned BN structure. For example, there exists a physical connection between 

node 9 and 11, but in the learned BN structure, there is no causal relation between these two nodes. 

Critical nodes are marked with solid red such as {1, 13, 14, 15} in Fig.21 because all 

orientations of their edges target toward other nodes, which indicate their reliability can potentially 

affect the reliability performance on their related nodes. Another set of nodes with red diagonal 

stripes (e.g., node 10 and 16) indicate that these nodes can be easily influenced. These nodes 
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receive more information than deliver it such that the reliability on these nodes can be greatly 

determined by the reliability performance of other nodes. 

 
Figure 21. Illustrated critical nodes in the BN structure 

 
Figure 22. Calculated Shannon and transfer entropy (TE) on critical nodes 
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Fig. 22 illustrates the calculated entropy values of critical nodes. The Shannon entropy 𝐻𝐻 

on node 1, 13, 14 and 15 is relatively high which indicates the uncertainty on these nodes is under 

a high level. The delivered transfer entropy indicates how much information is delivered to other 

related nodes. Therefore, these nodes are considered more impactful/critical, and moreover, all 

their edges direct towards other nodes, namely, their reliability performance will probably impact 

multiple other nodes. 

4.4.3. Outages on Critical Nodes and Their Propagation Areas 

Critical nodes such as 1, 13, 14, 15 are identified in the previous subsection and they are 

more likely to impact the reliability of other nodes. For example, if a converter failure happened 

on node 1, the performance of node 2, 3 and 5 will probably be influenced. However, this does not 

guarantee that the outage area is limited to these four nodes since nodes {2, 3, 5} also have causal 

relations with other nodes. Similarly, node 10, for example, can be easily influenced but not limited 

to {5, 6, 13} since cascading failure can possibly happen.  

Node sensitivity refers to how the reliability degree of other nodes are influenced if one 

node reliability has a small change. The sensitivity analysis is conducted on each critical node and 

the largest propagation area is presented in fig. 23 and fig.24. The dotted square on the node 

indicates a small reliability change is applied while the grey marks the influenced nodes. For 

example, a small increase on the failure rate of node 13 will increase the outage probability on 

nodes {10, 12, 23, 20, 19, 16}. It can be observed that the identified causal relations basically 

match with the failure propagation area and either node 10 or 16 is affected in all analyzed results. 

It is worth noting that the learned BN structure is generated and different from the original 

24-bus electrical network. The electrical network shows the physical connections while the BN 
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structure illustrates the reliability causal relations among nodes. Since each node uncertainty is 

quantified by Shannon entropy (the level of uncertainty) and each causal relation is evaluated by 

transfer entropy, namely, the reliability information transferred between nodes, the failure 

propagation includes events such as cyber-attacks. Therefore, these analyzed propagation areas 

and quantified uncertainty information cannot be revealed by the original electrical network but 

are uniquely generated from the BN structure. 

As the scale of the power system increases, it becomes more time consuming and 

complicated to conduct failure test on each node and estimate the affected area. The proposed BN 

structure identifies critical nodes by learning causal relations with entropy quantification, such that 

the failure testing efficiency is improved, especially when the maintenance schedule is tight, or 

resource is limited. 

 
Figure 23. The failure propagation area when outage happened on node 1 and 13 
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Figure 24. The failure propagation area when outage happened on node 14 and 15 

4.5. Conclusions 

This chapter has presented a framework to enhance the reliability analysis of a converter-

penetrated power system. A BN structure is generated by utilizing BN structure search and scoring 

algorithms, which can be beneficial for illustrating the causal relations in complex system 

structures. Not only the uncertainty of each converter, but also various reliability causal relations 

among converters are explored and quantified through information entropy. Numerical analysis 

has demonstrated the reliability causal relations among different nodes and has evaluated the 

criticality/vulnerability of all nodes for system operators to improve the maintenance scheduling. 

Future research will focus on improving computational costs of complex system BN structure 

learning. Moreover, optimal placement can be investigated given a limited number of reliability 

sensors such that a detailed maintenance strategy could be generated. 
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CHAPTER 5 

Conclusions and Future Works 

 
The main task of ongoing research is to explore the inter-relationship between power 

converters in terms of the system reliability impact, by utilizing Bayesian Network and 

Information Theory. This chapter briefly introduces the idea of ongoing research and summarizes 

future works.  

In Chapter 2 and 3, we have investigated the reliability impact from device/converter to 

system level. However, whether a converter failure will affect other converter’s reliability 

performance is still an unsolved puzzle. A failure happened on a power converter may result in an 

unsatisfactory load demand and the workload of adjacent converters would be increased 

accordingly. Therefore, there exists an inter-relationship between converters in terms of system 

reliability.  

To graphically reveal the inter-dependencies between power converters, we will establish 

a directed acyclic graph (DAG) through Bayesian Network. In this DAG, each node represents a 

power converter, and each edge indicates the causality between two converters. Afterwards, the 

information entropy of each node (converter) is calculated to quantify the uncertainty level of each 

converter. Another information indicator from Information Theory named transfer entropy is 

estimated to determine the amount of information that each converter failure transferred.  

Future works will focus on investigating the applications of parallel computing to speed up 

the proposed reliability analysis. The reliability impact of power converters’ internal connections 
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in a RES is also worth investigating. The influence on the power system network changes (i.e., 

different network topologies) will change the power flow and ultimately affect the system 

reliability performance. Once the real-world or synthetic transmission networks become available 

for reliability analysis, one will be able to investigate the scalability of the proposed reliability 

assessment framework. Moreover, since ML encapsulates the relationship and acts like a ‘black 

box’, the integration of ML interpreting methods will be investigated to improve the reliability 

explanation and provide useful information for system operators. Appropriate reliability 

requirements on the converter level, and corresponding system maintenance strategies could be 

investigated. 
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