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Abstract—Robot co-workers, like human co-workers, make
mistakes that undermine trust. Yet, trust is just as important
in promoting human–robot collaboration as it is in promoting
human–human collaboration. In addition, individuals can signif-
icantly differ in their attitudes toward robots, which can also
impact or hinder their trust in robots. To better understand
how individual attitude can influence trust repair strategies,
we propose a theoretical model that draws from the theory
of cognitive dissonance. To empirically verify this model, we
conducted a between-subjects experiment with 100 participants
assigned to one of four repair strategies (apologies, denials,
explanations, or promises) over three trust violations. Individual
attitudes did moderate the efficacy of repair strategies and
this effect differed over successive trust violations. Specifically,
repair strategies were most effective relative to individual attitude
during the second of the three trust violations, and promises
were the trust repair strategy most impacted by an individual’s
attitude.

Index Terms—Human-Robot Interaction, Trust Repair, Atti-
tude

I. INTRODUCTION

The importance of trust in human–robot collaboration has
spurred much interest in the study of trust repair. Human–
robot trust repair can be defined as the approaches taken to
amend the loss of trust between the human and the robot
[1]. Humans are increasingly being expected to work with
and actively collaborate with robot co-workers in new work
arrangements [2]–[5]. Trust can be defined as the “willingness
of a party to be vulnerable to the actions of another party based
on the expectation that the other will perform a particular
action important to the trustor, irrespective of the ability to
monitor or control that other party” [6, Pg.712]. However,
robot co-workers, like human co-workers, make mistakes that
can undermine trust. This has led to the emergence of research
on human–robot trust repair.

Despite this, much remains to be learned about the con-
ditions under which trust repair strategies are or are not
effective [7], [8]. More specifically, research has tended to
ignore individual differences that might significantly alter the
effectiveness of trust repair strategies. Yet, we know from
prior literature that individuals can significantly differ in their
attitudes toward robots, which can also promote or hinder their
trust in robots [9], [10]. This implies that individual attitudes
toward robots might make such repairs harder or easier.

Therefore, it is critical to examine whether such differences
do indeed alter the effectiveness of trust repair strategies.

To address this, we conducted a between-subjects exper-
iment with 100 participants. The study randomly assigned
participants to one of four trust repair strategies to determine
whether their attitude toward working with robots influences
the effectiveness of trust repair strategies. Overall, this paper
con tributes to the human–robot interaction (HRI) trust repair
literature in the following ways. One, it extends our theoret-
ical understanding of trust repair strategies by demonstrating
how individual attitude can significantly and meaningfully
influence which trust repair strategies are effective for a
particular individual. Two, it examined the effectiveness of
trust repair strategies over multiple human–robot interactions;
results showed that the effectiveness of trust repair strategies
varies greatly over successive interactions. In these ways, our
study extended the traditional static models of trust repair by
bringing in a dynamic perspective.

II. BACKGROUND

A. Trust Repair

Robots, like humans, inevitably make mistakes; when this
occurs trust repair is vital to minimizing the loss of trust [1],
[5], [8], [11]–[17]. Trust repair refers to the efforts undertaken
by a trustee to restore trust following an actual or perceived
trust violation [5], [8], [18]–[20]. These efforts can rely on
one of several strategies: apologies, denials, explanations, or
promises [5], [11], [21]–[24]. Apologies are a communication
and/or expression of remorse or regret [5], [8], [25]–[27];
denials are a rejection of culpability and often a redirection of
blame [5], [11], [21]–[24]; explanations are clear and direct
reasoning behind why a violation of trust occurred [1], [5],
[8], [28]; and promises are statements conveying the intention
to correct future behavior [8], [16], [22].

B. Trust Repair in HRI

In this section we review the HRI trust repair literature.
Specifically, we examine the HRI literature as it relates to the
efficacy of apologies, denials, explanations, and promises in
repairing trust. In doing so we establish what the current state
of the art in relation to trust repair in human–robot interaction.
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The findings on efficacy of apologies in HRI have been
relatively mixed. In particular, three studies found that apolo-
gies repaired trust [29]–[31], three found that they did not
[32]–[34], and one found that apologies actually damaged
trust [35]. One study that found that apologies repaired trust,
Natarajan et al. [30], found that when robots provided bad
advice to their human counterpart, apologies were as effective
as explanations in repairing trust. Similarly, Kohn et al. [31]
examined apologies after robots engaged in inappropriate
and unsafe behaviors and found that apologies repaired trust
after such violations and even did so more effectively than
denials. Finally, Albayram et al. [29] found that apologies
were effective but did not compare them to other trust repair
strategies.

One study that found that apologies were not effective at
repairing trust, Lee et al. [32], examined apologies after a robot
retrieved an incorrect item; their results indicated no significant
difference between trust in a no-repair strategy condition and
an apology condition, indicating that the robot’s apologies had
no effect. In addition, Kox et al. [33] examined trust after a
robot apologized for providing bad advice, finding similarly
non-significant results where trust after apologies was not
significantly different from trust after a no-repair strategy
condition. Finally, Kohn et al. [34] considered apologies given
after a robot performed poorly on a navigation task. Once
again, results provided no evidence to support that apologies
impacted trust more or less than if no repair strategy was
deployed. Overall this is consistent with Lee et al. [32] and
Kox et al. [33] but conflicts with other studies examining the
subject.

In addition to the six aforementioned studies, Cameron et
al. [35] found that apologies actually made thing worse. In
particular, they found that apologies were not only ineffective
but also decreased trust. Within this study, however, trust was
subdivided into three latent constructs. These constructs were
performance, integrity, and deceitfulness. Results identified
that apologies impacted these constructs deferentially, with
apologies damaging performance but having no effect on
integrity or deceitfulness. Overall for apologies, the current
literature in human–robot interaction appears mixed.

Studies examining denials in HRI have also found mixed
results overall. In particular, one study found that denials are
effective [31], one found that they are not [34], and a third
found that their effects depend on the type of trust examined
[36]. The last of these studies [36] compared competence-
based and integrity-based trust. Findings indicated that denials
do not effectively repair competence-based trust and actually
have a negative impact on trust for integrity-based trust.
Therefore, it might be that denials are not only ineffective
at repairing trust but also make matters worse.

Explanations’ impact on trust in the HRI literature, like
apologies and denials, was also mixed, though by a lesser
degree. In particular, one study [30] examined explanations
and found that they are effective in repairing trust, while
three studies [32]–[34] found that explanations fail to repair
trust. Finding mixed results, Cameron et al. [35] examined

trust by dividing it into three components, namely ability
(performance), integrity, and deceit. Results of this study found
that explanations are not effective in repairing the ability
and integrity components of trust, but the authors observed
that explanations significantly reduce the deceit component of
trust. This might indicate that explanations are effective repair
strategies to the degree that they decrease deceit. Once again,
more research is needed and inconsistencies are present across
this literature.

Promises, unlike apologies, denials, and explanations, are
relatively under-examined in the HRI trust repair literature. In
particular, two studies reported the direct impact of promises
on trust [1], [37]. Specifically, the first of these [37] examined
promises that were either provided separately or given jointly
with an explanation. Results showed that in cases where
promises were given independent of explanations they were
not effective, but when promises were coupled with explana-
tions, they were capable of repairing trust. The second of these
studies [1] examined the impact of promises when given after
a robot made an ability-based error by presenting a human
co-worker with an incorrect box. This study’s results indicated
that promises are effective in repairing humans’ perceptions of
a robot’s trustworthiness but only in the case of benevolence
and not for ability or integrity. Given that only two studies have
examined the direct effects of promises, more work needs to
be conducted and study replications are needed.

Based on this review of the literature, the field of HRI
appears far from consensus regarding the efficacy of apologies,
denials, explanations, and promises. Given the mixed results
regarding each of these repair strategies and a general lack of
studies examining promises, we therefore examined a possible
moderator that could explain these inconsistent results. In
particular, we examined individuals’ attitudes toward working
with robots. In the subsequent section we provide a brief
background on how individual differences have been shown
to impact trust and then discuss how positive attitudes toward
working with robots might impact trust repair via cognitive
dissonance.

C. Individual Differences and Trust

Although no studies have examined the impact that attitudes
toward working with robots have on trust repair, studies have
examined other types of individual differences and their impact
on trust. In particular, studies examining automation such as
recommendation and collision avoidance systems have found
that individuals differ in their expectations and beliefs of a
system’s reliability and competence and that these expectations
might impact trust [38], [39]. For example, Lyons et al. [38]
found that as participants’ expectations rose, so did their
trust in a collision avoidance system. Similarly, Pop et al.
[39] observed that participants with higher expectations of an
automated system placed more trust in that system.

In addition, authors have examined how personality traits
and cultural backgrounds might impact expectations and trust
in automation [40]–[44]. For example, Merritt and Ilgen [43]
found that not only can trust propensity predict trust but users’



extroversion can as well. Along similar lines, Szalma and
Taylor [42] considered individual differences and how they
impact perceptions of automation. In particular, they found that
an individual’s personality traits of agreeableness and extro-
version impacted the stress operators experienced when faced
with unreliable automation and that neuroticism influenced
the likelihood of an individual to accept the recommendation
of said system. Finally, Chien et al. [41] considered cultural
differences and found that trust in automated systems differs
based on the cultural attributes of an individual. Ultimately,
these studies provide support for the idea that individual differ-
ences have a role to play when considering trust in automation.
This was further highlighted in a recent meta-analysis on
personality and robot acceptance [45]. Nonetheless, we know
little with regard to whether such individual differences alter
the effectiveness of trust repair strategies. Answering this
question might help us determine which repair strategy might
be more or less appropriate for a specific individual.

D. Individual Attitudes Toward Working with Robots

Theories of trust have openly acknowledged the importance
of individual attitudes [46]. Attitudes represent favorable or
unfavorable feelings toward a particular person, place, thing,
event, or action [47]. Attitudes can influence an individ-
ual’s thoughts and behaviors, which explains why they are
prominent in many social–psychological theories [47], [48].
Generally, the more favorable an attitude, the more likely an
individual is to engage and enjoy engaging with a person,
place, thing, event or action. Attitudes toward robots can differ
significantly among individuals and have been used to explain
why people trust robots [10], [49].

In this paper, we propose that positive attitudes toward
robots will moderate the effectiveness of trust repair strategies.
Attitudes toward robots drive individual expectations about
robots [50], [51]. Those who have positive attitudes about
working with robots are likely to have positive beliefs about
future actions with robots [50], [51]. Therefore, individuals
with a more positive attitude toward robots are likely to
have positive expectations about robots, while those with less
positive attitudes toward robots are likely to have much lower
expectations.

III. THEORETICAL HRI TRUST REPAIR MODEL

In this paper, we assert that prior attitudes about robots
influence the effectiveness of trust repair strategies and that
cognitive dissonance can explain why. Cognitive dissonance
theory is used to explain what happens when an individual is
presented with new information that seems counter to their
initial belief [52], [53]. Cognitive dissonance occurs when
individuals have to cognitively reconcile their initial belief
with this new information that seems to challenge or contradict
what they already thought was true [52]–[54]. Cognitive
dissonance leads to stress, anxiety, and feelings of discomfort
[52], [53], [55]. As a result, individuals exert effort to resolve
this contradiction and reach a level of internal psychological
consistency.

A particular repair strategy is likely to reduce or exacerbate
the effort needed to resolve this cognitive dissonance and
reduce discomfort. Cognitive dissonance is likely to emerge
when an individual has an initial positive attitude toward work-
ing with a robot and that robot violates their trust. The robot’s
trust violation creates a discrepancy between expectations
and actual experiences, triggering cognitive dissonance. Once
cognitive dissonance emerges, the individual has a strong drive
to reduce this dissonance because of the general discomfort
that this dissonance creates [56]. Cognitive dissonance can
be reduced by either changing one’s attitudes or minimizing
the degree of contradiction between one’s initial beliefs and
experiences [54], [55].

Promises and explanations are likely to reaffirm an indi-
vidual’s positive attitude toward working with a robot. This
is because promises to do better are assurances that an indi-
vidual’s initial belief was actually correct, while explanations
provide a rational reason or justification for why they were not
correct this particular time. This, in turn, allows individuals to
hold onto their initial belief without the need to cognitively
reconcile their initial positive belief with their actual experi-
ence with the robot. Apologies and denials further exacerbate
the dissonance between what was expected and what was
experienced. Apologies are a clear and explicit admission
of guilt while denials further call into question the robot’s
integrity in addition to its ability, both of which should further
reduce trust in the robot. This pushes humans to reassess
their attitudes as the contradiction between expectations and
observations is explicitly presented and reinforced.

Although reduction of cognitive dissonance can be achieved
through either reducing the degree of inconsistency or chang-
ing one’s beliefs, the method one adopts depends on how
effortful a given method is [53], [56]. In the context of our
study, it is likely that humans who possess higher pre-existing
positive attitudes toward robots might find it easier to reconcile
their initial positive belief with their actual experience with the
robot when given a promise or an explanation. On the contrary,
they would find it much more effortful to minimize the dis-
crepancy between their pre-existing attitudes and experiences
when presented with a denial or an apology that requires them
to actively reconcile these differences.

Hypothesis 1: Human–robot trust repair strategies
that seek to reduce dissonance via reducing the
discrepancy between pre-existing attitudes and ex-
periences (i.e. promises and explanations) are more
effective for individuals who have more positive
attitudes toward robots versus trust repair strategies
that do not (i.e. apologies and denials).

If a robot can make a mistake once, there is no reason
to believe it cannot make another mistake. Unfortunately,
little research has investigated how robust a particular repair
strategy is over multiple violations [57]. In such cases, it is
not clear how effective any particular trust repair strategy
is after the first violation of trust. Existing research in the
domain of human–human trust repair, however, provides some



insight into the trust repairs and trust violations over time. In
particular, repeated errors decrease the efficacy of all trust
repair strategies [21], [58]. This is the case because more
frequent and continuous trust violations begin to be seen as
normal behavior [59]. When this occurs it is also likely that
the degree of positive attitude toward a robot does not matter
because all individuals, both high and low in positive attitude,
would eventually have to reconcile their initial beliefs with
their actual experience.

Hypothesis 2: Human–robot trust repair strategies
are less effective over repeated trust violations for
those with more positive and less positive attitudes
toward robots.

Next, we describe the method used to investigate these
hypotheses. In particular, we detail the task used in the study
and the experimental apparatus we developed. Further, we
also outline our experimental design, the variables examined,
procedure, and participants.

IV. METHODOLOGY

A. Task

The task utilized in this study required collaboration be-
tween a participant and a robot. Both the participant and the
robot shared the goal of processing a series of boxes in a
warehouse. The robot was assigned the role of “picker” while
the participant was the “checker,” The robot acting as the
picker moved boxes from a pile in a warehouse to the checker
and, if approved, the robot would move the box to a nearby
conveyor belt to be loaded and shipped. The participant was
the checker and inspected boxes presented by the robot to
make sure they were correctly selected. Correctly selected
boxes were those that possessed a serial number that matched
the serial number provided to the checker.

The task consisted of reviewing 10 boxes, with the exper-
iment concluding after the 10th box. The robot made three
errors in the form of picking a box with an incorrect serial
number and presenting it to the participants. Each error took
place at three specific time points —at box 3, 6, and 9 (see
figure 1) —to give the robot in the study a reliability rate
of 70%. This rate was consistent across conditions and was
selected based on [60], which found that automation only
increases performance with a reliability rate greater than 67%.

B. Experimental Apparatus

Participants performed the tasks in an interactive virtual
environment developed in the UnReal Engine 4. The UnReal
Engine was selected because of its graphics, asset options,
and flexible deployment capabilities. The virtual environment
was developed to resemble a realistic warehouse environment.
As seen in figure 2, participants were positioned in the
environment where two monitors and three buttons were made
immediately visible. The monitors displayed the correct serial
number, the time it took to approve or reject a box, and the
participant’s total score based on points gained for loading a
correct box (+1) or lost for loading an incorrect box (-1). No
points were given or deducted from participants’ scores when

Fig. 1. Visual representation when our trust measure was deployed and how
trust decrease was calculated.

they rejected a box presented by the robot. Points were visible
at all times to encourage completion and attention.

C. Experimental Design

To examine our hypotheses, this study used a between- sub-
jects experimental design with four repair strategy conditions
and one no-repair condition. The repair strategy conditions
examined apologies, denials, explanations, and promises. In
the apology condition, the robot stated, “I’m sorry I got the
wrong box that time.” In the denial condition, the robot stated,
“I picked the correct box that time so something else must have
gone wrong.” In the explanation condition, the robot stated,
“I see, that was the wrong serial number.” In the promise
condition, the robot stated, “I’ll do better next time and get
the right box.” Because less-than-perfect reliability is likely to
result in multiple mistakes and not just one, we included errors
at three points. As a result, messages were communicated
three times in total (once after each violation of trust). These
messages were communicated in both audio and on-screen
text. Our control condition was the no-repair condition, where
the robot remained silent throughout the experiment. A visual
representation of our study’s design is visible in figure 1.

Fig. 2. Subject’s perspective of virtual environment



Attitude Towards Work Robots (AWOR)

—- I am someone who would:

Q1 Enjoy working with a robot.

Q2 Be happy to receive work from a robot.

Q3 Find it fun to give work to a robot to perform

Q4 Like to collaborate with a robot to accomplish my work.

Q5 Find it fun to work with a robot.

Q6 Prefer to work with a robot.

TABLE I
ATTITUDE TOWARDS WORKING WITH ROBOTS (AWOR)

D. Variables

1) Independent and Control Variables: The independent
variables used in this study were participants’ positive attitude
toward working with robots (AWOR) and repair condition.
We measured AWOR via a scale based on [10]. This scale
comprised six questions and was deployed as part of the
study’s pre-test procedure. The individual items for the AWOR
scale are presented in table I. Repair strategies varied by the
assigned condition and each participant was assigned to only
one repair condition throughout the experiment. For the control
variable, we measured trust propensity using six items taken
from [61]. The individual items used for trust propensity are
presented in appendix I.

2) Dependent Variable: The dependent variable examined
in this study was participant’s trust decrease. We calculated
this decrease by subtracting trust before a violation from trust
after a violation and its repair. To accomplish this, we relied
on a three-item trust scale based on [46] in Appendix I. This
scale was deployed at six time points and was accompanied
by attention-check questions. Figure 1 illustrates when this
measure was deployed and how trust decrease was calculated.

Because decreases in trust were the variable of interest
rather than change in general, we took all positive difference
values (trust decrease 1/2/3) and converted them to 0. In
doing so, samples with a 0 indicated no decrease in trust
and samples with negative values indicated a decrease in
trust. To verify whether this approach was valid, we tested
all samples that were converted to 0 to determine whether a
significant difference existed between these responses prior to
the violation versus after a violation with repair. Results of
this test showed no significant differences between the pre-
and post- violation trust scores, indicating that the conversion
of the samples to 0 was valid.

E. Procedure

Recruitment took place via Amazon Mechanical Turk,
where participants were presented with a human information
task, or HIT. Upon acceptance of this HIT participants were
first screened to determine whether they had participated in
any prior conditions and were then presented with a link
to a training scenario where they were familiarized with the

virtual environment and the interface. The training scenario
demonstrated the box task by giving participants one correct
box and one incorrect box accompanied with dialogue. The
dialogue communicated what button to press when the box
was correct and what button to press when it was incorrect
and the consequences of each action for the score.

After this training scenario was complete, a pre-test survey
was deployed containing a general demographic questionnaire,
trust propensity, and AWOR measures. After completing this
pre-test survey, participants were assigned a scenario and pro-
ceeded to progress through the 10-box picking and checking
task. As visible in figure 1, participants were given incorrect
boxes at boxes 3, 6, and 9. Prior to each of these boxes (i.e.
after boxes 2, 5, and 8), participants were presented with our
trust measure. This measure was once more deployed after
boxes 3, 6, and 9.

After the subjects had completed all 10 box tasks, they
were asked to enter their worker identification (ID) for pay-
ment, which concluded their participation in the experiment.
Throughout this process we implemented quality and attention
-check questions. These took the form of randomly placed
questions requesting a specific response from participants. If
participants provided incorrect responses to these questions,
their participation was immediately terminated and their data
were excluded from our analysis.

F. Participants

For this study, we recruited a total of 100 participants (20
per condition) via Amazon Mechanical Turk. Participants were
not allowed to participate more than once in this experiment.
Across all conditions, ages ranged between 22 and 71 with a
mean age of 38. Participants were compensated at a minimum
rate of $15/hr, with the study’s duration lasting 15–25 minutes.
This research complied with the American Psychological As-
sociation Code of Ethics and was approved by the institutional
review board at the University of Michigan. Informed consents
were gathered upon participants’ acceptance of the HIT.

V. MANIPULATION CHECK

A major assumption in our study’s design is that partici-
pants noticed the robot’s trust violations and these violations
impacted the participants’ trust in the robot. To verify that trust
violations actually led to trust decreases, we compared trust
decreases between the no-error condition and the error-with-
no-repair (no-repair) condition. In the no-error condition, the
robot had perfect performance and always returned the correct
box, whereas in the no-repair condition the robot made the
same errors as in the treatment conditions but offered no repair.
When comparing trust decrease between these conditions,
results of a Welch two-sample t-test after the first error
suggested that there was a statistically significant difference
between the no-error and no-repair conditions (difference =
–1.08, 95% confidence interval [CI] [0.55, 1.62], t(22.81) =
4.19, p < 0.001; d = 1.76, 95% CI [0.78, 2.71]). In addition,
for trust decrease after the second error,results suggested that
the there was a statistically significant difference between the



Fig. 3. Manipulation check showing differences in trust decrease between no
repair and perfect performance conditions after all three errors.

no-error and the no-repair conditions (difference = –0.93, 95%
CI [0.37, 1.50], t(20.59) = 3.42, p = 0.003; d = 1.51, 95% CI
[0.52, 2.47]). Finally, for trust decrease after the third error,
results once again suggested that the there was a statistically
significant difference between the no-error and the no-repair
conditions (difference = –1.00, 95% CI [0.37, 1.63], t(22.07)
= 3.29, p = 0.003; d = 1.40, 95% CI [0.46, 2.32]). Notably, we
also observed slight decreases in trust in the no-error condition
for all three errors. This decrease, however, was non-significant
in all cases. Taken together, these results show that we were
successful at manipulating trust. Figure 3 summarizes these
results.

VI. RESULTS

To examine the hypotheses, we initially analyzed the data
using a repeated measures analysis of covariance (ANCOVA),
then followed up with three separate one-way ANCOVAs (one
per trust violation). All the analyses included main effects ,
with trust propensity as a control variable and repair condition
and AWOR as main effects. The interaction effects analysis
included the main effect variables and an interaction term
involving repair condition and AWOR.

A. Repeated Measures ANCOVA Results

We conducted a repeated measures ANCOVA to examine
the overall trust decreases associated with the same participant
over the three errors (error 1, error 2 and error 3). Results
indicated that the main effect associated with when the error
occurred was non-significant (Wilks Λ = 0.99, F = 0.64,
p = 0.53). We also conducted additional investigations of
interaction effects. In particular, we examined whether the
influence of AWOR on the effectiveness of a particular repair
strategy differed over the three errors.

Results suggested that the interaction between when the
error occurred and AWOR (Wilks Λ = 0.98, F = 0.87, p =

0.42) as well as between when the error occurred and trust
propensity (Wilks Λ = 0.99, F = 0.04, p = 0.96) were also
non-significant. For the interaction between when the error
occurred and the repair condition, however, a significant effect
emerged (Wilks Λ = 0.79, F = 2.79, p = 0.01). Furthermore,
when investigating the three-way interaction effect of when the
error occurred, repair condition, and AWOR, we observed a
significant effect, as well (Wilks Λ = 0.81, F = 2.49, p = 0.02).
This final result indicates that the impacts of repair and AWOR
on trust decrease differs by error. To examine this potential
relationship in more detail, we subsequently conducted three
follow-up one-way ANCOVAs, detailed next. These results
and all subsequent results are presented in table II.

B. Trust Decrease - Error 1

Results examining trust decrease after the first error (power
of α = 0.95) suggested that the main effect of repair condition
was not statistically significant (F(4, 93) = 2.32, p = 0.063; η2p
= 0.09, 90% CI [0.00, 0.17]). In addition, the main effect of
AWOR was also not statistically significant (F(1, 93) = 0.41,
p = 0.522; η2p = 0.004, 90% CI [0.00, 0.05]). Trust propensity,
however, was statistically significant (F(1, 93) = 7.29, p =
0.008; η2p = 0.07, 90% CI [0.01, 0.17]). Results examining the
interaction between repair condition and AWOR showed that
this effect was not statistically significant (F(4, 89) = 0.57,
p = 0.686; η2p = 0.02, 90% CI [0.00, 0.06]). These results
are summarized in table II while the means for main effects
are available in Appendix II figure 1 and an accompanying
interaction plot is presented in Appendix II figure 4.

C. Trust Decrease - Error 2

1) Main Effects: Results examining the main effects of trust
decrease after the second error (power of α = 0.99) suggested
that the main effect of repair condition was not statistically
significant (F(4, 93) = 1.24, p = 0.30; η2p = 0.05, 90% CI
[0.00, 0.11]). In addition, the main effect of AWOR was not
statistically significant (F(1, 93) = 0.33, p = 0.568; η2p <
0.01, 90% CI [0.00, 0.05]). Trust propensity, however, was
statistically significant (F(1, 93) = 11.13, p < 0.01; η2p = 0.11,
90% CI [0.03, 0.21]). These results are summarized in table
II and means are available in Appendix II figure 2.

2) Interaction Effects: Results examining the interaction
between repair condition and AWOR were statistically sig-
nificant (F(4, 89) = 2.81, p = 0.030; η2p = 0.11, 90% CI [0.01,
0.20]). These results are summarized in table II.

Based on this significant interaction effect, we conducted a
post hoc power analysis. The results of this analysis indicated
a high level of statistical power associated with this finding
(α = 0.996). Given these results, we then moved to an exam-
ination of slopes. In doing so, we tested whether the slopes
were significantly different from zero, conducted a pairwise
comparison between slopes, and produced an interaction plot
to visually examine these relationships. To test whether slopes
were significantly different from zero we conducted a simple
slopes test via the reghelper package in R [62]. The results of
this test found that the slope of promises was significant (p =



Fig. 4. Interaction plot showing the interaction effect between positive attitude
and repair condition after a robot’s second error.

0.001). To examine differences between slopes, we conducted
a pairwise comparison of slopes via the emmeans package
in R [63]. Results indicated significant differences between
promises and the no-repair conditions (p = 0.049) and between
promises and denials (p = 0.023). No other comparisons were
significant.

Two significant trends emerged when we investigated these
slopes. First, an investigation of slopes indicated that the
positive impact of promises (i.e. less decrease in trust after an
error) was more prominent when participants possessed higher
AWOR, whereas when participants possessed less AWOR this
strategy was not only less effective but possibly the least
effective repair strategy examined. Second, when comparing
denials to promises, we found significant differences between
these slopes. Where promises appeared to increase in efficacy
when AWOR increased, denials appeared to decrease when
AWOR increased. A similar trend was evident when we
examined the no-repair condition (see figure 4).

D. Trust Decrease - Error 3

Results examining the main effects of trust change decrease
after the third error and repair (power of α = 0.73) suggested
that the main effect of the repair condition is not statistically
significant (F(4, 93) = 0.46, p = 0.766; η2p = 0.02, 90%
CI [0.00, 0.04]). In addition, the main effect of AWOR
was not statistically significant (F(1, 93) = 0.95, p = 0.333;
η2p = 0.01, 90% CI [0.00, 0.07]). The main effect of trust
propensity,however, was statistically significant (F(1, 93) =
7.38, p = 0.008; η2p = 0.07, 90% CI [0.01, 0.17]). Finally,

the interaction between repair condition and AWOR was not
statistically significant (F(4, 89) = 0.11, p = 0.977; η2p = 5.11e-
03, 90% CI [0.00, 0.00]). These results are summarized in
table II; the means for main effects are visually presented in
Appendix II figure 3, and an accompanying interaction plot is
available in Appendix II figure 5.

VII. SUMMARY OF FINDINGS

The goal of this paper was to examine whether individual
attitudes moderated the effectiveness of human–robot trust
repair and to investigate whether this impact varies over
multiple interactions. To that end, this study’s results can be
organized into two overarching contributions to the literature.
One, individual attitude was found to moderate the effective-
ness of human–robot trust repair; two, this effect differed
over successive robot trust violations. Next, we discuss the
implications of these findings for research and practice.

VIII. DISCUSSION

Overall, the goal of this paper was to identify and examine
individual AWOR as an important contingency variable in
understanding HRI trust repair efficacy. Our results show that
the efficacy of human–robot trust repair strategy can vary by an
individual’s AWOR and that this effect itself changes over the
course of repeated trust violations. Next, we discuss specific
contributions to the literature.

First, this paper offers a theoretical rationale for and pro-
vides the first empirical test of whether individual attitudes
toward robots can influence the effectiveness of repair strategy.
Cognitive dissonance helps to explain why attitudes toward
robots are important to the HRI trust repair literature. For
example, promises were most effective at repairing trust when
positive attitudes were high and were least effective when
positive attitudes were low. This might imply that the effects
of promises are directly tied to an individual’s pre-existing
attitude toward robots. Promises reaffirmed an individual’s
positive attitude by providing assurances that the attitude was
correct, thereby reducing cognitive dissonance. Notably, for
those with higher positive attitudes, this dissonance might be
stronger because the gap between expectations and experiences
is wider than for those with lower positive attitude toward
robots. This could create a stronger desire to reduce dissonance
and encourage humans to more readily believe a robot’s
promises because these promises offer an easy way to reduce
dissonance and psychological discomfort.

Second, this paper helps to explain the mixed results as-
sociated with prior literature and helps us determine which
repair strategy might be more or less appropriate for a specific
individual. One reason for the mixed results is that the efficacy
of repair strategies differs significantly by individual. For
example, once we consider the impact of individual differences
on the studies examining apologies that found [29]–[31],
negative [35] and non-significant [32]–[34] effects on trust
repair we might discover that apologies are always positive
for specific individuals, always negative for other individuals
and non-significant for yet another set of individuals. For



Repeated Measures ANCOVA One-Way ANCOVAs

Trust Decrease Trust Decrease Error 1 Trust Decrease Error 2 Trust Decrease Error 3

F Pr>(F) F Pr>(F) F Pr>(F) F Pr>(F)

Repair Condition+ 2.68 0.01 2.32 0.07 1.24 0.26 0.46 0.78

Positive Attitude+ 0.87 0.42 0.41 0.52 0.33 0.55 0.95 0.34

Trust Propensity+ 0.04 0.96 7.29 0.01 11.1 0 7.38 0.01

Repair x Attitude+ 2.49 0.01 0.57 0.69 2.81 0.03 0.11 0.98

Error Time 0.64 0.53 –
+By error time for repeated measures analysis.

TABLE II
RESULTS OF REPEATED MEASURES ANCOVA AND SUBSEQUENT ONE-WAY ANCOVAS FOR TRUST DECREASE AFTER ERROR 1, 2, AND 3.

example, Wang et al. [37] found that promises alone had
no effect on trust, while Esterwood and Robert [1] observed
that promises were effective at promoting specific elements
of trustworthiness and not others. If these studies had taken
into account the influence of individual differences, they might
have found promises to be just as effective or ineffective.

Third, our results indicated that the influence of individual
differences was not uniform across repair strategies. For ex-
ample, the influence of AWOR on promises was significantly
different from that of denials. In particular, while promises
were more effective when AWOR was high, denials were
more effective when AWOR was low. Our results also suggest
that when AWOR is low, denials are likely to outperform
apologies. This conflicts with a growing consensus in the
literature that apologies outperform denials [1], [24], [31],
[34], [36]. These studies, however, have not taken into account
individual differences (e.g., AWOR). Therefore, future studies
could re-examine the effectiveness of apologies versus denial
while accounting for the influence of individual differences.
This finding also adds to the literature on individual differences
and automation trust [38]–[44], [64] by highlighting the unique
characteristics of this specific individual difference.

Four, this paper contributes to the literature through its
examination of repeated trust violations. Initially, we expected
trust repair strategies would be more effective after the first
trust error and then become less effective after the second
and third errors. Findings, however, indicated that neither the
trust repair strategy nor AWOR was significant for the first
error, although trust repair strategy was nearly significant at p
= 0.07. Regardless, these results might mean that for the first
error humans are still calibrating their trust in the robot, for the
second error humans have decided on how much they trust the
robot, and for the third error humans are again re-calibrating
their trust. As a result, it could be that only when humans
have decided on how much they trust a robot can trust repair
strategies be influential. This suggests that existing studies
that only examined one error might not be seeing the full
picture. In particular, there might be an incorrect assumption
that either robots only make one error or that the efficacy
of repair strategies stays consistent. Given our results, this
assumption seems unlikely, and therefore it might be that

strategies appearing non-significant in the existing literature
(e.g., [32]–[34], [37]) are actually effective when examined
after a second trust violation.

IX. LIMITATIONS AND FUTURE RESEARCH

This study has several limitations. First, it relied on virtual
representation of physical robots. Although this approach
offers greater flexibility, it remains possible that virtual rep- re-
sentations have weakened participants’ degree of engagement
and immersion. Future research could be done to replicate our
findings with physical robots in a real-world setting. Second,
our study relied on measurements of trust at six evenly spaced
points throughout the study. The reason for this was to avoid
breaking participants’ engagement with the robot and task.
Future studies could adopt less obtrusive measures of trust so
as to measure trust at every interaction. Finally, this study did
not directly measure cognitive dissonance; therefore, future
studies might wish to use a scale to validate the relationships
identified in this paper. Finally, future research could examine
other measures of individual differences from the automation
literature, such as personality, culture, perfect automation
schema and others [38]–[43], [64].
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