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EXECUTIVE SUMMARY

In this report, we document the development of a reactor dynamics and Learning-Based Model
Predictive Control (LBMPC) algorithm for the autonomous reactivity control of a Small Modular
Reactor (SMR). The reactor dynamicsmodel includes the PointKinetics Equations (PKE), Thermal-
hydraulics (TH) models, and Xenon dynamics. The position-dependent control rod worth is used to
demonstrate a realistic situation. The nonlinearity of the reactor dynamics models causes a model
mismatch with the linear state-space model used in the MPC controller, degrading the accuracy
of the controller. The LBMPC controller is developed to minimize the error caused by the model
mismatch. The Gaussian Process Regression (GPR) algorithm is used to train a way to update the
state-space model as reactor condition evolves. In the training, the nonlinear model is successively
linearized and the piecewise state-space model information is provided to the GPR. The trained
GPR model provides improved state-space models to the MPC controller every time step resulting
in better accuracy for reference power tracking.

Figure EC.1. Simulation results for the short transient scenario using LBMPC
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1. INTRODUCTION

In the commercial nuclear power sector, Small Modular Reactors (SMR) are becoming more
attractive due to their lower capital costs, and presumed advantages for load follow operation. The
nuclear power industry needs to adapt to the inherently intermittent renewable generation in the
electricity grid. As renewablesmake up a larger share of the generating capacity, this challenges base
load power generation in deregulated markets. The demands for Flexible Power Operation (FPO)
capabilities are likely to continue to increase as nations push for reduced carbon emissions by
increasing renewable energy generation complemented by nuclear generation. Therefore, FPO
capabilities are an increasingly valued and important requirement for future nuclear power plant
designs.

The most likely deployment scenarios for SMR assume multi-unit sites; this provides flexibility
to replace traditional gigawatt generating stations with grid-appropriate generation and flexible
outage planning. Operation of a multi-unit site represents a step function increase in complexity.
This project seeks to address these challenges through enhanced automation control strategies for
multi-unit SMRs. Specifically, the objective of this project is to develop a hierarchy of automation
control strategies for FPO using the NuScale plant as the reference SMR design.

To achieve the overall project objective, several problems must be addressed. The focus of this
work is to advance the techniques of model based control to integrate machine learning into the
control algorithm that results in an adaptive controller. There are a variety of state-of-the-art
control algorithms in the reactor control field. The Model Predictive Control (MPC) [1] is one
of the most popular algorithms used widely in industries owing to its high performance and high
accuracy. The MPC calculates an accurate control input for the plant as long as the MPC controller
has an appropriate mathematical model. However, in practice, an actual reactor model is highly
nonlinear and it is rarely possible to represent the reactor as a real-time numerical model to be
used in a controller. There is an inevitable mismatch between the actual plant model and the model
used in the controller. The mismatch between the controller state-space model of the reactor and
the real physics may degrade the accuracy and performance of the controller in reference power
tracking. To address this issue, we have investigated several approaches to introduce a learning-
based component into the MPC framework. A Machine Learning (ML) technique called Gaussian
Process Regression (GPR) is used to improve the mathematical model in the MPC controller
resulting in better accuracy for the reference power tracking.

This report is organized as follows: first, we present the nonlinear reactor dynamicsmodels for SMR
and derivation of the state-space model. Then, we present point kinetics parameters, temperature
coefficients, and Xenon worth from 3 cycles of SMR simulation. We next present the algorithm
and theory of MPC to control the reactor which has the nonlinear model. Here, we show a need
to improve the MPC controller since accuracy is degraded due to model mismatch. Therefore, we
propose a learning-based control algorithm. We show numerical results using the learning-based
controller to show accuracy improvement and verify the implementation. Finally, we summarize
our conclusion and note the future work of this project.

1 NE/8975-2021-011-00
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2. REACTOR DYNAMICS MODELS

In this section, we use the Point Kinetics Equation (PKE) and Thermal Hydraulics (TH) models to
model the time-dependent behavior of the SMR. We use a standard form of PKE with 6 delayed
groups. The PKE at time C are:

3=(C)
3C

=
d(C) − V
Λ

=(C) +
6∑
8=1

_8�8 (C) , (1)

3�8 (C)
3C

=
V8

Λ
=(C) − _8�8 (C) , 8 = 1...6 , (2)

where =(C) is the neutron density; d(C) is the reactivity; V is the total effective delayed neutron
fraction; Λ is the generation time; _8 is the 8-th group effective delayed neutron precursor decay
constant; �8 is the 8-th group effective delayed neutron precursor density; and V8 is the 8-th group
effective delayed neutron fraction.

The TH equations are based on fuel and coolant two temperature models as follow:

< 5 2 5
3) 5 (C)
3C

= @^=(C) −  5 2

(
) 5 (C) − )2 (C)

)
, (3)

<222
3)2 (C)
3C

= (1 − @)^=(C) +  5 2

(
) 5 (C) − )2 (C)

)
− 2 ¤<222 ()2 (C) − )8) , (4)

where < 5 and <2 are the mass of fuel and coolant, respectively; 2 5 and 22 is the heat capacity of
fuel and coolant, respectively; ) 5 (C) and )2 (C) are the fuel and coolant temperature, respectively; @
is the fraction of the heat deposited in the fuel region; ^ is the energy release per neutron density;
 5 2 is the heat transfer coefficient from the fuel to coolant; ¤<2 is the mass flow rate of coolant; and
)8 is the inlet coolant temperature, and )8 is assumed to be constant in this work. In the Eq. (4), it
is assumed that )2 (C) = ()>DC (C) − )8=)/2 where )>DC (C) is the outlet temperature. The rated power
of reactor is %A (C) and it has following relation:

%A (C) = ^=(C) . (5)

To model the realistic load-following, we introduce model for 135I and 135Xe. The concentration of
135I and 135Xe are

3� (C)
3C

= W�Σ 5 {=(C) − _� � (C) , (6)

3- (C)
3C

= W-Σ 5 {=(C) + _� � (C) − _-- (C) − f-{=(C)- (C) , (7)

where � (C) and - (C) are the densities of 135I and 135Xe, respectively; W� and W- are the fission yields
of 135I and 135Xe, respectively; _� and _- are the decay constants of 135I and 135Xe, respectively;
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f- is the microscopic absorption cross section of 135Xe; Σ 5 is the macroscopic fission cross section
of fuel; and { is the average velocity of thermal neutrons.

The reactivity model includes temperature feedback, 135Xe worth, and control rod worth. With
assumption that the reactor is steady-state at the beginning, the equation is:

d(C) = d 5 (C) + d2 (C) + d- (C) + dA (C)

= U 5
(
) 5 (C) − ) 5 (0)

)
+ U2

(
)2 (C) − ) 5 (0)

)
− f-

aΣ 5
(- (C) − - (0)) + dA (C) ,

(8)

where U 5 and U2 are the temperature coefficients of fuel and coolant, respectively; a is the number
of neutrons produced per fission reaction; and dA (C) is the control rod worth and it is approximated
as follows [2]:

dA (C) =
,

(1.0 + 4G?
(
A (C)−76.053
−36.967

) − ,

(1.0 + 4G?
(
A (0)−76.053
−36.967

) , (9)

where, is the integral bank worth. The position dependent bank worth is presented in Fig. 1.

Figure 1. Control rod worth

The equation for rod position, A (C), is

3A (C)
3C

= D(C) , (10)

where D(C) is the control rod movement speed.

Eqs. (1) to (4) and (6) to (10) are rewritten in the following form:

¤x = f (x(C), u(C)) , (11)
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where x(C) and u(C) are the state vector and input vector, respectively. x(C) contains the state
variables introduced above, and it is defined as follows:

x(C) =
[
G1 ... G<

])
=

[
=(C) �1(C) ... �6(C) ) 5 (C) )2 (C) � (C) - (C) A (C)

]) , (12)

For simplicity, we assume a single input case for the system. With this assumption u(C) is

u(C) =
[
D1

])
=

[
D(C)

])
. (13)

The system of equations, f, is defined as follows:

f (x(C), u(C)) =
[
51 ... 5<

])
=

[
5= 521 ... 526 5) 5

5)2 5� 5- 5A
])

=

[
3=(C)
3C

3�1 (C)
3C

...
3�6 (C)
3C

3) 5 (C)
3C

3)2 (C)
3C

3� (C)
3C

3- (C)
3C

3A (C)
3C

]) . (14)

Note that f is the system of nonlinear equations. Especially, Eqs. (1) and (7) have nonlinear terms.
It is useful to define the state-space model based on the linearization of the nonlinear equation. The
state-space model is used in the control theory. The state-space model is defined as follows:

¤xB (C) = ABxB (C) + BBuB (C)
yB (C) = CBxB (C) ,

(15)

where AB is the system matrix; BB is the input matrix; and CB is the output matrix; xB (C), uB (C), and
yB (C) are the state vector, input vector, and output vector of state-space model, respectively.

In the state-space representation, it is inherently assumed that xB (C), uB (C), and yB (C) are the
differences from nominal condition where the linearization is done. In other words, the vectors are
defined as follow:

xB (C) = x(C) − x(C=)
uB (C) = u(C) − u(C=)
yB (C) = y(C) − y(C=) ,

(16)

where C= is the time at the nominal condition.

An arbitrary function 6(I) can be linearly approximated at a nominal state I= as follows:

6(I) ≈ 6(I=) +
36(I=)
3I
(I − I=) . (17)
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Similarly, Eq. (11) is approximated at nominal time C= as follows:

¤x(C) = f (x(C=), u(C=)) +
mf
mx

����
C=C=

(x(C) − x(C=)) +
mf
mu

����
C=C=

(u(C) − u(C=)) , (18)

where

AB =
mf
mx

����
C=C=

=

[
mf
mG1

. . . mf
mG<

] ���
C=C=

=


m 51
mG1

. . .
m 51
mG<

...
. . .

...
m 5<
mG1

. . .
m 5<
mG<


�������
C=C=

, (19)

BB =
mf
mu

����
C=C=

=

[
mf
mD1

] ���
C=C=

=


m 51
mD1
...

m 5<
mD1


�������
C=C=

. (20)

Therefore, Eq. (18) becomes

¤x(C) − ¤x(C=) = AB (x(C) − x(C=)) + BB (u(C) − u(C=)) . (21)

Eq. (21) is the same form as Eq. (15). In many cases, C= is time at an initial steady-state, namely
C= = 0. The linearization process can be done either by the analytical method or the numerical
method. In the following sections, the state-space model generated at the initial steady-state
condition is used for the controller algorithm.

3. REACTOR DYNAMICS PARAMETERS

The MPACT [3, 4] model for the NuScale reactor was developed, and simulated for cycles 1 to
3. It was assumed that the fuel temperature and coolant temperature are constant over the cycle
as 900.00 K and 531.48 K, respectively. At BOC and EOC of each cycle, kinetics parameters,
temperature coefficients, and equilibrium Xenon worth were calculated and presented in Tables 1
to 4.

Table 1. Kinetics parameter V and Λ

State V Λ

Cycle 1 BOC 7.3847e-03 2.6266e-05
Cycle 1 EOC 5.5089e-03 2.9059e-05
Cycle 2 BOC 6.3079e-03 2.0397e-05
Cycle 2 EOC 5.4761e-03 2.5192e-05
Cycle 3 BOC 6.3336e-03 1.8739e-05
Cycle 3 EOC 5.5502e-03 2.3221e-05

5 NE/8975-2021-011-00
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Table 2. Kinetics parameter V8

State V1 V2 V3 V4 V5 V6
Cycle 1 BOC 2.3517e-04 1.2595e-03 1.2282e-03 2.8552e-03 1.2760e-03 5.3072e-04
Cycle 1 EOC 1.6538e-04 9.8182e-04 9.0075e-04 2.0653e-03 1.0016e-03 3.9410e-04
Cycle 2 BOC 1.9606e-04 1.0983e-03 1.0419e-03 2.4038e-03 1.1158e-03 4.5200e-04
Cycle 2 EOC 1.6254e-04 9.8193e-04 8.9214e-04 2.0483e-03 9.9961e-04 3.9163e-04
Cycle 3 BOC 1.9661e-04 1.1045e-03 1.0457e-03 2.4132e-03 1.1200e-03 4.5354e-04
Cycle 3 EOC 1.6542e-04 9.9392e-04 9.0530e-04 2.0792e-03 1.0097e-03 3.9664e-04

Table 3. Kinetics parameter _8

State _1 _2 _3 _4 _5 _6
Cycle 1 BOC 1.3357e-02 3.2640e-02 1.2096e-01 3.0425e-01 8.5347e-01 2.8668e+00
Cycle 1 EOC 1.3346e-02 3.1767e-02 1.1789e-01 3.0053e-01 8.5775e-01 2.8272e+00
Cycle 2 BOC 1.3349e-02 3.2188e-02 1.1934e-01 3.0222e-01 8.5560e-01 2.8442e+00
Cycle 2 EOC 1.3350e-02 3.1714e-02 1.1782e-01 3.0062e-01 8.5810e-01 2.8303e+00
Cycle 3 BOC 1.3350e-02 3.2186e-02 1.1937e-01 3.0230e-01 8.5560e-01 2.8456e+00
Cycle 3 EOC 1.3351e-02 3.1746e-02 1.1794e-01 3.0075e-01 8.5791e-01 2.8318e+00

The kinetics parameters vary depending on core conditions since the neutron spectrum and fis-
sionable material change over the cycle and with a reload. The generation time Λ tends to have
a larger value at EOC than BOC because of the increased percentage of fissions being provided
by plutonium. There is approximately a 10% to 50% difference in prompt neutron lifetime. The
variation in the total delayed neutron fraction is as large as 200 pcm–or around 30%. The fuel
temperature coefficient is -2.318 pcm/K on average, and almost constant over the cycle. The mod-
erator temperature coefficient of reactivity is relatively more sensitive than the other parameters.
The coolant temperature coefficient varies from -4.867 pcm/K to -39.406 pcm/K. The equilibrium
Xenon worth is on the order of -2400 pcm, and it does not have a significant variation depending
on states.

From these calculations, we are able to estimate the overall variation of the key parameters affecting
the reactor dynamics at various points in the reactor lifetime during its approach to equilibrium.
The purpose of this is to understand and quantify the sensitivities of the reactor dynamics due to
variations in the kinetics parameters. This understanding is necessary to inform the approach for
learning based control described later. Essentially, whatever learning-based or adaptive control
methodology that is adopted in place of a linear time-invariant model must be able to account for
these variations. As will be shown in Section 6 we attempt to bound these effects by explicitly
ignoring the xenon dynamics and providing proof of principle results that the GPR corrections to
the state-space model can account for the exclusion of xenon effects.

NE/8975-2021-011-00 6
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Table 4. Temperature coefficients and Xenon worth

State U 5

(pcm/K)
U2

(pcm/K)
Xenon worth

(pcm)
Cycle 1 BOC -2.149 -4.867 -2561
Cycle 1 EOC -2.380 -33.165 -2575
Cycle 2 BOC -2.200 -10.629 -2312
Cycle 2 EOC -2.467 -38.058 -2447
Cycle 3 BOC -2.217 -13.597 -2228
Cycle 3 EOC -2.493 -39.406 -2380

4. MODEL PREDICTIVE CONTROL

The MPC is an advanced method to control a process while satisfying a set of constraints [1]. It is
based on iterative finite-horizon optimization of the system (i.e., trajectory optimization). A control
input is computed for a relatively short time horizon in the future by evaluating a cost function
to minimize an error between a desired set-point and predicted output. This calculation is then
repeated at each subsequent instant or time-window.

Figure 2. Diagram for reactor control with MPC

Fig. 2 shows a diagram for the reactor control problem using the MPC controller. In the diagram,
the plant model is an actual plant or nonlinear model representing the plant. During the operation,
measurement data such as power level may be observable. The measurement is used to calculate
the objective cost function in the MPC controller. A linear state-space model is used in the MPC
controller. It is normally a state-space model as described in Eq. (15). The optimization is a process
to find the next control input to minimize the objective cost function. A quadratic cost function is
used in the MPC. The cost function estimates an error compared to the reference trajectory and
a cost used in the control action. A control input from the MPC controller is used to control the
plant.

We briefly review theMPC theory in the following. A detailed description can be found in [5]. First,
the continuous time state-space equation in Eq. (15) is converted to the discretized and augmented
model [5] defined as:

7 NE/8975-2021-011-00
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x(: + 1) = Ax(:) + BΔu(:)
y(:) = Cx(:) ,

(22)

where : is the discrete time index; x(:) and y(:) are the state vector and output vector of the
discrete time and augmented system, respectively; Δu(:) is input change vector; and A, B, and C
are the system matrix, input matrix, and output matrix, respectively.

The MPC solves an optimization problem that minimizes the quadratic cost function defined as
follows:

� = (RB − Y)) (RB − Y) + ΔU) R̄ΔU , (23)

subject to required constraints i.e.,

u<8= ≤ u ≤ u<0G
Δu<8= ≤ Δu ≤ Δu<0G ,

(24)

where the first component (RB − Y)) (RB − Y) represents the objective of minimizing the errors
between predicted output value and reference trajectory; and the second component U) R̄ΔU
represents the cost for input change. R̄ is an identity matrix multiplied by a weighting factor to
adjust an importance between solution accuracy and the cost required in the input change. Y is
series of output vectors in the prediction horizons, #? as follows:

Y =
[

y(: + 1|:) · · · y(: + #? |:)
])
, (25)

where y(: + ; |:) means the predicted output variable at : + ; with given information at time : . In
a similar manner, ΔU is series of input vectors in the control horizons, #2:

ΔU =
[
Δu(:) · · · Δu(: + #2 − 1)

])
. (26)

Y is calculated as follows:

Y = Fx(:) +�ΔU , (27)

where

F =


CA
...

CA#?

 , (28)
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� =



CB 0 0 · · · 0
CAB CB 0 · · · 0
CA2B CAB CB · · · 0
...

CA#?−1B CA#?−2B CA#?−3B · · · CA#?−#2B


. (29)

Minimizing the cost function in Eq. (23) subjects to constraints in Eq. (24) is a representative
mathematical optimization problem. The Quadratic Programming (QP) may be used to solve this
optimization problem [6]. It should be noted that constraint can be applied to any of state vector,
output vector, and input vector. Eq. (24) shows a simple example of the constraint.

So far, the standard MPC theory is derived based on the state-space model. This is why the
linearization of the nonlinear model is necessary for the control algorithm. There is nonlinear MPC
[7] that may be applied to solve a nonlinear optimization problem, but it is rarely used due to its
difficulty and high cost in computing. There is another approach in MPC using step response of
plant without constructing an explicit mathematical model. However, the approach requires many
data points and it is more suitable for single-input and single-input problem while the MPC based
on the state-space model can be readily applied to multiple-input and multiple-output system.

One of the strengths of MPC is its capability to accommodate a constrained problem. In nearly
all practical applications, there are constraints imposed by the physical system that must be taken
into account. In our application, two constraints are applied to the control rod position, A (C), and
control rod speed, D(C). The control rod position is constrained between 0 to 224 steps. The control
rod speed is constrained within ±1 steps/B. The constraint for the rod speed is a conservative
assumption. In the case of Westinghouse system, the maximum rod speed allowed is ±1.2 steps/B
[8].

Table 5. Applied constraints to Nuscale reactor control

Parameters Constraints
Control rod position (steps) 0 ≤ A (C) ≤ 224
Control rod speed (steps/s) −1.0 ≤ D(C) ≤ 1.0

As shown in Fig. 2, it is not necessary to use the same model for the plant and MPC controller.
The plant model is normally nonlinear and sometimes it is not possible to approximate the plant
as a mathematical model. Therefore, potential mismatches between the two models may cause a
significant error. To evaluate this point, a short transient scenario was simulated. The reference
power scenario is shown in Fig. 3. The scenario includes 40 min simulation with 20%%A /min of
power ramp rate between transitions. The control input is calculated every 5 sec. The control rod
is assumed to be partially inserted (100 steps) at the beginning of the simulation to ensure some
degree of negative and positive reactivity from control action. The nonlinear model in Eq. (11) is
used as a plant model, and the state-space linear model in Eq. (15) is used in the MPC controller.
The state-space model was linearized at steady-state with 100%%A . Therefore, the state-space
model may have a large error when the state is far from the nominal condition.

Fig. 3 shows the power calculated by the MPC controller and the difference compared to the
reference scenario. Even though there is a mismatch in the models, the MPC controller still follows
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Figure 3. Standard MPC simulation results for power

Figure 4. Standard MPC simulation results for control input

the reference power with reasonable accuracy. The maximum error in the power calculation is
3.7%%A . Most of the errors are less than 2%%A error. This good performance is due to the repetitive
feedback algorithm in the MPC. If the time interval for the control action and measurement
feedback is shorter than 5 sec, the error can be reduced further.

There are additional results for several state variables and control inputs through Figs. 4 and 5. The
control rod position and rod speed are constrained within the given constraints in Table 5. The
reactivity components calculated with Eq. (8) are shown in the Fig. 6. The Xenon worth at HFP
condition is an order of -2400 pcm which is one of the significant reactivity components. The
half-life of 135I is 6.7 hours so that 135I and 135Xe concentration do not converge with in this 40 min
short transient. Since the reactivity from 135Xe varies slowly, appropriate control rod input should
be calculated continuously.

NE/8975-2021-011-00 10
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Figure 5. Standard MPC simulation results for temperature and density

Figure 6. Standard MPC simulation results for reactivity

5. LEARNING-BASED MODEL PREDICTIVE CONTROL

As discussed in Section 4, it is necessary to approximate the plant model as a linear state-space
model for the standard MPC. However, the actual plant model is generally nonlinear so that there
is a mismatch between the actual plant model and the model used in the MPC controller. The MPC
controller behaves well even with the mismatched models as discussed in Section 4, but there is
room to improve the accuracy, and this may not necessarily be the case for every transient power
scenario or plant design. In this section, we introduce a ML technique to improve the accuracy
of the MPC controller. We call the ML based MPC method as Learning-Based MPC (LBMPC)
[9, 10].

Fig. 7 describes LBMPC algorithm. The MPC gives a very accurate solution (or control input) as
long as the model used in the MPC represents the actual model accurately. Therefore, the focus of
LBMPC is to improve the linear model used in the controller by using a ML technique. We expect
the MPC controller with an improved linear model will calculate a more reliable control input.
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In theML, it is necessary to provide training data. The measurements (or control input if necessary)
from the plant model are used in the ML. The training data can be any state variables, control
inputs, measurements, and error. In this work, we used supervised learning as the initial approach.
Supervised learning is generally less challenging than other categories of ML from the viewpoint of
the amount of training. Therefore, it may be possible to realize the ML in practice. A disadvantage
of supervised learning is that it is necessary to provide correct sets of input and output information
to ML. Therefore, one must have a good knowledge of the output to train the model. In the case
of reactor control, it is necessary to provide training data and a way to improve the linear model.
Regression methods can be used to find correlations in the training data and provide the corrections.
In this work, we initially adopted GPR because typically in an operating reactor the observations
will have Gaussian noise. By using GPR in our calculations we assume that the nature of the
mismatch between the real model and the state-space model is due to Gaussian processes–which is
not necessarily true, since in some cases we have a specific partial differential equation representing
some dynamics. However, insofar as we are concerned with the coefficients in the dynamics model,
assuming the coefficients vary as a Gaussian distribution is reasonable.

Figure 7. Diagram for reactor control with LBMPC

In the following, we briefly introduce the GPR. A detailed description can be found in [11, 12].
The GPR is a nonparametric approach to regression that is being widely used in the area of ML.
Given a set of training data (|8, I8)8=1...# the GPR aims to find a function 6 that can associate |8
with I8 by setting appropriate Gaussian Process (GP) parameters (e.g. mean and variance). Taking
noise into consideration for the output I8, the relationship between the latent function 6 and I8 can
be written as

I8 = 6(|8) + n , (30)

where n is an independent Gaussian noise. The GPR treats the function 6 as a collection of random
variables. Therefore, a Gaussian distribution of the function 6 can be completely specified by its
mean function " (|) and covariance function  (|, |′):

6(|) ≈ GP(" (|),  (|, |′) , (31)

where  (|, |′) represents the covariance matrix between each data point in | and |∗.

NE/8975-2021-011-00 12
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The mean function " (G) is considered to be zero in most real problems. The joint distribution of
the observed target I is given as:

I ≈ GP(0,  (|, |′) + f2
= �=) , (32)

where f2
= is the variance in the observed noise n , �= is an identity matrix. Hence, given the test input

data | and the test output I, according to the definition of GPR, the joint probability distribution
of training output I and the test output I∗ under the prior can be written in a matrix form as:[

I

I∗

]
≈

(
0,

[
 (|, |) + f2

= �=  (|, |∗)
 (|∗, |)  (|∗, |∗)

] )
. (33)

The posterior distribution over I can be obtained by imposing restrictions on the prior joint distri-
bution Eq. (33) given the training and test point, which is expressed as:

%(I∗ ||, I, |∗) ≈ # ( Ī∗, cov(I∗)) , (34)

where

Ī∗ =  (|∗, |) [ (|, |) + f2
= �=]−1I , (35)

cov(|∗) =  (|∗, |) −  (|∗, |) [ (|, |) + f2
= �=]−1 (|, |∗) , (36)

where I∗ and cov(|∗) are the predicted mean and the variance of output I∗, respectively. It is also
observed that the variance cov(|∗) only depends on the observed inputs, not on | and |∗.

Finally, the GPR model can predict the output of test points based on the mean function, variance,
and training points. Consequently, the expected prediction results (mean) and the uncertainty of
measurement information (variance) of the real output is given by this unique property of the GPR.
There is further discussion about the input and output data sets in Section 6.

6. DEMONSTRATION OF LEARNING-BASED MODEL PREDICTIVE
CONTROL

6.1 LBMPC for Time-varying State-space Model
It is important to select appropriate training data for the GPR. A concept of the adaptive MPC
[13] is used in the output training data generation. In the adaptive MPC, a nonlinear model is
successively linearized for each time step, and the linearized model is used in the MPC controller.
In other words, the adaptive MPC uses a series of piecewise linearized models from the nonlinear
model. To observe how the model varies during the simulation, the nonlinear model Eq. (11) was
linearized during the simulation, and then some of the elements were compared in Fig. 8. Fig. 8
shows the elements that change more than 0.1% compared to those nominal (or initial) values.
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Figure 8. Matrix A elements from successive linearization

These data will be used as output data set since this is the actual linear model at each time step.
Some state and control input variables related to the chosen output data set are selected as input
data set. The input data, w, and the output data, z are summarized as follow:

w =

[
=(C) d(C) A (C) 3A (C)

3C
- (C)

]
, (37)

z =
[
m 5=
m=

m 5=
m) 5

m 5=
m)2

m 5=
m-

m 5=
mA

m 5-
m=

m 5-
m-

]
. (38)

Fig. 9 shows the results from LBMPC. There are three simulations for the same reference scenario.
In the first generation, the GPR correction is not used in updating the linear model in the MPC
controller. Instead, the input and output data defined in Eqs. (37) and (38) are collected during the
simulation. At the end of the first simulation, the GPR fitting was performed to make the GPR
model. In the second simulation, the GPR model trained in the previous simulation was used to
estimate the linear model at every time step. The second generation of the LBMPC controller gives
a noticeable improvement in the power calculation. The maximum error compared to the reference
trajectory is about 1%%A . The third simulation shows almost identical results with those of the
second generation. That means the training data from the first simulation is sufficient to estimate
the time-varying linear model.

To verify if the GPR calculates the matrix element accurately, the GPR outputs are compared to
the matrix elements from linearization of the nonlinear equation Eq. (11). The comparison results
are presented in Fig. 13. In the figure, the "Linearization" means the results from linearizting the
nonlinear eqution at the second simulation of the LBMPC. The GPR model was made based on
the first simulation, and then the model was used to calculate the matrix element in the second
simulation. As presented in the figure, the GPR calculates the matrix elements very accurately.

At the beginning of Section 6, it was discussed that the LBMPC implementation in this work is based
on the concept of adaptive MPC. In other word, the LBMPC imitates the adaptive MPC therefore
the best accuracy can be achieved by the LBMPC is the that of the adaptive MPC. For verification,
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Figure 9. LBMPC simulation results for power

Figure 10. LBMPC simulation results for control input

the adaptive MPC and LBMPC are compared in Fig. 14. As shown in the figure, the LBMPC and
the adaptive MPC calculated an almost identical power, and the difference between them is hardly
noticeable. Therefore, it is concluded that the LBMPC was successfully implemented and showed
the best accuracy as it can.

6.2 LBMPC for Measurement Error Estimation
In Section 6.1, the GPR was used to improve the linear model for the MPC controller by studying
the linear model from successive linearization of actual nonlinear model. The approach showed an
accurate result, but there is a limitation. The approach requires a knowledge of originalmathematical
or numerical model since it is necessary to calculate the piecewise state-space models. In practice,
it is rarely possible to obtain the nonlinear model representing the actual plant. Therefore, this
section uses a different approach for the LBMPC. The idea is to add an correction term in the
state-space model for the MPC controller as follow:
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Figure 11. LBMPC simulation results for temperature and density

Figure 12. LBMPC simulation results for reactivity

¤xB (C) = ABxB (C) + BBuB (C) + e(C) , (39)

where e(C) is the correction term defined as difference like: e(C) = ¤xtrue(C) − ¤x(C), and xtrue(C) is the
time derivative of state vector of actual model with assuming that all state variables are observable.
To implement the e(C) in the MPC, it is necessary to form it as the original state-space model.
Therefore, the state-space model is extended to add an hidden variable as follows:

¤xℎ (C) = Aℎ (C)xℎ (C) + Bℎu(C)
yℎ (C) = Cℎxℎ (C) ,

(40)

where
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Figure 13. Comparison of GPR outputs

xℎ (C) =
[
xB (C)

1

]
, yℎ (C) =

[
yB (C)

0

]
,

Aℎ (C) =
[
AB e(C)
o< 1

]
,Bℎ =

[
BB

0

]
,Cℎ =

[
C 0

]
,

(41)

where o< is 1 × < null vector.

The training input and output are

w =
[
xtrue(C)

]
z =

[
e(C)

] . (42)

The result of LBMPC based on the error estimation is shown in Fig. 15. Similarly as Section 6.1,
the training data was collected during the first simulation, and then the GPR was used to calculate
the output. Unfortunately, the LBMPC with the error correction does not work properly. From the
second simulation, significant oscillation was calculated due to the error correction term. There are
several guesses about this result. First, this approach should be used when the e(C) has a monotonic
behavior. Since MPC controller calculates the control input by solving cost function for multiple
number of prediction horizons, the state-space model should have appropriate predictions for entire
prediction horizons as well as a next time interval. However, e(C) varies a lot as time evolves, so that
it seems the MPC controller calculates oscillating power due to underestimated and overestimated
control inputs. Second, the e(C) varies a lot as time evolves, and the behavior is not monotonic so
that it is relatively difficult to develop the well trained GPR model. The e(C) from the GPR model
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Figure 14. Comparisons of MPCs

Figure 15. LBMPC with error estimation.

frequently gives a value with very high standard deviations if the GPR model is used for a newly
encountered reactor condition.

From this work, it was not possible to realize the LBMPC using the error estimation. However, it
is worthwhile to keep developing this approach since it is a more generalized approach and may
be used in a wider application. In the future work, this approach may be improved by using a
different form of error correction. Instead of adding whole error correction term to the ¤x(C), there
may be a better way to decompose the error term into several pieces of functions of state vectors.
The Support Vector Machine (SVM) [14] may be used in this approach to classify where an error
comes from and which state vector should be adjusted.
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7. CONCLUSIONS & FUTUREWORK

In this report, the reactor dynamics model with the PKE, TH model, and Xe dynamics were
developed for use with an LBMPC controller to automatically control the SMR. MPACT was used
to generate parameters for the PKE and the reactivity model. The parameters were generated for
BOC and EOC of 1 – 3 cycles. The generation time and the coolant temperature coefficients were
relatively sensitive than other parameters. The MPC controller was developed to simulate the plant
model which has nonlinear reactor dynamics. For the standard MPC controller, the state-space
model was generated using linearizing the nonlinear model at the initial steady-state model. There
was model mismatch between plant model and controller’s model. However, the accuracy of the
standard MPC controllers was still reasonable with less than 4%%A . To improve the controller
accuracy further, the LBMPC controller was developed. In the LBMPC, the GPR was used to
train time-varying components of state-space model generated by piecewise linearization of the
nonlinear model. The trained GPR model is used to imitate the time-varying state-space model.
The updated state-space model for each time step was used in the MPC controller by providing a
better estimation for the plant model. As a result, the LBMPC controller improved results resulting
less than 1%%A error in most of time steps.

From this work, several opportunities for future studies were identified.

• The LBMPC controller learning model error is necessary to develop for a more general
purpose.

• There is room to refine and improve the nonlinear model to approximate the actual SMR
with a higher accuracy. i.e., incorporating measurement noise and models for systems such
as pressurizer.
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