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Abstract 
 

Urban heat islands (UHI) are a phenomenon observed in built environments due to differences 
in terrestrial albedo that result in higher temperatures in urban areas. Variations in both 
environmental factors and physical infrastructure cause a wide range in temperature among 
neighborhoods within the same city.  In the 1930’s, the Home Owners’ Loan Corporation 
(HOLC) used risk assessment maps (now commonly referred to as redlining maps) to further 
reinforce racist housing and lending policies that were commonplace in that era. This study 
assesses the environmental legacy of these policies on current heat islands. The analysis is 
based on land surface temperature (LST) estimates derived from Landsat 8 (OLI/TIRS) imagery 
and calculated using open-source code in Google Earth Engine. Differences in LST are calculated 
for 8,865 unique HOLC neighborhoods for 202 cities across the United States. A linear mixed 
effects model is used to analyze if urban areas have varying temperatures in the present day 
based on their historic HOLC ranking (scale of A-D, where neighborhoods ranked A were 
typically limited to upper-class white residents, and neighborhoods ranked D were typically 
composed of Black residents regardless of class or income). The model found that all grades 
were significantly different from each other (p<0.001), with zones ranked D an estimated 2.3°C 
hotter than zones ranked A. These findings indicate that despite the cessation of overt race-
based housing policies, the effects of such policies are socially and environmentally measurable 
in the present day.  
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Introduction 

Heat waves are especially dangerous in urban areas due to the urban heat island (UHI) 
effect. This phenomenon describes the notable variance in temperature between rural and 
urban areas due to differences in terrestrial albedo (Susca et al., 2011). Cities often have a high 
percentage of impervious surfaces (such as concrete and asphalt) that absorb and retain heat 
while rural areas have more vegetation that regulates and dissipates heat more quickly. 
Because cities have a higher population density, more people are subject to the effects of UHI, 
the impact of which will become more extreme as the global surface temperature continues to 
increase (Hansen, 2010). This is likely to impact residential populations differently due to 
legacies of variation in the built environment, access to greenspace, and difference in 
vulnerability to heat.  
  

Some segments of the population will more acutely experience the negative impacts of 
increased heat. Age (both extremes of young and old) as well as preexisting health conditions 
play a large role in an individual’s vulnerability to heat (Benmarhnia et al., 2015; Sheffield et al., 
2018; Stafoggi et al., 2006). Additionally, race and socioeconomic status play a role in one’s risk 
of heat related illness (Harlan et al., 2006). According to Harlan et al., cities contain 
microclimates caused by density of built environments and amount of vegetation, and the 
hotter microclimates tend to have higher rates of poverty and fewer resources to manage heat 
exposure. The correlation between hotter sections of a city and higher poverty can be traced 
back to the practice of redlining. Towards the end of the Great Depression, Roosevelt’s New 
Deal instituted the Home Owners’ Loan Corporation (HOLC) with the stated intention to help 
struggling homeowners keep their property through financing mortgages. The HOLC drew 
“Residential Security” maps that sectioned the cities into four distinct rankings: Best (A), Still 
Desirable (B), Definitely Declining (C), and Hazardous (D). These ranks were based on multiple 
factors including class, socioeconomic status, and race; most notably, neighborhoods with Black 
residents were almost always given a rank of D, regardless of any other attributes (Rothstein, 
2018). Non-white homebuyers looking to take out loans to purchase in areas ranked A or B 
were denied loans. As a result, areas ranked C and D experienced higher rates of segregation 
(Hillier, 2003). 
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Figure 1. Example of an HOLC map showing redlined districts in the Greater Kansas City area. 
The term “redlining” comes from the reddish hue used to denote the lowest ranked zones.  

  
While the practice of actively zoning residential areas by race is federally illegal now, the 

pattern created by redlining is still evident in cities across the U.S. even today. Table 1 is 
reproduced from a 2018 study by the NCRC (National Community Reinvestment Coalition). It 
depicts the percent of white and minority residents in each class of the redlined districts and 
shows that despite the cessation of overt race-based housing policies, a majority of the 
population in zones that were historically rank A are white (Mitchell et al., 2018). Urban areas 
still experience the extant impact of segregation decades later. 
  

 White Minority 
A Best 85.82% 14.18% 
B Desirable 71.57% 28.43% 
C Declining 54.91% 45.09% 
D Hazardous 35.16% 63.84% 

Table 1.  Percent white and percent minority by redline classifications (data: 2016 FFIEC 
Census- and ACS). Table originally published in an NCRC report by Mitchell et al. 

  
The relationship between impervious surfaces and redlined districts is not by chance. A 

year after the creation of the HOLC, the Federal Housing Authority (FHA) was established, and 
the following year, they instituted the Underwriting Manual, a guidebook on policy that 
explicitly required racial segregation (Rothstein, 2018). Section 229 of 1936 version of the 
document states (FHA, 1936):  
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 Natural or artificially established barriers will prove 
effective in protecting a neighborhood and the locations within it 
from adverse influences. Usually the protection … include[s] 
prevention of the infiltration of business and industrial uses, 
lower-class occupancy, and inharmonious racial groups… A high-
speed traffic artery or a wide street parkway may prevent the 
expansion of inharmonious uses to a location... On the other 
hand, when a high-speed traffic artery passes directly through a 
desirable neighborhood area with similar development on each 
side of the artery, instead of offering a protection the noise and 
danger [are] an adverse influence.  

This section of the manual demonstrates that not only was segregation of “inharmonious racial 
groups” a key goal of the FHA, but the presence of highway infrastructure was also a key factor 
in determining the value and desirability of an area, whereas the presence of a highway 
detracted from the value of a community. Despite the end of overt racial segregation, the use 
of built infrastructure to divide, displace, and sometimes destroy communities continues garner 
federal approval into the present day (Bullard, 2004). The unintended consequence of this 
practice has led to an oversaturation of impervious surfaces in C and D ranked neighborhoods, 
which creates zones prone to the UHI effect. 

Methodology 

This study poses the following question: Do urban areas have varying temperatures in 
the present day based on their historic HOLC ranking? To test the impact of the legacy of racist 
housing policies on present-day heat exposure, this study fit a mixed effect multilevel model 
with LST as the dependent variable and tested it against environmental factors that might 
impact temperature variation within cities. These factors included elevation, latitude, longitude, 
and NDVI. Because the LST values used in this study are derived from NDVI, there was high 
multicollinearity, and NDVI was removed from the analysis. 

Study Area 
 

The study area comprises all cities in the United States that experienced redlining through the 
HOLC. Notably, Washington D.C. experienced a similar implementation of redlining, however it 
was not through the HOLC and used a different ranked scale, and therefore, D.C. was not 
included in the Mapping Inequality dataset. An ANOVA was conducted to determine if the 
hypothesis of this paper held true for D.C., and the results are included in Appendix Figure I. 
The analysis in this paper does not include D.C. due to the different methods for classifications. 
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All other U.S. cities that experienced redlining are included in this dataset. A full list is available 
in the appendix. 

 
Figure 2: All U.S. cities that have HOLC redlining maps 

 

Data Acquisition and processing 

HOLC Redlining Grades - Independent Variable 

  
HOLC redlined zones for the contiguous United States were acquired through the 

University of Richmond's Digital Scholarship Lab’s Mapping Inequality project website. The 
research team that created Mapping Inequality digitized the original HOLC maps from the 
National Archives’ Residential Security Maps collection. This distinguishes HOLC zones for 202 
cities and includes a measure of grade and area descriptions for each location. Nine data points 
were removed due to incomplete records (no ranking listed). 
  

Digital Elevation Model (DEM) - Independent Variable 

 
A 30m (one arc-second) digital elevation model was obtained from the National 

Elevation Dataset (NED) 30 through the United States Geological Survey (USGS). The DEM was 
clipped to the HOLC shapefile, and the average elevation per unique HOLC zone calculated in R. 
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Latitude and longitude were also calculated to control for differences in climate conditions 
across the U.S. as higher latitudes experience less extreme heat in the United States. 
 

Land Surface Temperature (LST) - Dependent Variable 

 
LST data were acquired through Google Earth Engine (GEE) using open-source code 

developed by Ermida et al. to extract LST estimates from Landsat satellites. The satellite used 
for this project was Landsat 8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) 
Collection 1, Tier 1, and the imagery was limited to scenes captured between June 1 – August 
31, 2018. Based on a sample analysis of NOAA temperature data in 2018, these months were 
consistently the hottest and had fewer fluctuations in temperature, unlike late spring and early 
autumn months.  Landsat 8 has a temporal resolution of 16 days, meaning there are at most 5 
scenes available for any given city. Because most cities were small in area compared to a full 
Landsat scene, all scenes were acquired regardless of percentage of cloud cover then cloud 
masked. The selected scenes were then clipped to cities in the HOLC shapefile and averaged (in 
cases with multiple scenes or overlapping scenes).  
 

LST was then calculated using the open-source Ermida et al. code in GEE. Due to 
calibration issues with band 11 of the Landsat 8 TIRS sensor, a split-window algorithm produced 
LST values with lower accuracy, and therefore the code from Ermida et al. uses a Statistical 
Mono-Window (SMW) algorithm that was developed by the Climate Monitoring Satellite 
Application Facility (CM-SAF). Accuracy tests performed by Ermida et al. indicate that the values 
are accurate within 0.5° K with overall RMSE values of approximately 2° K. 
 

The LST calculations for Fort Worth and Dallas, TX were recalculated to include only one 
scene (LC08_L1TP_027037_20210821_20210827_01_T1) due to an error with the cloud mask 
that resulted in negative LST values when using the mean pixel value. No other such errors 
were found in other scenes. 
  

The LST imagery was then exported from GEE as TIFF files and loaded into R Studio. 
Using the packages raster, sf, and exactextractr, the average temperature (in °K) for each 
redlined zone of the HOLC shapefile was calculated (Hijmans 2015; Pebesma 2018; Baston 
2021). The exact_extract function of the exactextractr package calculates the zonal statistics (for 
this study, the mean LST value) of the polygons. The function efficiently handles grid cells that 
overlap the boundaries of a polygon, and, when calculating the mean, weights the fraction of a 
cell that overlaps with the polygon. The average temperature was then converted from °K to 
both °C and °F for easier visualization. 
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    Data Analysis 
  

The HOLC, LST, and DEM data sets were joined in R and a linear mixed effects model 
was run. A mixed effects model was necessary for this dataset due to the differing climates of 
cities across the contiguous United States. For example, the average air temperature of Dallas, 
TX on August 1st is 35.6°C[1], while in Binghamton, NY, the average temperature for the same 
date is 26.7°C[2]. It is worth noting that official temperature data supplied by NOAA are 
recorded almost exclusively at airports that are typically on the periphery of a city. As a result, 
these values do not reflect the ambient temperature within a city.   
  
         Multiple zones exist within each city, which creates a hierarchical structure within the 
dataset. To analyze the data without violating independence of our samples, the model must 
account for the variability between cities.  The linear mixed effect model does this by assuming 
a different intercept for each city. Table 2 shows different constructions of the model that were 
considered for this analysis. As Model 5 shows, when city was not included as a random effect, 
the adjusted value was 40%, considerably lower than the models that did control for city.  In 
addition to the inter-city differences in climate, there are intra-city differences in microclimates 
as well, usually due to features such as elevation, vegetation, and impervious surfaces (Harlen 
et al., 2006). This paper intends to show that these environmental differences that create 
microclimates can be modeled using the HOLC zones. 
  
Model # Variables Adjusted R! Significant Variables (p≤0.5) 
Model 1 Grade + City 0.767 All grades  
Model 2* Grade + DEM + City 0.849 All grades and DEM 
Model 3 Grade + DSM + City 0.861 All grades and DSM 
Model 4 Grade + DEM + lat + long + City 0.846 All grades and all variables 
Model 5 Grade + DEM + lat + long 0.408 All grades and all variables 

Table 2: Variations of the model considered for this analysis. Model 2 was chosen for analysis in 
this paper. 
  

Variations of this model were run to determine best fit. Table 2 shows a sample of five 
of the models tested. Ultimately, model 2 was chosen to continue the analysis. Model 1 used 
only the HOLC grades and controlled for city, while it gave promising results, it did not account 
for enough of the variation within a city. Model 3 is identical to model 2 except the elevation 
data was from a digital surface model (DSM) rather than the DEM. DSMs tell the elevation of 
objects on the surface such as buildings or trees, while a DEM estimates the actual surface of 
the earth. Future work with this data could parse the land cover of the DSM to indicate what 
higher elevations are structures or tree canopy. This would add a layer of depth to the model 
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that may increase the explanatory power by differentiating between built structures and 
vegetation. Model 4 included the DEM as well as latitude and longitude. No city in the study 
was so sprawling that the latitude and longitude varied enough intra-city to justify including 
these variables.  Additionally, the random effect of the city variable accounts for spatial 
variation, which would render the inclusion of latitude and longitude redundant in the analysis. 
Model 5 is the same as model 4 but without city as a random effect. As expected, the fit on this 
model was not as good due to the violation of independence (related to Simpson’s paradox).   
  

Results 
 

The mixed linear effects model tested to see if HOLC grade and Elevation (DEM) 
predicted the average land surface temperature of any given zone. The fitted model is as 
follows: 
  

LST = β + 35.53β1 + 1.29β2 + 2.08β3 + 2.30β4 + -0.01β5 

Where β is our intercept that varies based on city, β1-4 is HOLC Grades A-D, respectively, 
and β5 is DEM. All p values are less than 0.001 and highly significant. The Conditional R2 value 
(0.849) accounts for total variance explained through both the fixed and random effects, unlike 
the Marginal R2 (0.374) which only accounts for the fixed effects (Nakagawa, 2013). As the 
inclusion of the random effects is vital to interpreting the results of this model, the conditional 
R2 is the preferred metric between the two. 

 

Table 3: Results of the linear mixed effects model 
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To test for multicollinearity in the model, the variance inflation factor (VIF) was 
calculated. Generally, a VIF value of 1 indicated no multicollinearity, and the higher the value, 
the more multicollinearity is present in the model. The VIF, equation shown below, for both 
DEM and HOLC grades was 1.033, indicating that there is little to no multicollinearity in the 
model. 

𝑉𝐼𝐹 =
1

1 − 𝑅!"
 

 
The residuals of the model are plotted below in figure 3 and appear randomly 

distributed. There are few outliers in the dataset of 8,844 samples, and none of them are 
extreme enough to be indicative of an underlying issue with the analysis. In the plotted 
residuals, there is a distinct break around 45°C. LST values have been recorded up to 58°C, but 
as these are extremes in the United States, values would be expected to level off well below 
that (Wan, 2006). Table II of the appendix lists all cities that have values over 45°C. 

 

 
Figure 3: Plotted residuals of the chosen model 

 
The residual outlier in the bottom right corner is zone 8476 in Phoenix, AZ that is ranked 

B and has a temperature of 50.6°C. Our model shows that B ranked zones are typically cooler 
than C or D ranks, but as Phoenix has 24 of its 25 zones at temperatures over 45°C, this zone is 
an anomaly even in the fitted values, but not indicative of errors in the dataset. Similarly, the 
other anomaly that has a residual value of roughly -15 is a D ranked zone in Seattle, WA that 
was recorded at only 16.1°C. Even with the fitted values of our model accounting for the 
variation between cities, the value is lower than expected. Due to the climate of Seattle, WA, 
this does not indicate unreliable values in our underlying dataset. 
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Discussion 

The data suggest that there is a significant difference in temperature among HOLC 
grades, where the lowest ranked zones are the hottest. The figure and table below depict the 
estimated mean of each grade and the relationships among each rank. All grades are 
significantly different from each other (p<0.001). The largest difference in mean temperature is 
between zones ranked A and D. The results indicated that zones ranked D are an estimated 
2.3°C hotter than zones ranked A. This is in line with the hypothesis of this study that 
historically redlined zones are on average hotter than their non-redlined zones within each city. 

 
  
 

 
 
  

Table 4: The estimated difference among all zones, the significance, and standard error. 
Figure 4: The estimated marginal means, or least squared means, of each HOLC grade.  

 
Segregated neighborhoods existed long before and after the HOLC and its infamous 

maps. Redlining maps were not the origin of segregated housing, but instead were descriptions 
of practices already occurring in cities. Non-white and lower-class residents were often 
restricted to areas that were less desirable due to their proximity to pre-existing environmental 
detriments such as landfills and flood plains (Mizutani, 2018). Along with built infrastructure 
such as highways, these environmental factors were used as natural dividers of different zones 
to prevent the “infiltration of inharmonious racial groups” as referred to in the FHA’s 
Underwriting Manual. Since the Fair Housing Act of 1968, discriminatory practices in the 
housing market have been declared illegal. Despite the law, a 2005 study found that “the dual 
market structure of the current mortgage industry… still denies lower-income minorities equal 
access to prime mortgages” (Apgar et al., 2005). Underinvestment in lower-class neighborhoods 
combined with discriminatory mortgage lending practices in the present day solidify the pattern 
of built environments and deprive residents of the means to build wealth through real estate.  

Contrast Estimate SE p-value 
A - B -1.288 0.077 <0.0001 
A - C -2.077 0.074 <0.0001 
A - D -2.295 0.080 <0.0001 
B - C -0.789 0.056 <0.0001 
B - D -1.007 0.063 <0.0001 
C - D -0.218 0.057 0.0008 
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Without investment in such neighborhoods, historically redlined zones will continue to have 
less access to green spaces (Nardone et al., 2021) that can dissipate heat more efficiently than 
impervious surfaces.  

 
Other detriments to the desirability of land in the redlining guides included landfills, 

factories, and transportation infrastructure. These factors are high contributors to pollution and 
living in proximity increases one’s exposure to dangerous contaminants (Mor et al., 2006; Liu et 
al., 2014). As a result, many of the C and D ranked zones experience higher levels of pollution 
and an increased risk of pollution-related illnesses (Nardone et al., 2020a; Nardone et al., 
2020b; Beyer et al., 2016). Poor air quality is intensified by the UHI effect (Lai et al., 2009), and 
has been linked to asthma (Neidel, 2004) and cancer (Singer, 2011). Cognitive function has also 
been shown to decline in extreme heat (Gaoua, 2010; Taylor et al., 2016). The results of this 
study imply that zones ranked C and D are hotter than zones ranked A and B and are therefore 
exposed to intensified health risks.  

 
 Because factors such as health, race, class, heat exposure, and so on are interconnected, 
it is likely impossible to determine causality. Additionally, the inclusion of multiple social 
variables in linear models introduces multicollinearity and reduces reliability of results. Future 
studies could incorporate social data such as age, race, and class using a principal components 
analysis to explore deeper connections between the historic redlined zones and the 
neighborhoods they comprise in the present day.  
 

Conclusion 
While all cities that were subject to historic redlining experience the urban heat island 

effect, certain zones within the city that were ranked C or D by the HOLC experience even 
higher temperatures than zones ranked A or B. Through this analysis of 202 cities, the average 
LST of D ranked zones was 2.3°C higher than that of A ranked zones. These findings indicate 
that despite the cessation of overt race-based housing policies, the effects of such policies are 
socially and environmentally measurable in the present day. Without investment in these 
communities to increase greenspace, this trend will continue. 
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Appendix 
 

Grade Count Area (km2) 
A  1039 1271.69 
B 2327 2679.82 
C 3381 5185.00 
D 2118 3282.71 

Table I: Nationwide Count of HOLC zones and total area 
 
 
List of cities included in this study:  
 
Alabama: Birmingham, Mobile, Montgomery 
Arizona: Phoenix 
Arkansas: Little Rock 
California: Fresno, San Diego, San Francisco, San Jose, Stockton, Sacramento, Oakland, Los Angeles 
Colorado: Denver, Pueblo 
Connecticut: New Haven, Stamford, Darien, New Canaan, New Britain, Hartford, Waterbury 
Florida: Miami, Jacksonville, St. Petersburg, Tampa 
Georgia: Atlanta, Augusta, Columbus, Macon, Savannah 
Illinois: Aurora, Chicago, Rockford, Joliet, Springfield, East St. Louis, Decatur, Peoria 
Indiana: Muncie, Evansville, Fort Wayne, Lake Co. Gary, Terre Haute, South Bend, Indianapolis 
Iowa: Waterloo, Sioux City, Des Moines, Davenport, Council Bluffs, Dubuque 
Kansas: Wichita, Topeka 
Kentucky: Louisville, Lexington, Covington 
Louisiana: New Orleans, Shreveport 
Maryland: Baltimore 
Massachusetts: Boston, Milton, Dedham, Quincy, Braintree, Brookline, Winthrop, Needham, Newton, 
Watertown, Waltham, Cambridge, Somerville, Medford, Malden, Arlington, Belmont, Lexington, 
Winchester, Everett, Melrose, Revere, Chelsea, Saugus, Haverhill, Holyoke Chicopee, Brockton 
Michigan: Kalamazoo, Battle Creek, Bay City, Flint, Grand Rapids, Muskegon, Pontiac, Detroit, Saginaw, 
Lansing, Jackson 
Minnesota: Duluth, St. Pail, Rochester, Minneapolis 
Mississippi: Jackson 
Missouri: St. Joseph, Springfield, Greater Kansas City, St. Louis 
Nebraska: Omaha, Lincoln 
New Hampshire: Manchester 
New Jersey: Hudson Co., Atlantic City, Camden, Essex Co., Bergen Co., Trenton, Union Co. 
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New York: Utica, Troy, Rochester, Queens, Poughkeepsie, Manhattan, Brooklyn, Bronx, Staten Island, 
Schenectady, Syracuse, Albany, Elmira, Binghamton-Johnson City, Niagara Falls, Lower Westchester Co., 
Buffalo 
North Carolina: Asheville, Charlotte, Durham, Greensboro, Winston-Salem 
Ohio: Youngstown, Hamilton, Warren, Cleveland, Columbus, Portsmouth, Toledo, Lorain, Lima, Dayton, 
Springfield, Akron, Canton 
Oklahoma: Tulsa, Oklahoma City 
Oregon: Portland 
Pennsylvania: Pittsburgh, New Castle, Altoona, Philadelphia, Johnstown, Erie, Harrisburg, Lancaster, 
Bethlehem, Chester, Wilkes-Barre, York 
Rhode Island: Providence, Woonsocket, Pawtucket, Central Falls 
South Carolina: Columbia 
Tennessee: Knoxville, Chattanooga, Nashville, Memphis 
Texas: Dallas Houston, San Antonio, Amarillo, Beaumont, El Paso, Fort Worth, Galveston, Waco, Austin, 
Port Arthur 
Utah: Salt Lake City, Ogden 
Virginia: Richmond, Roanoke, Norfolk, Newport News, Lynchburg 
Washington: Seattle, Spokane, Tacoma 
Wisconsin: Kenosha, Madison, Oshkosh, Racine, Milwaukee Co. 
West Virginia: Charleston, Wheeling, Huntington 
 
 
 

City Count of zones over 
45°C 

Total number of 
zones by city 

Los Angeles, CA 152 416 
San Diego, CA 26 76 
Phoenix, AZ 24 25 
El Paso, TX 23 23 
Oklahoma City, OK 11 90 
Fresno, CA 10 24 
Ogden, UT 3 23 
Miami, FL 1 74 
Lincoln, NE 1 22 
Salt Lake City, UT 1 29 

Table II: Cities with zones over 45°C 
 
 
 
 
 



 

 16 

 
Figure I: Boxplot showing temperature differences in the sample D.C. tests. D.C. was omitted 
from this study due to a different ranking system, where A and B were still the highest ranks, 
but G and H correspond with the HOLC’s rating of C and D. There were additional rankings (C-F) 
that designated various other classifications such as nonresidential. An ANOVA test was 
performed comparing the average LST of rankings A, B, G, and H. Both highest ranked zones (A 
and B) were significantly different (p<0.05) than the two lowest ranked zones (G and H). 
Specifically, the analysis showed that the areas of the city that were once classified as H are 
now on average 3.1°C hotter than areas that were classified as A.  


