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ABSTRACT

New product development requires engineering designers to translate abstract user needs into
concrete engineering specifications. Formal methods for engineering design offer strategies to
guide decision-making throughout this process. Many methods assume that the artifact will be
mass-manufactured for sale within a competitive market environment. The objective of these meth-
ods is to define product attributes which will maximize user preference relative to other options and
therefore improve the likelihood of purchase. However, the emergence of the Internet of Things,
smart products, and highly-connected systems has led to a growth in products sold as a service.
Thus, user preferences during the entire product lifetime becomes increasingly important. This dis-
sertation will extend design research to investigate approaches which maximize user preferences
over the lifetime of the product. The first study examines the coupled interaction between product
attributes and contextual parameters in large connected systems. The second study explores the
use of reinforcement learning algorithms to design adaptive hardware systems which respond to
dynamic user preferences. The third study explores the relation between reinforcement learning
algorithms’ behavior with user willingness for providing feedback in adaptive hardware systems.
Together these studies create a road map towards prescriptive design methods which enable engi-
neers to design systems which tailor their functionality to changing user needs over the lifetime of
the product.

The first study focuses on the design of large connected user-product-environment systems.
Usage context and more specifically, the dynamic usage variables that are impacted indirectly by
the designer’s decisions through the large-scale change in the end-users’ behavior. In the current
literature, context variables are treated as uncontrollable variables. Designers’ approach to un-
controllable variables is developing predictive models to predict these variables accurately during
the product life cycle and design the product accordingly. In a vehicle design context, examples
include predicting the time that customers drive in traffic versus highway in order to design the
most efficient engine. In this work, we propose a framework for bringing some dynamic aspects
of the usage context into the controllable variable space which paves the way for designing the
product and the usage context simultaneously. This will not only help with mitigating the negative
impact of a product on its usage context, but will also offer a tool to change the usage context in
order to get the most out of the product. We build the framework upon the rich body of literature
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on multi-disciplinary design optimization (MDO) followed by a case study of optimization of fuel
efficiency and mass for design of a sedan car.

Second study focuses on endogenous factors that change the user’s preference. We developed
a framework using Reinforcement Learning (RL) to design products that are adaptive and able
to change their attributes over time as they interact with the user. This helps with the design of
a product that not only matches each user’s preferences (mass personalization), but also changes
its attributes to maximize user satisfaction during the entire product life cycle without the need
for designer’s input or any information about the cause of change. Using real data on preference
change for the design of a variable stiffness prosthetic ankle (VSPA), we explored different design
approaches including traditional methods along with the RL framework, and compared different
KPIs such as life cycle cumulative preference for the design approaches. Results show the superi-
ority of the proposed framework over traditional design methods.

In the last study, we follow the framework proposed in the second study and explore how differ-
ent aspects of a reinforcement algorithm exploration/exploitation behavior impact user willingness
for providing feedback to an adaptive engineered system. A pilot study of 29 participants was
conducted using an adaptive office chair. Statistical analysis of the results shows that the desir-
ability of the system impacts the reported user willingness to interact over long periods of time.
However, experiment data did not support the hypothesis that responsiveness of the system makes
a significant difference in user willingness compared to desirable unresponsive system states.

This dissertation will open avenues for exploiting the abundance of data and data gathering
tools to better design products that not only match individual user preferences, but also react to the
changes in user preference over product life cycle. Starting from the usage context, we propose a
framework for designing the product and the usage context simultaneously. We then try to remove
the designer from the loop of the product design by proposing a framework that lets the product
cycle through the design stages starting from preference elicitation and ending in the final product
without designer’s supervision. This helps with designing adaptive products that respond to user
preference and change accordingly. The dissertation ends with exploring the factors affecting user
willingness to repeatedly interact with the adaptive system.
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CHAPTER 1

Motivation and Overview

1.1 Introduction

Driven by consumer demand and enabled by ubiquitous computation and connectivity, smart en-
gineered systems are changing the way we live, work, learn, and play [1]. In this increasingly
data-driven world, companies compete on new sources of data as well as new methods to gain in-
sight into the product-user-environment system in order to develop products which offer superior
user experiences. Many technology companies across diverse sectors such as advertising (Google),
e-commerce (Amazon), and transportation (Uber), tailor services to individual users by leverag-
ing data from past interactions to continuously update their products. For example, as they collect
more data about how user preferences are changing over time, Amazon will change how its website
looks, what products are on the front page, and even how much they cost [2]. The mass personal-
ization and customization present in almost all software and Internet services results in high levels
of continued user engagement and use [3].

The ability of software to react to fast-changing user preferences is in stark contrast to the state
of physical products. Research has long shown that a significant percentage of consumer products
are purchased and then never used [4]. From the unused treadmill to the specialized kitchen ap-
pliance for making poached eggs, some reports have found up to $10,000 dollars worth of unused
products in the average American home [5]. This may be due in part to how physical consumer
products are designed and produced. Current engineering design methods often focus on maximiz-
ing likelihood of purchase and focus less on what happens afterwards. As more smart products,
such as subscription-based services like Peloton or HP printers, capable of personalization shift to
business models in which revenue is driven by usage, designers will have to improve their ability to
design for the entire product lifetime. As in software design, smart physical systems which adapt
to dynamic user preferences can offer a competitive advantage to the organization and increased
value to the end user. This dissertation investigates strategies for designing adaptive hardware sys-
tems which utilize user-generated data to personalize the product as well as react to user preference
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changes across the product life cycle. By enabling design teams to create improved adaptive hard-
ware, this work seeks to increase user satisfaction over a product’s lifetime and potentially reduce
waste.

In traditional engineering organizations, a marketing team would elicit user needs and prefer-
ences, then a design team would create engineering specifications for a manufacturing and distri-
bution team to use in producing and selling the new product [6]. Design research has offered a
number of formal strategies for integrating these previously independent functions into a cohesive
decision-making process [7, 8]. For example, Decision-based Design formulates organizational
objectives and engineering constraints into a solvable optimization problem [9, 10]. These ap-
proaches have included marketing demand and cost models alongside existing engineering mod-
els. This type of analysis not only provides a systematic approach for managing trade-offs between
competing objectives but also may mitigate miscommunication and other errors introduced at the
intersection points between disciplines in traditional engineering organizations. Although these
strategies have improved design outcomes, there are limited examples of design methods which
can address situations with fast-changing dynamic user preferences. Existing design strategies are
predicated on a paradigm consisting of an artifact with fixed functionality.

This dissertation proposes a future approach which relaxes this assumption. The work seeks to
incorporate concepts from machine learning and software design to create smart adaptive hardware
systems which leverage user feedback to automatically tailor their functionality to dynamic user
preferences. The studies formalize methods for both eliciting user preferences over the product
life-cycle and incorporating this new flow of information into the design process on a continuously
updating manner.

1.2 Contribution and Chapter Overviews

This dissertation draws from the bodies of work in engineering design research. This literature
includes research on formal design methods used to design products based on users’ needs, pref-
erences, and usage-context. Furthermore, this study builds upon the rich body of literature on
machine learning methods and data-driven decision making. This work identifies and addresses
the gaps in engineering design methods and proposes design frameworks for creating products that
not only adapt to individual level preferences but react to the changes in users preference as well
as the usage-context.

This dissertation begins by providing background on the use of user preferences in engineering
design practice. It then gives a brief overview on design practices prevalent in other disciplines
communities and identifies the gaps in more traditional engineering design methods that can be
filled by bringing in the methods from software development (Chapter2). In the first study, the
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focus is on creating design frameworks for situations where the product usage-context is impacted
by large-scale product adoption. A framework based on Decision-Based Design (DBD) and op-
timization methods is then proposed to address this type of design problems. A vehicle design
problem was presented as a case study to showcase the value of the proposed framework (Chapter
3). Using a variable stiffness prosthetic ankle (VSPA), the second study investigated the applica-
tion of reinforcement learning algorithms in design for dynamic user preferences, a topic that is not
well explored by traditional engineering design methods (Chapter 4). The final study focuses on
user willingness in providing prolonged feedback to adaptive devices. Successful implementation
of reinforcement learning algorithms in adaptive design requires constant flow of information from
the user in the form of preference feedback. This study sought to identify the factors and quan-
tify their impact on users’ willingness for providing feedback (Chapter 5). Together these studies
propose new frameworks for designing products that react to user preference changes as well as
optimizing the system level impact of the product leading to better user satisfaction throughout the
product life-cycle. The dissertation is concluded with a discussion on how these findings add to
the current state of work along with the limitations and the implications of the results (Chapter 6).
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CHAPTER 2

Background

2.1 User Preferences in Design

Engineering design tasks require teams to translate abstract user needs into concrete engineering
specifications [11]. As part of this process, it is critical for designers to address user needs and
preferences in order to develop innovative and successful products which users value. Chen, et al.,
identify preference elicitation and incorporation of user preferences into formal design methods
as key challenges for engineering teams [12]. Although user preferences are defined differently
across disciplines, in this dissertation preferences will be defined as the rank ordering by desir-
ability of alternative outcomes to a decision [13]. This choice is consistent with the prior work
in design optimization this work is based on. By extension, user preferences will therefore be de-
fined as the rank ordering by a user of the desirability of product alternatives [12]. Furthermore,
dynamic user preferences are defined in this work as user preferences for the same set of product
alternatives which vary over time. To motivate the proposed approach and situate this dissertation’s
contributions, the following sections will describe current qualitative and quantitative methods for
eliciting and incorporating user preferences into the engineering design process. Techniques from
other disciplines, such as marketing and machine learning, will also be presented. The follow-
ing chapters will draw upon this body of work to propose novel strategies for improving system
performance in situations where user preferences are dynamic.

2.1.1 Qualitative Approaches

Qualitative techniques, such as observations, interviews, focus groups, surveys, and ethnographic
research, are among the most commonly used to elicit user requirements as they offer the designer
a rich nuanced understanding of user preferences [11]. These strategies depend highly on the
ability of the designer to process the in-depth information gathered and translate it into technical
requirements. These strategies are limited in their scalability due to the high cost in time and
resources for each additional participant. Thus, these techniques work best when the selected
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participants are representative of a target user group. Extensions of this type of work include lead-
user theory and participatory co-design in which identified users are integrated into later stages of
the design process [14, 15].

To integrate captured qualitative data into engineering design processes, researchers and practi-
tioners have developed a number of approaches. User personas offer a framework for synthesizing
and aggregating qualitative information gathered from many users into a single profile which is
more easily used during the design process [16]. User journey mapping helps designers place user
experiences into a timeline to better visualize product impacts [17]. Matrix representations are
another approach which help designers synthesize technical and qualitative information. There is
a rich body of literature summarized by Chan et. al on the use of Quality Function Deployment
to improve product performance through linking product attributes and user preferences [18]. The
House of Quality method has been widely used for similar purposes [19].

These “front-end” design methods rely on the design team to synthesize nuanced user infor-
mation into engineering specifications. They are therefore susceptible to biases and misunder-
standings inherent to human decision-making. Additionally, they require an upfront investment of
resources to gather the raw qualitative data. They are best in situations in which the target user pop-
ulation is not well understood and are often used to identify new product opportunities. Another
limitation is that differences in analytical techniques can make it difficult to manage trade-offs be-
tween user preferences and other organizational objectives which are quantitative in nature, such
as cost and engineering physical constraints [12].

2.1.2 Quantitative Approaches

In order to ease the integration with existing quantitative engineering models, a number of quantita-
tive approaches for eliciting and incorporating user preferences have been developed. For example,
in Taguchi Robust Design and Design for Six-sigma, meeting customer satisfaction is the objective
of design decisions [20, 21]. For quantitative approaches, choice modeling is a common method
used to capture or elicit preferences. The creation of an explicit mathematical function linking
product attributes to user preferences is an essential part of these methods. Design optimization or
other mathematical techniques are then used to integrate the preference functions into the design
process.

Modeling consumer choice behavior consists of a set of analytical techniques which seek to
explain and predict selections made by target users from a set of product alternatives. These can
then be extrapolated to a user population to estimate the demand, or quantity of products likely to
be sold. Discrete Choice Analysis (DCA) and Conjoint Analysis (CA) are the major techniques
used to capture user choice behavior. DCA relies on existing data sets of historical user choices to
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generate the probability an option is chosen based on available alternatives [22, 23]. CA uses sur-
vey responses of randomly generated ranked-choice questionnaires to generate a demand function
based on product attributes [24, 25, 26]. Researchers have developed a number of modifications
to DCA and CA to improve design outcomes including: using machine learning to improve the
prediction accuracy [27], incorporating shape and aesthetic information in addition to technical
attributes [28, 29], and incorporating the impact of sustainability preferences [30]. Recent work
into Design Analytics (DA) has used big data and machine learning techniques to improve the
predictive power of the preference models [31]. Through cyber-enabled products, sensory devices,
and the collection of usage data, DA can automatically identify product attributes which impact
user choice behavior. All of these strategies seek to create an single accurate functional mapping
between potential combinations of product features and user preference or utility.

Design optimization is a major area of research providing systematic approaches for making
design decisions. Formal methods under this umbrella, such as Analytical Target Cascading and
Decision-based Design (DBD), are based on incorporating the preference function into the objec-
tive function of an optimization of the technical attributes of a product [32, 33]. In these strategies,
the value of the designed artifact is maximized considering both the user and producer preferences
[34]. Quantitative models of organizational objectives and physical constraints are also incor-
porated into the optimization formulation. Optimization algorithms can then be used to select a
combination of product attributes or technical requirements which maximize the estimated user
preferences. Design optimization has been used in a number of applications from aerospace engi-
neering [35] to consumer product design [36] to the design of food systems [37].

There are a number of limitations to this type of approach. First, choice modeling approaches
assume there is a latent preference function that can be modeled. Prior work has shown that users
can be inconsistent in their preferences and may be constructing their preference functions when
presented with the choice set [38]. Estimating the user preference function is difficult and there
are a number of sources of error regardless of the selected technique. This error can translate
into products which are not desirable to the target user. Of particular interest to this work, these
approaches assume that the estimated preference function does not change between preference
elicitation and the production of the artifact. Situations in which user preferences change rapidly
are difficult to address using these methods.

2.2 Dynamic User Preferences

There are a number of areas in which user preferences for the same choice set vary with time.
In fact, this idea drives the sheer variety of consumer product designs. As a user’s preferences
change, they will seek to purchase new and different products. For example, an individual may
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be faced with a choice between a sub-compact car and a larger sedan. The same individual may
prefer and purchase the sub-compact car initially, and then several years later purchase the larger
sedan. Although the sub-compact car was preferred to the sedan at the initial point in time, the
individual’s preferences changed over the time period. As this example illustrates, the definition of
preferences is critically important to this dissertation as the following methods seek to accurately
describe changes in the desirability rankings of alternatives, not explain why they changed.

2.2.1 Dynamic Preferences in Engineering Design

In response to applications where dynamic user preferences offer opportunities for improvement,
designers and researchers have developed methods for addressing preference changes in specific
cases. The simplest approach is to create multiple generations of the product. Iterative product
cycles are central to traditional engineering practice. In this case, when target users change their
preferences, the organization repeats the design process and produces a new offering [39]. Long
development lead times have led to a variety of approaches which predict preference changes
and design for future states. Design analytics extrapolates trendlines from current information
to estimate future user preferences [40]. Uncertainty about future user preferences for technical
performance can be mitigated through designing for system evolveability [41]. Similarly, modu-
larity and flexible system design have been used to address potential changes in user preferences
[42, 43, 44, 45]. Finally, in situations, such as ergonomic design, where user preferences are highly
individual and hard to measure ahead of time, designers can give users the ability to customize
features [46]. For example, office chairs frequently offer users control of a number of tuneable
parameters. The sheer range of existing applications and approaches demonstrate how important
addressing dynamic preferences is to successful product design.

2.2.2 Dynamic Preferences in Other Disciplines

Other disciplines have also addressed dynamic user preferences in creating adaptive systems. In
marketing, organizations have been using Bayesian non-parametric approaches such as Gaussian
Process Propensity Models, to estimate how individual users will engage with future product of-
ferings based on past interactions [47]. These models can be used to help make ongoing decisions
marketing resource allocations as they update as new information is obtained. Similarly, dynamic
web and software design has long been used to change the content and appearance of websites
and programs based on user interactions [48]. In robotics, intelligent control [49] and human-
in-the-loop control [50] enable physical systems to respond to changing environments and human
decisions. One commonality across all of these disciplines are systems which address dynamic user
preferences automatically without the intervention of the designer. Dynamic websites, marketing
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dashboards, and intelligent control systems all adapt their functionality and performance based on
changing preferences. These systems respond and adapt as the user continues to interacts with
them, resulting in mass personalization and functionality which is responsive to user preference
changes. This fundamental difference between these approaches and the design methods above is
described in the machine learning literature using the concept of offline and online learning [51].
In machine learning, an offline learning system makes a decision based on an existing data set.
For example, a classifier could be trained on a large set of observations and then used to make
future decisions. By contrast, online learning systems make decisions as data arrives. In this case,
a classifier is updated with each observation made and then used to make a decision before more
information is collected. In computer science, algorithms exist on a spectrum between offline
and online and make trade-offs between data storage constraints, data collection, and algorithm
performance. With respect to user preferences, engineering design processes lie generally at the
offline end of the spectrum, Fig. 2.1. User preference information is captured, incorporated into
design decision-making, and an artifact is produced and sold to the user. By incorporating these
techniques into design optimization, this dissertation hopes to move engineering design towards
a more online process. Systems could gather user preference information and make more design
decisions automatically without intervention from the designer.

Figure 2.1: Incorporation of user preferences into product design.
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2.3 Research Gap

Engineering design processes offer formal strategies for translating abstract user needs into con-
crete engineering specifications. As part of this process, engineers are required to elicit user pref-
erences for product attributes and then subsequently integrate these preferences, along with organi-
zational objectives and constraints, into their decision-making process. Dynamic user preferences
pose a challenge to most existing methods. Work in other disciplines such as software design, con-
trols, and machine learning offer new strategies for enabling systems to respond to changing user
preferences. Machine learning identifies systems as either “offline,” making decisions on gathered
data, or “online,” making decisions as data arrives. Current engineering design processes could
be categorized as “offline” with respect to user preferences. This work seeks to bridge the gap
between offline design optimization processes and the online systems used in other disciplines. In
doing so, this dissertations lays the foundation for the development of systems which can automat-
ically adapt to changes in user preferences due to either exogenous or endogenous sources. This
systems could possibly offer greater user satisfaction over the lifetime of the product and enable
mass personalization across a user population.
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CHAPTER 3

Extending Usage Context-Based Design to Coupled
Usage Contexts

This chapter was coauthored with Jesse Austin-Breneman and set to be published by ASME
IDETC 2021 under “Extending Usage Context-Based Design to Coupled Usage Contexts: A Ve-
hicle Design Case Study.”

3.1 Abstract

Engineers must consider the usage context of a product in order to both predict its technical per-
formance and model customer preferences. An emerging body of work in Decision-based Design
(DBD) has elaborated various approaches for modeling the usage context in order to better predict
customer choice behavior and select optimal product attributes. Building on this prior work, this
study proposes a new method for formulating DBD problems in which product attribute values can
change contextual factors. Results from a vehicle design case study demonstrate the utility of the
proposed method for understanding how phenomena such as the rebound effect and induced travel
demand connect system-level outcomes to design changes. This study suggests that the Design
for Coupled Usage Contexts framework is a promising tool to further explore as a way to support
designers making decisions which involve these types of mechanisms. Further exploration should
include additional case studies to investigate other coupling mechanisms and design tasks.

3.2 Introduction

Successful new product development requires the effective integration of information from differ-
ent disciplines across cross-functional teams in order to translate abstract user needs into concrete
engineering specifications [6]. Model-based quantitative methods, such as Decision-Based Design
(DBD), offer one approach for incorporating market research outcomes into technical engineering
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design [52]. For example, marketing techniques, such as discrete choice analysis (DCA) and con-
joint analysis, can be used to construct a preference model of consumer choice behavior from the
consumer survey data [34, 53, 27, 54]. These choice models can then be used to predict the future
demand and market share of a product with a specific set of attributes. In DBD, enterprise-level ob-
jective functions based in part on these demand models drive design decision-making [8, 9, 10, 52].
Typically these strategies formulate design as an optimization problem [55, 56], enabling design
teams to benefit from well-developed optimization techniques to quickly search a design space and
find the optimal set of product attributes which maximizes demand or market share [32, 57].

In order to make accurate predictions of consumer behavior, the demand models used in DBD
need to capture information about the operating context of the potential product. To understand
whether the intended customers will choose a product over competing alternatives, DBD incorpo-
rates characteristics of the end-users and the market into the optimization problem setup. Customer
profile attributes, such as gender, age, and income, are defined as the stable and permanent aspects
of end-users which influence their choice behavior [58]. Building choice models based on the
product attributes as well as the customer profiles result in models that better capture user pref-
erence heterogeneity which in turn yield more realistic demand models. Recent work on usage
context-based design adds even more variables to the parameter space to better account for the
preference heterogeneity caused by using products in different contexts. The impact of usage con-
text on user’s preference of a product is well explored and studied both by marketing community
[59, 60, 61] and engineering design researchers [6, 62, 52, 58, 63, 64]. This work uses the He et
al. definition of context variables as, “all aspects describing the context of product use that vary
under different use conditions and affect product performance and/or consumer preferences for the
product attributes [58].”

Despite the treatment of contextual factors as constant parameters, prior work has shown that
designers can in some situations change user behavior in large-scale systems and possibly indi-
rectly change the usage context and environment [65, 66, 67]. For example, sustainability re-
searchers have identified the “rebound effect” in which increased demand for more energy-efficient
technology negates the expected energy savings from improving the efficiency [68]. This phenom-
ena is regarded by sustainability researchers as a negative consequence of good decisions and poli-
cies that were made without taking into account the macroscopic impact of the designers’ choices
on the socio-technical system of the end-users and their environment. In some scenarios, these
phenomena may also negatively impact the utility of the product for the end-user. For example,
increased use of more energy-efficient light bulbs may not translate to the user-desired savings
on the electricity bill. This work proposes a framework for formulating DBD in cases like this,
where the usage context and the product attributes are coupled and the usage context affects the
consumer’s utility.
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The framework would enable optimal selection of product attributes by connecting the environ-
mental states and user behavior to product attribute values. Designing in this manner may enable
engineers to make more accurate predictions of user choice behavior by understanding interac-
tions between the product and usage context. This changes the role of the designer from reactive
to proactive with regards to the product usage context by bringing some aspects of environment
and usage context from parameter space to the design variable space. This study presents a design
framework for the optimization of this type of system and examines the conditions under which
it would improve performance. The design of a passenger car is presented as an illustrative case
example.

3.3 Related Work

This paper draws on design research literature as well as incorporating work from a number of
disciplines such as economics, sustainability, and public policy on mechanisms by which decisions
can affect the operating environment.

3.3.1 Decision-based Design Research

There is a rich body of literature modeling design as a decision-making process which fall broadly
under the umbrella of Decision-Based Design (DBD) [8]. In DBD, product attributes, X , are
selected by optimizing the expected utility, E(U), of an enterprise decision-maker. Built on de-
cision theory and economic models, this process connects marketing and engineering domains
through cost and demand models [52]. The demand model consists of a discrete choice analysis
model which compares potential attribute configurations to competitive alternatives and predicts
the quantity of products sold for a given configuration. The generalized demand model incorpo-
rates market information drawn from surveys or focus groups on the demographics of target users,
customer-desired attributes, engineering attributes, and market alternatives. By combining a de-
mand and cost model, enterprise decision-makers can systematically select product attributes to
maximize expected economic benefits or other potential objectives. DBD has been applied across
a number of design domains including: aerospace [69], product-service systems [70], electric ve-
hicle design [71], and supply chains [72]. It also serves as the basis for formal design methods such
as Design for Market Systems [73, 74], and Design Analytics [40]. There are also a number of
fundamental critiques of DBD, including the use of Utility Analysis and related assumptions [75].
This paper extends DBD research on contextual factors and therefore uses concepts and definitions
from this literature throughout. Thus, this work assumes that design is a decision-making process
occurring within an enterprise.
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3.3.2 Context-Based Design

DBD is fundamentally a model of consumer choice behavior. The framework seeks to select prod-
uct attributes that influence consumer preferences in a competitive market. One emerging research
area focuses on how the usage context influences consumer choices. In these cases, consumer pref-
erences for product attributes can vary widely depending on the environment in which the product
will be used. This has long been studied within the broader design research community. Concepts
such as “use environment” [6], “product design context” [62, 76], and “usage context” [77, 78] all
describe the influence of the contextual factors on the desirability of engineered products. He et al.
formalize usage context into a DBD process and include usage context into the demand model as
an additional parameter set similar to user demographics [77]. This paper defines usage context as
in He et al., categorizing usage context factors into the physical surroundings, social surroundings,
temporal perspective, task definition, and antecedent states [77]. Further work by He et al. uses so-
cial network analysis to identify and measure social surroundings [63]. Wang et al. similarly used
network analysis to examine interactions between a customers and products [64]. In all of these
cases, usage context may differ across users or in time, but is independent of product attributes.
For many design problem formulations, this treatment of usage context is valid and effort is bet-
ter spent improving other aspects of the model. However, this paper seeks to address this issue
for design tasks in which clearly identified mechanisms exist coupling usage context to product
attributes.

3.3.3 Coupling Mechanisms

This paper draws upon several fields to provide examples typifying usage context dependence on
product attributes. Since the illustrative case in this paper centers on automotive design, the fol-
lowing mechanisms are drawn from this area. However, these should simply be taken as examples
of a larger class of scenarios. For example, the “rebound effect” is a widely studied phenomena
in sustainability literature [79]. Efforts to improve energy efficiency to mitigate greenhouse gas
emissions and gas consumption can lead to reductions in the cost of energy services and a corre-
sponding increase in the use of energy. This effect can decrease or even erase any sustainability
gains made by increasing efficiency [80]. Similarly, increased efficiency can lead to lower costs for
vehicle travel, increasing the amount of travel for each vehicle [81]. This “induced travel demand”
affects the overall usage context by impacting the traffic conditions and behavior of other vehicles.
In this literature, demand refers to the total usage of all vehicles. Increased travel demand would
reflect a user population’s choice to drive their car more. The induced travel demand can reflect
consumers’ choices to switch modes of transportation for a trip, for example from public transport
to private vehicles, or to make trips they might have otherwise not taken. By contrast, the demand
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model in DBD predicts the total number of cars of a particular type sold in a defined market. A re-
lated phenomena describes changes to driving behavior with the advent of driver assist technology.
Researchers demonstrated drivers adapted their behavior after using different advanced driving as-
sistance systems [82]. Observed drivers reduced the distance between themselves and other cars
after using an adaptive cruise control system, even when not in a car with the assist system. This
change would have major implications for traffic and safety conditions at larger scale. This paper
uses these examples to create models linking product attributes such as fuel efficiency to usage
context factors such as observed traffic and induced travel demand. By incorporating dynamic
usage context factors, the DBD demand model may be able to make more accurate predictions of
the number of products sold for a given attribute configuration.

3.3.4 Research Gap

Decision-based Design processes select product attributes to maximize an enterprise utility func-
tion. Researchers have adapted the general DBD framework to be suitable for a number of ap-
plications. This includes explicit representation of usage context factors to evaluate performance
of design decisions under different operating conditions. However, as engineered systems grow
increasingly interconnected there are a number of situations in which product attributes can affect
usage context factors. Prior work across a range of disciplines has identified mechanisms by which
product attributes and the operating environment are highly coupled. Because traditional DBD
problem formulations view contextual factors as parameters which are independent of design deci-
sions, they are limited in their ability to examine this type of scenario. This paper seeks to fill this
gap by proposing a DBD framework in which the usage context factors are functions of the design
variables. Given this background, the researchers seek to answer the following research questions:

1. How should designers formulate a DBD optimization problem in cases where the design
attributes affect the usage context factors?

2. What is the potential impact on the optimal design of modeling these types of coupling
mechanisms?

To answer these questions, this paper proposes a new framework, Design for Coupled Usage
Contexts, and presents an illustrative case examines the impact of including these coupled contex-
tual factors on the Pareto Solution Sets for previously studied problems in automotive design.
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3.4 Proposed Framework

The proposed framework builds on the Usage Context-based Design (UCBD) framework by He et
al. [78] in which the design process is formulated as a market share maximization problem. UCBD
is an extension of Decision-Based Design that includes exogenous contextual variables in order to
improve the predictive power of the utility and choice models. In this framework, a product is
defined by a set of attributes and is sold to target user population for use in a given usage context,
defined by a set of context variables. The objective of the enterprise is to maximize market share,
which is modeled using discrete choice analysis (DCA) [83, 84]. Therefore, the maximization
problem can be translated into maximizing the probability of a product being chosen by the users
from a set of alternatives.

The solving process of the maximization problem starts with the system optimizer picking a
set of values for the vector of design variables, Xi. The analysis functions, f(X,E,S), use the
picked set of design variables along with context variables (E) and customer profile attributes (S)
to generate the corresponding product attributes, Ais, Eq. 3.1. Product attributes can be described
as the perceived characteristics of the product by the users [52]. Since the attributes are perceived
by the users, they may depend on the context, and the customer attributes as well as the design
variables. For example, the wheelbase of a vehicle is a design variable, whereas the handling of
the vehicle can be described as its attribute perceived by a specific user in a specific context.

Ai = f(X,E,S) (3.1)

After generating all the product attributes using design variables, context variables, and cus-
tomer attributes, a utility model estimates the utility of the set of attributes given the usage context
of the product, and the customer profile attributes, Eq. 3.2.

Wi = W (β : Ai,E,S) (3.2)

Regression based models are often used to build the utility function in DCA [52], where Wi

is the model for observed utility of product i having a set of attributes. The model is based on
assuming that users have a utility function consisting of an observed part W and a random error
term ε. Equation 3.3 shows the utility of product i.

Ui = Wi + ε (3.3)

Using the calculated utility of the product, Wi, and the calculated utility of the alternative
products, Wjs, the system optimizer calculates the probability of the product i being chosen from
the set of n product alternatives using a multinomial logistic regression model, Eq. 3.4. The
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value of the calculated probability for the current set of design variables is then compared with the
previous probability values, and the next set of design variables is chosen accordingly. The entire
process is repeated until some stopping criterion is reached.

maximize
Wi

Pi =
eWi∑n
j=1 e

Wj
(3.4)

Due to multi-disciplinary nature of this optimization problem, it belongs to a large class of
optimization problems called multidisciplinary design optimization (MDO) problems solved using
MDO techniques [32]. MDO techniques work by decomposing the optimization problem into
separate units and define the information flow between the units. These decomposition methods
are called MDO architectures and a handful of them have been proposed in the literature. For
UCBD framework, all-at-once (AAO), individual discipline feasible (IDF), and multidisciplinary
feasible (MDF) architectures can be used to solve the optimization problem [85, 32]. Figure 3.1
summarizes the problem formulation.

Figure 3.1: Design problem formulated as an optimization problem.
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3.4.1 Evolution Function

In order to improve the prediction accuracy of the usage context variables in presence of coupling
mechanisms, the impact of product attributes on usage context variables has to be modeled explic-
itly in the optimization problem setup. So far in the problem formulation, usage context variables,
E, are treated as exogenous parameters that are not impacted by the system consisting of the users,
the product and the environment they interact with. To support decision-making in cases similar to
those discussed in the previous section in which usage context is impacted by the product, an evo-
lution function is introduced to the problem formulation to capture the possible system level effect
of the product on the usage context. The evolution function is a function of product attributes A,
design variables X, and customer profile attributes S (or target market characteristics) that outputs
the set of new usage context variables for the evolved system of users and their environment once
the product is introduced.

The new problem formulation replaces E in Eq. 3.2 and 3.1, with evolution function,
EV(X,A,S), as shown in Eq. 3.5 and 3.6.

Wi = W (β : Ai,EV(X,A,S),S) (3.5)

Ai = f(X,EV(X,A,S),S) (3.6)

Note that the evolution function is a function in general form that includes the scenarios where
usage context variables and environment are not affected by the product design as formulated in
the previous subsection. Figure 3.2 summarizes the new problem formulation.

The new optimization problem can be formulated in multidisciplinary feasible (MDF) architec-
ture and solved using fixed point iteration [32]. In this problem setup, first a set of design variables
that are feasible across all the disciplines (attributes) are found using some initial value for the con-
text variables. Then using the evolution function and the newly found multidisciplinary feasible
design variables, the new set of usage context variables are found. The new context variables are
then again fed into the attribute functions along with the same set of design variables. The process
is repeated until all the context variables and attributes converge (fixed point iteration). The con-
verged variables and attributes are then sent to the system optimizer to be evaluated. The system
optimizer evaluates the objective function and picks the next set of design variables to be explored.
The steps are repeated by the system optimizer until some stopping criterion is reached.
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Figure 3.2: New design problem formulation with the evolution function.

3.5 Illustrative Case Study

The proposed framework is implemented in the context of the design of a sedan passenger car. Us-
ing a large-scale high-fidelity traffic simulation platform 1, the system level impact of the product
through usage context variables on its optimal fuel economy and safety design is investigated.

3.5.1 Simulation Platform

To capture the complexity and emergent phenomena arising from having a complex large-scale sys-
tem, an agent-based model [86, 87] of traffic with realistic agent behavior is developed in Python.
A relatively large area in the southeast Michigan covering multiple cities is simulated. Figure 3.3
shows the simulation area which is fed to the platform from Open Street Map2. Figure 3.4 shows
a snapshot of simulation for the area shown in Fig. 3.3.

To validate the simulation platform, first a realistic demand model is developed as the model

1Simulation Platform details are explained in Appendix A
2https://www.openstreetmap.org
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Figure 3.3: Simulated area in southeast Michigan.

input based on a combination of datasets from 2010 U.S. Census and the Southeast Michigan
Council of Governments (SEMCOG) 3. The outputs of the simulations were then compared with
the available real world data and transportation metrics. The results are close to the transportation
metrics reported for the United States and SE Michigan. For example, as the main purpose of the
model to predict fuel economy, the simulation predicts an average mpg of 23.5 which is within 6%
of the average mpg of 24.9 reported by EPA 4.

3.5.2 Problem Setup

Following the setup of DBD framework, the problem is formulated as a maximization problem
based on a multinomial logit model (MNL) estimation, Eq.3.4. The goal of the optimization prob-
lem is then to find the optimal combination of attributes that maximizes the probability of a product
with certain set of attributes being chosen by the end-users. Furthermore, the problem can be re-
duced to the maximization of the linear predictor (observed utility, W ) of the MNL model Eq.
3.7.

W (A) = β1A1 + β2A2 + ...+ βmAm (3.7)

Where Ai and βi are attributes and MNL coefficients, respectively. The linear form of the
equation makes the optimization process relatively simple. The best product is the one that have
the largest possible Ais corresponding to positive βis, and smallest Ais corresponding to negative
βis regardless of the size of the MNL coefficients. At first glance, this may render the process of

3https://semcog.org/
4https://www.epa.gov/automotive-trends/highlights-automotive-trends-report
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Figure 3.4: Simulation snapshot.

accurately estimating MNL coefficients less significant, for as long as the sign of coefficients are
accurate, the optimal product can be easily found. However, in many cases the attributes conflict
with each other. For example, designing a high performance engine which is mostly desirable
(positive βi) adversely impacts fuel economy of the vehicle (also positive βi). This will result
in a trade-off between fuel economy and engine power. Although both attributes have positive
coefficients, the optimal values for the two attributes depend on the size of the MNL coefficients.

This case study focuses on a different well explored trade-off, namely fuel economy vs. safety.
The trade-off between vehicle safety, mass, and fuel economy is well studied in the literature
[88, 89]. Heavier cars are on average safer but perform worse in terms of fuel economy. As the
two competing attributes of safety and fuel economy have positive coefficients in the MNL model
(both are desired by consumers), finding the best product design for a market requires estimating
βFE and βSafety accurately for the target users, Eq.3.8.

W (MPG,Safety) = βFE ∗MPG+ βSafety ∗ Safety (3.8)

Equation 3.8 can be further simplified by dividing the equation by βFE and defining α =
βSafety
βFE

.
α depends on the target end-users and shows how customers weigh safety versus fuel economy.
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W

βFE
= W ′(MPG,Safety) = MPG+ α ∗ Safety (3.9)

The case study analysis is conducted under the assumption that the designed product will have
a significant market share, and the impact of the products from competitors on the system is negli-
gible. Figure 3.5 summarizes the problem formulation.

Figure 3.5: Case study formulated as an optimization problem.

3.5.3 Evolution Function

Having travel demand (total miles traveled not product demand) as the usage context for the evolu-
tion function, the evolution of travel demand is modeled using the well studied fuel cost elasticity,
E, [68, 80, 81]. Equation 3.10 shows the relation between trip demand change and change in fuel
cost.

Demandn+1 = (1 + E ∗ FCn − FCn−1
FCn−1

) ∗Demandn (3.10)
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Where E is fuel cost elasticity, n and FC are time step and fuel cost, respectively. Demand is a
single number that works as a multiplier increasing or decreasing the number of trips generated by
the demand model without changing the distributions used for generating the validation demand.

Under similar demand and travel conditions, fuel cost can be written as FC = K
MPG

, where K
is some constant. Substituting in the Eq. 3.10:

Demandn+1 = (1 + E ∗
K

MPGn
− K

MPGn−1

K
MPGn−1

) ∗Demandn (3.11)

Canceling constants K, the evolution function in terms of product attribute MPG is found, Eq.
3.12.

Demandn+1 = (1 + E ∗ (
MPGn−1

MPGn

− 1)) ∗Demandn (3.12)

This work uses the value -0.28 for E, estimated by Greene [80] based on U.S. national time
series data on vehicle travel by passenger cars and light trucks.

3.6 Results

In this case study, vehicle mass is the only design variable and fuel economy is found through
simulation of the transportation system using vehicles of that mass. The following figures present
the Pareto frontier [32] for fuel economy and safety for a range of α in Eq.3.9. Determining a
single optimal design would require estimating α for a specific market and this is out of the scope
of this paper. Corresponding optimal mass values are found for each α in the original and evolved
systems. A comparison of the optimal mass values is plotted in Fig.3.10.

3.6.1 Creating Initial Pareto Frontier

Having mass as the only design variable, to form the Pareto frontier, two sets of data points are
needed. The first set relates optimal mass of the vehicle to its safety. Under the assumption that
automotive designers optimize the vehicle mass, real world data on average vehicle safety vs.
mass is a good representative of optimal mass vs. safety curve for an average car. The data from
Insurance Institute for Highway Safety (IIHS) on vehicle curb weight versus fatality rate for 2007-
10 model cars is used [90]. Fatality rate is the number of deaths per million registration years, and
vehicle safety is defined as negative fatality rate.

For the second set of data points, the same logic is followed and it is assumed that automotive
designers optimize all the variables impacting fuel economy in the vehicle design process including
power train efficiency, coefficient of drag, and idling fuel consumption. Using the average values
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of the mentioned parameters for a sedan car and the vehicle mass, the simulation calculates the
average fuel economy in mpg. Running the simulation for a range of vehicle mass and using
the (optimal) parameters impacting fuel economy, the second set of data points relating optimal
mass to optimal fuel economy is derived. Finally, the two data sets are combined using mass as
the intermediate variable to form the Pareto frontier of optimal fuel economy vs. safety (negative
fatality rate). Figure 3.6 shows the Pareto frontier derived from real data and simulation for a sedan
passenger car.

Figure 3.6: Pareto frontier of fuel economy vs. safety.

Optimizing Eq.3.9 for different values of α gives a different point on the Pareto frontier indi-
cating the optimal trad-off between fuel economy and safety for a specific α value. The dots on
the Pareto frontier in Fig.3.6 show the optimal trad-offs for a set of α values.

3.6.2 Evolving the System

Using the evolution function and the results from simulation platform, the future demands for all
the design points (in this case vehicle mass) are predicted. The future demands are then again fed
into the model to predict the next iteration’s demand. The process is repeated until the demand for
each design point (mass) converges to a number. Figures 3.7 and 3.8 show how demand and MPG
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evolve for a set of vehicle weights. Only number of trips are shown for the demand as the distribu-
tions used for generating trip types, times, starting points, and end points remain unchanged.

Figure 3.7: Evolution of demand for different designs.

Using the final values of MPG, Fig.3.9 shows the new Pareto frontier after the system passes
the transition time along with the original Pareto frontier.

Similar to Fig.3.6, Fig.3.9 shows 20 dots on both original and final Pareto frontiers that cor-
respond to the same 20 different values of α. The fuel economy/safety trad-off points for each
value of α have changed for the final Pareto frontier compared to original Pareto curve. Since the
optimal product design is of interest, namely optimal mass for each α value, optimal mass for the
two Pareto curves are plotted in Fig.3.10 for a set of α values. The graph shows that the optimal
mass for the evolved system is on average around 500 kg more for the same α compared to the
original system.

3.6.3 Single Vehicle Crash Death Rate

This case study assumes that all vehicles in the transportation system are identical. Thus, assump-
tion the designed passenger car has the same weight for all consumers. As studied by Evans et al.
[88] and Tolouie et al. [89], one of the major causes of fatality in car accidents is the change of
speed before and after an accident due to conservation of momentum. Conservation of momentum
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Figure 3.8: Evolution of mpg for different designs.

causes a larger speed change hence higher chance of fatality in the lighter car in an accident. The
data from Insurance Institute for Highway Safety (IIHS) used above consists of all types of ac-
cidents, namely multi-vehicle crash between vehicles with different weights, single vehicle crash,
and roll over. However, assuming identical vehicle mass causes an overestimate of fatality rates for
lighter cars and an underestimate for heavier cars in this analysis. Therefore, additional analysis
of the fatality rate for a given mass was performed using the subset of IIHS data involving single
vehicle crashes in which the difference in mass is not relevant. The corresponding optimal mass
values for the original and evolved system for this safety metric are shown in Fig.3.11.

3.7 Discussion

Results from the vehicle case study demonstrate how the use of an evolution function results in
different optimal designs for the same user utility function across a range of values of α. The
case study shows that when total miles travelled and vehicle fuel economy are interdependent, the
utility of the optimal design from original formulation can be improved regardless of the relative
weighting of safety and fuel economy. In this scenario, optimizing the vehicle mass without con-
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Figure 3.9: Original and final Pareto frontiers.

sidering the coupling between mass and travel demand will result in a vehicle which is lighter than
necessary and therefore less safe. As seen in Fig.3.9, although the Pareto frontiers have similar
shapes the performance of the optimal design for a given α changes significantly. Generalizing
to other design tasks, these results suggest that incorporating an evolution function into a DBD
framework can provide additional insight into system behavior and the impact of usage context on
user utility.

The case study results correlate with expected system behavior. Starting from the initial Pareto
frontier, the trade-off between fuel economy and safety is well captured in Fig.3.6, as with im-
provement in MPG, safety is negatively impacted. The same relationship is also observed in the
evolved Pareto frontier, Fig.3.9. However, the slope of the new Pareto curve is slightly shallower
compared to the original curve. The change in the shape of Pareto curve moves the trade-off points
for each α value toward safer, and heavier designs. The optimal mass found from the two scenarios
differ approximately by 500 kg on average for the same α as shown in Figure 3.10.

Although the magnitude of the change may be inaccurate, the overall trend in the difference
between the initial and evolved Pareto curve can be explained by the evolution of travel demand
(total miles travelled) Fig.3.7, and fuel economy, Fig.3.8. In the both formulations, lighter designs
perform better in terms of fuel economy. However, in the evolved formulation, improved fuel
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Figure 3.10: Optimal mass for original and evolved system for the same set of α values.

economy induces travel demand due to fuel cost elasticity. Induced demand increases traffic and
cancels some of the fuel economy gains of lighter vehicles. For lighter vehicles, the two opposing
forces of induced demand and reduced mass result in a fuel economy which is slightly worse
than than what is predicted without taking into account the coupling between the product and the
environment. For heavier vehicles, the opposite effect is true with heavier designs resulting in
worse fuel economy, reducing demand and consequently traffic. The reduced traffic increases fuel
economy and mitigates some MPG loss of the heavier car. The effect is greater at the extremes
of the fuel efficiency range. This is seen in Fig.3.9, as the left tail of the new Pareto curve has
the largest deviation from the original curve and differences become less pronounced towards the
middle points.

Finally, as discussed in section 5.3, using real world data without considering the weight dif-
ferences in an accident leads to fatality rate overestimate for lighter vehicles and underestimate for
heavier vehicles. As shown in Fig. 3.11, although less pronounced, these results exhibit a similar
system behavior with the original and evolved functions resulting in different optimal mass values.
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Figure 3.11: Optimal mass for original and evolved system for single vehicle crash death rate.

3.8 Conclusion

An emerging body of work in Decision-based Design has elaborated various approaches for mod-
eling the usage context of a product in order to better predict customer choice behavior and select
optimal product attributes. For example, He et al. used social network models to estimate how
different market segments made purchasing decisions [63]. This work builds on these efforts by
examining design scenarios in which product attributes can change contextual factors. The opti-
mal set of product attributes therefore depends on the coupled interactions between the product
and its context. The proposed framework and results from a vehicle design case study provided the
following answers to the research questions.

1. How should designers formulate a DBD optimization problem in cases where the design at-
tributes affect the usage context factors?

The proposed framework incorporates an evolution function and iterative results from a sim-
ulation platform to examine how demand changes across various product attributes. This
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allows designers to explore the design space and investigate tradeoffs across emergent usage
contexts.

2. What is the potential impact on the optimal design of modeling these types of coupling
mechanisms?

Results from the vehicle design case study suggest that the optimal design can change
significantly from a traditional DBD approach to the evolved case. The evolved Pareto curve
suggests that if you consider traffic due to induced demand, the optimal design will have a
higher mass for the same relative weighting of mass versus fuel efficiency. The magnitude
of this effect is not linear across the range of the design space and grows larger as the design
point deviates from the mean.

In conclusion, the proposed method will enable engineers to understand trade-offs and find
optimal designs while considering changes in operating conditions due to design changes.

3.8.1 Future Work

The results of the study are limited by two simplifying assumptions. First, in real world scenarios,
designers are designing a product as well as competing with alternative products whose market
shares and system level impacts are not negligible. Future work should therefore extend the prob-
lem formulation to include market competition by incorporating the framework in a game theoretic
set-up where the evolution function is a function of the attributes of all the products with significant
market share.

Finally, to show the framework’s utility for real world design problems, this work used available
data on automotive design as much as possible. This meant simplifying details on the exact rela-
tionships between different product attributes, in particular the impact of coupling of fuel economy
and fatality rate on the evolution of the Pareto frontier. The degree of coupling between product at-
tributes is high for many systems and is not dealt with in this case study. Nonetheless, the proposed
framework is capable of handling any attribute coupling through the MDF architecture. For future
work, a design case study with all the attribute coupling explicitly formulated should be explored
using this framework.
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CHAPTER 4

Theoretical Framework for Design for Dynamic User
Preferences

This chapter was coauthored with Elliott Rouse, and Jesse Austin-Breneman and the results are
published in [54].

4.1 Abstract

A key assumption of new product development is that user requirements and related preferences
do not vary on time scales of the process length. However, prior work has identified cases in
which user preferences for product attributes can vary with time. This study proposes a method,
Design for Dynamic User Preferences, which adapts reinforcement learning (RL) algorithms for
designing physical systems whose functionality changes with user feedback. An illustrative case
comprised of the design of a variable stiffness prosthetic ankle is presented to evaluate the potential
usefulness of the framework. Lifetime user satisfaction for static and dynamic design strategies
are compared over simulated user preferences under a number of conditions. Results suggest
RL-based strategies outperform static strategies for cases with dynamic user preferences despite
significantly less initial information. Within RL methods, upper-confidence bound policies led to
higher user satisfaction on average. This study suggests that further investigation into RL-based
design strategies is warranted for situations with possibly dynamic preferences.

4.2 Introduction

New product development requires engineering designers to perform requirements engineering
tasks to translate user needs into engineering specifications during the early stages of the design
process. This process can be broadly described as occurring in three sequential steps: 1) elicitation
of user requirements, 2) requirements analysis, and 3) requirement specification [91]. In this way
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the designer progresses from the abstract user domain to the concrete functional domain. A key
assumption of this process is that user requirements and related preferences are independent of time
on the scale of the length of the development process. Since the selection of product attributes is
a critical decision in this process, this study uses the definition of user preference as the rank
ordering by desirability to the user of possible combinations of product attributes [34, 92]. In
using existing strategies, designers assume there is an underlying “latent” preference function for
product attributes which will not change between when preferences are elicited and when the final
artifact is produced and used.

Dynamic web design has partially relaxed this assumption in the software world. Instead of
driving design decisions using previously elicited user requirements and preferences, dynamic
software collects feedback throughout a user’s interactions with the software. This feedback is
used to update the functionality of the software as additional information is learned. The ubiqui-
tous “like” button is a powerful tool for enabling a software product to tailor itself to an initially
unknown “latent” preference function using Bayesian updating techniques. Depending on the algo-
rithm selected, these updating techniques can also account for preference functions with dynamic
behavior.

Although responsive systems and active control techniques, such as intelligent control [93] and
human-in-the-loop control [94], allow for physical systems which adapt their functionality in re-
sponse to time-varying feedback mechanisms, these are commonly based on objective measures
and not subjective user preferences. This work proposes a framework for the design of physical
systems which change their functionality in response to changing user preferences over time. De-

sign for Dynamic User Preferences adapts the dynamic software paradigm and related techniques
to the design of physical hardware.

The Design for Dynamic User Preferences framework could improve overall user satisfaction
and reduce development cost under certain conditions. Current design methods use observation,
interviews, or surveys to estimate a preference function for a user population to guide design
decisions. In cases where the user population has sufficiently homogeneous time-independent
preferences, these methods efficiently design for the target audience. Additionally, the unbiased
post-purchase user feedback required by the proposed strategy can be difficult and expensive for
the designer to obtain with current tools. However, there are many situations, such as the de-
sign of prosthetic limbs examined here, in which user preferences within a target population are
highly heterogeneous, change quickly, and where it may be prohibitively expensive or practically
infeasible to conduct a broad survey. In these cases, the proposed framework would enable both
personalization to each individual and a dynamic response to changes in an individual’s prefer-
ences over time more efficiently than current methods. By using feedback to tailor the design to
an individual, the framework could improve user satisfaction over the lifetime of the product and
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potentially reduce development cost by requiring less information upfront. This study presents a
design framework for the optimization of this type of system and examines the conditions under
which it would improve performance. The design of a variable stiffness prosthetic ankle is used as
an illustrative case example.

4.3 Related Work

This study draws upon literature in a variety of fields including engineering design research, con-
trols, and machine learning.

4.3.1 Early Stage Design Processes

New product development tasks require designers to translate user requirements from the customer
domain into engineering specifications in the functional domain for further design work [95]. For-
mal methods for eliciting and understanding user requirements fall under the broad umbrella of
“early stage design” [96]. A key part of this process is the designer connecting the technical fea-
tures and attributes of a product to user needs or requirements based on collected information.
Methods to achieve this goal can be broadly categorized as falling into two areas: qualitative meth-
ods, and matrix representations, such as Quality Function Deployment and House of Quality.

4.3.1.1 Qualitative Methods

Qualitative techniques, such as observations, interviews, focus groups, surveys, and ethnographic
research, are among the most commonly used to elicit user requirements as they offer the designer
a rich nuanced understanding of user requirements [11]. These strategies depend highly on the
ability of the designer to process the in-depth information gathered and translate it into technical
requirements. These strategies are limited in their scalability due to the high cost in time and
resources for each additional participant. Thus, these techniques work best when the selected
participants are representative of the target user group. Lead-user theory and participatory co-
design build on this work by integrating identified users into later stages of the design process
[14, 15].

Matrix representations provide a framework for the designer to synthesize technical and qual-
itative information to provide a link between technical attributes and user requirements. There is
a long history of improved product performance due to explicit requirement-attribute linking in
Quality Function Deployment [18] and House of Quality [19]. However, both qualitative and ma-
trix methods rely on the design team to synthesize nuanced information into engineering specifica-
tions. They are therefore susceptible to biases and misunderstandings inherent to human decision-
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making. Additionally, they require an upfront investment of resources to gather the raw qualitative
data. They are best in situations in which the target user population is not well understood and are
often used to identify new product opportunities. In response to these limitations, a large body of
work has been developed which uses explicit representations of user preferences.

4.3.2 Explicit User Preferences

In translating user requirements into engineering specifications, a number of methods require the
elicitation of explicit user preferences. For example, in Taguchi Robust Design and Design for
Six-sigma meeting customer satisfaction is the objective of design decisions [20, 21]. In Decision-
Based Design (DBD) the value of the designed artifact is maximized considering both the user
and producer preferences [34]. Across all of these strategies, preferences are defined as the rank
ordering by desirability of alternative outcomes to a decision [13]. Some methods further extend
the explicit representation of preferences into a utility function, defined as a continuous measure of
satisfaction an individual gets from the consumption of a good [97, 98, 99, 100]. A higher utility
for a given design would indicate that the user would prefer that design to alternative designs with
lower utility.

An established body of research has sought to improve the use of explicit preference informa-
tion in product design. Discrete Choice Analysis (DCA) and Conjoint Analysis (CA) are the major
demand analysis techniques used to capture user choice behavior. DCA relies on existing data sets
of historical user choices to generate the probability an option is chosen based on available alter-
natives [22, 23]. CA uses survey responses of randomly generated ranked-choice questionnaires to
generate a demand function based on product attributes [24, 25, 26]. Researchers have developed
a number of modifications to DCA and CA to improve design outcomes including: using machine
learning to improve the prediction accuracy [27], incorporating shape and aesthetic information in
addition to technical attributes [28, 29], and incorporating the impact of sustainability preferences
[30]. Recent work into Design Analytics (DA) has used data-driven machine learning techniques
to improve the predictive power of the preference models [31]. Through cyber-enabled products,
sensory devices, and the collection of usage data, DA can automatically identify product attributes
which impact user choice behavior. All of these strategies seek to create an single accurate func-
tional mapping between potential combinations of product features and user preference or utility.

Emerging work has looked into situations in which this preference function can change. Pre-
dictive trend mining [101, 102, 103] uses historical time-series data on user choices to make pre-
dictions about future user preferences. Research into evolvability defines a metric based on excess
and modularity to estimate a system’s ability to adapt to changing using preferences through recon-
figuration [104]. These data-driven methods rely on a statistical analysis of surveys or historical
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observations to estimate the link between technical and user requirements. Although these strate-
gies account for specific cases of changes in user preferences, the resulting models are sensitive to
the quality and amount of data collected. These methods are best when collecting a large amount
of data on user choices is feasible.

Making design decision by optimizing these explicit preference modelsis the basis of research
into design optimization. Formal methods, such as Analytical Target Cascading and Decision-
based Design, are based on incorporating an explicit representation of user preferences into the
objective function of an optimization of the technical attributes of a product [32, 33]. This is
in contrast to the more qualitative work on user needs in which a designer synthesizes gathered
information into an understanding of user preferences. In optimization methods such as Multi-
attribute Utility Theory user preferences are typically represented with utility, a measure of user
preference constructed from possible configurations of product attributes [105, 33].

A utility function can be estimated using the techniques cited above including historical market
data about user choices or survey methods such as conjoint analysis [106]. Modeling utility in
this manner is limited in several ways. Survey respondents are asked to make hypothetical choices
which may not accurately represent real-world choices well. Historical market data represents real
choices but may not accurately represent preferences for products which are radically different
from existing choices. Finally, all of these methods assume that each user has a latent utility
function which can be modeled. Recent work has identified a number of ways in which this
assumption is flawed, including demonstrating that the preference function is constructed based
on available choices [107].

The estimated utility function is used in an optimization analysis to select a combination of
product attributes or technical requirements which maximize the estimated user utility. A mis-
match between the user preferences and the produced design can occur due to error in the estimate
of the utility function through the mechanisms cited above. This mismatch can also occur if the
user’s utility function has changed between when the designer elicited the information and the
product was produced. This study adapts work in intelligent control to propose an iterative design
optimization process where the utility function and corresponding optimal technical requirements
are updated based on user feedback throughout the life cycle of the product. The baseline com-
parison for this study is therefore a design optimization method in which the utility function is
estimated at time zero and an associated optimal design is produced and used throughout the life-
time of the product.
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4.3.3 Intelligent Control

Control methods are algorithms for minimizing a cost function by dynamically varying control
parameters. Intelligent control is a category of control methodologies which is based on artificial
intelligence. Intelligent control techniques have been developed to control highly-complex non-
linear systems such as autonomous vehicles. Traditional methods, commonly based on differential
equations, performed poorly on these types of tasks [108]. The intelligent control methods can
be classified into machine learning, fuzzy logic, multi-agent system control, and metaheuristic
algorithms such as bio-inspired and evolutionary optimization algorithms [108, 109]. This study is
based on adapting a group of intelligent control methods based on Reinforcement learning (RL).
Control schemes based on reinforcement learning, discussed in detail below, are currently based on
objective measurements of the environment or users for feedback. This work extends this method
to include subjective preferences as the feedback.

4.3.4 Machine Learning in Design

Many data-driven design methods use techniques from the three main machine learning paradigms
(reinforcement learning, supervised learning, and unsupervised learning) to help guide design de-
cisions. The majority of these strategies draw on either supervised learning to infer relationships
between pre-identified sets of design variables and performance variables, or unsupervised learning
to uncover patterns from unlabeled data without instructions [110]. For example, design Analytics
tools and preference elicitation methods such as feature selection/engineering [27, 111], inferring
utility (preference) functions [53, 33], and Conjoint based methods [53, 112] come from these two
paradigms and require large existing data sets.

In contrast, reinforcement learning and active learning algorithms use information gathered
through interactions with the user over time to make repeated decisions [113, 114]. Reinforcement
learning techniques choose from a set of actions to maximize a reward given a certain state, while
active learning techniques interactively query the user for data labels. These techniques can make
repeated decisions based on past information and make different decisions as new information is
collected. This is a potentially useful characteristic in situations where it is impossible to gather
preference data for all the design points in advance as the product users and usage contexts are
unknown. Furthermore, it may not be feasible to explore all the design possibilities to generate the
labeled data point for the supervised learning methods, and the exploration should be led by the
feedback from the user in a way that the trade off between exploration and exploitation is balanced.
Adding to that complexity is the possibility of dynamic user preferences where the user preference
evolves and changes over time [101, 103]. Under these conditions, a product which learns how to
respond and react as it interacts with the user over time would be beneficial.
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4.3.5 Research Gap

Static user preferences are a key underlying assumption of product design. However, previous
work cited above and initial data from the illustrative case study indicate that user preferences can
vary greatly on the time scale of the lifetime of the product. A product may still be functional but
not generate utility for the user. Existing design methods are not capable of producing systems
which change their functionality in response to changing user preferences. This study seeks to
extend current design methods to include dynamic preferences by adapting reinforcement learning
algorithms for use in designing physical systems. If successful, the design for dynamic preferences
framework will enable the creation of a new class of “smart” physical devices which adapt to
changing user preferences. Given this context, this study seeks to answer the following research
questions:

1. What is the impact on user preferences over the lifetime of a product of a static design
strategy versus a dynamic strategy based on reinforcement learning?

2. Under what conditions do different reinforcement learning algorithms impact user prefer-
ences over the lifetime of a product?

In answering these questions, the illustrative case study presents simulated user preference data.
This was done to compare static and dynamic design strategies under a wide variety of conditions
and assumptions. Further work is needed to identify which conditions and assumptions are valid
for real use cases.

4.4 Design for Dynamic Preferences Framework

The following design framework is developed under the assumption that the user’s preference
function will change over time. To illustrate the performance of the new framework the following
illustrative case is proposed.

4.4.1 Illustrative Case: Design of a Variable Stiffness Prosthetic Ankle
(VSPA)

This study considers the design of a variable stiffness prosthetic ankle (VSPA) [115]. Figure 4.1
shows an isometric view of the VSPA. The VSPA has two advantages over traditional ankle pros-
theses: 1) it has a nonlinear, custom torque-angle curve that can more accurately mimic biological
ankle mechanics, and 2) it is able to perform online modulation of the overall stiffness for differ-
ent mobility tasks. Figure 4.2 shows the different torque-angle curves obtained experimentally by
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varying a stiffness control parameter, x. The stiffness control parameter represents the position of a
mechanical slider on the VSPA and varies between zero and one hundred percent of the allowable
range. The design intent of this prosthesis is to enable variation in the torque-angle curve and ankle
response during different mobility tasks, such as moving from walking on flat ground to walking
up stairs.

Figure 4.1: Isometric view of variable stiffness prosthetic ankle (VSPA).

In this situation, there is a single discrete design variable, x, which has possible values: x ∈
Ω = [0, 100], where Ω is defined as the design space or all feasible values of x. The stiffness control
parameter can be adjusted to suit the preference of the user. Currently, users visit a technician to be
fitted with the prosthesis. During this visit, the user walks on a treadmill for 5 minutes and adjusts
x until settling on an optimal stiffness parameter x∗ with respect to their preference [115].

This is a repeatable process with users arriving at the same optimal stiffness during laboratory
testing [115]. However, data collected from the same individuals tested a year apart shows a variety
of behaviors with regards to optimal stiffness parameter. Figure 4.3 shows the preferred x∗ for three
individuals measured a year apart for the same mobility task. The preferred x∗ remained the same
for one patient and was drastically changed in another. This variance could be due to a number
of factors, including changes in body weight, soft tissue mass, and bone structure over the course
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Figure 4.2: Torque-angle curves for different stiffness parameters x. For lightest curve x = 0, for
darkest curve, x = 100.

of the year. The proposed design problem is then how to choose x throughout the lifetime of the
prosthesis.

4.4.2 Model Assumptions

In order to illustrate the utility of the proposed framework a number of simplifying assumptions
have been made. In this case, user preference is modeled as a function of the stiffness parameter,
P = f(x). The preference function is assumed to be bell shaped and scaled to have a maximum
of 1. Time is limited to a year period with an evaluation of the user’s preference on a daily basis,
t ∈ [0, 365]. At each time point, it is assumed that the preference value of 1 is achievable for
all individuals. A result of this is that there exists an optimal point x∗ ∈ Ω such that P (x∗) = 1.
Previous work on the physical design of the prosthesis suggest that users can accurately distinguish
between settings of x that are greater than eight percent apart [116]. Thus the design problem is
formulated as a discrete selection of x ∈ [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]. This reduces the
RL formulation to a k-armed bandit problem with eleven choices.
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Figure 4.3: Preferred stiffness parameter x∗ from 2018-2019.

4.4.3 Metrics

Given these assumptions, it is possible to calculate several performance metrics for any given
design strategy. User preference is evaluated at each time point, t, for t ∈ [0, 365]. The first metric
is the cumulative sum of preference values over the time period.

C =
365∑
t=0

P (t)

C ∈ [0, 365]

(4.1)

The second metric is the average of preferences up until any time t (cumulative mean).

P̄ =

∑j
t=0 P (t)

j

P̄ ∈ [0, 1]

(4.2)

Under both of these metrics, a higher score represents higher performance. However, C can
only be measured across the whole time period, while P̄ can be evaluated at any time t.

The final metric compares a design strategy to the baseline static strategy. The crossover point,
tc, is the minimum time t at which the average preference, P̄ (t), for the selected RL strategy is
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higher than the average preference for the baseline static strategy.

tc = min
t
P̄static(t) < P̄RL(t)

tc ∈ [0, 365]
(4.3)

If the average preference of the RL strategy never exceeds the static strategy, tc is set at 365.

4.4.4 Design Strategies

Starting from the simplest case, we try to control the VSPA foot using reinforcement learning al-
gorithm for the special case where only one state is involved. Under this assumption, the decisions
made by the system do not change the state of the environment. This type of problems can be
handled using a set of methods called k-armed bandit problems.

4.4.4.1 K-Armed Bandit Problem

K-armed bandit problems are a group of problems dealing with the question of optimally and
repeatedly choosing from k alternatives or actions each with a hidden reward distribution. The
goal is maximizing the expected total reward over some time period. There are several challenges
that are faced by algorithms designed for this type of problems. There are no prior knowledge on
what choice yields the highest reward and the algorithms should figure it out over time. Moreover,
there is always a trade off between exploration and exploitation. In other words, the algorithm
can settle in early on with the best choice based on some early estimation and risk losing on
some unexplored choices with higher rewards. On the other hand, exploring may result in hitting
suboptimal choices more often which in turn results in suboptimal total reward [113].

Translating the case study to a k-armed bandit problem, the rewards are the preference ratings
fed to the system by the user on each day. The k arms or actions are the set of 11 values for x. The
objective is to maximize the total (cumulative) preference over a year of usage.

Four algorithms for deciding x are tested in this illustrative case. The baseline is a static strategy
under which x∗ is determined at t = 0 and remains at that setting for the entire time period. This
models an initial visit to the technician and calibration of the prosthesis to maximize the user’s
preference at that time. Three reinforcement learning algorithms are also considered for deciding
x at any time t: 1) an ε-greedy algorithm, 2) an Upper-Confidence Bound (UCB) algorithm, and
3) a dynamic reinforcement learning algorithm which is an ε-greedy algorithm that weights recent
evaluations more highly than older ones. All of the RL strategies have no information about x∗
at time t = 0, but use information from previous evaluations to decide x. The initial x for these
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strategies is chosen randomly from a uniform distribution.

4.4.4.2 ε-Greedy

In all of the RL strategies, the actions are ranked based on some measures updated at time t, and the
action ranked top is selected. If the measure is defined as the average reward of action a up until
time t, the algorithm is called greedy. Qt(a) denotes the ranking measure for greedy algorithm.

Qt(a) =
sum of rewards when a taken prior to t

number of times a taken prior to t
(4.4)

The action At is then chosen as

At = argmaxaQt(a) (4.5)

As the name suggests, greedy algorithm focuses more on exploitation and suffers from explo-
ration issues. Due to the fact that always the action with highest Q is picked, the chances for the
possibly better actions that performed poorly at the beginning would be zero as the algorithm will
only pick the same action that performed better in the early stages. To handle this issue a new pa-
rameter ε is introduced. After each ranking of the actions, with a small probability ε, the algorithm
dismisses the ranking and picks the action At randomly from all the actions with equal probability.
Although the ε-greedy method behaves same as greedy most of the time, it ensure exploration of
all the actions given a sufficiently long time span.

4.4.4.3 Upper-Confidence Bound (UCB)

Upper-Confidence Bound (UCB) algorithm accounts for uncertainty around an action as an ad-
vantage in the rankings by Qt(a). The rationale behind this approach is that the more uncertain
the action, the higher chance of it being a better one (or a worse one), hence resolving the greedy
algorithm exploration issues by exploring the actions with higher information content. The ranking
measure for UCB is defined as

Qt(a) + c

√
ln t

Nt(a)
(4.6)

Where Nt(a) denotes the number of times that action a has been chosen prior to time t. c > 0

sets the degree of exploration.
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4.4.4.4 Dynamic ε-greedy

Qt(a) measure introduced before is a simple average over all the previous rewards of a, Rt(a),
weighting them equally. Under the circumstances of evolving and changing reward distributions,
the simple average seems inadequate as more recent rewards give more information as to which
action is the optimal one. One way of doing the weighted averaging is through the step-size
parameter α ∈ (0, 1] with values closer to 1 giving more weight to recent rewards. For a specific
action, a, with initial Qt(a), Q1, the weighted reward average can be calculated recursively as

Qn+1 = Qn + α(Rn −Qn) (4.7)

Note that the index n here defines the place of the variables among the set of previous Q and R
for a specific action and it is different from t which is the time index.

The action At is selected as

At = argmaxaQt(a) (4.8)

4.4.5 Preference Function Construction

Performance of a design strategy is considered across a range of constructed preference functions.
Preference functions are defined by three characteristics. First, the initial optimal stiffness param-
eter x∗,i, x∗ at t = 0 and final optimal stiffness parameter x∗,f , x∗ at t = 365 are chosen to be in
Ω = [0, 100]. Second, the preference function is defined as either deterministic or stochastic. A
deterministic preference function, P (x, t), is defined directly from x and t. A stochastic preference
function is defined as a normally distributed random variable whose mean is the deterministic pref-
erence function. Finally, the extrapolation of the constructed function is either linear, exponential,
or periodic. In each case x∗ at t is a linear, exponential, or periodic extrapolation between the
initial optimum x∗,i, and the final optimum x∗,f .

In general, at time t the deterministic preference function is

P (x, t) = e−
(x−x∗(t))2

2σ2 (4.9)

Where x∗(t) is the optimal stiffness parameter at t and σ sets the width of the preference func-
tion. Any function with the behavior of peaking at 1 at some single input and approaching zero as
the input gets further from the optimal point x∗ would yield similar final results. However, Gaus-
sian was chosen so that 1) the preference value is never negative no matter how far from x∗, 2) the
behavior of the function can be simply managed by two values µ = x∗ and σ (preference sensi-
tivity), 3) preference value decreases monotonically as distance between x and optimal stiffness
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Table 4.1: Extrapolation functions, x∗(t).

Extrapolation x∗(t)

Linear x∗,i +
(t−ti)(x∗,f−x∗,i)

tf−ti
Exponential x∗,f + (x∗,i − x∗,f )e−λ(t−ti)

Periodic x∗,i +
(t−ti)(x∗,f−x∗,i)

tf−ti
+ A sin(2πf t−ti

tf−ti
)

increases. Table 4.1 shows the three extrapolations of x∗ as a function of t for linear, exponential,
and periodic optimal preference changes.

In this table, tf is the final time, ti is the initial time, A is the amplitude, and f is the frequency
of the periodic change (cycle per time span, in this case cycle/year). x∗ out of interval Ω = [0, 100]

would be set to the value of nearest bound.

4.4.6 Simulation Characteristics

To characterize the performance of the design strategies under different conditions, 10000 pref-
erence functions are constructed for each function type : 1) deterministic linear, 2) deterministic
exponential, 3)deterministic periodic, 4) stochastic linear, 5) stochastic exponential, and 6) stochas-
tic periodic. For each constructed preference function, x∗,f and x∗,i are chosen randomly from a
uniform distribution of Ω = [0, 100].

At time t = 0, the static strategy chooses an initial x from x =

[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100] which is closest to x∗,i for the constructed prefer-
ence function. This x will remain the selection for the entire time period. The RL strategies
randomly choose an initial x from the same set with no knowledge of x∗,i. The preference
function, P (x, t) is evaluated at t = 0. The RL strategies then choose a x for time t = t + 1

based on previous selections of x, evaluations of P (x, t), and their decision policies. The three
performance metrics, C,P̄ , and tc are then calculated for each design strategy.

4.5 Results

As an example, consider a deterministic linear preference function constructed with x∗,f = 70 and
x∗,i = 40. Figure 4.4 shows the preference with respect to time and stiffness parameter x. Figure
4.5 shows average preference P̄ over t = [0, 365] for this preference function for all four strategies.

Table ?? shows the mean of the cumulative sum C for each design strategy over the 10000
preference functions. The metric C ∈ [0, 365] with C = 365 representing the maximization of
user preference on every day in the year period. In a two-sample t-test with the mean of the static
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Figure 4.4: Linear preference function with x∗,I = 40 and x∗,f = 70.

Table 4.2: Average cumulative sum of preference c.

Deterministic Stochastic
Strategy Lin. Exp. Per. Lin. Exp. Per.

Static 222.54 167.46 125.58 215.47 168.97 133.14
ε - greedy 262.04 277.87 136.67 253.19 266.35 144.37

UCB 315.19 316.97 172.54 300.13 301.86 188.82
Dyanmic RL 279.63 282.73 145.94 273.59 275.84 152.62

design strategy, the mean of each RL strategy was statistically significantly different with a p-value
indistinguishable from 0.

Figure 4.6 shows box plots for the cumulative preference C for each design strategy for the
deterministic preference functions. As seen in the above tables, relative results from the deter-
ministic and stochastic preference functions were similar. Thus, for space considerations only the
deterministic results are shown here.

4.6 Discussion

One notable result from this study is that reinforcement learning strategies can outperform the
static design strategy in cases where preferences change even with no prior information. Although
expected in the construction of the case, as seen in Table 4.2 the size of the effect is large over
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Figure 4.5: Average preference up until ti, p̄ for four design strategies (linear, x∗,I = 40, x∗,f =
70.)

Table 4.3: Average crossover time tc.

Deterministic Stochastic
Strategy Lin. Exp. Per. Lin. Exp. Per.
ε - greedy 235 217 162 151 88 80

UCB 190 180 122 122 55 47
Dynamic 236 213 164 152 73 67

the range of possible preference functions. Reinforcement learning strategies perform even better
when the preference functions change quickly as in the exponential case. Given the large cost
associated with current preference modeling tasks which lead to a static outcome and evidence
suggesting preferences are dynamic, this result suggests that further work into understanding how
to implement reinforcement learning on physical products may produce significant cost savings
and performance gains in comparison to existing techniques.

Another notable result is that the UCB strategy appears to perform best across a wide range of
conditions. This is in agreement with some of the work in machine learning [113]. On average
across all sampled preference functions, the cross over date for UCB is lower and the cumulative
sum metric is higher. This result suggests that UCB should be used in cases where nothing is known
about the dynamic nature of the preference function. The other reinforcement learning may be
used depending on the structure of the preference function. For example a dynamic reinforcement
learning strategy should be used for certain periodic preference functions.

The results presented in Table 4.3 demonstrate that because of the difference in knowledge
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Figure 4.6: Cumulative preference for deterministic preference functions.

at t = 0, the static design is preferred initially and there is a significant time period before the
reinforcement learning techniques surpass the static design. This is due to the assumption that the
user preferences will not change quickly. This result suggests that a hybrid approach where the
reinforcement learning technique uses some knowledge of the initial preferences would improve
user preferences over the lifetime of the product. Further work is need to establish the trade-off
between cost of eliciting user preferences and improvement in the RL strategy performance.

Finally, the presented results represent sampling from a population with extreme heterogene-
ity in their preference functions. The ten thousand samples are drawn randomly from a possible
10201 preference functions for each shape. Thus, each sample likely has a different (x∗,i, x∗,f ).
The reinforcement learning techniques outperformed the static strategy because the majority of
these preference functions were dynamic, x∗,i 6= x∗,f . However, the assumption that the static
strategy chose x∗,i such that P (x∗,i) = 1 is a generous assumption for the static case. In the illus-
trative case, this assumption represents the initial visit to the technician and a perfect calibration to
the individual user. For most products, market segmentation is used to try and identify a user pop-
ulation with similar preferences. The preference elicitation techniques are used to estimate a single
preference function for the entire population and a single mass-produced product is designed for
that population. Thus, a static strategy will likely not maximize user preference even at the initial
time point when the most information is known. The reinforcement learning strategies have the
ability to “personalize” the functionality over time and may outperform the static strategy even in
cases where the preference function is not dynamic.
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This study is limited by several factors. First, although grounded in the observed empirical
findings from previous work, the data is simulated and the simplifying assumptions may not be
true for actual user populations. The preference function may not reach the maximum utility at
every time point and may not be Gaussian. Changes to these assumptions may affect the size of
the impact of the reinforcement learning techniques. This study is also based on the assumption
that the user is able to evaluate their preference with a ranking between 0 and 1. Previous work
has demonstrated that other feedback mechanisms, such as choice-based methods, may be more
accurate in eliciting user preference evaluations [53]. Using a different feedback mechanism could
influence the performance and selection of RL strategies. Finally, although the preference function
was continuous, a discrete version of the k-bandit problem was used to model the physical system
of the illustrative case. Other design tasks may involve continuous design variables. Continuous
variable formulations of reinforcement learning algorithms used here exist but their performance
may not be accurately represented by the results of this study.

4.7 Conclusion & Future Work

This study presents results from an illustrative case examining the use of a Design for Dynamic
Preferences framework on the design of a Variable Stiffness Prosthetic Ankle. Simulated data
across a wide range of preference function conditions suggests that reinforcement learning strate-
gies could provide advantages over existing design methods. The three reinforcement learning
strategies tested could improve user preferences over the the lifetime of the product when com-
pared to static strategies without the upfront cost of user preference elicitation. In particular, this
study suggests that a UCB strategy may be the best if there is no knowledge about the preference
function shape ahead of time. Performance of dynamic methods could improve if initial informa-
tion is incorporated. In conclusion, this study lays out a road map for enabling the design of a
new class of “smart” products which use feedback from the user to optimize product features for
changing user preferences.

This study suggests many additional avenues for research into Design for Dynamic Preferences.
Future work will include testing different feedback mechanisms such as rating/ranking systems
versus choice-based systems. This will improve the accuracy of preference evaluations in real
systems. Future work will also include testing of reinforcement learning strategies under different
conditions which relax the simplifying assumptions made in this study. For example, design prob-
lems with continuous design variables will be investigated. The utility of this framework on the
personalization of products for a population will also be studied.
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CHAPTER 5

Understanding User Willingness to Interact with
Adaptive Engineered Systems

This chapter was coauthored with Jesse Austin-Breneman.

5.1 Abstract

Adaptive engineered systems which are responsive to dynamic user preferences require a constant
flow of preference feedback from the user to operate effectively. However, prior work in human
factors and survey fatigue suggests a number of factors can lead to lower quality data or non-
response. An empirical pilot study of adaptive office chair was conducted to investigate factors
affecting user willingness to repeatedly interact with the adaptive system. A statistical analysis
of the results shows that desirability of the system state impacts the reported user willingness to
interact over long periods of time. Results also found no significant difference between responsive
system state and an unresponsive desirable state. These findings lay out a road map for future
designers of these systems to tailor the characteristics of the reinforcement learning algorithm to
maximize user willingness.

5.2 Introduction

The rise of inexpensive computation and communication technologies has led to an explosion in
smart devices [1]. From smart refrigerators to intelligent medical devices, an increasing number of
engineered systems are able to make data-driven decisions automatically by leveraging large col-
lected data sets [117]. On-board computation, sensors, and access to shared data sets have enabled
systems to tailor their functionality to individual user’s needs. For example, smart refrigerators
are able to detect missing ingredients, construct personalized shopping lists, and share it with your
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phone [118]. These adaptive hardware systems are defined as systems which modify their func-
tionality in response to environmental changes [119]. A major challenge for designers of adaptive
systems is to predict and design for future systems states in an exhaustive manner. The number
of potential alternatives are numerous by construction and non-linear emergent behavior arising
from interactions between a dynamic environment and the system are difficult to model. This is
especially true for large adaptive systems, such as fleets of autonomous vehicles where the number
of interactions can scale exponentially. Recent work in computing and information technology has
demonstrated the potential of these types of reconfigurable technologies to become self-integrating
and self-adaptive in order to mitigate these uncertainties [120]. A self-adaptive embedded system
may be more fault-tolerant and be able to react more quickly to collected information across a
wider variety of operating conditions [121]. Although there is a rich body of literature exploring
these issues from a computational perspective, these systems are currently limited to responding
to environmental changes. Prior work by the authors has identified potential benefits to creating
adaptive engineered systems which respond to subjective user preferences in addition to environ-
mental changes [54]. A smarter refrigerator would be able to not only detect missing ingredients
but construct shopping lists based on an understanding of what types of food you like.

In working towards the design of adaptive engineered systems which respond to dynamic user
preferences and dynamic environments, Arezoomend, et al. [54] proposed incorporating reinforce-
ment learning (RL) into a design optimization framework. In this new method, RL algorithms are
used to constantly update product attributes as the user interacts with the product. Similar to dy-
namic software, this type of adaptive engineered system would use user-provided feedback on
their subjective preferences to update an objective function for setting product attributes. For ex-
ample, a smart knee brace could collect both objective bio-mechanical data and subjective comfort
information from the user in order to set its stiffness parameters. Simulations of a variable stiff-
ness prosthetic ankle showed that the use of RL algorithms to control the stiffness parameter in
this fashion could improve the user satisfaction over the lifetime of the prosthesis under certain
conditions.

Because RL algorithms perform better with more observations, a constant flow of information
is critical to the functionality of an adaptive engineered system of this type. Thus, designers of
adaptive engineered systems need to ensure that users will continue to provide this data to the
system over its entire lifetime in order to have successful outcomes. In similar situations, such
as in-app surveys, prior work has reported significant levels of non-response [122]. This work
therefore focuses on understanding the factors which impact a user’s choice to continue interacting
with an adaptive engineered system to provide data. Specifically, this study seeks to determine
if there are characteristics of system itself which could be manipulated by designers to maximize
user willingness to interact. Results could then be used to adjust RL algorithm behavior to be
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more suitable for this application. An empirical pilot study examining an adaptive office chair is
presented to test various factors.

5.3 Related Work

This paper works builds upon work in a number of fields including design research, human factors,
and machine learning.

5.3.1 Preference Elicitation Method Evaluation

The phenomena at the center of this study is a preference elicitation task. The adaptive engineered
system is asking the user to evaluate the desirability of the current system state. Preference elicita-
tion methods have been well investigated by different disciplines from computer science [123] and
human computer interaction [124] to marketing [125], healthcare policy [126], decision science
[127] and economics [128]. In their systematic review of preference elicitation methods, Ryan, et
al. list five criteria for evaluating quantitative elicitation methods, such as the type required for RL
algorithms [126]. The five criteria are validity, reproducibility, internal consistency, acceptability
to respondents, and cost. Because this study is focused on user willingness to interact, acceptability
is the most relevant performance metric. Acceptability has been previously operationalized using
time to complete, response rates, and completion rates[126]. This work draws upon this literature
to help define design objectives for the RL algorithm.

5.3.2 Survey Fatigue

In this work, the impact of aspects of RL algorithm behavior on user willingness for providing
ongoing feedback will be studied. One major contributor to nonresponse rates found in disciplines
which use survey-based techniques is survey fatigue [129]. Survey fatigue is defined as the situa-
tion in which respondents become bored or tired of answering questions during the administration
of the survey [130]. RL data collection is most similar to survey fatigue for panel surveys as they
involve repeated survey iterations over a time period [131]. Survey fatigue can lead to poor quality
data in a number of ways. Respondents experiencing survey fatigue have been shown to skip ques-
tions, quickly try to answer questions without really considering their answer, and provide random
responses [132].

In seeking to mitigate survey fatigue through careful questionnaire design, researchers have
identified factors that are known to influence survey fatigue. In general, survey fatigue is mini-
mized when questionnaires are designed to balance the respondent’s motivation to take the survey
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with the burden imposed by taking the survey [133]. Factors which affect motivation can include
compensation, intrinsic interest, and potential impact. Respondents who believe their voice will
be heard and have an effect on the subject of the survey are more likely to fully complete the
survey [134]. Factors which affect the burden imposed by the survey can include survey length,
complexity, and question type [132]. Survey length contributes to a time burden, cited by many
nonrespondents as the determining factor for nonresponse [135]. More complex surveys and cer-
tain question types may impose a greater cognitive burden on the respondent and lead to greater
fatigue. Of most relevance to this work, repeated short surveys have also been found to induce
survey fatigue [135]. Although these results are specific to survey questionnaires, this study uses
these concepts as potential factors impacting user willingness to interact with adaptive engineered
systems.

5.3.3 Human Factors of Adaptive Systems

Research in human factors has long considered factors affecting user interactions with adaptive
systems. One relevant area of research is trust in an adaptive systems [136]. Prior work has found
that users generally have lower levels of trust for more adaptive systems [137]. System trans-
parency, user control, perceived responsiveness, and perceived competence are all factors which
can strengthen user trust [138]. Trust as studied in this literature relates to the users confidence in
the performance and credibility of the adaptive system. This may translate to increased willing-
ness to continuously interact and provide feedback. This paper draws upon this work to identify
potential factors for study.

Because this study focuses on collecting subjective user preferences, the exemplar adaptive
system should have clear subjective performance measures. Additionally, optimal configurations
should vary across individuals with no easily correlated objective measure. Designing a com-
fortable office chair was chosen for the case study as it meets all of these conditions and is a
well-studied problem in human factors research. There are a number of design heuristics for creat-
ing good office chairs, but predicting the optimal configuration with respect to comfort for a given
individual remains extremely difficult [139]. Based on prior work testing office chairs, critical
dimensions for improving comfort include seat thickness, backrest angle, and location of lumber
support [140]. This paper uses experiments testing office chair comfort as the basis for testing user
willingness to interact.

5.3.4 Research Gap

Prior work by the authors proposed using reinforcement learning algorithms to automatically con-
trol adaptive engineered systems. These algorithms require a constant flow of preference informa-
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tion from the user to function correctly. This study seeks to fill a gap in the scientific understanding
of factors affecting user willingness to interact with adaptive systems. Because factors affecting
the burden posed by the interaction are highly context-dependent and not necessarily within the
control of the designer, this study focuses on factors affecting motivation. Prior work in survey fa-
tigue and human factors have identified several promising factors, including perceived competence
and system responsiveness. Given this background, the researchers seek to answer the following
research questions:

1. Does user preference for the current system state impact user willingness to continue inter-
acting with an adaptive system?

2. Does user perception of system responsiveness impact user willingness to continue interact-
ing with an adaptive system?

To answer these questions, an empirical study of user willingness to interact with an adaptive
office chair was conducted. Statistical analysis of results are presented to explore the impact of
system state, system responsiveness, and interactions between these factors.

5.4 Methodology

To test the hypotheses, a set of human experiments was conducted using an adjustable office chair
as adaptive system. The experimental design described below closely follows the setup found in
Groenesteijn, et al. [141]. Three major modes of design space exploration/exploitation behavior
can be imagined for the reinforcement algorithms based on the work done in chapter 4, and the
literature on human factors and survey fatigue. Usually the RL algorithms start with a rapid design
space exploration followed by an exploitation phase of the desired state. If no desirable state exists
in the design space, we can imagine a constant undesirable state for the system. Therefore, the
three treatment scenarios explored in this study are 1) comfortable configuration, 2) uncomfort-
able configuration, and 3) changing configuration where the first two are close to the concept of
desirability and the last is similar to responsiveness discussed in human factors and survey fatigue
literature. Participants explored all three scenarios in a random order and their willingness to pro-
vide feedback was measured through a survey mechanism. User willingness was measured on a
Likert scale using a survey after all the scenarios were explored by the subject.

5.4.1 Hardware

Three adjustments are available on the office chair, namely backrest lock angle, lumbar support
pillow height, and seat cushioning. Figure 5.1 shows the backrest angle. A digital angle finder was
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attached to the backrest to accurately measure the backrest angle throughout the experiment.

Figure 5.1: Backrest lock angle.

A cylindrical pillow was used as the lumbar support, fig. 5.2. The pillow can be placed at
different heights on the backrest using VELCRO straps.

A cushion is used as the final adjustment, fig. 5.3. Unlike the other two adjustments that are
continuous, the cushion is either used or not used. Figure 5.4 shows the setup.

5.4.2 Procedure

The subject population was recruited through email consisting of 29 students from the University of
Michigan department of Mechanical Engineering. The experiment started with a warm-up session.
In the warm-up session, the subjects were asked to explore different adjustments to get the feel of
the configuration space. They were then asked to provide two configurations, one that they felt
very comfortable in and one that they felt extreme discomfort in. The two configurations along
with their rating were recorded for each participant. The ratings ranged from -5 to 5 with -5 being
extreme discomfort, and 0 and 5 being neutral and very comfortable, respectively.

The three scenarios for each participant were ordered randomly each taking approximately 20
minutes. During the experiment sessions the subjects were asked to do simple tasks on a desktop
PC while sitting on the chair. The tasks included typing a set of paragraphs and watching videos.
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Figure 5.2: Lumbar support height.

The subjects provided feedback on the chair comfort every minute using the same -5 to 5 rating
system. After each rating depending on the session scenario a new chair configuration was set
and the process was repeated 15 times for each scenarios with the comfortable and uncomfortable
scenarios using the configurations recorded in the warm-up session. The subjects could skip each
session at anytime during the experiment. Participants were compensated with a $25 gift card
regardless of how many sessions they skipped and how many ratings they provided.

The experiments were concluded with a final survey to rate their willingness to provide feedback
for each scenario on a five-point Likert scale. Their willingness ratings were used to test the
hypotheses.

5.5 Results

Upon finishing the three experiment sessions, the subjects were given a survey asking their willing-
ness for providing prolonged feedback for each scenario. The willingness measures are converted
to numbers with Unwilling, Somewhat Unwilling, Neutral, Somewhat Willing, and Willing con-
verted to 1, 2, 3, 4, and 5, respectively. There has been a longstanding dispute about the most
valid way to handle Likert scale data [142]. Parametric methods such as T-tests and Analysis of
Variance (ANOVA) assume a continuous and normal distribution for the data, while the Likert data
is discrete, ordinal, and with a limited range. Therefore, non-parametric methods such as Mann-
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Figure 5.3: Seat cushioning.

Whitney test [143] with no assumptions on the underlying distributions are advised to be used.
However, many studies have shown that generally the two sets of methods give in almost the same
significant and insignificant results [144, 145, 146]. Throughout this study, the Likert data will be
analyzed using parametric methods such as ANOVA.

A total of 29 subjects participated in the experiment, producing 29 ratings on a 1 to 5 scale for
each scenario. Table 5.1 shows the summary of the rating data. The comfortable and changing
scenarios have very close mean and variances, while the uncomfortable scenario has a smaller
mean and a larger variance. Throughout this section the differences between the treatment groups
will be investigated rigorously using statistical tools.

Treatment Count Mean Variance
Comfortable 29 4.37 0.88
Uncomfortable 29 3.62 1.60
Changing 29 4.37 0.81

Table 5.1: Experiment data summary.

5.5.1 One-Way ANOVA

Before getting into the differences among each pair of groups and quantifying the impact of each
treatment, a one-way ANAOVA is preformed on the data. One-way or single factor ANOVA is
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Figure 5.4: Hardware setup.

used to analyze the differences among means of populations that are different only in one factor
[147]. if ANOVA fails to reject the null hypothesis, usually no further comparison of population
means is necessary. In this case, the only factor is the treatment, which can be either comfortable,
uncomfortable, or changing. ANOVA shows whether at least the mean of one treatment group is
different from the others’. More specifically, the one-way ANOVA tests the following hypotheses:

• H0: All treatment group means are equal.

• Ha: At least one group mean is different from the rest.

Results of one-way ANOVA for the data can be found in table 5.2 where sum of squares (SS),
mean square (MS), degrees of freedom (df), and F statistic for between and within group variations
are shown. F value more than F critical rejects the null hypothesis for the corresponding signif-
icance level. For significance level α = 0.05, the corresponding F critical value is 3.10. Since
F = 5.05 is greater than F critical, the null hypothesis can be rejected meaning at least one group
mean is different from the rest. Knowing that at least one population is different, further analysis
is done on pairwise comparison of the treatment groups.

5.5.2 Pairwise Comparison & Tukey Process

Naturally, following the same line of analysis, the next step in pairwise comparison would be
comparing all possible pairs of treatments, and finding the ones that are statistically significant.

56



Source of Variation SS df MS F P-value F Critical
Between Groups 11.12 2 5.56 5.05 0.008 3.10
Within Groups 92.48 84 1.10

Table 5.2: ANOVA Results.

However, doing so will increase the likelihood of observing rare events and rejecting the null hy-
potheses incorrectly, i.e., type I error [148]. There are a variety of methods to handle pairwise
comparisons without increasing the chance of type I errors, among which Bonferroni correction
and Tukey’s method [149] are widely used with Tukey’s method preferred slightly more in com-
paring all possible pairwise comparisons 1.

Tukey’s method is based on calculating the value q from equation 5.1. Where µ1 and µ2 are the
mean of gruop one and two, respectively, and SE is the standard error of the sum of the means.

q =
|µ1 − µ2|
SE

(5.1)

Similar to ANOVA, if the q value for any pairwise comparison is greater than the qcritical, the
null hypothesis for that comparison is rejected, i.e., the means of the two groups are different.

Comparison Mean Difference SE q
Comfortable vs. Uncomfortable 0.75 0.19 3.89
Uncomfortable vs. Changing 0.75 0.19 3.89
Changing vs. Comfortable 0.00 0.19 0

Table 5.3: Tucky process data.

Table 5.3 shows the q values calculated for all the pairwise comparison. For α = 0.05, 84 de-
grees of freedom, and three groups, qcritical is 3.37. Therefore, the null hypotheses for comfortable
vs. uncomfortable, and uncomfortable vs. changing is rejected; however, the experiment fails to
reject the null hypothesis for changing vs. comfortable.

5.5.3 Session Order & Two-Way ANOVA

So far in our analysis, we have focused on finding out whether the between groups differences
are statistically significant. In the next steps, we focus on quantifying the differences and possi-
bly creating a mathematical model of user willingness that can be incorporated in RL algorithms.
Throughout the experiment all external factors have been controlled for each scenario with the

1Engineering Statistics Handbook: https://itl.nist.gov/div898/handbook/prc/section4/prc473.htm
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exception of the orders of the scenarios which were randomly assigned for each participant. Fol-
lowing the same line of analysis, a two-way ANOVA is performed on the data to test whether order
of the treatment type creates statistically significant impact on the willingness ratings. Similar to
one-way ANOVA, a two-way or two-factor ANOVA tests whether two different factors and their
interactions create significant differences in the groups means. Specifically, two-way ANOVA tests
the following sets of hypotheses:

• H1
0 : The means of observations grouped by the first factor are the same.

• H1
a : At least one group mean is different from the rest when grouped by treatment.

• H2
0 : The means of observations grouped by the order are the same.

• H2
a : At least one group mean is different from the rest when grouped by order.

• H3
0 : There is no interaction between treatment and order.

• H3
a : Interaction exists between treatment and order.

Source of Variation SS df MS F P-value F Critical
Treatment 10.17 2 5.08 6.03 0.003 3.12
Order 6.09 2 3.04 3.61 0.03 3.12
Interaction 3.60 4 0.90 1.06 0.37 2.49

Table 5.4: Tow-way ANOVA results.

Table 5.4 shows the results for the two-way ANOVA. The first null hypothesis is basically
the one rejected by ANOVA test previously. The second null hypothesis is also rejected as the
F statistic value is greater than F critical, meaning the order has impact on willingness ratings.
Finally, the experiment fails to reject the last null hypothesis, i.e., the data does not support the
claim that the interaction between order and treatment impacts the willingness. Finally, knowing
what variables to include, a regression model can be fitted on the data to quantify the impact of
each variable on the willingness ratings.

5.5.4 Regression Analysis

A linear regression is performed on the data to capture the first order trends using the variables
identified previously. Tow-way ANOVA test showed that the treatment and order of the treatment
are statically significant predictors of the user willingness for providing feedback. The interaction
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variable of treatment and order is not included as the two-way ANOVA failed to reject the third
null hypothesis.

Order is an ordinal variable which can be directly included in the regression model. However,
treatment variable is a categorical variable and has to be included using a the dummy variable
method. In this method, two binary variables are introduced that can be either zero or one. Table
5.5 shows the two dummy variables TC and TU , and their value for each level of the treatment
variable.

Treatment TC TU
Comfortable 1 0
Uncomfortable 0 1
Changing 0 0

Table 5.5: Dummy variables’ values for the levels of treatment variable.

Equation 5.2 shows the regression model for willingness as a function of treatment dummy
variables and order. The goal of regression analysis is to estimate the β coefficients along with
their statistical significance.

W (TC, TU,Order) = βTC ∗ TC + βTU ∗ TU + βOrder ∗Order + Intercept (5.2)

Table 5.6 shows the regression analysis results. The coefficients for order and TU have signif-
icant p-values as expected. TC dummy variable distinguishes between changing and comfortable
levels for the treatment variable. The p-value for βTC is not significant which is in line with the
pairwise comparison of Tukey process.

Coefficients Estimate SE t value P-value
Intercept 5.08 0.33 15.26 < 2e−16

βTC -0.02 0.26 -0.089 0.92
βTU -0.75 0.26 -2.84 0.0056
βOrder -0.34 0.13 -2.56 0.01

Table 5.6: Regression analysis results.

5.6 Discussion

The most notable result is that the behavior of the algorithm in exploring/exploiting the design
space impacts reported user willingness to interact with the adaptive system over long periods. In

59



particular, desirability of the system state is a significant predictor of the interaction willingness.
Theory from human factors and survey design suggests these factors would increase trust and re-
duce survey fatigue. However, the repeated preference elicitation task at the heart of the proposed
adaptive systems based on RL algorithms are significantly different from the tasks previously stud-
ied. Results from the ANOVA tests and regression analysis indicate that for this particular office
chair system, users were more willing to continue interacting when the chair was in a comfort-
able state. This may be due to perceived competence in the system. The system is “working” as
intended and therefore should be trusted to use future information appropriately. Uncomfortable
states may represent a “broken” system which could lower motivation for future interactions.

In contrast, system responsiveness was not important to user willingness under certain condi-
tions. The experiment was unable to reject the hypothesis that a responsive system was better for
user willingness than a static comfortable state. This result suggests that when the system is at a
desirable state, the system does not need to be responsive in order to have continued user interac-
tion. Given the tendency of RL algorithms to stay near desirable states, this finding suggests the
current RL behavior may not be as detrimental to user willingness as hypothesized.

Another result corroborating prior work was the finding that the order of the experimental con-
dition had a statistically significant negative effect on user willingness. As the null hypothesis was
not rejected for the interaction terms, this suggests that user willingness to interact was reduced as
the experiment continued and the subjects responded to more requests for feedback regardless of
the treatment order and type. This is to be expected based on survey fatigue and human factors
literature.

These results taken together have many implications for the design of future adaptive systems.
Much like survey questionnaires, careful design of the elicitation mechanism could lead to signifi-
cantly higher quality data. These findings suggest that RL algorithms used in this application could
benefit from adaptive sampling methods to mitigate possible survey fatigue or damaged trust. The
magnitude of the impact of the identified factors is likely due to the specific task and context. How-
ever, the approach used creates a road map for future designers to test these factors in their setting.
For example, an adaptive hardware design team could perform a similar regression analysis and
use the coefficient to determine the RL algorithm characteristics which maximize the probability
of user interaction.

5.7 Conclusion & Future Work

This study presents results from an empirical pilot study investigating factors which impact user
willingness to repeatedly interact with adaptive systems. A statistical analysis of reported will-
ingness to interact under different experimental conditions suggests the following answers to the
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stated research questions.

1. Does user preference for the current system state impact user willingness to continue inter-
acting with an adaptive system?

Yes, in the case of the tested adaptive office chair, being in an uncomfortable system state
had a large statistically significant negative effect on user willingness to continue interacting
compared to the other two scenarios.

2. Does user perception of system responsiveness impact user willingness to continue interact-
ing with an adaptive system?

Under certain conditions, the system responsiveness did not impact user willingness to
interact. In the case of the tested adaptive office chair, the null hypothesis was not rejected
when comparing the static comfortable state to the responsive treatment.

In conclusion, designers of adaptive systems using RL algorithms should design systems to
mitigate survey fatigue in order to ensure the required flow of feedback data. In doing so, they
should consider using adaptive sampling techniques to mitigate negative effects on user willingness
from undesirable states.

The study is limited by a number of factors. First, as a pilot study the number of participants was
small. Although the experiment was able to adequately test many of the hypotheses, further study
is needed to more precisely measure these effects. Second, the study was conducted in laboratory
conditions which almost certainly affected the results. Users testing the comfort of their own office
chairs over long periods of time may provide a more accurate picture of these phenomena. Finally,
the frequency of feedback was quite short due to time constraints. It is uncertain whether the
observed impacts would persist at different frequencies.
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CHAPTER 6

Contributions, Implications, and Conclusions

6.1 Summary of Findings & Contributions

This dissertation is comprised of three studies proposing new frameworks for handling dynamic
user preferences. Current design approaches do not respond quickly to changes in user preferences
leading to lower user satisfaction over the lifetime of the product. Furthermore, current design
frameworks like decision-based design (DBD) treat the usage context variables reactively. New
frameworks are required to offer tools for designing products that have system level impact on
the usage context, and changing the reactive role of designer to proactive with regard to usage
context. Therefore, the presented studies focus on two sources of dynamicity in user preference:
exogenous, and endogenous factors. First study proposes a framework for addressing exogenous
factors impacting user preference, i.e., usage-context, and the other two studies focus on providing
solutions for handling endogenous factors by proposing reinforcement learning based algorithm
for design of “online” adaptive hardware systems.

Chapter 3 proposes a framework built on DBD and usage context-based design (UCBD) to as-
sist designers with making products that have system level impact on the usage context through
coupling mechanisms. Examples of this type of products are well explained in sustainability re-
search on rebound effect. In this framework, an evolution function is introduced to the optimiza-
tion model of UCBD. Evolution function predicts the system level impact of product attributes and
updates the system level usage context variables. The updated variables are then iteratively fed
back to a multidisciplinary feasible optimization architecture to find the optimal steady state of the
product-user-environment. A vehicle mass design case study was used to demonstrate the value of
the framework. Results from the case study suggest that the optimal vehicle mass can be signifi-
cantly different depending on whether system-level impact of product attributes are incorporated in
the design process or not. The system level impact of vehicle mass (product attribute) is modeled
through the induced demand due to fuel economy elasticity (the evolution function). Fuel economy
elasticity and induced demand are well explored mechanisms in literature, and using this example,
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the proposed framework offered a promising tool for supporting designers making decision which
involve these types of mechanisms.

Chapter 4 fills the gap in literature on design for dynamic preference due to endogenous factors.
Traditionally, designers develop products with the underlying assumption that the user preferences
remain static during the development process or even the lifetime of the product. However, cases
have been identified by prior works in which user preference is dynamic and preferred product
attributes are changing as the user interacts with the product. This study proposes a theoretical
framework based on reinforcement learning algorithms for designing adaptive physical products.
These products constantly interact with the user through their lifetime and update their function-
ality to adapt to changes in user’s preference. An illustrative case of design of a variable stiffness
prosthetic ankle (VSPA) is presented to showcase the utility of the proposed framework. Results
show that reinforcement learning algorithms can outperform traditional design methods under dif-
ferent scenarios and with no prior information. In particular, Upper Confidence Bound algorithms
outperformed the rest of algorithms and design methods for the case study.

Chapter 5 builds upon the work done in chapter 4 on using reinforcement learning algorithms to
design adaptive engineered systems. RL algorithms require a constant flow of preference feedback
from the user to operate effectively. Therefore, it is important to identify the factors impacting
user willingness to interact with the adaptive engineered systems. This study focuses on different
exploration/exploitation behavior aspects of RL algorithms and their impact on user’s willingness
to provide prolonged feedback. Using an empirical study to answer the research questions, 29
subjects participated in a pilot study providing interaction willingness score for an adaptive office
chair under different scenarios. The scenarios explored were 1) comfortable configuration, 2)
uncomfortable configuration, and 3) changing configuration. Results show that desirability of the
system state affects the user willingness to interact over long periods of time. Results also found no
significant difference between responsive system state and an unresponsive desirable state. These
findings help with design of better algorithms that maximize user satisfaction over time while
minimizing burden of providing feedback (or equivalently maximizing willingness to interact with
the adaptive engineered system.)

This work is an attempt to push engineering design methods toward online processes and make
preference incorporation an ongoing process by creating adaptive hardware systems that continu-
ously gather information on user preferences. As discussed in the background chapter, borrowing
the concept of “online vs. offline” learning, traditional design methods such as decision-based
design and design optimization lie generally at the offline end of of the spectrum of online-offline
user preference incorporation methods. Supervised by human designers, these methods rely on
gathering data on the target user periodically, and synthesizing the data to construct user prefer-
ence functions. The constructed functions are then incorporated in the design process of the next
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generation of products. These three studies come together to address this gap in engineering de-
sign methods and push them toward “online” processes by proposing frameworks for design for
dynamic user preferences, Fig. 6.1.

Figure 6.1: Incorporation of user preferences into product design.

6.2 Implications

There are many implications imagined for this work in engineering design practice. The framework
proposed in the first study can easily be extended to model any system level impact of designer’s
decision on the environment. For example, using the same optimization architecture and design
framework, sustainability goals can be incorporated in the design process as objective functions.
As an example, rebound effect can be easily mitigated if the system level impact of the product is
modeled as well in the design process using the proposed framework.

Results from second study demonstrate the utility of the framework for mass personalization
purposes. Coming from software development, machine learning methods are widely used for
mass personalizing software and websites. Using the same algorithms for dynamic preferences the
framework can be easily extended to include mass personalizing adaptive hardware systems, i.e.,
the algorithms can react to changes in individual’s preferences over time as well as the difference
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in preferences across a population of users.
Designing for the lifetime of a product means maximizing user preference and satisfaction over

the entire product usage lifetime, as opposed to traditional design methods that mostly focus on
maximizing preference at the time of purchase. This approach to product design ensures longer
usage life which in turn helps with creating more sustainable products and solutions. In other
words, having a product that adapts to changing user preferences reduces the need for switch-
ing to new product generations periodically, thus reducing the environmental footprint of product
manufacturing.

Specific industries and business can benefit from the work presented in this dissertation. For
example, devices used in healthcare rehabilitation often require constant adjusting and tuning as
the recovery can be relatively fast and the state and preferences of the users may change rapidly
throughout the recovery process. Taking advantage of the framework proposed for dynamic pref-
erences, medical devices can adapt quickly to changes in the body and preferences of the patients
as they interact with the hardware. Finally, this framework facilitates the transition from the tra-
ditional one-time sale business model to product as a service, subscription, and recurring revenue
business models. These business models are well implemented and tested in software industry
generating new types of value for both users and the companies.

6.3 Future Work

This dissertation provides examples of new approaches to design for dynamic preferences which
has not been addressed by engineering design community previously. Although the results and
examples are limited and preliminary, they open up many avenues for further investigation into
design for dynamic user preference. For instance, in the case of design of a variable stiffness
prosthetic ankle (VSPA), the design problem had only one variable, the ankle stiffness. Further
work has to be done on cases with large number of design variables. In particular, new algorithms
have to be developed for high dimensional design spaces that perform well while keeping the
number of user interactions minimal. Moreover, in the examples explored, the algorithms only
decided on the values of a predetermined set of attributes and not on what attributes to add and
explore. Future work should be done on recommender algorithms [150] that not only pick the
best value for each product attribute (design variable), but also recommend adding or removing
attributes to/from the product.

In the third study, user willingness for providing feedback was explored under different sce-
narios. The focus of the study was on main RL algorithms’ behaviors, namely high and low
performance, and responsiveness. Future work has to be done on combinations of the main be-
havior and even more complex ones to measure the impact of algorithm exploration/exploitation
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behavior on user willingness for providing feedback under more complex and realistic scenarios.
Moreover, although this study was able to capture the effect of usage duration on willingness, fu-
ture work should explore how longer time scales may change the impact of algorithm behavior on
user willingness for providing feedback. Finally, smart algorithms should be developed to measure
the preference as well as user willingness for providing feedback (through response rate) and adapt
their sampling method to keep the user engaged throughout the lifetime of the product.

6.4 Conclusion

This dissertation contributes to the engineering design field by extending the current design meth-
ods and bringing new ones from machine learning community to address design for dynamic pref-
erences. The source of dynamicity can either come from individual’s change in preference for the
same product attributes under the same environmental conditions, or may come from changes im-
posed to the user’s preferences due to changes in contextual factors. The importance of addressing
dynamic user preferences is shown by presenting different case studies and comparing them to so-
lutions provided by current engineering design practices. Moreover, the examples provided in this
study open up new avenues for addressing mass personalization as well as design for sustainabil-
ity. This dissertation will create new opportunities for exploiting the abundance of data and data
gathering tools in order to improve product design. Starting from the usage context, a framework
is proposed for designing the product and the usage context simultaneously. A framework is then
proposed to change the role of designer from designing the actual product to designing the policies
and algorithms used in product design. The goal is to enable the product to cycle through the de-
sign stages starting from preference elicitation and ending in the final product without designer’s
supervision. In conclusion, this research provides a step toward pushing engineering design meth-
ods closer to online processes by bringing new design tools from other disciplines to engineering
design.
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APPENDIX A

Traffic Simulation Platform

The simulation platform consists of four modules namely, map optimization module, demand mod-
ule, agent behavior, and path finding module. In this appendix, each module will be explained in
detail.

A.1 Location/Map and Road Network

As an open-source platform, Open Street Map (OSM)1 gives free access to an editable map of
the world that is built and maintained by volunteers. Due to the platform’s accessibility along
with the availability of third-party Python packages, OSM was used to import maps for the map
optimization module.

The maps can be imported in a variety of ways such as importing by defining the four coordi-
nates of the box surrounding the desired area, by address, and by defining the center coordinate
and radius of the area of interest. Figure A.1 shows a map of the part of southeast Michigan that
will be used for the simulations.

The graph generated by the OSMx Python package gives a complete graph of the map of the
area which had to be further refined for our purposes [151]. Figure A.2 shows the initial graph
imported of the area shown in figure A.1.

A set of refinements is done on the initial graph to make it usable for the model. The first
step is to limit the nodes and links to the level of details deemed sufficient for simulations. Table
A.1 shows the road levels and their definitions included in the map. For the road network, the
motorway, trunk, primary, secondary, tertiary, residential and unclassified roads are included.

After choosing the right level of details for the road system, we have to ensure that the resulting
graph stays a connected graph, where any trip between any two nodes remains possible. Therefore,
a code is run to select a connected subgraph of the road system. Figure A.3 shows the connected
subgraph of the graph shown in figure A.2 for the road network

1https://www.openstreetmap.org/
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Road Type Definition

Motorway
A restricted access major divided highway, normally
with 2 or more running lanes plus emergency hard
shoulder. Equivalent to a freeway, Autobahn, etc.

Trunk
The most important roads in a country’s road
system that are not motorways. (Not necessarily
be a divided highway.)

Primary
The next most important roads in a
country’s system. (Often link larger towns.)

Secondary
The next most important roads in a
country’s system. (Often link towns.)

Tertiary
The next most important roads in a
country’s system. (Often link smaller towns and villages)

Unclassified

The least important through roads in a
country’s system – i.e. minor roads of a lower
classification than tertiary, but which serve a
purpose other than access to properties.
(Often link villages and hamlets.)

Residential
Roads which serve as an access to housing,
without function of connecting settlements.
Often lined with housing.

Table A.1: Road levels and definitions.
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Figure A.1: Simulation runs input map.

As it can be seen from figure A.3, there are many nodes that are not intersections and can
be removed from the graph without significant loss of information. This removal is particularly
important for the pathfinding module as smaller numbers of nodes and edges lower the computation
cost of calculating an optimal path between two points. Figures A.4 shows the detailed map after
node simplification.

A.2 Demand

Using technical reports from the Southeast Michigan Council of Governments (SEMCOG), we
create different types of travel demands. A trip is defined as a movement from one location to
another without having a stop. Vehicle trips per person is the number of vehicle travels per person
in a day. By modeling the demand based off of vehicle trips per person we model the demand with
any number of passengers implicitly. Figure A.5 shows the vehicle trips per person for the counties
in the south east Michigan counties 2.

Demands are generated by assigning 1) Starting time 2) a starting node 3) demand type 4)
travel length (miles) 5) destination node. Prior to generating the demand, each node is assigned
a population. Using US census data, we first find the population of each census tract, figure A.6.
Census tracts are the highest resolution of data regions in the census data. Once the population

2SEMCOG, Travel Characteristics: Technical Report, Oct 2016
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Figure A.2: Initial road system graph of area shown in figure A.1.

Figure A.3: Connected subgraph of the road system of figure A.2.

of each tract is found, the tract population is then distributed to all the nodes within the tracts
excluding the highway nodes, figure A.7.

To have a more spreaded population distribution, every 200 meters extra nodes are added to the
road network. Figure A.8 shows the node distribution for Ann Arbor.

Once the node populations are assigned, vehicle trip per node is found by multiplying each
node’s population by its vehicle trip per person. Figure A.8, shows nodes’ vehicle trip per person
found from figure A.5.

Next step is to generate demand starting times. Using figure A.103, at each second during the
simulation, the number of trips starting from each node is calculated using Poisson distribution.
The simulation starts from 2 pm, and ends at 2 am; however, the demands are generated until mid-
night and amount to 898222 trips. We have only modeled the demands starting time distribution

3mdot: MI Travel Counts III, Travel Characteristics, Technical Report, Sep 2016
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Figure A.4: Road network after simplification.

Figure A.5: Number of households, people, and weekday trips by SE Michigan counties.

based on figure A.10. Figure A.114 shows the types of demand during the morning and afternoon
pick hours. Using the data on the afternoon pick hours, we modeled four main types of demand,
namely, commute, shop/errands, visit/social, and pick-up/drop off.

Demands are randomly assigned a type from the four types mentioned based on the afternoon
peak hour trip purpose distribution. The trip types are round trips except for commute trips which
are one-way trips. The round trips are basically two demands with a time gap between the end
of the first trip and start of the second trip. The time gap is calculated randomly using a normal
distribution. The time gap for shopping is calculated based on the average shopping time of 43
minutes5. Since no data was found on the time gaps of other types of trips, we assumed an average
of 30 seconds and 3 hours for pick-up/drop off and visit/socialize, respectively.

4SEMCOG, Travel Characteristics: Technical Report, Oct 2016
5https://www.ers.usda.gov/amber-waves/2020/april/more-americans-spend-more-

time-in-food-related-activities-than-a-decade-ago/
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Figure A.6: Census tracts total population.

Figure A.7: Census tracts total population.

In the final step, the destination nodes are assigned for each demand. Depending on the demand
type, first the algorithm randomly chooses a trip length (miles) following a normal distribution.
Once the trip length is picked, all the nodes within a tolerance length of the chosen length are
found using Dijkstra’s algorithm with road lengths as edge weights. The destination node is then
picked randomly from the set of the nodes found in the previous step. The tolerance is set at 200
meters. The average trip length for commuting is 13.2 miles6 and for shopping is 4 miles7 . No
data was found on the average pickup and visit travel lengths, and we assumed a 10 mile average
for both. The destination nodes are further restricted by trip types. For example, shopping and

6SEMCOG, Travel Characteristics: Technical Report, Oct 2016
7https://usa.streetsblog.org/2015/04/10/5-things-the-usda-learned-from-its-

first-national-survey-of-food-access/
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Figure A.8: Node distribution for Ann Arbor.

work locations cannot be in the residential area. Figure A.12, shows the residential only nodes and
figure A.13 shows the acceptable nodes for shopping and work locations.

A.3 Agent Behavior

After exploring transportation modeling literature and experimenting with different car following
models a set of simple rules were defined for each agent (driver) to behave based on. The simula-
tion approach falls in the large framework of Agent Based Modelling (ABM) where a population
of agents interact with each other based on a set of rules.

The set of agent behaviors is as follows:

1. Agents try to reach the speed limit.

2. Agents maintain 1 car length distance to the next car for every 10 mph of speed.

3. The acceleration/deceleration rates are fixed.

4. To prevent chaotic and unstable traffic flow, agents are not allowed to overtake the next car;
however, they move to the lane with the fewest number of cars every 200 meters.
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Figure A.9: Vehicle trip per person for each node in the simulation region.

To further decrease the run time of the model, constant acceleration motion formulas are used
instead of general motion differential equations. Under the assumption of constant acceleration,
this simplification enables us to choose relatively large time steps with minimal compromise in
simulation accuracy. The final simulation time step is set at 0.25 second. Traffic lights are not
modeled since without knowing the exact timing of each traffic light in the real world, the com-
plexity added to the simulation may not be justifiable. Figure A.14 shows the simulated agents at a
single intersection. Red agents are braking, and black and green ones are cruising and accelerating,
respectively.

A.4 Path Finding

To find the optimal path between any two points, Dijkstra’s algorithm is used [152]. Depending on
the edge weights, Dijkstra’s algorithm can give the both shortest path and fastest path. Although it
gives the global minimum, Dijkstra’s algorithm is computationally expensive as finding the shortest
path between the source node and the destination node gives the shortest path between the source
and all the other nodes as well.

Figure A.15 shows the fastest path between two random nodes using Dijkstra’s algorithms. The
edge weights are travel time calculated based on speed limits. Figure A.16 shows the fastest path
for the two same nodes on Google Maps.

The weights for the graph used to calculate the fastest path change throughout the simulation
as the traffic flow rate changes for each edge. Therefore, the edge weights used for Dijkstra’s
algorithm have to be updated as well. The travel time for each edge (road) is updated every time a
car leaves the road segment. An exponential moving average updates each edge’s weight weighing
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Figure A.10: Person trips by start time.

recent travel times more. Every 5 minutes the graph weights are updated by the moving average of
cars’ travel times for each edge.
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Figure A.11: Percent of vehicle trips by purpose.

Figure A.12: Residential only nodes.
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Figure A.13: Acceptable nodes for shopping and work locations.

Figure A.14: Agent based modeling of one intersection.
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Figure A.15: Fastest path calculated by the path finding algorithm between two randomly chosen
nodes.

Figure A.16: Same path as fig A.15 found on Google maps.
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