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ABSTRACT

Artificial intelligence (AI) and machine learning (ML) have achieved extensive

success in many fields. They are powerful in pattern recognition and function model-

ing. The digitization of health data provides an important opportunity for improving

care delivery and patient management through the AI-based clinical decision-support

(CDS) system. Medical images are important components in evaluating the disease

severity. While the human’s interpretation of medical images is subjective and quali-

tative, AI-based models can analyze those data in a more reproducible, quantitative,

and less expensive way. With clinical observations and quantitative findings extracted

from medical images, ML methods can be used to learn and discover knowledge. The

automated CDS system can provide recommendations on diagnosis, treatment, and

outcome prediction by leveraging massive medical data. Those systems can facilitate

drug development, disease pathology research, and clinical practice.

This dissertation investigates medical image analysis and CDS systems develop-

ment in a more reliable, interpretable manner. Limitations exist in applying AI/ML

techniques in medical problems. Medical data may have high variability in terms of

the patient population, collection site, equipment, and imaging protocols. It is crucial

that the ML and image processing algorithms have a good generalizability and can

be reliably applied to unseen patient data. In addition, a broad spectrum of AI/ML

methods is among the “black box” models. The lack of justification leads to concerns

and hesitations of using AI/ML techniques in clinical or research practice. Features

xvii



with clinical meaning and models that can be well explained can gain more trust and

are more favorable to end-users.

In this dissertation, several AI-based CDS systems have been designed and im-

plemented to facilitate clinical and research practice. Novel algorithms are proposed

to overcome the challenges of applying AI/ML techniques. To improve the gener-

alizability of the deep learning models, a robust learning algorithm is proposed to

encourage the network to be invariant to hematoma intensity variability. A Scale

Module and filter pruning technique are proposed to reduce the network’s size and

complexity. To improve the interpretability of the CDS systems, a transparent ML

algorithm is proposed based on tropical geometry and fuzzy logic, which can learn

humanly understandable rules from the dataset and integrate existing domain knowl-

edge to facilitate the model training. Domain knowledge plays an important role

in the design of CDS systems. With automated image analysis methods, quantita-

tive and objective measurements are extracted to capture the patient’s condition and

disease characteristics in a meaningful and reproducible way. The proposed CDS

systems have been validated using data collected from routine practice and clinical

trials. The datasets used in this dissertation are from multiple medial centers, which

increases the generalizability of the proposed frameworks and trained models.

This work aims to research the capacity of AI models toward fully automated CDS

systems that can replicate expert judgment and provide insight for the patient. Efforts

have been made to improve the generalizability and interpretability of AI/ML models,

which are the major limitations that hinder a broad application of AI techniques in

practice. The proposed algorithms and strategies in this dissertation leverage big data

to improve the healthcare system and disease research. Additionally, the proposed

methods are transferable beyond the target application. The contributions of this

dissertation have a meaningful impact on applying AI-based systems to clinical and

research practice.
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CHAPTER I

Introduction

1.1 Background and Motivation

The massive influx of medical data from medical imaging storage, Electronic Med-

ical Records (EHR), and clinical trials have aroused increasing enthusiasm for data-

driven-based applications [1, 2]. A large amount of data are valuable to study the

diagnosis, treatment, and pathology of diseases. While the human’s analysis and

interpretation of those data are tedious, subjective, and error-prone [2, 3, 4], the de-

velopment and extensive success of machine learning (ML) and deep learning (DL)

techniques across many fields show the capacity of artificial intelligence (AI) in pat-

tern recognition and knowledge learning.

The digitization of health data provides an important opportunity for improved

care delivery and patient management through the AI-based clinical decision sup-

port (CDS) system. Figure 1.1 shows an overview of the building of CDS systems

with AI techniques, which will be investigated in this dissertation. The knowledge

base includes patient data collected from routine examinations and hospitalizations.

With image processing and DL models, anatomical structures and disease-related ab-

normalities can be detected and segmented from medical images and videos. With

detection and segmentation results, quantitative measurements can be calculated to

describe the patient’s condition. Processing medical images and videos in an auto-
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Knowledge Base

• Patient demographic data,
medical history and medication

• Clinical examination data
• Past clinical decision and

outcomes

Image/Video Analysis System

• Objective and Quantitative
measurements

• Longitudinal data analysis
• Faster and less expensive

Clinical Decision Support System
• Diagnosis, treatment

recommendations, outcome
predictions

Figure 1.1: An overview of building a CDS system with AI.

mated way can decrease medical costs by reducing work and providing more objective

and reproducible outputs. Based on the calculated quantitative measurements from

medical images and videos and tabular features from EHR, ML models will help build

diagnostic and prognostic models. Those models provide clinicians with recommen-

dations of diagnosis, treatment, and outcome perspective. With the assistant of the

AI-based CDS system, clinicians can leverage information from large amounts of past

patient data more effectively and make a final decision for individual patients. After

that, the decision made by clinicians can be added back to the knowledge base to

iteratively optimize the developed AI-based image/video analysis methods and CDS

systems.

AI-based systems are promising in improving healthcare delivery and patient man-

agement. However, limitations exist, which have created a serious concern and hesita-

tion over using AI techniques in clinical practice, where reliability and interpretability

play a vital role. The first concern is the lack of generalizability. ML and DL mod-

els are powerful in extracting patterns from the data and modeling the relationship

between the extracted patterns and the targets. However, the pattern extraction

learned from one data cohort may not work on other data cohorts [2]. Previous

studies [5, 6, 7, 8] have shown that many trained ML and DL models are vulner-

2



able to adversarial attacks. Even trivial noises and data transformations that are

negligible to human eyes can significantly change the model’s output. Additionally,

in healthcare applications, data may be collected from multiple countries and medi-

cal centers, where the medical devices are from various manufacturers, and imaging

protocols have different standards. A poor generalizability makes the trained model

being less applicable to data underrepresented in the training dataset. The lack of

interpretability is another primary concern [9, 10]. Decision-makers in high-stakes

fields, such as medicine, are much less likely to trust recommendations for which no

clear justification is provided. However, many AI/ML methods are “black box” mod-

els, where high non-linear functions are approximated in pattern recognition. It isn’t

straightforward for humans to interpret those functions [11]. The missing of justifi-

cation also poses challenges in the model’s diagnosis. It is challenging to evaluate or

estimate the generalizability of a trained model on an unseen data cohort. Moreover,

if a trained model makes a wrong decision on specific groups of data, it is not explicit

how to improve the model. Additional challenges include the shortage of annotated

data (especially high-quality ones) and the lack of effective ways to integrate domain

knowledge into AI models. More efforts are needed to overcome those challenges of

applying AI techniques in medical problems.

1.2 Objectives

This dissertation aims to build reliable and interpretable AI-based CDS systems

with real-world medical applications.

1.2.1 Interpreting medical data and developing CDS systems

Collaborating with clinicians, practical and critical decision-making problems will

be formulated. The knowledge base will be constructed for individual medical appli-

cations, which includes patient demographic information, medications, clinical mea-
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surements, and medical images/videos from clinical examinations. In addition, adju-

dicated clinical decisions or patient outcomes will be collected or annotated.

Medical images and videos contain comprehensive information about the patient.

I will develop automated image classification, segmentation, and regression algorithms

to effectively identify the region of interest (ROI) and effectively estimate relevant

parameters. Quantitative and clinically interpretable features will be designed and

calculated to represent the patient’s condition. Novel features representations from

medical images and videos will be investigated. In our hypothesis, the feature rep-

resentation from the automated image/video analysis system can better capture the

patient’s condition and show a higher diagnostic and prognostic value compared with

conventional clinical parameters from human reviewers.

With the curated datasets and novel feature representation extracted from the

medical images and videos, CDS models will be developed to provide diagnosis, treat-

ment, and outcomes recommendations. The performance of the proposed automated

CDS tools will be compared with conventional methods used in practice.

1.2.2 Improving the generalizability of ML/DL models

Several strategies will be proposed to overcome specific challenges and improve

the generalizability of the ML/DL models in individual applications. Those strate-

gies will include (1) building more reliable and robust loss functions; (2) extracting

interpretable features based on domain knowledge from clinicians; (3) fusing domain

knowledge into the network to facilitate the model learning knowledge from the data;

(4) reducing the network size by automated filter pruning. The proposed strategies

will be validated and analyzed on practical applications. Comparison between the

proposed algorithms and existing techniques will be performed to demonstrate the

superiority.
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1.2.3 Improving the interpretability of the decision-making models

An interpretable ML algorithm will be developed based on the concept of soft

computing and tropical geometry. The proposed algorithm will allow the represen-

tation of the knowledge created and stored in the model. As such, justifications for

the resulting recommendations and predictions would be transparent to end-users.

In addition, the proposed network will be able to incorporate approximate domain

knowledge directly into the model training. In the proposed algorithm, tropical ge-

ometry will be used to formulate the differentiable operations used in the model, and

an effective optimization algorithm will be designed to avoid the disadvantages of

conventional soft computing paradigms such as fuzzy logic and Bayesian networks.

The classification performance of the proposed interpretable ML algorithm will be

compared with established ML models. The learned rules will be extracted from the

trained models and validated by clinical experts. We expect that (1) the proposed

algorithm can achieve a comparable classification performance with other established

ML models; (2) the trained model can correctly identify clinically important features

and organize them in understandable rules; (3) the trained model may discover new

rules that are reasonable but haven’t been well recognized in the field.

In addition, for the proposed CDS system, extracting meaningful features based

on domain knowledge can also help the interpretability of the decision-making models.

1.3 Dissertation Outline

In this dissertation, novel ML, DL, and computer vision algorithms are devel-

oped to extract feature representation from medical images and videos. With the

extracted feature representation, AI-based CDS systems are designed to provide out-

come prediction and treatment recommendations. Compared with manual human

interpretation of medical data, the extracted features from the designed automated
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AI-based system are more objective, quantitative and comprehensive. The proposed

algorithms and strategies have been implemented and validated on practical applica-

tions with various data types and diseases.

Chapter II presents an automated hematoma evaluation and CDS system on Com-

puted Tomography (CT) scans from patients with acute traumatic brain injury (TBI).

In this design, a convolutional neural network (CNN) that fuses multi-scale features

and a robust loss function are proposed to segment acute hematoma with a better

generalizability. Quantitative volume features are calculated and combined with clini-

cal variables to build a 6-month mortality prediction model. The proposed hematoma

segmentation and outcome prediction models have been validated on CT scans from

a large multicenter clinical trial. The mortality model achieves a significantly better

performance than a widely-used logistic-regression model that only uses qualitative

CT features from human reviewers. Feature importance analysis shows that the cal-

culated hematoma volumes in anatomical regions contribute most to the proposed

mortality prediction model.

Chapter III discusses my work on colonoscopy video analysis. Endoscopic scoring

is an important component in the colon’s disease severity. Mayo endoscopic score

is one of the most commonly used scoring schemes for ulcerative colitis (UC) but is

limited by its simplicity and subjectivity. This chapter proposes image classifications

and location estimation models to recognize disease severity, relative location, and

anatomical colon segment of individual frames from a colonoscopy video. Based on

the context understanding, disease spatial severity distribution over the entire colon

can be derived. Quantitative features such as statistics features in anatomical colons

segments are extracted to build a comprehensive patient profile to characterize the

patient’s condition better. This feature representation has been validated on large

clinical trial datasets, showing a higher diagnostic and prognostic value than the

conventional severity score.
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Chapter IV introduces my work on developing an interpretable ML algorithm

for clinical decision-making. Many established ML algorithms are limited by their

“black-box” property. In the proposed algorithm, the input variables are encoded

into concepts commonly used in human logic. The input space will be divided into

subspaces by a combination of concepts, and the relationship between the subspaces

and target classes will be modeled. With a trained model, subspaces contributing

to the target classes will be extracted and interpreted as rules. The proposed al-

gorithm has been validated using both synthetic datasets and a heart failure (HT)

dataset. From the experimental results, the proposed network can achieve compa-

rable classification performance with other established ML algorithms and extract

humanly understandable rules from data in my experiments. Moreover, existing do-

main knowledge can be easily formulated as rules and integrated into the proposed

model to facilitate the model training.

Chapter V discusses additional work that solves the challenges of applying ML and

DL techniques on practical applications. (1) A filter-pruning technique is proposed to

reduce the size of a trained model and speed up the inference phase. A Scale Module

is designed to estimate the importance of filters. The scale module will reduce the

contributions from filters with less importance gradually. After the model training,

users can eliminate redundant filters directly without hindering the performance of the

model. (2) An active learning framework is proposed to overcome the challenge of the

shortage of annotated data. An initial classifier is built on the initial training dataset

in the proposed active learning framework and selects the most informative data

samples from the unlabeled data pool. The chosen data samples will be annotated

by human reviewers and added to the training set. The classifier’s performance will

increase with several iterations by learning from the most informative data samples.

From my experiment, compared with the regular learning framework, the classifier

trained from active learning achieves a comparative performance with a much smaller
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training set.

Chapter VI gives a conclusion to the research work in this dissertation. A discus-

sion is given on the impact of the proposed CDS systems and the efforts in improving

the generalizability and interpretability of ML/DL models. The contributions of this

dissertation are highlighted, and insights on future work are provided.
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CHAPTER II

Quantitative Hematoma Evaluation on CT scans

and Outcome Prediction for Patients with

Traumatic Brain Injury

2.1 Introduction

TBI is caused by a blow or jolt to the head that causes temporary, or permanent

cerebral dysfunction [12]. As a major cause of death and disability, especially in

children and young adults, TBI is a growing healthcare burden worldwide. The

lifetime economic cost of TBI in the United States is approximately $76.5 billion,

including direct and indirect medical costs [13].

The consequences of TBI can worsen rapidly without timely diagnosis and treat-

ment. Prognostic models with data collected in the first 24 hours are essential to

support early clinical decision-making. CT is the imaging modality of choice during

the first 24 hours after brain injury, especially for unconscious patients in the emer-

gency room, because of its low cost, fast imaging capability, and availability [14].

Acute brain hematoma detection and evaluation from CT scans are critical to both

TBI diagnosis, and patient management [15]. Previous studies show that the shape

and volume of brain hematoma are powerful predictors of mortality and morbidity

in patients with TBI [16, 17, 18]. Brain hematoma volumes can also be used as an
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indicator for surgical management [19, 20]. An epidural hematoma (EDH) greater

than 30 cm3 is recommended for surgical evacuation regardless of the patient’s Glas-

gow Coma Scale (GCS) score [20]. In addition, the evaluation of brain hematoma is

important for epidemiologic studies and agent efficacy estimation [21, 22]. Hematoma

within the intracranial compartment has five subtypes depending on its anatomical

location: EDH, subdural hematoma (SDH), subarachnoid hematoma (SAH), intra-

parenchymal hematoma (IPH), and intraventricular hematoma (IVH). In this study,

we will group all subtypes of hematoma together as “total hematoma”.

Hematoma volumes can be estimated by manually delineating the hematoma

boundary through CT scans, which is labor-intensive, taking around 20-30 minutes

for an experienced radiologist [23]. In practice, the ABC/2 method is widely used by

clinicians to measure hematoma volume [24]. The ABC/2 volume estimation assumes

that hematomas are roughly ellipsoidal: the CT slice with the largest hematoma is

first identified, after which hematoma volume is estimated. The ABC/2 method is

fast but doesn’t always produce a good estimate, especially in acute cases where re-

gions of active bleeding can be thin or scattered. Previous studies have shown that

the ABC/2 method overestimates hematoma volume by 10 to 40 percent [25, 26].

Therefore, an automated and accurate brain hematoma segmentation algorithm can

help clinicians quantitatively estimate brain hematoma volumes and shapes, which

will significantly facilitate TBI patient management and outcome prediction.

Many automated brain hematoma segmentation methods have been proposed. A

number of segmentation methods start with initial hematoma masks and optimize

them via level set techniques. In [27], an adaptive threshold was used to filter out

hematoma candidates, after which a multi-resolution binary level set algorithm was

applied to segment hematomas. A spatial fuzzy c-means clustering algorithm was

proposed in [28] to initialize the region-based active contour model. These methods

are sensitive to the initialized masks, requiring many iterations to achieve convergence,
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and are prone to becoming trapped in local minima.

In recent years, DL methods have been applied to acute brain hematoma segmen-

tation. A combination of an autoencoder network and region-based active contour

model was proposed to segment acute intracranial hematoma [29]. A 3D U-Net was

implemented in [30] to take advantage of 3D contextual information. In [31], a hy-

brid 2D/3D mask ROI-based architecture was designed to detect the hematomas and

perform segmentation. While these methods achieve good hematoma detection and

segmentation, several limitations still exist. First, in acute TBI cases, the volumes

and shapes of hematomas vary substantially. Existing CNN-based hematoma seg-

mentation methods extract high-level image features with similarly sized receptive

fields, which prevents the fusion of features from multiple scales. Secondly, most

of the methods were only validated using CT scans from the same institution with

identical imaging protocols. While a 3D neural network can help integrate more com-

prehensive contextual information, the model’s performance may be affected by the

slice spacing, which varies across CT scans from different health centers. Thirdly,

the contribution of automated volume segmentation and estimation from CT scans

to outcome prediction has not been fully explored.

In this chapter, a CDS system that predicts the 6-month mortality of patients

with acute TBI is developed based on admission data, which supports early clini-

cal decision-making before in-hospital therapeutic interventions. A novel Multi-view

CNN with a mixed loss function is proposed to improve the performance and gen-

eralizability of acute hematoma segmentation on brain CT scans. After hematoma

segmentation, the total volume of acute brain hematoma in the entire brain and in

the individual anatomical regions are analyzed. After that, a ML algorithm for mor-

tality classification is trained using a combination of clinical observations and features

extracted from the automated hematoma segmentation. The main contributions of

the work in this chapter are as follows:
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1. A novel Multi-view CNN architecture with dilated convolution is proposed,

where features from different scales are extracted and fused to improve the

segmentation performance. From Multi-view CNN, the features for generating

segmentation masks and features for hematoma identification are decoupled.

Our results show that the network can lead to both a finer hematoma segmen-

tation and better hematoma identification accuracy.

2. A novel mixed loss function calculated using CT scans whose contrasts are

adjusted by different window centers and widths is utilized to improve the gen-

eralizability of the network. From the experimental results, the proposed loss

function reduces the network’s sensitivity to noise and subtle changes in ap-

pearance. The proposed algorithm is named as “robust learning”.

3. The proposed hematoma segmentation framework has been trained and tested

using CT scans from multiple institutions with different acquisition and imaging

protocols. The proposed Multi-view CNN with mixed loss achieves an average

Dice coefficient of 0.675 from 5-fold cross-validation and 0.697 on an independent

test set. For volume estimation, the intraclass correlation coefficient (ICC)

between the estimated hematoma volumes and annotated hematoma volumes

is 0.959 from 5-fold cross-validation and 0.966 on the independent test set.

Compared with other published hematoma segmentation methods, the proposed

network achieves the best segmentation performance and volume estimation.

4. The volumetric distribution and shape characteristics are extracted from the

automated hematoma segmentation. These features are integrated with clinical

observations and used to construct a random forest model to predict 6-month

mortality. The results show that features extracted from CT scans can greatly

improve 6-month mortality prediction. The proposed prediction method yields

an average area under the precision-recall curve (AUPRC) of 0.559 and an

12



average area under the receiver operating characteristic curve (AUC) of 0.853

using 10-fold cross-validation on a dataset comprised of 828 patients. Compared

with the widely used IMPACT model [32], the proposed model achieves more

than a 5% increase in AUC and 10% in AUPRC.

2.2 Related Work

2.2.1 Related work on hematoma segmentation

Conventional image processing techniques have been applied for hematoma seg-

mentation. In [33], the expectation-maximization was applied on a Gaussian Mix-

ture Model to segment four components, including hematoma regions, normal tissues,

white-matter regions, and catheters. In [34], the thresholding technique is used to find

the brain tissue and hematoma region clusters. The intensity distribution of pixels

is analyzed to segment the hematoma regions. After that, morphological operations

were performed as post-processing to get rid of outliers. In [35], a two-class dictio-

nary for normal tissue and hematoma regions was built using patches from “atlas”

CT scans and corresponding manual hematoma segmentation. For a given new CT

scan, patches were modeled as a combination of the “atlas” patches in the built dic-

tionary to generate hematoma segmentation. The proposed algorithm was evaluated

on CT scans from 25 patients with TBI, and the algorithm has a median Dice score

of 0.85. A two-stage fully-automated segmentation method has been applied in pre-

vious literature for hematoma segmentation on 2D CT slices, including initialization

and contour evolving. For the initialization stage, [36] applied a nonlocal regularized

spatial fuzzy C-means clustering to segment a coarse hematoma contour. After that,

an active contour without edges method was used to refine the contour. CT scans

from 30 subjects with different hematoma sizes, shapes, and locations were used to

evaluate the proposed method, and a Dice score of 0.92 was produced. Similarly,
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in [37], the output from fuzzy C-means clustering was used as the initialization of

the modified version of DRLSE. In [38], fuzzy c-means clustering and entropy-based

thresholding with morphological operations were used to initialize the DRLSE model.

The algorithm was developed and tested on CT scans from 35 patients with ICH and

achieved an average Dice score of 0.93.

DL techniques have been widely applied in medical image analysis. [39] proposed a

semi-supervised multi-task attention-based UNet model. The segmentation task was

performed by a UNet architecture and trained using the labeled dataset. The encoder

part of the UNet was shared for the unsupervised model, which was trained using the

unlabeled dataset to reconstruct the foreground and the background. [40] applied a

3D CNN to segment the chronic type of SDH in pre- and post-operative CT scans.

[41] compared the DL segmentation performance with human inter-rater and intra-

rater variability. A 3D UNet was applied for spontaneous intracerebral hemorrhage

segmentation, and patches from 3D CT scans were used as input to the network. From

the experimental results, the proposed algorithm achieved a comparable level to the

observer variability. In [31], a mask R-CNN architecture was applied with a custom

feature extractor combined with 3D and 2D contextual information. The detected

bounding boxes for hematoma regions were further segmented by a segmentation

branch.

2.2.2 Related work on outcome prediction based on admission data

In [32], prognostic models were developed using logistic regression models and

variables available at admission to predict the mortality and unfavorable outcome in

6 months after the injury. The proposed model was built based on baseline variables,

including demographic data, clinical severity scores, CT findings, and biochemical

variables. The prognostic models achieved discrimination between patients with good

and poor 6-month outcomes after the injury. In this study, the CT characteristics
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were qualitative and provided by human reviewers. In [42], the role of CT char-

acteristics in outcome prediction for the patient with moderate to severe TBI was

investigated by grading the CT scans according to the Rotterdam CT score [43, 44].

In [45], quantitative CT features extracted from automated image analysis were used

in outcome prediction. From their experimental results, quantitative CT features

were significantly more predictive than qualitative CT features. A major limitation

of this study is that the sample size is only 115. CT scans were all from patients ad-

mitted to the neurosurgical intensive care unit of the same hospital, which indicates

a bias to patients with severe TBI, and the CT scans have low variability.

2.3 Dataset

CT scans from Progesterone for Traumatic Brain Injury, Experimental Clinical

Treatment (PROTECT) III trial were used in this study [46]. The PROTECT III trial

was conducted at 49 trauma centers in the United States. Study inclusion criteria

included adult patients with moderate, moderate-to-severe, or severe TBI, with a

GCS score of 4 to 12. Moreover, patients were only enrolled if the study treatment

could be initiated within 4 hours after injury. Patients were excluded if the team

determined that the patients were non-survivable; had bilateral dilated, unresponsive

pupils; or if the patients had physiological findings of hypoxemia, hypotension, spinal

cord injury, or status epilepticus [46]. In total, the dataset contains CT scans and

clinical assessments of 882 patients. Of the 882 patients enrolled in the clinical trial,

the dataset was missing mortality or CT scans from 54 patients. Consequently, 828

patients were included in the mortality classification. The demographic and baseline

clinical characteristics of those patients are given in Table 2.1. In total, 676 of 828

patients survived after 6 months. The clinical characteristics of patients in the two

groups (survival vs. mortality) are also presented in Table 2.1.

To develop the hematoma segmentation algorithm, 120 CT scans from different
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Characteristics Survival (n=676) Mortality (n=152)

Age, years
Median (25th-75th percentile) 32 (23-47) 55 (37.5-68)

Gender, n (%)
Male 500 (74.0) 106 (36.2)

Race, n (%)
Caucasian 513 (75.9) 115 (75.7)
African American 105 (15.5) 17 (11.2)
Asian 22 (3.3) 15 (9.9)
American Indian 5 (0.7) 2 (1.3)
Others or unknown 31 (4.6) 3 (2.0)

Cause of Injury
Motor vehicle accident 272 (40.2) 30 (19.7)
Motorcycle, or scooter accident 132 (19.5) 33 (21.7)
Pedestrian struck by moving vehicle 78 (11.5) 28 (18.4)
Fall 95 (14.1) 37 (24.3)
Assault 36 (5.3) 10 (6.6)
Others or unknown 63 (9.3) 14 (9.2)

Best motor response, n (%)
None/Extension 54 (8.0) 22 (14.5)
Flexor response 77 (11.4) 28 (18.4)
Withdrawal 224 (33.1) 44 (28.9)
Localizes pain/Obeys commands 321 (47.5) 58 (38.2)

Pupillary reactivity, n (%)
Bilateral pupil response 91 (13.5) 34 (22.4)
Unilateral pupil response 566 (83.7) 102 (67.1)
No pupil response 19 (2.8) 16 (10.5)

Marshall Score
I 104 (15.4) 3 (2.0)
II 233 (34.5) 16 (10.5)
III/IV 4 (0.6) 3 (2.0)
V/VI 335 (49.6) 130 (85.5)

Existence of SAH, n (%)
Yes 427 (63.2) 128 (84.2)

Existence of EDH, n (%)
Yes 89 (13.2) 32 (21.1)

Glucose (mmol/l)
Median (25th-75th percentile) 8.0 (6.6-9.4) 8.3 (7.1-9.8)

Hb (g/dl)
Median (25th-75th percentile) 13.9 (12.7-14.9) 13.1 (11.9-14.5)

iGCS
Median (25th-75th percentile) 8 (6-10) 7 (6-9)

GOS
Median (25th-75th percentile) 6 (4-7) 1 (1-1)

Table 2.1: Characteristics of patients.
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patients were first randomly selected. The boundary of brain hematoma was manually

annotated by a radiologist. The annotated cases were randomly divided into Set 1

(100 cases) and Set 2 (20 cases). A 5-fold cross-validation was performed using Set

1 to evaluate the superiority of the proposed segmentation algorithm. Next, using

all of Set 1 as the training set and Set 2 as an independent test set, the proposed

hematoma segmentation framework was compared with other published methods.

For mortality prediction, all patients with available CT scans and mortality in-

formation in the PROTECT dataset were used. For cases in Set 1, the automated

hematoma segmentations were generated using models from the 5-fold cross-validation.

For other cases, the automated hematoma segmentations were generated from the

model using all of Set 1 as the training set. Features from the hematoma segmen-

tation were extracted and combined with essential clinical observations for mortality

prediction. To evaluate the predictive power of the hematoma-relevant features, 10-

fold cross-validation was repeated 50 times to avoid bias from the training and test

data split.

2.4 Methods

2.4.1 Pre-processing

Let us define a CT raw image of size H ×W as Iraw : Ωimg → R, where Ωimg =

{1, 2, . . . , H} × {1, 2, . . . ,W}. Iraw is an image with gray values stored in Digital

Imaging and Communication in Medicine (DICOM) format. In data pre-processing,

the gray value stored in DICOM format is converted to Hounsfield units (HU) by the

linear transformation

IHU = Iraw × slope+ intercept, (2.1)
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where IHU is the transformed image in HU. The parameters slope and intercept are

respectively the rescale slope and rescale intercept retrieved from the DICOM header

file. The contrast is then adjusted by choosing a HU range of interest [a, b]:

I(i, j) =


0 if IHU(i, j) < a

IHU (i,j)−a
b−a × 255 if a ≤ IHU(i, j) ≤ b

255 if IHU(i, j) > b

, (2.2)

where I(x) is the intensity after contrast adjustment at location x ∈ Ωimg. a = 0 HU

and b = 80 HU are commonly used in practice to visualize brain CT images. In this

study, as acute hematomas are brighter than normal brain tissues, a = 0 HU and

b = 140 HU were used as a baseline to capture more pathological tissue. CT images

adjusted using different values of a and b were used in the mixed loss function, which

will be discussed later. After contrast adjustment, the orientation of the 3D brain

object was calculated, and volume rotation performed, to ensure the same orientation

for all cases [47].

2.4.2 Multi-view CNN architecture

Figure 2.1 depicts the architecture of the proposed Multi-view CNN. We now intro-

duce some mathematical notation that will be utilized throughout this section. The

input to the proposed architecture is a 2D adjusted CT image I after pre-processing,

and the output is a probability map O : Ωimg → [0, 1], where the value in each loca-

tion gives the probability of the corresponding pixel belonging to a hematoma. The

ground truth for the network is a binary annotation mask L : Ωimg → {0, 1}, where

one means that the corresponding pixel belongs to a hematoma, and zero that the

pixel belongs to a normal region. F : Ωmap → [0, 1] denotes a feature map for a

convolutional layer, where Ωmap = {1, 2, . . . , H}× {1, 2, . . . ,W}× {1, 2, . . . , C}, with

C the number of features used in the convolutional layer.
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Figure 2.1: Multi-view CNN architecture.
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Three modules denoted as M1, M2, and M3 are involved in the network. M1

consists of two convolutional layers with rectified linear units (ReLUs). Let us denote

a filter of size (2d + 1) × (2d + 1) as k : Ωf → R, where Ωf = [−s, s]2
⋂
Z2, s ∈ Z+,

d ∈ Z+. The convolution operator ∗ between an image I and a filter k can be written

as:

(I ∗ k)(p) =
∑

s+t=p

I(s)k(t), (2.3)

where t ∈ Ωf and s,p ∈ Ωimg. Filters in M1 are all of size 3× 3.

Unlike M1, M2 consists of three consecutive dilated convolutional layers [48], with

respective dilation rates of 1, 2, and 4. The dilated convolution is defined as

(I ∗ k)(p) =
∑

s+rt=p

I(s)k(t), (2.4)

where r is the dilation factor, and r ∈ Z+. Filters in M2 are also of size 3 × 3. In

M2, a long skip layer as proposed in [49] is used to fuse lower-level features with

higher-level ones by concatenating the input of M2 with the output from the last

dilated convolutional layer.

M3 is an output module consisting of three regular convolutional layers, with

filters in the first two layers having a size of 3 × 3, and the last one having a 1 × 1

filter. A pixel-wise softmax activation function follows to generate the probability

map.

The backbone of the architecture is shown in Figure 2.1, which provides an

overview of multi-view integration. The input image I is first fed into an M1 block,

resulting in feature maps F1. As the scale of extracted features is associated with

the size of the convolution operator’s receptive field, M1 is used to extract lower-level

features, which are shared with subsequent paths. F1 is an input to both an M2

block and another M1 block. The M2 block can be regarded as a higher-level feature

extractor following F1, where consecutive dilated convolutional layers enlarge the the-
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oretical size of the receptive field of each element in Q1 to 23×231. The feature maps

Q1 include local features such as the intensity heterogeneity of local image patches,

and shape characteristics of smaller hematomas. F1 is also used as input for a second

M1 in Level 1, after which the spatial size is downsampled to 256× 256. Next, F2 is

also an input to both an M2 block in Level 1 and an M1 block in Level 2. With the

downsampling layer and the dilation in M2, each element in Q2 has a receptive field

of 51×51. As a result, the feature maps Q2 contain more contextual information and

shape characteristics from larger hematomas. Similarly, F2 is downsampled. With

the M2 block following F3, each element in Q3 has a receptive field of 107 × 107,

where anatomical features can be extracted. As dense segmentation tasks require an

output with the same resolution as the input, F3 is upsampled to P2. Q2 and P2 are

concatenated to fuse features extracted from different views. Similarly, Q1 and P1

are concatenated and fed into the M3 block to generate the final probability map.

In summary, a multi-scale representation of the input is generated hierarchically

by downsampling layers, with dilated convolutional layers in M2 blocks extracting

features at multiple scales. Further, multi-scale feature maps Q1, Q2, Q3 are fused

together to segment hematoma of a variety of shapes and sizes. Shown in Figure

2.1, the modules in the red box can be repeated several times to build multi-view

architecture with different levels.

In CT scans from patients with acute TBI, hematoma sizes vary remarkably,

ranging from tiny spots (<50 mm3) to large regions (>50 cm3). The multi-scale

representations created in the proposed architecture can be more powerful in feature

extraction. Figure 2.2 (a) gives an illustration of the importance in fusing multi-scale

feature maps. In the top path, the input is downsampled by an 8 × 8 max-pooling

layer and convolved with a 5 × 5 Laplacian filter (an edge detection filter), where

the receptive field of each element in the resulting feature map is 40 × 40. In the

1A method for calculating the theoretical size of the receptive field was presented in [48].

21



Convolution
2×2

Max-pooling

3×3 Edge 
detection filter

2×2
Up-sampling

Dilated 
Convolution

3×3 Edge 
detection filter

r=2

Convolution
8×8

Max-pooling
8×8

Up-sampling

Convolution

5×5 
Laplacian filter

5×5 
Laplacian filter

(a)

(b)

Patch 1

Patch 2

Patch 3
Patch 4

Figure 2.2: Feature map visualization. (a) Comparison of features maps from filters with
different receptive fields. (b) Comparison of feature maps from using regular convolution
and dilated convolution.

bottom path, the input is directly convolved with the same Laplacian filter, and

the receptive field of each element in the corresponding feature map is 5 × 5. The

feature map from the smaller receptive field contains fine features and is activated at

hematoma boundaries (patch 3) and can detect small hematoma spots (patch 4). In

contrast, the feature map from the larger receptive field is much coarser and activated

at the location of larger hematomas (patch 1) but may miss smaller hematoma spots

(patch 2). In the proposed Multi-view network, feature maps from multiple views

can be generated and fused to facilitate both the accurate delineation of hematoma

boundaries and localization of hematoma with different sizes.

Compared with directly feeding input images at different scales into the network

[50, 51], the proposed architecture uses convolutional layers in M1 to extract lower-

level features that can be shared with subsequent layers while avoiding artifacts from

downsampling. Additionally, the resulting multi-scale feature maps from the M2

block are gradually fused to build a rich representation of the input image.
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The proposed architecture also shares some similarities with U-Net [49], a widely

used image segmentation CNN. U-Net uses a number of downsampling layers to en-

large the receptive field and then upsamples the feature maps to recover the resolution.

In U-Net, high-level features are extracted with a similar and relatively large recep-

tive field, where smaller object information may be lost. The proposed architecture

mitigates this by using a set of M2 modules to generate feature maps at different

scales. Additionally, the dilated convolution used in M2 enlarges the receptive fields

without sacrificing resolution. Figure 2.2 (b) shows an example of performing a reg-

ular convolution and dilated convolution (dilation rate r = 2) with an edge detection

filter, respectively. Max-pooling and upsampling steps are respectively added before

and after the regular convolution to produce the same receptive field as that of the

dilated convolution. Comparing the outputs from the two paths, we observe that

the dilated convolution produces a finer feature map. In the next section, we will

show that the proposed network can achieve both a finer segmentation and higher

hematoma identification accuracy as compared to U-Net.

2.4.3 Mixed loss function

In creating an image segmentation mask, a loss function is commonly devised

using the intersection and union of the ground truth and the produced segmentation.

Given an image IHU , I0 is generated from image enhancement in (2.2) with a = 0 and

b = 140. With I0 as an input, the CNN will generate a probability map O0. Using

O0 and the annotated hematoma mask L, the regular loss for a single image can be

written as:

loss = −2 ∗
∑

x∈Ωimg

L(x)O0(x)

L(x) +O0(x) (2.5)
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In this study, the goal is to build an acute hematoma segmentation system that

is robust to CT scans from multiple health centers with different acquisition and

imaging protocols, as well as patients under different conditions. Under different

imaging settings and patient conditions, the brightness of hematomas as compared

to normal regions in CT scans can be slightly different. For example, in the first 0-4

hours, a 2–4% increased absorption of water in the affected brain regions can decrease

the hypodensity of tissues with hematoma in the range of 2 – 8 HU [52]. The subtle

differences in contrast between normal and hematoma tissues usually are not visually

apparent, and radiologists can still recognize the hematomas with a visual inspection.

However, the hematoma segmentation from a trained CNN can be sensitive to contrast

differences (as discussed further in §2.5.1). To improve the stability of the CNN, a

mixed loss function is proposed by weighting the metrics over images from different

contrast enhancements.

First, images {I0, I1, I2, · · · , IN} are generated with different contrast settings for

IHU by introducing random noise into the contrast enhancement. N is an arbitrary

number denoting the total number of images of random contrast enhancement. While

I0 is generated with a fixed value a = 0 HU and b = 140 HU, Ii (i ∈ {1, 2, · · · , N}) is

enhanced using a = 0 + ci, and b = 140 + di, where ci, di are two noise sample from a

uniform distribution U(−Q,Q), where Q is a positive value and controls the magni-

tude of noise. After a forward pass, hematoma probability maps {O0, O1, O2, · · · , ON}

are generated by the proposed network. To encourage model stability, a mixed loss

function was formulated to reduce the error in probability maps resulting from images

with different contrasts. The mixed loss function can be written as

lossmix = −2 ∗
N∑
i=0

wi
∑

x∈Ωimg

L(x)Oi(x)

L(x) +Oi(x)
, (2.6)

where wi is a weighting factor.
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Unlike data augmentation, which assumes that the label of a sample is invariant

to transformations, changing the contrast may make hematoma tissues less distin-

guishable from healthy tissues, while images generated using a, b values significantly

different from the original ones may be less plausible. To prevent introducing wrong

information into the training process, the contribution of images with different con-

trast enhancements are adjusted by comparing the similarity between those images

and I0. The similarity between Ii and I0 is calculated based on the magnitude of ci

and di. The weighting factor for Ii and Oi can be written as:

wi = 1− |ci|+ |di|
2Q

, (2.7)

where 2Q is the width of the uniform distribution used to generate random noise.

By visually comparing the appearance of the images after enhancement, Q = 30 was

chosen.

2.4.4 Balanced sampling

In general, there are far fewer CT images with hematoma than those without.

The loss function formulations (2.5), (2.6) are only effective when hematoma exists

in the input image. To utilize images without hematoma, the training dataset was

divided into positive and negative pools based on annotations, where the positive pool

contains all images with hematoma and the negative pool contains all those without.

In each training step, B images are randomly selected from each pool and fed into

the network, where B is the batch size for each pool. The calculated probability

maps for those images can be concatenated as a volume V O : Ωv → [0, 1], where

Ωv = {1, 2, . . . , 2B} × {1, 2, . . . , H} × {1, 2, . . . ,W}. The hematoma masks can also

be concatenated and denoted as V L : Ωv → {0, 1}. The loss function in (2.5) in then

25



modified to

loss = −2 ∗
∑

x∈Ωimg

V L(x)V O(x)

V L(x) + V O(x)
. (2.8)

Similarly, the mixed loss in (2.6) is changed to

lossmix = −2 ∗
N∑
i=0

wi
∑

x∈Ωimg

V L(x)V Oi(x)

V L(x) + V Oi(x)
. (2.9)

2.4.5 Quantitative hematoma feature extraction

Using the probability maps output from the CNN, predicted hematoma masks are

generated by assigning each pixel the label with the highest probability. To explore the

predictive power of qualitative and quantitative assessment of hematomas, a number

of features were extracted and used to build a random forest model for predicting

6-month mortality.

Previous studies have shown that the volume and location of hematomas are

important to a patient’s outcome. In this study, a 3D volume registration is used to

estimate location maps for each patient. The head CT scan from one healthy subject

is used as a template, with the annotation of anatomical brain regions including the

frontal lobe, temporal lobe, parietal lobe, occipital lobe, and posterior fossa being

manually drawn by a radiologist. Examples of the template and annotated location

maps are provided in Figure 2.3.

Volume registration was performed using the Elastic toolbox [53] to find the map-

ping between CT scans from two patients. Let us denote brain CT scans from the

healthy subject as Xref : Ωref → R, Ωref = {1, 2, . . . , Dref} × {1, 2, . . . , Href} ×

{1, 2, . . . ,Wref}, where Dref is the number of slices and Href , Wref are the height

and width of the slices, respectively. The annotation of anatomical brain regions
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Figure 2.3: Examples of annotated anatomical regions. (a) Lateral view of the skull in
CT; (b)-(d): Annotated anatomical regions for image planes 1,2, and 3, respectively. Red:
posterior fossa; purple: temporal lobe, yellow: frontal lobe, green: occipital lobe, blue:
parietal lobe.

for Xref can be denoted as Yref : Ωref → {0, 1, 2, 3, 4}, where 0–4 correspond to

frontal lobe, temporal lobe, parietal lobe, occipital lobe, and posterior fossa, re-

spectively. Given a brain CT scan from another patient Xs : Ωs → R, Ωs =

{1, 2, . . . , Ds} × {1, 2, . . . , Hs} × {1, 2, . . . ,Ws}, the coordinate transform from Xs

to Xref can be denoted as T : Ωs → Ωref , which represents the spatial mapping of

every point in Xs to a position in Xref . In this study, an affine transform was used

along with the normalized correlation coefficient (NCC) as a similarity measure. The

optimal T is estimated by maximizing the similarity between Xref and T ◦Xref :

T̂ = arg max
T

NCC(Xref , T ◦Xs) (2.10)
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NCC(Xref , T ◦Xs) =∑
x∈Ωref

(Xref (x)−m1)(T ◦Xs(x)−m2)√∑
x∈Ωref

(Xref (x)−m1)
∑

x∈Ωref
(T ◦Xs(x)−m2)

,
(2.11)

m1 =
1

|Ωref |
∑

x∈Ωref

Xref (x) (2.12)

m2 =
1

|Ωref |
∑

x∈Ωref

T ◦Xs(x) (2.13)

With the optimized T̂ , the unknown location map Ys can be estimated as:

Ŷs = T̂−1 ◦ Yref (2.14)

With volume registration, location maps can be estimated for every patient in

the dataset. Using hematoma segmentations from the CNN and estimated location

maps, six volume features are extracted, including hematoma volume in the frontal

lobe, temporal lobe, parietal lobe, occipital lobe, and posterior fossa, as well as total

head hematoma volume.

Previous studies also found that irregular hematomas such as hematomas with

pleomorphic contour, separated adjacent hematomas, and multi-centric hematomas

are related to poor outcomes [18]. To incorporate this information into the model, the

convexity of the largest hematoma, intensity heterogeneity of the largest hematoma,

and the number of hematomas are extracted as shape features from each segmenta-

tion.
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Category Feature list

IMPACT
core model

Age, Motor score, Pupillary reactivity

IMPACT
extended model

Age, Motor score, Pupillary reactivity, Existence of hypoxia†,
Existence of hypotension†, Marshall CT classification,
Existence of traumatic SAH, Existence of EDH

IMPACT
lab model

Age, Motor score, Pupillary reactivity, Existence of hypoxia†,
Existence of hypotension†, Marshall CT classification,
Existence of traumatic SAH, Existence of EDH,
Glucose concentration, Hb concentration

IMPACT
without CT
features

Age, Motor score, Pupillary reactivity, Existence of hypoxia†,
Existence of hypotension†, Glucose concentration,
Hb concentration

Volume
Hematoma volume in frontal lobe, temporal lobe,
parietal lobe, occipital lobe, posterior fossa;
total hematoma volume

Shape
The number of hematomas, convexity of the largest
hematoma, intensity heterogeneity of the largest
hematoma

Table 2.2: Feature sets for 6-month mortality prediction.
† The feature “existence of hypoxia” and “existence of hypotension” are used in IMPACT

models. However, in this study, these two features have no predictive power because
patients with hypotension and hypoxemia were excluded in the enrollment stage by

PROTECT trial study group [46].

29



2.4.6 Mortality prediction

A number of clinical observations have been found to correlate with mortality

in TBI patients. The three IMPACT [32] models are prognostic models of outcome

prediction for patients with TBI that have been widely used and validated. The IM-

PACT core model includes age, GCS, and pupillary reactivity as core features. The

IMPACT extended model includes core features, information on secondary insults and

CT findings. The IMPACT laboratory model includes all features in the extended

model plus blood hemoglobin and glucose concentrations. These features are patient

characteristics that could be determined easily and reliably within the first few hours

after injury. Full lists of features used in the three IMPACT models are given in

Table 2.2. The laboratory IMPACT model includes manually evaluated qualitative

and semi-quantitative measurements from CT scans, such as the Marshall CT clas-

sification, presence of traumatic SAH or EDH. To explore the predictive power of

quantitative hematoma characteristics from automated hematoma segmentation, an

IMPACT feature subset was created by removing CT scan features in the IMPACT

full feature set (“IMPACT without CT features” in Table 2.2).

In this study, two types of baselines were built for predicting 6-month mortality.

One baseline combines the original IMPACT models with logistic regression, while the

other constructs a random forest model on the“IMPACT lab model feature list” shown

in Table 2.2. After that, the “IMPACT without CT features” subset was combined

with quantitative hematoma features derived from hematoma segmentation (i.e., the

volume and shape features in Table 2.2). Random forest models were trained on the

combined feature sets, and the prediction performances were compared with the two

baselines. To avoid bias from data splitting, 10-fold cross-validation was performed.

AUPRC, AUC, F1 score, sensitivity, specificity, and precision were used for model

evaluation and comparison. The average value and standard derivation of evaluation

metrics were also calculated.
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Model Dice Jaccard ICC

Proposed Models
with Regular Loss

Multi-view Level 0 0.546 (0.042) 0.365 (0.054) 0.724 (0.033)
Multi-view Level 1 0.608 (0.015) 0.458 (0.015) 0.925 (0.008)

Multi-view Level 2 0.669 (0.019) 0.523 (0.027) 0.953 (0.018)
Multi-view Level 3 0.669 (0.024) 0.521 (0.033) 0.952 (0.019)
Multi-view Level 4 0.665 (0.018) 0.518 (0.024) 0.937 (0.020)

U-Net with
Regular Loss

U-Net Level 3 0.642 (0.020) 0.494 (0.022) 0.911 (0.010)
U-Net Level 4 0.650 (0.029) 0.508 (0.019) 0.934 (0.014)
U-Net Level 5 0.640 (0.014) 0.500 (0.014) 0.929 (0.017)

Mixed Loss
Multi-view Level 2 0.675 (0.020) 0.529 (0.018) 0.959 (0.013)

U-Net Level 4 0.660 (0.029) 0.517 (0.025) 0.952 (0.013)

Table 2.3: Segmentation performance comparison between Multi-view networks and U-Net
from a 5-fold cross-validation on Set 1. The average value and standard deviation from five
folds are given. ICC is the intraclass correlation coefficient.

2.4.7 CNN configurations

The CNN was implemented using the TensorFlow library (v.1.10) and trained on

an NVidia Tesla V100. Random left-right flipping and the elastic transformation were

used to augment our training data. The Adam optimizer was chosen with a learning

rate of 10−3 to minimize loss. The model was trained for 20,000 steps with a batch

size B of 1 for both positive and negative pools. The hyper-parameters of the CNN

models were determined using a second 5-fold cross-validation on the first fold of Set

1. Different combinations of the learning rate, batch size, and training steps were

tested, and the optimal set of hyper-parameters was chosen using the average Dice

coefficient.

2.5 Results and Discussion

2.5.1 Network performance comparison on Set 1

As discussed in §2.4.2, the Multi-view block in Figure 2.1 can be repeated multiple

times. Shown in Figure 2.1, the Multi-view Level 0, Multi-view Level 1, and Multi-

view Level 2 networks are built with 0, 1, and 2 Multi-view blocks, respectively.
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CT scan Annotation Level 0 Level 1 Level 2

(a)

(b)

(c)

Figure 2.4: Comparison of hematoma segmentation from Multi-view Level 0, Level 1, and
Level 2. Annotated and predicted hematomas are shown in red.

The proposed Multi-view network with different numbers of Multi-view blocks was

trained with regular loss and tested with 5-fold cross-validation. From Table 2.3,

the segmentation performances are significantly improved from Multi-view Level 0 to

Multi-view Level 2, which shows the advantage of fusing feature maps from multiple

scales. We can also observe that the performances are similar from Multi-view Level 2

to Multi-view Level 4. This may be because the size of the receptive field in Multi-view

Level 2 is large enough to capture sufficient contextual information. The receptive

field sizes of the last M2 module in Multi-view Level 3 and Multi-view Level 4 are

219 × 219 and 443 × 443, respectively. Considering that the spatial size of the CT

scan is usually 512 × 512, features extracted from that broad a receptive field may

not add much value to hematoma segmentation.

In Figure 2.4, segmentation results from Multi-view Level 0, Multi-view Level

1, and Multi-view Level 2 are compared. Three example CT images with different

types of hematoma are shown. Multi-view Level 0 has very good sensitivity for
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small hematomas. However, because of the limited size of the receptive field, many

false-positive regions exist, and large hematomas cannot be detected very well, which

coincides with the analysis in Figure 2.2 (a). With the introduction of the Multi-view

block, the hematoma detection specificity increases without missing small hematomas.

We also compared the performance of the proposed architecture with U-Net. The

original U-Net contains four downsampling layers (U-Net Level 4). Some variants

were also proposed with three or five downsampling layers. From Table 2.3, U-Net

Level 4 has the best segmentation performance while the performance of U-Net Level

5 decreases because of the network’s depth. In contrast, the additional Multi-view

block in Multi-view Level 3 and Multi-view Level 4 does not reduce the segmentation

performance as high-level feature maps from multi-scales are extracted hierarchi-

cally and then fused with subsequent convolutional layers. From the comparison, the

proposed architecture has a better performance than U-Net. Using the multi-view

strategy can also help eliminate the careful designing of the depth of the convolutional

neural network.

Next, Multi-view Level 2 and U-Net Level 4, which are the best performing net-

works in their respective categories, were re-trained with mixed loss. From Table 2.3,

we can observe that the proposed mixed loss consistently leads to improvement in

segmentation performance for both U-Net and proposed Multi-view network. Figure

2.5 presents two examples of segmentation results from Multi-view Level 2 with and

without mixed loss. The effect of varying image contrast on hematoma segmentation

performance is shown. Given a raw CT scan, three contrast adjustments were per-

formed using a = 0 and b ∈ {120, 140, 160}. The three resulting images differ slightly

in brightness and in the number of artifacts from contrast adjustment. While visual

differences across the three contrast adjustments are small, segmentation results from

the resultant models trained using regular loss change substantially. In the first exam-

ple, the segmentation is most accurate when b = 160 while the false positive regions
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Regular Loss

Mixed LossAnnotation
b=140 b=140b=120 b=160

b=140b=120 b=160

(a)

(b) Annotation
b=140

Figure 2.5: Segmentation comparison between results from (a) Multi-view Level 2 with
mixed loss and (b) Multi-view Level 2 with regular loss. Images with different contrast
were generated with varied b values. Annotated and predicted hematomas are shown in
red.

extend significantly when b is decreased. In the second example, the segmentation

is most accurate when b = 120 while the false negative region appears when b is in-

creased. This may be because the optical window settings to distinguish normal and

abnormal tissues are different for these two examples. In contrast, segmentation from

the model trained using mixed loss is more consistent when b varies. In the second

example, no changes are observed in segmentation with different b values. Using the

default value b = 140 always leads to accurate segmentation.

Finally, we compared the segmentation performance and volume estimation be-

tween the proposed method (Multi-view Level 2 with mixed loss) and U-Net from the
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CT scan

Annotation

U-Net 

Proposed 

(a) (b) (c) (d) (e)

Figure 2.6: Segmentation comparison between the proposed network (Multi-view Level 2
Network with mixed loss) and U-Net (U-Net level 4 with regular loss). Annotated and
predicted hematomas are shown in red.
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Figure 2.7: Correlation graph and Bland–Altman plot for estimated hematoma volumes us-
ing the proposed network (Multi-view Level 2 Network with mixed loss) and U-Net (U-Net
level 4 with regular loss). (a) Correlation graph. The blue line is the fitted linear regression
line. The black dashed line is the calibration line. ICC is the intraclass correlation coeffi-
cient; (b) Bland–Altman plot for volume differences. The mean difference and the standard
deviation (SD) of the differences are shown; (c) Bland–Altman plot for the percentage of
volume differences of annotated volumes.
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previous publication (U-Net Level 4 with regular loss) in Figures 2.6 and 2.7. From

Figure 2.6 (a), we can observe that the segmentation from Multi-view Level 2 has a

finer boundary while U-Net missed a small hematoma. In Figure 2.6 (b), the brighter

region in the occipital lobe is misidentified as a hematoma. In Figure 2.6 (e), the

bright region at the midline is misidentified as hematoma, while the real hematoma

on the left side is missed. Overall, the proposed network has a higher true positive

rate and lower false positive rate for hematoma detection while producing a more

refined hematoma boundary delineation.

Figure 2.7 presents the quantitative performance of volume estimation. The seg-

mentation results on the validation sets from the five folds are used to estimate the

total hematoma volume for each patient. The hematoma volume is calculated as:

Np × slice spacing × pixel spacing2, where Np is the number of pixels belonging

to hematoma in the patient’s CT scan. From Figure 2.7, good agreement between

the hematoma volumes from the proposed network’s segmentation and those from

the annotations can be observed. Segmentation from the proposed network achieves

an ICC of 0.96 between the volumes of the predicted hematoma segmentation and

volumes of the annotated hematoma segmentation, which is better than the segmen-

tation from U-Net. For the proposed network, the median volume difference is -2.38

(-9.0, 2.0) cm3, and the median absolute volume difference is 6.12 (2.11, 12.98) cm3.

The bracketed values are the 25th and 75th percentiles, respectively. For U-Net, the

median volume difference is -3.72 (-13.94, 1.68) cm3, and the median absolute volume

difference is 6.82 (2.37, 15.23) cm3. From the Bland–Altman plot, we can observe

that the estimated volumes based on the segmentations from the proposed model

have lower standard deviation.
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Model Description Dice Jaccard ICC

Multi-view+Mixed loss 0.697 (0.100) 0.545 (0.116) 0.966
Multi-view+Regular loss 0.686 (0.112) 0.534 (0.126) 0.964

U-Net [49] 0.654 (0.135) 0.511 (0.142) 0.948
ICHNet [54] 0.635 (0.104) 0.473 (0.107) 0.917

3D U-Net [30] 0.581 (0.155) 0.429 (0.128) 0.891
3D Active Contour [29] 0.496 (0.154) 0.343 (0.132) 0.823

Table 2.4: Hematoma segmentation performance comparison between the proposed method
and published methods on Set 2. The average value of evaluation measurements and stan-
dard deviation among CT scan cases are given. ICC: intraclass correlation coefficient be-
tween the estimated volumes and annotated volumes.

2.5.2 Network performance comparison on Set 2

The Multi-view Level 2 with mixed loss was compared with other published seg-

mentation methods. The results are shown in Table 2.4, where Dice coefficient, Jac-

card index, sensitivity, specificity, precision and ICC between the estimated hematoma

volumes and annotated hematoma volumes are presented for comparison. All models

were trained using all cases in Set 1 and tested on Set 2. From the table, Multi-

view Level 2 with mixed loss achieved the best segmentation performance, having

the highest Dice coefficient, Jaccard index, and ICC. From our results, the ICHNet

[54] and 3D U-Net [30] have a higher sensitivity while precision is significantly lower

than other methods. From the results using 3D U-Net, the introduction of 3D con-

textual information did not improve the overall segmentation performance. This may

be due to the dataset being comprised of CT scans collected from multiple centers

with varying slice spacing. Training a 3D network on such cases may impair model

performance.

2.5.3 Mortality prediction

The results of the 6-month mortality prediction are shown in Table 2.5. One

observation from the table is that the AUPRC and F1 are much smaller than AUC.
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Model AUPRC AUC F1 Recall Precision

IMPACT lab model
feature list + Volumes

0.563
(0.076)

0.852
(0.038)

0.617
(0.057)

0.684
(0.100)

0.586
(0.102)

IMPACT w/o CT features
+ Volumes

0.559
(0.072)

0.853
(0.034)

0.621
(0.060)

0.700
(0.107)

0.580
(0.101)

IMPACT lab model
feature list

0.498
(0.072)

0.819
(0.038)

0.561
(0.069)

0.677
(0.128)

0.504
(0.108)

IMPACT without
CT features

0.441
(0.068)

0.776
(0.046)

0.539
(0.049)

0.639
(0.089)

0.480
(0.080)

original IMPACT
core model

0.379
(0.065)

0.798
(0.038)

0.478
(0.045)

0.704
(0.127)

0.381
(0.083)

Table 2.5: Comparison of 6-month mortality prediction using different combinations of
feature sets. The last three models (original IMPACT lab model, original IMPACT extended
model, original IMPACT core model) were built by logistic regression while the others were
built using random forest. The average value of evaluation measurements and standard
deviation of the 10-fold cross-validation are given.

This is due to the class imbalance in the dataset, where the ratio of the number of

positive samples (mortality) to negative samples (survival) is around 1:4.5.

Among the three original IMPACT models [32], the IMPACT lab model achieved

the highest performance, with an average AUPRC of 0.427 and AUC of 0.798. Using

“IMPACT lab model feature list”, the random forest model achieved an average

AUPRC of 0.498 and AUC of 0.819. As IMPACT features include qualitative and

semi-quantitative findings from CT scans, a random forest model was trained using

only “IMPACT without CT features”. The classification performance decreased with

an average AUPRC of 0.441 and AUC of 0.776, which indicates the predictive power

of CT findings.

Next, the predictive power of volume features and shape features derived from

the automated hematoma segmentation was explored. From the experimental re-

sults, adding either volume features or shape features to “IMPACT without CT

features” resulted in significant and consistent improvements in classification per-

formance. Adding volume features to “IMPACT without CT features” resulted in an

average AUPRC of 0.559 and AUC of 0.853, while adding shape features to “IMPACT

without CT features” resulted in an average AUPRC of 0.539 and AUC of 0.841.
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However, when both volumes and shape features were added, no further improve-

ment in classification performance was observed. This may be because hematoma

shape is related to hematoma size and growth. A previous study has shown that

large hematomas are significantly more irregular in shape and heterogeneous in den-

sity [55].

Finally, a model combining “IMPACT lab model feature list” and volume features

was trained. The overall classification performance is very close to using the combi-

nation of “IMPACT without CT features” and volume features, which indicates that

our automated quantitative measurements without manual evaluation can provide

sufficient information regarding hematoma. Considering that a ML algorithm seeks

to utilize a minimal set of features with sufficient information to perform a classifica-

tion task, the combination of “IMPACT without CT features” and volume features

extracted from the automated hematoma segmentation should be considered the best

feature set to construct a 6-month mortality prediction model.

2.5.4 Feature analysis in mortality prediction

To investigate the contribution of features in mortality prediction, we first ana-

lyzed the correlation between individual features in “IMPACT lab model features list

+ Volume features” and mortality. In Table A.1, for features included in “IMPACT

lab model feature list”, we can observe that patients who do not survive are sig-

nificantly older, with significantly worse motor response, worse pupillary reactivity,

higher Marshall score, more traumatic SAH, and lower Hb concentration. The dif-

ferences in the existence of EDH and glucose concentration are not significant (if the

threshold p<0.001 is deemed significant). In Table A.1, patients who do not survive

have significantly higher hematoma volumes in each anatomical region.

In addition to the correlation between a single feature and the mortality, we cal-

culated feature importance in the random forest models. Feature importance was
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Figure 2.8: Feature importance in the random forest models. (a) Feature importance in
the random forest model with “IMPACT lab model feature list”. (b) Feature importance
in the random forest model with “IMPACT lab model features list + Volume features”.
The importance of “existence of hypotension” and “existence of hypoxia” from “IMPACT
lab model feature list” are not shown because patients presenting with hypotension and
hypoxemia were excluded from the PROTECT III trial [46].

calculated by how much each feature contributes to decreasing the impurity. Fig-

ure 2.8 compares feature importance in the random forest model with “IMPACT lab

model features list + Volume features” with that of the random forest model with

“IMPACT lab model feature list”. From Figure 2.8, in the random forest model

using the “IMPACT lab model feature list”, CT findings such as Marshall CT classi-

fication and existence of traumatic SAH have a quite high importance. However, in

the random forest model with “IMPACT lab model features list + Volume features”,

the importance of all CT findings in ”IMPACT lab model feature list” decreased

while Volume features have a higher importance. The feature importance compari-

son further suggests that our automated quantitative measurements without manual

evaluation can provide sufficient and richer information regarding hematoma. From

Figure 2.8, we can observe that the epidural hematoma and glucose concentration
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has very low feature importance in both models, which is consistent with the result

in Table A.1 that the differences between the existence of epidural hematoma and

glucose concentration are not significant.

The features “existing of hypotension” and “existence of hypoxia” from “IMPACT

lab model feature list” were not included in the above feature analysis because patients

presenting with hypotension and hypoxemia were excluded from the PROTECT III

trial [46].

2.5.5 Limitations

There are some limitations to this study that should be considered when inter-

preting the results. First, while it is known that specific hematoma types may dif-

ferentially impact mortality, the current methods are not able to distinguish various

hematoma subtypes. Instead, the proposed CNN model segments the total acute

blood volume in the brain. We have performed some prior work on developing algo-

rithms that can distinguish specific hematoma subtypes, such as subdural hematoma

[56]. In the future, the development of comprehensive methods to separately quantify

individual hematoma subtypes may further enhance the predictive accuracy of these

methods. Second, although our dataset has the advantage of including patients with

moderate and severe TBI from multiple centers using many different types of CT

scanners, and that we used 10-fold cross-validation to test the mortality classification

models, validation of our findings on additional external datasets remains a necessary

next step. Because our dataset is limited to patients presenting to academic medical

centers who met eligibility criteria for enrollment in a randomized controlled trial, the

results may not generalize as well to the overall population of patients with moderate

and severe TBI. Patients with physiological findings of hypotension and hypoxemia

were excluded from the PROTECT III trial, so the contribution of these important

clinical variables could not be assessed.
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CHAPTER III

Automated Feature Extraction from Colonoscopy

Videos and Outcome Prediction for Patients with

Ulcerative Colitis

3.1 Introduction

Optical colonoscopy is a medical procedure to inspect the mucosal surface to

detect abnormalities in the colon. It is an indispensable tool for evaluating many

gastrointestinal diseases. During the procedure, a flexible probe with a charge-coupled

device camera and a fiber optic light source at the tip is inserted into the rectum and

advanced through the colon. After reaching the proximal portion of the intestine

(typically the cecum or ileum), the physician withdraws the colonoscope and visually

inspects the tissue surface for abnormalities.

Colonoscopy is the primary tool used to screen for colorectal cancer and precan-

cerous lesions and is recommended for all adults over age 50, with repeated exams

every 3-10 years based on risk stratification [57, 58]. Additionally, colonoscopy is

commonly used to locate and treat sources of lower gastrointestinal bleeding [59, 60].

Colonoscopy is also used to investigate causes of diarrhea, in particular, inflamma-

tory bowel diseases (IBD) [61]. Inspection of the mucosal surface by colonoscopy

is particularly important in IBD, where disease severity assessment and monitoring
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of treatment effectiveness are heavily dependent on the findings of repeated colono-

scopies [62, 63, 64]. In this chapter, we focus on patients with UC. However, the

proposed colonoscopy video analysis system is expected to be transferable to other

colon diseases. Endoscopic evaluation is a principal component of definitions for dis-

ease severity and therapeutic response used in both the assessment of investigational

medications and the day-to-day decision-making for the patient with UC. Although

existing biomarkers, such as fecal calprotectin and histopathologic scoring, provide

additional measures of biological disease activity, endoscopy continues to serve as the

reference for objective disease assessment. As a result, routine endoscopy to assess

disease status is recommended in the recently published American College of Gas-

troenterology clinical management guidelines, the STRIDE (Selecting Therapeutic

Targets in Inflammatory Bowel Disease) international consensus statement, and by

regulators in the setting of clinical trials [62, 65, 66].

Mayo endoscopic subscore (MES) is the most commonly used severity score to

summarize the entire colonoscopy video because of its simplicity and physician fa-

miliarity [67]. The MES is a 4-level scale of severity [range, 0-3] with higher scores

reflecting increasing disease severity based on features including erythema, erosions,

ulcerations, and bleeding [68]. Beyond assessing therapeutic effect, low or reduced

MES scores are associated with a lower risk of future colectomy and clinical relapse

[69, 70]. However, conventionally-used endoscopic severity scores such as MES are

qualitative and sparse. In addition, human interpretation of colonoscopy videos is

time-consuming and subject to inter-observer variation, threatening the accuracy and

reproducibility of these important assessments and limiting tracking of the evolution

of findings from colonoscopy over time. When asked to grade overall disease severity

using endoscopic videos, 10 IBD specialists had 78% agreement when the severe dis-

ease was present, but only 37% and 27% agreement for moderate disease and normal,

respectively [71].
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Thus, there is a need to automate the analysis of colonoscopies to standardize

reporting so that disease assessments are uniform regardless of colonoscope operator

experience. An automated colonoscopy analysis system holds the potential to extract

a more comprehensive patient profile which can be more informative in diagnosis,

treatment recommendation, or outcome prediction.

This chapter aims to develop a novel colonoscopy-based CDS system that can

extract comprehensive feature representation from colonoscopy videos to evaluate

the patient’s condition and outcome. An overview of the proposed system is shown in

Figure 3.1. To analyze colonoscopy videos, non-informative frame detection, biopsy

forceps detection, disease severity score classification, and location estimation for

individual frames are proposed. For the disease severity score classification, we adapt

the definitions of score levels in MES to grade the severity of individual frames. To

avoid confusion, in this chapter, “MES” refers to the conventional MES used for the

entire colonoscopy video, and “severity score” refers to the score for the individual

frame. Figure 3.2 shows examples of colonoscopy frames with severity score 0 to 3.

After the contextual information extraction, a disease severity distribution can be

derived over the entire colon. A novel feature representation is extracted from the

distribution. Later, decision-making models are built that can estimate MES and the

patient’s outcome. Our hypothesis is that the agreement between estimated MES and

manually annotated MES is close to an inter-observer agreement. And the feature

representation from the severity distribution is expected to have a higher predictive

value than conventional MES in estimating the patient’s outcome.

As far as our knowledge, there is no existing work on the proposed colonoscopy-

based CDS system. Image classification has been the focus of existing efforts in auto-

mated colonoscopy video analysis, such as informativeness classification and polyps

detection. Camera localization is an important component for interpreting findings

and calculating severity distribution. Localizing lesions can help generate contex-
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Figure 3.1: An overview of the proposed colonoscopy-based CDS system for patients with
UC.

Normal: 0 Mild: 1 Moderate: 2 Severe: 3

Intact vascular
pattern

Spontaneous
bleeding, ulceration

Erythema, decreased
vascular pattern, mild

friability

Marked erythema,
absent vascular pattern,

friability, erosions

Figure 3.2: Examples of frames with graded severity sore 0 to 3 using MES concepts and
definitions.
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tual information by providing anatomical awareness. The localization of the camera

can help improve the accuracy in diagnosis and prognosis of multiple diseases identi-

fied by colonoscopy, including cancer position and burden, bleeding source, and IBD

distribution [72, 73, 74, 75]. Existing methods for endoscopic object localization fall

into two categories: sensor-based localization methods [76] and computer vision-based

camera motion estimation methods [77, 78]. While sensor-based methods can provide

the absolute position, a relative position of the camera with respect to the end and

start of the colon may be sufficient for a contextual understanding of colon features.

Sensor-free methods of camera location estimation using computer-vision methods are

likely to sacrifice marginally relevant accuracy in exchange for improved feasibility.

Sensor-free camera localization methods are attractive as no additional equipment is

needed, allowing for rapid integration into clinical workflows, wide availability, and

low financial cost.

The main contributions of the work in this chapter are as follows:

1. A novel camera localization algorithm is designed that overcomes the challenges

of motion tracking in colonoscopy videos. Significant modifications are made

over previous methods (will be discussed in §4.2) to improve the performance of

pose estimation in endoscopic videos. With the camera pose estimation, a novel

relative location index estimation and anatomical colon segment classification

algorithm is devised to provide location awareness for individual frames from

colonoscopy videos.

2. A novel contextual understanding method is proposed based on the results from

image classification models (non-informative image classification, image severity

classification, and biopsy forceps detection) and camera localization algorithm.

It is the first time that a spatial disease severity distribution over the entire colon

is derived for individual colonoscopy videos. A novel feature representation is

extracted from the estimated disease severity distribution to capture the disease
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characteristics from a colonoscopy video, with which an MES estimation model

and outcome prediction model are built.

3. The proposed camera localization algorithm has been applied to colonoscopy

videos collected from routine practice. The videos and frames were anno-

tated by experienced gastroenterologists. The performance of the anatomi-

cal colon segment classification is compared with other methods. An addi-

tional metric is calculated using data from ScopeGuide® (Olympus Corpo-

ration, https://www.olympus-global.com/) to evaluate the relative location

estimation, which can provide approximate length information of the inserted

scope into the colon. The location index derived from ScopeGuide length is com-

pared with the location index estimated from the proposed localization system.

To the best of the authors’ knowledge, it is the first time that a localization

system has been proposed and evaluated on colonoscopy videos from routine

practice.

4. The proposed CDS models has been validated on colonoscopy videos collected

from routine practice and clinical trials. Our experimental results support the

potential for artificial intelligence to provide endoscopic disease grading in UC

that approximates the scoring of experienced reviewers. Based on the feature

representation extracted from the disease severity distribution, the outcome

prediction model shows a significantly higher performance compared with the

one with MES only. It indicates that a more comprehensive patient profile can

be extracted to better capture the disease characteristics with the proposed

automated colonoscopy video analysis method.
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3.2 Related Work

3.2.1 Related work on image classification

Several methods have been proposed for non-informative colonoscopy image clas-

sification. Texture analysis using Local Binary Patterns on the frequency domain was

presented in [79] to detect the non-informative frames. A set of convolutional neural

network (CNN) architectures was explored in [80] and the effectiveness of CNNs in

image classification was demonstrated. In [81], non-informative frames were classified

through motion, edge, and color features. Most of the previous methods have focused

on either hand-crafted feature extraction or end-to-end DL techniques.

Our preliminary work on informative frame classification was described in [82]. In

that work, hand-crafted features were combined with bottleneck features for image

classification. From the experimental results, the combination of bottleneck features

in the RGB color space, and hand-crafted features in the hue-saturation-value color

space can boost the classification performance when the size of the training set is

small. Later, we found that the DL method alone achieved comparable performance

when applying this method to the larger dataset of the current study. As a result, in

this study, a CNN was used directly for image classification.

3.2.2 Related work on camera pose estimation

3.2.2.1 Self-supervised learning for camera pose estimation on monocular

videos

DL architectures have achieved success in relative camera pose estimation and

single view depth estimation [83, 84, 85] on monocular videos. While traditional

camera pose estimation algorithms, such as visual odometry, are effective in certain

settings, their reliance on accurate image correspondence matching causes problems

when the images are of low texture and from a complex environment. DL methods
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may overcome these challenges by additional supervision.

Based on the view synthesis technique [86], then photometric error between the

synthesized new view and real new view can be used as supervision to train the

network, which eliminates the requirement for ground truth data. In [87], an end-

to-end framework named “SfMLearner” was proposed to jointly train the single view

depth and camera pose using projection error. This framework utilized unlabeled

data but had a performance comparable with approaches that require ground truth.

Authors in [88] proposed a simple normalization of the estimated depth map, which

can effectively avoid depth prediction saturating to zero. In addition, a Direct Vi-

sual Odometry [89] pose predictor was incorporated into the end-to-end training to

establish a direct relationship between the depth map and the camera pose predic-

tion. Joint pose and depth estimations prevent the determination of absolute scale.

To recover the absolute scale, UnDeepVO, proposed in [90], was trained using stereo

image pairs. After training, the model was tested on consecutive monocular images,

yielding good performance on pose estimation.

In the self-supervised framework using photometric loss, several assumptions are

implicitly made, including (1) a static scene; (2) Lambertian reflectance, i.e., the

brightness is constant regardless of the observer’s viewing angle; (3) no change in

lighting between two consecutive frames; and (4) no occlusion between two consec-

utive frames. These assumptions may fail in real-world applications. A number of

studies proposed additional loss terms to improve the robustness of the network in

these circumstances. In [91], in addition to photometric loss, deep feature-based warp-

ing loss was proposed to take contextual information into consideration rather than

per-pixel color matching alone. Salient feature correspondences were extracted in [92],

and a matching loss constrained by epipolar geometry was proposed to improve net-

work optimization. GeoNet was proposed in [93] to jointly estimate monocular depth,

camera pose, and optical flow. A geometric consistency measurement was proposed
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as an additional loss term to improve the network’s resilience to outliers. The GeoNet

model achieved state-of-art performance on the KITTI dataset [94] for all three tasks.

In [95], the self-supervised framework was extended by applying the Charbonnier

penalty to combine spatial and temporal reconstruction losses. In [96], a geometry

consistency constraint was proposed to enforce the scale-consistency of depth and

pose networks. Their results showed that the proposed pose network achieves per-

formance commensurate with methods using stereo videos. In [97], a re-estimation

approach was proposed where the camera pose estimation was decomposed into a

sequence of smaller pose estimation problems. For smaller pose estimation problems,

the assumptions made in camera pose estimation algorithms are more likely to hold.

3.2.2.2 Vision-based camera pose estimation in monocular endoscopic

videos

Camera motion tracking in endoscopic videos has been investigated in a few stud-

ies previously. An optical flow approach to tracking colonoscopy video was pro-

posed in [78]. The focus of expansion (FOE) was calculated using a combination of

sparse and dense optical flow calculations. Based on calculated FOE, the computa-

tion of the camera’s rotation and translation parameters from the optical flow field

were separated. This approach is sensitive to optical flow and FOE calculations. In

[77], Kanade-Lucas-Tomasi features were extracted and tracked through consecutive

frames. After that, a visual odometry algorithm was used to calculate camera motion

by assuming each pair of consecutive frames to be a stereo pair. In this approach,

the translation estimation is subject to arbitrary scaling and the camera’s speed is

required.

DL has also been applied to camera pose estimation for endoscopic videos. A

CNN was proposed in [98] to estimate the pose of the colonoscope. The network

was trained and evaluated on simulated videos. Their results showed that the pose
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estimation from CNN was more accurate and faster than feature-based computer

vision methods. In [99], the depth map was first estimated from images using the

Tsai–Shah Shape from Shading method [100]. After that, a recurrent convolutional

neural network was applied to model dynamics across the frames and estimate the

camera pose. While the evaluation on a real pig stomach dataset showed that the

method achieved high translational and rotational accuracy, ground truth for camera

pose was also required to train the network. A self-supervised framework has also

been applied to endoscopic videos. In [101], SfMLeaner was applied to estimate the

motion of the endoscopic capsule robot. Evaluations on videos collected from ex-

vivo porcine stomach were used to demonstrate the effectiveness of the method. In

[102], a calibration-free framework was proposed by estimating the camera intrinsic

parameters. In [103], temporal information among consecutive frames was explored

by a long-short-term-memory layer to improve the accuracy of pose estimation. In

[104], a self-supervised network was applied to generate pseudo-RGBD frames for

endoscopic videos. The camera’s ego-motion was estimated using a keyframe-based

photometric method and then used for scene reconstruction. In [105], a public dataset

and a self-supervised network were developed for camera motion and depth estimation

in endoscopic videos, where a spatial attention module was developed to encourage

the network to focus on highly textured tissue regions.

3.2.2.3 Motivation of the proposed camera pose estimation algorithm in

this chapter

Recent progress in self-supervised camera pose estimation has focused on extend-

ing the framework and loss function to improve the network’s robustness to violations

of the assumptions made by photometric loss. The majority of the methods were

trained and validated on the KITTI dataset, which has fewer rotational variations.

The self-supervised framework proposed for driving videos has already been success-
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fully applied to endoscopic videos. However, one important limitation of existing work

is that they were only validated on either simulated endoscopic videos or a sequence

of selected frames from real videos.

The aim of this study is to track the camera within colonoscopy videos. Camera

motion tracking in the colon environment can be very challenging because of its

complex geometry and a low and similar textural pattern across the colon. From

a previous study, a DL-based motion estimation method is more suitable than a

feature matching based system [99]. For colonoscopy videos, the motion between

two consecutive frames is usually quite small. As such, one can assume the scene

is static and lighting changes minimal in the absence of biopsies. However, in the

colon environment, the assumption of a Lambertian surface may not hold due to the

presence of surface moisture. Specular regions may exist where the brightness can

change significantly under different viewing angles. The existence of specular regions

impairs the calculation of photometric loss and that of other previously proposed loss

terms such as image similarity loss [93] and feature matching-based loss[91].

To overcome this challenge, a specular mask is estimated by extending the network

to correct the photometric loss. Additionally, optical flow was added as input and

a calculated motion consistency term was used to to improve the robustness and

generalizability of the network. As the intrinsic complexity of the colon environment

poses several challenges to camera motion estimation, it is necessary to validate the

proposed method using real colonoscopy videos from routine practice.
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3.3 Datasets

3.3.1 Dataset for non-informative frame classification and biopsy detec-

tion

Colonoscopy videos were collected from patients undergoing routine colonoscopy.

Each colonoscopy collected was from a unique subject. Videos were recorded at 1920×

1080 resolution 10-bit color depth, and 60 frames per second (FPS). All colonoscopies

were performed using a CF-HQ190 or PCF-H190 colonoscope and CLV-190 image

processors (Olympus Corporation, Inc). Videos are from patients with UC diagnosis

that was defined using the following factors: two administrative diagnosis codes for

UC (ICD-9 or ICD-10) on two separate encounters, prior histologic UC diagnosis, and

the use of at least one UC medication [106].

For non-informative frame classification and biopsy detection, frames were sam-

pled at 1 FPS from 29 colonoscopy videos. In total, the image classification dataset

contains 34,810 frames, which were manually annotated by a gastroenterologist. In

this study, frames captured in close proximity to the colon wall, with significant mo-

tion blur, with over- or under-exposure, or those captured outside of the body were

annotated as non-informative. Figures 3.3 (a)-(b) present examples of informative

frames while Figures 3.3 (c)-(g) present examples of non-informative frames. 24,425

of 34,810 frames were annotated as non-informative (labeled as “1”), with the me-

dian percentage of non-informative frames in each colonoscopy video being 59.8%.

For biopsy forceps detection, 932 frames were manually annotated as “with biopsy

forceps”. The median percentage of frames with biopsy forceps is 3.0%. Examples

of frames with biopsy forceps are shown in Figures 3.3 (h)-(i). The 29 colonoscopy

videos in this dataset were randomly split into the training set (n = 19) and test set

(n = 10). The training set was used for hyper-parameter tuning and model training.

The test set was used to evaluate the performance of the trained models.
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Figure 3.3: Examples of informative frames (a-b); non-informative frames (c-g); and frames
with biopsy forceps (h-i). Frames (a) and (b) are examples of informative frames at different
colon regions; (c) is a frame captured when the camera was too close to the colon wall; (d)
is a frame with significant motion blur; (e) is an underexposed frame; (f) is an overexposed
frame; (g) is a frame captured outside of the colon; and (h) and (i) are frames in which
biopsies were performed.

3.3.2 Dataset for frame severity classification

To build the dataset for severity classification on individual frames, two broad-

certified gastroenterologists manually examined images from patients with UC and

annotated them with a severity score using score definitions from MES [range, 0-3].

After that, an adjudicated score was given based on the two reviewers’ annotations.

Cohen’s kappa coefficients were calculated to measure the inter-rater reliability. The

Cohen’s coefficients for Mayo 0, Mayo 1, Mayo2, and Mayo 3 are 0.650, 0.385, 0.614,

0.750, respectively. The total Cohen’s coefficients for the four-class annotation is

0.570. In total, the numbers of images with an adjudicated score of Mayo 0, Mayo 1,

Mayo 2 and Mayo 3 in the image severity dataset are 7434 (65.4%), 2211 (19.4%), 1187

(10.4%), 532 (4.7%), respectively. The image classification dataset was randomly split

into the training set (n = 8756) and test set (n = 2608). The training set was used

for hyper-parameter tuning and model training. The test set was used to evaluate
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the performance of the trained models.

3.3.3 Dataset for the localization system

3.3.3.1 Internal Localization Dataset

The localization dataset consists of 44 colonoscopy videos. The videos were col-

lected as described in 3.3.1. The localization dataset was divided into three subsets.

Sixteen videos were used to build the camera motion estimation network (Set 1);

eighteen colonoscopy videos were used for colon template building (Set 2), and the

remaining ten videos, which were paired with ScopeGuide videos, were used as an

independent evaluation of the localization algorithm (Set 3). Set 1 was further ran-

domly divided into a training set (n = 10), validation set (n = 3), and test set (n = 3).

Each video contains over 3,000 samples, and in total, there are 36,665 samples in the

training set. The training and validation set were used for hyper-parameter tuning.

The test set was used to evaluate the performance of the trained models. For all videos

in the localization dataset, the time point at which the camera was withdrawn was

manually annotated by the colonoscopy performer. For all videos in the localization

dataset, the camera was withdrawn at the cecum.

3.3.3.2 External EndoSLAM dataset [105]

The dataset provides videos from different cameras on ex-vivo porcine gastroin-

testinal organs. A robotic arm was used to track the camera trajectory and quantify

the six degree-of-freedom pose values. Six videos from three trajectories (Colon-IV

Trajectory-2, Small Intestine-IV Trajectory-1, Stomach-II Trajectory-4) were publicly

available with the corresponding ground truth for the camera pose. Each trajectory

was recorded by a high-resolution endoscopic camera and a low-resolution endoscopic

camera.
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3.3.4 Dataset for MES estimation

3.3.4.1 Internal MES estimation dataset

The internal MES estimation dataset consists of 51 colonoscopy videos from UM,

whose MES were annotated by a broad-certified gastroenterologist. The videos were

collected as described in §3.3.1. Videos underwent MES annotation by two local

central reviewers blinded to clinical status.

3.3.4.2 External MES estimation dataset

External colonoscopy videos were used to evaluate the proposed MES estimation

algorithm, which are from the LYC-30937-EC study, an international phase II ran-

domized clinical trial of an investigational oral therapy for moderate to severe UC

(ClinicalTrials.gov identifier NCT02762500). The clinical trial videos were collected

from 72 sites (United States, Canada, and 5 European countries). The variation in

endoscopic site, equipment, and recording techniques provide an advantage for testing

the performance of automated analysis methods in real-world settings. Colonoscopy

videos were centrally reviewed for MES by external reviewers as part of the original

study protocol and served as the ground truth. The investigators in the presented

analysis did not participate in the central review scoring process of external videos

from the clinical trial. Clinical trial videos were not used in the development of the

proposed colonoscopy-based CDS system.

While the videos in internal MES estimation dataset has a more even distribution

of endoscopic severity (MES 0,1 58.8%; MES 2,3 41.2%), the external videos from

the clinical trial is more severe (MES 0,1 16.3%; MES 2,3 83.7%, P<0.0001). These

differences are unsurprising as clinical trial subject recruitment skews towards more

severe disease activity.

Table 3.1 presents the patient characteristics in internal MES estimation dataset
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Characteristics
Internal MES dataset

(n=51)
External MES dataset

(n=124)

Age, years
mean (SD) 43.5 (15.4) 41.5 (12.8)

Sex, n (%)
Female 22 (43.1) 52 (41.9)

BMI, kg/m2
mean (SD) 27.1 (5.5) 25.7 (4.7)

Disease Duration, years
mean (SD) 8.4 (7.4) 7.7 (6.8)

Total Mayo Score
mean (SD) 3.9 (2.7) 7.9 (1.6)

C-Reactive Protein, n (%)
≥5mg/L n/a † 61 ( 49.6)

Fecal Calprotectin Range, n (%)
≤250 n/a † 27 (22.1)
>250 to ≤500 n/a † 19 (15.6)
>500 n/a † 76 (62.3)

Medication Use, n (%)
None 0 (0.0) 2 (1.6)
5-ASA 34 (66.7) 109 (87.9)
Corticosteroids 8 (15.7) 68 (54.8)
Thiopurines 15 (29.4) 32 (25.8)
Biologic Exposure 18 (35.3) 25 (20.2)

Race, n (%)
American Indian or Alaskan Native 0 (0.0) 0 (0.0)
Asian 1 (2.0) 1 (0.8)
Black or African American 4 (7.8) 3 (2.4)
Native Hawaiian or Pacific Islander 0 (0.0) 0 (0.0)
White 46 (90.2) 119 (96.0)
Other 0 (0.0) 1 (0.8)

Ethnicity, n (%)
Hispanic or Latino 1 (2.0) 7 (5.6)

† Prospective C-reactive protein and fecal calprotectin levels were inconsistently
available in the developmental video set.

Table 3.1: Patient characteristics in internal MES estimation dataset and external MES
estimation dataset. SD: standard deviation
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and external MES estimation dataset.

3.3.5 Dataset for outcome prediction

External colonoscopy videos were used to evaluate the predictive value of the

spatial severity distribution in outcome prediction, which are from the UNIFI study

[107] (ClinicalTrials.gov identifier NCT02407236), a phase III trial of ustekinumab

that involved patients with moderate-to-severe UC (defined as a total score [range, 0

to 12] of 6 to 12 on the Mayo scale and an MES [range, 0 to 3] of 2 or 3) [68, 108].

The total Mayo score [108] is comprised of 4 parts: stool frequency, rectal bleeding,

endoscopic findings (i.e., MES) and physician’s global assessment, each scored from

0-3. The characteristics of patient enrolled in UNIFI study is presented in [107].

The UNIFI trial included an 8-week randomized induction trial and a 44-week

randomized-withdrawal maintenance trial. In the induction trial, patients received

ustekinumab or placebo at week 0 and were evaluated at week 8 or 16. A primary

end point of the UNIFI trial is clinical remission, defined as a total score of ≤ 2 on

the Mayo scale [range, 0 to 12] and no subscore > 1 [range, 0 to 3] on any of the four

Mayo scale components.

In this study, colonoscopy videos collected at week 0 and week 8 (or 16) were

used as input data. The patient’s clinical remission at week 44 was used as the

patient’s outcome. For the outcome prediction model’s development and validation,

patients didn’t complete the trial, patients received a treatment switch, and patients

with colonoscopy videos of very poor quality were removed. In total, the outcome

prediction dataset consists of 356 patients, and 227 of them had a positive outcome

at week 44.
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3.4 Methods

3.4.1 Image classification

We proposed an image classification workflow that can be used for non-informative

frame classification, severity classification, and biopsy forceps detection.

Pre-processing was first performed on frames sampled from the colonoscopy videos

or UC images for standardization. The frames were binarized to identify the largest

4-connected component. After that, the smallest bounding box containing the largest

component was used to crop the image. Zero paddings were added to fill the rect-

angular region into a square region, after which the image was resized to 256× 256.

These resized images were then inputted into the CNN.

In this study, the Inception-v3 architecture [109] was used for non-informative

frame classification. Non-informative frame detection and removal can reduce com-

putational load and avoid unexpected errors in camera localization. Similarly, another

DL model with Inception-v3 architecture was built to detect frames with biopsy for-

ceps. During a biopsy, the scene between consecutive frames may not be static, but

the colonoscope stays at a similar location. In this work, we identified frames during

a biopsy by detecting frames with biopsy forceps. After frames with biopsy forceps

were detected, frames at 1 second before or after the detected frame were regarded

as frames where a biopsy exists. Removing those frames can avoid inaccurate camera

motion estimation from the non-rigid scene. The choice of 1 second was made empiri-

cally by watching the colonoscopy videos. The Inception-v3 architecture is a 42-layer

CNN. It was chosen for image classification in this study because it has achieved

success in multiple visual tasks [109]. Considering the large number of parameters for

Inception-v3, in the training phase the networks were initialized using a pre-trained

model on ImageNet [110]. For biopsy forceps detection, only the last fully-connected

layer was fine-tuned using the training set. L2 regularization and dropout were used
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to improve the model’s generalizability.

3.4.2 Camera motion estimation

3.4.2.1 Preprocessing

In this study, the camera at the tip of the colonoscope has a fisheye lens (Olympus

PCF-H190). Camera calibration was performed to estimate the camera’s intrinsic

matrix. With the mathematical model of a fisheye camera proposed in [111], the

distorted images from colonoscopy videos were corrected. Details of the camera model

and image distortion correction are covered in Appendix B.

3.4.2.2 Architecture

After the camera calibration and image distortion correction, the corrected frames

were used for camera motion estimation. An overview of the camera motion estima-

tion architecture is depicted in Figure 3.4. Let us denote a corrected frame from a

colonoscopy video with size H ×W × C at time point t as It : ΩI → [0, 1], where

ΩI = {1, 2, . . . , H}×{1, 2, . . . ,W}×{1, 2, . . . , C}. The unit of time is arbitrary, with

a smaller time duration from t to t+1 allowing for better estimation. In this study, the

duration from t to t+1 was chosen to be 1
15

second. Given a pair of consecutive frames

It, It+1, the dense optical flow can be calculated using PWC-Net [112] (the details of

which are discussed in Appendix C), which achieved the highest accuracy on several

published datasets. Optical flow is a way to describe the magnitude and orientation

of apparent velocities of brightness within an image. The dense optical flow from It to

It+1 is denoted as Ft→t+1 : ΩF → R, where ΩF = {1, 2, . . . , H}×{1, 2, . . . ,W}×{1, 2}.

The pattern in optical flow Ft→t+1 shows how a rigid scene changes with the camera’s

motion from t to t + 1. After the optical flow calculation, a concatenation of It,

It+1, Ft+1→t is fed into the motion network to estimate the 6 degree-of-freedom of the

camera’s motion: ŝt→t+1 = [t̂x, t̂y, t̂z, r̂x, r̂y, r̂z] ∈ R6. Simultaneously, It is fed into the
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Figure 3.4: Camera motion estimation network. The input to the network is a pair of
original frames It, It+1 and corresponding optical flows Ft→t+1, Ft+1→t (visualized using
color-coding). The network consists of two sub-networks: the disparity network and the
motion network. Loss sources are given following the red arrows.

disparity network to estimate the corresponding disparity map D̂t : ΩD → [0, 1], where

ΩD = {1, 2, . . . , H} × {1, 2, . . . ,W}, and the specular region mask P̂t : ΩP → [0, 1],

where ΩP = {1, 2, . . . , H} × {1, 2, . . . ,W}. In this study, a value in the disparity

map is defined as the inverse of the corresponding scene depth. Similarly, the optical

flow Ft+1→t from It+1 to It is calculated, and ŝt+1→t, D̂t+1, P̂t+1 are estimated by

the motion network and disparity network, respectively. In this study, the estimated

disparity map was only used to facilitate the loss calculation. After model training,

only the motion network was used for camera localization.

Figure D.1 in Appendix D shows the detailed structure of the motion network.

In the motion network, the input is either {It; It+1; Ft→t+1} or {It+1; It; Ft+1→t}.
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While the optical flow pattern can provide information about the camera’s motion,

the original frames can provide more information about the scene structure, reducing

ambiguity in motion detection. The motion network contains eight convolutional

layers. The first seven convolutional layers have a filter size of 3× 3 and are followed

by a max-pooling layer and a ReLU activation function. The last convolutional layer

has six filters of size 1 × 1. The first three filters in the last convolutional layer are

used to estimate the predicted camera translation in the x-, y-, and z-axes, while the

last three filters are used to estimate Euler angles of the predicted camera rotation.

The last convolutional layer is followed by a global average pooling layer to aggregate

predictions at all spatial locations. Using the max-pooling layers, the motion network

can capture both global and local optical flow patterns for camera motion estimation.

Figure D.2 in Appendix D shows the detailed structure of the disparity network.

The input of the disparity network is a corrected frame. Previous literature has

shown that non-linear transformations can be modeled to convert a single view image

to its corresponding disparity map [113, 114]. The disparity network has an encoder-

decoder structure. Unlike in previous literature, the disparity network performs two

tasks: disparity estimation and specular region estimation. Considering that both

tasks involve intensity and low-level textural feature analysis, a multi-task strategy is

applied here, where the two tasks share the same encoder and then have two individ-

ual decoders with similar architectures. The encoder consists of three convolutional

layers and two max-pooling layers, while the decoder consists of three convolutional

layers and two up-sampling layers. All convolutional layers have a filter size of 3× 3.

For disparity estimation, the last convolutional layer is followed by a sigmoid activa-

tion function and a multiplication with 10 to constrain every entry in the estimated

disparity map to [0, 10]. For specular region estimation, the last convolutional layer is

followed by a softmax activation function. All other convolutional layers are followed

by a ReLU activation function. The encoder-decoder structure facilitates local and
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global information extraction and integration.

3.4.2.3 Loss function

(A) Regular photometric loss

For camera motion estimation, the photometric error between the synthesized new

frame and the real frame is used as the loss function. Given a frame It, estimated

disparity map D̂t, and estimated camera motion ŝt→t+1, a new frame is synthesized

at time point t+ 1 by applying differentiable image warping.

Let pt denote the coordinate of one pixel in the image plane at time point t. If

we assume the world frame and the camera frame at time point t are the same, from

equations (B.1) and (B.2), the homogeneous pixel coordinates can be projected back

to the 3D world coordinate as:

pw = D̂t(pt)
−1K−1pt, (3.1)

where pt = [x, y, 1]T, x ∈ [1, 2, . . . , H], y ∈ [1, 2, . . . ,W ], are the homogeneous pixel

coordinates in It, and pw = [X, Y, Z]T, X ∈ R, Y ∈ R, and Z ∈ R, are the 3D world

coordinates of the object shown at pt.

After the camera’s motion ŝt→t+1, pt will be projected onto the new image plane
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Figure 3.5: A diagram of the image warping process. To synthesize Ît+1, the coordinate
pt+1 in Ît+1 can be projected back to the world coordinate frame as pw, from which pt in It
can be calculated. pw is the world coordinate of an object, and pt, pt+1 are the coordinates
of this object shown in It, It+1, respectively. We assume that the intensity value It+1(pt+1)
is equal to It(pt). The intensity value at pt can be approximated using bilinear interpolation
with its four neighbors.

as:

pt+1 = K(R̂pw + T̂ ) (3.2a)

R̂ = Rx(r̂x)Ry(r̂y)Rz(r̂z) (3.2b)

Rx(r̂x) =


1 0 0

0 cos r̂x −sinr̂x

0 sinr̂x cos r̂x

 (3.2c)

Ry(r̂y) =


cos r̂y 0 sin r̂y

0 1 0

− sin r̂y 0 cos r̂y

 (3.2d)

Rz(r̂z) =


cos r̂z − sin r̂z 0

sin r̂z cos r̂z 0

0 0 1

 (3.2e)

T̂ =


t̂x

t̂y

t̂z

 (3.2f)

From equations (3.1) and (3.2), all pixel coordinates in It can be projected back
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into the world coordinates, and then projected to the estimated image plane It+1,

and vice versa. An image warping process is used to generate the new frame Ît+1.

Figure 3.5 presents a diagram of the image warping process. Given a pixel coordinate

pt+1 from Ît+1, pt, the corresponding coordinates of this object at It can be calculated

using equations (3.1) and (3.2). The intensity value It+1(pt+1) is the same as It(pt)

based on two assumptions: that the colon surface exhibits Lambertian reflectance and

the camera motion between consecutive frames is very small. As shown in Figure 3.5,

to calculate Ît+1(pt+1), the estimated intensity at the position pt+1 in the new frame,

bilinear interpolation is used to approximate It(pt) using its four pixel neighbors p1
t ,

p2
t , p

3
t , p

4
t as

Ît+1(pt+1) = It(pt) =
4∑
i=1

wiIt(p
i
t), (3.3)

where wi is the relative spatial distance between pt and pit, and

4∑
i=1

wi = 1. (3.4)

We denote the warping process from It to Ît+1 asWt→t+1, thus we haveWt→t+1(It) =

Ît+1

With the image warping process, Ît+1 is synthesized. Similarly, Ît can be synthe-

sized given ŝt+1→t, It+1, and D̂t+1. The photometric loss for the pair It, It+1 can be

calculated as

lossp =
1

Z

∑
p∈ΩI

‖It(p)− Ît(p)‖2 +
1

Z

∑
p∈ΩI

‖It+1(p)− Ît+1(p)‖2, (3.5)

where Z = H ·W · C.

(B) Corrected photometric loss

During the calculation of Ît+1, the calculated pt may be out of the frame It, and

usually, a value of 0 will be assigned. The photometric differences in those regions
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should not be used as supervision for motion estimation because they result from

missing information. In this study, an intensity of −1 was assigned instead. A

mask Mt+1 can then be built for Ît+1, where Mt+1(p) = 1 if Ît+1(p) = −1 otherwise

Mt+1(p) = 0. The mask Mt+1 can be used to filter out invalid pixel locations that

were mapped out of the frame It.

In the image warping process, we assume the colon surface exhibits Lambertian

reflectance, which is not true for specular regions. Figure 3.6 shows two examples

in which the brightness of specular regions within It and It+1 changes significantly

with different angles of view. As such, pixel locations in specular regions should be

excluded when the photometric loss is calculated. In our previous work, we attempted

to calculate specular region masks by converting the RGB image into HSV space

and then extracting the specular region using a threshold on the saturation channel.

Figure 3.6 shows examples of threshold-based mask as Pt and Pt+1. While this method

is simple and can provide information on the specular region, it is very hard to find

an optimal threshold that generalizes for all frames and videos. To estimate the

specular region more accurately, one should also consider intensity statistics and

textural features. As such, a branch of the disparity network was used for specular

region estimation. As shown in Figure D.2, another decoder is used to estimate the

specular region mask, and a softmax activation function is applied to the feature map

from the last layer to generate a probabilistic map. Examples of the output P̂t, P̂t+1

are shown in Figure 3.6, where a smaller value indicates the location is more likely to

be within a specular region. With estimated ŝt→t+1, D̂t+1, the same image warping

process Wt→t+1 will be applied to P̂t to generate the specular region mask for Ît+1.

Based on the estimated masks P̂t, P̂t+1, and Mt, Mt+1, a corrected photometric
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loss can be written as:

losscp =
1

Z

∑
p∈ΩI

Mt(p) ∗ ‖P̂t(p) ∗ It(p)−Wt+1→t(P̂t+1)(p) ∗ Ît(p)‖2+

1

Z

∑
p∈ΩI

Mt+1(p) ∗ ‖P̂t+1(p)It+1(p)−Wt→t+1(P̂t)(p) ∗ Ît+1(p)‖2,
(3.6)

where ∗ denotes element-wise multiplication.

losscp =
1

Z

∑
p∈ΩI

Mt(p) ∗ ‖St(p) ∗ It(p)− Ŝt(p) ∗ Ît(p)‖2+

1

Z

∑
p∈ΩI

Mt+1(p) ∗ ‖St+1(p) ∗ It+1(p)− Ŝt+1(p) ∗ Ît+1(p)‖2,
(3.7)

An additional cross-entropy loss was calculated to train the model for specular

region estimation:

lossce = cross entropy(Pt, P̂t) + cross entropy(Pt+1, P̂t+1), (3.8)

where Pt is calculated using a threshold of 0.1 determined by visual evaluation. lossce

is proposed as a weak supervision for specular region estimation.

A combination of lossce and losscp encourages the network to detect the specular

region and also minimize the photometric error. Figure 3.6 shows examples of P̂t

and P̂t+1. The disparity network detects more comprehensive specular regions as

compared to the threshold-based method.

The last row of Figure 3.6 depicts the benefits of calculating losscp. The move-

ments of the edge segment in (a) and vessel pattern in (b) should be the primary

cues used to estimate the camera’s motion. However, the photometric difference be-

tween It+1 and Ît+1 around the specular region is very high, which may overwhelm

the photometric difference from other regions. As a result, with lossp, the network

will be encouraged to reduce the photometric difference on specular regions with a

higher priority. Considering the specular regions are not Lambertian surfaces, the

68



0.6

-0.6

0

!!

!!"#̂

!!"#

(a)

!!"#̂#!"#(!!"# − ) Corrected

'!"#̂

'!̂'!

'!"#

!!"#̂#!"#(!!"# − )

Figure 3.6: An example pair of consecutive frames on specular mask estimation. Threshold-
based specular mask (middle column) and the specular mask estimated from the disparity
network (right column) are presented. The photometric error map between the projected
image Ît+1 and It+1 without and with the estimated specular mask are shown.

photometric difference on specular regions may be inaccurate. The problem can be

fixed by applying the estimated specular mask to correct the photometric loss.

(C) Movement consistency loss

The forward movement ŝt→t+1 and backward movement ŝt+1→t are estimated by

the motion network. Let us denote the transformation matrix from frame t to t + 1

as Qt→t+1 ∈ SE(3) and denote its inverse as Qt+1→t, then

Qt→t+1 ×Qt+1→t = Qt→t = I, (3.9)

where × denotes matrix multiplication and I denotes the identity matrix.

As there is no camera movement from frame t to itself, Qt→t is an identity trans-

formation in homogeneous coordinates.
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A movement consistency loss term can be written as

lossmc = ‖Q̂t→t+1 − Q̂−1
t+1→t‖F , (3.10a)

Q̂t→t+1 =

R̂t→t+1 T̂t→t+1

01×3 1

 , (3.10b)

Q̂t+1→t =

R̂t+1→t T̂t+1→t

01×3 1

 , (3.10c)

Q̂−1
t+1→t =

R̂T
t+1→t −R̂T

t+1→t × Tt+1→t

01×3 1

 . (3.10d)

The movement consistency term encourages the network to output a forward

movement ŝt→t+1 and backward movement ŝt+1→t that satisfy equation (3.9).The

movement consistency term was added into the final loss to improve the network’s

generalizability.

(D) Final loss

The final loss function can be written as:

loss = losscp + λcelossce + λmclossmc + λsmolosssmo, (3.11)

where losssmo is from previous literature [88] on monocular depth estimation and is

used to encourage the estimated disparity map to be locally smooth. λce, λmc, and

λsmo are loss weights.

3.4.3 Camera trajectory and location index estimation

The camera motion network was applied to colonoscopy video in the withdrawal

phase to enable successive estimation of the camera’s motion, along with the coor-
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Figure 3.7: A diagram of the location index estimation. The gray line is a camera trajectory
and the red line is the major traveling path. a, b are the start and end coordinates in the
major traveling path of the camera, respectively. d is the coordinate of the frame at the
time point t in the camera trajectory, and c is the closest point on the red line to d.

dinates of the camera (i.e., camera trajectory) after the camera’s withdrawal begins.

The relative location index is defined from 0 to 1. When the camera starts to be

withdrawn at the beginning of the colon (cecum), the frame’s location index is 0;

when the camera stops at the end of the colon (rectum), the frame’s location index

is 1. Let lt denote the colon length that the camera traversed from the beginning to

time point t and lall denote the total length of the colon from the cecum to rectum.

The location index for the frame at time point t can be calculated as lt/lall.

The length of the camera trajectory (gray line in Figure 3.7) can not be used

directly to estimate the location index as the camera may be moved about to inspect

the colon’s surface. Considering that the shape of the colon is curved, we propose

to estimate a major traveling path for location index calculation. Figure 3.7 depicts

how the location index is calculated. The gray line is a camera trajectory in the

withdrawal phase. The camera trajectory zigzags because the camera will turn about,

moving back and forth to inspect the colon mucosal surface. The red line is the major

traveling path of the camera. To estimate the major traveling path of the camera, we

used a B-spline curve fitting algorithm with a smoothing factor of γ to fit the original

71



camera trajectory. Let us assume a is the beginning of the colon; b is the end of the

colon; and d is the position of the camera at time point t. lt can be calculated as the

length of the red line from a to c, and lall can be calculated as the length of the red

line from a to b. Then the location index for the frame at the time point t is the ratio

of the length from a to c over the length from a to b in the red line.

The calculation of the frame’s location index can convert the frame from the time

domain to the location domain. A frame with a location index x can be denoted as

Idx . Let us denote fv : [1, 2, . . . , N ]→ [0, 1] as a function that maps the time index of a

frame to a location index in the colonoscopy video v, with N being the maximal time

index. Given It - a frame at the time point t in v - the estimated location index for this

frame can be written as fv(t), and the frame can then be denoted as Idfv(t). Figures

3.8(a)-(c) show examples of time-location mapping. If the time domain is used, the

frames can be denoted as I1, . . . , It, . . . , IN , where 1 ≤ t ≤ N ; if the location domain

is used, the frames can be denoted as Idfv(1), . . . , I
d
fv(t), . . . , I

d
fv(N). If Ia and Ib are the

frames at the beginning and end of the colon, respectively, we have fv(a) = 0 and

fv(b) = 1.

3.4.4 Anatomical colon segment classification

Anatomical colon segment classification can be performed based on the calculated

colon location index. It not only provides contextual information for severity assess-

ment but also helps to validate the performance of the location index estimation. In

the proposed anatomical colon segment classification method, we assume that the

relative length of each colon segment is similar across patients. The colon segments

used in this study include the cecum, ascending colon, transverse colon, descending

colon, sigmoid colon, and rectum. In anatomical colon segment classification, we

assume that camera withdrawal begins at the cecum.

To build the colon template, the the times at which the camera enters each colon
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Figure 3.8: A diagram of time-location mapping and colon template building. (a)-(c) are
examples when the camera moves forward, backward, or is stationary. ∆d1 and ∆d2 are the
same duration in time, but ∆d2 is much larger than ∆d1. (d) shows a full colonoscopy frame
sequence in the withdrawal phase mapped into the location domain. To build the template,
time points when the colonoscope enters and exits each colon segment were annotated by a
physician (blue triangles). Based on the time annotations and time-location mapping, the
relative length of each colon segment can be calculated.

segment in the withdrawal phase were annotated. As shown in Figure 3.8 (d), given

a colonoscopy video v, a vector qtv contains 7 times manually annotated by physicians

as

qtv = [t1v, t
2
v, t

3
v, t

4
v, t

5
v, t

6
v, t

7
v], (3.12)

where the first 6 entries are the times at which the camera enters the rectum, as-

cending colon, transverse colon, descending colon, sigmoid colon, and cecum in the

withdrawal phase, respectively, and the last entry is the time point when the camera

stops. A corresponding vector qsv containing the location index of the frames when

the camera enters each colon segment and stops at the rectum can be estimated as

qsv[i] = fv(q
t
v[i]), (3.13)

73



where qsv[i] is the ith element of qsv, 1 ≤ i ≤ 7, and fv(q
t
v[1]) = 0 and fv(q

t
v[7]) = 1.

The relative length of each colon segment in the colonoscopy video v can be

recorded in the vector qrlv as

qrlv [i] = fv(q
t
v[i+ 1])− fv(qtv[i]), (3.14)

where qrlv [i] is the ith element of qrlv , and 1 ≤ i ≤ 6.

The colon template can be estimated by annotating the times at which the camera

enters each colon segment for N colonoscopy videos v1, v2, . . . , vN . The colon template

qct can be estimated as

qct[i] =
w

N

N∑
j=1

qrlvj [i], (3.15)

where 1 ≤ i ≤ 6, and w is a scaling factor and

6∑
i=1

w

N

N∑
j=1

qrlvj [i] = 1. (3.16)

With a new colonoscopy video, the start of the camera’s withdrawal can be iden-

tified using the physician’s notes, while the end of the camera’s withdrawal can be

identified as the time of the last informative frame. Location index estimation is then

performed for a frame sequence during the withdrawal phase. By comparing these

with the constructed colon template, frames falling within each colon segment can be

classified.

3.4.5 MES estimation

For each video, the percentages of informative frames classified as Mayo 0, 1, 2, or

3 were calculated. The MES was inferred based on the proportion of frames in a video

for each given MES class (e.g. Mayo 3 comprises 12% of frames, Mayo 2 comprises

25% of frames, Mayo 1 comprises 23% of frames and Mayo 0 comprises 40% of frames).
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Frame severity distribution over the entire colon

Figure 3.9: A diagram of the proposed MES estimation process.

The highest Mayo score meeting the threshold proportion of frames in a video was

selected as the overall Mayo score (as shown in Figure 3.9). The MES proportion

thresholds for the overall summary score were determined using a template-matching

grid search where the threshold proportions of MES scores in a video were matched

to the overall Mayo score provided by an expert review of the entire video. The

rationale for requiring a threshold number of video frames to validate the presence

of a severity class is to address potential mis-classifications in single-frame severity

grading or confounding from other causes that could impact overall scoring. It also

corresponds to the fact that a human reviewer does not consider single frames in

isolation but actually many seconds worth of video to determine the severity present.

3.4.6 Outcome prediction

In this work, colonoscopy videos collected at week 8 or 16 were used to predict

the patient’s outcome (clinical remission) at week 44. To extract features from a

colonoscopy video, estimated relative location index and severity of individual frames

were used to derive the spatial severity distribution over the entire colon. Based on

the relative location index, we sampled frames with a step size of 0.001, which means

1000 frames uniformly distributed over the entire colon were sampled. In addition,

the colon template from §3.4.4 was used to estimate the anatomical colon segment for
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Category Feature list

Proposed set 1 Age, Sex, Average severity score of the entire colon

Proposed set 2
Age, Sex, Average severity score of the entire colon,
Average severity score of individual colon segments

Proposed set 3
Age, Sex, Average severity score of the entire colon,
Average severity score of individual colon segments,
Annotated MES, Annotated total score

Baseline set 1 Age, Sex, Annotated MES

Baseline set 2 Age, Sex, Annotated MES, Annotated total score

Table 3.2: Feature sets for outcome prediction.

individual frames. Average severity score from the entire colon and average severity

scores of individual colon segments (6 colon segments in total: cecum, ascending colon,

transverse colon, descending colon, sigmoid colon, and rectum) using the sampled

frames were calculated to build the feature representation of a colonoscopy video.

With the computed feature representation and patient demographic data (age and

sex), a logistic regression model was built for outcome prediction. In addition, two

baseline outcome prediction models were built using logistic regression for comparison,

where humanly annotated MES and total score were used as predictive variables. The

feature sets investigated in this study are described in Table 3.2.

3.4.7 Model training and hyper-parameter tuning

The image classification and motion estimation models were implemented in Ten-

sorflow v1.10 and were trained on an NVIDIA Tesla V100. Adaptive moment esti-

mation was used for optimization.

For the image classification model, the hyper-parameters, including learning rate,

batch size, dropout rate and L2 regularization, were chosen via 5-fold cross-validation

on the image classification training set. Based on the classification AUCPR, a learning

rate of 10−3, a batch size of 8, a dropout rate of 0.4, and a L2 regularization of 0.0001

were selected to train the network on the whole training set. The trained model was
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then tested on the test set.

For the motion estimation network, Set 1 of the localization dataset was used

to build the camera motion estimation model. As mentioned in §3.3.3.1, Set 1 was

further split into the training set (n = 10), validation set (n = 3), and test set

(n = 3). Different combinations of hyper-parameters, including learning rate, batch

size, training steps, λce, λmc, and λsmo were used to train the network on the training

set, with the hyper-parameters that achieved the best corrected photometric loss (as

discussed in §3.4.8) on the validation set chosen as optimal. Based on the results from

hyper-parameter tuning, the final camera motion estimation network was trained with

a learning rate of 0.0001, a batch size of 1, 300,000 training steps, a λce of 0.01, a

λmc of 100, and a λsmo of 0.02. After hyper-parameter tuning, the trained model was

tested on the test set.

For location index estimation, the smoothing factor γ was tuned using anatomical

colon segment classification on Set 2 of the localization dataset. A 5-fold cross-

validation was performed and γ = 100 achieved the best average classification accu-

racy.

A 5-fold cross-validation was used to evaluate the proposed MES estimation

method on the internal cohort. In each round, four rounds were used to train the

model, and the remaining fold was used as the unseen test data.

3.4.8 Evaluation strategy

3.4.8.1 Classification and prediction tasks

The performance of the classification tasks including non-informative frame clas-

sification, biopsy detection, frame severity estimation, MES estimation, and outcome

prediction were evaluated using AUPRC, AUC, sensitivity, specificity, precision, and

accuracy. For MES estimation, confusion metrics between the estimated Mayo score

and annotated Mayo score were calculated. For outcome prediction, a 5-fold cross-
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validation was used to evaluate the model’s performance.

3.4.8.2 Camera motion estimation

To evaluate the performance of the camera motion estimation model, a corrected

photometric error (CPE) was calculated as:

CPE =
1

Z

∑
p∈ΩI

Mt(p) ∗ ‖Pt(p) ∗ It(p)−Wt+1→t(Pt+1)(p) ∗ Ît(p)‖2+

1

Z

∑
p∈ΩI

Mt+1(p) ∗ ‖Pt+1(p)It+1(p)−Wt→t+1(Pt)(p) ∗ Ît+1(p)‖2,
(3.17)

for each pair of frames. The average CPE throughout a colonoscopy video was then

calculated, with a lower average CPE indicating that the model has a better capacity

for camera motion estimation. Please note that the threshold-based specular mask

was applied in CPE calculation for fairness.

For the EndoSLAM dataset, the ground truth of the camera’s pose was provided.

Absolute trajectory error (ATE), relative pose error on translation (RPE Trans.), and

rotation (RPE Rot.) can be calculated [115]. ATE measures the distance between

the estimated trajectory and the ground truth trajectory. RPE measures the local

accuracy of the trajectory over a pair of consecutive frames. The calculation of those

metrics can be found in [115]. As the camera motion was estimated with an arbitrary

scale, the two trajectories should first be aligned by finding a similarity transformation

S[116]. Lower ATE, RPE Trans., and RPE Rot. indicate better motion estimation.

3.4.8.3 Relative location index estimation

The evaluation of the location index estimation is challenging as there is no ground

truth for the location index. In lieu of this, we propose two ways to evaluate the

location index estimation.

The first method is to compare the anatomical colon segment classification with
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baselines. Two baselines were considered for anatomical colon segment classification.

For the first baseline, the time index is used to build the colon template and the

subsequent classification, which assumes that during the withdrawal phase, the pro-

portional amount of time the camera spends within each colon segment is the same

for different patients. For a colonoscopy video v, a vector qrtv contains the relative

time in each colon segment and can be calculated as

qrtv [i] =
1

t7v − t1v
(ti+1
v − tiv), (3.18)

where qrtv [i] is the ith element of qrtv and 1 ≤ i ≤ 6. A colon template can then be

built for anatomical colon segment classification. The assumption here should not

hold as the velocity of the camera’s movement varies and is affected by individual

colon segment disease severity and condition. As a result, an accurate location in-

dex estimation method should lead to higher accuracy in anatomical colon segment

classification than using the time index directly. The second baseline for estimating

position used the approximate colonoscope insertion length measured by ScopeGuide.

The limitation of using ScopeGuide length is that although the length of the inserted

tube provides an approximate location index, it is a measure of the amount of scope

inserted rather than the true distance the camera traveled. An introduction and

discussion of ScopeGuide length can be found in Appendix F.

To evaluate the classification performance, we denote the colon segments from ce-

cum to rectum as 1-6. The multi-class classification accuracy, the maximal absolute

difference between the predicted class and annotated class, and the average absolute

difference between the predicted class and annotated class were calculated for each

video. The averaged value and standard deviation among videos were then calcu-

lated. For each colonoscopy video in the test set, an individual confusion matrix was

calculated, with the entry (i, j) being the percentage of frames in colon segment i
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classified as in colon segment j, where i, j ∈ {Cecum, Ascending Colon, Transverse

Colon, Descending Colon, Sigmoid Colon, Rectum}. The individual confusion ma-

trices from colonoscopy videos in the test set were then averaged to build the final

confusion matrix of colon segment classification. Additionally, the F1 score, sensitiv-

ity, precision, specificity, and accuracy of the individual colon segment classifications

were calculated.

The second method for evaluating the location index is to compare the trajectory

of the location index from camera motion estimation and that from ScopeGuide

length. As the ScopeGuide length can accurately indicate the distance that the

camera travels when no loops are generated, one should expect a similar pattern in

these two trajectories.

3.5 Results and Discussion

3.5.1 Image classification performance

Table 3.3 shows the performance of non-informative frame classification, biopsy

forceps detection and frame severity estimation. From the table, non-informative

frame classification and biopsy forceps achieved high AUCs and AUCPRs. Both of

the trained models will be used to remove non-informative frames and frame capture

from biopsy in relative location estimation and Summary MES estimation. The per-

formance of the frame severity estimation is lower because it is quite subjective and

also subject to a high inter-rater disagreement.

3.5.2 Camera motion estimation algorithm evaluation

3.5.2.1 Visualization of outputs from camera pose estimation network

Figure 3.10 gives examples of input images, estimated disparity maps, synthesized

frames, and error maps from the trained model to illustrate the motion estimation
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Model AUCPR AUC F1 Sensitivity Specificity Precision

Non-informative
frame classification

0.889
(0.058)

0.959
(0.014)

0.824
(0.095)

0.801
(0.084)

0.956
(0.026)

0.732
(0.064)

Biopsy forceps
detection

0.942
(0.048)

0.988
(0.010)

0.848
(0.077)

0.917
(0.076)

0.983
(0.015)

0.801
(0.117)

Frame severity
estimation

0.824 0.902 0.720 0.757 0.934 0.754

Table 3.3: Performance of image classification models. Average value and standard devi-
ation across colonoscopy videos are provided for non-informative frame classification and
biopsy forceps detection. It is not applied to frame severity classification because few images
in frame severity dataset are from the same colonoscopy videos.

algorithm. Figure 3.10 (a) presents an example of input frames with thin textural

feature. Figure 3.10 (b) presents an example of input frames with many specular

reflections.

It was fed into the disparity network to generate D̂t. Comparing It and D̂t in

Figure 3.10, one can observe the coordinates in the colon lumen were estimated with

a lower disparity value, which is consistent with the fact that they are farther from the

camera. In contrast, the coordinates in the colon wall, which are close to the camera,

have a disparity value near 1. One can also observe that the specular regions impair

the disparity map as those regions are very bright; as such, there is no information

to infer the disparity.

With It, D̂t and ŝt→t+1, the frame at t + 1 can be synthesized as Ît+1. With an

accurate estimation, Ît+1 should be closer to the real frame It+1 than It. In Figure

3.10, the difference map between the original frames It and It+1, Error(It, It+1),

is compared with the difference map between Ît+1 and It+1: Error(Ît+1, It+1). We

can observe that the absolute photometric difference around the edges is quite high

in Error(It, It+1) because of the camera’s motion; those values are largely reduced

in Error(Ît+1, It+1). In addition, one can observe that the absolute photometric

difference in specular regions is high in both Error(It, It+1), and Error(Ît+1, It+1),

which indicates the necessity of using specular masks for loss calculation.
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Figure 3.10: Examples of estimated disparity maps, synthesized frames, and corresponding
errors. It and It+1 are the pair of input fed into the motion estimation network; D̂t is the
estimated disparity map for It; and Ît+1 is the synthesised frame given It, D̂t, and ŝt→t+1.
Error(It, It+1) shows the photometric difference map between It and It+1. Error(Ît+1, It+1)
shows the difference map between the synthesised frame and the real frame.

3.5.2.2 Evaluation of the proposed movement consistency term

The training and validation sets of the localization dataset Set 1 were used to find

the optimal value for λmc. From our experimental results, λmc = 100 leads to the

best motion estimation performance. To further explore the consistency issue, models

trained with λ ∈ {0, 10, 100, 500} were tested on the test set. The visualizations of

the “forward” trajectory and “backward” trajectory for two videos are shown in

Figure 3.11, where the “forward” trajectory and “backward” trajectory were aligned

by a similarity transformation for a better comparison. Each column in Figure 3.11

presents camera trajectories derived from a model trained with different λmc. As

mentioned in §4.2, the pose estimation from the network is of arbitrary scale. The

magnitude of lossmc can affect the scale of the estimated pose. As such, for each λmc,

the estimated camera pose was scaled by a factor that constrains the length of the

estimated “forward” trajectory for the first video in the test set to 10. The scaling

factor was used for a fair comparison among models trained with different λmc values.
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Figure 3.11: The comparison of camera trajectories computed using ŝt→t+1 (“forward”) and
using ŝt+1→t (“backward”). Each column presents trajectories from a model trained with
a different λ value.

3.5.2.3 Performance of the proposed camera pose estimation method

Train Test

Proposed 0.0490 (0.0090) 0.0567 (0.0032)
with fixed specular mask 0.0510 (0.0088) 0.0580 (0.0033)

w/o specular mask 0.0496 (0.0091) 0.0593 (0.0037)
w/o optical flow as input 0.0485 (0.0073) 0.0591 (0.0039)

w/o consistency term 0.0488 (0.0079) 0.0581 (0.0025)

Table 3.4: CPE on the training and test set of localization dataset Set 1.

For the proposed camera pose estimation method, three major modifications were

made, including correcting photometric loss with an estimated specular mask, adding

optical flow as input, and adding movement consistency terms. In Table 3.4, the

proposed model and the proposed method without one of these modifications were

evaluated on the training and test set of the localization dataset Set 1. Models

presented includes the proposed method (“Proposed”), the proposed method with a
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corrected photometric loss using a threshold-based specular mask (“with fixed specu-

lar mask”), the proposed method without applying the specular mask to correct the

photometric loss (“w/o specular mask”), the proposed method without using optical

flow as input (“w/o optical flow as input”), and the proposed method without adding

movement consistency term (“w/o consistency term”).

Further, we evaluated the proposed camera pose estimation on the EndoSLAM

dataset. The EndoSLAM dataset is an external dataset with ground truth for camera

pose. Besides the aforementioned models, four existing techniques: “SfMLearner”[87],

“GeoNet”[93], “SC-SfMLearner”[96], and “optical flow-based” [78] from recent liter-

ature with publicly available code were also evaluated on the EndoSLAM dataset for

comparison.

Figure 3.12 compares the estimated trajectory and ground truth trajectory on

Small Intestine-IV Trajectory-1. We can observe that the estimated trajectories from

the proposed method are the most accurate with loops of similar shape as compared

to the ground truth trajectories. In addition, the trajectory estimated on the high-

resolution video is very close to the trajectory on the low-resolution video, which

indicates a good generalizability of the proposed method. The “with fixed specular

mask” model also achieved good performance. However, compared with its estimated

trajectory on low-resolution video, the accuracy of the estimated trajectory on high-

resolution video decreases.

Quantitative measurements were calculated and are shown in Tables 3.5 and 3.6.

Table 3.5 presents the performance of models on individual high-resolution videos. Ta-

ble 3.6 summarizes the average performance on high-resolution videos, low-resolution

videos, and the entire dataset. The proposed method achieved the lowest ATE and

RPE Rot. The RPE Trans. values for all methods are quite close. While the “optical

flow-based” model has the lowest RPE Trans., its ATE and RPE Rot. are very high.

From our experimental results, the proposed method achieves the best performance
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(a)

(b)

Figure 3.12: Comparison of the estimated trajectories and ground truth trajectories. (a)
Trajectories for the high-resolution video on Small Intestine-IV Trajectory-1. (b) Trajecto-
ries for the low-resolution video on Small Intestine-IV Trajectory-1.
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Model
Colon-IV Trajectory-2 Small Intestine-IV Trajectory-1

ATE
(×1e−2)

RPE Trans.
(×1e−2)

RPE Rot.
(×1e−2 ◦)

ATE
(×1e−2)

RPE Trans.
(×1e−2)

RPE Rot.
(×1e−2 ◦)

Proposed 1.98 (0.61) 0.16 (0.16) 0.85 (0.83) 2.82 (1.14) 0.22 (0.15) 0.83 (0.74)
w/o specular mask 2.98 (1.27) 0.20 (0.21) 2.93 (3.89) 5.77 (2.17) 0.22 (0.18) 3.76 (4.32)

w/o consistency term 3.01 (1.20) 0.20 (0.17) 0.98 (0.84) 4.77 (1.88) 0.20 (0.09) 0.96 (0.75)
w/o optical flow as input 2.99 (1.31) 0.16 (0.16) 1.03 (0.85) 3.52 (1.66) 0.22 (0.15) 1.09 (0.73)

SfMLearner [87] 2.98 (1.15) 0.24 (0.20) 1.40 (0.97) 5.09 (1.97) 0.21 (0.14) 1.05 (0.81)
GeoNet [93] 2.75 (1.08) 0.18 (0.16) 1.32 (0.89) 4.31 (1.77) 0.21 (0.12) 1.38 (0.83)

SC-SfMLearner [96] 2.96 (1.08) 0.21 (0.19) 1.08 (0.79) 4.23 (2.11) 0.21 (0.16) 0.94 (0.70)
optical flow-based [78] 3.15 (1.38) 0.19 (0.19) 4.97 (4.98) 4.89 (2.43) 0.20 (0.15) 5.34 (4.27)

Table 3.5: Performance comparison of motion estimation algorithms on high-resolution
videos from EndoSLAM dataset. The standard deviation (std) was calculated over pairs of
the consecutive frames. The results are presented in the format of mean (std). “Proposed”:
the proposed method; “with fixed specular mask”: the proposed method with a corrected
photometric loss using a threshold-based specular mask; “w/o specular mask”: the proposed
method without applying the specular mask to correct the photometric loss; “w/o optical
flow as input”: the proposed method without using optical flow as input; “w/o consistency
term”: the proposed method without adding the movement consistency term.

Model
High-resolution videos Low-resolution videos

ATE
(×1e−2)

RPE Trans.
(×1e−2)

RPE Rot.
(×1e−2 ◦)

ATE
(×1e−2)

RPE Trans.
(×1e−2)

RPE Rot.
(×1e−2 ◦)

Proposed 2.48 (0.36) 0.24 (0.07) 0.86 (0.03) 2.36 (0.30) 0.34 (0.12) 1.10 (0.24)
with fixed specular mask 3.22 (0.71) 0.23 (0.07) 0.97 (0.01) 2.44 (0.64) 0.34 (0.12) 1.13 (0.22)

w/o specular mask 3.44 (0.34) 0.24 (0.07) 1.06 (0.02) 3.14 (0.94) 0.34 (0.12) 1.29 (0.25)
w/o optical flow as input 4.01 (0.74) 0.24 (0.05) 0.96 (0.02) 3.55 (0.76) 0.34 (0.11) 1.17 (0.24)

w/o consistency term 4.29 (1.15) 0.26 (0.06) 3.76 (0.67) 3.25 (0.99) 0.34 (0.11) 3.22 (1.77)
SfMLearner [87] 4.12 (0.87) 0.27 (0.07) 1.58 (0.52) 3.98 (0.97) 0.36 (0.12) 2.99 (0.46)

GeoNet [93] 3.77 (0.72) 0.24 (0.07) 1.35 (0.02) 3.56 (0.95) 0.34 (0.11) 1.25 (0.28)
SC-SfMLearner [96] 3.81 (0.60) 0.25 (0.06) 1.02 (0.06) 3.78 (0.92) 0.35 (0.10) 1.09 (0.16)

optical flow-based [78] 4.07 (0.72) 0.23 (0.05) 5.47 (0.47) 4.05 (0.75) 0.33 (0.08) 6.11 (0.95)

Table 3.6: Performance comparison of motion estimation algorithms on the EndoSLAM
dataset. The standard deviation (std) was calculated over videos. The results are presented
in the format of mean (std).

on the EndoSLAM dataset.

3.5.3 Camera trajectory comparison

With the trained camera pose estimation model, the camera’s trajectory can be

derived and the relative location index can be calculated. Figure 3.13 compares the

location index calculated from camera motion estimation (orange line), ScopeGuide

length (blue line), and frame index (dotted gray line) of the 10 colonoscopy videos

in Set 3 of the localization dataset. From Figure 3.13, we can observe that the

ScopeGuide length-based location index is rougher due to its low resolution. Also,
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sharp spikes or bumps can be observed. In those spikes (shown in green boxes), the

location index may increase or decrease by 0.2 (usually equal to 15-25 cm) in a short

time. A physician manually examined the paired colonoscopy videos and ScopeGuide

videos, finding that those spikes or bumps occur because of loops generated when the

colonoscopy performer advanced the colonoscope toward the cecum. In Figure 3.13

(i), a sharp increase of the location index can be observed, which results from the loop

generated in the insertion phase. Those spikes and bumps can significantly impair

the proposed colon segment classification when the location index is derived from the

ScopeGuide length, where the max segment error is 1.9 (0.3). Except for regions with

shape spikes or bumps, the blue line and orange line have good consistency in the

pattern of the location index sequence. It indicates that using a computer vision-

based method can lead to a good sense of the camera’s location. By comparing the

dotted gray line with the other two lines, we can find sampling frames using the

time index can lead to an unbalanced sampling of frames at different colon regions,

emphasizing the importance of camera localization in colonoscopy video analysis.

3.5.4 Anatomical colon segment classification performance

When comparing the performance of the colon segment classification using motion-

based location index and using the time index, Set 2 of the localization dataset was

used for template building and Set 3 of the localization dataset was used for testing.

The colon template built from manual time annotations and the location index

from our localization system is shown in the first row of Table 3.7, wherein each entry

corresponds to the relative length of each colon segment (from cecum to rectum).

From the estimated colon template, the cecum and rectum are shorter, occupying

less than 10% of the total colon length, while the other four colon segments are

longer, occupying 15% to 20% of the total colon length. The template is consistent

with our physiological knowledge about the colon. We then performed colon segment
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Figure 3.13: Trajectories comparisons of location index calculated from different sources
using Set 3 of the localization dataset. Orange line: location index derived from the camera
motion estimation; Blue line: location index calculated using length in ScopeGuide videos;
Dotted gray line: location index using the time index directly; Green box: regions with
sharp increase/decrease in ScopeGuide length result from generated loops.

classification on the test set.

The average accuracy and per-segment errors of the classification on the test set are

given in Table 3.8. The confusion matrix of the classification is shown in Figure 3.14

(a). The classification performance on individual colon segments is shown in Table

3.9. From the results, the anatomical colon segment classification is most accurate

in the cecum and rectum and less accurate in the middle colon segments. This is
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Method Cecum
Ascending

Colon
Transverse

Colon
Descending

Colon
Sigmoid
Colon

Rectum

Motion-based
location index (Set 2)

0.061 0.146 0.224 0.223 0.258 0.088

Time index
(Set 2)

0.068 0.217 0.210 0.177 0.172 0.156

Motion-based
location index (Set 3)

0.067 0.142 0.245 0.204 0.244 0.096

ScopeGuide Length-based
location index (Set 3)

0.236 0.129 0.162 0.204 0.167 0.102

Table 3.7: Colon templates estimated using different strategies. In the first two rows, the
colon templates were built on Set 2 of the localization dataset. In the last two rows, the
colon templates were the average of those from cross-validation on Set 3 of the localization
dataset.

Accuracy Average segment error Max. segment error

Motion-based
location index (Set 2)

0.754 (0.111) 0.246 (0.111) 1.0 (0.0)

Time index (Set 2) 0.608 (0.140) 0.399 (0.151) 1.2 (0.4)

Motion-based
location index (Set 3)

0.718 (0.097) 0.282 (0.097) 1.0 (0.0)

ScopeGuide Length-based
location index (Set 3)

0.587 (0.134) 0.472 (0.172) 1.9 (0.3)

Motion-based
location index (Set 2) with all frames

0.576 (0.117) 0.437 (0.131) 1.2 (0.4)

Motion-based
location index (Set 3) with all frames

0.579 (0.175) 0.436 (0.189) 1.2 (0.4)

Table 3.8: Classification accuracy and segment errors. In the first two rows and the last two
rows, the colon templates were built on Set 2 of the localization dataset. In the middle two
rows, the colon templates were the average of those from cross-validation on Set 3 of the
localization dataset. In the last two rows, the camera trajectories were estimated using all
frames from colonoscopy videos, meaning non-informative frames and frames with biopsy
forceps were not removed.

an intrinsic property of the proposed classification method because the classification

of the middle colon segments suffers from accumulated error. Also, one can observe

that the frame will only be mis-classified to the colon segments adjacent to the true

segment.

For comparison, a colon template was built, and colon segment classification was

performed using the time index. The colon template is shown in the second row of

Table 3.7. Using the time index, the relative lengths of the descending colon and
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Figure 3.14: (a)-(b): Confusion matrix between the classified colon segment and annotated
colon segment on the entire test set. (a) is the result of using the location index, and
(b) is the result of using the time index. (c)-(d): Confusion matrix between the classified
colon segment and annotated colon segment from leave-one-out cross-validation on the test
set. (c) is the result of using the location index, and (d) is the result of using length from
ScopeGuide videos. The calculation of the confusion matrix is described in §3.4.8.
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Cecum
Ascending

Colon
Transverse

Colon
Descending

Colon
Sigmoid Rectum

F1
0.953

(0.035)
0.901

(0.067)
0.874

(0.075)
0.878

(0.076)
0.927

(0.043)
0.975

(0.033)

Sensitivity
0.864

(0.239)
0.696

(0.216)
0.693

(0.216)
0.750

(0.229)
0.786

(0.227)
0.888

(0.257)

Specificity
0.975

(0.021)
0.949

(0.048)
0.928

(0.073)
0.915

(0.065)
0.957

(0.056)
0.988

(0.016)

Precision
0.822

(0.171)
0.714

(0.230)
0.713

(0.282)
0.686

(0.187)
0.785

(0.288)
0.905

(0.139)

Accuaracy
0.953

(0.035)
0.901

(0.067)
0.874

(0.075)
0.878

(0.076)
0.927

(0.043)
0.975

(0.033)

Table 3.9: Anatomical colon segment classification performance on Set 3 of the localization
dataset using estimated location index.

Cecum
Ascending

Colon
Transverse

Colon
Descending

Colon
Sigmoid Rectum

F1
0.919

(0.059)
0.833

(0.114)
0.828

(0.077)
0.833

(0.063)
0.863

(0.038)
0.940

(0.027)

Sensitivity
0.566

(0.237)
0.753

(0.324)
0.566

(0.220)
0.524

(0.211)
0.606

(0.141)
0.962

(0.114)

Specificity
0.996

(0.012)
0.871

(0.074)
0.900

(0.073)
0.905

(0.043)
0.925

(0.055)
0.945

(0.031)

Precision
0.945

(0.164)
0.500

(0.266)
0.598

(0.303)
0.558

(0.217)
0.616

(0.294)
0.675

(0.189)

Accuaracy
0.919

(0.059)
0.833

(0.114)
0.828

(0.077)
0.833

(0.063)
0.863

(0.038)
0.940

(0.027)

Table 3.10: Anatomical colon segment classification performance on Set 3 of the localization
dataset using time index.

Cecum
Ascending

Colon
Transverse

Colon
Descending

Colon
Sigmoid Rectum

F1
0.940

(0.044)
0.886

(0.069)
0.864

(0.074)
0.870

(0.069)
0.915

(0.046)
0.963

(0.040)

Sensitivity
0.873

(0.239)
0.636

(0.226)
0.709

(0.219)
0.677

(0.225)
0.716

(0.222)
0.890

(0.270)

Specificity
0.959

(0.044)
0.949

(0.046)
0.909

(0.075)
0.920

(0.060)
0.958

(0.056)
0.976

(0.033)

Precision
0.776

(0.231)
0.699

(0.227)
0.672

(0.276)
0.688

(0.197)
0.787

(0.292)
0.847

(0.206)

Accuaracy
0.940

(0.044)
0.886

(0.069)
0.864

(0.074)
0.870

(0.069)
0.915

(0.046)
0.963

(0.040)

Table 3.11: Anatomical colon segment classification performance from leave-one-out cross-
validation on Set 3 of the localization dataset using estimated location index derived.
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Cecum
Ascending

Colon
Transverse

Colon
Descending

Colon
Sigmoid Rectum

F1
0.855

(0.082)
0.821

(0.065)
0.800

(0.103)
0.876

(0.066)
0.889

(0.063)
0.934

(0.048)

Sensitivity
0.893

(0.149)
0.407

(0.338)
0.381

(0.226)
0.647

(0.250)
0.708

(0.284)
0.590

(0.246)

Precision
0.558

(0.302)
0.438

(0.324)
0.533

(0.251)
0.672

(0.249)
0.619

(0.238)
0.818

(0.272)

Specificity
0.856

(0.104)
0.904

(0.071)
0.916

(0.051)
0.921

(0.061)
0.922

(0.042)
0.984

(0.027)

Accuaracy
0.855

(0.082)
0.821

(0.065)
0.800

(0.103)
0.876

(0.066)
0.889

(0.063)
0.934

(0.048)

Table 3.12: Anatomical colon segment classification performance from leave-one-out cross-
validation on Set 3 of the localization dataset using length from ScopeGuide videos.

sigmoid colon are similar to that of the rectum, which is not true. The average

accuracy and per-segment errors of the classification are presented in Table 3.8. Both

errors and their standard deviations are higher. The corresponding confusion matrix

is shown in Figure 3.14 (b), and individual colon segment classification performance

is shown in Table 3.10. From these results, one can conclude that using the proposed

location index is more accurate than using the time index.

We also compared the performance of anatomical colon segment classification

using the camera motion-based location index with that using the ScopeGuide length-

based location index. As only paired ScopeGuide videos were available in Set 3, leave-

one-out cross-validation was used to evaluate the performance. For each fold, only

one video was used for testing, and all others were used to build the colon template.

The evaluation measurements were then averaged over all folds.

Using the motion-based location index, the average template from cross-validation

on Set 1 is close to the template from Set 2, with around ±2% difference. The average

accuracy and segment errors of the classification from cross-validation are shown in

Table 3.8. Figure 3.14 (c) and Table 3.11 further show the cross-validation perfor-

mance of using the motion-based location index. The overall classification perfor-

mance is slightly lower than the performance in Figure 3.14 (a) and Table 3.9.This
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may be due to the colon template being built from fewer cases.

For colon segment classification using ScopeGuide length, the average accuracy

and segment errors are presented in Table 3.8. Figure 3.14 (d) and Table 3.12 further

show the performance from cross-validation. From these results, using the ScopeGuide

length-based location index yields poor classification performance, much lower than

that from the camera motion-based location index. This may be because the loops

generated inside the body lead to sharp increases and decreases in length. This issue

is discussed further in the next section. From the template built using the ScopeGuide

length-based location index, the cecum segment is estimated to be more than 20%

of total colon length. The over-estimation of cecum length may result from the fact

that loops are more easily generated when the amount of inserted scope is greater.

The trajectory of the location index derived from ScopeGuide length is discussed in

the next section.

3.5.5 MES estimation

MES grading thresholds for Mayo 1, 2, and 3 scores (x, y, z in Figure 3.9) of 7%,

6%, and 6%, respectively, were used for entire-video score prediction. The automated

MES estimation algorithm exhibited very good agreement with gastroenterologist re-

viewers (κ=0.84) and correctly predicted the MES in 40/51 (78%) of high-resolution

internal videos (the confusion matrix is shown in Table 3.15). Unsurprisingly, dis-

agreement was concentrated in mild disease severity classes including Mayo 1, where

5/9 cases were classified as Mayo 2 and 1/9 were classified as Mayo 0. Paired gas-

troenterologist reviewers agreed on exact MES in 84.3% of cases (κ=0.95), similarly

with disagreement concentrated in the intermediate Mayo 1 and 2 classes.

Agreement between the predicted MES and reference MES provided by external

central review was moderate (κ=0.59) with 57.1% (151/264) of videos being correctly

graded based on the provided central review score. Automated endoscopic analysis
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(a) (b)

Figure 3.15: Confusion matrix of the MES estimation. (a) Internal MES estimation dataset;
(b) External MES estimation dataset.

was within 1 MES severity level of the score provided by central reviewers in 93.5%

(247/264) of videos. Fully automated methods correctly separated Mayo 0-1 vs. Mayo

2-3 endoscopic severity in 83.7% (221/264) videos compared to the reference central

reviewer score. Qualitative mis-classification analysis of the 17/264 (6.4%) automated

predicted MES that were 2 levels different than central review scores was performed.

Over-estimated disease severity (e.g. Mayo 0 predicted as 2 or 3) contained extensive

biopsy sampling with resulting mucosal bleeding, which was interpreted as severe

disease. Under-estimated scores (e.g. Mayo 2 predicted as 0) had short segments of

severe disease qualifying the subject as a high endoscopic severity grade, despite the

severe disease comprising a small fraction of the disease burden.

3.5.6 Outcome prediction

The performance of the logistic regression-based outcome prediction models are

shown in Table 3.13. For the performance of two baseline models, the humanly an-

notated MES can help predict the patient’s outcome, and clinical components (stool

frequency, rectal bleeding, and physician rating of disease activity) in total score also

add more predictive value. As expected, features extracted from the spatial severity

distribution can better characterize the patient’s condition. With the average severity
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Feature set Accuracy Recall Specificity Precision F1 AUC

Proposed set 1 0.681 (0.059) 0.906 (0.072) 0.282 (0.036) 0.689 (0.029) 0.737 (0.045) 0.686 (0.081)
Proposed set 2 0.694 (0.039) 0.891 (0.077) 0.346 (0.031) 0.706 (0.010) 0.741 (0.037) 0.721 (0.074)
Proposed set 3 0.731 (0.068) 0.862 (0.057) 0.500 (0.137) 0.756 (0.058) 0.758 (0.049) 0.792 (0.040)
Baseline set 1 0.611 (0.045) 0.775 (0.082) 0.321 (0.073) 0.668 (0.024) 0.670 (0.042) 0.644 (0.085)
Baseline set 2 0.676 (0.013) 0.848 (0.035) 0.372 (0.036) 0.705 (0.006) 0.723 (0.014) 0.711 (0.029)

Table 3.13: Performance comparison of the outcome prediction models with different fea-
tures sets. Average and standard deviation from a 5-fold cross-validation are given.

score over the entire colon, the logistic-regression-based model performed better than

the humanly annotated MES. Furthermore, with average severity scores from indi-

vidual colon segments, the model’s accuracy outperformed the model with the total

score. In the proposed set 3, we combined the estimated average severity scores from

the entire colon and individual colon segments with MES and the total score. With

the proposed set 3, the logistic-regression-based model achieved an average AUC of

0.79, which is 8% higher than using the annotated MES and total score alone.

3.5.7 Limitations and future work

One limitation of this study is that the time at which the camera was withdrawn

was manually annotated. This is due to the high proportion of non-informative frames

during the insertion phase. The information loss resulting from frame removal reduces

the accuracy of the camera localization during the insertion phase and makes it chal-

lenging to identify the time at which the camera was withdrawn automatically. An

image classifier will be trained to detect frames in the ileum or cecum based on tex-

tural features in our future work. Combined with the motion estimation results, the

time at which the camera was withdrawn will be identified, which can lead to a fully

automated localization system. The proposed anatomical colon segment classification

is limited by assuming the patient’s colon and segments are of a regular length. In our

future work, additional information, including surgical history and automatically de-

tected anatomical features (e.g., the appendiceal orifice), will be integrated to identify
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the colon segment better. The scale-drifting problem is an intrinsic limitation of the

self-supervised camera pose estimation network. Our experimental results in Figure

3.13 indicate that the scale-drifting problem is minor in the proposed system. In our

future work, we will explore the possibility of integrating other information in the

localization system. Though the colon surface is relatively uniform, some anatomical

features may be detected in the cecum, transverse colon, and rectum. It is possi-

ble to build a method that leverages the information from colon segment templates

and anatomical feature detection to refine the location index estimation for a new

colonoscopy video.

An important limitation in the MES estimation was the difference in disease sever-

ity between the subjects of the internal and external videos, who expectantly con-

tained a higher proportion of moderate-to-severe disease. We believe the disease

severity distribution typical of clinical trials is justified by the expectation these pop-

ulations are likely where video analysis will be first applied. Future development and

validation methods will benefit from evenly distributed disease severity datasets to

be of the most value in research and clinical care. Another limitation is the ground

truth for endoscopic disease severity assessments is inherently subjective. However,

there is no perfect reference for endoscopic scoring, and central reading does not com-

pletely eliminate bias, disagreement, or variability of ground truth disease severity

grading. Increasingly, our ground truth for endoscopic feature evaluation and scor-

ing may need to be reconsidered given the increasing availability of computational

methods for more discrete and reproducible image assessment.

At the end of this chapter, preliminary results of the proposed outcome prediction

model are presented. For the current outcome prediction model, we only investigated

the basic statistics features on the severity scores. Other features such as distance

metrics evaluating the severity change from week 0 and week 8 (or 16), histogram

features on severity change, and features from wavelet transformation may provide
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more comprehensive information. In our future work, we will continue building feature

representation from the spatial severity distribution over the entire colon. From our

experimental results, the clinical information from the total score still adds predictive

value. As a result, we will add more clinical variables into the model and try to reduce

the manual annotation in outcome prediction. Additionally, other ML algorithms will

also be applied to improve the prognostic model.
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CHAPTER IV

A Novel Tropical Geometry Based Interpretable

Machine Learning Method with An Application in

Clinical Decision Support for Patients with

Advanced Heart Failure

4.1 Introduction

AI/ML techniques have been increasingly applied to healthcare problems [117].

Previous studies investigated the capability of AI in disease diagnosis, treatment

effectiveness prediction, and patient outcome prediction [118, 119, 120, 121]. Several

studies have shown that AI performs as well as or better than humans [122]. With a

lower cost, AI-based decision support systems have the potential to improve patient

management.

Despite tremendous progress in the field of AI/ML-based clinical decision support

systems, there are still significant challenges that prevent the widespread use of these

methods in sensitive clinical applications. While traditional models such as linear

regression models and decision trees provide accessible reasoning, these models are less

capable of achieving high performance on complicated clinical problems. In contrast,

a wide spectrum of ML models with higher complexity, including families of neural
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networks and support vector machines (SVM), can yield good metrics on experimental

datasets. However, these “black box” models lack transparency and justification

of their recommendations, making them much less likely to be trusted in clinical

applications. Moreover, many popular ML methods, such as deep learning, utilize

a large number of parameters, thus requiring large training and validation datasets

to avoid overfitting the data. However, in many clinical applications, collecting large

annotated training datasets may be costly or even impossible. As such, there is a clear

need for an interpretable ML model that can reliably model data using relatively small

training sets. In addition, in healthcare applications, there exist many invaluable

heuristics derived from domain knowledge expertise, often in the form of approximate

rules that are used by human experts. For example, when caring for patients with

end-stage heart failure (HF), cardiologists use their clinical intuitions, paired with

transplant guidelines, to identify patients who may benefit from a durable mechanical

circulatory support (MCS) device or heart transplantation (HT). In the majority of

existing AI/ML models, there is no clear mechanism to leverage such approximate

knowledge for model formation or training.

The motivation of this study is to solve the aforementioned limitations in the field

of AI. In this study, an interpretable ML algorithm is proposed that can not only

produce a transparent classification model but also leverage existing domain knowl-

edge to improve model generalizability and reliability. The proposed network is built

upon a fuzzy logic and inference system [123, 124], a type of approximate reasoning

method that has been heavily used for multidimensional system modeling [125, 126].

In this study, a network with adaptive fuzzy subspace division and rule discovery was

developed. In addition, the input encoding functions and the aggregation operators in

classical fuzzy inference networks were reformulated by introducing tropical geometry

[127], a piecewise-linear version of conventional algebraic geometry. To validate the

proposed methods, two synthetic datasets and one practical application in clinical
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decision support for patients with advanced HF were investigated to demonstrate the

capability and interpretability of the proposed model.

The clinical decision support application used in this study is the differentiation

of patients eligible for and most likely to benefit from advanced therapies; such as

durable MCS, most commonly a left ventricular assist device (LVAD), or HT; from

those too well, too sick, or otherwise ineligible for advanced therapies. HF afflicts 6.5

million Americans 20 and older, with its prevalence projected to increase annually

[128, 129]. Treatment of these patients remains limited both by medical therapies and

by organ availability. The appropriate delivery of advanced therapies (HT or MCS

implantation) to patients with end-stage HF is highly nuanced and requires expertise

from advanced HF cardiologists. Due to the high prevalence of HF, the majority of

patients are managed by primary care physicians or cardiologists, who lack training in

the management of these patients. Thus, there is a need for AI-based tools that can

systematically identify patients warranting a referral to an advanced HF cardiologist

for consideration of HT or MCS implantation.

Our contributions in this study can be summarized as:

1. A novel end-to-end interpretable fuzzy network is proposed, whose resulting

recommendations and predictions would be transparent to users such as clin-

icians and patients. The model can produce humanly understandable rules,

while regularization within the model training process encourages parsimonious

rules that could be readily incorporated into clinical practice. Moreover, the

extracted rules enable the discovery of new clinical knowledge. The proposed

network has been validated using synthetic data with ground truth reasoning

and a dataset consisting of patients with HF. The experimental results show

that the network has the capability to extract hidden rules from datasets. In ad-

dition, the proposed network achieved comparable or better performance than

other ML models.
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2. Using the proposed algorithm, approximate domain knowledge can be directly

incorporated into model training. The existing domain knowledge can improve

the model’s performance and reduce the need for a large training set, which

makes it particularly appropriate for clinical applications. From our experi-

mental results, initializing a network with existing approximate knowledge can

significantly improve the model’s accuracy.

3. The proposed ML algorithm has been validated with an application of identify-

ing patients with HF eligible for advanced therapies, a highly sensitive applica-

tion in medicine. From our results, the proposed algorithm achieves a smaller

generalization error. The rules from the trained network have been visualized

and validated by cardiologists. The developed model can improve care for pa-

tients with HF by providing assessments that can be used by general providers

without HF expertise.

4.2 Related Work

4.2.1 Interpretable ML models

One of the most popular definitions of interpretability is “the ability to explain

or to present in understandable terms to a human” [130]. There are primarily

two bodies of work related to model interpretability: post-hoc interpretation and

transparency[131].

Post-hoc interpretation methods are dedicated to explaining pre-developed “black

box” ML models. For example, the interpretability of a random forest model was in-

vestigated by measuring variable importance [132]. [133] proposed Local Interpretable

Model-agnostic Explanations, which can explain the individual predictions of any clas-

sifier by learning local surrogate models that approximate the predictions from the

target “black box” model. In [133], an attribution graph discovers and summarizes
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crucial neuron associations that contribute to a model’s predictions. While post-hoc

methods can reveal how powerful models works, they are mostly approximations and

have limited capacity in elucidating how to improve a model’s interpretability.

In contrast, transparency addresses how a model functions internally and can

provide exact explanations. A transparent model has an explainable structure design

that enables interpretation. While those models are interpretable, they are usually

less accurate than powerful “black box” ML models. The simplest transparent mod-

els are linear models, but these may fail whenever the relationships between features

and responses are non-linear. The Näıve Bayes classifier calculates the probability

for a class depending upon the value of the feature so that the contribution of each

feature towards a certain class is evident. Decision trees are another class of trans-

parent models that can capture interactions among different features. However, the

structure of the decision tree is quite unstable and highly dependent on feature selec-

tion for each split. Generalized additive models are extended linear models that can

capture non-linear relationships between individual features (or pairwise interactions)

and responses [134]. They have been used in practical applications and exhibit good

performance and interpretability [135]. However, they are less capable of modeling in

high-dimensional feature interactions. Another type of transparent model is a fuzzy

inference model, which models the relationship between features and responses by

constructing compositional rules [123]. Fuzzy inference models are designed for prob-

lems with inherent imprecision and uncertainty. In fuzzy inference models, knowledge

is represented in the format of fuzziness of antecedents, consequents, and relations.

As rules closely approximate human logic in decision-making, and fuzziness often ex-

ists in practical applications and especially in healthcare, the proposed network in

this study is designed to leverage fuzzy logic and inference systems.
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4.2.2 Fuzzy inference system

Previous studies have shown that fuzzy inference systems can be used for non-

linear system approximation and rule identification [125, 126]. While decisions pro-

duced by conventional AI/ML models are often opaque, hindering knowledge extrac-

tion and transfer, fuzzy inference models can extract humanly understandable knowl-

edge from data. Classical fuzzy inference models utilize membership functions such

as triangular functions to transform crisp inputs to a membership degree of fuzzy

concepts. After that, a set of concepts are aggregated by T-norm and T-conorm

operators (aggregation operators) to construct if-then rules, with the crisp output

from each rule then transformed into output. min (T-norm) and max (T-conorm)

are commonly used operators in fuzzy logic [123, 136]. A wide spectrum of fuzzy

inference systems utilize the Takagi-Sugeno (TS) inference model [124], whereby a

complete rough partition of the input space is generated and an input-output rela-

tion is formed for each subspace. Adaptive Network-based Fuzzy Inference System

(ANFIS)[137] is a hybrid of a feed-forward neural network and fuzzy inference sys-

tem with supervised learning capability that can be used to update the input-output

relation in each subspace. ANFIS has been successfully applied in multiple appli-

cations [138, 139]. In our previous work [140], an adaptive fuzzy inference network

was developed and optimized using a genetic algorithm to identify patients eligible

for advanced therapies. From our results, the network achieved good classification

performance and provided transparent rules.

However, the designs of the TS model and ANFIS pose challenges in practical

complex applications where the number of input variables is relatively large as this

results in exponential growth in the number of subspaces (as well as the number of

parameters). To handle this problem, a flexible k-d tree [141] and quadtree [142] have

been adopted for input space partition, but are limited in that it is more challenging

to assign understandable terms to membership functions using these methods. In
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this study, unlike previous methods, we propose an end-to-end network that will

adaptively and iteratively discover subspaces related to each class using gradient-

based back-propagation.

4.3 Datasets

4.3.1 Synthetic datasets

Two synthetic datasets were constructed by simulating features with fixed distri-

butions and rules to generate responses. The ground truth rules from the synthetic

datasets can be used to assess a method’s capability in extracting humanly under-

standable knowledge from the data and modeling the relationship between inputs and

responses. In addition, with ground truth rules, synthetic datasets can be used to

assess whether the proposed method can benefit from existing knowledge.

For each dataset, a 10-fold cross-validation was used for performance evaluation.

In each iteration, the dataset was randomly split into the training set (64%), validation

set (16%), and test set (20%).

4.3.1.1 Synthetic dataset 1

Eight input variables were simulated as: x1 ∼ N (0, 2), x2 ∼ N (5, 3), x3 ∼

N (−1, 5), x4 ∼ N (1, 2), x5 ∼ N (−2, 1), x6 ∼ Bernoulli(0.5), x7 ∼ N (0, 1), x8 ∼

N (0, 1). If any of the following rules apply to one observation, then this observation

is positive and otherwise negative:

• Rule A: x2 < 3.8 and x3 > −2 and x6 = 1;

• Rule B: x2 > 6.3 and x3 > −2 and x6 = 1;

• Rule C: x1 < 1 and x4 > 2 and x6 = 0;

• Rule D: x3 > 0 and x5 > −1 and x6 = 0;
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• Rule E: x1 < 1 and x5 > −1.5 and x6 = 0.

Additionally, random noise sampled from N (0, 0.01) are added to input variables.

From the above rules we can readily observe that the response of one observation

doesn’t rely on x7 and x8. x7 and x8 are used as irrelevant variables to assess the

model’s resilience to redundant features.

4.3.1.2 Synthetic dataset 2

Nine input variables were simulated as: x1 ∼ N (0, 2), x2 ∼ N (5, 3), x3 ∼

N (−1, 5), x4 ∼ N (1, 2), x5 ∼ N (−2, 1), x6 ∼ N (−1, 4.4), x7 ∼ N (0, 1.2), x8 ∼

N (0, 1), x9 ∼ N (0, 1). The sample is positive if (x1 +0.5x2 +x3)2/(1+ex6 +2x7) < 1.

Unlike synthetic dataset 1, which is built from rules, a highly non-linear function

is used to assign the response. Though such a relationship between input variables

and responses rarely exists for clinical applications, this dataset is used to determine

if the proposed network can still achieve good performance by approximating the

complicated relation as simple rules.

4.3.2 HF dataset

A HF dataset is created to train a classification model that identifies patients

eligible for advanced therapies. For this analysis, we focused our analysis on the

timing of LVAD implantation and urgent HT as these urgent transplants occur in the

order of months and can be predicted based on the time of transplant listing. Two

cohorts were used in this study.

4.3.2.1 REVIVAL cohort

The REVIVAL (Registry Evaluation of Vital Information for VADs in Ambulatory

Life) registry contains information on 400 patients with advanced systolic HF from
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21 US medical centers. As part of the registry, patients were evaluated at up to 6 pre-

specified time points over a 2-year period and underwent relevant examinations. At

each time point, investigators were asked to record whether the participant had been

evaluated for HT or LVAD and the result of that evaluation. Death, HT, and durable

MCS implantation were study endpoints with no additional follow-up. For purposes

of this analysis, study participants were labeled at each time point as appropriate

(positive) or not appropriate (negative) for advanced therapies. In total, the cohort

contains 96 positive samples from 62 patients, and 1336 negative samples from 339

patients.

4.3.2.2 INTERMACS cohort

The INTERMACS (Interagency Registry for Mechanically Assisted Circulatory

Support) registry is a North American registry of adults who received an FDA-

approved durable MCS device for the management of advanced HF. The registry

includes clinical data on all adults ≥ 19 years of age who received a device at one

of 170 active INTERMACS centers. The registry includes information on patient

demographics, clinical data before and at the time of MCS implantation, and clinical

outcomes up to one-year post-MCS implantation or until HT. For this analysis, data

was extracted at the time of LVAD implantation and patients classified as “appropri-

ate for advanced therapies.” In total, the cohort contains 7781 positive samples from

7813 patients.

Patients from the two cohorts were combined to form a larger dataset. 23 clini-

cal variables were selected by clinicians and used in this study including heart rate,

systolic blood pressure (SYSBP), sodium concentration, albumin concentration, uric

acid concentration, total distance walked in 6 minutes (DISTWLK), gait speed during

a 15 feet walk test (GTSPDTM), left ventricular dimension in diastole (LVDEM), left

ventricular ejection fraction severity score (EF), eight-item Patient Health Question-
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REVIVAL INTERMACS
Eligible for

HT/MCS (n=62)
Too Well for

HT/MCS (n=291)
Eligible for

HT/MCS (n=7781)
Age, years

mean (SD) 60.8 (9.7) 59.2 (11.8) 57.6 (12.9)
Gender, n (%)

Female 16 (25.8%) 77 (26.5) 1605 (20.6)
NYHA class, n (%)

I 0 (0%) 6 (2.1%) 274 (3.5%)
II 6 (9.7%) 96 (33.0%) 45 (0.6%)
IIIA 47 (75.8%) 162 (55.7%) 1361 (17.5%)
IIIB 3 (4.8%) 6 (2.1%) 6133 (78.8%)
IV 6 (9.7%) 21 (7.2%) 0 (0%)

INTERMACS profile
mean (SD) 5.5 (1.0) 6.1 (0.9) 2.6 (1.0)

Heart rate 88.3 (17.4)
mean (SD) 75.3 (12.2) 75.0 (12.5)

Systolic blood pressure
mean (SD) 104.6 (11.6) 110.0 (16.3) 106 (15.7)

Table 4.1: Patient characteristics of the REVIVAL and INTERMACS datasets. NYHA:
New York Heart Association. SD: standard deviation.

naire depression scale (PHQ-8) score, mitral regurgitation (MITRGRG), lymphocyte

percentage (LYMPH), total cholesterol (TCH), hemoglobin (HGB), age, sex, comor-

bidity index, glomerular filtration rate (GFR), pulse pressure, treatment with cardiac

resynchronization therapy, need for temporary MCS device, treatment with guideline

directed medical therapy (GDMT) for heart failure, and peak oxygen consumption

during a maximal cardiopulmonary exercise test (pVO2). Note, in this study, EF de-

notes the ejection fraction severity score, which means a patient with a low ejection

fraction has a high EF value.

Patient characteristics of the REVIVAL and INTERMACS datasets are shown in

Table 4.1. Patient-wise splitting was performed to construct training, validation, and

test sets, the details of which are shown in Table 4.2. From the table 4.1, we can

observe that patients in INTERMACS cohort are severer than patients in REVIVAL

cohort. As a result, all patients in the INTERMACS cohort are used as training

samples and the trained model will be validated on positive samples from REVIVAL
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Training set Validation set Test set

Patients in REVIVAL
with advanced therapy (n=64)

0% 50% 50%

Patients in REVIVAL
w/o advanced therapy (n=339)

80% 10% 10%

Patients in
INTERMACS (n=2998)

100% 0% 0%

Table 4.2: Ratio of patients from different groups in training, validation, and test set in one
iteration

dataset. With this data split, we can better evaluate the generalizability of the

proposed method.

Additionally, to facilitate model training, 5 approximate rules denoting eligibility

for advanced therapies were collected from heart failure and transplant cardiologists:

• Rule A: EF is high, and pVO2 is low;

• Rule B: EF is high, and DISTWLK is low;

• Rule C: Age is high, EF is high, and SYSBP is low;

• Rule D: EF is high, and MITRGRG is high;

• Rule E: EF is high, and the GDMT is low;

4.4 Methods

4.4.1 Overview of the proposed work

In this study, a transparent end-to-end network was designed that can discover

fuzzy subspaces contributing to each class. Figure 4.1 depicts the proposed network.

The proposed network and regular neural network are alike in a layer-by-layer struc-

ture but entirely different in mathematical modeling. The proposed network has

three major components: encoding module, rule module, and inference module. In
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Figure 4.1: An overview of the proposed network. The nomenclatures we used in the
network will be explained in §4.4.

the encoding module, an input variable is encoded into humanly understandable fuzzy

concepts. In the rule module, with the trainable attention matrix and connection ma-

trix, a limited number of fuzzy subspaces (i.e., rules) are constructed as combinations

of fuzzy concepts from the encoding module. Finally, with the inference matrix and

the firing strength of each rule node, the probabilities of one sample belonging to

each class are calculated in the inference module. In this network, parameters in in-

put encoding functions, subspace construction, and output inference are all trainable

by gradient-based back-propagation.

Unlike prior work on fuzzy inference systems, we parametrized the membership

functions and aggregation operators using ε, a factor that controls their smoothness.

Previously, min / product and max / addition were used as T-norm and T-conorm

(also called aggregation operations), respectively, though it remains unknown which

is better [123, 136, 143]. Similar to the encoding functions, triangular, trapezoids,
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and Gaussian membership functions are all commonly used, but it is not very unclear

which one is the best in fuzzy set encoding. The use of Gaussian membership func-

tions, product, and addition enables the application of the back-propagation method

for optimization. However, it is unknown whether the lack of piece-wise linearity

will limit the capability of the fuzzy inference system. In addition, while the selec-

tion of membership function shape may be application-specific, several prior studies

have shown that the triangular membership function is superior to other membership

functions [144, 145, 146]. Previous studies also demonstrated that some practical

problems are easier to solve in tropical geometry due to the piece-wise linear nature

of the tropical objects [127]. As such, parametrizing the membership functions, T-

norm, and T-conorm allows the model to discover optimal encoding functions and

operations during the training process. Throughout the course of the optimization

process, these parametrized functions are gradually updated to be closer to piece-wise

linear functions, which both ensure the stability and convergence of gradient descent

and results in an interpretable and accurate model. After model training, the atten-

tion matrix, connection matrix, and inference matrix can be used to interpret the

model in the form of rules.

As the proposed network mimics human logic, not only can knowledge be extracted

from the trained model but also existing knowledge can be integrated/transferred

into the model. In this study, experiments were performed to investigate whether

initializing the network with existing domain knowledge can facilitate model training.

4.4.2 Encoding module

The input variables can be either ordinal, continuous, or categorical. For ordinal

and continuous variables, fuzzy theory will be used to encode variables into multiple

fuzzy sets. Unlike with crisp sets, for which membership is binary, for fuzzy sets a

membership value in [0, 1] will be assigned to a variable’s observed value for a given
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fuzzy set, indicating the confidence of that value belonging to the set. Fuzzy set

membership approximates the fuzzy concept used by human experts during decision-

making. For example, given the heart rate of a patient, the clinician may describe

it as a “low” / “medium” / “high” heart rate. “Low”, “medium”, and “high” are

the fuzzy concepts used in clinical problems. In this study, we encoded clinical ordi-

nal/continuous variables into these three concepts. With an ordinal/continuous vari-

able x, the membership functions l(x),m(x), h(x) for “low”, “medium”, and “high”

concepts are defined as

fε1(x) =ε1 log(1 + exp(x/ε1)), (4.1a)

l(x) =fε1

(
ai,2 − x
ai,2 − ai,1

)
− fε1

(
ai,1 − x
ai,2 − ai,1

)
, (4.1b)

m(x) =fε1

(
x− ai,1
ai,2 − ai,1

)
− fε1

(
x− ai,2
ai,2 − ai,1

)
−

fε1

(
ai,3 − x
ai,4 − ai,3

)
+ fε1

(
ai,4 − x
ai,4 − ai,3

)
− 1, (4.1c)

h(x) =fε1

(
x− ai,3
ai,4 − ai,3

)
− fε1

(
x− ai,4
ai,4 − ai,3

)
, (4.1d)

where ai,1 < ai,2 < ai,3 < ai,4 and are trainable. With 0 < ε1 < 1, the mem-

bership functions are differentiable, with their smoothness modulated by ε1. As

limε1→0 fε1(x) = max(0, x), when ε1 approaches 0, the membership functions in Equa-

tion 4.1 are close to trapezoidal membership functions or triangular membership func-

tions (if ai,2 is close to ai,3).

Using the defined membership functions, xi will be encoded as membership values

in three fuzzy concepts: l(xi),m(xi), h(xi). In this study, we used three concepts -

“low”, “medium”, and “high” - as they are commonly used in healthcare applications.

The above formulations can be easily extended to a higher number of concepts.

Categorical variables are represented via a one-hot encoding directly and no fuzzy
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concepts are used. We denote Lj as the number of levels of a categorical variable xj.

In this study, xj is encoded into l1(xj), l2(xj), . . . , lLj(xj), where only one of them has

a value of 1 and all others are 0.

4.4.3 Rule module

The rule module consists of two layers in the proposed architecture. In this mod-

ule, the firing strength of a number of rules (fuzzy subspaces) are calculated for the

classification task and denoted as r1, . . . , rK in Figure 4.1, where K is the total number

of rules.

4.4.3.1 The first layer

The first layer of the rule module selects the most relevant concept from each

variable with respect to each rule using an attention matrix A. A is the partitioned

matrix formed by concatenating submatrices A1,A2, . . . ,AH , where Ah is the at-

tention submatrix for the input variable xh and H = I + J is the total number of

input variables, with I and J the total number of ordinal/continuous and categori-

cal variables, respectively. For an ordinal/continuous variable xi, the submatrix Ai

with entries Ai,m,n has dimension 3×K, where 3 is the number of concepts for ordi-

nal/continuous variables used in this study and K is the number of rules utilized in

the network. For a categorical variable xj, the submatrix Aj with entries Aj,m,n has

dimension Lj ×K. Thus, the attention matrix A has dimension (3I +
∑

j Lj)×K.

For an ordinal/continuous variable xi, the entry Ai,1,k in the attention matrix

represents the contribution of xi being “low” to rule k (and similarly, Ai,2,k for xi

being “medium” and Ai,3,k for xi being “high”). Entries in the attention matrix are

all trainable and constrained to [0, 1] by the hyperbolic tangent activation function.

A higher value in A indicates a higher contribution. As shown in Figure 4.1, for an

input variable xi, the corresponding output from the first layer of the rule module
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is x̃i, a vector of length K. x̃i,k, the kth element of x̃i, is the firing strength of xi

involved in kth rule.

For an ordinal/continuous variable xi and categorical variable xj, x̃i,k, and x̃j,k

are calculated as

x̃i,k =Ai,1,kl(xi) + Ai,2,km(xi) + Ai,3,kh(xi), (4.2a)

x̃j,k =

Lj∑
d=1

Aj,d,kld(xj) (4.2b)

respectively.

4.4.3.2 The second layer

The second layer of the rule module calculates rule firing strength by a connection

matrix M of dimension H × K. The kth rule is constructed as a combination of

x̃1,k, . . . , x̃H,k from the previous layer. An entry Mi,k in the connection matrix M

denotes the contribution of xi to the kth rule. Entries in the connection matrix are

all trainable and constrained to [0, 1] the hyperbolic tangent activation function, and

a higher value indicates a higher contribution. In this layer, we define a parametrized

T-norm to calculate rk, the firing strength of the kth rule.

With 0 < ε2 < 1, let gε2 : [0,∞)→ [0,∞) and its inverse function g−1
ε2

be defined

as

gε2 (x) =
ε2

1− ε2

(
1− x

ε2−1
ε2

)
, (4.3a)

g−1
ε2

(z) =

(
1− 1− ε2

ε2
z

) ε2
ε2−1

. (4.3b)
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The parametrized T-norm on two inputs is defined as

Tε2 (x, y) =g−1
ε2

(gε2 (x) + gε2 (y))

=
(
x
ε2−1
ε2 + y

ε2−1
ε2 − 1

) ε2
ε2−1

,

(4.4)

which has the following asymptotic behavior:

lim
ε2→1

Tε2 (x, y) = xy, (4.5a)

lim
ε2→0

Tε2 (x, y) = min(x, y), (4.5b)

which means that the defined T-norm can be modulated between product and min

by ε2.

Using this definition of the T-norm, rk is calculated by applying the T-norm to

multiple inputs:

rk =Tε2

(
x̃
M1,k

1,k , x̃
M2,k

2,k , . . . , x̃
MH,k

H,k

)
=g−1

ε2

(
H∑
i=1

gε2(x̃
Mi,k

i,k )

)

=

(
H∑
i=1

x̃
Mi,k·

ε2−1
ε2

i,k −H + 1

) ε2
ε2−1

.

(4.6)

In Equation (4.6), entries in the connection matrix M are used as exponents.

Taking the example of x̃
M1,k

1,k , a lower M1,k (closer to 0) means x̃
M1,k

1,k is closer to 1,

consequently it contributes less to rk with the proposed T-norm. Thus, a lower value

in M indicates a lower contribution to the rule firing strength, and vice versa.

4.4.4 Inference module

Let C denote the number of classes in the classification task. The inference layer

has C nodes, one for each class, that are fully connected to the rule layer nodes. The
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firing strength of each node oc is calculated using the rule firing strengths with an

inference matrix W of dimension K × C. An entry Wj,c denotes the contribution

of the kth rule to the cth class. Entries in the inference matrix are all trainable and

positive. A higher value indicates a higher contribution. In this layer, we define a

parametrized T-conorm to calculate oc.

The parametrized T-conorm on two inputs is written as

Qε3 (x, y) =
(
x

1
ε3 + y

1
ε3

)ε3
, (4.7)

where 0 < ε3 < 1. This T-conorm has the following asymptotic behavior:

lim
ε3→1

Qε3 (x, y) = x+ y, (4.8a)

lim
ε3→0

Qε3 (x, y) = max (x, y) , (4.8b)

which means that the defined T-conorm can be modulated between addition and max

by ε3.

Using this definition of the T-conorm, oc is calculated by applying the T-conorm

to multiple inputs:

oc =Qε3 (W1,cr1,W2,cr2, . . . ,WK,crK)

=

(
K∑
k=1

(Wk,crk)
1
ε3

)ε3

.
(4.9)

After the calculation of o1, o2, . . . , oC , a softmax activation function is applied to

generate probabilities p1, p2, . . . , pC of being in each class, which are all in [0, 1] with∑C
c=1 pc = 1.

As
∑C

c=1 pc = 1, we can set the number of “valid” nodes in the inference module

to C − 1 to avoid ambiguity in rule representation. For example, when performing

binary classification W:,0 can be set to 0 so that the model will only learn subspaces
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related to the positive class.

4.4.5 Network Interpretation

The proposed network can both extract rules and inject rules in a way that humans

can understand. The entries in the attention matrix A and connection matrix M

represent the contribution of individual concepts and individual variables to each

rule. The entries in the inference matrix W gives the contribution of individual rules

to each class.

With A and M, a contribution matrix S can be constructed that expresses the

contribution of individual concepts to each rule in the model. The matrix S is of

the same dimension as attention matrix A, i.e., it is a partition matrix formed by

concatenating submatrices S1,S2, . . . ,SH . For an ordinal/continuous variable xi, the

corresponding submatrix Si has dimension 3 × K and for a categorical variable xj,

Sj has dimension Lj ×K. The entries Si,d,k of Si and Sj,d,k of Sj are calculated as

Si,d,k =Ai,d,k ×Mi,k, d ∈ {1, 2, 3}, (4.10a)

Sj,d,k =Aj,d,k ×Mj,k, d ∈ {1, . . . , Lj}, (4.10b)

respectively, where k ∈ {1, . . . , K}.

The entry Si,d,k is the contribution of the dth concept of xi to the kth rule. S:,:,k

encodes the construction of the kth rule, while Wk,: captures the relationship between

classes and the kth.

The following is a toy example further demonstrating how humanly understand-

able rules are represented in the network.

Given a dataset with four continuous input variable x1, x2, x3, x4 and a binary

response (negative/positive), A,M,W are trained and S can be calculated. Let us

assume that in the contribution matrix S, S1,1,1, S2,3,1, S2,2,2, and S3,1,2 are close to 1,
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with all other entries close to 0. In the inference matrix W, W1,2 and W2,2 are close

to 1 while W1,1 and W2,1 are close to 0. From the given S and W, we can summarize

two rules from the trained network as follows:

• IF x1 is low and x2 is high, THEN the sample is positive;

• IF x2 is medium and x3 is low, THEN the sample is positive.

The above two rules are represented in (S:,:,1,W1,:) and (S:,:,2,W2,:), respectively.

The definitions of “low”, “medium” and “high” concepts can be extracted from the

parameters in the encoding module. The extracted rules mimic human logic. They

can be used to justify the network’s decisions and contribute to knowledge discovery.

In practice, the trained model may have some redundant rules. The correlation

between each pair of rules are calculated and then uses thresholds to prune redundant

rules and less significant concepts.

4.4.6 Model training and network initialization

The proposed network is trained by back-propagation with an Adam optimizer.

A regular cross-entropy loss losscs is calculated to train the classification model.

Additionally, an `1 norm-based regularization term loss`1 is added to the loss function

to favor rules with a smaller number of concepts, which are more feasible to use in

practice. In addition, the correlation among encoded rules is calculated as a loss term

losscorr to avoid extracting redundant rules. The loss function can be written as:

losstotal =lossce + λ1loss`1 + λ2losscorr, (4.11a)

lossl1 = ‖vec(A)‖1 + ‖vec(M)‖1 , (4.11b)

losscorr =
H−1∑
i=1

H∑
j=i+1

vec(S:,:,i)vec(S:,:,j) (4.11c)
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where λ1 and λ2 control the magnitude of the `1 norm-based regularization term and

correlation based regularization term, respectively. vec(·) denotes the vectorization

of a matrix.

In this study, for simplicity, ε1, ε2, ε3 are constrained to be equal. They are initial-

ized as 0.99 at the beginning of training and are gradually reduced with the number

of training steps. The scheduling of the ε values can be written as

ε = max(εmin, ε · γtraining steps), (4.12)

where γ is the decay rate that can be tuned as a hyperparameter. From our prelim-

inary analysis, γ = 0.999 usually is a good choice. εmin is another hyperparameter,

whose optimal value varies with different applications. The hyperparameter tuning

strategy will be discussed in the next section. Our experiments show that starting

with ε = 0.99 and reducing ε improves model optimization (as discussed in §4.5.1).

Before model training, trainable parameters will be randomly initialized. To im-

prove performance, especially when the size of the training dataset is small, practical

rules from domain knowledge can be used to initialize the network. Revisiting the

toy example in §4.4.5, if the extracted rules were instead previously known within

the application domain, the matrices A,M, and W in the network could then be

initialized as:

• A: A1,1,1, A2,3,1, A2,2,2, A3,1,2 have a higher value and other entries in A:,:,1 and

A:,:,2 have a lower value;

• M: M1,1,M2,1,M2,2,M3,2 have a higher value and other entries in M:,1 and M:,2

have a lower value;

• W: W1,2,W2,2 have a high value and W1,1,W2,1 have a low value;

• Other entries in A, M, and W are randomly initialized.

118



4.4.7 Evaluation strategy

For synthetic datasets, a 10-fold cross-validation was used to evaluate model per-

formance; and for heart failure dataset, the proposed data split in Table 4.2 was

randomly repeated for 10 times to evaluate the model. A random search algorithm

was applied using the training set and validation set for hyperparameter tuning,

including learning rate, batch size, λ1, λ2, and εmin. The model trained with the

optimal combinations of hyperparameters was then evaluated on the test set. The

performance of the proposed network will be presented as the average and standard

deviation (std) from 10 iterations.

For comparison, several popular “black box” ML algorithms were chosen, includ-

ing random forest, support vector machine (SVM), and XGBoost. In addition, several

interpretable models were chosen including logistic regression, decision tree, and ex-

plainable boosting machine (EBM, a type of generalized addictive models) [147], and

a fuzzy inference classifier [148]. Similarly, a 10-fold cross-validation was used to

evaluate the performance of those models. Hyperparameters were also tuned using a

training set and validation set. Detailed implementation information for these models

is described in Appendix G.

Accuracy, recall, precision, F1, AUC and AUPRC were calculated to evaluate the

performance of the trained classifiers.

4.5 Results and Discussion

4.5.1 Synthetic dataset 1 (N = 400)

Let N denote the number of observations in a given dataset. Several experiments

were performed with differently sized simulated datasets. In this section, we discuss

the performance of the proposed method on synthetic dataset 1 when N = 400.

The first experiment starts with N = 400.The proposed network was trained using
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Model Accuracy Recall Precision F1 AUC

εmin = 0.8 0.955 (0.025) 0.911 (0.073) 0.955 (0.038) 0.883 (0.040) 0.986 (0.016)
εmin = 0.4 0.959 (0.030) 0.904 (0.073) 0.972 (0.035) 0.888 (0.048) 0.991 (0.010)
εmin = 0.2 0.961 (0.026) 0.919 (0.087) 0.968 (0.039) 0.892 (0.045) 0.992 (0.008)
εmin = 0.1 0.901 (0.053) 0.856 (0.146) 0.865 (0.089) 0.803 (0.093) 0.949 (0.056)

Fixed ε = 0.8 0.966 (0.023) 0.903 (0.083) 0.964 (0.019) 0.886 (0.037) 0.978 (0.019)
Fixed ε = 0.4 0.939 (0.040) 0.867 (0.086) 0.948 (0.056) 0.857 (0.064) 0.964 (0.024)
Fixed ε = 0.2 0.786 (0.041) 0.519 (0.190) 0.803 (0.109) 0.558 (0.132) 0.819 (0.117)
Fixed ε = 0.1 0.789 (0.062) 0.552 (0.237) 0.689 (0.255) 0.560 (0.216) 0.855 (0.081)

Table 4.3: Performance of the proposed model on the synthetic dataset 1 with N = 400
with different ε settings using 10-fold cross-validation. For the first half of rows, ε starts
with 0.99 and gradually reduced to εmin during the training. For the second half of rows,
the value of ε didn’t change during the training process.

80% of the data and tested on 20% of the data. The percentage of positive samples is

34.25%, and the percentages of samples with Rule A, Rule B, Rule C, Rule D, Rule

E are 8.25%, 7.50%, 9.00%, 2.00%, and 10.75%, respectively.

Table 4.3 depicts the performance of the proposed algorithm with different εmin

on the test sets from a 10-fold cross-validation. We can observe that model training

benefited from decreasing εmin from 0.8 to 0.2, but the performance of the trained

model decreased when εmin was decreased to 0.1. We also evaluated the model with

a fixed ε, rather than gradually decreasing it from 0.99. While fixing ε at 0.8 leads

to comparable performance with the model using εmin = 0.8, the performance of the

models with a smaller fixed ε value decreased significantly. Our results show the

effectiveness of the algorithm that gradually decreases ε during the training. Using

this dataset, the proposed network with a reasonable degree of piecewise linearity has

a better performance.

Table 4.4 describes the performance of the proposed method where εmin is tuned

on the validation set in each iteration. The performance of the proposed network is

compared with that of other machine learning algorithms. From Table 4.4, we can

see that the proposed network achieved significantly better performance than other

interpretable models and had comparable performance to the XGBoost model, which

is the best among the other established machine learning algorithms.

120



Model Accuracy Recall Precision F1 AUC

Proposed 0.960 (0.023) 0.933 (0.054) 0.953 (0.060) 0.893 (0.032) 0.994 (0.005)

EBM 0.835 (0.027) 0.678 (0.060) 0.807 (0.060) 0.688 (0.045) 0.924 (0.018)
Logistic Regression 0.724 (0.029) 0.344 (0.078) 0.692 (0.098) 0.413 (0.070) 0.701 (0.065)

Näıve Bayes 0.734 (0.032) 0.363 (0.089) 0.721 (0.114) 0.434 (0.082) 0.803 (0.035)
Decision Tree 0.933 (0.046) 0.907 (0.056) 0.901 (0.090) 0.855 (0.064) 0.938 (0.040)

Fuzzy Inference 0.680 (0.036) 0.456 (0.102) 0.540 (0.076) 0.441 (0.071) 0.668 (0.056)

Random Forest 0.924 (0.015) 0.826 (0.062) 0.944 (0.037) 0.832 (0.028) 0.981 (0.006)
XGBoost 0.977 (0.013) 0.959 (0.031) 0.975 (0.028) 0.919 (0.020) 0.996 (0.003)

SVM 0.821 (0.038) 0.641 (0.076) 0.796 (0.077) 0.661 (0.061) 0.897 (0.026)

Table 4.4: Performance comparison on the synthetic dataset 1 with N = 400 using 10-fold
cross-validation.

(a) (b)

Figure 4.2: Interpretation of a trained model on synthetic dataset 1 with N = 400. (a)
Visualization of four rules contributing to the positive class, which are summarized from
the trained model. Rules are visualized in individual columns with the corresponding con-
tribution. The concept names are given as row names. For example, “x1 low” means “the
value of x1 is low”. The contribution of individual concepts to individual rules are shown
in color; (b) Membership functions for “low”, “medium”, and “high” concepts of x1, x3 in
the encoding module, respectively.
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To examine the proposed network’s ability to learn rules from the dataset, we

summarized rules contributing to the positive class from a trained network. Those

rules are visualized in Figure 4.2 (a). Comparing the learned rules with rules in Section

4.3.1.1, we can observe that Rule 1 corresponds to Rule C; Rule 2 corresponds to a

union of Rule A and Rule B; Rule 3 corresponds to Rule E; and Rule 4 is closest

to Rule D. Membership functions of the variables involved in Rule 1 and Rule 2 are

visualized in Figure 4.2 (b) and we can observe a great match. For example, the

membership value of x2 to the “low” concept is high when x2 smaller than 3.7 and

the membership value of x2 to the “high” concept is high when x2 is larger than 6.2.

Simple thresholds were used to construct synthetic dataset 1, and for this reason the

fuzzy regions in the membership functions are very narrow. From the interpretation

in Figure 4.2, the trained model learned the majority of rules used to construct

the dataset. Rule 4 is close to Rule D but with two additional concepts that are

misidentified as related to the class. This may be due to only 2.00% of samples in

the dataset being consistent with Rule D, making it more challenging to learn from

the data. In addition, from Figure 4.2 (a), concepts from x7 and x8 are not shown

because their significance to learned rules is too low. This demonstrates that the

proposed network can identify and exclude irrelevant variables.

4.5.2 Synthetic dataset 1 (N = 50)

In the second experiment, we used synthetic dataset 1 with N = 50. The per-

centage of positive samples is 42.00%, and the percentages of samples with Rules A-E

are 14.00%, 14.00%, 4.00%, 4.00%, and 12.00%, respectively. In this experiment, we

investigated the performance of the proposed network with a small training set and if

initiating the network with existing knowledge would enable the model to learn more

accurate rules.

Table 4.5 has three blocks, presenting the performance of the proposed networks,
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established interpretable ML methods, and established black-box ML methods on

synthetic dataset 1 (N = 50), respectively. The first block shows the performance

of the proposed network without and with existing knowledge. The performance of

the proposed network with random initialization is shown in the first row of the first

block, followed by the performance of the proposed network initialized with existing

knowledge (rules). Rules A through E are fully correct as described in Section 4.3.1.1

while Rules F through H are partially correct. In practical applications, it is very

rare that the ground truth rule is available. As such, in this experiment, we only

initialized A, M, and W, while the parameters in the membership functions were

randomly initialized. In addition, to investigate whether inexact domain knowledge

can facilitate model training, we proposed the following three rules and assumed they

lead to a positive class:

• Rule F: x2 is “low” and x6 = 1;

• Rule G: x1 is “low” and x5 is “low” and x6 = 0;

• Rule H: x1 is “low” and x5 is “high” and x6 = 0 and x7 is “high”;

Rule F, G, and H are only partially correct. Compared with ground truth Rule A,

the “high” concept of x3 is missing in Rule F. In Rule G, x5 should be “high” rather

than “low” as in Rule E. In Rule H, “high” concept of x7 is actually irrelevant to the

class.

From Table 4.5, we first observe that because of the reduction in the size of the

training set, performance decreased. Still, XGBoost achieves the best performance,

and the proposed network with random initialization has a comparable performance

to XGBoost. Second, we observe that the improvement can be achieved when the

network was initialized with Rules A through E. Third, the model’s performance

increased when it was initialized with partially correct rules. This indicates that
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Model Accuracy Recall Precision F1 AUC

Proposed (None) 0.640 (0.143) 0.550 (0.292) 0.518 (0.249) 0.473 (0.236) 0.688 (0.213)
Proposed (Rule A) 0.670 (0.110) 0.575 (0.275) 0.543 (0.238) 0.504 (0.223) 0.710 (0.188)
Proposed (Rule B) 0.670 (0.135) 0.600 (0.255) 0.646 (0.211) 0.535 (0.170) 0.658 (0.183)
Proposed (Rule C) 0.690 (0.104) 0.625 (0.202) 0.658 (0.197) 0.566 (0.129) 0.698 (0.158)
Proposed (Rule D) 0.730 (0.142) 0.675 (0.251) 0.658 (0.282) 0.607 (0.225) 0.710 (0.194)
Proposed (Rule E) 0.700 (0.190) 0.600 (0.229) 0.710 (0.259) 0.573 (0.202) 0.740 (0.191)

Proposed (Rule F, partially correct) 0.680 (0.183) 0.600 (0.200) 0.665 (0.278) 0.565 (0.196) 0.688 (0.206)
Proposed (Rule G, partially correct) 0.700 (0.210) 0.625 (0.280) 0.605 (0.308) 0.566 (0.276) 0.652 (0.213)
Proposed (Rule H, partially correct) 0.750 (0.112) 0.575 (0.195) 0.775 (0.197) 0.593 (0.176) 0.740 (0.152)

EBM 0.650 (0.120) 0.500 (0.224) 0.562 (0.260) 0.469 (0.192) 0.670 (0.151)
Logistic Regression 0.610 (0.145) 0.425 (0.275) 0.512 (0.339) 0.395 (0.236) 0.583 (0.181)

Näıve Bayes 0.640 (0.120) 0.475 (0.208) 0.552 (0.159) 0.457 (0.178) 0.629 (0.174)
Decision Tree 0.530 (0.200) 0.425 (0.317) 0.398 (0.263) 0.361 (0.261) 0.527 (0.203)

Fuzzy Inference Classifier 0.520 (0.117) 0.525 (0.208) 0.416 (0.120) 0.413 (0.146) 0.550 (0.103)

Random Forest 0.650 (0.081) 0.475 (0.236) 0.580 (0.275) 0.450 (0.176) 0.619 (0.168)
XGBoost 0.650 (0.186) 0.600 (0.300) 0.591 (0.275) 0.521 (0.238) 0.675 (0.187)

SVM 0.580 (0.075) 0.125 (0.230) 0.250 (0.403) 0.130 (0.204) 0.521 (0.173)

Table 4.5: Performance comparison of the proposed network and other established ML
methods on the synthetic dataset 1 with N = 50 using 10-fold cross-validation.

(a) (b)

Figure 4.3: Rules contributing to the positive class learned by the trained proposed network
on the synthetic dataset 1 with N = 50. (a) Model’s parameters were randomly initialized;
(b) A:,:,1, M:,1, W1,: were initialized by Rule H while other entries were initialized with the
same values in (a).
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existing domain knowledge can help with model training even when the rules are

vague and/or inexact.

In Figure 4.3, we interpret and visualize the model trained from scratch and the

model initialized with Rule H. From Figure 4.3 (a), we find that the learned rules are

less accurate compared with Figure 4.2 (a) because of the reduced size of the training

set. In Figure 4.3 (b), Rule 1 shows that even though the model was initialized with a

partially correct rule, the model can identify that “high” x7 doesn’t contribute to the

classification; and Rule 3 indicates that initializing the model with existing knowledge

can also facilitate the model learning other rules.

4.5.3 Synthetic dataset 2 (N = 400)

The responses in synthetic dataset 1 were constructed by rules, where a rule-based

or tree-based ML algorithm may be more favorable. Therefore, responses in synthetic

dataset 2 were built from a non-linear function to further explore the capacity of

the proposed network in function approximation. The performance comparison of

different ML models is presented in Table 4.6. From the table, we can see that

SVM achieved the best average AUC. The performance of the proposed network is

comparable with the random forest model, XGBoost, and EBM, holding the second

place. But considering that the standard deviation of the SVM model is relatively

high, SVM model doesn’t have a significantly better performance.

Rules extracted from the trained proposed network are presented in Figure 4.4.

We see that these rules capture meaningful information. Observations in this dataset

were annotated as positive if (x1 + 0.5x2 + x3)2/(1 + ex6 + 2x7) < 1. Rule 1 shows

that “high” levels of x6 and x7 lead to the positive class. In this dataset, x1, x2, and

x3 were simulated as: x1 ∼ N (0, 2), x2 ∼ N (5, 3), and x3 ∼ N (−1, 5). As such,

a “high” x1 and ”low” x3 can lead (x1 + 0.5x2 + x3)2 to a small value. A ”low” or

”medium” x1 and ”medium” x3 is another combination that can lead (x1+0.5x2+x3)2
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Model Accuracy Recall Precision F1 AUC

Proposed 0.735 (0.044) 0.708 (0.050) 0.719 (0.060) 0.666 (0.044) 0.821 (0.037)

EBM 0.736 (0.028) 0.686 (0.047) 0.731 (0.044) 0.660 (0.028) 0.826 (0.042)
Logistic Regression 0.746 (0.046) 0.703 (0.084) 0.738 (0.053) 0.671 (0.058) 0.806 (0.049)

Näıve Bayes 0.723 (0.047) 0.665 (0.078) 0.720 (0.068) 0.642 (0.054) 0.807 (0.044)
Decision Tree 0.674 (0.046) 0.616 (0.069) 0.660 (0.058) 0.589 (0.052) 0.679 (0.050)

Fuzzy Inference 0.654 (0.048) 0.408 (0.090) 0.721 (0.076) 0.475 (0.084) 0.761 (0.037)

Random Forest 0.734 (0.040) 0.692 (0.030) 0.726 (0.058) 0.660 (0.034) 0.827 (0.035)
XGBoost 0.734 (0.043) 0.705 (0.072) 0.714 (0.043) 0.662 (0.054) 0.837 (0.033)

SVM 0.781 (0.074) 0.741 (0.077) 0.780 (0.094) 0.712 (0.079) 0.871 (0.066)

Table 4.6: Performance comparsion on the synthetic dataset 2 with N = 400.

Figure 4.4: Interpretation of a trained model on the synthetic dataset 2 with N = 400.

to a small value. As expected, Rules 4 and 5 unite concepts from x1 and x3. From

this analysis, we observe that the proposed network can learn simple rules in a format

that humans can understand from a dataset that was constructed with a complicated

non-linear function.

4.5.4 HF dataset

We applied the proposed network to identify patients that are eligible for ad-

vanced therapies. From Table 4.7, initializing the network with existing knowledge

can greatly facilitate model performance. The proposed method had a lower AUC

compared with EBM, Random Forest, and XGBoost. However, those models have
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Model Accuracy Recall Precision F1 AUC

Proposed (None) 0.735 (0.047) 0.500 (0.069) 0.384 (0.059) 0.386 (0.047) 0.730 (0.042)
Proposed (with existing rules) 0.718 (0.035) 0.645 (0.125) 0.410 (0.045) 0.452 (0.043) 0.753 (0.025)

EBM 0.787 (0.018) 0.122 (0.032) 0.557 (0.150) 0.173 (0.049) 0.795 (0.034)
Logistic Regression 0.783 (0.011) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.541 (0.062)

Näıve Bayes 0.781 (0.012) 0.012 (0.013) 0.383 (0.435) 0.019 (0.020) 0.496 (0.025)
Decision Tree 0.787 (0.013) 0.072 (0.043) 0.600 (0.221) 0.108 (0.061) 0.593 (0.047)

Fuzzy Inference Classifier 0.669 (0.182) 0.422 (0.379) 0.454 (0.170) 0.262 (0.130) 0.739 (0.048)

Random Forest 0.782 (0.011) 0.004 (0.012) 0.029 (0.086) 0.005 (0.016) 0.834 (0.016)
XGBoost 0.792 (0.013) 0.079 (0.035) 0.659 (0.104) 0.123 (0.051) 0.792 (0.029)

SVM 0.746 (0.037) 0.116 (0.068) 0.291 (0.181) 0.130 (0.079) 0.636 (0.069)

Table 4.7: Performance comparison of the proposed network and other established ML
methods on the HF dataset using 10-fold cross-validation.

low values in recall and F1-score, which means they tend to classify all samples as

“negative”. In addition, those three methods achieved very high values on the vali-

dation set for all metrics, and this indicates severe overfitting on the validation set.

Figure 4.5 shows the generalization error between validation set and test set for five

ML models. We can find the generalization errors for EBM, Random Forest, and

XGBoost are very high. In contrast, the proposed method had a significantly smaller

generalization error.

This finding suggests that AUC should not be the only metric used for model eval-

uation. AUC is good at summarising the differential ability of ML models without

a fixed classification threshold. However, in practice, a threshold is usually needed

for a classifier to provide recommendations in diagnosis, treatment, or outcome pre-

diction. During the training process, an optimal threshold will be determined on the

training and validation set. In this study, the gap between the recall and F1-score on

the validation set and test set indicates the generalizability of the tuned threshold.

From our result, EBM, Random Forest, and XGBoost all overfitted the validation set

significantly. It also suggests that the model should be only tuned on the validation

set, and nested cross-validation is necessary for model evaluation.

From Figure 4.5, the proposed method achieved a significantly smaller general-

ization error. It is an important observation as the model generalizability is also a
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Figure 4.5: Generalization error between the validation set and test set.

primary concern of applying AI techniques in clinical applications. Notably, integrat-

ing existing domain knowledge can not only improve the classification performance,

but also further reduce the generalization error. It is an important finding, showing

the value of existing knowledge. While the collected existing knowledge are approxi-

mate and may not be 100% accurate, they are from experienced clinical experts and

has a better generalizability. The capability of the proposed algorithm in learning

existing domain knowledge make it promising in many clinical and also non-clinical

applications, especially when data collection is expensive.

From Figure 4.5, the proposed method achieved a significantly smaller general-

ization error. It is an important observation as the model generalizability is also a

primary concern of applying AI techniques in clinical applications. Notably, integrat-

ing existing domain knowledge can not only improve the classification performance

but also further reduce the generalization error. It is an important finding, showing

the value of existing knowledge. While the collected existing knowledge are approx-

imate and may not be 100% accurate, they are from experienced clinical experts

and has better generalizability. The capability of the proposed algorithm in learn-

ing existing domain knowledge makes it promising in many clinical and non-clinical

applications, especially when data collection is expensive.
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Figure 4.6: Interpretation of a trained model on the HF dataset.

4.5.5 Limitations and future work

The proposed network will be further extended and explored in future work. In

the current optimization method, we use the same smoothness factor for encoding

membership functions and aggregation operators. A simple linear decrease with the

training steps was performed to optimize the smoothness factor. In future work,

we will explore the possibility of optimizing the smoothness factors individually in

respective modules with a more effective optimization method.
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CHAPTER V

Additional work in solving challenges of applying

machine learning and deep learning algorithms to

practical problems

5.1 Filter Pruning Technique

5.1.1 Introduction

In CNN, a larger network tends to have a high capacity to find the complex

functions but at the cost of having highly redundant parameters. The filters, visual

interpretation of weights, in the network often have similar patterns and some of

them have noise rather than distinct features. The redundancy in CNN will impair

the model generalizability and accompanies unnecessary computation cost. The real-

time application of DL techniques is often restricted by computation cost, memory

storage and energy efficiency. The desktop system may have the luxury of burning

250W of power for neural network computation, but embedded processors targeting

the automotive market must fit within a much smaller power and energy envelope.

Therefore, a lightweight and computation-efficient system is important for real time

applications.

Inspired by [149], we propose a Scale Module for filter pruning in an automatic
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manner and efficiently reduced the size of the network and inference time. The

proposed method is used in an application of driver’s drowsiness identification.

Drowsiness can be dangerous when people are performing tasks requiring constant

concentration, such as operating high-tech machinery or motor vehicles. An active

drowsiness monitoring and alert system can reduce fatigue-related incidents and save

lives. In this application, we focus on using visual cues to identify drowsiness. A 3D

convolutional network was developed that extracts both spatial and temporal features

of consecutive frames and makes predictions on attention status. The proposed Scale

Module is integrated into the 3D convolutional network to help reduce the network

size and speed up the inference phase.

5.1.2 Dataset

We used the Drowsiness Detection Dataset collected by Weng et al. [150] from

National Tsing Hua University. This dataset contains videos from 36 subjects, where

they played a plain driving game with and without glasses/sunglasses. All videos are

grayscale and captured by a digital camera at a resolution of 640× 480 pixels and 30

FPS in the daytime while 15 FPS at night. The dataset was divided into the training

set (n = 18), evaluation set (n = 4), and test set (n = 14) by the dataset creators.

The training set and evaluation set are available for public use. Overall, the training

set contains 360 videos, with an average duration of 90 seconds, while the evaluation

set contains 20 videos that range in duration from 2-10 minutes. A binary annotation

is provided for each video: driver status - drowsy/stillness. We used the training

set to train our model and performed 6-fold cross-validation. The evaluation set is

used to measure the final model’s performance and to compare with other published

results. In each cross-validation fold, videos from 15 subjects are used for training

and videos from the remaining 3 subjects are used for validation.
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5.1.3 Methods

5.1.3.1 Drowsiness detection system

Frames were first extracted from each video, after which facial regions were de-

tected using OpenFace [151], an open-source framework that implements state-of-the-

art facial behavior analysis algorithms. The face bounding box generated for each

frame was extended to a square box to preserve the original ratio of the face and was

resized to 64× 64. As only subtle differences exist among frames in a short time, we

sub-sampled these frames with a step size of 10 when the FPS is 30 and 5 when the

FPS is 15. The sample fed into the 3D CNN is a sequence of 10 consecutive frames

after sub-sampling and it abstracts information in about 3.3 seconds. The annotation

of the last frame is the label. Thus, the prediction of one frame in the evaluation

phase is based on the information in about 3.3 seconds before this frame. In this

study, for a video of 90 seconds (FPS=30), about 260 samples were generated.

A 3D CNN was designed to extract features related to facial expression and head

motion from the sequential frames. While a 2D kernel can only extract spatial fea-

tures, a 3D kernel has the potential to learn spatio-temporal features.

Let F : Z3 → R be a discrete function. Let Ωr = [−r, r]3 ∩Z3 and let k : Ωr → R,

be a discrete filter of size (2r + 1)3. The discrete 3D convolution operation ∗ can be

defined as:

(F ∗ k)(p) =
∑

s+t=p

F (s)k(t), (5.1)

where t are from [−r, r]3 ∩ Z3 and s,p are from Z3.

Our 3D CNN consists of four convolutional layers, three max-pooling layers and

two fully-connected layers.
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5.1.3.2 Filter pruning with Scale Module

To assist with filter pruning, we introduced a sub-network, named Scale Module,

to weight filters. The design of the Scale module is inspired by the squeeze-and-

excitation module proposed in [149], which is intended to model the interdependence

of activation maps and perform dynamic channel-wise feature recalibration. Unlike

in [149], our scale module is used to infer the importance of filters in convolutional

layers and provide guidance for the following filter pruning.

As shown in Figure 5.1, the proposed Scale Module is added beside the regular

convolutional layer and can be adapted to any CNN structure. The inputs of the Scale

Module are the weights of the filter bank in one convolutional layer. The l1 norm of

each vectorized filter is calculated and will be passed through two consecutive fully-

connected layers. After that, the scale vector is computed by an element-wise sigmoid

function over the output from the last fully-connected layer.

Figure 5.1: A diagram of an extended convolutional layer with the proposed Scale Module.
The left side shows the overview of integrating the Scale Module into a regular convolutional
layer and the right side gives the architecture of the Scale Module.
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The right side of Figure 5.1 shows the architecture of the Scale Module. If the ith

convolutional layer has m filters then Wi = [w1,w2, ...,wm] is the weight matrix with

a shape of m× depth× height×width× channel for a 3D convolution operation, or

m× height×width× channel for a 2D convolution operation. The output from the

l1 norm operation performed on Wi is a vector of length m, which can be written as

[‖vec(w1)‖1, ‖vec(w2)‖1, ..., ‖vec(wm)‖1], where vec(·) is the vectorization operation.

The fc1 layer has m
16

neurons and the fc2 layer has m neurons. After the sigmoid

function, the output scalei = [scale1, scale2, . . . , scalem] indicates the importance of

each filter in the ith convolutional layer, where all elements are mapped between zero

and one. In general, the calculation of scalei for the ith convolutional layer can be

written as:

scalei = S(qT
2,iR(qT

1,if(Wi) + b1,i) + b2,i), (5.2)

where S is the sigmoid function and R is the ReLU function, f is the described

l1 norm operation, i is the index of the convolutional layer, q1,i,b1,i,q1,i,b2,i are

weights and biases of fc1 and fc2 in the ith Scale Module, respectively.

The general format of a regular convolution operation between Ii and jth filter wj

can be written as:

I ′i+1,j = Ii ∗wj, (5.3)

After introducing the Scale Module, the output is calculated as:

Ii+1,j = scalejI
′
i+1,j, (5.4)

From equations (5.3) and (5.4), the output from the extended convolutional layer

can be re-written as:

Ii+1,j = Ii ∗ scalejwj, (5.5)
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Our design proposes to automatically assign weights for filters in the convolutional

layers by using the Scale Module. From previous studies, the magnitude of filters can

indicate their importance but the relationship may be too complex to be differentiated

by a threshold. Using two fully connected layers, we are able to approximate the

function between the magnitude and importance of filters. It will also consider the

dependence among filters in the same layer. The sigmoid function acts as a ‘gate’

and will map the scale value to one for the most essential filters and to zero for

redundant filters. The initiation value of b·,2 is a vector of ones, and therefore before

training, the initial scale values for all filters are approximately 0.73, i.e.,R(1). In

this way, all filters are regarded as non-redundant after the initialization and will be

updated in the training phase. From equation (5.5), if scalej is close to zero, Ii+1,j

will also be close to zero, and the effect of wj is diminished, while if scalej is close to

1, the effect of wj is maintained. After the model is trained, filters with a small scale

value can be removed directly with little loss in the original accuracy. As opposed to

other filter pruning techniques, fine-tuning is not required after redundant filters are

removed. In the experiment, we removed filters with a scale value smaller than 0.5.

The histograms in Figure 4 show that scale values are either near zero or near one.

Thus, the performance of the network is completely independent of any reasonable

choice of threshold.

To facilitate the training process, the loss function of a CNN with J convolutional

layers is extended as:

loss = lossori + γ
J∑
j=1

‖ scalek ‖1, (5.6)

where lossori is the loss function of the regular CNN and loss is the loss function after

the Scale Module is introduced, scalej denotes the scale vector in the jth convolutional

layer, and γ is a constant to control the power of filter pruning. In the next section,
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Accuracy (%) Parameter FLOP Reduc-
Scaled Model Scale-Pruned Model Baseline l1 norm-Pruned Reduction (%) -tion (%)

γ = 10−1 76.3 (3.0) 75.3 (2.9) 75.8 (3.7) 73.8 (2.9) 76.1 (1.2) 80.0 (1.9)
γ = 10−2 76.6 (2.4) 76.3 (1.9) 75.8 (3.7) 74 (3.1) 76.2 (1.2) 76.9 (2.2)
γ = 10−3 77.5 (3.0) 77.6 (2.4) 75.8 (3.7) 74.9 (2.5) 74.2 (1.8) 73.6 (1.7)
γ = 10−4 77.4 (2.7) 77.4 (2.3) 75.8 (3.7) 75.2 (3.0) 54.7 (3.6) 47.2 (3.9)

Table 5.1: Evaluation of the proposed filter pruning method using 6-fold cross-validation
on the training set. The parameter/FLOP reductions were calculated using the number of
parameters/FLOPs after pruning divided by that before pruning.

we will compare the filter pruning performance under different values of γ.

5.1.4 Results and discussion

First, we performed a 6-fold cross-validation using the training set to evaluate our

proposed filter pruning method using different γ values of 10−1, 10−2, 10−3, and 10−4.

In each fold, the 3D CNN model integrated with the Scale Module (Scaled Model)

and the 3D CNN without the Scale Module (Baseline) were built. All weights were

initialized according to the Xavier scheme [152] and biases were initialized with zeros

except for the fc2 in the Scale Module as described in section III. The Adam optimizer

was used to minimize the loss with an initial learning rate of 10−4. The L2 weight

decay regularization of 10−4 was used to improve the generalizability of the model.

After the models were trained, filters with scale values smaller than 0.5 were re-

moved in the Scaled Models (Scale-Pruned). For comparison, the exact same number

of filters in each layer of the Baseline model were removed, either randomly (Random-

Pruned) or based on the l1 norm of the filters (l1 norm-Pruned) as described in [153].

The Random-Pruned Baseline and l1 norm-Pruned Baseline were further fine-tuned

with a learning rate of 10−8 as suggested by the literature while no fine-tuning was

performed for the Scale-Pruned Model.

The average accuracies and reductions in the number of parameters and FLOPs

after filter pruning are listed in Table 5.1. The results show that the average accuracies

of Scaled Models are higher than that of the Baseline with less than 1% increase
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Figure 5.2: The histograms of scale values for the first four convolutional layers.

of parameters from the Scaled Module. This may be because the multiplication

of scale values lessens the effect of noisy and redundant filters and improves the

generalizability of the model. Filter pruning based on scale values lead to little

loss in accuracy. With an increasing γ, the accuracy of both the Scaled Model and

Scale-Pruned Model decreases, while the compression degree of the Scale-Pruned

Model increases. More importantly, the Scale-Pruned Model achieved a much better

performance than the Random-Pruned and l1 norm-Pruned Baseline models when

the same amount of filters in each layer was removed.

Figure 5.2 gives an example of the distributions of scale values for filters in each

convolutional layer. Notably, most of the elements in scale1 stay around the initial

value 0.73, while elements in scale3 and scale4 are either close to zero or one. It

indicates that the filters in the first layer tend to have similar importance, which is

in accordance with the findings in many publications [154, 155] that the first convo-
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Method
Drowsiness

F1-score (%)
Nondrowsiness
F1-score (%)

Accuracy
(%)

Scaled Model 76.46 73.15 75.02
Scale-Pruned Model 76.55 73.22 75.10

Baseline 74.55 72.02 73.53
l1 norm-Pruned 73.26 70.56 72.21
Random-Pruned 66.84 63.75 65.79

Table 5.2: F1 score and accuracy on the evaluation set. γ = 10−3 was used for the Scaled
Model

lutional layer in a CNN extracts low-level features. The distribution of scale values

in the next three layers indicates the existence of redundant filters. Note also that

the percentage of redundant filters increases with the total number of filters in the

convolutional layer.

Finally, based on the above results, a 3D CNN integrated with the Scale Module

using γ = 10−3 was trained. We then removed all filters with scale values < 0.5. Table

5.2 lists the average F1 scores and accuracies on the evaluation set from different

models. The parameter reduction and FLOPs reduction in the Scale-Pruned model

are 52.4% and 54.8%, respectively. The results show that there is no loss in accuracy

after we removed over 50% of the filters. Also, a more than 4% improvement can be

achieved through temporal smoothing with L = 150.

5.1.5 Summary and future work

In this study, we developed a drowsiness detection system and proposed a Scale

Module to perform filter pruning. Our results show that our system can achieve good

performance, and that the Scale Module can help us compress the CNN efficiently and

reduce inference time. In our framework, redundant filters with small scale values can

be removed after the model is trained with negligible effect on the accuracy, negating

the need for further fine-tuning. Also, the Scale Module can be easily adapted to any

state-of-the-art CNN structure and combined with other filter pruning techniques.
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For future work, we will integrate the Scale Module into other state-of-art networks

to further evaluate its performance.
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5.2 Active Learning Framework

5.2.1 Introduction

One challenge of applying ML/DL in the medical domain is although there are

plenty of medical images available, annotating these images is very time-consuming.

To overcome the shortage of labeled images, an active learning strategy is presented.

It started with training an initial SVM model using one annotated image and then

queried the most informative superpixels whose labels may lead to the greatest im-

provement to the model. In this work, we will apply the proposed active learning

framework in hematoma segmentation on brain CT scans from patients with TBI.

The CT scans are over-segmented into superpixels. With active learning, a superpixel-

based SVM classification model can be trained, which will result in a coarse hematoma

segmentation. After that, an active contour model can be used to generate the fi-

nal fine segmentation. Our experiments show that the active learning strategy can

effectively select the most informative samples whose labels result in a significantly

higher performance improvement compared with random selection. From our results,

active learning can help overcome the shortage of annotated data, which is a common

problem in medicine.
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5.2.2 Dataset

Our dataset consists of 35 head CT scans from ProTECT III clinical trial [46]

and 27 brain CT scans from the University of Michigan Health System. The brain

scans are from patients who experienced a moderate to severe head injury and were

enrolled in an emergency department within 4 hours of their injury. In total, 2433

axial CT images from 62 patients who suffered from acute TBI were used in this

study, with image slice thickness ranging from 3.0 to 5.0 mm. To validation our

proposed hematoma segmentation framework and active learning strategy, 13 cases

were annotated as the test set by an experienced medical expert, who examined

2D cross-sectional slices and then manually drew the boundary around hematoma

regions. We used the remaining 49 cases as the training set, wherein each experiment

of active learning one slice was randomly selected and annotated as the initial training

set while all others were used as the pool set.

5.2.3 Methods

5.2.3.1 Pre-processing

The CT scans underwent the same pre-processing steps as discussed in §2.4.1. In

addition, after the contrast adjustment, a skull stripping method described in [56]

was followed to extract brain tissues. For each CT slice, a rectangular contour was

initialized around the center of the head. Then, the distance regularized level set

evolution algorithm [156] was used to evolve the initialized contour to fit the border

of the brain region enclosed by the skull. An example of contrast adjustment and skull

stripping is shown in Figure 5.3 (a)-(b). The image after skull stripping is denoted

as Ib.

140



(a) (b) (c)

Figure 5.3: An illustration of the proposed data pre-processing and superpixel generation.
(a) The image after the contrast adjustment. (b) The image after the skull stripping. (c)
Superpixel generation.

5.2.3.2 Superpixel Generation

After pre-processing, we used the simple linear iterative clustering (SLIC) algo-

rithm [157] to over-segment Ib into superpixels. The SLIC algorithm generates a

group of coherent pixel collections based on color and spatial proximity, shown in

Figure 5.3 (c). There are many advantages of using superpixels. First, instead of

processing every image pixel, using superpixels where similar pixels are clustered can

reduce computation cost efficiently. Secondly, superpixels divide the entire image

into meaningful image patches. Features extracted from superpixels can better char-

acterize regional information. Considering that superpixels adhere to edges within

an image, as exhibited in Figure 5.3 (c), image segmentation can be performed via

superpixel classification. In this work, we performed feature extraction on superpixels

and classified those superpixels as belonging to hematoma regions or not. Based on

these classification results, a coarse hematoma segmentation can be generated. In this

study, Ib was over-segmented into approximately 5000 superpixels (each superpixel

includes approximately 30 pixels).
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5.2.3.3 Feature extraction

A total of 63 features were extracted to describe superpixels.

The mean, variance, skewness, and kurtosis of intensities in each superpixel were

calculated. The mean value measures the average intensity level, while the variance

measures heterogeneity. The skewness and kurtosis describe the asymmetry and the

tailedness, respectively. As different ranges of Hounsfield units correspond to different

anatomical structures, these intensity statistics can help to describe superpixels.

2-D Gabor filters oriented at 0, 30, 60, 90, 120, and 150 degrees with wavelengths

of 2
√

2, 4
√

2, 8
√

2, and 16
√

2 were used to calculate the response map at γ = 0.5,

ψ = 0 and σ = 0.5λ. The mean and variance of Gabor responses at each superpixel

were calculated as Gabor features as well as the dominant spatial frequency and its

orientation.

Saliency can be constructed as visual attention. A low-level approach was em-

ployed to determine the saliency of a superpixel by computing the average Euclidean

distance of its mean intensity with 50 other superpixels that were randomly selected

from the same image. Different from other extracted features, the saliency value con-

tains global information at the slice level. From our observation, CT slices located

close to the top of the head have a higher intensity value due to the partial volume

effect. The saliency measurement can suppress the effect from this slice-level intensity

shift. Also, it can help reduce the variability in intensity for the same tissue across

different cases.

A 16 × 16 patch around the center of each superpixel was taken to calculate

the gray-level co-occurrence matrix (GLCM), which gives the joint probability dis-

tribution of gray-level pairs of neighboring pixels. Let Ωp = {1, 2, . . . , Nlevel} ×

{1, 2, . . . , Nlevel}, where Nlevel is the number of levels that gray intensities were quan-

tized into. In this study, Nlevel = 8. Second-order statistics of the GLCM were used

as features, specifically contrast, energy, and homogeneity, which are calculated as
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In addition, a two-level discrete Haar wavelet packet transformation [158] was

applied to a 16 × 16 patch around the center of each superpixel. The image patch

was decomposed into 8 bands, with each band containing information of different

frequencies. The energy of coefficients in each band was computed and the percentages

of energy corresponding to the details were used as regional features to characterize

each superpixel.

5.2.3.4 Active Learning

Active learning is a method [159] to train a supervised classifier with the smallest

annotated training dataset possible. The proposed active learning framework is sum-

marized in Figure 5.4. The active learning strategy started with training an initial

SVM model using the initial training dataset, which consists of superpixels from only

one labeled CT scan. After that, the initial model was used to classify superpixels

from the pool dataset, which contains CT scans from 49 patients. Based on the pre-

dicted possibilities, we calculated the conditional Shannon entropy of each superpixel

as

HΘ(si) = −
∑

ŷ∈{0,1}

pΘ(yi = ŷ|vi) log(pΘ(yi = ŷ|vi)), (5.7)

where Θ denotes the trained SVM model. vi and yi are the feature vector and label

of si, respectively. pΘ(yi = ŷ|v) denotes the predicted probability that si belongs to

the corresponding class.

HΘ(si) is used as an uncertainty measurement for si. A high HΘ(si) indicates

that the trained model is uncertain about which class si belongs to. This may occur

if si is under-represented in the current training dataset. Thus superpixels with high

uncertainty values are the most informative samples to update the model. In our

work, superpixels were ranked based on their uncertainty measurements in descending

order and the top Nal superpixels were selected to be annotated and added into the

training dataset. Next, an updated SVM model was trained and the uncertainty
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Figure 5.4: An overview of the proposed active learning framework.

measurements of the superpixels in the pool dataset were re-calculated. After the

final SVM classifier was trained, coarse hematoma segmentation maps were generated

by classifying superpixels in brain images.

5.2.4 Results and discussion

An initial SVM model was trained on the initial training set using a linear kernel.

We then used the active learning strategy to select the most informative superpix-

els, which were then annotated, gradually improving the performance of the model.

Several experiments were performed to explore the performance of classifiers with

the same initial training set while varying Nal . From Figure 5.5, the curves tend

to plateau after 1000 newly labeled superpixels are added with active learning, and

the effect of Nal on the final performance is not significant. In contrast to the active

learning strategy, an SVM classifier was trained as a baseline on the initial training

set and a fixed number of randomly selected superpixels from the pool set (shown as

“Random Selection” in Figure 5.5). 50 independent experiments were performed and

the results were averaged to represent the performance of using random selection.

From Figure 5.5, with the same number of added superpixels, the performance of the
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Figure 5.5: Comparison of active learning with Nal = 5, 10, 20 and random selection. The
Dice coefficients of random selection with different numbers of added superpixels are aver-
aged over 50 experiments. 95% confidence intervals are also given.

SVM model trained using the active learning strategy is significantly higher than the

baseline. After adding over 1000 additional samples, the model trained with active

learning achieved an average Dice coefficient of 0.55 over 13 patients.

To further examine the robustness of the active learning algorithm over different

initial datasets, we repeated the above active learning algorithm and random selection

method 20 times, respectively. For each time, one slice was randomly selected and

annotated as the initial training set, while other slices in the training set were used

as the pool set. Each SVM classifier using active learning was trained on the initial

training set and 1000 additional samples selected with Nal = 5. The comparison

of performance metrics between active learning and random selection is shown in

Table 5.3. Our final SVM models from active learning have comparable performance

with random selection models trained on the same initial training sets added with

five times more annotated superpixels. The standard derivations of measures over

experiments are very small.

After constructing the coarse hematoma segmentation for each slice via a trained
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Model Dice Precision Recall Accuracy

Active Learning (n = 1000) 0.55 (0.01) 0.59 (0.02) 0.60 (0.02) 0.97 (0.01)
Random Selection (n = 1000) 0.47 (0.02) 0.45 (0.02) 0.61 (0.03) 0.94 (0.01)
Random Selection (n = 5000) 0.54 (0.01) 0.57 (0.02) 0.60 (0.02) 0.96 (0.01)

Table 5.3: Comparison of the active learning strategy and random selection method using 20
different initial training sets. n is the number of additional superpixels added to the initial
training set. The mean and standard derivation (stddev) of evaluation measurements over
20 experiments are given in the format of mean (stddev).

SVM classifier, an active contour model [156] was used to refine the boundary. The

coarse segmentation from the SVM classifier has an accurate hematoma localization

while the boundary is rough, which may be due to superpixel sampling. The active

contour model can help smooth the boundary and improve segmentation accuracy.

From our result, the active contour model improved the segmentation performance

by 5% in Dice coefficient.
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CHAPTER VI

Conclusion

6.1 Summary

In this dissertation, I developed several CDS systems based on medical image/video

processing and ML. With practical medical applications, novel mythologies that de-

tect and recognize abnormalities or ROIs from medical images/videos were proposed,

and quantitative features were calculated to capture characteristics of the patient’s

condition that are challenging to be collected by human reviewers. Novel strategies

were proposed to improve the generalizability and interpretability of ML/DL models

and overcome specific challenges in individual applications.

6.1.1 Quantitative hematoma evaluation and CDS System for patients

with TBI

A CDS system was developed, which consists of brain hematoma segmentation,

quantitative hematoma feature calculation, and 6-month mortality prediction. The

6-month mortality prediction model only uses information from admission data. It

can help clinicians initially assess the severity and prognosis of a patient with TBI.

The early outcome prediction can provide a reference for assessing the quality of

health-care delivery and also help the clinical trial design, where patients may have
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a very good or a very poor prognosis based on the admission data can be excluded

[160].

In this study, a novel Multi-view convolutional neural network with a mixed loss

function was proposed for hematoma segmentation in head CT scans collected within

24 hours after injury. The proposed segmentation method was trained and validated

on a clinical trial dataset of CT scans acquired using varying imaging protocols. The

proposed hematoma segmentation network achieved an average Dice coefficient of

0.697 on the test set. Compared with other published methods on the same test

set, the proposed method has the most accurate segmentation performance and vol-

ume estimation. In clinical settings, the proposed automatic hematoma segmentation

method can reduce the time and workload of radiologists performing image segmen-

tation and evaluating brain hematoma. The automated method is fast – segmenting

hematoma in one series of CT scans takes less than 30 seconds. As such, an auto-

mated hematoma segmentation method can be used to evaluate hematoma expansion

by processing a patient’s CT scans at different time points. The automated method

can reduce inter-observer and intra-observer variability. In addition, from our ex-

perimental results, the model has a great generalization on CT scans from multiple

medical centers.

Based on the automated segmentation, a novel feature representation was pro-

posed by calculating hematoma volume distribution in each anatomical region and

shape features from hematoma segmentation results on brain CT scans. The pro-

posed feature representation was combined with other clinical observations to predict

6-month mortality. The extracted volume and shape features’ predictive power was

explored and compared using 10-fold cross-validation on a clinical trial dataset con-

sisting of 828 patients. The experimental results showed that CT-related features

could significantly improve the 6-month mortality prediction. Extracted quantitative

volume and shape features from the automated segmentation can better characterize
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the hematomas than manually evaluated qualitative and semi-quantitative features.

Finally, the combination of “IMPACT without CT features” and extracted volume

features led to a random forest model with an average AUPRC of 0.559 and AUC

of 0.853, which are more than 10% and 5% higher than those of the widely used

IMPACT model, respectively.

The work can be further improved by detecting hematoma subtypes and inves-

tigating how different types of hematoma contribute to outcome prediction. Addi-

tionally, the proposed mortality prediction model is tested using patient data from

the PROTECT III trial, where patients with hypotension and severe hypoxemia were

excluded from enrollment. In future work, other external datasets will be used to in-

vestigate whether the proposed model will generalize as well to the overall population

of patients with moderate and severe TBI.

6.1.2 Colonoscopy video-based CDS system for patients with UC

A novel colonoscopy video-based CDS system was proposed for patients with UC.

The system can estimate the disease severity and relative location for individual

frames to derive a spatial severity distribution over the entire colon. Features were

extracted from the severity distribution and achieved a good performance in MES

estimation and outcome prediction. The automated system would provide broad

accessibility to unbiased and reproducible disease assessments. Compared to central

review costs of hundreds to thousands of dollars for each endoscopic video, automated

computational scoring approaches are likely to provide a more cost-effective means

for therapeutic trials, research, and clinical practice.

The camera localization module is a critical and challenging component of the

proposed system. The localization system starts with the removal of non-informative

frames and those containing biopsy forceps. The remaining frames are then fed

into the motion estimation network to estimate camera motion between consecu-
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tive frames. The network is self-trained and does not require ground truth annota-

tion. After that, the camera trajectory is derived, from which the location index is

estimated. Based on the location index, a colon template was constructed by man-

ually annotating times the camera entered each colon segment. With the estimated

location index and colon template built from the training data, anatomical colon

segment classification can be performed on a new colonoscopy video. The algorithm

was trained using colonoscopy videos from routine practice. The motion estimation

network’s performance was validated on an external dataset, with the results show-

ing that the proposed method is more accurate than other published methods. The

proposed localization system was also validated using colonoscopy videos from rou-

tine practice. The performance of the colon segment classification was calculated and

compared with baselines using either the time index or ScopeGuide length. The re-

sults show that using a camera-based location index achieves the best performance in

colon segment classification. Additionally, we compared the trajectories of the camera

motion-based location index and the ScopeGuide length-based location index. Sim-

ilar patterns can be observed when there is no sharp spike or bump in ScopeGuide

length-based location index sequences. These results indicate that the proposed lo-

calization system can accurately determine location awareness, which is critical in

automated colonoscopy video analysis. The output of the localization system - the

location index and anatomical colon segment classification - can facilitate contextual

understanding in automated colonoscopy video analysis.

The disease severity distribution derived from the image analysis modules were

used in MES estimation and outcome prediction. Based on our experimental results

using videos collected from practical routine and clinical trials, the spatial disease

severity distribution is more informative in evaluating a patient’s condition and re-

sponse to treatment. The proposed automated MES estimation algorithm has a

good performance using high-quality endoscopic videos. The performance on exter-
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nal videos from a clinical trial is lower but still encouraging considering substantial

variability in terms of (1) the video quality, compression, and color gamut; (2) the

frequency of mucosal biopsies; (3) the duration of the colonoscopies.

The outcome prediction using the derived spatial severity distribution over the

entire colon achieved a better performance than the model using humanly annotated

MES and total score. It proves the predictive value from the spatial severity distri-

bution. We will further investigate the spatial distribution of more comprehensive

contextual information such as ulcers and erythema in our future work. Those fea-

tures will better characterize the patient’s condition and facilitate the decision-making

models.

6.1.3 Tropical geometry-based interpretable ML algorithm and the ap-

plication in patients with HF

Despite tremendous progress in the field of clinical decision support systems and

AI/ML algorithms empowering such systems, there are still major challenges that

prevent the widespread use of these methods in many similarly sensitive clinical ap-

plications. The challenges include (1) A wide spectrum of AI/ML methods are among

the“black box” models whose use in clinical decision-making has been limited by a

lack of transparency. Decision-makers in medicine are much less likely to trust recom-

mendations for which no clear justification is provided. (2) In the majority of AI/ML

models, there is no clear mechanism to leverage existing domain knowledge for model

formation or training; (3) Many powerful methods such as DL utilize a large number

of parameters, requiring tremendously large training and validation datasets. How-

ever, in many applications, generating large training datasets may be costly or even

impossible.

To solve those challenges, a novel ML algorithm was proposed by the use of fuzzy

logic and tropical geometry. The proposed network was tested on both synthetic
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datasets and a collected HF dataset. Our experimental results show that (1) The

algorithm can learn hidden rules from the dataset and represent them in a way that

humans can understand; (2) The introduction of the smoothness factor enables the

algorithm to find the most suitable encoding functions and aggregation operators,

which increases the performance of the proposed method; (3) Initializing the net-

work with existing rough domain knowledge can effectively facilitate model training

and improve the model’s performance, especially when the size of the training set is

limited.

In the HF application, the proposed method is applied to build a model that can

identify patients with advanced HF who are appropriate for advanced therapies. The

proposed network shows a significantly better generalizability compared with other

existing ML techniques. Given the high prevalence of HF, the majority of patients

are managed by primary care physicians or general cardiologists, who lack training

in the management of patients with advanced HF. The proposed model can improve

care to patients with HF.

6.1.4 Additional work

Additionally, a filter pruning technique was proposed to reduce the size of a trained

DL model and speed up the inference phase. The redundancy in CNN will impair

the model generalizability and accompanies unnecessary computation cost. With the

proposed Scale Module, a network can estimate the importance of filters in a CNN

and automatically reduce the weights of redundant filters in the training phase. The

filter pruning technique can be applied to any regular CNN architecture and facilitate

building a more efficient network.

An active learning framework was proposed to select the most informative sam-

ples in an unlabeled data pool and iteratively improve the model’s performance by

annotating the selected samples. The framework can avoid bias in the sample’s an-
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notation. It can help to identify samples under-represented in the annotated dataset

by estimating the model’s uncertainty on those samples.

6.2 Conclusion and Future Direction

In this dissertation, several clinical CDS systems have been proposed and vali-

dated on data collected from clinical practice or clinical trials. Major challenges in

developing those AI-based systems and applying them in practice have been solved.

The CDS system can provide clinicians with reproducible clinical measurements and

recommendations in diagnosis, treatment, and outcome prediction. Ultimately, those

systems can help improve patient management and the quality of life for patients and

their caregivers.

In medical applications, it is critical to validate the proposed AI-based models us-

ing datasets with high variability. A strength of this dissertation is that the medical

data collected or used are from multiple medical centers with different devices and

imaging protocols. From our experimental results, our CDS systems have a good gen-

eralization of data from various sources. Our analysis also highlights the importance

of digital data standardization.

This dissertation proposes novel algorithms to improve the generalizability and

interpretability of AI/ML techniques. The proposed algorithms are transferable to

other clinical or non-clinical applications. For example, the proposed interpretable

ML algorithm with transparency and accessible reasoning can be easily utilized in

other sensitive decision-making applications; the automated localization systems in

colonoscopy video analysis can also help to provide location awareness to other en-

doscopic videos; the robust learning proposed for hematoma segmentation is also a

general algorithm that helps to improve the DL model’s invariance to image trans-

formations.

In my future work, on the one hand, the decision-making models in the proposed
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CDS systems will be further improved by integrating more clinical variables and

validated on larger datasets with more diverse patient populations. On the other

hand, the proposed algorithms will be applied to other medical applications to test

their superiority.
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APPENDIX A

The association between individual features and

the mortality
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Table A.1: The association between features and the mortality.

Characteristics Survival (n=676) Mortality (n=152) p-value

Age, years <0.0001
<=30 310 (45.9) 30 (19.7)
30-39 113 (16.7) 12 (7.9)
40-49 107 (15.8) 16 (10.5)
50-59 88 (13.1) 33 (21.7)
60-69 38 (5.6) 24 (15.8)
70+ 20 (3.0) 37 (24.3)

Best motor response, n (%) 0.00015
None/Extension 524 (77.5) 99 (65.1)
Flexor response 77 (11.4) 28 (18.4)
Withdrawal 39 (5.7) 21 (13.8)
Localizes/obeys 36 (5.3) 4 (2.6)

Pupillary reactivity, n (%) <0.0001
Bilateral pupil response 91 (13.5) 34 (22.4)
Unilateral pupil response 566 (83.7) 102 (67.1)
No pupil response 19 (2.8) 16 (10.5)

Marshall Score <0.0001
I 104 (15.4) 3 (2.0)
II 233 (34.5) 16 (10.5)
III/IV/V/VI 339 (50.1) 133 (87.5)

Traumatic subarachnoid hemorrhage, n (%) 0.00013
Yes 427 (63.2) 128 (84.2)

Epidural hematoma, n (%) 0.018
Yes 89 (13.2) 32 (21.1)

Glucose (mmol/l) 0.1
<6 99 (14.6) 13 (8.6)
6-8.9 375 (55.5) 81 (53.3)
9-11.9 150 (22.2) 44 (28.9)
12-14.9 32 (4.7) 11 (7.2)
15+ 20 (3.0) 3 (2.0)

Hb (g/dl) <0.001
<9 11 (1.6) 4 (2.6)
9-11.9 87 (12.9) 38 (25.0)
12-14.9 416 (61.5) 88 (57.9)
15+ 162 (24.0) 22 (14.5)

Total hematoma volumes 0.00042
Mean (std) 11.4 (22.2) 40.4 (36.7)
Median (25th-75th percentile) 1.3 (0.1-11.5) 34.3 (10.3 - 61.4)

Hematoma volumes in frontal lobe <0.0001
Mean (std) 4.5 (10.3) 15.2 (17.0)
Median (25th-75th percentile) 0.27 (0 - 3 10.1 (1.5 - 25.4)

Hematoma volumes in temporal lobe <0.0001
Mean (std) 0.1 (0.6) 0.4 (1.3)
Median (25th-75th percentile) 0 (0-0) 0 (0 - 0.1)

Hematoma volumes in parietal lobe <0.0001
Mean (std) 2.03 (5.8) 6.3 (8.7)
Median (25th-75th percentile) 0.04 (0 - 0.7) 2.6 (0.2 - 8.0)

Hematoma volumes in occipital lobe <0.0001
Mean (std) 2.5 (8.2) 11.4 (21.2)
Median (25th-75th percentile) 0.2 (0 - 1.1) 3.1 (0.7 - 9.4)

Hematoma volumes in posterior fossa <0.0001
Mean (std) 2.1 (5.5) 6.0 (7.4)
Median (25th-75th percentile) 0.02 (0 - 1.0) 2.6 (0.07 - 9.8)

157



APPENDIX B

Camera model and image distortion correction

In this study, the camera at the tip of the colonoscope has a fisheye lens (Olympus

PCF-H190). The fisheye lens achieves a very wide viewing angle by projecting a point

in the 3D world frame to a half-hemisphere and then mapping the point to an image

plane.

Figure B.1 is a diagram of the camera imaging model. Figure B.1(a) illustrates how

a world coordinate frame, camera coordinate frame, and image plane are defined. The

world coordinate frame is an arbitrarily-defined 3D coordinate system. The camera

coordinate system is a 3D coordinate system based on the camera’s optical center.

The image plane is a 2D coordinate system, where the frame is generated from the

camera, and its origin is the intersection between the z-axis (optical axis) and the

image plane.

As shown in Figure B.1(b), a point in the 3D world coordinate frame [Xw, Yw, Zw]T

can be transformed into the camera coordinate system using the extrinsic parameters


Xc

Yc

Zc

 = R


Xw

Yw

Zw

+ T, (B.1)
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Figure B.1: Camera imaging model. (a) Diagram of each coordinate system. p is a point in
the 3D world. c is the origin of the image plane (it is also called the image center); (b) A
point in the world coordinate frame can be transformed into the camera coordinate frame
via translation and rotation. The point can then be projected onto the image plane of the
camera.

where R is a 3× 3 rotation matrix and T is a 3× 1 translation vector. R and T are

extrinsic parameters of a camera that represent the camera’s location in the world

coordinates and the camera’s orientation with respect to the world coordinate axes.

If the world frame is the same as the camera frame, R is an identity matrix and T is

the zero vector.

The resulting point [Xc, Yc, Zc]
T in the camera coordinate frame can be projected

onto the image plane as [x, y]T by the camera.

For a pinhole camera, the homogeneous coordinates [x, y, 1]T of the projected point

in the image plane can be written as

Zc


x

y

1

 = K


Xc

Yc

Zc

 , K =


fx e x0

0 fy y0

0 0 1

 , (B.2)
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where K is called the intrinsic matrix of the camera, fx and fy are the focal lengths,

x0, y0 are the principal point offsets, and e is the axis skew.

In this study, the mathematical model of a fisheye camera proposed in [111] was

utilized. The mapping of camera coordinates [Xc, Yc, Zc]
T to the 2D pixel coordinates

[x, y]T in the image plane of a fisheye camera can be written as

β


x− x0

y − y0

d(l)

 = β


x− x0

y − y0∑n
i=0 ail

i

 =


Xc

Yc

Zc

 (B.3a)

d(l) =
n∑
i=0

ail
i (B.3b)

l =
√

(x− x0)2 + (y − y0)2, (B.3c)

where β is the scaling factor; d(r) is the image distortion; a0, a1, ..., an are intrinsic

parameters of the camera; and l is the distance from the image center [x0, y0]T.

With a fisheye lens the generated image will have a convex non-rectilinear ap-

pearance. Image distortion correction is essential for the subsequent optical flow

calculation and camera motion estimation. For distortion correction, camera calibra-

tion is first performed to estimate the camera’s intrinsic parameters a0, ..., an, (n

can also be determined during camera calibration), and K. In the process of cam-

era calibration, a paper with a checkerboard pattern is placed in front of the fisheye

camera and a number of frames from different angles are captured. After that, the

camera’s intrinsic parameters are estimated by calculating how straight lines in the

checkerboard are distorted. After the camera calibration, the distorted pixel coordi-

nates [x, y]T can be converted to pixel coordinates [x′, y′]T using equations (B.2) and
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(B.3):

K−1


x′

y′

1

 = β


x− x0

y − y0

d(r)

 . (B.4)

Based on equation (B.4), x and y can be written as

x′ =
fx
d(r)

(x− x0) +
e

d(r)
(y − y0) + x′0, (B.5a)

y′ =
fy
d(r)

(y − y0) + y′0, (B.5b)

where [x′0, y
′
0]T is the center of the corrected image. In this way, image distortion can

be eliminated, and the corrected image can be regarded as an image captured by a

pinhole camera with the estimated intrinsic matrix K.

Figure B.2: Camera calibration and frame correction. (a) Examples of frames captured in
camera calibration (b) Examples of image distortion correction.

Figure B.2 (a) presents several examples of frames captured for camera calibra-

tion. Frames of a checkerboard pattern were taken from different angles and distances

to capture the characteristics of the fisheye lens. With the calculated intrinsic param-

eters, the distorted images can be corrected. Figure B.2 (b) shows two examples of
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distorted image correction. The first one is a frame of a checkerboard pattern,in which

we can see the lines of the checkerboard pattern are straight after the original frame

was corrected. The second one is a frame of the colon. All frames in colonoscopy

videos from the localization dataset were corrected to remove distortion.
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APPENDIX C

Optical flow calculation

The proposed method requires optical flow as part of input to the motion estima-

tion network. In this study, a pre-trained PWC-Net model from [112] was used. The

PWC-Net model was first trained on the FlyingChairs dataset consisting of 22,872

image pairs [161] and then fine-tuned on the FlyingThings3D dataset consisting of

35,000 image pairs [114]. In their published results, PWC-Net achieved good per-

formance with respect to several benchmarks. A deep learning based optical flow

calculation method was chosen considering the complex geometry and limited textu-

ral pattern across the colon. From [112], PWC-Net is robust to real images where

the image edges are often corrupted by motion blur and noise. We also evaluated the

built-in Lucas-Kanade optical flow method from OpenCV library. On the validation

set of the localization dataset Set 1, the performance of the pose estimation decreased

slightly.
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APPENDIX D

Architectures of the motion network and disparity

network

The detailed architectures of the motion network and disparity network are shown

in Figure D.1 and Figure D.2. For each layer, the filter size, activation function, input

size, and output size are given. In Figure D.1 and Figure D.2, “Conv2D” means

2D convolutional layer; “Maxpool2D” means 2D max pooling layer; “Transpose2D”

means 2D transpose layer. The shape of the input and output for each block is

presented in the format of (batch size, height, width, the number of channels). “None”

means that the batch size is of arbitrary value.
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Layer 1: Conv2D (7×7) + 
Maxpool2D (2×2)+ ReLu

Input: (None, 640, 512, 8)

Output: (None, 320, 256, 16)

Layer 2: Conv2D (5×5) + 
Maxpool2D (2×2)+ ReLu

Input: (None, 320, 256, 16)

Output: (None, 160, 128, 32)

Layer 3: Conv2D (3×3) + 
Maxpool2D (2×2)+ ReLu

Input: (None, 160, 128, 32)

Output: (None, 80, 64, 64)

Layer 4: Conv2D (3×3) + 
Maxpool2D (2×2)+ ReLu

Input: (None, 80, 64, 64)

Output: (None, 40, 32, 128)

Layer 5: Conv2D (3×3) + 
Maxpool2D (2×2)+ ReLu

Input: (None, 40, 32, 128)

Output: (None, 20, 16, 256)

Layer 6: Conv2D (3×3) + 
Maxpool2D (2×2)+ ReLu

Input: (None, 20, 16, 256)

Output: (None, 10, 8, 256)

Layer 7: Conv2D (3×3) + 
Maxpool2D (2×2)+ ReLu

Input: (None, 10, 8, 256)

Output: (None, 5, 4, 256)

Layer 8: Conv2D (1×1) 
Input: (None, 5, 4, 256)

Output: (None, 5, 4, 6)

Layer 9: Average Pooling
Input: (None, 5, 4, 6)

Output: (None, 1, 1, 6)

Figure D.1: The detailed architecture for the motion network.
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Layer 1: Conv2D (3×3) × 2 + 
Maxpool2D (2×2)+ ReLu

Input: (None, 640, 512, 3)

Output: (None, 320, 256, 32)

Layer 2: Conv2D (3×3) × 2 + 
Maxpool2D (2×2)+ ReLu

Input: (None, 320, 256, 32)

Output: (None, 160, 128, 64)

Layer 3: Conv2D (3×3) × 2 + 
Maxpool2D (2×2)+ ReLu

Input: (None, 160, 128, 64)

Output: (None, 80, 64, 128)

Layer 4: Conv2D (3×3) × 2
Input: (None, 80, 64, 128)

Output: (None, 80, 64, 128)

Layer 5-2: Conv2D (3×3) × 2 
+ Transpose2D (2×2) +  ReLu

Input: (None, 80, 64, 128)
+ (None, 80, 64, 128)

Output: (None, 160, 128, 64)

Layer 6-2: Conv2D (3×3) × 2 
+ Transpose2D (2×2) +  ReLu

Input: (None, 160, 128, 64)
(None, 160, 128, 64)

Output: (None, 320, 256, 32)

Layer 7-2: Conv2D (3×3) × 2 
+ Transpose2D (2×2) +  ReLu

Input: (None, 320, 256, 32)
+ (None, 320, 256, 32)

Output: (None, 640, 512, 32)

Layer 8-2: Conv2D (3×3) + 
Conv2D (1×1) + Softmax

Input: (None, 640, 512, 32)

Output:

(None, 640, 512, 1) for
depth map
Or (None, 640, 512, 2) for
specular mask

Figure D.2: The detailed architecture for the disparity network.
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APPENDIX E

Generic colon template and colon length variation

In this study, we estimated a patient-generic template for the lengths of the colon

segments to perform anatomical colon segment classification. There are some other

sources that can be used to estimate the colon length. For example, in [162], the colon

segment length and variation across patients were analyzed for patients undergoing

barium enema examination. CT or MR abdominal images can also be used to cal-

culate a colon template. However, during a colonoscopy the colon will be stretched

and the length of the colon segment will be different from the length under nor-

mal conditions. Additionally, the shapes of colon segments vary - the ascending and

transverse colon are relatively straight, while the the sigmoid colon has an ‘S’ shape.

Considering the motility of the colon, its extreme distensibility, and the impact of

patient position (different for colonoscopy, CT, or MRI), the shape, length, and con-

figuration of the colon changes during colonoscopy. As a result, the length of the

colon segment after stretching cannot be inferred without a colonoscopy. Thus, CT

or MR abdominal images cannot be used for colon segment template building. As the

clinical importance of the localization algorithm is to link disease features on frames

from colonoscopy video to location awareness, it is better to use the colon template

built from colonoscopy videos.
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Cecum
Ascending

colon
Transverse

colon
Descending

colon
Sigmoid

colon
Rectum

Mean 0.067 0.142 0.245 0.204 0.244 0.097
25th percentile 0.039 0.110 0.150 0.134 0.161 0.061
75th percentile 0.087 0.171 0.336 0.284 0.306 0.103

Standard deviation 0.038 0.061 0.097 0.088 0.086 0.057

Table E.1: Average, range, and variation of the estimated length for each manually anno-
tated colon segment on Set 3 of the localization set.

The colon template was constructed based on the assumption that the relative

lengths of the colon segments are similar across patients. [162] shows the variation of

absolute colon segment length across the patients. Although the definition of colon

segments is slightly different and the length cannot be used for building the colon

template directly for the aforementioned reasons, the variation can be used as a ref-

erence. From their results, the variations in the length of the rectum and cecum are

small while the variations in the length of the ascending colon to the sigmoid colon are

relatively larger (up to 10 cm). In Table E.1, the range and variation of the estimated

length for each manually annotated colon segment on the independent test set (Set 3

of the localization set) are presented. Compared to the variation in [162], the variation

shown in Table E.1 is close and slightly higher, which may be due to the errors from

location index estimation and manually colon segment annotations. Though varia-

tion of the relative colon segment length across patients exists, the anatomical colon

segment classification is clinically important. Considering the anatomical geometry

and the motility and distensibility of the colon, building a patient-generic template

from colonoscopy videos is the best way of proceeding compared to other alternatives

without introducing additional sensors. Many clinical applications only need relative

location and generalize anatomic spatial information. For example, information like

“approximately 20% is affected and the region is near the sigmoid colon and rectum”

can be very important to evaluate the patient’s condition and predict outcomes.
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APPENDIX F

Baseline using ScopeGuide length

Currently, ScopeGuide is the best clinical measurement tool with FDA approval

that can be used to estimate the traveled distance in colonoscopy videos. ScopeGuide’s

principle use is as a training tool to inform physicians of the shape and configura-

tion of the scope inside the patient, not as a positioning system. The raw data from

the electromagnetic sensors utilized by ScopeGuide is not accessible. The distance

measurement provided, though crude, offered the best objective localization that is

currently available and FDA approved for in human use. Alternative methods would

require real-time fluoroscopy (exposing the patient to ionizing radiation) or addi-

tional sensor-based approaches that are not FDA approved. Ideally, a specialized

sensor would provide the best estimate of motion and spatial data, and its accuracy

is posited to be superior to a vision-based system. However, vision-based camera

localization methods are still attractive as there is no additional equipment needed,

allowing for rapid integration into clinical workflows, wide availability, and low cost.
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APPENDIX G

Implementation of the established ML algorithms

Public python packages were used to build the established ML classifiers with

default settings except for specified hyper-parameters to be tuned on the validation

set.

1. Logistic Regression: We used the Logistic Regression Classifier from sklearn[163].

2. Näıve Bayes: We used Gaussian Naive Bayes from sklearn.

3. Decision Tree: We used Decision Tree Classifier from sklearn. The maximal

depth of the tree and the minimum number of samples required to split were

tuned.

4. Random Forest: We used Random Forest Classifier from sklearn. The number

of trees, the maximal depth of the tree, and the minimum number of samples

required to split were tuned.

5. SVM: We used Support Vector Classifier from sklearn, whose implementation

is based on libsvm [164]. The regularization parameter, the kernel type (linear

function, radial basis function, sigmoid function, or polynomial function), and

kernel coefficient were tuned.
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6. XGBoost: We used the tree-based XGBoost Classifier from xgboost [165]. The

number of boosting rounds, learning rate, maximal tree depth for base learners

were tuned.

7. EBM: We used the Explainable Boosting Classifier from interpret. The learning

rate and ways of feature interactions were tuned.

8. Fuzzy inference classifier: We used Fuzzy Reduction Rule from fylearn, which is

the best one from our preliminary analysis on public ML benchmark datasets.

The classifier used a pi-type membership function and fuzzy mean aggregation

[148].
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[88] Chaoyang Wang, José Miguel Buenaposada, Rui Zhu, and Simon Lucey. Learn-
ing depth from monocular videos using direct methods. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2022–
2030, 2018.
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