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ABSTRACT

Cancer is one of the leading causes of death in many countries, including the United States.

Medical decision-making in cancer detection and treatment is often a challenging engi-

neering problem for three reasons: the unobservable nature of the cancer state, the trade-

off between alternative detection and treatment policies, and the patient heterogeneity in

disease progression and clinical effectiveness. In this thesis, we take a holistic approach

on data-driven optimization methods for individualized medical decision-making in cancer

via three studies, in the context of Active Surveillance (AS) for prostate cancer.

In the first study, we develop a Hidden Markov Model (HMM) to describe the stochas-

tic process of cancer progression and diagnosis tests dynamics in four major studies. The

model is subsequently used as the basis for simulation models to evaluate different pub-

lished biopsy protocols. In the second study, we propose a finite-horizon Partially Ob-

servable Markov Decision Process (POMDP) to optimize the timing of biopsies for each

individual patient. We develop two fast approximation algorithms to solve the proposed

model, and show some important properties of the optimal biopsy policy. This study

also considers the impact of parameter ambiguity caused by the variation across different

clinical studies and patients’ preferences. In the third study, we propose a new multi-

model POMDP to address the issue of parameter ambiguity in POMDPs. We analyze

the mathematical structure of the model, solution algorithms, and we present numerical

results demonstrating the benefits of the Multi-model Partially Observable Markov Deci-

sion Processes (MPOMDP). Finally, we summarize the most important findings from this

dissertation.

xi



CHAPTER 1

Introduction

Cancer is one of the leading causes of death in many countries, including the United

States. According to the Centers for Disease Control and Prevention (CDC), cancer ac-

counted for 599,601 (out of 2,854,838) deaths in 2019 in the United States. The American

Cancer Society estimates that, in 2021, there will be 1.9 million new cancer cases diag-

nosed and 608,570 cancer deaths in the United States. For most cancer diseases, early

detection and treatment is the key to higher survival rates. A sizable portion of cancer

patients are diagnosed with low-risk forms of cancer that require regular follow-up over

time, known as surveillance, to monitor the patient for possible progression to a higher

risk form of cancer. Examples of cancers for which surveillance may be relevant include

breast cancer, colorectal cancer, lung cancer, and prostate cancer.

Optimizing medical decisions in cancer surveillance can be a challenging engineer-

ing problem for several reasons. First, patients’ actual health states are typically not ob-

servable, and may transit stochastically over time. Second, the optimal design of cancer

surveillance strategies requires balancing the benefits of early detection and treatment, and

the harms of potential false test results and server side effects. There are often conflicts

between alternative decisions that must be considered to not only prevent adverse health

outcomes and extend life expectancy, but save costs and minimize potential side effects.
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Third, patient heterogeneity in the disease progression and clinical effectiveness of cancer

surveillance is prevalent in many settings.

This thesis studies data-driven stochastic modeling and optimization approaches for

individualized medical decision-making in cancer. The methodological and theoretical

contributions of this thesis are motivated by a real-world healthcare application in prostate

cancer AS. Prostate cancer is the most common cancer in men globally. Patients with

low-risk variants of prostate cancer are recommended to joining the AS, which moni-

tors patients by medical tests until there is a sign of progression to a high-risk variant of

prostate cancer, to avoid unnecessary invasive or harmful treatments like radiation therapy

or surgery. The two most common medical tests in AS are the Prostate-specific Anti-

gen (PSA) test and biopsy. The PSA test is a simple blood test with almost no direct harm.

It measures the amount of PSA in blood serum. High PSA is associated with the presence

of cancer, but there is also a high false-positive and false-negative rate. Biopsy is a much

more accurate test, which samples the tissue with hollow-core needles. However, biopsy

is still imperfect, with potential false-negative results caused by missing the tumor, often

referred to as under-sampling. Moreover, biopsy is very painful and can cause infections

and other harmful consequences for patients. Thus, it is critical to decide the optimal

timing for biopsies for each patient in prostate cancer AS.

Deciding on the optimal biopsy policy is challenging because: 1) the patient’s cancer

state is not directly observable due to the inaccurate diagnostic tests; 2) cancer progression

is a stochastic process for each patient; 3) patient preferences about how often to biopsy

vary because the benefits and harms of biopsy versus early detection vary among patients.

To resolve these challenges, this thesis provides a holistic approach on data-driven opti-

mization for individualized medical decision-making in cancer via three main chapters. In

Chapter 2, we present a new stochastic model to describe the process of prostate cancer

2



progression for men newly diagnosed with low-risk cancer. We then estimate the most im-

portant factors in prostate cancer AS, using data from several well-known prostate cancer

studies, including the cancer progression rate, test accuracy, and reward mechanism. In

Chapter 3, we use the models of Chapter 2 to formulate a POMDP to optimize whether

and when to perform biopsies in AS of prostate cancer that balances the benefits and

harms of biopsy, in light of the fact that the cancer states are not directly observable and

can progress stochastically over time. In Chapter 4, we propose a new stochastic dynamic

programming model, i.e., MPOMDP model, with hidden states that include two or more

alternative models to address the issue of parameter ambiguity in POMDPs.

Our study achieves individualized medical decision-making from three aspects. First,

the HMM described in Chapter 2 allows different patients to have different cancer progres-

sion paths. Further, the proposed POMDP optimization model in Chapter 3 generalizes the

HMM by including decision-making with the goal of finding optimal biopsy policies for

different individuals according to the estimates of their cancer progression paths. Second,

the reward functions of the proposed POMDPs in Chapter 3 and MPOMDPs in Chap-

ter 4 are defined upon a so-called "reward parameter". When applying our optimization

models, the decision-makers can set the value of the reward parameter according to their

own considerations of two competing objectives, which are to minimize the burden of

cancer surveillance and to minimize the late detection to cancer progression. Third, when

there are multiple plausible optimization models, the proposed MPOMDP in Chapter 4

can learn the model credibility for each patient according to his past surveillance actions

and observations, to identify an individualized optimal policy.

Summary of main contributions. We provide a summary of the main contributions

of each chapter as follows.

Chapter 2 focuses on the estimation of a stochastic model of prostate cancer for men

3



newly diagnosed with low-risk cancer, using the electronic health record data from several

well-known prostate cancer studies. The main contributions of Chapter 2 are:

• We present a novel HMM to describe the stochastic system of prostate cancer AS,

which involves partially observable cancer states, multiple kinds of cancer screen-

ings, and stochastic relationships among them. The HMM has the flexibility to be

applied to other types of cancer for which surveillance is relevant.

• Our results of estimating HMMs from longitudinal data provide important findings in

the context of urology, including miss-classification error at diagnosis, biopsy under-

sampling error, PSA test accuracy, and prostate cancer progression rate, in four major

prostate cancer AS studies worldwide: the Johns Hopkins (JH) Hospital, University

of California San Francisco (UCSF) medical center, University of Toronto (U of T)

medical center, and the Prostate Cancer Research International Active Surveillance

(PRIAS) project. Moreover, we use the bootstrapping method to establish that the

prostate cancer progression rate and the test accuracy in different study centers are

statistically significantly different.

• We present a simulation study based on the HMMs to compare different published

biopsy protocols across four study centers. The objective is to minimize the mean

number of biopsies over a patient’s lifetime and the mean delay time to detection of

a prostate cancer progression. Our results show that there is no single best biopsy

protocol for all patients in four studies because of the parameter ambiguity, thus

providing evidence for the potential need to accommodate alternative surveillance

protocols for different patients.

The results of the work presented in Chapter 2 were published in Li et al. (2020). The

findings formed the basis of a case study for the next two chapters, which extend the

4



descriptive stochastic models to the optimization context.

Chapter 3 presents a POMDP to optimize prostate cancer AS in four study centers.

The research objective of Chapter 3 is to determine the optimal strategy for AS, which

balances the harm of diagnostic testing with the benefit of early detection of high-risk

cancer. Moreover, we solve the POMDP model for each of the studies we considered

in Chapter 2 to identify areas of ambiguity based on where the model recommendations

differ. The main contributions of Chapter 3 are:

• We propose the first POMDP model to optimize the individualized biopsy policy for

patients in the four prostate cancer AS studies of Chapter 2, which balances the harm

of biopsy with the benefit of early detection of cancer progression. The POMDP

model formulation is built on the descriptive HMM models of Chapter2.

• We analyze the structural properties of the proposed model to develop fast approx-

imation methods and provide insight into the optimal policy. We also investigate

the relationship between model-based dynamic policies that learn the optimal ac-

tion based on observed data acquired as patients age, such as the POMDP model

provides, and static pre-defined policies that have been recommended in the clinical

literature.

• We evaluate the impact of ambiguity caused by variation across models fitted to

different clinical studies, as well as variation in the reward criteria. We also use

the models to estimate the implied reward parameters by inverse optimization, to

establish the degree to which patient preferences vary with regard to the propensity

for biopsies.

• We provide the first estimates – to our knowledge – of the potential impact of MRI as

a means for early detection of cancer progression in the prostate cancer AS setting.
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The work presented in Chapter 3 was submitted to an operations research journal, where

the draft can be found in Li et al. (2021). The finding formed the basis of a case study for

the next chapter, which extends the stochastic optimization model to account for parameter

ambiguity.

Chapter 4 presents a new POMDP model that we refer to as a Multi-model POMDP

MPOMDP. The research objectives are to address the issue of parameter ambiguity in

POMDPs, and to study the benefit of accounting for parameter ambiguity in POMDP

models. The main contributions of Chapter 4 are:

• We propose a new framework, i.e., MPOMDP, to address the issue of parameter

ambiguity in POMDPs. Unlike other literature in robust optimization, the proposed

MPOMDP model considers multiple credible POMDP models simultaneously, and

seeks a single optimal policy based on learning the credibility of each POMDP model

from the system outputs over time. We present numerical experiments that demon-

strate some of the attractive properties of the MPOMDP policy, such as the robust-

ness with respect to parameter ambiguity.

• We present some important structural properties of the proposed MPOMDP model,

which not only motivate the solution methods, but also help analyze the effect of

parameter ambiguity in POMDPs.

• We propose two fast approximation methods suited to solving MPOMDP models,

which are shown to converge asymptotically. We use numerical experiments to

demonstrate the trade-off between the solution quality and computation time.

• We apply the MPOMDP to the case study for prostate cancer AS optimization with

ambiguity. Our results show that the MPOMDP model can find a biopsy policy that

is only slightly worse than the optimal biopsy policy given by the correct POMDP
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model of the same study center, but much better than the policies given by the wrong

POMDP models or the mean-value POMDP model which uses the mean of model

parameters. Given how the trade-off between the biopsy burden and late detection

of a cancer progression by the decision-maker, the MPOMDP model achieved the

minimum expected future costs when the true model was not known with certainty.

The thesis concludes with Chapter 5, which summarises the most important findings

in Chapters 2-4 and some limitations of this thesis that lead to opportunities for future

research.
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CHAPTER 2

Comparison of Biopsy Under-sampling and
Annual Progression Using Hidden Markov

Models to Learn from Prostate Cancer Active
Surveillance Studies

2.1 Introduction

Although early detection is key to preventing prostate cancer death, many patients

are diagnosed with low-risk cancer that is unlikely to cause harm (Miller et al., 2006).

Prostatectomy and radiation therapy are associated with potentially serious side effects,

including incontinence, erectile dysfunction, and others (Anandadas et al., 2011). There-

fore, definitive treatment of low-risk prostate cancer may cause more harm than good. AS

is a form of expectant management, but in which a switch to curative treatment can be

made as a result of tumor risk reclassification at any time. AS strategies involve monitor-

ing patients through a combination of Digital Rectal Exams (DREs), PSA tests, selective

use of imaging, and surveillance biopsies. AS defers or avoids definitive treatment until

there is evidence of cancer misclassification or progression, thus reducing overtreatment

of low-risk prostate cancer. PSA tests and DREs are minimally invasive, but they have

poor predictive performance. Biopsy is the gold standard, but it involves sampling tissue

from the prostate with hollow-core needles, which can be painful, costly, and may result
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in infections. While PSA tests and DREs are routine elements of AS, they are far less

informative than prostate biopsy for determining disease risk in this setting.

There are two main challenges when deciding the optimal biopsy plan for a given

patient on AS. First, the true cancer state of each patient is not observable unless the

patient is treated with radical prostatectomy, because biopsies are associated with under-

sampling error. Second, patients who start AS may later progress from favorable to non-

favorable risk over time due to cancer evolution. Moreover, the biopsy under-sampling

errors and cancer progression rates are unknown and may vary among different cohorts.

A related study estimated biopsy under-sampling error assuming no cancer progression

during AS (Coley et al., 2017) and another study that estimated progression rate assuming

perfect prostate biopsy (Inoue et al., 2018). There is one study (Barnett et al., 2018a) that

considered biopsy under-sampling and prostate cancer progression simultaneously but it

was based on a single very low-risk cohort and did not utilize PSA or treatment outcomes

for model estimation. There is no study we are aware of that considers cancer progression

and biopsy misclassification across multiple cohorts.

In this chapter, we estimated and compared the misclassification error of favorable risk

cancer at diagnosis, subsequent cancer progression rate, biopsy sensitivity and specificity,

and PSA distribution in four of the most well-known AS cohorts using the dataset (version

3.1) created by the Movember Foundation’ Global Action Plan Prostate Cancer Active

Surveillance (GAP3) (Bruinsma et al., 2018). We used an HMM to estimate the stochastic

model that best describes the longitudinal observational data for each of the four cohorts.

We further used the estimated models as the basis for a simulation model to compare

previously published biopsy protocols across the four cohorts. We analyzed the differences

in model estimates across the four cohorts and validated the results using bootstrapping.

Finally, we compared the mean number of biopsies for patients on AS and the mean delay
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Cohort Number of
Patients Inclusion Criteria for AS Biopsy Protocol

JH 1,434
clinical stage ≤ T1c, PSA density ≤ 0.15, Gleason score ≤ 6,
total positive core ≤ 2, single core positivity ≤ 50%

Biopsy every year

UCSF 1,644
clinical stage T1-T2, PSA ≤ 10, Gleason score ≤ 6,
total positive core ≤ 1/3 of total cores,
single core positivity ≤ 50%

Biopsy 1 year after diagnosis,
then every 1 to 2 years

U of T 1,243 clinical stage T1c/T2a, PSA ≤ 10, Gleason score ≤ 6
Biopsy 1 year after diagnosis,
then every 3 years

PRIAS 4,700
clinical stage T1c/T2, PSA ≤ 10, PSA density ≤ 0.2,
Gleason score ≤ 6, total positive core ≤ 2

Biopsy 1 year after diagnosis,
then every 3 years

Table 2.1: The inclusion criteria and biopsy protocols of four major prostate cancer AS cohorts.

time to detection of non-favorable risk prostate cancer for the biopsy protocols previously

proposed for each of these cohorts to assess variation in outcomes across cohorts.

2.2 Materials and Methods

2.2.1 Data

In 2014, the Movember Foundation launched the GAP3 plan initiative to create a global

database tracking the selection and monitoring of men with low-risk prostate cancer on AS

(Bruinsma et al., 2018). The database records the clinical and demographic characteristics

of 20,652 patients on AS from 27 established cohorts worldwide (v3.1). In this study, we

chose four cohorts including the two largest AS study cohorts in the USA: JH hospital

(Tosoian et al., 2011) and UCSF medical center (Dall’Era et al., 2008), the largest AS

study in Canada: U of T medical center (Klotz et al., 2010), and the largest AS study

outside North America: the PRIAS project (Bul et al., 2013). These four cohorts not

only include the greatest number of patients, but also have the most AS follow-up records

over time. Importantly, these cohorts have different inclusion criteria and recommended

surveillance strategies. Table 1 illustrates inclusion criteria and biopsy protocols in the four

cohorts. The research was approved by the Institutional Review Board at the University of

Michigan.

10



2.2.2 Natural History Models Based on HMMs

We formulated an HMM to determine the misclassification error of favorable risk can-

cer at diagnosis due to diagnosis test error, annual progression rate to non-favorable risk

cancer, and follow-up biopsy under-sampling error for patients on AS in each of the four

studies. HMMs are well suited to this analysis because prostate cancer progresses stochas-

tically over time, and the true cancer state cannot be observed directly (it is hidden due to

the imperfect accuracy of PSA testing and prostate biopsies) unless the patient is treated

by radical prostatectomy. We defined the favorable risk cancer state as the cancer state that

meets the inclusion criteria in each cohort in Table 2.1 and defined the non-favorable risk

cancer state as any cancer state that does not meet the criteria, and thus represent cancer

states for which patients may consider treatment rather than AS. Table 1 shows that the

definitions of favorable and non-favorable risk cancer vary by cohort.

By definition of these cohorts, all patients were diagnosed with favorable risk prostate

cancer and initiated AS as their initial management. However, due to the potential mea-

surement error in DREs, PSA test, and biopsy, some patients starting AS were actually in

the non-favorable risk cancer state at the time of diagnosis. We use the term misclassifi-

cation at diagnosis to refer to instances where a patient with non-favorable risk prostate

cancer is incorrectly diagnosed with favorable risk prostate cancer at the time of initiating

AS. The probability of misclassification at diagnosis was estimated by the initial distribu-

tion of the HMM. Every year after initiating AS, patients may also progress from favorable

risk cancer to non-favorable risk cancer with some annual progression rate, which deter-

mines the transition probability matrix in the proposed HMM. Figure 1 shows the state

transition diagram of prostate cancer in the context of AS.

The observations used to fit the HMM were PSA level and biopsy. We did not consider

other covariates including clinical stage, total positive cores in biopsy, single-core positiv-
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Figure 2.1: State transition diagram of prostate cancer in the context of AS. There are two hidden
states and three observable states in the formulated HMM. Abbreviations: FR, favorable risk; NFR,
non-favorable risk; APR, annual progression rate; RP, radical prostatectomy.

ity in biopsy, and Magnetic Resonance Imaging (MRI) scan because of the lack of data.

In all four studies, PSA tests were routinely performed at office visits (every 3-6 months),

while biopsies were performed at most once per year and often less frequently because

of the design of biopsy protocols or other patient and clinical factors. Therefore, in our

model, we set the frequency of test outcomes to be annual, which means we only used the

most recent PSA test and one biopsy result at the end of each calendar year as observations

for this annual time period. We also defined a null observation for instances of a missing

test result. Given that biopsies are not perfect, we use the term biopsy under-sampling to

denote the circumstance where there was a Gleason score 6 or lower biopsy result in a

patient with (hidden) non-favorable risk cancer. The biopsy sensitivity (defined as rate of

biopsy Gleason score 7 or higher while in the non-favorable risk cancer state) and speci-

ficity (defined as rate of biopsy Gleason score 6 or lower while in favorable risk cancer
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state), and the distribution of the PSA testing result were estimated by the observation

probability distributions in the HMM. Finally, every year, the patient might leave AS with

or without treatment. If the patient left AS and underwent the radical prostatectomy, then

his true cancer grade (Gleason score) was available based on post-radical prostatectomy

pathology. Otherwise, the patient was assumed to leave AS without knowledge of the true

cancer grade. Given this context, we defined the leaving states of the HMM as follows:

1) leaving AS with true Gleason score 6 or lower based on prostatectomy pathology, 2)

leaving AS with true Gleason score 7 or higher based on prostatectomy pathology, and 3)

leaving AS without radical prostatectomy. The probabilities of entering the leaving states

were also elements of the transition probability matrix.

We used the Baum-Welch algorithm to fit the proposed HMM (Rabiner, 1989). The

Baum-Welch algorithm is a special form of the standard EM (expectation-maximization)

algorithm (Dempster et al., 1977), which iteratively updates the estimates of model param-

eters that locally maximize the likelihood function of given sequences of observations. To

avoid local maxima, we randomly chose different starting points of the parameters before

running the iterations, and then picked the set of estimated parameters with the largest

likelihood function as the final estimates. For different cohorts, we fitted different HMMs

with the same model structure but different parameters.

2.2.3 Solving the HMM

Given the observation sequences, our goal here is to estimate the parameters in the

HMM which maximize the likelihood of the observation sequences. Since the likelihood

function for the HMM is often irregular and non-convex, there is no known way to analyt-

ically solve the maximization problem. However, we can use an iterative procedure such

as the Baum-Welch algorithm (Baum et al., 1970) to solve the parameters such that the
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likelihood function is locally maximized. Next, we show how the classic work of Baum

and his colleagues can be applied here to solve our proposed HMM.

The Baum-Welch algorithm is a special case of the general EM algorithm (Dempster

et al., 1977), which can be described in the following steps: 1) initialize the model parame-

ters; 2) calculate the likelihood function of the observation sequences given the initialized

model parameters; 3) update the model parameters such that the calculated likelihood

function is maximized; 4) go back to step 2 and recalculate the likelihood function us-

ing the updated model parameters; 5) repeat step 2 to 4 until convergence of the model

parameters. We then describe how does each step work when solving our model.

The complete parameter set of our HMM is

λ = (b0,P,F),

where b0 is the initial belief (distribution) over all states, P : S× S is the state transition

probability (cancer progression rate), and F : S×O is the observation probability. Here,

since we have two types of observations from PSA test and biopsy, we can further write

F = Fx×Fy,

where Fx : S×Ox is the PSA observation probability and Fy : S×Oy is the biopsy obser-

vation probability. Further, we use a Gaussian mixture model to describe the continuous

distribution of PSA observation:

Fx(i,x) =
K

∑
k=1

cikN (x; µk,σk), 1≤ i≤ m

where cik is the mixture coefficeient for kth mixture in state i, N (µk,σk) is a Gaussian

distribution with mean vector µk and variance σk, and K is the total number of mixtures.

Here we choose K = 2.

Parameter Initialization. To initialize the parameter, we random sample each parame-

ter from the uniform distribution. The other thing about the parameter initialization is that
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many numerical experiments have shown that the performance of the EM (or equivalently

Baum-Welch) algorithm is often sensitive to the choice of the initial parameters (Mel-

nykov and Melnykov, 2012). So to avoid local maximization of the likelihood function (or

equivalently sub-optimal estimations), we typically generate several different samples of

the initial parameters, and run the algorithm separately before concluding the final result.

Likelihood Computation. Suppose in the dataset, we have N observation sequences

denoted as

O = (O1, ...,ON),

where On = (On
1, ...,O

n
Tn
) for n = 1, ...,N with Tn being the number of time epochs for

the nth observation sequence, and On
t = (Xn

t ,Y
n

t ) being the observation at time t of the

nth observation sequence. To calculate the likelihood (i.e. probability) of the observation

O given the model parameter λ , which can be written as P(O|λ ), a straightforward way

is to enumerate every possible state sequence for each observation sequence. However,

such a straightforward method is very inefficient. The computation effort for enumerat-

ing all possible state sequence is a exponential function of the number of states and the

length of each observation sequence. Here, we introduce another efficient method called

the forward-backward procedure (Baum and Eagon, 1967), whose computation effort is

polynomial in the number of states and the length of each observation sequence.

For each observation sequence On, consider the forward variable αn
t (i) defined as

α
n
t (i) := P(On

1, ...,O
n
t ,S

n
t = i|λ ), t = 1, ...,Tn, n = 1, ...,N, i = 1, ...,m

which is the probability of the partial observation sequence On
1, ...,O

n
t and state i at time t,

given the model parameter λ . The forward variable can be solved inductively. For each

observation sequence On, n = 1, ...,N:
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1) initialization:

(2.1) α
n
1 (i) = b0(i)Fx(i,Xn

1 )Fy(i,Y n
1 ), i = 1, ...,m.

2) Induction:

(2.2) α
n
t+1( j) = [

m

∑
i=1

α
n
t (i)P(i, j)]Fx( j,Xn

t )Fy( j,Y n
t ), t = 1, ...,Tn−1, i = 1, ...,m.

3) Termination:

(2.3) Pn := P(On|λ ) =
m

∑
i=1

α
n
Tn
(i).

and at last, P(O|λ ) = ∏
N
n=1 Pn. Notice here we consider two types of the observation.

The derivation of equation 2.1, 2.2 and 2.3 is shown in Appendix.

Similarly, we can consider the backward variable β n
t (i) for each On defined as

β
n
t (i) := P(On

t+1, ...,O
n
Tn
|Sn

t = i,λ ), t = 1, ...,Tn−1, n = 1, ...,N, i = 1, ...,m

which is the probability of the partial observation sequence from time t + 1 to the end,

given state Sn
t = i and the model parameter λ . The backward variable can be solved induc-

tively. For each observation sequence On, n = 1, ...,N:

1) initialization:

(2.4) β
n
Tn
(i) = 1, i = 1, ...,m.

2) Induction:

(2.5) β
n
t (i) =

m

∑
j=1

P(i, j)Fx( j,Xn
t+1)Fy( j,Y n

t+1)βt+1( j), t = Tn−1, ...,1, i = 1, ...,m.

Again, the derivation of equation 2.4 and 2.5 is shown in Appendix.

Parameter Update. The update formulas of the Baum-Welch algorithm can be derived

directly by maximizing Baum’s auxiliary function discussed in Baum and Sell (1968).
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Here, we only provide the results of the update formulas, considering both continuous and

discrete observations in the dataset. Here, we use the hat notation to denote the updated

parameter.

1) Initial distribution b0:

b̂0(i) = expected frequency in state i at time 1

=
1
N

N

∑
n=1

1
Pn

α
n
1 (i)β

n
1 (i).

2) Probability distribution matrix P:

P̂(i, j) =
expected number of transitions from state i to j

expected number of transitions from state i

=
∑

N
n=1

1
Pn

∑
Tn−1
t=1 αn

t (i)P(i, j)Fx( j,Xn
t+1)Fy( j,Y n

t+1)β
n
t+1( j)

∑
N
n=1

1
Pn

∑
Tn−1
t=1 αn

t (i)β n
t (i)

3) Discrete observation probability Fy:

F̂y(i) =
expected number of times in state i with observation y

expected number of times in state i

=
∑

N
n=1

1
Pn

∑t:Yt=y αn
t (i)β

n
t (i)

∑
N
n=1

1
Pn

∑
Tn
t=1 αn

t (i)β n
t (i)

4) Continuous observation probability Fx: to estimate the parameters of Fx, we first

define

γt(i,k) :=
αtβt(i)

∑i αtβt(i)
·

cikN (Xt |µik,σ
2
ik)

∑
K
k=1 cikN (Xt |µik,σ

2
ik)

as the probability of being in state i at time t with the kth mixture component accounting
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for Xt . Then the update formulas can be written as:

ĉik = expected frequency of the kth mixture accounting for X in state i

=
∑

N
n=1 ∑

Tn
t=1 γt(i,k)

∑
N
n=1 ∑

Tn
n=1 ∑

K
k=1 γt(i,k)

µ̂k = empirical mean of X in kth mixture component

=
∑

N
n=1 ∑

Tn
t=1 ∑si γt(i,k)Xt

∑
N
n=1 ∑

Tn
t=1 ∑si γt(i,k)

σ̂
2
k = empirical covariance of X in kth mixture component

=
∑

N
n=1 ∑

Tn
t=1 ∑si γt(i,k)(Xt−µk)

2

∑
N
n=1 ∑

Tn
t=1 ∑si γt(i,k)

Stopping Criteria. The Baum-Welch algorithm uses the above formulas to iteratively

calculate the likelihood of the observation sequences and update the parameter λ . The

stopping criteria of these iterative procedures can be specified by defining a tolerance

parameter τ (e.g. τ = 10−6). We can stop the algorithm if the difference between the old

and new likelihood is less than τ .

The Baum-Welch algorithm for solving the HMM is summarized in Algorithm 1.

Algorithm 1: Baum-Welch algorithm for HMMs.

Data: Independent observation sequences O = (O1, ...,ON)
initialization r = 0, pold = 0, λ 0 = (b0

0,P
0,F0);

compute the forward variable α0 and backward variable β 0 using λ 0;
compute pnew = P(O|λ 0) using α0 and β 0;
while |pold− pnew|> τ do

r← r+1;
pold ← pnew;
update λ r = (br

0,P
r,Fr) from αr−1, β r−1 and λ r−1;

compute the forward variable αr and backward variable β r using λ r;
compute pnew = P(O|λ r) using αr and β r;

end
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2.2.4 Statistical Analysis and Validation

To estimate confidence intervals (CIs) of the estimated model parameters in different

cohorts, we used the non-parametric bootstrap method to compute the standard errors

of estimated parameters (Efron, 1992). Specifically, for each cohort, we first randomly

sampled patients with replacement. The number of sampled patients was equal to the

sample size of the cohort. For each bootstrap sample, we then fitted an HMM using the

observation sequences of the bootstrap sample. We drew 100 bootstrap samples and used

the empirical standard errors and confidence intervals as the estimates of the standard

errors and confidence intervals of the estimated parameters in this cohort. We repeated the

same steps for all four cohorts.

We focused on internal validation in this study, because different cohorts had different

study inclusion criteria. We validated the estimated models by comparing the observed

and estimated distributions of the results of PSA test and biopsy. For PSA results, we

compared the empirical and estimated distribution for both favorable risk cancer and non-

favorable risk cancer patients. For biopsy results, we first simulated patients’ underlying

cancer states and biopsy observations (if the biopsy protocol suggested a biopsy) in each

cohort using a simulation model (described in next) with the estimated model parameters.

Then, we compared the observed and simulated biopsy positive rates at each biopsy time.

2.2.5 Biopsy Protocols Comparison by Simulation Model

We used the estimated HMMs to create a simulation model for each cohort to com-

pare the mean number of biopsies performed while on AS and the mean delay in time to

detection of non-favorable risk cancer by biopsy. Hypothetical patients in the simulation

model were assumed to be diagnosed with favorable risk cancer at age 50 in different co-

horts when using the different biopsy protocols described in Table 1. For each patient,
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Figure 2.2: Simulation process flow for the proposed simulation model. The model parameters
were determined by the estimates of the HMMs. Patients would leave the AS if they had a Gleason
score 7 or higher biopsy, or they reached age 75.

we first sampled his initial cancer state when diagnosed with favorable risk cancer at age

50 according to the misclassification error at diagnosis as estimated by the HMM, and

initiating AS. Second, for the next annual time-point, we simulated his new cancer state

based on the previous cancer state and the estimated annual cancer progression rate. With

the simulated cancer state, we then sampled the patient’s PSA result using the estimated

PSA probability density distribution. If a biopsy was indicated according to the chosen

protocol, we sampled the biopsy result based on the estimated sensitivity and specificity

of the biopsy obtained from the HMM for the cohort. If the sampled biopsy Gleason score

was greater or equal to 7 at that time point, then the patient left AS; otherwise, the patient

continued on AS for another year. Patients reaching age 75 were assumed to stop AS and

transit to watchful waiting. The details of the simulation process flow are shown in Figure

2.

With the simulated true cancer states and biopsy results for all patients at all time

periods, the mean number of biopsies performed while on AS was calculated as the average

number of follow-up biopsies performed from initiating AS (age 50) to leaving AS (age
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75 or a Gleason score 7 or higher biopsy), while the mean delay in time to detection of

non-favorable risk cancer was calculated as the average difference between the time of the

first sampled non-favorable risk cancer state and the time of a sampled Gleason score 7 or

higher biopsy results for all patients. The number of sampled patients was set to 10,000

for each cohort and each protocol.

2.3 Results

2.3.1 Data

Table 2 summarizes patient characteristics at the time of diagnosis for patients with

at least one follow-up year on AS. The means of age at diagnosis were similar in all

four cohorts except UCSF, where patients were younger than compared to the other three

cohorts. In terms of PSA levels and biopsy results, JH enrolled patients with lower PSA,

lower maximum percentage of cancer in biopsy cores, and lower Gleason score than other

three cohorts. UCSF and University of Toronto medical centers enrolled patients with

the highest PSA level and percentage of patients with Gleason 3+4=7 or greater cancer.

Additional information about patient characteristics at the time of each biopsy in AS can

be found in Table S1-S4 in Appendix B.

As we can see from Table 2, some patients with medium/high-grade (non-favorable

risk) cancer were also included in the AS. Those patients were generally older patients

who continued on AS instead of moving on to treatment. For the purpose of our study,

we removed those patients with medium/high-grade cancer at diagnosis when fitting the

HMMs.
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Cohort JH UCSF U of T PRIAS
Patients, n 1434 1644 1243 4700
Age at biopsy, year, mean (SD) 66 (6.1) 63 (7.6) 66 (8.1) 66 (6.9)
Months since diagnosis, month, mean (SD) 0 (0) 0 (0) 0 (0) 0 (0)
PSA, ng/mL, mean (SD) 5.2 (2.9) 6.4 (4.1) 6.2 (3.1) 5.9 (2.1)
No. of biopsy cores used, median (range) 12 (6-58) 14 (1-50) 10 (1-190) 12 (3-25)
Maximum % of cancer in any one core (SD) 10 (14.8) 26 (20.8) 21 (20) NA (NA)
% of cores with cancer 12 (7.1) 17 (13.8) 23 (18.1) 13 (6.7)
ISUP grade group, # (%)
No cancer 0 (0) 0 (0) 0 (0) 0 (0)
1 (3 + 3) 1428 (99.6) 1437 (87.4) 1104 (88.8) 4657 (99.1)
2 (3 + 4) 6 (0.4) 178 (10.8) 139 (11.2) 42 (0.9)
3 (4 + 3) 0 (0) 25 (1.5) 0 (0) 1 (0)
4 (4 + 4) 0 (0) 4 (0.2) 0 (0) 0 (0)
5 (9, 10) 0 (0) 0 (0) 0 (0) 0 (0)
NA 0 (0) 0 (0) 9 (0.7) 3 (0.1)
Medium/High-grade cancer (%) 6 (0.4) 207 (12.6) 139 (11.2) 43 (0.9)

Table 2.2: Patient Characteristics at the Time of Diagnosis. Abbreviations: SD, standard deviation;
ISUP, International Society of Urologic Pathologists; NA, not available.

2.3.2 HMM Analysis and Validation

Table 3 and Figure 3 show the estimates of the most important HMM parameters for

each cohort and the 95% confidence intervals estimated via the bootstrap method. The

differences in the estimated annual cancer progression rates and biopsy sensitivities for

distinct cohorts were statistically significant (p<0.05). The estimated annual progression

rate from favorable risk cancer to non-favorable risk cancer was highest in UCSF and

lowest in JH. Biopsy sensitivity was highest in PRIAS, with the highest proportion of

non-favorable risk cancer patients correctly identified on biopsy; while JH had a slightly

lower biopsy sensitivity than other three cohorts. In terms of misclassification errors at

diagnosis, the proportion of patients considered to have non-favorable risk cancer at diag-

nosis was highest in UCSF and lowest in JH. All estimated biopsy specificities were close

to 100%. In addition, based on the estimated 95% confidence intervals by bootstrapping,

the estimated miss-classification errors at diagnosis, annual cancer progression rates, and

(1- biopsy sensitivity)’s in the four cohorts are all statistically significantly greater than
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Cohort Number
of Patients

Misclassification
Error at Diagnosis

Annual
Progression Rate

Biopsy
Sensitivity

Biopsy
Specificity

JH 1428 0.0583 0.0691 0.7184 0.9972
UCSF 1437 0.0809 0.1217 0.7431 0.9925
U of T 1104 0.0774 0.1016 0.7949 0.9962
PRIAS 4657 0.0653 0.0841 0.7614 0.9920

Table 2.3: Estimated Parameters by the HMMs for Different Cohorts.

5 6 7 8

Misclassification Error at Diagnosis (%)

JH

UCSF

U of T

PRIAS

7 8 9 10 11 12 13

Annual Progression Rate (%)

JH

UCSF

U of T

PRIAS

72 74 76 78 80

Biopsy Sensitivity (%)

JH

UCSF

U of T

PRIAS

98.5 99.0 99.5 100.0

Biopsy Specificity (%)

JH

UCSF

U of T

PRIAS

Figure 2.3: Estimated standard errors and 95% confidence intervals for the parameters in HMMs
by the bootstrap method. All misclassification errors at diagnosis, annual cancer progression rates,
and (1- biopsy sensitivity)’s are statistically significantly greater than 0.

zero.

For the estimates of the PSA distributions, we assumed that the logarithm of the PSA

result follows a mixture of two Gaussian distributions. The details of the estimated param-

eters for the mixture distribution can be found in Table S5 and S6 in Appendix B.

We validated our models by comparing the biopsy positive rates and PSA probability

density functions between observed and simulated data. Figure 4 shows the comparisons

between observed and simulated biopsy positive rates for different cohorts, which were

calculated as the number of patients with a positive biopsy (Gleason score 7 or higher
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Figure 2.4: Comparison of observed and simulated biopsy positive rates at each biopsy time
for different cohorts. All observed biopsy detection rates fell into the 95% CIs of the simulated
detection rates.

Cohort JH UCSF U of T PRIAS
Biopsy protocol JH UCSF U of T JH UCSF U of T JH UCSF U of T JH UCSF U of T
Mean number of biopsies 12.6 7.1 5.3 8.7 5.3 4.1 9.7 5.8 4.4 11.1 6.4 4.9
Average late detection time
by biopsy (month)

4.5 13.9 22.9 5.0 15.2 26.0 3.8 12.7 21.7 4.0 13.2 22.3

Table 2.4: Comparisons of the mean number of biopsies used and average late detection time by
biopsy between the time of diagnosis and the end of AS for different protocols in different cohorts
by the proposed simulation model.

biopsy) results divided by the total number of patients who underwent biopsy in the ob-

served and simulated datasets, at each biopsy time point. The observed positive biopsy

rates all fell into the 95% confidence intervals of the simulated biopsy positive rates. The

comparisons of PSA distributions are shown in Figure S1-S4 in Appendix B.

2.3.3 Comparison of Biopsy Protocols

We simulated a population of 5,000 patients for each cohort and each biopsy protocol

using the simulation model described in Figure 2. Each patient was assumed to be diag-
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nosed as favorable risk cancer and enter AS at age 50. We compared the frequency of

biopsy and the mean delay in time to detection of non-favorable risk cancers between the

time of diagnosis (age 50) and the end of AS. Table 4 shows the simulation results for

all protocols in fours cohorts. In each cohort, the protocol employing fewer biopsies was

associated with a longer late detection time on average. Also, if we compare the differ-

ences in the mean number of biopsies used and mean delay in detection by biopsy between

different protocols, we can see the benefit from more frequent biopsies was diminishing.

2.4 Discussion

We estimated the misclassification error at diagnosis, the annual cancer progression

rate, the sensitivity and specificity of biopsy, and the distribution of PSA in four prostate

cancer AS cohorts part of the GAP3 consortium: JH, UCSF, U of T, and PRIAS. With

the estimated HMMs, we then compared the mean number of biopsies performed versus

late detection of cancer progression by biopsy when following different published biopsy

protocols in four cohorts using a series of simulations. As expected, in each cohort, the

biopsy protocol that recommended more frequent biopsies was associated with shorter

time to reclassification. Our results show that because of the considerable variation in

biopsy under-sampling error and annual progression rates across cohorts, there was no

single best biopsy protocol that is optimal for all cohorts. Moreover, in each cohort, the

biopsy protocol that recommended more frequent biopsies was associated with shorter

time to reclassification, while the benefit from additional biopsies was diminishing.

Other studies have also tried to quantify the most important factors associated with

testing errors and cancer progression rate on AS. Coley et al. (2017) proposed a Bayesian

hierarchical model that included PSA and biopsy as covariates to predict the latent can-

cer state in the JH AS cohort. They estimated the misclassification error at diagnosis to
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be between 20% and 31%, and the biopsy sensitivity to be 62%. The reason why their

measurement error was much higher than ours was that they assumed there was no cancer

progression during AS for any patient. For our fitted HMMs, we do see that estimates of

both cancer progression rate and biopsy under-sampling error are statistically significantly

greater than 0, as the bootstrapping 95% confidence intervals do not include 0. Thus, if

we apply the bootstrap-t hypothesis test method discussed in Efron and Tibshirani (1994)

to the estimates of both cancer progression rate and biopsy under-sampling error, we can

reject the null hypothesis that the estimated parameter is equal to 0 with the type I error

less than 5%. Also, the definition of the biopsy sensitivity in our study, is defined with

respect to the non-favorable risk cancer state as defined in each of the studies as opposed

to Gleason score alone, used by Coley and colleagues.

Another study by Barnett et al. (2018a), fit an HMM to estimate the cancer grade pro-

gression rate and biopsy under-sampling errors in the JH AS cohort only. They estimated

the annual progression rate from Gleason score 6 cancer to Gleason score 7 or higher can-

cer to be 4.0%; then sensitivity and specificity of biopsy to be 61.0% and 98.6%. There

are a number differences in their approach compared to our study. For example, they did

not incorporate PSA observations or observations of radical prostatectomy or alternative

treatment options, which can reveal the true cancer states, for patients to leave AS. More-

over, they considered only the JH cohort which was a very low risk patient cohort. Thus,

we believe our model in this study was more informative than their model. A study by

Inoue et al. (2018), which compared the biopsy upgrading rates in four prostate cancer

AS cohorts including JH, UCSF, U of T, and Canary prostate cancer AS study cohorts

found a statistically significant difference in biopsy upgrading risk for different cohorts.

However, they did not account for possible biopsy Gleason score false-negative result and

misclassification error.
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In our results from estimating the HMMs for four different cohorts, based on the boot-

strapped standard errors of the estimated parameters, all the mis-classification errors at

diagnosis, annual cancer grade progression rates, and biopsy false-negative rates were

statistically significantly greater than zero. This validates our assumptions about the non-

zero progression rate in contrast to the above-referenced study by Coley et al. (2017) that

assumes no progression, and the imperfect biopsy sensitivity in contrast to the study by

Inoue et al. (2018) that assumes zero misclassification error and zero biopsy false-negative

rate. All biopsy specificities were close to 100%, indicating it was very rare that a patient

in favorable risk cancer state would have a biopsy Gleason sum 7 or higher. For mis-

classification errors at the time of diagnosis and annual grade progression rates, we found

that the estimates in the UCSF and U of T cohorts were greater than the estimates in JH

and PRIAS cohorts. This was consistent with the fact that the UCSF and U of T cohorts in-

cluded higher-risk patients than other two cohorts, which can also be seen in the summary

statistics of PSA density, maximum percentage of cancer in any one core, and percentage

of cores with cancer at the time of diagnosis in Table 2. For the biopsy sensitivities, we

saw that JH cohort had the lowest estimate while the U of T cohort had the highest one.

Our conjecture was that patients with lower risk had smaller tumors in general, so that they

were harder to detect by biopsy if they were in non-favorable risk cancer state. Other pos-

sible reasons for such differences might include the different definition of favorable and

non-favorable risk states, and the difference in the urologist practice when performing the

tests in different cohorts. Our simulation study compared three published biopsy protocols

in different cohorts. Within each cohort, the protocol that recommended more biopsies

had less late detection years of non-favorable risk cancer by biopsy. However, we saw that

the benefit in terms of early detection was diminishing along with the increasing number

of biopsies. There was no single optimal protocol that recommended fewer biopsies but
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could detect non-favorable risk cancer earlier, in any cohort. Two main reasons are: first,

the model parameters estimated by the HMMs and used in the simulation model were sta-

tistically significantly different for different cohorts; second, there were two competing

objectives when comparing the protocols that are minimizing the number of biopsies and

minimizing the late detection time by biopsy.

There were some notable limitations in our study. First, we reduced a complex disease

(prostate cancer) to a two-state (favorable and unfavorable risk) stochastic model with two

outputs of the disease (results of PSA test and biopsy) as informative observations. How-

ever, although such models cannot capture all details about the disease, it consistently

discriminates health states on the basis of the most significant factors defining study inclu-

sion for each cohort. Second, our proposed HMM included the null observation of biopsy

as non-informative missingness. In other words, we assumed no difference between a

missed biopsy by the design of the study, and a missed biopsy result for other reasons (e.g.

patient preference, data lost to follow-up). However, by using the null observation to de-

note the biopsy missingness in the HMM, we mitigated bias in our estimates of the model

parameters. Finally, another way to monitor prostate cancer in recent AS protocols is by

MRI scans, but it was not considered in this study due to the lack of sufficient longitudinal

data.

The above limitations notwithstanding, our study quantified the most important fac-

tors in four prostate cancer AS cohorts, providing a number of insights into the role of

different study designs and populations on AS. We found there was no single optimal

biopsy protocol across cohorts and we provided evidence that there may be considerable

variation in characteristics of prostate cancer across cohorts. This is likely explained by

some combination of factors including: 1) differences in disease dynamics between the

different cohorts due to variations in the inclusion criteria, and thus different definitions
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Figure 2.5: Observed and estimated density plots of the PSA in Johns Hopkins hospital.

of favorable vs. non-favorable risk prostate cancer. and 2) variation in healthcare delivery

across health systems resulting from different practices in urology and pathology.

2.5 Appendix: Supporting Tables and Figures

Biopsy
Characteristics Diagnosis First Second Third Fourth Fifth Sixth Seventh Eighth
Patients, n 1434 1229 776 524 349 224 134 88 47
Age at biopsy,
year, mean (SD)

66 (6.1) 67 (6.2) 67 (6.1) 68 (5.5) 68 (5.4) 69 (5.3) 70 (4.7) 70 (4.2) 71 (4.2)

Months since
diagnosis, month, mean (SD)

0 (0) 14 (13.2) 29 (16.3) 41 (15.4) 54 (14.4) 68 (15) 82 (15.5) 96 (16.1) 107 (14.8)

PSA, ng/mL,
mean (SD)

5.2 (2.9) 5.3 (3.4) 5.4 (4.4) 5.4 (3.9) 5.3 (3.6) 5.6 (4.6) 5.7 (4.5) 5.3 (4.4) 4.7 (3.3)

No. of biopsy
cores used, median (range)

12 (6-58) 12 (4-31) 12 (6-60) 12 (6-28) 12 (8-16) 14 (9-24) 14 (6-15) 14 (6-15) 14 (8-14)

Maximum % of
cancer in any one core (SD)

10 (14.8) 22 (24.6) 17 (20.8) 13 (18.7) 18 (21.1) 17 (18.1) 14 (17.9) 18 (19.4) 15 (17.9)

% of cores with cancer 12 (7.1) 10 (12.4) 7 (10.3) 6 (8.9) 6 (8.9) 6 (8) 6 (8.7) 7 (8.7) 7 (8.9)
Gleason group, # (%)
No cancer 0 (0) 519 (42.2) 386 (49.7) 289 (55.2) 191 (54.7) 127 (56.7) 72 (53.7) 43 (48.9) 23 (48.9)
1 (3 + 3) 1428 (99.6) 594 (48.3) 330 (42.5) 209 (39.9) 145 (41.5) 84 (37.5) 54 (40.3) 40 (45.5) 22 (46.8)
2 (3 + 4) 6 (0.4) 76 (6.2) 42 (5.4) 12 (2.3) 9 (2.6) 8 (3.6) 7 (5.2) 2 (2.3) 2 (4.3)
3 (4 + 3) 0 (0) 23 (1.9) 11 (1.4) 11 (2.1) 3 (0.9) 4 (1.8) 1 (0.7) 2 (2.3) 0 (0)
4 (4 + 4) 0 (0) 11 (0.9) 4 (0.5) 0 (0) 1 (0.3) 1 (0.4) 0 (0) 1 (1.1) 0 (0)
5 (9, 10) 0 (0) 3 (0.2) 2 (0.3) 1 (0.2) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
NA 0 (0) 3 (0.2) 1 (0.1) 2 (0.4) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Medium/High-grade
cancer (%)

6 (0.4) 113 (9.2) 59 (7.6) 24 (4.6) 13 (3.7) 13 (5.8) 8 (6) 5 (5.7) 2 (4.3)

Table 2.5: Biopsy Characteristics for patients in Johns Hopkins hospital.
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Biopsy
Characteristics Diagnosis First Second Third Fourth Fifth
Patients, n 1644 279 99 39 14 4
Age at biopsy,
year, mean (SD)

63 (7.6) 64 (7.7) 65 (7.2) 67 (7.2) 69 (6.8) 69 (3.8)

Months since
diagnosis, month, mean (SD)

0 (0) 25 (24.8) 42 (26.5) 63 (32.1) 82 (22.2) 109 (14.4)

PSA, ng/mL,
mean (SD)

6.4 (4.1) 5.8 (5.8) 5.6 (3.5) 8.7 (18) 6 (4.8) 4.1 (2.5)

No. of biopsy
cores used, median (range)

14 (1-50) 16 (2-31) 17 (4-25) 16 (5-27) 17 (14-26) 17.5 (14-22)

Maximum % of
cancer in any one core (SD)

26 (20.8) 5 (7.3) 5 (6.9) 4 (4.9) 5 (5.1) 5 (5)

% of cores with cancer 17 (13.8) 17 (16.7) 17 (16.8) 14 (14.8) 15 (14.2) 16 (11.8)
Gleason group, # (%)
No cancer 0 (0) 72 (25.8) 27 (27.3) 11 (28.2) 3 (21.4) 0 (0)
1 (3 + 3) 1437 (87.4) 152 (54.5) 47 (47.5) 24 (61.5) 10 (71.4) 3 (75)
2 (3 + 4) 178 (10.8) 39 (14) 20 (20.2) 2 (5.1) 1 (7.1) 1 (25)
3 (4 + 3) 25 (1.5) 12 (4.3) 3 (3) 2 (5.1) 0 (0) 0 (0)
4 (4 + 4) 4 (0.2) 3 (1.1) 1 (1) 0 (0) 0 (0) 0 (0)
5 (9, 10) 0 (0) 1 (0.4) 1 (1) 0 (0) 0 (0) 0 (0)
NA 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Medium/High-grade
cancer (%)

207 (12.6) 55 (19.7) 25 (25.3) 4 (10.3) 1 (7.1) 1 (25)

Table 2.6: Biopsy Characteristics for patients in UCSF medical center.

Biopsy
Characteristics Diagnosis First Second Third Fourth Fifth
Patients, n 1243 911 385 131 29 4
Age at biopsy,
year, mean (SD)

66 (8.1) 67 (8.2) 68 (7.6) 69 (7.4) 70 (7.3) 69 (10.4)

Months since
diagnosis, month, mean (SD)

0 (0) 22 (17.5) 58 (25) 97 (31.7) 136 (39.2) 148 (47.2)

PSA, ng/mL,
mean (SD)

6.2 (3.1) 7.7 (6.3) 10 (13.1) 9.3 (8.2) 11.7 (9.3) NA (NA)

No. of biopsy
cores used, median (range)

10 (1-190) 10 (2-27) 10 (3-250) 10 (5-170) 10 (5-13) 7 (6-14)

Maximum % of
cancer in any one core (SD)

21 (20) 32 (26) 33 (25.6) 39 (27.1) 44 (23.9) 60 (NA)

% of cores with cancer 23 (18.1) 24 (24.5) 25 (28.9) 33 (31.2) 38 (38.5) 7 (14.3)
Gleason group, # (%)
No cancer 0 (0) 226 (24.8) 128 (33.2) 29 (22.1) 8 (27.6) 3 (75)
1 (3 + 3) 1104 (88.8) 400 (43.9) 151 (39.2) 52 (39.7) 7 (24.1) 0 (0)
2 (3 + 4) 139 (11.2) 160 (17.6) 64 (16.6) 33 (25.2) 9 (31) 1 (25)
3 (4 + 3) 0 (0) 48 (5.3) 24 (6.2) 11 (8.4) 2 (6.9) 0 (0)
4 (4 + 4) 0 (0) 9 (1) 5 (1.3) 0 (0) 1 (3.4) 0 (0)
5 (9, 10) 0 (0) 9 (1) 4 (1) 3 (2.3) 1 (3.4) 0 (0)
NA 9 (0.7) 72 (7.9) 9 (2.3) 3 (2.3) 1 (3.4) 0 (0)
Medium/High-grade
cancer (%)

139 (11.2) 226 (24.8) 97 (25.2) 47 (35.9) 13 (44.8) 1 (25)

Table 2.7: Biopsy Characteristics for patients in Toronto medical center.
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Biopsy
Characteristics Diagnosis First Second Third Fourth Fifth Sixth
Patients, n 4700 3535 1226 342 90 12 3
Age at biopsy,
year, mean (SD)

66 (6.9) 67 (6.9) 68 (6.9) 69 (6.7) 70 (6.5) 72 (7.2) 70 (7.9)

Months since
diagnosis, month, mean (SD)

0 (0) 14 (8) 41 (14.3) 63 (20.1) 77 (22.2) 84 (19.8) 87 (18.3)

PSA, ng/mL,
mean (SD)

5.9 (2.1) 6.1 (3.3) 6.8 (3.7) 7.3 (4.2) 8.1 (4.3) 8.8 (3.4) 13.2 (1.6)

No. of biopsy
cores used, median (range)

12 (3-25) 12 (3-25) 12 (2-25) 12 (3-25) 12 (6-25) 10 (8-12) 12 (10-12)

Maximum % of
cancer in any one core (SD)

NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)

% of cores with cancer 13 (6.7) 12 (14.8) 11 (13.5) 11 (15.6) 9 (10.9) 7 (11) 40 (19.2)
Gleason group, # (%) NA NA NA NA NA NA NA
No cancer 0 (0) 1319 (37.3) 493 (40.2) 158 (46.2) 35 (38.9) 8 (66.7) 0 (0)
1 (3 + 3) 4657 (99.1) 1668 (47.2) 540 (44) 136 (39.8) 42 (46.7) 3 (25) 1 (33.3)
2 (3 + 4) 42 (0.9) 374 (10.6) 112 (9.1) 33 (9.6) 7 (7.8) 0 (0) 2 (66.7)
3 (4 + 3) 1 (0) 90 (2.5) 31 (2.5) 7 (2) 4 (4.4) 1 (8.3) 0 (0)
4 (4 + 4) 0 (0) 46 (1.3) 30 (2.4) 4 (1.2) 1 (1.1) 0 (0) 0 (0)
5 (9, 10) 0 (0) 9 (0.3) 6 (0.5) 1 (0.3) 0 (0) 0 (0) 0 (0)
NA 3 (0.1) 30 (0.8) 14 (1.1) 3 (0.9) 1 (1.1) 0 (0) 0 (0)
Medium/High-grade
cancer (%)

43 (0.9) 519 (14.7) 179 (14.6) 45 (13.2) 12 (13.3) 1 (8.3) 2 (66.7)

Table 2.8: Biopsy Characteristics for patients in the PRIAS project.

Center Prob. of C1 in FR state Prob. of C1 in NFR state Mean of C1 Mean of C2 SD of C1 SD of C2
JH 0.4730 0.3381 1.09 2.04 0.95 0.55
UCSF 0.0602 0.0434 1.15 2.15 1.20 0.45
Toronto 1.0000 0.2650 1.49 2.37 0.97 1.74
PRIAS 0.2238 0.1620 1.45 2.16 0.90 0.44

Table 2.9: Estimated of the mixture Gaussian distribution of the log(PSA) in different medical
centers.

Range of PSA (ng/mL) < 4 [4, 10] >10

JH
FR Cancer 0.3552 0.4311 0.2137
NFR Cancer 0.2868 0.4706 0.2426

UCSF
FR Cancer 0.0768 0.5680 0.3552
NFR Cancer 0.0678 0.5736 0.3586

Toronto
FR Cancer 0.4573 0.3422 0.2005
NFR Cancer 0.3312 0.2368 0.4320

PRIAS
FR Cancer 0.1361 0.5357 0.3282
NFR Cancer 0.1094 0.5501 0.3405

Table 2.10: Estimated PSA distribution in different cohorts.
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Figure 2.6: Observed and estimated density plots of the PSA in UCSF medical center.
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Figure 2.7: Observed and estimated density plots of the PSA in University of Toronto medical
center.
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Figure 2.8: Observed and estimated density plots of the PSA in PRIAS dataset.
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CHAPTER 3

Optimizing Active Surveillance for Prostate
Cancer Using Partially Observable Markov

Decision Processes

3.1 Introduction

Prostate cancer is the most common cancer in men. The American Cancer Society

estimates that almost 250,000 new prostate cancer cases and more than 34,000 deaths will

occur in the United States in 2021. Over the last decade, it has become clear that men

with low-risk variants of prostate cancer can safely avoid major treatment like surgery

and radiation therapy, which may have significant side effects including incontinence and

erectile dysfunction (Anandadas et al., 2011). For this reason, AS has recently become the

recommended approach for patients with low-risk prostate cancer. AS involves monitoring

patients over time to test for evidence of cancer progression to a high-risk variant of the

disease. This allows low-risk cancer patients to enjoy a higher quality of life and possibly

avoid treatment altogether (Klotz, 2013).

AS involves regular testing to monitor a patient’s health status. The PSA test is a simple

blood test in AS that measures PSA amount in the blood serum. High PSA is associated

with the presence of prostate cancer. Because the PSA test is very simple with almost no

harm, it is commonly used; but high false-positive and negative rates make it unsuitable for
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AS on its own. Prostate biopsy is the gold standard for AS, which involves sampling tissue

with hollow-core needles during an outpatient procedure. Biopsy results are reported using

the Gleason grading system, where a Gleason score is assigned by a pathologist to provide

a measure of severity of the prostate cancer. Biopsy is much more accurate than the PSA

test, but it is still prone to false-negative results if the extracted tissue samples miss the

tumor. Biopsies are also very painful, and have potential side effects. Thus, decisions

about when to perform biopsies are among the most important decisions for AS.

Unfortunately, there is a lack of consensus among urologists on the best biopsy policy.

As one of the first healthcare centers to investigate AS, JH recommended annual biopsies

for patients enrolled in AS (Tosoian et al., 2011). A more recent study conducted by

the UCSF medical center recommends biopsy every two years after diagnosis (Dall’Era

et al., 2008). A study at the U of T medical center and another European study, the PRIAS

project, recommend biopsy every three years after diagnosis for patients enrolled in AS

(Klotz et al., 2009; Bul et al., 2013).

Deciding the optimal biopsy policy is challenging because: 1) the patient’s cancer state

is not directly observable due to the inaccuracy of diagnostic tests; 2) cancer progression

is a stochastic process; 3) patient preferences about how often to biopsy vary. To address

these challenges, we formulated a finite-horizon two-state POMDP model to optimize the

biopsy policy for AS using data from the four largest and most well known AS studies

referenced above. POMDPs are well suited to this type of optimization problem because

the decision-makers (physicians and patients) need to make decisions under conditions of

uncertainty about the underlying health state, which progresses stochastically over time,

and can only be partially observed from PSA test and biopsy results. Our model seeks to

find the optimal biopsy policy that trades off two competing criteria: expected delays in

detecting high-risk prostate cancer and the expected number of biopsies.
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POMDP models are usually very hard to solve over long time horizons because of the

curse of history (Pineau et al., 2003). Moreover, the model must be solved multiple times,

as we will show in this study, to account for ambiguity in the reward function and the un-

derlying stochastic system associated with each of the cohorts mentioned above. For this

reason, we present fast approximation methods that can quickly compute near-optimal so-

lutions. We compare our model-based policies, solved via the approximation methods, to

established biopsy guidelines from the literature. We further use inverse optimization to

estimate ranges of the implied decision-maker’s weights on the two reward criteria. Fi-

nally, we combine the results for each of the cohorts to compute a risk-based policy region

that partitions the region into three parts: 1) biopsy always recommended; 2) biopsy never

recommended; 3) shared decision-making between the patient and physician is necessary

to decide if a biopsy should be performed.

The remainder of this chapter is organized as follows. In Section 2, we review the

relevant literature and describe our contributions to the literature. In Section 3, we formu-

late our Active Surveillance Partially Observable Markov Decision Process (AS-POMDP)

model to optimize the biopsy policy in prostate cancer AS. We describe the exact solu-

tion method and two approximation methods for the AS-POMDP model in Section 4, and

prove some structural properties of the AS-POMDP model in Section 5. In Section 6, we

present the results of optimal policies in our case study. Finally, we conclude in Section 7

and discuss some potential directions for future research.

3.2 Literature Review

In this section, we briefly review the most relevant literature from the application and

methodological perspectives. We then summarize our main contributions in light of the

existing literature.
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3.2.1 Applications

Much clinical research has been done in recent years to study prostate cancer AS. Sev-

eral review articles, including Bastian et al. (2009); Klotz (2010); Dall’Era et al. (2012)

and Thomsen et al. (2014), have discussed the clinical implication of prostate cancer AS

with the focus on inclusion criteria, biopsy guidelines, patient outcomes, and future re-

search needed. The urology community has largely converged on the appropriateness of

AS for patients with low-risk cancer. However, different centers have proposed different

AS guidelines, which vary most significantly in the recommended frequency of biopsies

(Dall’Era et al., 2008; Klotz et al., 2009; Tosoian et al., 2011; Bul et al., 2013).

Epstein et al. (2012) presented results for predictive risk factors for outcomes of radical

prostatectomy, which were instrumental in laying the framework for selection criteria for

AS enrollment. More recently Coley et al. (2017) built a Bayesian hierarchical model to

estimate the sensitivity and specificity of biopsy, and predict the latent cancer states in

the JH study, while assuming no cancer progression. Barnett et al. (2018a) estimated a

HMM to estimate the biopsy accuracy and cancer progression rate implied by observed

data in the JH study. They further compared different biopsy guidelines using a simulation

model based on the HMM. A recent study by Li et al. (2020) used a HMM to estimate

the cancer progression rate, biopsy under-sampling error, and PSA distribution in the four

largest AS cohorts, including JH hospital, UCSF medical center, U of T medical center,

and the PRIAS project. The descriptive models given by this study provide the foundation

for the prescriptive POMDP models we present here.

POMDP models have been found to be successful in recent decades for optimizing

medical decisions when the health state is not directly observable. POMDP models ap-

plied to clinical decision-making include the study of screening based on mammography

for breast cancer (Simmons Ivy et al., 2009; Ayer et al., 2012, 2016; Otten et al., 2020),

36



colonoscopy screening for colorectal cancer (Erenay et al., 2014), and liver transplantation

decisions in the context of liver disease (Sandıkçı et al., 2013). The most related work to

ours – and the only other work on POMDPs for prostate cancer that we are aware of –

is that of Zhang et al. (2012a) and Zhang et al. (2012b), which used a POMDP model to

optimize the one-time biopsy policy (i.e., the best timing for biopsy if only one biopsy

is allowed) in prostate cancer screening, to maximize patients’ Quality Adjusted Life

Years (QALYs). Their work focused on screening of healthy patients who are asymp-

tomatic, the vast majority of whom receive at most one biopsy. Thus, their model can be

viewed as an optimal stopping time problem, as opposed to AS that involves a continuous

process of sequential follow-up biopsies.

3.2.2 Methodology Literature

POMDP models were first studied by Åström (1965); Drake (1962) and Smallwood

and Sondik (1973), and they have been applied in many contexts including machine main-

tenance (Ross, 1971), robot navigation (Cassandra et al., 1996), healthcare (Ayer et al.,

2012; Zhang et al., 2012a; Erenay et al., 2014), and many others (see Cassandra (1998)

for a survey). Smallwood and Sondik (1973) introduced the first exact solution method,

referred to as the one-pass algorithm, for finite-horizon POMDP models. White (1991)

and Littman et al. (1995) later proposed the more efficient witness algorithm that achieves

computational efficiency through a refined approach for identifying the supporting hyper-

planes that define the optimal value function. Zhang and Liu (1996) and Cassandra et al.

(1997) introduced the incremental pruning algorithm, which has been found to be one of

the most efficient exact algorithms for a number of problems. Despite its utility for real

world applications, solving POMDP models exactly has been shown to be NP-hard, and

in PSPACE (Vlassis et al., 2012), due to the so-called curse of dimensionality (Kaelbling
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et al., 1998) and curse of history (Pineau et al., 2003).

Many approximation methods for the POMDP model have been studied in the past

several decades. An early survey by Lovejoy (1991) discussed exact solution methods

for finite-horizon POMDP models in theory, and their finite-memory and finite-grid ap-

proximations. Kaelbling et al. (1998) explored function-approximation methods for ap-

proximating the value function of POMDP models. Hauskrecht (2000) surveyed various

value-function approximation methods for infinite-horizon problems in the application of

agent navigation, analyzed their properties and relations, and also presented some novel

approximation methods and refinements of existing methods. Unlike the finite-horizon

problem, the infinite-horizon POMDP assumes a stationary (i.e., time-independent) value

function, with the discounting factor for future rewards being strictly less than one. Pineau

et al. (2003) formally defined the point-based value iteration (PBVI) algorithm for infinite-

horizon POMDPs, and proved the estimation error is bounded. Spaan and Vlassis (2005)

introduced the Perseus algorithm, which is closely related to PBVI. A more recent sur-

vey of point-based POMDP solvers for infinite-horizon problems was published by Shani

et al. (2013). Although there were a number of instances where the existing approximation

methods were found to be efficient, the issues of finding the best upper bound of the value

function with a guaranteed error bound, especially in finite-horizon problems, can easily

become intractable and remains unsolved.

Another topic of interest in the literature has been establishing monotonicity of opti-

mal policies, since such policies can be easier to understand and implement, and maybe

easier to solve. Ross (1971) first investigated the monotonicity of the optimal policy in

a two-state production process described by a POMDP model. Albright (1979) proved

the sufficient conditions for the monotonicity of the optimal policy in a two-state POMDP

with the restriction that the actions are taken to improve, rather than investigate the system.
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Other works include White (1979), Lovejoy (1987), and Miehling and Teneketzis (2020),

which generalized this property to models with more than two states by defining the partial

order of the belief.

References Topic How it differs from our work

Simmons Ivy et al. (2009)
Screening and treatment
for breast cancer

Built a simulation method to evaluate policies using the
POMDP model instead of solving for optimal policies.

Ayer et al. (2012)
Screening for
breast cancer

The proposed POMDP model was to improve patients’ QALYs.
The optimal value function was monotone in belief. Only considered
exact solution methods, which took more than 55 hours for a single model.

Zhang et al. (2012a) Screening for prostate cancer
The objective was to improve patients’ QALYs. Assumed one-time decision
because patients could have at most one biopsy.

Sandıkçı et al. (2013)
Liver transplantation for
liver disease

The objective was to improve patients’ QALYs. The model had monotone
optimal value function. Considered an approximate solution method that
incorporated solving an LP at each decision epoch, without a bound
on approximation error.

Erenay et al. (2014) Screening for colorectal cancer The proposed POMDP model was to improve patients’ QALYs

Ayer et al. (2016)
Screening for breast cancer
with imperfect adherence behavior

Similar model setting as in Ayer et al. (2012), but incorporates
adherence behavior to policies. Only considered exact solution method,
which took more than 153 hours for a single model.

Otten et al. (2020)
Post-treatment screening for
breast cancer

Similar model setting as in Ayer et al. (2012), but the state space
was continuous. Optimized the mammography decision within
10-year follow-up after treatment.

Table 3.1: Previous work on POMDP models for medical decision-making in different disease
contexts. All have different model structures in terms of states, actions, and optimality equations.

3.2.3 Contributions to the Literature

Our work makes a novel contribution to the literature in several ways. First, we propose

the first model to optimize individualized biopsy policies for prostate cancer AS patients.

Our study has a model structure that differs from many previously formulated POMDPs,

including −− but not limited to −− those arising in clinical contexts that are summarized

in Table 3.1. We describe the approach we used to formulate this complex clinical problem,

which is naturally expressed as a two-state POMDP, and then we evaluate the model using

observational data from the four most well-known studies of AS thus far. Second, we

analyze the model to provide theoretical insight into the structure of the optimal policy.

We also discuss the relationship between model-based dynamic policies that learn based on

observed data acquired as patients age, such as our POMDP model provides, and static pre-

defined policies that have been recommended in the clinical literature. Third, we provide
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a means to consider the impact of ambiguity caused by variation across models fitted

to different clinical studies as well as variation in the reward criteria. Finally, our work

collectively demonstrates the full spectrum of using clinical study data directly to estimate

and solve POMDP models for an important medical decision-making problem affecting

many men worldwide.

3.3 POMDP Model Formulation

In this section, we describe the discrete-time finite-horizon POMDP model we use to

optimize the policy for prostate cancer AS. As noted in the introduction, the objectives are

minimizing 1) expected delay in detection of high-risk prostate cancer; 2) expected number

of lifetime biopsies. Clearly, it would be ideal to minimize both of these objectives, but that

is not possible because they are competing; therefore, we settle for minimizing a weighted

combination of the two criteria. We start by describing two main assumptions that form

the basis for POMDP model formulation.

Assumption 3.1. Prostate cancer progression can be described using a finite-state (two-

state) Markov chain.

Assumption 1 simplifies the stochastic process of prostate cancer progression to that of

a first-order Markov chain. The finite state assumption naturally follows from the binary

discrimination of health states on the basis of risk as determined by clinical thresholds

using pathology information. We describe additional details about this when we discuss

the model formulation.

Assumption 3.2. The probability distributions of PSA test and biopsy results are condi-

tionally independent given the current cancer state of the patient.

Assumption 2 assumes conditional independence for different observations given the state
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of the process. It is a common assumption in partially observable stochastic models that

describes the causal relations between the underlying state and the associated observations,

and can be adapted to the study of prostate cancer AS. Assumption 1-2 have been validated

in a related study of HMMs for prostate cancer by Li et al. (2020).

With the main modeling assumptions established, we now define the elements of the

proposed discrete-time finite-horizon AS-POMDP model. We also describe lesser but still

important assumptions as part of the model description.

Decision Epochs. We index t = 1, ...,T as the discrete-time periods (also referred to as

decision epochs) at which the decision-maker can choose to biopsy, and the state transi-

tions happen. In the AS-POMDP model, t is an annual epoch and the decision is made at

the start of the epoch followed by the state transition. Epochs occur annually because this

is an upper bound on the frequency of biopsies according to clinical guidelines, i.e., no

guideline suggests biopsies more frequently than annually. Epoch t = 1 denotes the time

of diagnosis and enrollment in AS, and epoch t = T is the recommended stopping time for

AS among patients who survive until age T , which is typically age 75 according to clinical

guidelines due to increases in competing causes of death.

States. The set of states, S, contains two states: 1) low-risk prostate cancer state (LR);

2) high-risk prostate cancer state (HR). In reality, there are numerous health states defined

by risk factors, including PSA and pathology from biopsies; however, urologists differen-

tiate these states into two groups (LR and HR) to align clinical risk with treatment choices.

Patients who are known to be in the LR state should continue AS, while those in the HR

state should be treated (e.g., surgery or radiation therapy). We use st to denote the state of

the system at time t for t = 1, ...,T .

Actions. The set of available actions, A, contains two elements: 1) defer biopsy; 2)

conduct biopsy. As the PSA test is always done by default according to standard clinical
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practice, the critical decision at each decision epoch is whether or not to conduct a biopsy.

Note that in prostate AS, the action of conducting biopsy is to investigate, rather than to

improve, the patient’s cancer state. In other words, conducting a biopsy does not affect

the stochastic process of cancer progression (unless the patient leaves AS for treatment

because of a biopsy Gleason score upgrading defined later).

Transition Probabilities. At each decision epoch, the system undergoes state transi-

tions according to transition probability P defined as follows:

P(i, j) := P(st+1 = j|st = i), ∀i, j ∈ S, ∀t = 1, ...,T −1.

In our AS-POMDP model, the state can only progress from LR cancer to HR cancer, so

that we use p to denote this annual progression rate.

Observations. At each decision epoch, after an action is taken, the PSA test and biopsy

result (if conducted) will be observed. We denote O as the set of all possible observations,

and ot ∈ O as the observation at time t for t = 1, ...,T . By Assumption 2, at any decision

epoch, given the state of the system, the observations of PSA test and biopsy are mutually

independent. So, O = OPSA×OBiopsy, where OPSA is the observation space of the PSA

test, and OBiopsy is the observation space of the biopsy. We discretize the space of the mea-

surement of PSA levels into three intervals, according to the widely used PSA cutoffs in

clinical studies (Hoffman, 2011), so that OPSA has three elements: I1 = [0,4], I2 = (4,10],

and I3 = (10,∞) (ng/mL). For biopsy, the elements in OBiopsy are Gleason score upgrading

(biopsy Gleason score greater or equal to 7), Gleason score not upgrading (biopsy Gleason

score less or equal to 6), and null observation (biopsy not conducted). Such definition is

based on the fact that the inclusion criteria for AS in all four study centers considered in

this chapter require the biopsy Gleason score to be less or equal to 6 (Li et al., 2020). We

now state the third assumption of the AS-POMDP model formulation as follows.
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Assumption 3.3. Patients leave AS immediately when a biopsy Gleason score upgrading

is observed.

Assumption 3 is reasonable because Gleason score upgrading is a common criterion for

dropping from prostate cancer AS in practice, as well as in the studies used to parameterize

and test our model. In some cases, the decision is nuanced, requiring a shared decision-

making approach between the patient and physician because of considerations of age,

comorbidities, and the patient’s personal preferences. However, our AS-POMDP model

assumes such patients leave the system and receive care that is specialized to their personal

situation with the guidance of a urologist.

Observation Probabilities. The observation probability is defined as the probability

of observing certain output given the state of the system and the action taken. In the

AS-POMDP model, the observation probabilities P(o|s,a) for all a ∈ A and o = (x,y) ∈

O = OPSA×OBiopsy are given by

P((x,y)|s,a) =



qLR(Ii), a = Defer Biopsy, s = LR, y = Null, x ∈ Ii, ∀i;

qHR(Ii), a = Defer Biopsy, s = HR, y = Null, x ∈ Ii, ∀i;

qLR(Ii), a = Conduct Biopsy, s = LR, y = Not Upgrading, x ∈ Ii, ∀i;

γqHR(Ii), a = Conduct Biopsy, s = HR, y = Not Upgrading, x ∈ Ii, ∀i;

(1− γ)qHR(Ii), a = Conduct Biopsy, s = HR, y = Upgrading, x ∈ Ii, ∀i;

0, otherwise,

where qLR and qHR are probability mass functions of PSA in the LR and HR cancer states,

and γ is the false-negative rate (1 - sensitivity) of biopsy defined as the probability of

observing Gleason score not upgrading while in HR cancer state.

Here we assume that biopsies have perfect specificity, i.e., the probability of observing

a Gleason score upgrading when in LR cancer state is zero. This is because biopsies

involve sampling of prostate tissue, and thus sometimes may miss the tumor; however
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when the tumor is sampled, the probability that it is identified by a qualified pathologist in

nearly 1.

Reward Function. We let r(s,a,o) denote the reward function when the system is in

state s ∈S , action a ∈ A is taken, and output o = (x,y) ∈ O is observed at each decision

epoch, which is given by

r(s,a,(x,y)) =



0, a = Defer Biopsy, s = LR;

θ , a = Defer Biopsy, s = HR;

η , a = Conduct Biopsy, s = LR, y = Not Upgrading;

η , a = Conduct Biopsy, s = HR, y = Upgrading;

θ +η , a = Conduct Biopsy, s = HR, y = Not Upgrading;

Not Defined, otherwise,

where θ and η are non-positive scalars that denote the negative reward (cost) of one-year

delayed detection of high-risk cancer and the burden of a biopsy, respectively. In the

AS-POMDP model, we seek to minimize a weighted sum of the expected number of biop-

sies and years in late detection to cancer progression, so these are negative "rewards." Note

that θ and η are pre-determined scalars that reveal the decision-maker’s consideration of

the two events. We set θ +η =−1, so that varying θ and η allows computing the optimal

policy for different patient preferences for the two criteria.

Figure 3.1 illustrates the stochastic control process of the proposed AS-POMDP model.

At the beginning of each decision epoch, the decision-maker can choose the test action of

whether to defer and conduct biopsy. Then, the test outcome is observed, which provides

partial information about the underlying cancer state. Given the chosen action and test

outcome, an immediate negative reward is assigned to the patient, which comes from the

burden of test action and/or the penalty of failing to detect a cancer progression to the
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Figure 3.1: The stochastic control process of prostate cancer AS described by the proposed AS-
POMDP model

HR state, if there was one. If the biopsy result shows Gleason score upgrading, then the

patient will leave AS immediately. For the case that shows no upgrading or null biopsy, if

the patient is older than age 75, he will also leave AS.

Belief state. We use bt to denote the belief, i.e., the probability distribution, over the set

of states, S, at the beginning of decision epoch t. In the AS-POMDP model, since there are

only two states in S, the belief bt only has one degree-of-freedom and can be represented

by the probability of being in the HR cancer state, with 1− bt being the probability of

being in the LR cancer state. In particular, for the starting time t = 1, b1 is the probability

that the patient who enters AS (because of being diagnosed with LR cancer) is actually

in HR cancer state, i.e., misclassification error at diagnosis. The belief bt at epoch t is

well-known to be a sufficient statistic for the past sequence of actions and observations

before time t. We use Λ to denote the Bayes updating formula from time t to t +1, i.e.,

(3.1) bt+1 = Λ(bt |a,o), 1≤ t ≤ T −1,

if action a is taken and output o is observed. The exact expression of Λ is given in the next

section. Notice that sometimes we may drop the subscript of bt when it is treated as the
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argument of the value function defined later.

Policy. A policy π = (π1, ...,πT ) is defined as a set of functions from the belief space

to the action space, where πt specifies the actions to take for all possible belief states at

decision epoch t = 1, ...,T .

Value Function. Given a policy π , we define the expected cumulative reward starting

from time t0 until the end of the time horizon T as:

V π
t0 (b) := Eπ [

T

∑
t=t0

r(st ,at ,ot)|b], ∀b,∀t0,

where the expectation is taken over all possible state, action, and observation trajectories

following the policy π . For a fixed π and t0, V π
t0 (b) is a function of the belief state b.

Note that in the AS-POMDP model, if the patient leaves AS because of a Gleason score

upgrading before time T , then the process will stop with no future reward.

As discussed in Smallwood and Sondik (1973), the POMDP model can be viewed as

a continuous-state Markov decision process model with the state space being the space of

all possible belief states. It follows immediately that there exists an optimal policy π∗ that

is deterministic and Markovian with respect to the belief, which maximizes the expected

cumulative rewards at any time t:

Vt(b) :=V π∗
t (b) = max

π
V π

t (b), ∀b,

which can be computed using the following optimality equations:

Vt(b) = max
a∈A
{∑

s∈S
b(s)r(s,a)+ ∑

o∈O
P(o|b,a)Vt+1(Λ(b|a,o))}, ∀b, ∀t,

with the boundary condition

VT (b) = max
a∈A

∑
s∈S

b(s)r(s,a), ∀b,
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where r(s,a) = ∑o∈OP(o|s,a)r(s,a,o) is the expected immediate reward when the system

is in state s and action a is taken, and P(o|b,a)=∑s∈S b(s)P(o|s,a) is the probability of ob-

serving o when the belief is b and action a is taken. By Assumption 3, in our AS-POMDP

model, since the patient will leave AS upon receiving a biopsy that shows Gleason score

upgrading, the optimality equation for t < T should be modified as

(3.2) Vt(b) = max
a∈A
{∑

s∈S
b(s)r(s,a)+ ∑

o∈O′
P(o|b,a)Vt+1(Λ(b|a,o))}, ∀b, ∀t,

where O′ = OPSA×{Not Upgrading,Null} is a subset of O. Solving the optimality equa-

tions yields the optimal policy π∗ = (π∗1 , ...,π
∗
T ) as follows

π
∗
t (b) := argmax

a∈A
{∑

s∈S
b(s)r(s,a)+ ∑

o∈O′
P(o|bt ,a)Vt+1(Λ(b|a,o))}, ∀b, ∀t < T,

and

π
∗
T (b) := argmax

a∈A
∑
s∈S

b(s)r(s,a), ∀b.

3.4 Solution Methods

In this section, we describe the approach we used to solve the AS-POMDP model

formulated in Section 3.3. We start by describing an exact solution method, the classical

one-pass algorithm of Smallwood and Sondik (1973), to set the foundation for describing

our approach. Unfortunately, the one-pass algorithm is impractical for the AS-POMDP

model, as the number of non-dominated α-vectors is growing exponentially in the size of

the observation space at each time period. Because of the long time horizon and the fact

that we intend to solve a number of different AS-POMDP model instances with different

choices of model parameters, fast approximation methods are preferred over the exact

method (which took more than 24 hours for a single set of model parameters using an Intel

Core i7 2.6 GHz processor with 16 GB RAM). Therefore, we study two approximation
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methods that give lower and upper bounds on the optimal value function, with bounded

worst-case approximation errors. We further show in the numerical results that the gaps

between the lower and upper bounds are very small so that our approximate solutions are

accurate enough to be trusted.

3.4.1 Exact Solution Method

As shown in Smallwood and Sondik (1973), the optimal value function Vt(b) is piece-

wise linear and convex in b, and can be written as

Vt(b) = max
α∈At

α ·b, ∀b, ∀t,

where At is a set of linear functions, referred to as α-vectors, which be calculated by

backward induction. Further, each α-vector in At corresponds to a decision tree that

specifies the choices of action for all possible observations at each of the future decision

epochs (see Kaelbling et al. (1998) for more details). It is easy to see that this property

is also true in the AS-POMDP model, although equation (3.2) omits a part of value-to-go

(which is linear in the belief) if the patient leaves the system before the end of AS due to

observing a Gleason score upgrading. With this property, the AS-POMDP model can be

solved by finding the set of α-vectors, At , at each decision epoch t.

In our AS-POMDP model, since there are only two states, the belief can be represented

by a scalar. We let b denote the belief in the high-risk cancer state, and thus the belief in

the low-risk cancer state is 1− b. Further, in the AS-POMDP model, each α-vector is

a line, and can be determined by any two points on the line. For convenience, we use a

vector, (l(0), l(1)), to represent the linear function l(b), where l(0) and l(1) are the values

of l at points b = 0 and b = 1, respectively. For models with more than two states, it is

easy to generalize our results by using the extreme points of the belief simplex to represent

α-vectors.

48



Starting with the boundary condition, the optimal value function at time T can be

written as

VT (b) = max
a∈A
{(1−b)r(s1,a)+br(s2,a)},∀b,

where r(si,a) = ∑y r(si,a,y) for i = 1,2. So,

AT = {(r(s1,a1),r(s2,a1)),(r(s1,a2),r(s2,a2)}.

Now, given the set of α-vectors, At+1 at time t + 1, to derive the set of α-vectors, At at

time t by way of backward induction, we can, for each α-vector in At , find its values of

at b = 0 and b = 1. In our AS-POMDP model, for each decision epoch, the belief update

bt+1 = Λ(bt |a,o) is realized in two steps as follows,

bt
obs.
==⇒ b̃t

trans.
===⇒ bt+1.

Specifically, suppose at time t, action a was taken and we observed o, then

b̃t =
P(o|s2,a)
P(o|bt ,a)

bt ,

and

bt+1 = Λ(bt |a,o) = b̃t + p(1− b̃t) =
1

P(o|bt ,a)
((1− p)P(o|s2,a)bt + pP(o|bt ,a)).

Then, by the optimality equations (3.2), for a specific action a, each α-vector αt at time t

can be be represented by

αt = (αt(0),αt(1))

where

αt(0) = r(s1,a)+ ∑
o∈O′

P(o|0,a)αt+1,o(Λ(0|a,o)) = r(s1,a)+ ∑
o∈O′

P(o|0,a)αt+1,o(p),

αt(1) = r(s2,a)+ ∑
o∈O′

P(o|1,a)αt+1,o(Λ(1|a,o)) = r(s2,a)+ ∑
o∈O′

P(o|1,a)αt+1,o(1)
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for a specific set of choices of αt+1,o ∈At+1 for all o ∈ O′. Enumerating all such sets of

choices of α-vectors at time t+1 and actions gives all α-vectors at time t, which we denote

as Ãt ; however, some of the α-vectors in Ãt can be dominated by the others and thus can be

pruned by solving a linear program (Smallwood and Sondik (1973)). Littman et al. (1995)

and Zhang and Liu (1996) proposed the witness and incremental pruning algorithms that

improve the pruning procedure and generate the minimal set of non-dominated α-vectors

At at time t.

We let H denote the operator for the backward induction and pruning steps of Vt from

Vt+1 in the one-pass algorithm described above, and write the optimality equations as

Vt = HVt+1, t = T −1, ....,1.

3.4.2 Point-based Approximation Method

The point-based approximation method is well-suited here, because instead of finding

the set of all dominated α-vectors at each decision epoch, it only evaluates the value

function at a set of sampled belief points to get an estimate of the value function. And by

controlling the number of the sampled belief points, it limits the number of α-vectors to

keep at each decision epoch. Different types of point-based value function approximation

methods have been carefully studied in the surveys of Hauskrecht (2000), Pineau et al.

(2003), and Shani et al. (2013) for infinite-horizon POMDPs, where the value function

was assumed to be stationary (i.e., independent with time). We generalize their approach

to our finite horizon non-stationary AS-POMDP model. In this section, we let Bt denote

the sampled belief points at decision epoch t, and provide the methods for finding the

lower and upper bounds of the value functions based on Bt for all t = 1, ...,T .
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Lower Bound

At each decision epoch t, since the optimal value function can be written as the maxi-

mum of a set of linear functions in At , a natural way to find a lower bound of Vt is to use a

subset of At . Starting from the optimal value function at the next decision epoch Vt+1 and

associated α-vectors, At+1, we first derive the set of all (dominated and non-dominated)

α-vectors ˜At following the steps described in Section 4.1. Then, at each belief point,

b ∈ Bt , we identify the supporting α-vectors in ˜At , resulting in |Bt | α-vectors being se-

lected from ˜At . We denote the set of selected α-vectors as ˆAt . Thus, at each decision

epoch t, V̂t defined as follows gives a lower bound of the true value function Vt :

V̂t(b) := max
α∈ ˆAt

α ·b, ∀b.

The details of the lower bound approximation method is described in Algorithm 2.

Algorithm 2: Algorithm for approximate backward induction with operator LB.
Input : Vt+1, B
Output: V̂t

Initialize ˆAt as a empty set;
Let At+1 as the set of α-vectors defining Vt+1;
Find the set of all α-vectors at time t, ˜At using At+1 and backward induction;
for b ∈ B do

αb← argmax
α∈ ˜At

α ·b;
add αb in ˆAt ;

end
Define V̂t(b) := max

α∈ ˆAt
α ·b, ∀b.

We let operator LB denote approximate backward induction steps described in Algo-

rithm 2. Note that LB needs not to start from the exact optimal value function at the next

decision epoch. If we start from any subset of At+1, and the corresponding lower bound

on Vt+1, then LB will also provide a lower bound on Vt because the resulting Ât is always

a subset of At . In particular, if we start from the boundary condition VT , with the sample
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belief sets Bt for all t = 1, ...,T −1, then

(3.3) V̂t = LBt LBt+1...LBT−1(VT ),∀t = 1, ..,T −1

is always a lower bound of Vt . The following theorem gives the error bound between V̂t

and Vt for each t, whose proof utilizes the triangle inequality and Holder’s inequality and

is adapted from Theorem 3.1 of Pineau et al. (2003). The proof of the Theorem 3.4 is in

the Appendix.

Theorem 3.4. Given the grids of the belief space at each decision epoch Bt ⊂ [0,1]|S| for

all t, the error between the optimal value function Vt and approximated value function V̂t

given by (3.3) satisfies

||Vt−V̂t ||∞ ≤
(T − t)(T − t +1)

2
||rmax− rmin||∞δ ,

where

rmax(s) := max
a∈A

∑
o∈O

P(o|s,a)r(s,a,o), rmin(s) := min
a∈A

∑
o∈O

P(o|s,a)r(s,a,o), ∀s ∈ S,

and

δ := max
t

max
b∈[0,1]|S |

min
b′∈Bt
||b′−b||1.

The bound in Theorem 3.4 tends to zero as δ → 0.

Upper Bound

Approaches to upper bound the optimal value function often involve solving many

linear programs (Hauskrecht, 2000). Fortunately, for a two-state POMDP model such as

the AS-POMDP model, the solution of the linear program can be given directly, which

can further accelerate approximate backwards induction for our two-stage AS-POMDP

model. At each decision epoch t, given the set of α-vectors At+1 that defines Vt+1 in

the next decision epoch, to find the upper bound of Vt , we use the linear interpolation of
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the sampled belief points and their values. Specifically, given the sampled belief set Bt ,

for each b ∈ Bt , we first calculate ut(b) := Vt(b) using the optimality equation. Then, as

long as B contains the extreme points b = 0 and b = 1, for any belief point b′ ∈ [0,1], the

solution of the following linear program will give the best linear interpolation for Vt(b′):

V̄t(b′) := minλ ∑b∈B λbut(b)

s.t. ∑b∈B λb = 1,

λb ≥ 0, ∀b ∈ B

∑b∈B λbb = b′.

Further, V̄t is an upper bound of Vt .

For a two-state POMDP model such as ours, the following results show that the optimal

solution to the linear program is trivial, so that an upper bound of Vt can be obtained

without resorting to solving linear programs.

Proposition 3.5. In a two-state POMDP model, at time t, write the set of the sample belief

point Bt as

Bt = {b1,b2, ...,b|B|}

such that 0 = b1 < b2 < ... < b|B| = 1. Then, for every b′ ∈ [0,1] such that bi ≤ b′ < bi+1,

the optimal solution of the above linear program has only two variables λbi and λbi+1 being

non-zero, and all others being zero.

Proof. Notice that the linear program has |B| decision variables λb for b ∈ B and |B|+ 2

constraints. Then, the extreme point of the polyhedron defined by the constrains should

satisfy |B|−2 equations of λb = 0 for b ∈ B.

Now, for b′ ∈ [0,1] such that bi ≤ b′ < bi+1, suppose the extreme value V̄t(b′) is

achieved with two λb j and λbk being non-zero, and all other decision variables being zero.

Notice that to satisfy the first and last constraints, we can assume b j ≤ bi and bk ≥ bi+1
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without the loss of generality. Then, since V is convex, at bt , the convex combination of

b j and bk is greater than b j and bi+1, and the convex combination of b j and bi+1 is greater

than bi and bi+1. So, the optimal value V̄t(b′) is achieved with only λbi and λbi+1 being

non-zero, and all other decision variables being zero.

The above proposition shows that for belief points between bi and bi+1, V̄t is defined

by the line determined by two points (bi,ut(bi)) and (bi+1,ut(bi+1)), for all i = 1, ..., |B|−

1.The next proposition gives an expression of V̄t .

Proposition 3.6. In a two-state POMDP model, at decision epoch t, denote βi as the linear

function determined by (bi,ut(bi)) and (bi+1,ut(bi+1)), for all i = 1, ..., |B|−1, and let B

be the set of all such linear functions:

B := {β1, ...,β|B|−1}.

Then,

V̄t(bt) = max
β∈B

β ·bt , ∀bt .

Proof. For each i = 1, ..., |B|−1, since β i is a line determined by

(bi,ut(bi)) and (bi+1,ut(bi+1)),

and since Vt is convex, then for b∈ (bi,bi+1), Vt(b)≤ β i ·b; for b = bi or b = bi+1, Vt(b) =

βi · b; and for b /∈ [bi,bi+1], Vt(b) ≥ βi · b. By Proposition 1, for b ∈ [bi,bi+1], V̄t(b) =

βi ·b = maxβ∈Bβ ·bt .

Algorithm 3 describes the steps for deriving the upper bound of the value function

at each decision epoch by approximate backward induction. For convenience, we use

operator UB to denote Algorithm 3 for a given B. Note that the input of UB can also be

any upper bound of Vt+1, and the output V̄t is always an upper bound of Vt because ut(b)
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is always greater than Vt(b) for all b ∈ B. In particular, if we start from the boundary

condition VT , with the sample belief sets Bt for all t = 1, ...,T −1, then

(3.4) V̄t =UBtUBt+1...UBT−1(VT ),∀t = 1, ..,T −1.

is always an upper bound of Vt . The next theorem gives the error bound between V̄t and Vt

for each t. The proof of the Theorem is in the Appendix.

Algorithm 3: Algorithm for approximated backward induction UB.
Input : Vt+1, B
Output: V̄t

Initialize B as a empty set;
Write B = {b1, ...,b|B|} such that 0 = b1 < ... < b|B|=1;
for b ∈ B do

Calculate ut(b) := maxa{b · ra +∑oP(o|b,a)Vt+1(U(b|a,o))};
end
for i = 1 to |B|−1 do

Let βi be the line determined by two points (bi,ut(bi)) and (bi+1,ut(bi+1));
Add βi in B;

end
Define V̄t(b) = maxβ∈B β ·b for all b ∈ [0,1];

Theorem 3.7. Given the grids of the belief space Bt ⊂ [0,1]|S| at each decision epoch t,

the error between the optimal value function Vt and approximated value function V̄t given

by (3.4) satisfies

||Vt−V̄t ||∞ ≤
(T − t)(T − t +1)

2
||rmax− rmin||∞δ , ∀t ≤ T

where rmax, rmin, and δ are defined the same as in Theorem 3.4.

Remark 3.8. Later in Section 3.6, we show that the actual observed differences between

the lower and upper bounds of the value functions in AS-POMDP all models were much

smaller than the error bound given by Theorem 3.4 and 3.7. This is because in the

AS-POMDP model, a patient will leave AS for treatment immediately after observing

a Gleason score upgrading, with no future cost. As a result, the expected value-to-go
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for conducting biopsy, as shown in the optimality equation (3.2), is shrunk by γ (biopsy

false-negative rate). This further makes the error of the approximate value function much

smaller than the worst case described in the proof of Theorem 3.4 and 3.7. However, since

we do not know in advance what is the optimal action at each decision epoch, it is very

difficult to improve the error bound. In the extreme case (e.g., always defer biopsy), it is

possible that the error bound in Theorem 3.4 or 3.7 is achieved with equality. On the other

hand, the results in Section 3.6 show that the proposed approximation methods work very

well for the AS-POMDP model.

3.5 Structural Properties

In this section, we discuss some structural properties of the proposed AS-POMDP

model to provide some insight into the results we present in Section 3.6.

3.5.1 Control-limit Type Policy

In Section 3.6 we will see the solution to the AS-POMDP model is a control-limit

type policy, i.e., there is a threshold on the element of the belief vector that represents

the probability of being in the high-risk state, below which it is optimal to defer biopsy,

and above which it is optimal to conduct biopsy. There are many prior works that have

discussed the existence of a control-limit type policy in a POMDP model. For example,

White (1979) proved that the optimal replacement policy for the machine maintenance

problem is a control-limit type policy. However, one of the distinctions of our model

compared to the prior works is that our goal is to inspect and classify the system state (low-

risk or high-risk cancer) rather than sequential system improvement, so that the optimal

value function in our model is not monotone w.r.t. the belief anymore.

As in Section 3.4, we denote the set of non-dominated α-vectors at decision epoch t as
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At = {α1, ...,αn}, and write the optimal value function at time t as

Vt(b) = max
αi∈A

αi(b), ∀b.

Then, it is easy to see that Vt has n− 1 inflection points on (0,1). The following lemma

establishes a useful relationship among the positions of these n− 1 inflection points, and

the relationship between the slopes and endpoints of the non-dominated α-vectors.

Lemma 3.9. For At = {α1, ...,αn}, assume that slope(α1)< slope(α2)< ... < slope(αn).

Let the positions of the inflection points of Vt to be b1 < b2 < ... < bn−1. Then, (bi,Vt(bi))

must be the intersection of αi and αi+1, i = 1, ...,n−1. Further,

α1(0)> α2(0)> ... > αn(0),

and

α1(1)< α2(1)< ... < αn(1).

Proof. We prove the first part by contradiction. Suppose (b j,Vt(b j)) is the first inflection

point of vt such that it is not the intersection of α j and α j+1. Then, it should the intersection

of α j and αk with k > j + 1. So, Vt(b) = αk(b) on b ∈ (b j,b j+1). Since α j+1 is not

dominated, there must exists some bl ≥ b j+1, such that Vt(b) = α j+1(b) on b ∈ (bl,bl+1).

Then, the slope of Vt(b) is not increasing, which contradicts the convexity of Vt .

Now, choose β = (β (1),β (2)) ∈At such that β (2) = minαi∈At αi(2). Then, it must be

true that β (1) = maxαi∈At αi(1); otherwise, β must be dominated by some α-vectors in

At . It is easy to see that the slope of β is the smallest in At . So, β = α1. Remove α1 from

At and repeat the same steps until there is no element in At completes the proof.

We now leverage the above lemma to provide a sufficient and necessary condition for

the existence of a control-limit type policy in a two-dimension POMDP model.
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Lemma 3.10. For any time t, denote the set of non-dominated α-vectors at time t as

At = {α1, ...,αn}. Further, let A 1
t = {α1, ...,αm} be the α-vectors corresponding to ac-

tion "defer biopsy", and A 2
t = {αm+1, ...,αn} be the α-vectors corresponding to action

"conduct biopsy". We say A 1
t and A 2

t are separable at some b ∈ [0,1], if at b all values of

the α-vectors in A 1
t are greater or smaller than all values of the α-vectors in A 2

t . Then,

the optimal policy at time t is a control-limit type policy if and only if A 1
t and A 2

t are

separable at b = 0, or equivalently, A 1
t and A 2

t are separable at b = 1.

Proof. The existence of a control-limit type policy is equivalent to the existence of an

inflection point b̄ of vt(b), such that for b ≤ b̄, Vt(b) is composed of the α-vectors in

A 1
t and for b > b̄, Vt(b) is composed of the α-vectors in A 2

t ; Further, if there exists

an inflection point b̄ of Vt(b), such that for b < b̄, then the inflection points of Vt(b) are

the intersections between the α-vectors in A 1
t ; and for b > b̄, the inflection points of

vt(b) are the intersections between the α-vectors in A 2
t . According to Lemma 3.9, the

inflection points following the sequence of the slopes of the α-vectors, and the order of

the slopes of the α-vectors is equivalent to the order of the values of the α-vectors at either

endpoint.

Focusing on our AS-POMDP model specifically, we let γ denote the false-negative

rate of the biopsy, and note that the expected immediate reward for action "defer biopsy"

at b = 1 is θ and the expected immediate reward for action "conduct biopsy" at b = 1 is

η + γθ (=−1−θ + γθ). We only consider the case where η + γθ is greater than θ , i.e.,

"conduct biopsy" is preferred to "defer biopsy" in HR cancer state. Using this notation, we

now give a sufficient condition for which there exists a control-limit policy in this context.

Corollary 3.11. Denote T as the end of time horizon. Suppose η + γθ > θ , if

(γn−1)θ > (η + γθ)
γ− γn−1

1− γ
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then there exists an optimal policy at time T − n that is a control-limit type policy for

n = 1, ...,T −1.

Proof. It is easy to calculate that at t = T − n, the smallest possible value at b = 1 of

choosing "conduct biopsy" is η + γθ + γnθ , where the biopsy result shows not upgrading

and "defer biopsy" will be chosen for all future times; the largest possible value at b = 1

of choosing "defer biopsy" is θ +η + γθ + 1−γn

1−γ
, where "conduct biopsy" will be chosen

for all future times with the observations all being not upgrading. If

η + γθ + γnθ > θ +η + γθ +
1− γn

1− γ
,

i.e., (γn−1)θ > (η +γθ) γ−γn−1

1−γ
, then at b = 1, the two sets of α-vectors corresponding to

two actions are separable. By Lemma 3.10, we have the optimal policy for the two-state

AS-POMDP model is a control-limit type policy.

The existence of control-limit type policies in practical applications such as ours is a desir-

able feature since such policies conform well with the intuition of decision-makers. The

sufficient condition in the above corollary holds for cases in which γ or θ approaches

zero, for instance; however, we show that the existence of a control-limit type policy can

be extended more broadly to a special (but not unrealistic) case of our model.

Proposition 3.12. For the two-state AS-POMDP model, if decisions are made independent

of the PSA test, the optimal policy is a control-limit type policy.

Proposition 3.12 aligns well with clinical evidence that the PSA test is associated with

high false-positive and false-negative errors and thus plays a limited role in making deci-

sions about when to conduct routine biopsies. The proof of Proposition 3.12 is shown in

the Appendix.
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3.5.2 Static vs. Dynamic Policy

Our computational results in the next section show that although the optimal (dynamic)

biopsy policies from the AS-POMDP model dominate the current (static) biopsy guide-

lines in the published literature, the difference is relatively small. Therefore, we conclude

this section with some analysis to explain this by showing that eliminating the PSA test

from the model makes it optimal to make biopsy decisions a priori without the need for

dynamic decision making. In other words, the schedule of biopsies can be set at the time

of diagnosis. Combining this with the fact that PSA is associated with high false-positive

and false-negative rates and thus provides limited information for belief updating over

time, suggests that the weakness of the PSA test limits the benefits of dynamic changes to

the sequential decision to biopsy over time.

Theorem 3.13. Consider a threshold-based biopsy policy for AS. If PSA test results are

not used in cancer progression belief updates, then the threshold-based policy is equivalent

to a static policy, in which the biopsy schedule is pre-determined at the time of diagnosis.

Theorem 3.13 provides motivation for why the difference between dynamic and static

policies is small, i.e., because the predictive value of the PSA test is weak. The proof of

Theorem 3.13 is in the Appendix. Note that tests with better predictive performance than

the PSA test, such as new molecular biomarker tests that are being developed (Barnett

et al., 2018b), could lead to more significant benefits of dynamic over static policies. We

revisit this in Section 3.6 with numerical experiments.

3.6 Results

In this section, we discuss the results of the AS-POMDP model for prostate cancer

AS. We start by describing the model parameters. Next, we present the results for the
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Center
misclassification error

at diagnosis: b1

Annual Cancer Progression
rate: p

Biopsy Sensitivity:
(1− γ)

JH 0.0583 0.0691 0.7184
UCSF 0.0809 0.1217 0.7431
U of T 0.0774 0.1016 0.7949
PRIAS 0.0653 0.0841 0.7614

Table 3.2: AS-POMDP model parameters in four study centers. Abbreviations: JH, Johns-
Hopkins; UCSF, University of California-San Francisco; U of T, University of Toronto; PRIAS,
Prostate Cancer Research International AS.

near-optimal value function and risk thresholds for the optimal biopsy policy given by the

proposed AS-POMDP model using the algorithms in Section 3.4.2. These results also

demonstrate the utility of the approximation methods we proposed. We also illustrate

how the AS-POMDP model-based policy changes with respect to the reward parameters

to understand how decisions might vary depending on patient preferences. Finally, we

compare the near-optimal approximate policies with published guidelines.

3.6.1 Model Parameters

Tables 3.2 and 3.3 provide the As-POMDP model parameters for different centers that

are computed using HMMs obtained in a previous study by Li et al. (2020). The PSA dis-

tributions were estimated by a mixture of two Gaussian distributions. In our AS-POMDP

formulation, we discretized these continuous distributions using commonly used clinical

thresholds, as shown in Table 3.3.

3.6.2 Optimal Biopsy policy Solved by AS-POMDP Model

The optimal policies of the AS-POMDP model vary across different centers, and re-

ward parameters, which in turn depends on the decision-maker’s preference. In our initial

experiments, we set θ = η = −0.5, which weighs the two criteria, i.e., expected delay in

detection of high-risk cancer and expected number of biopsies, equally, and we evaluate

the variation in policies across centers.
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Center
Probability Mass Function of PSA (ng/mL): q

Cancer State I1 = [0,4] I2 = (4,10] I3 = (10,∞)

JH
LR Cancer 0.3552 0.4311 0.2137
HR Cancer 0.2868 0.4706 0.2426

UCSF
LR Cancer 0.0768 0.5680 0.3552
HR Cancer 0.0678 0.5736 0.3586

U of T
LR Cancer 0.4573 0.3422 0.2005
HR Cancer 0.3312 0.2368 0.4320

PRIAS
LR Cancer 0.1361 0.5357 0.3282
HR Cancer 0.1094 0.5501 0.3405

Table 3.3: The probability mass functions of PSA in four study centers. Abbreviations: JH, Johns-
Hopkins; UCSF, University of California-San Francisco; U of T, University of Toronto; PRIAS,
Prostate Cancer Research International Active Surveillance; LR, low-risk; HR, high-risk.

Figure 3.2: The (approximate) optimal value functions for a patient at age 50 in four different
study centers when θ =−0.5. All non-dominated hyperplanes, and their supremums are shown in
the figure. The belief threshold for conducting a biopsy is indicated in the legend in each plot.
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Figure 3.3: The (approximate) optimal belief thresholds for conducting biopsy in different AS
studies when θ =−0.5,−0.6,−0.7,−0.8

Figure 3.2 shows the approximate optimal value functions obtained by the method

described in Section 3.4.2, for all four study centers assuming a patient at age 50. Here Bt

is chosen to be Bt = {0, 1
30 ,

2
30 , ...,

29
30 ,1} with |Bt |= 31 for every t ≤ T . As anticipated, the

AS-POMDP model-based policies are all control-limit type policies. The risk threshold

for triggering biopsy was the highest in the model generated from UCSF medical center

data, and lowest in the model generated from JH hospital data, which is consistent with

the difference in the annual cancer progression rates at those centers, and which in turn

depends on the study admission criteria (JH study patients had more strict criteria for entry

compared to UCSF patients). We further use Figure 3.3 to illustrate how AS-POMDP

model-based policies differ across AS studies. For each risk-based policy, the range of

risk threshold is relatively small.

As discussed in Section 3.3, our AS-POMDP model trades off the two competing cri-

teria (delay in detection vs. harm from biopsies) based on the reward parameter θ . There-
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fore, Figure 3.3 also shows how the optimal biopsy policies vary with respect to θ , which

is the reward weights of the two criteria depending on individual patient’s preference.

Again, the closer the θ is to −1, the more the decision-maker weighs on the cost of delay

in detection. As we change the value of θ parameter in the proposed AS-POMDP model,

we observed that the optimal biopsy policy at each decision epoch is always a control

limit type policy as discussed in relation to Proposition 3.12. Figure 3.3 also shows that

the variation across models derived from the different AS studies decreases as theta de-

creases, i.e., as the weight on number of biopsies decreases. Moreover, the threshold for

biopsy is consistently below 0.4 for all ages prior to 73.

3.6.3 Accuracy of Approximate Policies

To demonstrate that the approximated policies are very close to optimal, Table 3.4

provides the supremum norm of the difference between the lower and upper bounds of

the optimal value function solved by the approximation methods in Section 3.4.2 using

the uniform grid Bt with |Bt | = 31 for every t ≤ T . As we can see from Table 3.4, the

maximum relative error across all experiments is less than 0.55% of the value function,

indicating the approximate policies are sufficiently accurate to be trusted. In terms of the

running time, each experiment in Table 3.4 is completed within 30 seconds (compared with

more than 24 hours for an exact solution) using an Intel Core i7 2.6 GHz processor with

16 GB RAM. Thus, the approximations enable the potential real-time implementation of

the AS-POMDP model for shared patient/physician decision-making in clinical settings.

3.6.4 Implementation of Model-based Biopsy Policy in Practice

Before comparing different biopsy policies, we explain how the model-based policy

can be used in practice to support decision-making in prostate cancer AS. In each study

center, for each patient newly diagnosed with LR prostate cancer and admitted to AS,
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Centers
||(V̄ −V̂ )/V̄ ||∞×100% at age 50 for different θ

-0.5 -0.6 -0.7 -0.8 -0.9
JH 0.27% 0.21% 0.15% 0.55% 0.28%
UCSF 0.15% 0.09% 0.08% 0.10% < 0.01%
U of T 0.19% 0.25% 0.16% 0.10% < 0.01%
PRIAS 0.18% 0.17% 0.25% 0.09% 0.01%

Table 3.4: The relative difference between V̄ and V̂ at age 50 for different θ in four AS studies.

his initial belief of being in HR cancer state is estimated by the misclassification error at

diagnosis in Table 3.2. Subsequently, at each annual time period, the patient first receives

a PSA test and the belief is updated using Equation 3.1. Next, the decision-maker decides

whether to conduct or defer biopsy using an instance of the model based on the choice of

the reward parameter θ that aligns with the patient’s preferences, and the corresponding

optimal HR belief threshold for triggering a biopsy base on the AS-POMDP model. If a

biopsy is conducted, as shown in Figure 3.1, the patient will stay on AS if the result shows

no biopsy upgrading and his age is less than 75 (the clinically recommended stopping

time). The belief of HR cancer state is then updated again based on the annual cancer

progression rate and biopsy sensitivity given by Table 3.2 using Equation 3.1; otherwise

if the biopsy is deferred, then the HR cancer belief is updated only based on the annual

cancer progression rate. Lastly, the patient will continue to the next time period, and

follow the same steps as in the last time period until a biopsy upgrading is observed or age

75. We acknowledge that in practice, the decision of whether to conduct biopsy or not is

often more nuanced, and requires a shared decision-making approach between the patient

and physician. But our model-based biopsy policy can be used as a data-driven decision

support tool to guide these decisions.
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3.6.5 Comparison of Model-based Biopsy Policies vs. Current guide-
lines

Now, we compare the policies from solving the AS-POMDP model with published

guidelines. The published guidelines include annual biopsy (JH guideline), biopsy ev-

ery two years after diagnosis (UCSF guideline), biopsy every three years after diagnosis

(PRIAS guideline, which is also implemented in the U of T study). We evaluate each pol-

icy for a simulated cohort of patients diagnosed with LR cancer who initiated AS at age 50.

We first sample the initial cancer state at the starting time according to the misclassification

error at diagnosis given in Table 3.2. Then, the patients will follow the process described

in Figure 3.1, where at each decision epoch, the test action is given by the selected biopsy

policy, the test results are sampled according to the observation probabilities, and the state

transition is sampled according to the state transition probability. If a Gleason score up-

grading is observed, the patient will leave AS immediately; otherwise, he continues to the

next decision epoch, until age 75 when AS stops.

The number of hypothetical patients for the simulation is 10,000 for each study center

and each biopsy policy. With the simulated true cancer states and biopsy results for all

patients at all decision epochs, the expected number of biopsies performed while on AS

is calculated as the average number of biopsies performed from initiating AS (age 50) to

leaving AS (age 75 or a Gleason score upgrading), while the expected delay in time to

detection of non-favorable risk cancer is calculated as the average difference between the

time of the first sampled HR cancer state and the time of a Gleason score upgrading is

observed for all patients.

Figure 3.4 illustrates the simulation results for different biopsy policies in four study

centers. As we can see from Figure 3.4, in each center, for the optimal biopsy policies

given by the AS-POMDP model, as the value of |θ | gets larger, the biopsy policy will
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Figure 3.4: The comparison between policies given by the AS-POMDP model and current biopsy
guidelines in different AS studies.

Figure 3.5: The comparison between policies given by two AS-POMDP (PSA and MRI) models
and current biopsy guidelines in the JH center.
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result in a greater number of expected biopsies and fewer years to the detection of can-

cer progression. Also, the optimal biopsy policies given by the AS-POMDP model are

Pareto optimal compared with the static biopsy guidelines, i.e., they reduce the number of

biopsies performed without increasing years in late detection to cancer progression.

3.6.6 Using MRI for AS

Since the PSA test has high false positive and negative rates, as previously noted, we

do not observe a huge improvement in the policy given by the AS-POMDP model over

current biopsy guidelines for each patient in Figure 3.4. Nevertheless, it is possible that

more accurate bio-markers could lead to more significant improvement of the AS-POMDP

model-based policies over current biopsy guidelines. One such approach to improving pre-

dictive performance that is receiving significant attention is MRI. Barnett et al. (2018b)

showed the cost-effectiveness of MRI for early detection of prostate cancer. Motivated

by their study, we conducted experiments using MRI as an alternative to the PSA test in

the AS-POMDP model to show the potential benefit of the model-based policy. For MRI

model parameters, we used the result from Grey et al. (2015), which estimated the sensi-

tivity and specificity of MRI (using the prostate imaging reporting and data system score

threshold of ≥ 4) to be 78.9% and 78.9%. Figure 3.5 shows the comparison among the

policy given by the AS-POMDP model with either PSA test or MRI, and current biopsy

guidelines for patients in the JH center. As we can see in Figure 3.5, as MRI is much

more accurate than the PSA test, the benefit of the policies given by the AS-POMDP(MRI)

model is more significant than it given by the AS-POMDP(PSA) model. Unfortunately, the

study of Grey et al. (2015) was conducted on a different group of patients in the U.K., with

a limited size of study population (n = 201), so that the result in Figure 3.5 is from a hy-

pothetical experiment. We are looking forward to implement the MRI in the AS-POMDP
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when more MRI data and studies become available.

3.6.7 Evaluating Implied Weights for Late Detection of Cancer Pro-
gression and Biopsy Burden

To understand how alternative policies trade-off between late detection to cancer pro-

gression and biopsy burden, we apply a simple inverse optimization (Ng et al., 2000) to

estimate the reward function implied by each published biopsy guideline. Specifically,

for a given biopsy guideline, denote π = (π1, ...,πT ) as the biopsy policy specified by the

guideline. Since π is a static policy, then πt is a constant action w.r.t. the belief state (ei-

ther to defer biopsy or conduct biopsy) for all t = 1, ...,T . Now, denote π̄t = (π̄t
1, ..., π̄

t
T )

as another static biopsy policy where

πt 6= π̄
t
t , and πk = π̄

t
k, ∀k 6= t.

Further, define Rt as the set of reward functions such that π̄t is dominated by π:

Rt := {r : V π
1 (b1)≥V π̄t

1 (b1)}, ∀t = 1, ...,T,

where b1 is the initial belief state. Notice that the reward function r is a function of θ , and

the range of θ where the biopsy guideline π is the optimal static biopsy policy is given by

θ ∈ R1∩ ...∩RT .

Table 3.5 shows the estimated range of θ implied by each guideline if applied to each

center. As we can see from Table 3.5, all four study centers imply that avoiding delays

in detecting high-risk prostate cancer is more important than avoiding biopsies; however,

the relative weights vary significantly among the guidelines, which depend on the cancer

progression rate and biopsy sensitivity in different study centers. Nevertheless, as some

patients are highly averse to biopsies (Klotz, 2013), our study provides a solution to de-
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Center
Range of θ implied by the biopsy guideline

JH guideline UCSF guideline PRIAS guideline
JH [−1,−0.93] [−0.84,−0.83] [−0.72,−0.71]
UCSF [−1,−0.89] [−0.75,−0.74] [−0.68,−0.67]
U of T [−1,−0.91] [−0.83,−0.82] [−0.78,−0.77]
PRIAS [−1,−0.92] [−0.83,−0.82] [−0.71,−0.70]

Table 3.5: Estimates of the range of θ implied by each published biopsy guideline in different AS
study centers.

ciding the frequency of biopsy and a reference for the trade-off against the late detection

to a cancer progression.

3.7 Conclusions

In this chapter, we proposed a finite-horizon two-state POMDP (AS-POMDP) model

to optimize the biopsy policy in prostate cancer AS, where the objective is to minimize

the number of biopsies and the delay in detection of high-risk cancer. Our study con-

sidered two kinds of parameter ambiguity: 1) heterogeneous transition and observation

probabilities in different patient cohorts, and 2) variation in decision-maker’s preferences

as represented by reward functions. To evaluate alternative policies resulting from differ-

ent parameters, it was necessary to solve many instances of the AS-POMDP model. To

enable this, we introduced two fast approximation methods that are able to find the lower

and upper bounds of the optimal value function of the AS-POMDP model. We compared

the gap between the lower and upper bounds to show that our results were accurate enough

for decision-making. Further, We discussed some structural properties of the AS-POMDP

model that provide insight into the AS-POMDP model-based policies. We also discussed

an explanation for why the dynamic biopsy policies given by the AS-POMDP model are

similar to static policies recommended in the current biopsy guidelines, and we used in-

verse optimization to approximate how each guideline weighs biopsy burden versus late
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detection of cancer progression.

In the computational result, we first presented the value functions and biopsy policies

given by the AS-POMDP model in four different prostate cancer AS studies, if weighted

equally on the burden of one biopsy and the penalty of one-year late detection to cancer

progression. We observed that the optimal value function is not always monotone in the

belief state. This is because the objective of the AS-POMDP model is to investigate rather

than improve patients’ cancer state, and patients may leave the system without any future

cost if detected as high-risk cancer. Such models can be more straightforward for studies

of medical testing, and more accurate, especially when other metrics such as QALYs are

hard to estimate and too obscure for decision-making. Although the optimal value function

is not monotone, we observe that the biopsy policies given by the optimal value function

were monotone in the belief in high-risk cancer state, i.e., it would trigger a biopsy as long

as the belief in the high-risk cancer state reached a threshold. The threshold of the optimal

biopsy policy is dependent on the model parameters, which include cancer progression

rate and biopsy sensitivity. In general, models with a higher cancer progression rate or

lower biopsy sensitivity will give a lower belief threshold for conducting biopsy.

We then changed the reward weights in the reward function to see how does the model-

based biopsy policy depends on the decision-maker’s preference on biopsy burden and late

detection time in each study center. We found that the more heavily the decision-maker

weighs the late detection of cancer progression (the larger θ ), the lower the belief threshold

for triggering a biopsy in the optimal biopsy policy.

Finally, we compared the performance of the optimal biopsy policies given by the

AS-POMDP model and current biopsy guidelines in four AS study centers by a simula-

tion study. The model-based biopsy policies were all Pareto optimal. The policies based

on published guidelines were close to the efficient frontier. We also ran a hypothetical
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experiment using MRI in the AS-POMDP model, which showed the potential value of

the AS-POMDP model with more accurate bio-markers than PSA. Lastly, we used an in-

verse optimization approach to estimate the reward weights implied by the current biopsy

guidelines.

Besides the novelty of the application, our work also contributes to the POMDP lit-

erature. First, we introduced two fast approximation methods to quickly find the lower

and upper bounds of the optimal value function of a finite-horizon POMDP model at each

decision epoch. In particular, we showed that the best upper bound of the optimal value

function at any belief point could be solved easily in a two-state model, without solving

a large linear program as discussed in previous studies. We also provided the worst-case

error bounds of the proposed approximation methods. Second, we showed that in extreme

cases, the optimal biopsy policy given by the AS-POMDP model is a control-limit type

policy, even if the optimal value function is not monotone in the belief state, which differs

from all previous studies of the control-limit type policy. We discussed some intermediate

results for the sufficient and necessary condition for the existence of a control-limit type

policy in the POMDP model. We leave the statement for general cases as a conjecture in

future research. Third, we showed that in the proposed AS-POMDP model, if the PSA

test is not involved, then the optimal dynamic policy given by the model is equivalent to

a static policy, in which the timing of conducting biopsy can be pre-determined. Further,

we applied inverse optimization to approximate the value function implied by the current

biopsy guidelines, which helped us understand how does each biopsy guideline weigh on

late detection of cancer progression and biopsy burden.

There are also some limitations of our work, which could lead to opportunities for

future research. First, we used a two-state POMDP model to approximate the stochastic

system of prostate cancer AS, and only considered the information from PSA test and
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biopsy. There might be other covariates in prostate cancer AS such as prostate volume,

PSA doubling time, and the results of MRI scans that could be used to understand the

underlying cancer state, but were not considered in this study. We look forward to im-

proving our model by including these factors when more data becomes available. Second,

the model parameters of the transition and observation probabilities are assumed to be

stationary, i.e., independent of time, which may not be accurate in reality. However, in-

corporating time-dependent factors would require the estimates of the model parameters

in pre-studies, and more computational effort to solve the model. Third, our results of the

fast approximation method for finding the upper bound of the optimal value function, and

the sufficient and necessary condition for the existence of a control-limit type policy only

work in a two-state POMDP model. The generalization of these results to general POMDP

models may not be trivial and is left for future studies. Although the focus of this chapter

is on prostate cancer AS, our model formulation is flexible and could be applied to other

medical decision-making problems in chronic disease management.

3.8 Appendix: Proofs

Proof of Theorem 3.4

First,

||Vt−V̂t ||∞ = ||HVt+1−LBV̂t+1||∞

= ||HVt+1−HV̂t+1 +HV̂t+1−LBV̂t+1||∞

≤ ||HVt+1−HV̂t+1||∞ + ||HV̂t+1−LBV̂t+1||∞

For the first term, ||HVt+1−HV̂t+1||∞ ≤ ||Vt+1− V̂t+1||∞. For the second term, let b ∈B

be the belief point where the point-based value approximation has the biggest error, and

b̃ ∈ B be the closest sampled belief point to b. Also, let α be the vector that would be the
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maximal at b, and α̃ be the vector that is maximal at b̃, then α̃ · b̃≥ α · b̃, and

||HV B
t+1−LBV B

t+1||∞ ≤ α ·b− α̃ ·b

= α ·b− α̃ ·b+(α · b̃−α · b̃)

≤ α ·b− α̃ ·b+(α̃ · b̃−α · b̃)

= (α− α̃) · (b− b̃)

≤ ||α− α̃||∞||b− b̃||1

where the last step is by the Holder’s inequality. Now, since each α-vector represents the

cumulative reward from the current time until the end of time horizon followed by a policy

specifying the choices of future actions for all possible observation sequences, then

||α− α̃||∞ ≤ (T − t)(rmax− rmin),

and

||HV B
t+1−LBV B

t+1||∞ ≤ (T − t)(rmax− rmin)δ .

Repeat the steps above, we have

||Vt−V̂t ||∞ ≤ ||Vt+1−V̂t+1||∞ +(T − t)(rmax− rmin)δ

≤ |Vt+2−V̂t+21||∞ +[(T − t)+(T − (t +1))](rmax− rmin)δ

≤ ...

≤ (T − t)(T − t +1)
2

||rmax− rmin||∞δ .

Proof of Theorem 3.7

The proof is similar to the proof of Theorem 1. First,

||Vt−V̄t ||∞ = ||HVt+1−UBV̄t+1||∞

= ||HVt+1−HV̄t+1 +HV̄t+1−UBV̄t+1||∞

≤ ||HVt+1−HV̄t+1||∞ + ||HV̄t+1−UBV̄t+1||∞
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For the first term, ||HVt+1−HV̄t+1||∞ ≤ ||Vt+1− V̄t+1||∞. For the second term, let b ∈B

be the belief point where the point-based value approximation has the biggest error, and

b̃ ∈ B be the closest sampled belief point to b. Also, let α be the vector that would be the

maximal at b, and α̃ be the vector that is maximal at b̃, then α̃ · b̃≥ α · b̃, and

||HV B
t+1−UBV B

t+1||∞ ≤ α ·b− α̃ ·b

The rest of the proof is exactly the same as the one for Theorem 1.

Proof of Proposition 3.12

First, it is easy to see that at each decision epoch, the α-vectors of the policy that

always chooses "defer biopsy" is a non-dominated α-vector, which achieves a maximum

value at b= 0 that can be denoted as xt,0. Next, we prove by induction that at each decision

epoch, all non-dominated α-vectors corresponding to action "defer biopsy" at current time

must have their value at b = 0 being greater than xt,0+η . If this statement is true, then the

non-dominated α-vectors corresponding to action "defer biopsy" and the non-dominated

α-vectors corresponding to action "conduct biopsy" are separable at b = 0. By Lemma

3.10, we have the optimal policy for the two-state AS-POMDP model is a control-limit

type policy.

Now, at time T , the α-vectors corresponding to action "defer biopsy" is (0,θ), and the

α-vectors corresponding to action "conduct biopsy" is (η ,η + γθ).

Assume that at time t +1, all non-dominated α-vectors corresponding to action "defer

biopsy" have their value at b = 0 being greater that xt+1,0 +η , where xt+1,0 is the value

at b = 0 corresponding to the policy "no biopsy at all". At time t, denote the α-vectors

corresponding to policy "no biopsy at all" as (xt,0,yt,0 + θ). Suppose there exists a non-

dominated α-vectors corresponding to action "defer biopsy", denoted as (xt,1,yt,1 + θ),

such that xt,1 < xt,0 +η . We are going to prove that (xt,1,yt,1 + θ) is dominated by oth-

75



ers. Consider the α-vectors corresponding to policy "biopsy at time t and no biopsy af-

terwards", which is (xt,0 +η ,γyt,0 +η + γθ). If (xt,1,yt,1 + θ) is not dominated by the

maximum of (xt,0,yt,0 +θ) and (xt,0 +η ,γyt,0 +η + γθ), then it must be true that the in-

tersect of (xt,0,yt,0 + θ) and (xt,0 +η ,γyt,0 +η + γθ), denoted as b1 is smaller than the

intersection of (xt,0 +η ,γyt,0 +η + γθ) and (xt,1,yt,1 + θ), denoted as b2. It is easy to

calculate that

b1 =
η

(1− γ)(yt,0 +θ)
, b2 =

η + xt,0− xt,1

xt,0− xt,1 +(yt,1 +θ)− (γθ + γyt,0)
.

By backward induction,

xt,0 = (1− p)xt+1,0 + pyt+1,0, xt,1 = (1− p)xt+1,1 + pyt+1,1

if xt,1 < xt,0 +η , since yt+1,0 < yt+1,1, then xt+1,1 < xt+1,0 +η . By assumption, the action

at time t + 1 corresponding to (xt+1,1,yt+1,1) is "conduct biopsy". So, for the α-vector

(xt,1,yt,1 +θ), its action at time t and time t +1 are "defer biopsy" and "conduct biopsy".

Now, we consider an α-vector at time t, denoted as (xt,2,yt,2) whose action at time t and

time t+1 are "conduct biopsy" and "defer biopsy", and actions after time t+1 are all same

as the ones of (xt,1,yt,1 +θ). We can calculate that

xt,2 = xt,1 + p(1− γ)(θ + yt+1,2), yt,2 = yt,1 +(γ−1)θ .

Now, we are going to show that (xt,1,yt,1 +θ) is dominated by the maximum of (xt,2,yt,2)

and (xt,0 + η ,γyt,0 + η + γθ). Denote the intersection between (xt,2,yt,2) and (xt,0 +

η ,γyt,0 +η + γθ) as b3, then

b3 =
xt,0 +η− xt,2

xt,0− xt,2 + yt,2− γyt,0− γθ
.

Given b1 ≤ b2, it is easy to verify that b3 ≤ b2, which indicated that (xt,1,yt,1 + θ) is

dominated by the maximum of (xt,2,yt,2) and (xt,0 +η ,γyt,0 +η + γθ). In other words,
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if there exists an α-vector whose optimal action at time t and t + 1 are "defer biopsy"

and "conduct biopsy", then the α-vector should be dominated by another α-vector whose

optimal action at time t and t + 1 are "conduct biopsy" and "defer biopsy". This gives a

conflict with the assumption that (xt,1,yt,1 +θ) is non-dominated. As a result, we proved

at time t, there is no non-dominated α-vector corresponding to action "defer biopsy" such

that its value at b = 0 is smaller than xt,0 +η .

To sum up, we have proved that at each decision epoch, the non-dominated α-vectors

corresponding to action "defer biopsy" and the non-dominated α-vectors corresponding

to action "conduct biopsy" are separable at b = 0. By Lemma 3.10, we have the optimal

policy for the two-state AS-POMDP model is a control-limit type policy.

Proof of Theorem 3.13

We use a straightforward induction argument to show that at each decision epoch, the

belief the patient is in the high-risk cancer state can always be pre-calculated whether

the biopsy is conducted or deferred at each decision epoch. In the beginning, the patient

enters AS with a fixed initial belief of high-risk cancer state b0. Now, suppose at time

t, the patient stays in AS with a fixed belief of high-risk cancer state bt , then the patient

chooses to either choose to do biopsy according to the threshold-based biopsy policy or do

nothing. If he chooses to do the biopsy, then he will stay in the AS until the next decision

epoch only if the biopsy result is not Gleason score upgrading. So his belief in the high-

risk cancer state at time t + 1 can be calculated by the belief updating formula, which is

a fixed value. Otherwise, if he does not perform the biopsy, then his belief of being in

the high-risk cancer state at time t +1 can be calculated by the state progression formula,

which is also fixed. Thus, at each decision epoch t, if the patient does biopsy according to

the threshold-based biopsy policy, then his belief in high-risk cancer state is always fixed
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so that the timing of biopsy is pre-determined.
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CHAPTER 4

Multi-model Partially Observable Markov
Decision Processes

4.1 Introduction

First introduced by Åström (1965); Drake (1962); Smallwood and Sondik (1973),

POMDP models have been found successful in many problems including machine main-

tenance, robot navigation, healthcare, and others (see Cassandra (1998) for a survey). In

Chapter 3, we used the POMDP model to optimize the medical decision-making in differ-

ent prostate cancer AS studies, given the estimated model parameters in Chapter 2.

This chapter addresses the issue of parameter ambiguity in POMDP models defined as

follows. In a POMDP model, the decision-maker can take actions to influence the transi-

tion dynamic, output, and reward from the system, such that the expectation of all future

rewards are maximized. The transition, observation, and reward dynamics of a POMDP

model are described by its model parameters. In practice, these model parameters are of-

ten estimated by pre-studies that fit machine learning models on historical observational

data. As in Chapter 3, the input of the AS-POMDP model parameters were estimated by

the HMM using the observational data in Chapter 2. A potential issue of this approach is

that different studies can give different estimates of the model parameters. The difference

in parameter estimates can arise from differences in the underlying study samples, study
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designs, model formulations, or other factors. In the prostate cancer AS example, the dif-

ference in patients’ cancer progression rate and biopsy accuracy may come from patients’

heterogeneity and different clinical practices in different study centers. As a result, when

applying the POMDP model for the optimization problem, there are multiple sets of model

parameters that are all well-established. But the optimal value function and policy given

by the POMDP model differ substantially for different model parameters. In this study,

we call it the issue of parameter ambiguity in POMDP models.

In this chapter, we propose a new MPOMDP model to tackle the issue of parame-

ter ambiguity. An MPOMDP model is a stochastic optimization and dynamic program-

ming model that simultaneously considers multiple POMDP models, which have the same

model structure but different model parameters. The goal is to find a single optimal policy

that optimizes a "weighted" average of the value functions of all POMDP models. The

model weight is given by the model belief vector, which can be interpreted as the im-

portance and/or the probability of being the best model for each POMDP model, and is

updated every time according to the information from system outputs. Traditionally, when

it comes to the issue of parameter ambiguity, a decision-maker may randomly pick a sin-

gle model, or take the average of multiple sets of model parameters. In this study, we will

show that the proposed MPOMDP model outperforms the traditional methods by achiev-

ing a non-negligible Value of Stochastic solution (VSS), which is defined in Birge (1982).

Our study also sheds light on the Expected Value of Perfect Information (EVPI) (Schlaifer

and Raiffa, 1961), which may be relevant in situations where there are opportunities to

collect additional information to resolve model uncertainty.

We describe several important properties of the proposed MPOMDP model, which not

only show the benefits achieved by the MPOMDP model, but also motivate the solution

method and fast approximation methods we propose to solve the MPOMDP model. First,
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we show that an MPOMDP model can be reformulated as a special case POMDP model,

with an enlarged state space. We discuss the existence and structure of the optimal policy

of an MPOMDP model. Then, we show that the VSS and the EVPI are always non-

negative under the MPOMDP model setting. After that, we describe an exact solution

method and two fast approximation methods to the MPOMDP model. We also provide

an example to illustrate the benefits of the proposed MPOMDP model, and how it can be

applied to general problems.

As mentioned above, this work is motivated by the pre-study in prostate cancer AS

in chapter 3. The objective is to find the optimal timing for biopsies in prostate cancer

AS, such that the burden of biopsy and the delay in detecting cancer progression are mini-

mized. We first estimated the cancer progression rates, biopsy under-sampling errors, and

PSA distributions using an HMM in four major prostate cancer AS studies in the world,

which include the JH hospital, the UCSF medical center, the U of T medical center, and

the PRIAS project in Chapter 2. We also estimated the confidence intervals of all model

parameters showing that the parameters were statistically significantly different in differ-

ent studies. Based on that, we then used a finite-horizon POMDP model to find the optimal

biopsy policy in each of the four major studies. The results in Chapter 3 show that the op-

timal policies solved by the POMDP model differ across AS studies and different settings

of the reward functions. This result can be directly applied to the cases where the set of

model parameters for the patients is known with certainty (e.g., finding the optimal biopsy

policy for patients in the JH hospital). However, for a new patient without the knowledge

of the best model describing his cancer dynamics, or for a newly initiated prostate cancer

AS study seeking a biopsy protocol, it can be very risky to ignore the issue of parameter

ambiguity and arbitrarily pick a single model for decision-making. We will show in the

computational experiment in Section 6 that our proposed MPOMDP model can find a sin-
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gle policy with the same complexity as the one given by a POMDP model, but achieves

better overall performance in terms of minimizing the expected number of biopsies to

conduct and the delay in detecting cancer progression over a patient’s lifetime.

The rest of this chapter is organized as follows. In Section 2, we review the most re-

lated work in stochastic sequential decision-making under uncertainty and with parameter

ambiguity, and summarize the main contribution of this work. In Section 3, we formally

define the MPOMDP model and the optimal value optimization problem in an MPOMDP

model. Then, in Section 4, we show some important structural properties of the MPOMDP

and the weighted-value problem. In Section 5, we describe an exact solution method to the

optimal value problem of an MPOMDP model. We also proposed two fast approximation

methods for practical uses. We present the results of a toy example and a case study in

prostate cancer AS in Section 6. Finally, we conclude this chapter and discuss potential

future research in Section 7.

4.2 Literature Review

In this section, we first review the most closely related work in sequential decision-

making under uncertainty and parameter ambiguity. Then, we describe the main contribu-

tions of this chapter with respect to the related literature.

As mentioned in Chapter 3, the partially observable Markov decision process was first

introduced by Åström (1965); Drake (1962) and Smallwood and Sondik (1973). The

POMDP model is a dynamic programming model for sequential decision-making, where

the underlying system can be described by an HMM (Rabiner and Juang, 1986). On the

one hand, the POMDP model subsumes the HMM in that it adds decision-making about

what action to take at each time period, which will influence the transition, output, and

reward dynamics of the system. The objective of a POMDP model is to find the policy
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for actions to take at all time periods, such that the optimal cumulative reward is achieved.

On the other hand, the POMDP model is a generalization of the Markov Decision Pro-

cess (MDP) model (Puterman, 2014), where the underlying state is not observable and can

only be inferred by the output of the system. POMDP models have found success in many

problems including machine maintenance (Ross, 1971), robot navigation (Cassandra et al.,

1996), healthcare (Ayer et al., 2012; Zhang et al., 2012a; Erenay et al., 2014), and many

others (see Cassandra (1998) for a survey).

When applying the POMDP model to real-world problems, it often requires inputs

of model parameters that include the initial distribution function, transition probabilities,

observation probabilities, and reward function. However, the model parameters are usu-

ally borrowed from different studies that use statistical or machine learning methods to

estimate the system dynamics. The estimation error and heterogeneity between different

studies will further induce the parameter ambiguity in POMDP models. Li et al. (2021)

used POMDP models to optimize AS strategies in prostate cancer, and showed that the

optimal policies could vary considerably in different medical studies because of the dif-

ference in system dynamics revealed by model parameters. Saghafian (2018) proposed

an ambiguous POMDP (APOMDP) model to address the issue of parameter ambiguity in

the POMDP model. Boloori et al. (2020) then applied the APOMDP model in a study

of post-transplant medication management, which improved the existing policies by con-

sidering variability among physicians’ attitudes toward ambiguous outcomes and patients’

progression dynamics. In contrast to the work in this chapter, in their proposed APOMDP

model, the objective function is in a robust optimization setting, which weights the best-

case and worst-case value functions across different sets of model parameters. More-

over, they assumed that the best and worst models were selected independently over time,

which might violate the Markov property and induce inconsistency in model dynamics
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across decision epochs. Nakao et al. (2021) described a distributionally robust Partially

Observable Markov Decision Process (DR-POMDP), which estimates the distribution of

the transition-observation probabilities using side information at the end of each period, to

maximize the worst-case reward for any joint-distribution of the ambiguous model param-

eters. Different from their work, the study in the chapter seeks a single optimal policy that

works well "on average", rather than optimizes the worst-case performance, when there

are multiple credible POMDP models.

Despite the short history of the study of parameter ambiguity in POMDP models, there

is a stream of research on parameter ambiguity in dynamic programming and MDP mod-

els over the last two decades. Nilim and El Ghaoui (2005) and Iyengar (2005) considered

a robust formulation of an MDP to optimize the worst-case performance (referred to the

"max-min" problem) of the model, while assuming a "rectangularity" property in ambi-

guity sets, i.e., the ambiguity in transition probabilities is independent with action, state,

or time. They discussed the policy evaluation and other improved solution methods to

the proposed robust MDP. Followed by their study, much of the research has focused on

ways to construct ambiguity sets, to mitigate the rectangularity assumption on the ambi-

guity set, and to generalize the "max-min" objective function (Delage and Mannor, 2010;

Xu and Mannor, 2012; Wiesemann et al., 2013; Delage and Iancu, 2015; Mannor et al.,

2016). In contrast to these studies, our work in this paper addresses the issue of parameter

ambiguity in a different manner. The MPOMDP model we proposed considers a weighted

sum of value functions under different sets of model parameters, where the objective is

to find a single policy that performs well overall possible models. Also, compared with

the robust optimization formulation, our MPOMDP finds a less conservative policy that

achieves the maximum of a weighted (by model belief) value function instead of the max-

imum worst-case value function. The most closed research to ours that we are aware of
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is that of Steimle et al. (2021), which considered a multi-model Markov decision process

(MMDP). They showed that any MMDP could be recast as a special case of a POMDP, as

opposed to our MPOMDP formulation that is a generalization of POMDP with parameter

ambiguity. In contrast to the previous work on parameter ambiguity in MDPs, the study in

this chapter considers discrete ambiguity sets for the model parameters in POMDPs, and

the objective is set to be optimizing the weighted value function.

To close this section, we describe the main contributions of this chapter to the liter-

ature. First, we address the issue of parameter ambiguity under the POMDP framework

using the MPOMDP. Different from the work by Saghafian (2018), Nakao et al. (2021),

and other literature in robust MDP, our model formulation considers the objective func-

tion to be a weighted sum of value functions given by the belief vector under different sets

of model parameters. Such formulation allows inter-dependent mode transition, observa-

tion, and reward dynamics over time. Moreover, it provides less conservative policies than

the robust optimization formulation, whose objective is to optimize the worst-case perfor-

mance. Second, we study the structural properties of the proposed MPOMDP, which not

only motive the solution methods, but also help analyze the effect of parameter ambiguity

in POMDPs. Third, we describe the exact solution method and two different approxima-

tion methods to our model, which are shown to converge asymptotically and can provide

near-optimal solutions in real-time. Finally, we present a case study for prostate cancer AS

optimization, which illustrates how the MPOMDP can be applied in a real-world problem,

and the benefit of the MPOMDP in stochastic sequential decision-making under parameter

ambiguity.

85



4.3 MPOMDP Formulation

We start with the review of the formal definition of the POMDP, and then introduce the

formulation of the MPOMDP, which generalizes the POMDP when there exists parameter

ambiguity.

Definition 4.1. A POMDP model M is defined as a tuple (S,b0,A,P,O,F,r), where S is

the set of all states, b0 is the initial distribution function over the set of states S, A is the set

of all actions, P : S×A×S→ [0,1] is the state transition probability distribution, O is the

set of all observations, F : S×A×O→ [0,1] is the observation probability distribution,

and r : S×A×O→ R is the reward function.

Notice that in Definition 4.1, the state transition probability distribution and observa-

tion probability distribution, and the reward function are stationary, i.e., independent of

time. A more general definition for the non-stationary model can be easily adapted using

time-dependent model parameters. However, stationary models are usually more preferred

than non-stationary models in practice because they are easier to understand and estimate

model parameters.

POMDP models are widely used to solve stochastic sequential decision-making prob-

lems with partially observable states. We start by describing the finite-horizon problem.

For a finite-horizon POMDP model, we can use t = 0,1, ...,T to denote its discrete time

periods (also referred to as decision epochs), and bt to denote the probability distribution

over S (also referred to as belief vector) at time t ≤ T . Then, given a policy π =(π0, ...,πT ),

where each πt is a mapping from the space of belief vector to A specifying the the action

to choose for all possible belief states at time t, the value function of the policy π starting

from belief state b at time t is defined as

V π
t (bt) := Eπ [

T

∑
k=t

γ
t−kr(sk,ak,ok)|bt ], ∀bt ,∀t ≤ T,
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where γ ∈ [0,1] is a discount factor that diminished the future rewards, sk, ak, and ok are the

state, action, and observation at time k ≤ T , and the expectation is taken over all possible

state, action, and observation trajectories following the policy π . Solving a POMDP model

is equivalent to finding the optimal policy π∗, which achieves the maximum of the value

function at any time t:

π
∗ := argmax

π
V π∗

t (bt), ∀bt ,∀t.

As shown in Smallwood and Sondik (1973), there always exists an optimal policy π∗,

which is Markovian with respect to the belief vector. Starting from here, we may drop the

subscript t of bt in V π
t (bt) when there is no confusion that V π

t is the value function at time

t ≤ T . We may also substitute V π∗
t by V ∗t as a simplification for all t ≤ T .

For the infinite-horizon POMDP, the policy π and value function V π are defined to be

stationary, i.e., independent with respect to time:

V π(b) := Eπ [
∞

∑
t=0

γ
tr(st ,at ,ot)|b], ∀b,

where the discount factor γ ∈ [0,1) should be strictly less than 1. As discussed in Sondik

(1978), for a infinite-horizon POMDP model, the sub-optimal value function and policy

with an arbitrarily small error can be found via a value iteration algorithm.

In this chapter, we mainly focus on the finite-horizon problem for several reasons.

First, finite-horizon models are more preferred than infinite-horizon models in healthcare

applications and other applications where the survival time (length of decision epochs)

can not be infinite. Second, although a finite-horizon POMDP model can be easily refor-

mulated as an infinite-horizon POMDP model by appending the time index to the state

definition, it does not automatically solve the problem as the computational complexity

would increase along with the size of the state space. Further, focusing on the methodol-

ogy for finite-horizon models can narrow down the recursion step for each state transition,
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which further helps study the effect of parameter ambiguity.

As we can see from Definition 4.1, a POMDP model is defined upon a set of model

parameters, which include the initial distribution, state transition probabilities, observation

probabilities, and rewards. In practice, such parameters are often estimated from previous

studies. As a result, it is common to see that different studies provide conflicting model

parameters, which further give different optimal policies. For example, in Chapter 2, we

used HMMs to estimate the cancer progression and biopsy under-sampling rates in four

different prostate cancer AS studies, where the estimates in different studies were statis-

tically significantly different because of the patient heterogeneity in different locations.

Later on, in Chapter 3 we used a POMDP model to optimize the biopsy policy in prostate

cancer AS, and showed that the optimal policies in different studies could disagree with

each other under certain circumstances. The issue can arise when there is a new patient,

and the physician can not decide which model to rely on for decision support.

The issue of parameter ambiguity motives the formulation of the MPOMDP in this

work. Specifically, suppose there are M (M < ∞) different POMDP models, where all

models share the same model structure of state space, action space, and observation space,

but have different model parameters of initial distribution functions, transition probability

and observation probability matrices, and reward functions. We assume that each model

can possibly be the "right" model describing the underlying stochastic system to study.

However, we are unable to pick a single model because of the lack of information on

the best model. The way the MPOMDP model tackles this issue is to consider all dif-

ferent POMDP models simultaneously by assigning a weight to the objective function of

each POMDP model according to the belief vector introduced later, and to optimize the

weighted sum of the objective functions of all POMDP models. We will then argue that the

MPOMDP model can find a single policy that works well "on average", which provides a
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solution for conflicting model parameters. A formal definition of the MPOMDP model is

given as follows.

Definition 4.2. An MPOMDP model M is defined as a tuple (M1, ...,MM,λ ), where M

is the number of POMDPs, each Mm = (S,bm
0 ,A,P

m,O,Fm,rm) is a POMDP model as

defined in definition 4.1 for m = 1, ...,M, and λ = (λ1, ...,λM) is a vector of the initial

model weights for all M POMDP models such that

λm ∈ (0,1), ∀m = 1, ...,M, and
M

∑
m

λm = 1.

To understand the initial weight parameter vector λ in Definition 4.2, one can view

each λm as the probability that the model Mm is the true model describing the underlying

stochastic system to study at the starting time, for m = 1, ...,M. The initial λ vector is

usually given by some prior knowledge about the relative importance and/or preference of

each model, or set as a non-informative prior distribution. Then, every time when a system

output is observed, the model and state probability distributions will be updated based on

the information from the system output.

Before introducing the formal definitions of the optimal value problem, we first define

the belief vector of an MPOMDP model.

Definition 4.3. (Belief Vector) For an MPOMDP model M , the belief vector bt of M at

time t is defined as

bt := (b1
t , ...,b

M
t ),

where each element is itself a vector

bt
m = (bt

m(s1), ...,bt
m(s|S|)),

and each bm
t (sk) is the probability that the underlying model of the stochastic system is

model Mm and the system is in state sk at time t, for m = 1, ...,M, t = 1, ...,T , and all state
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sk ∈ S. Specially, at t = 0, the initial belief vector of M is defined as

b0 := (b1
0, ...,b

M
0 )◦λ ,

where b1
0, ...,b

M
0 are the initial belief vectors for models M1, ...,MM respectively, λ is the

initial belief weight, and ◦ is the Hadamard product.

To define the optimal value problem in an MPOMDP model M , we first describe

the process flow of the process. Initially, the underlying system is described by one of

the given POMDP models, and is in one of the states in the state space. However, the

decision-maker knows neither which of the given POMDP models is the best model nor

the state of the system. Instead, the decision-maker obtains an initial weight parameter

λ in advance based on prior knowledge and the estimate of the initial belief vector (i.e.,

the probability distribution over states) in each model. Then, at the beginning of each

time period, with the estimate of the belief vector of the MPOMDP model, the decision-

maker can take action to influence the dynamics of the underlying system. The system

then generates an output according to the chosen action, the state of the system, and the

observation probability function of the true underlying POMDP model. For the purpose

of decision making, without the knowledge of the true model parameter, the decision-

maker can approximate the observation probabilities by a adjusted observation probability

function using the model belief, which will be discussed in detail in the next section.

After observing the output, each POMDP model will calculate its own immediate reward

according to the estimate of state distribution, the taken action, the output from the system,

and its reward function. Lastly, the MPOMDP will update the belief vector, i.e. model and

state distributions, at the beginning of the next time period according to the action taken

and the transition probability functions. The objective of the optimal value problem is to

optimize the expectation of the sum of the immediate rewards in all POMDP models until
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Figure 4.1: Illustration of the process flow of the optimal value problem in an MPOMDP.

the end of the time horizon. Figure 4.1 illustrates the process flow of the optimal value

problem in an MPOMDP.

We now define the optimal value problem of an MPOMDP model M as follows.

Definition 4.4. For an MPOMDP model M , the optimal value problem entails finding

the optimal policy π∗ = (π∗0 , ...,π
∗
T ) that achieves the maximum value function defined as

follows:

V π∗
t (bt) := max

π

M

∑
m=1

V m,π
t (bm

t ), ∀b, ∀t,

where bt = (b1
t , ...,b

M
t ), bm

t is the belief vector in Mm, and V m,π
t (bm

t ) is the value function

of policy π in Mm defined as

V m,π
t (bm

t ) := Em,π [
T

∑
k=t

γ
t−krm(sk,ak,ok)|bm

t ], ∀bm
t ,∀t ≤ T,

with the expectation taken over all possible state, action, and observation trajectories fol-

lowing policy π in model Mm for m = 1, ...,M.

The definition of the optimal value problem is motivated by the case where there are

a number of models that can possibly describe the underlying system and need to be con-

sidered simultaneously. Solving the optimal value problem yields a policy that achieves

the maximum of the objective function defined as the weighted sum of the value functions

of all possible models. From Definition 4.4, the optimal value problem of an MPOMDP
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model M is defined upon the initial weight parameter vector λ , which is pre-specified in

the definition of M . Like the underlying state in an HMM, the underlying best model

is not directly observable to the decision-maker. Instead, the decision-maker can only

maintain an estimation of the probability of each POMDP model being the true model

describing the stochastic system. First, at the starting time, there is an initial weight pa-

rameter vector λ for the probability distribution over all POMDP models, and an initial

belief vector for the probability distribution over all states in all POMDP models. Next,

at the beginning of each time period, according to the weight parameter vector and belief

vectors, the decision-maker will choose an action. Then, the system will generate an out-

put according to the distribution over states in all models and the observation probability

functions of all models. There is an immediate reward specified by the reward functions in

all models, and weighted by the probability distribution over models. At the end of each

time period, the decision-maker can update the probability distribution over all models

and all states in each model according to their posterior distributions given the prior action

and the observed output from the system, and according to the state transition probability

function in each model, until the end of the time horizon.

4.4 Model Properties

In this section, we discuss some structural properties of the proposed MPOMDP, which

show how the model addresses the issue of parameter ambiguity in stochastic sequential

decision-making, and motivate the solution methods introduced in the next section. We

first provide the adjusted observation probability function and the belief update formula

in the optimal value problem of an MPOMDP. Then, we show that the optimal value

problem of an MPOMDP can be reformulated as a new POMDP model, so that all proper-

ties, especially the existence and structure of the optimal policy, and solution methods for
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POMDP models will hold. We then discuss the effect of parameter ambiguity in POMDP

model, and the VSS and EVPI under MPOMDP model settings.

We first provide the observation probability with respect to the belief vector in the

optimal value problem. At each time, although the system output is generated according

to the state, action, and observation probability function, the decision-maker has imperfect

information about the true underlying model. Instead, given the belief vector, the decision-

maker uses the following observation probability for the purpose of decision-making, as

described in the following proposition.

Proposition 4.5. Given an MPOMDP model M , consider its optimal value problem de-

fined in Definition 4.4. Then, at any time t ≥ T , given the belief vector b, the probability

of observing output o when action a is taken is

(4.1) P(o|b,a) = ∑
s,m

bm(s)Fm(s,a,o), ∀o ∈ O

for all o ∈ O, belief vector b, and a ∈ A.

Proof.

P(o|b,a) = ∑
s,m

P(o,(s,m)|b,a)

= ∑
s,m

P((s,m)|b,a)P(o|(s,m),b,a)

= ∑
s,m

bm(s)Fm(s,a,o), ∀o ∈ O,

Given the adjusted observation probability of the optimal value problem, we then can

show that the belief vector of the MPOMDP model is a sufficient statistic for decision-

making at each time period. This property is important because it can help us keep track

of the distribution over the state at each time period without requiring all historical infor-

mation of actions and observations.
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Proposition 4.6. Given an MPOMDP model M , consider its optimal value problem de-

fined in Definition 4.4. Then, the belief vector bt defined in Definition 4.3 is a sufficient

statistic of the past sequence of actions and observations until time t for t = 0,1, ...,T .

Proof. Denote I(t) as the total information available, i.e., historical actions and observa-

tions, at the end of time period t:

I(1) = {a1,o1}, I(t +1) = I(t)∪{at+1,ot+1},∀t ≥ 1.

We are going to show that bm
t+1(s

m
t+1) depends on I(t) only through bt for all t ≥ 1, sm

t+1 ∈ S,

and m = 1, ...,M:

bm
t+1(s

m
t+1)

= P((st+1,mt+1)|at ,ot , I(t))

=
P((st+1,mt+1),ot |at , I(t))

P(ot |at , I(t))

=
∑st∈S ∑mt P((st+1,mt+1),(st ,mt),ot |at , I(t))

P(ot |at , I(t))

=
∑st∈S ∑mt P(ot |(st ,mt),at , I(t))P((st+1,mt+1)|(st ,mt),at , I(t))P((st ,mt)|at , I(t))

P(ot |at , I(t))

=
∑st∈S ∑mt Fmt (o,a,st)Pmt (st ,at ,st+1)bm

t (st)

P(ot |at , I(t))
.

Now, we can see the numerator of bm
t+1(s

m
t+1) depends on I(t) only through bt , and the

denominator is just the numerator summed over all possible values of sm
t+1. Thus, bt is a

sufficient statistics of I(t) for all t = 1, ...,T .

We now can provide the belief update formula after taking action and observing an

output at each time period in an MPOMDP model.

Proposition 4.7. Consider the optimal value problem of an MPOMDP model M . Suppose

bt = (b1
t , ...,b

M
t ) is the belief vector of M at the beginning of time t, and observation o is
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observed after taking action a, then the belief vector bt+1 = (b1
t+1, ...,b

M
t+1) of M at the

time t +1 is given by

(4.2) P((st+1,mt+1)|o,b,a) =
∑st Fmt+1(st ,a,o)Pmt+1(st+1,a,st)bmt+1(st)

∑st+1,mt+1 ∑st Fmt+1(st ,a,o)Pmt+1(st+1,a,st)bmt+1(st)
.

For simplicity, we use bt+1 = Λ(bt |a,o) to denote the belief update formula given action a

and observation o at time t for t = 0,1, ...,T −1.

Proof. First of all,

P((st+1,mt+1)|o,b,a) =
P((st+1,mt+1),o|b,a)

P(o|b,a)
.

For the numerator,

P((st+1,mt+1),o|b,a)

= ∑
st

∑
mt

P((st+1,mt+1),o,(st ,mt)|b,a)

= ∑
st

∑
mt

P(o|(st+1,mt+1),(st ,mt),b,a)P(st+1,mt+1),(st ,mt)|b,a)

= ∑
st

∑
mt

P(o|(st ,mt),a)P(st+1,mt+1)|(st ,mt),a)P((st ,mt)|b).

Thus,

P((st+1,mt+1)|o,b,a)

=
∑st P(o|(st ,mt+1),a)P((st+1,mt+1)|(st ,mt+1),a)P((st ,mt+1)|b)

∑st+1,mt+1 ∑st P(o|(st ,mt+1),a)P((st+1,mt+1)|(st ,mt+1),a)P((st ,mt+1)|b)
.

In Proposition 4.7, the belief vector is updated using the Bayesian updating formula

4.2, which calculates a posterior distribution over models and states. In particular, even if

none of the POMDPs considered in the MPOMDP is the true model for the study object,

the belief update formula in Proposition 4.7 is still able to assign higher weights to the

models with greater probability of generating the observed outputs.
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Proposition 4.7 shows that the MPOMDP model is able to learn the model distribution,

i.e., model credibility, over time from the past actions and observations. Propositions 4.6

and 4.7 also show that, an MPOMDP can be viewed as a continuous-state MDP when

solving the optimal value problem, where the state is specified by the belief vector of

the MPOMDP model. The state transition probabilities can be calculated by Proposition

4.7. Although the dimentionality of the state in such MDP can be very large, it helps us

understand the structure of the MPOMDP. The following corollary shows that the optimal

policy for the optimal value problem of an MPOMDP is deterministic and Markovian with

respect to the belief vector, which is similar to it in MDPs.

Corollary 4.8. For the optimal value problem of an MPOMDP model, there always exists

an optimal policy that is deterministic and Markovian with respect to the belief vector at

each time period.

As in POMDP models, we also can show that the value function of the optimal value

problem is piecewise linear and convex, which will be used as the basis for the solution

methods that will be introduced in the next section.

Corollary 4.9. Denote Vt as the optimal value function for the optimal value problem in

Definition 4.4 at time t = 0,1, ...,T . Then Vt is piecewise linear and convex in the belief

vector bt , and can be written as

Vt(bt) = max
α∈A

bt ·α, ∀bt ,∀t.

Corollary 4.9 serves as the basis for the solution methods that will be introduced later.

It also helps understand the effect of model ambiguity on the optimal value function and

policy in POMDPs. A straightforward approach to solve the optimal value problem is to

find the linear functions (refer to the "α-vectors") that determine the optimal value function

at each time period. Further, calculating the difference in α-vectors among different sets
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of model parameters can help infer that the optimal policy will change because of the

parameter ambiguity. Specifically, suppose at time t, we have L numbers of non-dominated

α-vectors for each POMDP model, denoted as

α1
t,1, ..., α1

t,L

α2
t,1, ..., α2

t,L

... ... ...

αM
t,1, ..., αM

t,L

where αm
t+1,l is the lth non-dominated α-vector in the mth model. So that the optimal value

function for the MPOMDP model can be written as

vt(b) = max
l∈[L]

M

∑
m=1

bm ·αm
t,l

for all b = (b1, ...,bM). Define

δt(m1,m2) := max
l∈[L]
||αm1

t,l −α
m2
t,l ||∞.

as the difference between the same α-vectors in two different models m1 and m2. The next

proposition provides a bound on this difference. The proof is shown in the Appendix.

Proposition 4.10. Define

ξ
s(m1,m2) := ∑

z
∑
s′
|Pm1

ss′ Q
m1
s′z −Pm2

ss′ Q
m2
s′z |,

and

ξ (m1,m2) := max
s∈S

ξ
s(m1,m2)

then,

δt(m1,m2)≤
ξ (m1,m2)

2
(T − t)(T − t +1)

2
γ

T−t |Rmax−Rmin|.

Proposition 4.10 bounds the difference between the same α-vectors in two different

models. Using this result, we can then provide a sufficient condition such that for an
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MPOMDP with two models, the non-dominated α-vectors in one model are also non-

dominated in the other model, i.e., the parameter ambiguity does not affect the optimal

value function and optimal policy.

Proposition 4.11. For M = 2, suppose at time t, there is a non-dominated α-vector in

model m1 denoted as α
m1
t,l , such that there exist a belief vector b and ε > 0,

α
m1
t,l ·b− ε ≥max

k 6=l
α

m1
t,k ·b.

Then α
m1
t,l +α

m2
t,l is a a non-dominated α-vector in the MPOMDP model if ε > δt , where

δt is defined as in Proposition 4.10.

Proof. Since in model 1

α
1
t,l ·b+ ε ≥max

k
α

1
t,k ·b,

and

α
2
t,l ≥ α

1
t,l−δ

t

also for all k,

α
2
t,k ≤ α

1
t,k +δ

t

then

α
1
t,l +α

2
t,l ≥ 2α

1
t,l−δ

t

and for all k 6= l

α
1
t,k +α

2
t,k ≤ 2α

1
t,k +δ

t ≤ 2α
1
t,l−2ε +δ

t

now if ε > δt , then

α
1
t,k +α

2
t,k ≤ 2α

1
t,l−δ

t ≤ α
1
t,k +α

2
t,k
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Proposition 4.11 provides a sufficient condition where the parameter ambiguity has no

effect in a two-model MPOMDP. It requires calculating the α-vectors first to determine

whether the optimal policies in different models are the same. We leave the generalization

of Proposition 4.11 to the cases where the effect of parameter ambiguity can be determined

before calculation, and to the cases with multiple POMDPs in further research.

The following proposition shows that the EVPI is always positive under the MPOMDP

model setting.

Proposition 4.12. Consider an MPOMDP model defined as M = (M1, ...,MM,λ ). For

each POMDP model Mm in M , denote πm and V m as the optimal policy and optimal

value function for Mm, m = 1, ...,M. Then, the optimal value function V of the POMDP

satisfies

Vt(b)≤
M

∑
m=1

V m
t (bm),∀b, ∀t.

Proof. At any time t < T ,

Vt(b) = max
a∈A
{r(b,a)+ ∑

o∈O
P(o|b,a)Vt+1(Λ(b|a,o))}

= max
a∈A

M

∑
m=1
{rm(bm,a)+ ∑

o∈O
P(o|bm,a)V m

t+1(Λ(b
m|a,o))}

≤
M

∑
m=1

max
a∈A
{rm(bm,a)+ ∑

o∈O
P(o|bm,a)V m

t+1(Λ(b
m|a,o))}

=
M

∑
m=1

M

∑
m=1

V m
t (bm)

for all belief vector b. And at time t = T ,

VT (b) = max
a∈A

r(b,a) = max
a∈A

M

∑
m=1

rm(bm,a)≤
M

∑
m=1

max
a∈A

rm(bm,a) =
M

∑
m=1

M

∑
m=1

V m
T (bm)

for all belief vector b.
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4.5 Solution Methods

In this section, we discuss solution methods to the proposed MPOMDP model. We

start with an exact solution method, which generalizes the one-pass algorithm by Small-

wood and Sondik (1973) for POMDP models. However, because of the curse of dimen-

sionality and the curse of history, the exact solution method can take a long time to run,

even for small problems. Therefore, we introduce two approximation methods that can get

near-optimal solutions efficiently. We also prove that the proposed approximation meth-

ods converge asymptotically. Finally, we compare the performance of the approximation

methods in the next section.

4.5.1 Exact solution method

Recall the recursion formula, i.e., optimality equation, of the value function

Vt(b) = max
a∈A
{r(b,a)+ ∑

o∈O
P(o|b,a)Vt+1(Λ(b|a,o))}, ∀b, ∀t,

with the boundary condition

VT (b) = max
a∈A

r(b,a),

where

r(b,a) = ∑
o∈O

∑
m

∑
s∈S

P(o|b,a)rm(s,a,o)bm(s)

is the expected immediate reward, P(o|b,a) is the observation probability of output o, and

Λ(b|a,o)) is the belief update formula provided by Proposition 4.7, given the current belief

vector b and action a is taken for all possible belief b and action a.

As shown is Corollary 4.9, the optimal value function of an MPOMDP model M is

piecewise-linear and convex in the belief vector b, and can be written as

Vt(b) = max
α∈At

α ·b, ∀b,
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where At is a set of |S|×M-dimension vectors (also referred to as α-vectors) for all time

periods t. Given this property, solving the optimal value problem of M is essentially to

find the vector sets At for all time periods t. This can be done by the backward induction

algorithm as follows. First, at the end of time horizon T , the set of α-vectors can be

initiated as

At = {(α1
T,a, ...,α

M
T,a)|a ∈ A},

where

α
m
T,a(s) = ∑

o∈O
rm(s,a,o)Fm(s,a,o), ∀m,∀a,∀s.

Then, given AT , each element in the set of α-vector AT−1 at time T − 1 is given by

(α1
T−1,l, ...,α

M
T−1,l) where

α
m
T−1,l(s) = ∑

o∈O
rm(s,a,o)Fm(s,a,o)+ ∑

o∈O
γFm(s,a,o)P(s,a,s′)αm

T,gT−1(l,T )
(s′),∀m,∀s.

Notice that each subscript l of the α-vector αT−1,l corresponds to a specific policy starting

from time T −1. For convenience, we define a function gT−1 : N×T → A with gT−1(l, t)

being the action to take at time t that corresponds to the α-vector αT−1,l at time T − 1

for l = 1, ...,L and t ≥ T − 1. The next step is to find the non-dominated α-vectors for

the MPOMDP model at time T −1. Denote the new α-vectors (both dominated and non-

dominated) as for M models as:

α1
1 , ..., α1

L

α2
1 , ..., α2

L

... ... ...

αM
1 , ..., αM

L

where αm
l is the lth α-vector in model m. Then, the non-dominated α-vectors for the

MPOMDP model can be found by solving a linear program as follows: for a given sub-
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script l ∈ [L], if

max δ

s.t. bm ·1 = 1, ∀m ∈ [M]

bm ≥ 0, ∀m ∈ [M]

∑
M
m=1 αm

l ·b
m ≥ δ +∑

M
m=1 αm

h ·b
m, ∀h ∈ [L]−{l}

δ ≥ 0

is feasible, then all α-vectors with subscript l in all models are non-dominated. Lastly, we

can repeat the above two steps from time t = T −1, ...,0 to find the optimal value function

at the starting time.

For the exact solution method, since the number of new α-vectors (both dominated and

non-dominated) L is growing exponentially in the number of actions and observations, the

linear program can be too large to solve. Next, we are going to introduce the point-based

approximation methods, which only find the non-dominated α-vectors at certain belief

points, so that it can control the number of non-dominated α-vectors at each time period.

4.5.2 Sampling-based approximation methods

As we can see from the belief update formula, although the value function is a con-

tinuous function of the belief vector, there are only a finite number of reachable belief

vectors at each time period if starting from a certain initial belief at the beginning. In other

words, in order to find the optimal value function and the optimal policy of an MPOMDP

model, it is sufficient to calculate the value function at all reachable belief vectors at each

time period given a fixed initial belief vector, which can be done by backward induction

starting from the end of time horizon. This makes the problem much easier than solving a

large number of linear programs to find the exact value function. However, the number of

all reachable belief vectors increases exponentially in the number of all possible actions
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and observations along with the time. The ideal case is that we only need to know the

value function at all reachable belief vectors under the optimal policy starting from the

end of time horizon, and then use backward induction to calculate the value function at

the previous time period until the initial time. Unfortunately, the optimal policy can not be

determined without knowing the optimal value function.

As we have already shown, the optimal value function is piecewise-linear and convex,

and can be represented by the supreme of a set of linear functions (α-vectors). Using this

property, if one can identify the dominating α-vectors at some sampled reachable belief

vectors, then their supremum also gives a lower bound approximation of the optimal value

function over the entire belief vector space. A book chapter by Zhang and Denton (2018)

has discussed some of the most recent approximation methods for the POMDP model. To

summarize, the performance of such lower bound approximation, which can be defined as

its distances to the exact optimal value function at all reachable belief vectors following

the optimal policy, depends on whether it can correctly sample enough reachable belief

vectors. On the one hand, we want to control the number of sampled belief vectors at each

time period because of the consideration of computational complexity; on the other hand,

we need to sample enough belief vectors to obtain a good estimation of the optimal value

function, which helps identify the reachable belief vector following the optimal policy.

Next, we are going to introduce two sampling-based approximation methods for the

proposed MPOMDP model. The first method uses a ε-greedy sampling method that bal-

ances exploitations and explorations of the reachable belief points based on the most re-

cent estimate of the optimal value function, whose idea is similar to the ε-greedy algorithm

for reinforcement learning problems as discussed in Sutton and Barto (2018). The second

method is a tree-based branch-and-bound method, which improves the sampling efficiency

of the first method by branching to the belief vector where the most recent estimate has

103



the largest error at each time period.

An ε-greedy sampling method

Denote M as the MPOMDP model to solve. To initialize, we sample a uniform grid

of the entire space of the belief vector at each time period:

B0
t = {0,

1
N
,

2
N
, ...,1}M ⊂ [0,1]M,∀t = 1, ...,T,

where the superscript of B0
t denotes the number of iteration (here it is iteration 0), N

controls the number of belief vectors and density of the uniform grid. With a finite set of

grid points, an approximate backward induction works as follows. First, at the end of time

horizon T , similar to Section 4.5.1, we calculate the set of α-vectors as

AT = {(α1
T,a, ...,α

M
T,a)|a ∈ A},

where

α
m
T,a(s) = ∑

o∈O
rm(s,a,o)Fm(s,a,o), ∀m,∀a,∀s.

Now, instead of keeping all α-vectors in AT , we only keep the ones that are non-dominated

at the belief vectors in B0
T , which gives ˆAT

ˆAT := {α ∈AT |α = argmax
α

α ·b for some b ∈ B0
T}.

Since ˆAT ⊂At , then V̂T defined as

V̂T (b) := max
α∈ ˆAT

α ·b, ∀b

gives a lower bound estimate of the optimal value function VT at time T . Next, we go

backward to time T −1. Similar as in Section 4.5.1, we can calculate the α-vectors at time

T − 1 using the optimality equation (1). But here, instead of using AT , we only use its

subset ˆAT to derive the set of α-vectors at time T −1, denoted as ˜AT−1. It is easy to see
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that ˜AT−1 is a subset of AT−1, which is the set of all α-vectors at time T −1 if using AT

other than ˆAT in backward induction. Again, instead of keeping all elements in ˜AT−1, we

only keep the ones that are dominating at the belief vectors in B0
T−1, which gives ˆAT−1,

ˆAT−1 := {α ∈ ˜AT−1|α = argmax
α

α ·b for some b ∈ B0
T−1}.

Since ˆAT−1 ⊂ ˜AT−1 ⊂AT−1, then V̂T−1 defined as

V̂T−1(b) := max
α∈ ˆAT−1

α ·b, ∀b

gives a lower bound estimate of the optimal value function VT−1 at time T −1. We can

keep going backward following the steps above until time t = 0, which will give us the

lower bound estimates of the value functions at all time period V̂0,V̂1, ...,V̂T .

The next step is to modify the grid of belief points B0
1, ...,B

0
T to improve the estimates

of value functions. Starting from time t = 0, denote b0 as the initial belief vector. We can

use the current estimate of the value function at time t = 1 to find the optimal action to

take under the current value function approximate at time t = 0, which is given by

â = argmax
a ∑

m
∑
s∈S

bm
0 (s){rm(s,a)+ ∑

o∈O
∑
s′∈S

γF(s,a,o)Pm(s,a,s′)V̂ m
1 (Λ(bm

0 |a,o))}.

Notice that â may be sub-optimal, because it is selected using an approximation of the

expected future value-to-go. Next, action â is selected with probability 1− ε and an al-

ternative action with probability ε , for some ε ∈ (0,1), to encourage the exploration of

other actions that can potentially be better than â. After taking the selected action, denoted

as a0, we then randomly sample an output of the system o0 according to the observation

probability matrix F . Given the action a0 and observation o0, the belief vector at time

t = 1 can be updated by

b1 = Λ(b0|a0,o0).
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We then add b1 into B0
1 to get B1

1 = B0
1∪{b1}. Now starting from belief b1 at time t = 1, we

repeat the steps above to sample the belief vectors b2, ...,bT until the end of time horizon

T , and get the new sets B1
t for t = 2, ..,T . Collectively, the complete set of backward and

forward step is one iteration of the ε-greedy sampling method.

In the next iteration, we conduct the backward induction steps on the new belief vector

set B1
T , ...,B

1
1, and then sample the new belief vectors to get the new sets B2

t for t = 1, ..,T .

We repeat these iterations until a stopping criterion is satisfied. For example, a stopping

criterion could be that the size of the belief vector set is greater than some maximum num-

ber or the difference between the approximate value functions in two consecutive iterations

is below some threshold. This completes the steps of our proposed approximation algo-

rithm based on ε-greedy sampling. We summarize the complete algorithm in Algorithm

4.

As we can see from Algorithm 4, if we denote V̄ i
t for all t as the lower bound estimates

of the optimal value functions after the ith iteration, then V̄ i
t is determined by the set of

sampled belief vectors Bi
t , which is generated by random sampling, for each time t. Next,

we show that the lower bound estimates V̄ i
t converges to Vt in probability at all reachable

belief vectors for all time periods t, as the number of iterations i goes to infinity.

Theorem 4.13. For a given MPOMDP model M , denote B̃t as the set of all reachable

belief vectors at time t ≤ T starting from the initial belief vector b0 following any policies.

Denote Vt as the optimal value function at time t ≤ T , and V̂ i
t as the lower bound estimate

of the optimal value function at time t ≤ T given by the ith iteration of Algorithm 4. Then

for all t ≤ T , for any b ∈ B̃t ,

V̂ i
t (b)→Vt(b) in probability, as i→ ∞.

Proof. We start from the end of time horizon t = T . For any reachable belief vector b∈ B̃T ,
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Algorithm 4: Approximation algorithm based on ε-greedy sampling.
Input : MPOMDP model M , ε

Output: V̂t

Initialize B0 as a uniform grid and i = 0;
repeat

At time T , calculate AT ;
ˆAT = {α ∈AT |α = argmaxα α ·b for some b ∈ Bi

T};
V̂T = (b) = max

α∈ ˆAT
α ·b, ∀b;

for t = T −1, ...,0 do
Calculate the set of α-vectors ˜At at time t by backward induction using ˆAt+1;

ˆAt = {α ∈ ˜At |α = argmaxα α ·b for some b ∈ Bi
t} ;

V̂t(b) = max
α∈ ˆAt

α ·b, ∀b;
end
for t = 0, ...,T −1 do

â = argmaxa(r(a)+∑o∈OP(o|bt ,a) ˆVt+1(Λ(bt |a,o)));

at =

{
ât , with probability 1− ε

a random action, with probability ε
;

Sample an output ot according to bt and F ;
bt+1 = Λ(bt |at ,ot);
Bi+1

t = Bi
t+1∪{bt+1};

end
i = i+1;

until some stopping criterion;
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we can show that in each iteration of Algorithm 4, the probability of sampling b at time

t = T is strictly greater than 0. Suppose b is reachable through the path

(b0,a0,o0)→ (b1,a1,o1), ...,→ (bT−1,aT−1,oT−1)→ bT = b.

If we denote f as the smallest non-zero element in F , then in ith iteration of Algorithm 4

for any i,

P({b is sampled in iteration i})≥ (ε f )T > 0.

From the definition of V̂T in Algorithm 4 we can see,

P({VT (b)−V̂ i+1
T (b)> 0})

≤P({b is not in Bi
T})

=P({None of the first i iterations has sampled b})

≤(1− (ε f )T )i→ 0, as i→ ∞.

Thus, V̄ i
T (b) converges to VT (b) in probability for any b ∈ B̃T .

Next, we use induction to show that V̂ i
t (b) converges to Vt(b) in probability for any

b ∈ B̃t for all t ≤ T . In Algorithm 4, it is easy to see that, by applying the backward

induction,

V̂ i
t (b) = max

a ∑
s∈S

b(s){r(s,a)+ ∑
o∈O

∑
s′∈S

γF(s,a,o)V̂ i
t+1(Λ(b|a,o))}, ∀b.

Then, at time t < T , for any belief vector b ∈ B̃t , a sufficient condition such that V̂ i
t (b)

converges to Vt(b) will be V̂ i
t+1(Λ(b|a,o)) converges to Vt+1(Λ(b|a,o)) for any action a

and observation o, i.e., V̂ i
t+1(b

′) converges to Vt+1(b′) for all b′ reachable at time t+1 from

b at time t. Thus, we conclude that V̂ i
t (b) converges to Vt(b) in probability for any b ∈ B̃t

for all t ≤ T .

Although Theorem 4.13 shows that Algorithm 4 converges asymptotically to the true

optimal value function, we found through experimentation that the value function approx-
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imated at each iteration of Algorithm 4 is not monotone. In other words, the lower bound

estimate of the optimal value function given by Algorithm 4 may not be monotone non-

decreasing as we keep adding new reachable belief vectors to exploit. We use the next

proposition to discuss this fact. The proof is by construction given in the Appendix.

Proposition 4.14. Denote V̂ i
t as the lower bound estimate of the optimal value function

at time t ≤ T given by the ith iteration of Algorithm 4. Then, V̂ i
t is not monotone non-

decreasing in i. In other words, there may exists an MPOMDP model M such that ∃t, ∃b,

∃i,

V̂ i+1
t (b)−V̂ i

t (b)< 0.

It is possible this non-monotone behavior could slow the rate of convergence of Algo-

rithm 4. However, some steps in Algorithm 4 can be modified to improve its efficiency.

For example, instead of using a fixed ε , we may let the value of ε change adaptively over

iterations; in line 13−15, we can sample multiple outputs and append more than one belief

vector to the belief vector set in each iteration; we could also come up with a certain rule to

remove some existing belief vectors in the belief vector set. However, we did not observe

a huge improvement by implementing these ideas in our computational experiment shown

in the next section. However, we did observe that the random sampling of system outputs

in line 13− 15 is with low efficiency. We then propose another approximation algorithm

based on a branch-and-bound method, which improves the output sampling efficiency.

A Tree-based branch-and-bound method

Similar to the ε-greedy sampling method discussed above, we initially create an uni-

form grids of the entire space of the belief vector at all time period B0
t for t = 1, ...,T .

Starting from the end of time horizon T , we first calculate AT as the set of all α-vectors,

and ˆAT as the set of α-vectors that are dominating at the belief vectors in B0
T . With ˆAT ,
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V̂T gives a lower bound of VT . Now, besides the lower bound estimate, we use B0
T to derive

an upper bound of VT at iteration 0 as follows. For each b ∈ B0
T , calculate vT (b) as

vT (b) = max
α∈AT

α ·b,

and define v(B0
T ) as the set

vT (B0
T ) := {(b,vT (b))|b ∈ B0

T}.

Then, since VT is a piecewise-linear and convex function, vT (B0
T ) can be used to find an

upper bound V̄T of VT by the following linear program, where for all belief vector b ∈ B0
T ,

V̄t(b,vT (B0
T )) := minλ ∑b′∈B0

T
λb′vT (b′)

s.t. ∑b′∈B0
T

λb′ = 1,

λb′ ≥ 0, ∀b′ ∈ B0
T

∑b′∈B0
T

λb′b′ = b.

Next, at time T −1, similar to the procedure in Section 4.5.2, we use ˆAT and V̂T to derive

the lower bound estimate ˆAT−1 and V̂T−1. For the upper bound estimate, for each b ∈

B0
T−1, calculate uT−1(b) as

uT−1(b) = argmax
a ∑

m
∑
s∈S

bm
0 (s){rm(s,a)+ ∑

o∈O
∑
s′∈S

γF(s,a,o)Pm(s,a,s′)V̄ m
t (Λ(bm

0 |a,o))},

and define uT−1(B0
T−1) as the set

uT−1(B0
T−1) := {(b,uT−1(b))|b ∈ B0

T−1}.

Then, since VT−1 is piecewise-linear and convex, the solution of V̄T−1(b,uT−1(B0
T−1)))

gives an upper bound of VT−1(b) for all b. We can repeat these steps for time T −2, ...,0

to get the lower bound estimates V̂T−2, ...,V̂0 and upper bound estimates V̄T−2, ...,V̄0.

The next step is to modify the grid of belief vectors B0
1, ...,B

0
T . Starting from time t = 0,

denote b0 as the initial belief vector. Similar to the ε-greedy sampling method, find the
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currently best action ā given by

ā = argmax
a ∑

m
∑
s∈S

bm
0 (s){rm(s,a)+ ∑

o∈O
∑
s′∈S

γF(s,a,o)Pm(s,a,s′)V̄ m
1 (Λ(bm

0 |a,o))},

and take action a0 to be ā with probability 1− ε and one of other actions with probability

ε , for some ε ∈ (0,1). After taking action a0, instead of randomly sampling a system

output, in this case we select o0 as follows

o0 = argmax
o∈O

(V̄1(Λ(b0|a0,o))−V̂1(Λ(b0|a0,o))).

In other words, we select the system output where the current estimate of the value function

has the largest error, so that it needs more exploitation in the next iteration. With a0 and

o0, we then add the updated belief vector b1 = Λ(b0|a0,o0) into B0
1 to get B0

1∪{b1}, and

similarly get B1
t for t = 2, ...,T .

In the next iteration, we repeat all the steps above to get new estimates of the lower and

upper bound of the value function, and new belief sets until a certain stopping criterion.

The overall steps for the branch-and-bound approximation method are given in Algorithm

5. Notice that at any node of the scenario tree, if there exists another node at the same level

(observation or action node) whose lower bound value is greater than the upper bound

value of this selected node, then this node can be pruned. Note that We did not put the

pruning steps in Algorithm 5 because the pruned node will not be selected in the future

automatically.

As we can see from Algorithm 5, it accelerates the convergence rate of Algorithm 4

by sampling the action with the greatest upper-bound estimate, and the observation with

the largest gap between the upper-bound and lower-bound estimates. So, the asymptotic

convergence of Algorithm 5 is given as a corollary of Theorem 4.13.

Corollary 4.15. For a given MPOMDP model M , denote B̃t as the set of all reachable

belief vectors at time t ≤ T starting from the initial belief vector b0 following any policies.
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Algorithm 5: The tree-based branch-and-bound approximation method.
Input : MPOMDP model M , ε

Output: V̂t

Initialize B0 as a uniform grid and i = 0;
repeat

At time T , calculate AT ;
ˆAT = {α ∈AT |α = argmaxα α ·b for some b ∈ Bi

T};
vT (Bi

T ) := {(b,vT (b))|b ∈ Bi
T};

for t = T −1, ...,0 do
Calculate the set of α-vectors ˜At at time t by backward induction using ˆAt ;

ˆAt = {α ∈ ˜At |α = argmaxα α ·b for some b ∈ Bi
t} ;

V̂t(b) = max
α∈ ˆAt

α ·b, ∀b;
ut(Bi

t) := {(b,ut(b))|b ∈ Bi
t};

V̄t(b) = V̄t(b,ut(Bi
t)), ∀b;

end
for t = 0, ...,T −1 do

ā = argmaxa(r(a)+∑o∈OP(o|bt ,a)V̄t+1(Λ(bt |a,o)));

at =

{
ā, with probability 1− ε

a random action, with probability ε
;

ot = argmaxo∈O(V̄t+1(Λ(bt |at ,o))−V̂t+1(Λ(bt |at ,o))).;
bt+1 = Λ(bt |at ,ot);
Bi+1

t = Bi
t+1∪{bt+1};

end
i = i+1;

until some stopping criterion;

112



Denote Vt as the optimal value function at time t ≤ T , and V̂ i
t as the lower bound estimate

of the optimal value function at time t ≤ T given by the ith iteration of Algorithm 5. Then

for all t ≤ T , for any b ∈ B̃t ,

V̂ i
t (b)→Vt(b) in probability, as i→ ∞.

There are two main differences between the ε-greedy sampling method and the tree-

based branch-and-bound method. First, the branch-and-bound method samples the best

action based on the current upper-bound estimate of the value function at each time pe-

riod. This can accelerate the converge rate because exploiting a sub-optimal action will

give a smaller upper bound estimate of its value function, so that it will quickly become

dominated by other actions in future steps; but if exploiting a sub-optimal action based

on the lower-bound estimate of the value function, as in the ε-greedy sampling methods,

the lower-bound estimate of the value function will become larger in the next iteration,

so that it might get stuck at a sub-optimal policy. Second, the branch-and-bound method

samples the system output at each time period according to the gap between the upper and

lower bound estimates at the resulting belief vector. Thus, the algorithm tends to modify

the belief space grid in areas with the biggest estimation error. However, a drawback com-

pared to the ε-greedy sampling algorithm is that the branch-and-bound method requires

more computational effort for the upper bound estimate of the value function, which can

be a problem when the number of the sampled belief vectors becomes large. Nevertheless,

improving decisions about where to modify the belief space grid could lead to overall al-

gorithm efficiency. In practice, we can use the branch-and-bound method to get a warm

start, and then switch to the ε-greedy sampling method.
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4.6 Computational Experiments

In this section, we describe two computational experiments to illustrate the application

of the proposed MPOMDP. The first experiment is a toy example with two POMDPs, both

of which have two states, two observations, and two actions. We use this toy example to

visualize the value function and optimal policy of the MPOMDP model. We also show

the value of the VSS and the EVPI in this context. Furthermore, we use the toy example

to compare the performance of the two approximation methods introduced in Section 5.

The second computational experiment is a case study in prostate cancer AS based on the

POMDP models of Chapter 3. We use the proposed MPOMDP to find the optimal timing

of biopsies in AS when the cancer progression rate and test accuracy are assumed to be

uncertain because of the existence of multiple plausible selections of model parameters.

4.6.1 A two-model toy example

Suppose there are two POMDP models denoted as Mm = (S,b0,A,Pm,O,Fm,rm) for

m = 1,2, which have a same state space, observation space, and action space

S = {s1,s2}, O = {o1,o2}, A = {a1,a2}

but different transition and observation probabilities

P1(a1) =

 0.1 0.9

0.9 0.1

F1(a1) =

 0.8 0.2

0.2 0.8

 ,

P1(a2) =

 0.9 0.1

0.1 0.9

F1(a2) =

 0.7 0.3

0.3 0.7

 ,

P2(a1) =

 0.9 0.1

0.1 0.9

F2(a1) =

 0.6 0.4

0.4 0.6

 ,
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P2(a2) =

 0.1 0.9

0.9 0.1

F2(a2) =

 0.9 0.1

0.1 0.9


and the reward function

a1 : r(s1,a1,o1) = 2,r(s1,a1,o2) = 0,r(s2,a1,o1) = 0,r(s2,a1,o2) = 1

a2 : r(s1,a2,o1) = 1,r(s1,a2,o2) = 0,r(s2,a2,o1) = 0,r(s2,a2,o2) = 2.

with the time horizon t = 0,1,2,3,4,5.

We first solve the MPOMDP model using the exact solution method, and plot the exact

value function. Figure 4.2 shows the value function V0(b) at time t = 0. Notice that the

argument of the value function, which is the belief vector of the MPOMDP model, is a

4-dimension vector with three degree-of-freedom. Thus, we plot V0(b) for various choices

of b2(s1) to illustrate the 4-dimension function V0(b). As we can see from Figure 4.2,

V0(b) is a piecewise linear and convex function in b, which is consistent with Corollary

4.9. When the belief vector lies in the blue region, then the optimal action to take at time

t = 0 will be a1; otherwise, if the belief vector lies in the yellow region, then the optimal

action will be a2.

Next, we show the value of the VSS achieved by the MPOMDP model, and the EVPI,

as discussed in Proposition 4.12. We run a simulation study on a group of 10,000 sam-

ples where 50% of them are from model M1, and the other 50% are from model M2.

We apply four different policies to the study group: (1) the optimal policy given by the

POMDP model M1; (2) the optimal policy given by the POMDP model M2; (3) the op-

timal policy given by the mean-value POMDP model (i.e., the POMDP model with the

model parameter being the mean parameter of M1 and M2); (4) the optimal policy given

by the MPOMDP model M = (M1,M2,λ = 0.5). We also compare the results with the

case where we have the perfect information, apply the optimal policy of M1 to patients
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Figure 4.2: The value function V0(b) at time t = 0 for various choices of b2(s1).
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Belief vector b0
Value of the optimal policy (Regret %)

Model M1 Model M2 Mean-value model MPOMDP model Perfect info.
(0.45, 0.05, 0.45, 0.05) 8.43 (9.52%) 7.81 (16.11%) 8.89 (4.55%) 9.08 (2.48%) 9.31 (0)
(0.45, 0.05, 0.25, 0.25) 8.10 (14.04%) 7.93 (15.82%) 9.03 (4.11%) 9.05 (3.95%) 9.42 (0)
(0.45, 0.05, 0.05, 0.45) 8.73 (8.40%) 8.03 (15.74%) 9.00 (5.54%) 9.18 (3.66%) 9.53 (0)
(0.25, 0.25, 0.45, 0.05) 8.29 (9.57%) 8.37 (8.65%) 8.24 (10.10%) 8.88 (3.18%) 9.17 (0)
(0.25, 0.25, 0.25, 0.25) 7.95 (14.28%) 8.46 (8.74%) 8.40 (9.42%) 8.95 (3.48%) 9.27 (0)
(0.25, 0.25, 0.05, 0.45) 8.60 (8.25%) 8.57 (8.60%) 8.51 (9.24%) 9.06 (3.38%) 9.38 (0)
(0.05, 0.45, 0.45, 0.05) 8.30 (9.65%) 8.86 (3.53%) 8.78 (4.40%) 9.07 (1.22%) 9.18 (0)
(0.05, 0.45, 0.25, 0.25) 7.96 (14.32%) 8.97 (3.41%) 8.92 (3.96%) 9.16 (1.41%) 9.29 (0)
(0.05, 0.45, 0.05, 0.45) 8.61 (8.39%) 9.12 (2.96%) 9.04 (3.80%) 9.27 (1.39%) 9.40 (0)

Table 4.1: The value function V0 and the regrets at different initial belief vectors when applying
different policies.

Belief vector b0
λ = (0.25,0.75) λ = (0.5,0.5) λ = (0.75,0.25)

VSS (%) EVPI (%) VSS (%) EVPI (%) VSS (%) EVPI (%)
(0.45, 0.05, 0.45, 0.05) 0.11 (1.18%) 0.25 (2.71%) 0.19 (2.17%) 0.23 (2.55%) 0.58 (6.81%) 0.22 (2.39%)
(0.45, 0.05, 0.25, 0.25) 0.22 (2.41%) 0.24 (2.56%) 0.02 (0.17%) 0.37 (4.11%) 0.56 (6.65%) 0.32 (3.54%)
(0.45, 0.05, 0.05, 0.45) 0.43 (4.80%) 0.22 (2.29%) 0.18 (1.98%) 0.35 (3.80%) 0.34 (3.89%) 0.41 (4.53%)
(0.25, 0.25, 0.45, 0.05) 0.21 (2.40%) 0.38 (4.27%) 0.63 (7.70%) 0.29 (3.28%) 0.54 (6.45%) 0.20 (2.29%)
(0.25, 0.25, 0.25, 0.25) 0.05 (0.59%) 0.46 (5.18%) 0.55 (6.55%) 0.32 (3.61%) 0.69 (8.30%) 0.18 (2.03%)
(0.25, 0.25, 0.05, 0.45) 0.05 (0.50%) 0.46 (5.11%) 0.55 (6.45%) 0.32 (3.50%) 0.60 (7.10%) 0.12 (1.36%)
(0.05, 0.45, 0.45, 0.05) 0.13 (1.47%) 0.19 (2.10%) 0.29 (3.32%) 0.11 (1.23%) 0.73 (8.77%) 0.03 (0.36%)
(0.05, 0.45, 0.25, 0.25) 0.04 (0.47%) 0.22 (2.39%) 0.24 (2.66%) 0.13 (1.43%) 0.81 (9.64%) 0.00 (0.01%)
(0.05, 0.45, 0.05, 0.45) 0.10 (1.04%) 0.22 (2.34%) 0.23 (2.51%) 0.13 (1.41%) 0.73 (8.64%) 0.05 (0.59%)

Table 4.2: The VSS achieved by the MPOMDP and the EVPI for different initial belief vectors in
the two-model example.

from M1 and the optimal policy of M2 to patients from M2.

Table 4.1 shows the values of V0 at different initial belief vectors when applying dif-

ferent policies, and their regrets compared to the value function given by the optimal pol-

icy with perfect information. As we can see from Table 4.1, the optimal policy of the

MPOMDP model M dominates the optimal policies of model M1, model M2, and the

mean-value model. This says that when there exists parameter ambiguity, the MPOMDP

model provides a better solution than ignoring the parameter ambiguity or averaging the

model parameter.

Table 4.2 shows the VSS achieved by the MPOMDP and the EVPI for different initial

belief vectors. For each initial belief vector, the VSS of the MPOMDP is calculated as

the (relative) difference between the values of the mean-value POMDP model and the
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Belief vector b0
% of true optimal action over time

Model M1 Model M2 Mean-value model MPOMDP model Perfect info.
(0.45, 0.05, 0.45, 0.05) 59.70% 59.84% 79.33% 89.09% 100%
(0.45, 0.05, 0.25, 0.25) 57.91% 60.07% 85.38% 88.99% 100%
(0.45, 0.05, 0.05, 0.45) 72.79% 59.86% 86.31% 88.94% 100%
(0.25, 0.25, 0.45, 0.05) 59.40% 70.37% 61.50% 88.74% 100%
(0.25, 0.25, 0.25, 0.25) 57.60% 70.20% 67.76% 88.61% 100%
(0.25, 0.25, 0.05, 0.45) 72.51% 70.06% 69.18% 88.64% 100%
(0.05, 0.45, 0.45, 0.05) 60.14% 87.40% 79.42% 89.57% 100%
(0.05, 0.45, 0.25, 0.25) 58.76% 87.50% 85.45% 89.60% 100%
(0.05, 0.45, 0.05, 0.45) 73.70% 87.35% 86.81% 89.85% 100%

Table 4.3: The percentage of true optimal action over time compared to the optimal policy with
the perfect information starting from different initial belief vectors for different policies.

MPOMDP model; and the EVPI is calculated as the (relative) difference between the

values of the MPOMDP model and model with perfect information. As we can see from

Table 4.2, in general, the VSS and EVPI are larger when the decision-maker is less certain

about the model and state distribution. Table 4.3 also shows the percentage of true optimal

action over time compared to the optimal policy when having the perfect information

starting from different initial belief vectors.

Lastly, we compare the performance of the two approximation methods introduced in

Section 5. We implement each approximation method with 100 iterations. Figure 4.3

reports the average error of V0 in 20 runs. As we can see from Figure 4.3, both methods

converge very fast at the beginning. However, the tree-based sampling method converges

much faster after the first few iterations, with much smaller estimation errors. This is

because, as discussed in Section 5, while both methods exploit the optimal action at each

time period based on the current estimate of the value function, the tree-based sampling

algorithm additionally calculates an upper bound estimate of the function to explore the

scenarios where the current estimate has the largest error. This likely helps ensure more

efficient exploration steps, and results in a faster overall convergence rate with respect to

the number of iterations. On the other hand, in Table 4.4 we illustrate the computation
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Figure 4.3: Comparisons of Algorithm 4 and 5 for the toy example of two-model POMDP.

Exact method ε-greedy sampling Tree-based B&B
Mean time for each run 6836s 109s 551s
Number of α-vectors at t = 0 109 15 27

Table 4.4: Comparisons of the computational time and number of iterations of Algorithm 4 and 5
for the toy example of two-model POMDP.

time for each method on an Inter Core i7 2.6 GHz processor with 16 GB RAM. As we can

see from Table 4.4, the tree-based sampling method takes more total computation time for

each run than the ε-greedy sampling method. Thus, although the more judicious choice of

belief grid modifications leads to fewer iterations for Algorithm 5, the shorter computation

time per iteration of Algorithm 4 results in greater overall efficiency.

4.6.2 Case study: prostate cancer AS optimization

We implement the proposed MPOMDP model for optimizing AS for prostate cancer

with imperfect information based on the POMDP models of Chapter 3. Prostate cancer is

the most common cancer in men globally. Patients with low-risk variants of prostate cancer

are recommended to join the AS, which monitors the patients by medical tests until there is

a sign of progression to a high-risk variant of cancer, to avoid unnecessary treatments. The

two most common medical tests in AS are PSA test and biopsy. As described in previous

chapters, the PSA test is a simple blood test with almost no direct harm to patients. Biopsy
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is a much more accurate diagnosis test, which samples the tissue with hollow-core needles

to exam the severity of prostate cancer; however, biopsy is still imperfect, with potential

false-negative results caused by miss-sampling. Moreover, biopsy is very painful and

harmful to patients. Thus, it is critical to decide the optimal timings for biopsies for each

patient in prostate cancer AS.

In Chapter 3, we used a finite-horizon two-state POMDP model to optimize the biopsy

policy in each of four major prostate cancer AS study centers, which include the JH hos-

pital, the UCSF medical center, the U of T medical center, and the PRIAS project. The

objective of that study was to minimize the expected delay in the detection of high-risk

prostate cancer and the expected number of lifetime biopsies. The result showed that, as

different patient cohorts have heterogeneous cancer progression rates and test accuracy

(model parameters), the optimal biopsy policies were different in the different study cen-

ters.

Our study in this chapter considers the case where the model parameters are not known

with certainty, and we seek a single biopsy policy that works well in all four study cen-

ters. Examples may include optimizing the biopsy policy for a new patient who comes

from a different area with an uncertain cancer progression rate, and for a newly initiated

prostate cancer AS study that is unable to estimate the cancer dynamics (model parame-

ters) because of a lack of data samples. For such new studies, a common strategy is to

use the result from one of the previous studies as an approximate solution. The proposed

MPOMDP model in this chapter allows the decision-maker to trade off all previous major

studies instead of picking only one study ambitiously. The objective of the MPOMDP

model, as in Chapter 3, is to minimize a weighted sum of the expected delays in the de-

tection of high-risk prostate cancer and the expected numbers of lifetime biopsies in four

study centers.
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We first describe the MPOMDP model formulation M for optimizing prostate cancer

AS adapted from the previous chapters. As introduced in Chapter 3, the decision epochs

here are discrete annual time periods until age 75, which is the recommended stopping

time for AS with the consideration of other cause mortality rates. There are two states in

S, which are low-risk cancer state (LR) and high-risk cancer state (HR). The set A con-

tains two actions that are "defer biopsy" and "conduct biopsy". At each decision epoch

after taking action, there will be observations of PSA test and biopsy (if conducted). For

the PSA test, we divide all possible outcomes into three intervals: I1 = [0,4], I2 = (4,10],

and I3 = (10,∞) (ng/mL); For biopsy, we list all possible outcomes as negative, positive,

and null (not conducted) for simplicity. The transition and observation probabilities in the

four different study centers were estimated in Chapter 2 and listed in Tables 4.5 and 4.6

for convenience. In Table 4.5, the misclassification error at diagnosis denotes the initial

distribution b0, the annual cancer progression rate denotes the transition probabilities, and

the biopsy sensitivity denotes the observation probabilities for the biopsy. Table 4.6 de-

notes the observation probabilities for the PSA test. Lastly, the reward function r(s,a,o)

is defined as

r(s,a,o) =



0, a = Defer Biopsy, s = LR;

θ , a = Defer Biopsy, s = HR;

η , a = Conduct Biopsy, s = LR, o = Negative;

η , a = Conduct Biopsy, s = HR, o = Positive;

θ +η , a = Conduct Biopsy, s = HR, o = Negative;

Not Defined, otherwise,

where θ and η are non-negative scalars that denote the cost of one-year delayed detection

of high-risk cancer and the burden of a biopsy, respectively. We set θ +η = 1, so that
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Center
misclassification error

at diagnosis: b0

Annual Cancer Progression
rate: p

Biopsy Sensitivity:
(1− γ)

JH 0.0583 0.0691 0.7184
UCSF 0.0809 0.1217 0.7431
U of T 0.0774 0.1016 0.7949
PRIAS 0.0653 0.0841 0.7614

Table 4.5: The AS-POMDP model parameters in four study centers. Abbreviations: JH, Johns-
Hopkins; UCSF, University of California-San Francisco; U of T, University of Toronto; PRIAS,
Prostate Cancer Research International Active Surveillance.

Center
Probability Mass Function of PSA (ng/mL): q

Cancer State I1 = [0,4] I2 = (4,10] I3 = (10,∞)

JH
LR Cancer 0.3552 0.4311 0.2137
HR Cancer 0.2868 0.4706 0.2426

UCSF
LR Cancer 0.0768 0.5680 0.3552
HR Cancer 0.0678 0.5736 0.3586

U of T
LR Cancer 0.4573 0.3422 0.2005
HR Cancer 0.3312 0.2368 0.4320

PRIAS
LR Cancer 0.1361 0.5357 0.3282
HR Cancer 0.1094 0.5501 0.3405

Table 4.6: The probability mass functions of PSA in four study centers. Abbreviations: JH, Johns-
Hopkins; UCSF, University of California-San Francisco; U of T, University of Toronto; PRIAS,
Prostate Cancer Research International Active Surveillance; LR, low-risk; HR, high-risk.

varying θ and η allows computing the optimal policy for different patient preferences for

the two criteria. Here we choose θ = η = 0.5 for simplicity.

Now, suppose that for a group of new patients, the decision-maker has no information

about which model best describes the new patients. Traditionally, the decision-maker

picks a single model based on their personal judgement/opinion about which is the best,

and apply its optimal policy to new patients in practice. Here, our proposed MPOMDP

model provides another solution to this problem. To show the benefit of the MPOMDP

model, for each AS study, we compare the result of five different biopsy policies, which

includes the four policies given by solving the JH, UCSF, U of T, and the PRIAS POMDP

models, and the policy given by solving the MPOMDP model. For the MPOMDP model,

we set a non-informative initial model weight λ = (0.25,0.25,0.25,0.25).
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Center
Minimum cost of the optimal policy (regret %)

JH model UCSF model U of T model PRIAS model MPOMDP model
JH 2.74 (0) 2.92 (6.50%) 3.84 (40.42%) 3.01 (9.89%) 2.87 (4.80%)
UCSF 2.54 (5.35%) 2.41 (0) 2.95 (22.45%) 2.68 (11.33%) 2.49 (3.33%)
U of T 2.65 (12.34%) 2.42 (2.39%) 2.36 (0) 2.77 (17.54%) 2.40 (1.72%)
PRIAS 2.59 (4.19%) 2.63 (5.54%) 3.11 (24.71%) 2.49 (0) 2.54 (2.03%)

Table 4.7: The optimal value (minimum cost) function in different AS studies when applying
different policies.

Table 4.7 shows the optimal value (minimum cost) function and the regret of each

biopsy policy in each AS study center. The regret is calculated as the relative difference

between the current policy and the best policy in each study center. As we can see from

Table 4.7, the best policy in each study center is always the optimal policy given by the cor-

responding POMDP model. Moreover, the optimal policy given by the MPOMDP model

is always better than policies from an inconsistent POMDP model in all four study centers.

For each study center, the difference between the cost of the optimal policy given by the

MPOMDP and a "wrong" model (different from the study center) is the VSS achieved by

the MPOMDP model; and the difference between the MPOMDP and the "right" model

is the EVPI. Figure 4.4 shows the comparison of the mean number of biopsies and aver-

age late detection time by biopsy in years in different AS studies when applying different

policies in different models. Depending on how the decision-maker trades off between

the mean number of biopsies and average late detection time by biopsy, the optimal policy

given by the MPOMDP model is always the closest to the true optimal policy in each study

center, compared with the policy given by a wrong POMDP model.

4.7 Conclusion

In this chapter, we introduced a new MPOMDP model to address the issue of parameter

ambiguity in POMDP models. Motivated by the prostate cancer AS optimization problem
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Figure 4.4: Comparisons of mean number of biopsies and average late detection time by biopsy in
years in different AS studies when applying the optimal policies in different models. The reward
parameter is set to be θ = η = 0.5.
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in Chapter 3, when there are multiple credible optimization models with the same structure

but different model parameters, the proposed MPOMDP model can learn the model credi-

bility from the system outputs over time, and seek a single optimal policy that maximizes

the expected future rewards across models. We also discussed some structural properties

of the proposed MPOMDP model, which not only reveal the benefit of the MPOMDP

model by accounting for parameter ambiguity, but also motivate the solution methods to

MPOMDP models. We then introduced an exact solution method and two fast approxi-

mation methods to MPOMDP models, which were shown to converge asymptotically, and

compared their performance in a computational experiment. Lastly, we used the example

of prostate cancer AS in Chapter 2 and 3 as a case study, to demonstrate how the MPOMDP

model can be applied to a real-world problem to improve medical decision-making.

When applying the MPOMDP model to real-world problems, the model weight can be

initialized by some prior knowledge or as a non-informative prior distribution over differ-

ent POMDPs. Then, every time when there is new output from the system, the MPOMDP

model can update the model belief so that more credible models will be assigned higher

model weights. Notice that since the model weight is updated by the Bayesian formula,

even if none of the POMDPs considered in the MPOMDP is the true model for the patient

under consideration, the MPOMDP is still able to assign higher weights to the models with

higher probability generating the observed outputs. We then showed that an MPOMDP

could be reformulated as a new POMDP model with an extended state space, where a

state in the new POMDP model is a combination of the current model and the state in the

original POMDP model. Utilizing this property, we then derived the belief update formula

for both the system state and model in an MPOMDP. Further, motivated by the one-pass

algorithm for POMDP models, we introduced an exact solution method to the proposed

MPOMDP model. However, because of the complexity of an MPOMDP model, even for
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moderate size problems, the exact solution method is not feasible in a reasonable amount

of time. We then introduced two fast approximation algorithms applying the ε-greedy and

branch-and-bound sampling methods. The idea is that, instead of calculating the optimal

value function of the MPOMDP over the entire belief space, we only evaluate the optimal

value function on a subset of reachable belief points by sampling, and then approximate

the value function on other places using the samples.

Compared with traditional robust optimization approaches, whose objectives are to

optimize the worst-case performance, there are three main advantages of our MPOMDP

model. First, in our MPOMDP model formulation, when considering the optimal value

problem, there are some nice properties including that the belief vector is a sufficient

statistic for the past information and the existence of a deterministic and Markovian op-

timal policy, which do not hold for robust optimization models. These properties are

important because they help develop efficient solution methods so that the MPOMDP can

be applicable to large real-world problems. Second, the MPOMDP model is able to learn

the model credibility for each individual over time from past actions and observations,

which is not the focus in robust optimization models. Third, the MPOMDP model that

optimizes a weighted-average value function by the model belief usually results in a less

conservative policy than the robust optimization models that optimize the worst-case value

function. Therefore, on average, the MPOMDP achieves better performance than the ro-

bust optimization models.

In the computational experiments, we first used a toy example with two POMDPs to

illustrate the use case of the proposed MPOMDP model. We formulated the MPOMDP

with two POMDPs, solved for the optimal value function and policy exactly, and compared

its performance with other traditional solutions. The results showed that the MPOMDP

policy dominated the solution obtained by arbitrarily picking one POMDP model when the
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wrong model was selected, and the mean-value POMDP model. This was because that the

MPOMDP can consider the performance of both POMDPs according to the model weight

learned from system outputs. We also used this example to compare the performance

of two much faster approximation methods. The ε-greedy sampling method updated the

lower bound estimate of the optimal value function in each iteration, which converged

asymptotically over time. Compared with the ε-greedy sampling method, the branch-and-

bound sampling method converged faster by maintaining an upper bound estimate of the

value function. But it also required extra computation effort to calculate the upper bound

estimates.

We further investigated the benefit of the MPOMDP model in a real case study of

prostate cancer AS, which is the motivating example of this thesis discussed in Chapter

2 and 3. We showed that for a new patient starting prostate cancer AS, who may be best

described by one of the models in the JH, UCSF, U of T, and PRIAS study centers, the

MPOMDP model found a single optimal biopsy policy that is only slightly worse than the

optimal biopsy policy given by the POMDP model of the true study center, but much better

than the policies given by a wrong POMDP model and the mean-value POMDP model.

Given the trade-off between the biopsy burden and late detection of a cancer progression

by the decision-maker, the MPOMDP model achieved the minimum expected future costs

when the true model was not known with certainty. Thus, the MPOMDP model appears to

offer a robust policy that protects against uncertainty when the correct model is not known

with certainty.

There are also some limitations of our work in this chapter, and opportunities for fu-

ture research in parameter ambiguity in POMDP models. First, we only focused on the

optimal value problem of an MPOMDP model in this chapter, where the objective was

to maximize a weighted average of the value functions across different POMDPs accord-
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ing to the model-state belief vector. There could be other objective functions, for exam-

ple, maximizing the worst-case reward, minimize the conditional value-at-risk, and other

probability measures that are widely used in stochastic programming and robust optimiza-

tion problems. However, the potential issue for considering other objective functions is

the existence of an optimal policy with a simple structure, for example, a deterministic

and Markovian policy, that is practical for real-world problems. We leave the theoretical

and methodological study of the extension to other objective functions to future research.

Second, the proposed MPOMDP model only considers discrete uncertainty sets of model

parameters, which assumes a limited number of the sets of the possible model parame-

ter. This is different from many stochastic optimization works, where the uncertainty sets

of model parameters are continuous. However, the work of MPOMDP in this chapter

was motivated by the real-world application in prostate cancer AS, where there are several

credible and competing well-established models. The framework we proposed can provide

a valuable foundation for studying related problems that arise in other contexts.

4.8 Appendix: Proofs

Proof of Proposition 4.10

Recall the backward induction formula

αt−1(s) = r(a)+ γ ∑
z

∑
s′
P(s′|s,a)P(z|s′,a)gαt−1

z (s′)

where gαt−1
z is a function mapping observation z to α-vectors in At . We can also write this

in matrix notation as follows

αt−1(s) = r(a)+ γ ∑
z

∑
s′

Pss′Qs′zg
αt−1
z (s′).
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Now, using the above equation,

α
m1
t−1(s)−α

m2
t−1(s) =∑

z
∑
s′

Pm1
ss′ Q

m1
s′z g

α
m1
t−1
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∑
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+ ∑
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(T − t)|Rmax−Rmin|

Proof of Proposition 4.14

Prove by construction. Consider an MPOMDP model M = (M1,M2,λ ), where two

POMDP models Mm = (S,b0,A,Pm,O,Fm,rm) for m = 1,2 have a same state space, ob-

servation space, and action space

S = {s1,s2}, O = {o1,o2}, A = {a1,a2}

but different transition and observation probabilities

P1(a1) =

 0.1 0.9

0.9 0.1

F1(a1) =

 0.8 0.2

0.2 0.8

 ,

P1(a2) =

 0.9 0.1

0.1 0.9

F1(a2) =

 0.7 0.3

0.3 0.7

 ,
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P2(a1) =

 0.9 0.1

0.1 0.9

F2(a1) =

 0.6 0.4

0.4 0.6

 ,

P2(a2) =

 0.1 0.9

0.9 0.1

F2(a2) =

 0.9 0.1

0.1 0.9


and different reward functions

a1 : r(s1,a1,o1) = 2,r(s1,a1,o2) = 0,r(s2,a1,o1) = 0,r(s2,a1,o2) = 1

a2 : r(s1,a2,o1) = 1,r(s1,a2,o2) = 0,r(s2,a2,o1) = 0,r(s2,a2,o2) = 2.

We consider the time horizon to be t = 0,1 and set the model weights to be λ1 = λ2 = 0.5.

For any belief vector b of M , we write

b = (1−b1,b1,1−b2,b2),

where b1 is the belief in state s2 in M1 and b2 is the belief in state s2 in M2. For any

α-vector αt at time t = 0,1, we write

αt = (α1
t ,α

2
t ) = (α1

t (0),α
1
t (1),α

2
t (0),α

2
t (1))

where α1
t is the α-vector in M1, α1

t (0), α1
t (1) are the values of α1

t at b1 = 0 and b1 = 1;

and similarly for α2
t . We can use the exact solution method to find the set of all α-vectors

at time t = 1:

A1 = {(1.6,0.8,1.2,0.6),(0.7,1.4,0.9,1.8)}.

Now, apply Algorithm 4. Suppose in the first iteration we sample two belief vectors at

time t = 0, which are b1
0 = (0.25,0.25,0.25,0.25) and b2

0 = (0.5,0,0,0.5); and then we

sample action a1 and observation o1, resulting two belief vectors at time t = 1, which are

b1
1 = (0.13,0.37,0.29,0.21) and b2

1 = (0.07,0.6,0.03,0.3).
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We then can identify (0.7,1.4,0.9,1.8) ∈ A1 as the only non-dominated α-vector at

time t = 1, and two non-dominated α-vectors

(2.019,2.631,2.529,3.021), (2.22,2.28,1.56,2.94)

at time t = 0. In the next iteration, suppose we sample one more belief vector b3
0 =

(0,0.5,0.5,0) at time t = 0 and b3
1 = (0.45,0.05,0.45,0.05) at time t = 1 following ac-

tion a1 and observation o1. Then, using three sampled belief vectors b1
1,b

2
1,b

3
1, we can

identify all two α-vectors in A1 as non-dominated α-vectors at time t = 1.

At time t = 0, using three sampled belief vectors b1
0,b

2
0,b

3
0, we can find three non-

dominated α-vectors at time t = 0, which are

(2.019,2.631,2.529,3.021),(2.93,1.57,2.19,2.31),(2.48,2.32,2.34,1.26).

In other words, in the first iteration, we have

ˆA 1
0 = {(2.019,2.631,2.529,3.021),(2.22,2.28,1.56,2.94)}

and in the second iteration, we have

ˆA 2
0 = {(2.019,2.631,2.529,3.021),(2.93,1.57,2.19,2.31),(2.48,2.32,2.34,1.26)}.

Now, consider the belief point b = (0.45,0.05,0,0.5) at time t = 0:

V̂ 2
0 (b) = 2.552 < 2.583 = V̂ 1

0 (b),

i.e., the lower bound estimate of V0 after the second iteration is smaller than the estimate

after the first iteration at b.
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CHAPTER 5

Summary and Conclusions

In this thesis, we took a holistic approach on data-driven optimization for individu-

alized medical decision-making in cancer. We used a healthcare application in optimiz-

ing prostate cancer AS as the motivating example. First, we built an HMM to describe

the stochastic system of prostate cancer AS and estimate the model dynamics, includ-

ing cancer progression rate, test accuracy, and reward mechanism, by fitting the histor-

ical observational data. Second, with the estimated stochastic system, we developed a

POMDP model to optimize medical decision-making in cancer that balances the benefits

and harms in light of the fact that the health states are not directly observable and can

progress stochastically over time. Third, we studied the issue of parameter ambiguity in

POMDP models by proposing a new stochastic dynamic programming model, which is

the MPOMDP model. We discussed the structural properties and solution methods for the

proposed MPOMDP model, and showed its benefits in case studies. The individualized

medical decision-making was achieved from three aspects: (1) individualized cancer pro-

gression paths estimated by the HMM; (2) individualized reward function definition in the

POMDP and MPOMDP optimization models; (3) individualized model credibility learned

by the MPOMDP from past actions and observations.

In Chapter 2, we fitted HMMs to estimate the misclassification error at diagnosis, the
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annual cancer progression rate, the sensitivity and specificity of biopsy, and the distribu-

tion of PSA in four prostate cancer AS cohorts part of the GAP3 consortium: JH, UCSF,

U of T, and PRIAS. With the estimated HMMs, we compared the mean number of biop-

sies performed versus late detection of cancer progression by biopsy when following dif-

ferent published biopsy protocols in four cohorts using a series of stochastic simulations.

As expected, in each cohort, the biopsy protocol that recommended more frequent biopsies

was associated with a shorter time to reclassification. Our results showed that no single

biopsy protocol was optimal for all cohorts because of the considerable variation in biopsy

under-sampling error and annual progression rates across cohorts. Moreover, in each co-

hort, the biopsy protocol that recommended more frequent biopsies was associated with a

shorter time to reclassification, while the benefit from additional biopsies was diminishing.

From our estimates of HMMs in four different cohorts, based on the bootstrapped

standard errors of the estimated parameters, all the misclassification errors at diagnosis,

annual cancer grade progression rates, and biopsy false-negative rates were statistically

significantly greater than zero. All biopsy specificities were close to 100%, indicating

it was very rare that a patient in the low-risk cancer state would have a biopsy Gleason

sum 7 or higher. For misclassification errors at the time of diagnosis and annual grade

progression rates, we found that the estimates in the UCSF and U of T cohorts were greater

than the estimates in JH and PRIAS cohorts. This was consistent with the fact that the

UCSF and U of T cohorts included higher-risk patients than the other two cohorts. For the

biopsy sensitivities, we saw that the JH cohort had the lowest estimate while the U of T

cohort had the highest one. We conjectured that patients with lower risk had smaller

tumors in general, so that they were harder to detect by biopsy if they were in the high-

risk cancer state. Other possible reasons for such differences might include the different

definitions of low and high-risk states, and the difference in the urologist practice when
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performing the tests in different cohorts.

The simulation study in Chapter 2 compared three published biopsy protocols in four

different cohorts. Within each cohort, the protocol that recommended more biopsies had

fewer late detection years of high-risk cancer by biopsy. However, we saw that the benefit

of early detection was diminishing along with the increasing number of biopsies. There

was no single optimal protocol that recommended fewer biopsies but could detect high-risk

cancer earlier, in any cohort. Two possible reasons for this are: first, the model parameters

estimated by the HMMs and used in the simulation model were statistically significantly

different for different cohorts; second, there were two competing objectives of minimizing

the number of biopsies and minimizing the late detection time by biopsy when comparing

the protocols.

In Chapter 3, we proposed a finite-horizon two-state AS-POMDP model to optimize

the timing of biopsies in prostate cancer AS, where the objective is to minimize the number

of biopsies and the delay in detection of high-risk cancer for each patient. Our study also

considered two kinds of parameter ambiguity: 1) heterogeneous transition and observation

probabilities in different patient cohorts, and 2) variation in decision-maker’s preferences

as represented by reward functions. To solve many instances of the AS-POMDP model

and evaluate alternative policies resulting from different parameters, we introduced two

fast approximation methods that were able to find the lower and upper bounds of the

optimal value function of the AS-POMDP model. We compared the gap between the lower

and upper bounds to show that our results were accurate enough for decision-making.

Further, We discussed some structural properties of the AS-POMDP model that provide

insight into the AS-POMDP model-based policies. We also discussed an explanation for

why the dynamic biopsy policies given by the AS-POMDP model are similar to static

policies recommended in the current biopsy guidelines, and we used inverse optimization
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to approximate how each guideline weighs biopsy burden versus late detection of cancer

progression.

In the computational results of Chapter 3, we first presented the value functions and

biopsy policies given by the AS-POMDP model in four different prostate cancer AS stud-

ies, if weighted equally on the burden of one biopsy and the penalty of one-year late de-

tection to cancer progression. We observed that the optimal value function was not always

monotone in the belief state. This was because the objective of the AS-POMDP model

was to investigate rather than improve patients’ cancer state, and patients may leave the

system without any future cost if detected as high-risk cancer. Such models can be more

straightforward for studies of medical testing, and more accurate, especially when other

metrics such as QALYs are hard to estimate and too obscure for decision-making. We also

observed that the biopsy policies given by the optimal value function were monotone in

the belief in high-risk cancer state, i.e., it would trigger a biopsy as long as the belief in

the high-risk cancer state reached a threshold. The optimal biopsy policy threshold would

depend on the model parameters, including cancer progression rate and biopsy sensitiv-

ity. In general, models with a higher cancer progression rate or lower biopsy sensitivity

would give a lower belief threshold for conducting a biopsy. We then changed the reward

weights in the reward function to see how the model-based biopsy policy depends on the

decision-maker’s preference on biopsy burden and late detection time in each study cen-

ter. We found that the more heavily the decision-maker weighs the late detection of cancer

progression, the lower the belief threshold for triggering a biopsy in the optimal biopsy

policy.

Lastly, we compared the performance of the optimal biopsy policies given by the

AS-POMDP model and current biopsy guidelines in four AS study centers by a simu-

lation study. The model-based biopsy policies were all Pareto optimal. The policies based
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on published guidelines were close to the efficient frontier. We also ran a hypothetical

experiment using MRI in the AS-POMDP model, which showed the potential value of

the AS-POMDP model with more accurate bio-markers than PSA. Lastly, we used an in-

verse optimization approach to estimate the reward weights implied by the current biopsy

guidelines.

In Chapter 4, we introduced a new POMDP model that we referred to as an MPOMDP

that addresses the issue of parameter ambiguity in POMDP models. Motivated by the

prostate cancer AS optimization problem in Chapter 3, when there are multiple credible

optimization models with the same structure and different model parameters, the proposed

MPOMDP model can learn the model credibility from the system outputs over time, and

seek a single optimal policy that maximizes the expected weighted future rewards across

models. We also discussed some structural properties of the proposed MPOMDP model,

which not only reveal the benefit of the MPOMDP model by accounting parameter ambi-

guity, but also motivate the solution methods to MPOMDP models. We then introduced an

exact solution method and two approximation methods suited for MPOMDP models, and

compared their performance in terms of the quality of solutions and computation times

using computational experiments. Finally, we used the example of prostate cancer AS in

Chapter 2 and 3 as a case study, to demonstrate the potential impact of the MPOMDP

model when applied to a real-world sequential decision making problem in the context of

medical decision-making.

The MPOMDP model considered multiple POMDP models simultaneously using the

weight parameter. The model weight can be interpreted as the model importance, or the

probability that each model being the best model describing the object to study. When ap-

plying the MPOMDP model to real-world problems, the model weight can be initialized

by some prior knowledge or as a non-informative prior distribution over different POMDP
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models. Then, every time when there is new output from the system, the MPOMDP model

can update the model weight so that more credible models will be assigned higher model

weights. We also showed that an MPOMDP could be reformulated as a new POMDP

model with an extended state space, where a state in the new POMDP model is a com-

bination of the current model and the state in the original POMDP model. Utilizing this

property, we then derived the belief update formula for both the system state and model

in an MPOMDP. Further, motivated by the one-pass algorithm for POMDP models, we

introduced an exact solution method to the proposed MPOMDP model. However, because

of the complexity of an MPOMDP model, even for moderate size problems, the exact so-

lution method is not feasible in a reasonable amount of time. We then introduced two fast

approximation algorithms applying the ε-greedy and branch-and-bound sampling meth-

ods, and showed the asymptotic convergence of each approximation method. Compared

with the robust optimization approach, there are three main advantages of the MPOMDP

model. First, the MPOMDP model formulation has some nice properties, including that

the belief vector is a sufficient statistic for the past information and the existence of a deter-

ministic and Markovian optimal policy. Second, the MPOMDP model is able to learn the

model credibility for each individual over time from past actions and observations. Third,

the MPOMDP model provides a less conservative policy that maximizes the average of

the value functions weighted by the model belief.

In the computational experiments of Chapter 4, we first used a toy example with two

POMDPs to illustrate the use case of the proposed MPOMDP model. We formulated the

optimization problem of two ambiguous POMDPs as an MPOMDP, solved the optimal

value function and policy exactly, and compared its performance with other traditional so-

lutions. The result showed that when there were two ambiguous POMDPs, the MPOMDP

solution dominated the solution by randomly pick one POMDP model, or the mean-value
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POMDP model. This was because that the MPOMDP can consider the performance of

both POMDPs according to the model weight learned from system outputs. From the re-

sult we can see, the VSS and EVPI are larger when the decision-maker is less certain about

the model and state distribution. We also used this example to compare the performance of

two fast approximation methods. The ε-greedy sampling method updated the lower bound

estimate of the optimal value function in each iteration, which converged asymptotically

over time. Compared with the epsilon-greedy sampling method, the branch-and-bound

sampling method converged faster by maintaining an upper bound estimate of the value

function. But it also required extra computation effort to calculate the upper bound esti-

mates. Lastly, we demonstrated the benefit of the MPOMDP model in the case study of

prostate cancer AS, which is the motivating example of this thesis in both Chapter 2 and

3. We showed that for a new patient in prostate cancer AS, who may be best described by

either of the models in the JH, UCSF, U of T, and PRIAS study centers, the MPOMDP

model could find a single optimal biopsy policy that is slightly worse than the optimal

biopsy policy given by the POMDP model of the true study center, but much better than

the policy given by a wrong POMDP model or the mean-value POMDP model. Given

the trade-off between the biopsy burden and late detection of a cancer progression by the

decision-maker, the MPOMDP model achieved the minimum expected future costs when

the true model was not known with certainty.

There are also some limitations of the work in this thesis, which lead to opportunities

for future research. In Chapter 2, we reduced a complex disease (prostate cancer) to a two-

state (low-risk and high-risk cancer states) stochastic model with two outputs of the disease

(results of PSA test and biopsy) as informative observations. Although such models cannot

capture all details about the disease, it consistently discriminates health states on the basis

of the most significant factors defining study inclusion for each cohort. We are looking
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forward to improving our model formulation when more data is available. Second, our

proposed HMM included the null observation of biopsy as non-informative missingness.

In other words, we assumed no difference between a missed biopsy by the design of the

study, and a missed biopsy result for other reasons (e.g., patient preference, data lost to

follow-up). However, by using the null observation to denote the biopsy missingness in

the HMM, we mitigated bias in our estimates of the model parameters. Finally, another

way to monitor prostate cancer in recent AS protocols is by MRI scans, but it was not

considered in this study due to the lack of sufficient longitudinal data to date.

In Chapter 3, we used a two-state POMDP model to approximate the stochastic sys-

tem of prostate cancer AS, and only considered the information from PSA test and biopsy.

There might be other covariates in prostate cancer AS such as prostate volume, PSA dou-

bling time, and the results of MRI scans that could be used to understand the underlying

cancer state, but were not considered in this study. We look forward to improving our

model by including these factors when more data becomes available. Second, the model

parameters of the transition and observation probabilities are assumed to be stationary, i.e.,

independent of time, which may not be accurate in reality. However, incorporating time-

dependent factors would require the estimates of the model parameters in pre-studies, and

more computational effort to solve the model. Third, our results of the fast approxima-

tion method for finding the upper bound of the optimal value function, and the sufficient

and necessary condition for the existence of a control-limit type policy only work in a

two-state POMDP model. The generalization of these results to general POMDP mod-

els may not be trivial and is left for future studies. Although the focus of this article is

on prostate cancer AS, our model formulation is flexible and could be applied to other

medical decision-making problems in chronic disease management.

In Chapter 4, we mainly focused on the optimal value problem of an MPOMDP model
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in this chapter, where the objective was to maximize the value function across all different

POMDPs. Although the weight parameter given by the model belief is adaptive in the

sense that it is learned from the system outputs over time, it may not capture all purposes

of a decision-maker. There could be other objectives in ambiguous POMDPs, for example,

maximizing the worst-case reward, minimize the conditional value-at-risk, and other prob-

ability measures that are widely used in robust optimization. However, a potential issue

for considering other objective functions will be the existence of an optimal policy that is

not overly complex and practical for real-world problems, for example, a deterministic and

Markovian policy. We leave the theoretical and methodological study of the extension of

the optimal value problem to future research. Second, the proposed MPOMDP model only

considers discrete uncertainty sets of model parameters, which assumes a limited number

of possible model parameters. This is different from many stochastic optimization works,

where the uncertainty sets of model parameters are often continuous. However, the work

of MPOMDP in this chapter was motivated by the issue when there were multiple credible

but competing well-established models for the optimization problem. We look forward

to generalizing the work of the MPOMDP model to continuous uncertainty sets in other

applications where there are strong needs and better fits.

In summary, this thesis presented data-driven stochastic sequential decision-making

approaches with a focus on cancer screening applications. We formulated stochastic and

statistical models to describe and estimate the cancer screening system, which were able

to account for the stochastic progression, partial observability, and patients’ heterogeneity

of the cancer disease. We also developed stochastic optimization models for individu-

alized sequential decision-making in cancer screening, with the extension to address the

issue of parameter ambiguity. There are several opportunities for future research on this

topic including the following. First, the methodology we applied to this thesis was from
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a descriptive analysis of estimating the system of cancer surveillance using observational

data, to a prescriptive analysis of optimizing sequential decision-making using optimiza-

tion models built upon the descriptive models. The potential issues of this methodology

could be the lack of observational data, and the delay in model updating for new observa-

tions. Development of new online learning approaches that can not only update the models

with new observations in real time, but also balance the optimal strategy learned from the

existing data with policy implications of newly acquired data that may reflect changes to

the underlying system over time. Second, for the topic of uncertainty in POMDP models,

we focused on a specific case of parameter ambiguity where there are a finite number of

credible POMDPs have the same structure but different parameters, in other words, the

model parameters have discrete uncertainty sets. Our work could be extended to the cases

where the uncertainty sets of the model parameters are continuous, and especially follow-

ing certain distributions. Third, from a theoretical perspective, when using the POMDP

and MPOMDP for sequential decision-making optimization, the optimal value functions

are given by the backward induction approach, so that the structures of the optimal value

function and policy are obscure. For the structure of the optimal value function, the best

we know is that it is piecewise-linear and convex in the belief vector; and for the opti-

mal policy, we often want to show it is a control-limit type policy for the ease of use and

explanation. Finally, it could be worthwhile to investigate structural properties of the opti-

mal value function and policy given by backward induction, which would in turn motivate

more efficient solution and approximation methods to the POMDP and MPOMDP models,

and perhaps help to popularize them for real-world applications. The work in this thesis

helps provide a foundation for these and other possible future directions of research.
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