
Compiler Auto-Tuning for Code Optimization

by

Sunghyun Park

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2021

Doctoral Committee:

Professor Scott Mahlke, Chair
Associate Professor Ronald Dreslinski Jr
Professor Mingyan Liu
Associate Professor Yongjun Park, Hanyang University
Associate Professor Lingjia Tang

© Sunghyun Park

sunggg@umich.edu

ORCID iD: 0000-0003-4793-9069

2021

To my family

ii

ACKNOWLEDGEMENTS

Overall, it was such a journey. However, this journey would have not been possible without

the support of many people.

First of all, I would like to thank Professor Scott Mahlke for giving me this wonderful

opportunity to grow and advising me how to become an independent researcher. By using

his insights and critical thinking, I could learn important questions that have to be asked

and shape my own way of attacking the problem. Also, I truly appreciate how he helped

me making important decisions in/outside the research.

It was fortunate to have the privilege of working with amazing people. Professor

Yongjun Park has provided invaluable advice and support for my studies. The mentor-

ship from Dr. Youfeng Wu had a great influence on my direction of thesis by assisting me

to explore my research interests during my internship at Intel. The collaboration work with

folks at Carnegie Mellon University under the guidance of Professor Tianqi Chen and Pro-

fessor Zhihao Jia has been inspiring and their insights have been helpful to move forward

to the right direction. I also enjoyed working as a teaching assistant for Professor Lingjia

Tang by having certain degree of freedom in leading every Friday’s discussion session. The

support and advice from Professor Jae W. Lee was very helpful during the graduate school

admission process. Also, Professor Mingyan Liu and Ronald Dreslinski Jr gave me great

feedback to improve my dissertation.

I am grateful to have great comrades as a part of the CCCP research group. Ankit

Sethia, Mehrzad Samadi, Anoushe Jamshidi, Andrew Lukefahr, Shruti Padmanabha, Hy-

oun Kyu Cho, John Kloosterman, Jason Jong Kyu Park, and Janghaeng Lee have been

iii

always approachable and willing to help me whenever I need. Also, it has been fun to suf-

fer together and grow together with Babak Zamirai, Jiecao Yu, Shikai Li, Jonathan Bailey,

Salar Latifi, Ze Zhang, Hossein Golestani, Pedram Zamirai, Armand Behroozi, Brandon

Nguyen, Yunjie Pan and Sanjay Sri Vallabh.

When life gets rough on me, I could use my friends to laugh and get recharged. Hy-

ochan Ahn, Sungwoon Jang, Sangmin Yoo, Heewoo Kim, Gwen Ahn, Sangtaek Oh, Walter

Shin, Chihyo Ahn, Kyumin Kwon, Byungjoon Lee, Taeju Park, Junki Cho, Seungjong Lee,

Changyoung Jeong, Jonghoon Shin, Hun Kim, Hyorim Han and many others made Ann

Arbor feel like home. Jongjin Lee, Chungha Sung and Sungbo Park are the ones who have

been going through the graduate school together at different locations in North America.

Although he is half a globe away, my old friend, Daseul Shin, has been giving me great

encouragement by having our own silly conversations over the phone. Also, whenever I

visit Korea once a year, Inhyuk Seo, Yonghan Kim, Junoh Park, Heesung Lee, Hyunkwon

Shin, Ji-Su Lee, Seejun Choi, Sookyung Park, Jae-Yun Kim, Sedong Yeo, Minseo Kim,

Jaewook Mirco Jung, Dojeon Lee, Junsu Kim, Jaehwan Seol, Sungmin Kim, and Jimo Gu

always welcome me and make me feel like old times. During my last semester, I had a

unique opportunity to collaborate with my old friend, Byungsoo Jeon. I have been enjoy-

ing this special experience very much. Also, I am happy to have my close friend, Yoon

Jung, nearby for my new start in Seattle.

I would like to give my special thanks to my dear friend, Youngdae Kim, who always

has been funny and inspiring to me. Without him, this journey would not have started. I

miss him so much lately.

Last but not least, my utmost gratitude goes to my beloved family. Their infinite love

and support made me possible to come this far. Unconditional love from my grandmother

always makes me feel warm inside, steadfast belief from my parents gives me confidence to

challenge myself to the next step, and my little bother always provides me with an immense

amount of gratitude for everything he does for our family. I cannot wait to celebrate the

iv

end of this chapter in my life with them.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

LIST OF TABLES . xiii

ABSTRACT . xiv

CHAPTER

1 Introduction . 1

1.1 Introduction . 1
1.2 Challenges and Contributions . 3

1.2.1 Feasibility Study of Learning-Based Auto-Tuning Methods . . . 3
1.2.2 Customization for a Group of Compiler Optimizations 3
1.2.3 Search for the Best Use of Diverse Backends 4
1.2.4 Provision of Low-Cost Fault Protection 4

1.3 Background . 5
1.3.1 Compilers From Diverse Domains and Their Optimizations . . . 5
1.3.2 Compiler Auto-Tuning . 6

2 Multi-objective Exploration for Practical Optimization Decisions in Binary
Translation . 10

2.1 Introduction . 10
2.2 Background . 12

2.2.1 Our Infrastructure with Binary Translation 12
2.2.2 Supervised Multi-class Classification 14

2.3 Motivation . 16
2.4 Challenges and Opportunities . 17
2.5 Data Generation . 18

2.5.1 Feature Extraction . 19
2.5.2 Optimal Factor Exploration . 20

2.6 Evaluation . 20
2.6.1 Experimental Setup . 20
2.6.2 Prediction Accuracy . 22

vi

2.6.3 Performance Improvement In Translated Code 24
2.6.4 Prediction Overhead Analysis 25
2.6.5 Choice of Classification Algorithm 26

2.7 Redundant Feature Pruning . 28
2.8 Related Works . 30
2.9 Conclusion . 31

3 SRTuner: Effective Compiler Optimization Customization By Exposing Syn-
ergistic Relations . 33

3.1 Introduction . 33
3.2 Related Works . 35
3.3 Design Motivation . 37

3.3.1 Multistage Structure . 38
3.3.2 Optimization Impact Estimation 40
3.3.3 Handling Local Optima . 42

3.4 SRTuner . 43
3.4.1 Reward Policy . 46
3.4.2 Stage-Optimization Mapping . 47
3.4.3 Extract Important Synergistic Relations 48

3.5 Performance Evaluation . 48
3.5.1 Experimental Setup . 48
3.5.2 GCC . 49
3.5.3 TVM . 51
3.5.4 OpenCL Compilers . 52

3.6 Discussion . 52
3.6.1 Identification Of Important Misuses 52
3.6.2 Generalization Of Tuning Experiences 55

3.7 Conclusion . 57

4 Collage: Auto-tuning Deep Learning Execution Plans With Diverse Backends 58

4.1 Introduction . 58
4.2 Related Work . 62
4.3 Overview . 63
4.4 Backend Pattern Abstraction . 64
4.5 Auto-tuning Execution Plan . 66

4.5.1 Backend Placement Problem . 66
4.5.2 Op-level Auto-tuning . 66
4.5.3 Graph-level Auto-tuning . 69

4.6 Evaluation . 70
4.6.1 Experimental Setup . 70
4.6.2 End-to-end Evaluation . 71
4.6.3 Analysis of Backend Operator Placement 73
4.6.4 Tuning Time . 73

4.7 Conclusion . 74

5 Low-Cost Prediction-Based Fault Protection Strategy 76

vii

5.1 Introduction . 76
5.2 Motivation and Idea . 78
5.3 System Overview . 82
5.4 Prediction Techniques . 83

5.4.1 Dynamic Interpolation . 84
5.4.2 Approximate Memoization . 85

5.5 Run-time Management . 86
5.6 Training . 88
5.7 Evaluation . 88

5.7.1 Performance Overhead . 89
5.7.2 Reliability . 93
5.7.3 The Rationality of Acceptable Range 94

5.8 Related Works . 95
5.9 Conclusion . 96

6 Conclusion and Future Works . 97

6.1 Conclusion . 97
6.2 Future Works . 99

BIBLIOGRAPHY . 101

viii

LIST OF FIGURES

1.1 Growth of computer performance using SPECintCPU benchmark suite [78].
The end of Dennard Scaling and Moore’s Law slows down the performance
improvement with hardware innovations. Annotation (star) indicates where
we stand today in 2020. 2

1.2 Representative tuning problems . 7
1.3 Representative tuning approaches . 8

2.1 Big picture of our HW/SW co-designed CPU with a DBT system. It con-
stains two different microarchitectures that each supports its own ISA. The
highlighted box illustrates the translation process by a binary translator and a
dynamic optimizer. 13

2.2 Distribution of optimal unroll factors. 16
2.3 Evaluation of current heuristic design. Prediction accuracy for optimal loop

unrolling decision and its impact on the dynamic instruction count in the re-
sulting optimized code are measured. 17

2.4 Prediction accuracy with various classes. 23
2.5 The breakdown of wrong predictions. 23
2.6 Averaged instruction count reduction and the ratio of optimized loops com-

pared to Oracle for each decision model. 25
2.7 Inference time for each model with given budget. 26
2.8 The change in prediction accuracy and inference time during greedy feature

selection process. With Top 15 features (marked with stars), the decision tree
model can show an almost identical level of prediction accuracy to the model
with all 34 features while satisfying the time constraint. 28

ix

3.1 Motivational experiment with two representative compilers. A reward (+1) is
assigned whenever a combination outperforms the baseline setting. By sam-
pling 2,000 settings, averaged reward for configuring each flag is examined. . . 38

3.2 Averaged reward given extra condition: (a)-(c) for GCC, (d) for TVM. Start-
ing from Figure 3.1, the high-impact flag is configured for each benchmark.
(a) shows the average reward after a single stage. When more than one flags
are given, the relation between optimizations can be unveiled. (b) and (c)
present the positive/negative interaction between two given optimizations, re-
spectively. (d) demonstrates the same approach can be applied to TVM as
well. 39

3.3 Comparison between prior impact estimation method and our distribution-
based method. To approximate an optimization impact, prior approaches ig-
nore inter-optimization relations and measure the performance difference on
the single fixed configurations of the rest. However, our method estimates
based on the performance distribution to consider interactions with diverse
configurations of others. 41

3.4 Performance distributions and their KL divergence (DKL) in consumer jpeg c
given a certain GCC optimization. Relative frequency presents an occurrence
normalized by the entire sample counts. (a) suggests to turn off the flag
by showing a higher relative frequency of outperforming the baseline (i.e.,
speedup above 1.0) when disabled. (c) illustrates how a decision of earlier
optimization affects latter optimization decision. Left graph presents perfor-
mance distribution when there is no other optimizations configured and right
two graphs display how the performance distribution changes when (a) or (b)
are configured, respectively. 42

3.5 SRTuner overview . 43
3.6 An example of multistage structure used in SRTuner. Each stage configures an

optimization and each node represents a combination forged at earlier stages.
For example, the annotated node (?) will configure X3 when config1 and con-
fig2 are chosen for X1 and X2, respectively. Each node counts the number of
visits, n, and accumulates rewards, r. 45

3.7 An example of SRTuner strategy. White nodes represent expanded nodes while
black nodes imply topmost nodes in the unknown areas. +1 reward is applied
when a trial outperforms the baseline. As tuning proceeds, SRTuner naturally
exposes popular paths on the structure, which show the constructive relations
between optimization decisions. 45

3.8 Visualization of different reward policies . 46
3.9 Analysis of reordering frequencies. Each performance is normalized by the

one without remapping. 47
3.10 Tuning C/C++ applications with GCC on Intel Xeon E5-2430. 50
3.11 Tuning deep learning workloads with TVM on NVIDIA RTX 2080Ti. 51
3.12 Tuning deep learning workloads with TVM on NVIDIA Quadro K620. 52
3.13 Tuning gemm with OpenCL on Intel i7-9700K. 53
3.14 Tuning gemm with OpenCL on NVIDIA RTX 2080Ti. 53

x

3.15 Examine representative subset of synergistic optimizations revealed by 54
3.16 Hot code region in telecom adpcm d where if-conversion and phi-node opti-

mizations are seriously misapplied by GCC. 54
3.17 Diverse applications with -fno-if-conversion and -fno-ssa-phiopt in their syn-

ergistic optimizations. Breakdown shows their importance in each customized
setting. 55

3.18 Experiment with eight different kernels (k1-8) and diverse SM activation ra-
tios. (a) Performance ratio between high-end and low-end settings. Green and
red cells imply cases where high-end and low-end settings should be applied
respectively. Blue line represents a possible decision boundary. (b) Speed-
up when choosing one of high-end and low-end settings in the right places.
Speed-up is computed against the performance of default setting with 100%
SMs. 56

4.1 Performance of various convolution operators in ResNext-50 on NVIDIA RTX
2070; Note that there is no single backend that always delivers the fastest
implementation. 59

4.2 An example of possible execution strategies for a simple workload with four
different backends. This illustrates the explosive size of the search space and
the difficulty in the efficient exploration. To assign backend, both graph topol-
ogy and the supported backend pattern should be matched. In case of lowering
to fused operators or offloading partial graph to inference engines, matched
operators should not have any cyclic data dependency to avoid deadlock. . . . 60

4.3 System overview of Collage . 63
4.4 Example illustrating how the backend pattern generator would automatically

generate valid patterns with the pattern rule assumed in the listing 1. 65
4.5 Example of Dynamic Programming (DP) procedures for pattern matching and

optimal cost update . 67
4.6 Example of Evolutionary Search (ES) procedure 69
4.7 End-to-end performance of diverse strategies in five different workloads on

NVIDIA RTX 2070. Each performance is normalized by the performance
of Collage. Note that following state-of-the-arts backends are employed for
each framework according to their capabilities: PyTorch (cuDNN, cuBLAS),
TVM (cuDNN, cuBLAS, AutoTVM) and (cuDNN, cuBLAS, AutoTVM, and
TensorRT). 71

4.8 Backend placement discovered by Collage on ResNeXt50 and BERT. 72
4.9 Op-level tuning (DP) time breakdown for five different workloads. On aver-

age, profiling overhead for operator cost measurements takes up 82% of the
entire tuning time. Note that profiling is only necessary for new operators.
Once the cost of a new operator is measured, its information will be saved in
the logging database in Collage to avoid the repetitive profiling. 74

4.10 Performance improvement of graph-level tuning over time for five different
workloads. The y-axis presents the speedup relative to op-level tuning (DP).
We observe that one hour of graph-level tuning empirically provides good
trade-off between tuning time and speedup for most workloads. 74

xi

5.1 Idea of each protection strategy. (a) Re-compute and validate. (b) Estimate
and fuzzy-validate. 79

5.2 Proportion of dynamic instructions whose computation outputs can be esti-
mated. Measured in Rodinia [54] benchmark suite. 80

5.3 System Overview . 82
5.4 Sketch of dynamic interpolation. Whenever slope change is above tuning pa-

rameter (TP), a phase is defined. During the validation process at (c), a data
element is considered as a possible fault if the difference between original
value and prediction value is greater than acceptable range (AR). 83

5.5 An example of run-time management for dynamic interpolation. Run-time
management periodically generates context signatures by summarizing the
current run-time context to adjust TP based on the QoS model. 87

5.6 Test result with test inputs of each benchmarks (AR : Acceptable Range) . . . 89
5.7 Test result with test inputs of each benchmarks (AR : Acceptable Range) . . . 90
5.8 The detailed analysis for two selected benchmarks 91
5.9 The result of the fault injection experiment. Each protection scheme is tagged

under every application. 92

xii

LIST OF TABLES

2.1 A subset of features for loop unroll decision under different categories. The
ratio of each static operation is computed by dividing the number of each op-
eration by the number of static instructions. Note, unavailable features (e.g.,
live range size) in our infrastructure are crossed out. The total of 34 features
are extracted and used for the experiment. 19

2.2 Configurations for the classifiers. Annotated (*) configurations are generated
without any restriction on both the maximum depth and the maximum number
of leaf nodes. 22

2.3 Memory requirement for each model. The requirements for decision tree and
random forest configurations are represented by their largest configurations. . . 27

2.4 Top 15 features for decision tree. Check marks (X) indicate that the corre-
sponding features are considered in the current heuristic design: 8 out of the
top 15 features are employed by current heuristics. 29

3.1 Experiment setup . 49
3.2 GPU specification. We consider RTX 2080 Ti and Quadro K620 as high-end

and low-end devices respectively. 55

5.1 Selected benchmarks. The impact of skipping re-computation can be imagined
by provided computation type and location. Both training input and test input
are randomly generated or selected without any intersection. 86

xiii

ABSTRACT

To deliver the best performance to users, modern compilers apply hundreds of optimiza-

tions that transform a program into a more efficient form. Since a program execution is a

complicated process of the delicate interplay between software and hardware, each com-

piler optimization should be carefully determined with consideration for its trade-offs to

benefit from the corresponding code transformation. Today, most of the important opti-

mization decisions are made by hand-crafted heuristics which often largely depend on the

developers’ expertise. However, as the complexity of both software and hardware con-

tinues to increase, performance analysis often overly simplifies the interactions between

diverse system components and cannot capture system characteristics accurately. As a re-

sult, current human-made heuristics generally fail to achieve maximum performance. In

the era of limited processor performance gains, this loss is becoming more significant. Fur-

thermore, a huge amount of time and cost need to be repeatedly invested for this manual

tuning process whenever one of the system components is updated.

To attack these challenges, this thesis proposes a suite of automatic methods that can

successfully improve optimization decisions inside state-of-art compilers by effectively ex-

ploiting the knowledge acquired during previous executions. Various representative com-

pilers from diverse domains are investigated with different backends.

First, the decision for a single optimization is investigated. By focusing on loop un-

rolling, which is one of the most representative compiler optimizations, the first part of

this thesis suggests a methodology that automatically constructs the best affordable deci-

sion model for the dynamic binary translator in mobile system. By effectively learning the

xiv

patterns between optimal decisions and workload features from the training dataset, this

method significantly outperforms the best heuristics handwritten by industry experts by

saving 1.5× dynamic instructions.

Next, a group of optimizations is considered. To identify the best use of existing opti-

mizations, the second work of this thesis proposes an intelligent pure search method, called

SRTuner, which customizes effective optimization settings for each workload by exposing

important inter-optimization relations. Results show that SRTuner accelerates target execu-

tions upto 34.4× compared to the highest level of optimization provided by each compiler

while outperforming prior state-of-the-art tuning methods. As a byproduct of its unique

tuning strategy, SRTuner offers synergistic optimizations which can benefit future tuning

strategies.

The third work of this thesis proposes Collage which is an auto-tuning system that

attacks the practical problem of identifying the best mixed use of diverse backends to ef-

ficiently run deep learning workloads on their target devices. The experimental results

demonstrate that this system efficiently customizes fast execution strategy that outperforms

the hand-written strategies in the existing deep learning frameworks by 1.3× by investing

a short amount of tuning time.

Finally, the last work investigates the field of reliability and suggests RSkip which pro-

vides a cost-efficient protection scheme for a transient fault. By leveraging the trade-off

between its overhead and protection rate, RSkip optimizes the protection scheme by creat-

ing an approximate copy of the program that will be used to detect a potential fault. With a

control for the loss in the protection rate, RSkip could reduce protection cost by 1.83×.

The contributions in this thesis improve future optimization decisions in state-of-the-

arts compilers by searching for the right use of existing optimizations for each workload

and hardware devices and identifying the pattern between good optimization settings and

workload characteristics. By delivering better optimizations settings, users can enjoy better

performance by better utilizing their underlying hardware.

xv

CHAPTER 1

Introduction

1.1 Introduction
The main mission of a compiler is to transform a program into its best form for the target
system by applying hundreds of various optimizations. Since a compiled program will be
running on the top of multiple system layers, various interactions between components
should be considered to make optimal optimization decisions. For example, loop unrolling

is a representative compiler optimization that can increase both instruction-level parallelism
and optimization window at the cost of certain degree of code bloat. As its actual impact
is the combined effect of both advantage and disadvantage from the optimization, loop
unrolling may harm performance when it is too aggressively used in the system with
restricted memory like embedded system. However, when the increased optimization
window can significantly benefit later optimizations or underlying hardware supports high
level of instruction parallelism, even embedded system can achieve significant improvement
with aggressive use of loop unrolling. Therefore, optimization should be carefully configured
depending on the situation for its right use.

Today, such optimization decisions in modern compilers mostly rely on heuristic decision
models hand-crafted by system developers [149, 70]. To construct an effective model,
developers often conduct performance analysis to capture system characteristics and estimate
the impact of an optimization. Although such the manual approach may be feasible, it
inevitably requires an expert level of understanding towards the overall target system and
a huge amount of person-hours. Given that these non-trivial manual efforts need to be
repeatedly invested to reflect any update among the system components, heuristic-based
approach can be highly resource-intensive and time-consuming. This may become a serious
problem for the fast evolving domain like deep learning. Furthermore, due to the increasing
complexity and diversity of the both hardware and software, it gets much harder to model
system characteristics accurately. An optimization may have different impact depending on

1

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

P
er

fo
rm

an
ce

 v
s.

 V
A

X
11

-7
80

 (
19

78
)

CISC RISC Multicore
Amdahl’s

Law

22%/yr

≈ 2x/3.5yrs

52%/yr

≈ 2x/1.5yrs

23%/yr

≈ 2x/3.5yrs

12
%

/y
r

≈
 2

x/
6y

rs

3%/yr

≈ 2x/20yrs

End of Dennard Scaling

Slowing Moore’s Law

Flatten?

Figure 1.1: Growth of computer performance using SPECintCPU benchmark suite [78].
The end of Dennard Scaling and Moore’s Law slows down the performance improvement
with hardware innovations. Annotation (star) indicates where we stand today in 2020.

the target hardware, application, or input. On the top of that, various interactions with other
optimizations add severe difficulty in performance analysis. As a result, even system experts
often overly simplify system characteristics, which leads to the sub-optimal optimization
decisions. Stephenson and Amarasinghe reported that a heuristic decision model in Open
Research Compiler (ORC) makes optimal decisions only 16% of the time [149]. Also,
even the most naive tuner easily outperforms the highest optimization setting in GCC
by 11% [70]. These performance losses can be critical since squeezing the last drop of
performance actually matters. At the data center scale, 1% of performance improvement
can save significant amount of operation cost and there are explosive demands for faster
deep learning execution from various domains. Besides, as Figure 1.1 illustrates, two
digits of yearly performance gain became almost impossible to expect from hardware
improvements due to the end of Dennard Scaling and Moore’s Law. Therefore, delivery of
better optimization decision is becoming more crucial.

To attack this lack of efficiency, we consider an alternative. To take humans out-of-the-
loop and maximize performance, researchers have suggested diverse compiler auto-tuning
methods [149, 70, 32, 89]. By exploiting information acquired from previous executions,
these auto-tuning approaches improve the future execution. Iterative compilation is one
of such tuning approaches [42, 90, 124]. Within the limited trials, iterative compilation
techniques try to identify the best possible configurations of a set of optimizations for
the target program. For example, GCC provides classic one-size-fits-all approaches with
standard optimization levels (e.g., -O3) that essentially applies fixed configurations of a
set of optimizations for every situation. Prior works have demonstrated that iterative com-

2

pilation methods can customize better configurations that outperform the most aggressive
performance-oriented standard optimization for each situation. To generate promising candi-
dates during a tuning process, these techniques equip diverse strategies of utilizing feedback,
such as random search [70], genetic algorithm [68, 83], statistical methods [124, 119].
As machine learning techniques are demonstrated to be very powerful at recognizing the
pattern and drawing decision boundaries in multi-dimensional space, various learning-based
approaches have been also examined for the the effective use of the prior executions. For
instance, Stephenson and Amarasinghe showed that machine learning classifiers can be
adopted as a decision model for a single optimization by defining an optimization decision
as a classification problem [149].

Inspired by prior approaches, this thesis endeavors to expand the applicability of auto-
tuning technologies by examining complicated optimization decision problems in various
representative compilers from diverse domains with different back-ends. Depending on
the problem, the feasibility of diverse machine learning concepts and techniques is also
investigated.

1.2 Challenges and Contributions
This thesis suggests a suite of auto-tuning methods that can effectively improve various
optimization decisions inside modern compilers. To demonstrate their effectiveness, state-
of-the-arts compilers from different domains are examined with diverse target hardware
architectures.

1.2.1 Feasibility Study of Learning-Based Auto-Tuning Methods

To assess feasibility of learning-based auto-tuning, we examine the dynamic binary translator
for mobile processor that has hard constraints to satisfy [121]. As memory resources are
quite limited in mobile processor, there exist couple of budgets allowed for each optimization
in dynamic binary translator. Also, since optimization will be dynamically applied during
translation at run-time, each optimization should be completed within certain time limit.
Therefore, an optimization decision model for the target system has to be fast and lightweight.
Chapter 2 describes how the best affordable decision model can be automatically constructed
by supervised learning for a single optimization in this system with tough restrictions. Its
performance is evaluated with the hand-crafted heuristics designed by industry experts.

1.2.2 Customization for a Group of Compiler Optimizations

To deliver the optimization setting, state-of-the-arts compilers offer several standard opti-
mization levels, which are a few fixed set of optimization settings under the hood. As the
complexity of both hardware and software systems continuously increases, these one-for-all

3

approach cannot deliver the maximum performance anymore. Despite the obvious opportu-
nity, finding the best use of existing optimizations is known to be highly difficult due to the
vast search space and the presence of inter-optimization relations. To tackle down this chal-
lenge, Chapter 3 suggests SRTuner which customizes the competitive optimization setting by
efficiently revealing the interaction between optimizations and using them for the effective
tuning process. Due to its unique approach, this method can provide important synergistic
optimizations for the given workload at no extra cost. This chapter also discusses how this
information can benefit future compiler optimization design and auto-tuning studies.

1.2.3 Search for the Best Use of Diverse Backends

Strong needs for the powerful platform for the efficient Deep Learning (DL) execution has
driven rapid evolution in various software backends. These backends include optimized
library (e.g., cuDNN, cuBLAS), which provides efficient operator kernels, and inference
engines (e.g., TensorRT), which offers a run-time to execute the deep learning models
and apply various graph-level cross-kernel optimizations. To extract the best performance,
it is key to use the right backend for each case given the strength and weakness of each
backend. However, it is difficult to capture the full capabilities of diverse backends with
different characteristics. Complex fusion patterns from advanced fusion engines add the
complexity. Furthermore, tuning process is not easy since both topology of DL workload
and the coverage of each backend should be considered together to find the legitimate
candidate of execution plan with multiple backends. As a breakthrough, Chapter 4 proposes
Collage, which is the auto-tuning system that efficiently customizes the optimal execution
strategy with diverse backends. To fully leverage the capability of each unique backends,
this system provides the seamless user interface that supports flexible description of pattern
rules that each backend follows. For the effective search, this system adopts two-level tuning
approach. By ignoring the cross-kernel optimizations in the inference engines, the first level
tuner could introduce dynamic programming with efficient cost model that can customize
the near-optimal execution plan for the real-life deep learning models within a few seconds.
Then, based on the plan created by the first tuner, the second tuner provides the fine-tuning
opportunity that makes up for the potential loss from the relaxation regarding the graph-wide
optimizations.

1.2.4 Provision of Low-Cost Fault Protection

Increasing failures from transient faults necessitates the cost-efficient protection mechanism
that will be always activated. To provide a low-cost software-level protection, Chapter 5
propose a novel prediction-based transient fault protection strategy. Instead of re-executing
expensive computations for validation, an output prediction is used to cheaply determine an

4

approximate value for a sequence of computation. When actual computation and prediction
agree within a predefined acceptable range, the computation is assumed fault-free, and
expensive re-computation can be skipped. With this approach, a significant reduction in
dynamic instruction counts is possible. As missed faults may occur, it is crucial to explicitly
keep their occurrences to a small amount by adjusting an acceptable range and aggressiveness
of approximation techniques properly. Therefore, with the suggested prediction-based
scheme, this work also discusses how to control them accordingly.

1.3 Background

1.3.1 Compilers From Diverse Domains and Their Optimizations

To deliver the most efficient form of binary executable for the given workload and underlying
hardware, various compiler stacks have been developed. GCC [21] is one of the most popular
state-of-the-arts compilers that provides hundreds of code transformation and analysis passes
to optimize C/C++ programs for CPUs. As CPUs aim for the effective general purpose
computing, this compiler offers a wide collection of optimizations, such as redundant code
eliminations, control flow/data flow optimizations, vectorizations, parallelizations, loop
optimizations, and etc [19]. LLVM [22] is another popular compiler technology that is
broadly adopted in both industry and academia. By providing the seamless modular design,
compiler engineers can easily customize their own compiler and optimizations with LLVM.
Likewise, this compiler also equips diverse code transformation and analysis passes [24].
Beyond the powerful CPU support, LLVM recently has started the GPU support [23, 25].

To seek for the optimization opportunity by leveraging the run-time information, the
concept of Just-In-Time (JIT) compilation is proposed [94, 84]. Once the hot path is identi-
fied during the program execution, a JIT compiler may invest certain compilation overhead
to dynamically re-compile this important code region with the run-time observations and
extract the further performance gain. These dynamic information may help compilers to
make more accurate optimization decisions by providing the run-time context. While using
interpreter to offer the fast response time, most Virtual Machines (VMs) adopt the JIT
compilation to complement its relatively less efficient quality of generated code [26, 27].
Binary translator [43] also employs the dynamic optimization to improve the translation
quality at runtime.

Unlike CPU programs, which require careful handling of the complicated control de-
pendencies, GPU mainly targets data-intensive programs with simple control flow. To
promptly process the large volume of data in parallel, modern GPU architectures have
thousands of computing units in a number of Stream Multiprocessors (SMs) and the ef-
ficient utilization of their resources is key to extract the peak performance. To do so,

5

the amount of computation should be well distributed to SMs in the target GPU with the
careful consideration for its memory architecture. To attack this problem, advanced GPU
compilers offer several optimizations, such as loop tiling, loop unrolling, and data layout
transformation [128, 55, 117, 116].

OpenCL compilers have endeavored for the effective heterogeneous computing and
the performance portability across a wide range of hardware devices with different design
philosophy. By mainly targeting important computations, such as BLAS kernels, they
apply various optimizations for data-intensive workloads, including loop tiling and loop
unrolling [116, 117].

To provide the powerful platform for Deep Learning (DL) workloads, various DL frame-
works have been actively developed. TensorFlow [10], PyTorch [9] and TVM [55] are the
representative examples. By targeting a wide range of hardware devices, including custom
accelerators [2, 1], these framework apply graph-level optimizations on the top of the con-
ventional compiler optimizations. For instance, computation graph of the DL workload may
be rewritten in the more efficient form as long as the correctness of program is guaranteed.
Operator fusion [6, 115, 55] is also a powerful optimization technique that merges multiple
kernels to improve memory usage and scheduling overhead. To automatically generate
an effective operator kernel, TVM provides a template implementation of each operator
with various optimizations, such as loop unrolling, loop tiling, and etc. When targeting
accelerators, users may also consider tensorization to fully utilize their custom hardware.

1.3.2 Compiler Auto-Tuning

As modern compilers generally provide manifold optimization/analysis passes, it is known to
be highly challenging to identify the best use of existing optimizations. Both the impact of a
single optimization and the interaction between optimizations would be different depending
across workloads and hardware devices, which adds the complexity of the problem. Thus,
to extract the maximum performance for the workload, compilers often need to find out the
best combination of optimization decisions [32, 56, 42, 89], the optimal ordering between
optimization passes [93, 96, 95, 60], and the best use of various backends, such as optimized
libraries (Figure 1.2). To attack these problems, one of the most popular methods adopted in
the current state-of-the-arts compilers is to provide standard optimization levels, which is
essentially a few set of fixed optimization settings hand-tuned by system experts. However,
due to the increasing complexity of both hardware and software system, this approach cannot
deliver the best performance to users anymore by making sub-optimal decisions for many
occasions [121, 108, 70].

As a breakthrough, various auto-tuning techniques have been proposed [32, 56, 101,

6

Opt1 Opt2 …

Tuning

(a) Finding the best combination
of optimization decisions

Opt3 OptN

Opt1 Opt2 …Opt3 OptN

Existing optimizations

Opt1 Opt2 …

Tuning

(b) Finding the best ordering
of optimization passes

Opt3 OptN

Opt7 OptN …Opt1 Opt2

Existing optimizations

(c) Finding the best mixed use
of multiple backends

Computation graph

Tuning

* Each color implies unique backend.

Figure 1.2: Representative tuning problems

108, 70, 121]. Largely, these technologies can be classified into two groups (Figure 1.3): (1)
workload-specific tuning: This approach explores the large and complex optimization space
by investing separate tuning time to customize the best possible optimization decisions
for the given workload. Pure search methods [32, 90, 68, 119] is one of the representative
examples that navigates the search space by only using the feedback acquired during the
tuning process without any prior information, such as the cost model and prior tuning
experiences. (2) generalization: This approach tries to recommend the good optimization
settings for the unseen workload without the expensive investment of tuning time. By
learning the relationship between the workload features and its customized optimization
settings in the training dataset, these techniques can provide more flexible optimization
settings efficiently [70, 34, 121, 75]. A high quality of training data is necessary for the
effective training and thus, generalization methods often adopt the pure search methods to
prepare their data.

In general, workload-specific tuning is not cheap and most of its tuning overhead is from
the repetitive run-time evaluations that include compilation and run-time measurement. To
alleviate the cost, researchers often introduce the hardware cost model which can approx-
imate the performance of an optimization setting without the actual measurement on the
hardware. However, due to the high complexity of the computing system, it is not easy to
construct the effective cost model by hand. To resolve this issue, the idea of learning-based
approach has been proposed [56, 28]. By utilizing the run-time samples acquired during the
tuning process, this approach automatically constructs the effective hardware cost model.

7

(a) Workload-specific tuning (b) Generalization approach

① Candidate
generation

② Evaluation③ Reflect
feedback

Auto-tuner

Workload

Customized setting

Training

Inference

Tuning DB

Workload Customized
setting

Recommend

Learn pattern between good
optimizations and workload

Figure 1.3: Representative tuning approaches

To maximize the efficiency, these methods often support transfer of the cost model across
different tuning jobs.

To respond to high demands for the faster platform for DL workloads, there has been
various active studies to fine-tune their executions. To automatically create the competitive
implementation of DL operators, TVM offers two different auto-tuning technologies. If
users want to customize the optimization settings within their manually defined search
space, AutoTVM [56] can be used. Otherwise, Ansor [167] may be considered to traverse
broader space with a hierarchical representation of the program. TVM also provides a graph
tuner that optimizes layout transformation for CPU workloads [55]. By leveraging a set
of re-writing rules, graph re-writing methods, such as TASO [85], explore the promising
variants of the computation graph of the given workload to identify the best form for the
underlying environment (e.g., hardware, compiler). For the efficient evaluation of each
candidate, these methods often adopt the simple heuristic of cost model.

To construct the effective generalization model [121, 70, 34] by reusing the past tuning
experience, it is key to have a high quality of training data that consists of workload features
and their effective customized optimization settings as the ground-truth. As previously
discussed, optimization settings can be automatically identified by various pure search
approaches. For the effective learning, feature selection is crucial for the accurate workload
characterization to provide important information that is necessary for the optimization
decisions. Thus, to identify the key information for optimizations, it is often useful to
understand which applications are similar from an optimization perspective. Although there

8

have been manual approaches that rely on the expert’s insight [70, 34], this is generally
known to be extremely challenging. To avoid difficulty of manual feature selection, compiler
researchers have proposed automatic feature generation techniques [97, 98]. By navigating
the given search space, these methods examine the impact of each feature and choose the
ones with high importance.

The comprehensive survey for auto-tuning domain is well presented by Ashouri et
al. [33].

9

CHAPTER 2

Multi-objective Exploration for Practical
Optimization Decisions in Binary Translation

2.1 Introduction
Today, many important optimization decisions are made by heuristics, which often depends
on the developers’ expertise. With an expert level of understanding of the system and a
huge amount of effort, programmers can create effective models that capture architectural
characteristics [163]. However, due to the increasing complexity of architectural design,
it becomes much harder to build effective human-made models. Additionally, the subtle
interactions between software optimization phases add to the exploration space. As a result,
heuristics often fail to make good decisions. Stephenson and Amarasinghe showed that the
loop unrolling heuristics in Open Research Compiler (ORC) only achieve 16% prediction
accuracy for optimal unroll factor [149].

To make effective optimization decisions, researchers build decision models by applying
machine learning techniques [149, 110, 51, 150]. Particularly, given its system-wide impact,
researchers have studied how to improve the optimization decision for loop unrolling. By
relaxing loop-carried dependencies, properly applied loop unrolling can increase Instruction
Level Parallelism (ILP) and bring more opportunities for subsequent optimization phases,
resulting in significant performance improvement. However, it may cause code bloat or
large numbers of register spills when it is applied too aggressively. For the best use of loop
unrolling, Stephenson and Amarasinghe suggested defining loop unroll factor prediction
as a classification problem [149]. By employing supervised classification techniques, they
successfully improve prediction accuracy as well as loop performance over a baseline
heuristic. These previous works are built by using statically known information and inserted
into a static compiler. Since they target a static compiler, the overhead (computation and
memory) of the built model is not considered.

On the other hand, hardware/software (HW/SW) co-design has been extensively studied

10

for mobile and embedded systems to achieve better performance or reduce design cost [37,
160, 12, 159]. A DBT system is a key component in such a co-design process. Since the
DBT system conducts optimization during translation [43], the optimization decision has
a direct impact on the quality of the translation. Thus, smart optimization decisions are
necessary to provide high translation quality. To make better decisions, we examine an
approach to tailor machine learning optimization decision models for a code optimizer in
DBT. Particularly, we target a mobile processor that supports high-performance applications
but still operates in a constrained environment (e.g., a mobile processor for an autonomous
vehicle). Unlike previous works [149, 110, 97] in a static compiler, the prediction overhead
(e.g., memory usage, performance overhead, and energy consumption) of a decision model
may restrict the usage of a complex or large decision model in the mobile system.

As the first step, we choose loop unrolling as a representative optimization and investigate
five different multi-class classification techniques and their diverse configurations to build its
effective decision model. Note, this work focuses on the single optimization decision while
leaving the decision for a group of optimizations for Chapter 3. This is also a multi-objective
exploration observing the relationship between prediction overhead and accuracy. We build
our approach with the industrial strength DBT infrastructure. Our code optimizer has an
optional optimization for loop unrolling, called smart unrolling, that can remove redundant
branches [107]. Since smart unrolling can have performance side effects, the built model
must make an additional decision on whether to apply smart unrolling. Furthermore, unlike
previous works [149, 110, 97] in a static compiler, some useful but expensive analyses
like dataflow analysis (DFA) may not be available due to their high overhead in binary
translation. Instead, new opportunities to utilize dynamic information (e.g., loop trip count,
taken probability of side exits) collected during runtime are studied. These turned out to be
important features for unroll factor classifiers.

For experiments, we collected 17,116 unrollable loops from 200 real-life programs and
benchmarks in various domains. By employing all available features that might be crucial
for loop unrolling decision, we suggest the best classification algorithm for our infrastructure
given both prediction accuracy and cost. Then, we identify its significant features to prune
the feature set and evaluate the model built by using selected important features. As a result,
the best affordable classifier that is within the memory/time budgets for the decision process
shows a 74.5% of prediction accuracy for optimal unroll factor and realizes an average 20.9%
reduction in dynamic instruction count during the steady-state translated code execution
when the ideal upper bound for instruction reduction is 23.8%. For comparison, the best
current heuristic shows a 46.0% prediction accuracy with an average of 13.6% instruction
count reduction.

11

The major contributions of this work are as follow:

• We show how machine learning techniques can improve loop unrolling decisions
for dynamic binary translation on the mobile processor, which is a more challenging
environment than static compilers used in previous works [149, 110, 97]. The demand-
ing environment requires a more careful model selection with multiple objectives
considered which is not necessary for a static compiler. New opportunities to employ
dynamic information is also examined. This approach is instruction set independent
and can be extended to other optimization decisions.

• We investigate the relationship between prediction overhead (i.e., time, memory) and
accuracy for diverse classification algorithms and their different configurations. As
a result, the best classification algorithm is discovered. Then, by applying feature
space pruning technique, we provide its major features and suggest the best affordable
decision model for our infrastructure given the specific budgets allocated for the
decision process.

• We compare the current heuristics in the industrial strength infrastructure and the
proposed machine learning based approach. Given that the infrastructure is already
highly optimized, the heuristics are well crafted and provide a challenging baseline
for comparison.

2.2 Background

2.2.1 Our Infrastructure with Binary Translation

Figure 2.1 sketches our HW/SW co-designed CPU. Although this CPU only accepts the
binary code written in x86, it incorporates a hidden microarchitecture that supports additional
Instruction Set Architecture (ISA) internally. By having a DBT system that translates legacy
code into internal ISA and orchestrates execution between two different architectures,
the internal ISA and its architectural design can stay invisible from the outside and be
innovated without worrying about backward compatibility. To manage program execution,
our infrastructure employs the region-level atomic execution similar to [154]. The dynamic
binary translation system profiles the execution and constructs optimization regions to
translate x86 instructions in the hot traces into internal ISA instructions that will be executed
on its optimized microarchitecture. To maximize the performance benefit, it is crucial
to produce a high quality of translated code. Therefore, during translation, the dynamic
optimizer applies various code optimizations [154], including loop unrolling, to improve the
translation quality.

12

x86 µArch

Dynamic Binary Translation (DBT) System

Internal ISA µArch (hidden)

yes

translation exit or fault

trigger execution

no

Found

hot region?

Execute native

x86 code

Fetch next instruction

Translate &

Optimize

Code cache

hit?

Orchestrate

run-time execution

Fault?

Roll-

back

yes

no

no

trigger

re-execution

Execute optimized

translated code

yes

Start

exit

translation chain

Figure 2.1: Big picture of our HW/SW co-designed CPU with a DBT system. It constains
two different microarchitectures that each supports its own ISA. The highlighted box
illustrates the translation process by a binary translator and a dynamic optimizer.

2.2.1.1 Target Loops

• Reducible (Single entry) loop.

• Innermost loop. The outer loop is only considered when the innermost loop is fully
unrolled.

• Both counting and non-counting loops with a loop invariant trip count [59].

2.2.1.2 Smart Unrolling

Our dynamic optimizer has an aggressive version of loop unrolling which is an optional
optimization when loop unrolling is enabled. By targeting counting loops, the technique tries
to transform the loop structure and exit condition to minimize the number of branches [107].
For example, the optimization can eliminate loop exit branches in copies of a loop body. Also,
the optimization phase inserts a run-time check outside of the loop to prevent exceptions
(e.g. overflow).

Smart unrolling can have side effects. When the run-time check fails, deoptimization
will be triggered to revert the code and degrade the performance. Also, applying smart
unrolling to a loop with a low trip count may result in performance degradation due to the
overhead of the transformed structure. Thus, smart unrolling should be applied carefully to
realize performance improvement.

2.2.1.3 Current Heuristics

There are two unrolling heuristics in our dynamic optimizer: Optimistic and Conservative.
By default, Optimistic is used to optimize identified hot traces. When speculation with

13

Optimistic fails repeatedly [61], Conservative is used to generate optimized code with less
aggressive optimization. Both heuristics make a decision based on identical information
such as trip count, the expected number of post-unroll instructions, etc. The only difference
between the two is two parameters: the maximum number of post-unroll instructions and
the maximum unroll factor. Conservative has lower values than Optimistic. Each heuristic
predicts an unroll factor that is lower than its upper limits. The maximum unroll factor is set
to 8 for Optimistic and 4 for Conservative, respectively. Also, although smart unrolling may
have side effects, current heuristics always apply it on counting loops with the optimistic
expectation.

2.2.2 Supervised Multi-class Classification

Supervised classification is a process identifying which set of classes (or labels) a new
observation belongs to, based on the learning from training data. This section describes five
representative classification techniques as background to deliver their main concepts with
the pros and cons.

2.2.2.1 k-Nearest Neighbors (kNN)

kNN classifies a new observation based on the majority voting from k number of closest
neighbors in training data. The idea is straightforward: find the most similar case from
the training database and assign the same label to the new observation. Thus, in our case,
kNN will search the most similar loops from the training data and assign the dominant label
among them. Without having any form of generalization process on training dataset, training
data will be saved and populated directly during the inference. Since kNN scans data points
in the training set to find the closest neighbors, its prediction cost is proportional to the size
of the training data set. Also, its learned model is unable to be interpreted and give any
intuition to the system designers.

2.2.2.2 Support Vector Machines (SVM)

SVM makes a classification based on the decision boundaries. During training, the technique
constructs decision boundaries that separate the training data points. Rather than focusing
on minimizing prediction errors on the training set, it tries to minimize the expected
generalization loss based on the probabilistic assumption for unseen data. Naturally, SVM is
resistant to overfitting [138]. To divide data points under different classes while minimizing
the generalization loss, SVM chooses each decision boundary that is farthest away from
the observed training data among all possible boundaries. Thus, each selected decision
boundary is also called the maximum margin separator and the points closest to the separator
is called support vector. However, it takes a long time to train this model and the learned

14

model is not comprehensible. Fundamentally, SVM manages multiple two-class decision
boundaries to conduct multi-class classification. Therefore, the prediction cost may become
expensive as the number of boundaries increases.

2.2.2.3 Decision Tree

A decision tree is a function that makes a decision by conducting a sequence of tests [138].
Each node in a tree checks the value of one of the input features and guides to the next node
until the final decision at the leaf node. During training, a decision tree learns what will be
tested at each node. If a feature is numerical, the threshold will also be determined for each
node. Fundamentally, the decision tree consists of nested conditional statements. Therefore,
unlike other machine learning techniques, the learned model is able to be interpreted and
easy to visualize. This is a noteworthy property in the sense that the learned model can give
system designers insights that they may have been missing. In addition, the worst case for
the prediction cost is proportional to the maximum height of the tree. Note, the computation
at each node is quite cheap since it is usually just a simple comparison. Thus, if it is able
to build an effective tree with the control of the maximum height, the model can be highly
practical. However, the technique may suffer from overfitting.

2.2.2.4 Random Forest

Random forest manages a multitude of decision trees and makes a prediction by aggregating
the predictions from trees in the forest (e.g., majority voting). Since the random forest is
essentially a group of decision trees, the learned model is also easy to visualize and is able
to give information about the relation between the feature set and the prediction. In general,
the technique is able to convey high accuracy and efficiently handle a large dataset with high
dimensionality of feature space. Also, the estimate of generalization loss will be computed
during training, which can be used to enhance overfitting. However, when the forest grows a
multitude of large trees in parallel, it may require a lot of memory [100]. This may cause
an overhead to the memory system and increase the inference time affecting the translation
time in our case.

2.2.2.5 Artificial Neural Network (ANN)

ANN is a learning method that mimics the brain activity mathematically. The model consists
of multiple layers: an input layer, hidden layers, and an output layer. Each layer contains a
large number of neurons and each neuron is connected to other neurons in the other layer.
In this work, a fully-connected network, whose each neuron is connected to all neurons
in the next layer, is assumed. In general, the neural network is known for its outstanding
classification accuracy compared to the traditional learning techniques. However, it may

15

41%

8%11%

9%

5%

5%

6%

6%

3%
6%

1 2 3 4 5 6 7 8 9 10

Figure 2.2: Distribution of optimal unroll factors.

need a large network and a large training dataset to achieve satisfactory accuracy [165]. The
inference can be very compute-intensive, particularly with a large network. In addition, the
decision-making process is like a ”black box” so that the internal mechanism would hardly
give any intuition to the system designers.

2.3 Motivation
Our current DBT system employs heuristic-based decision models designed by industry
experts. Given the difficulty of creating effective models that describe subtle interaction
between optimization phases while satisfying hard environmental constraints, we notice
the pitfall that may exist: hand-made heuristic models might be biased by the designer’s
experience or insight. Therefore, we recognize the need to not only evaluate their effective-
ness, but also develop the automatic and systematic approach to building decision models
to lessen the burden required for their design process (e.g., analysis, tuning). Without an
automatic method, system designers may need to repeatedly invest a huge amount of efforts
to tune their optimization decision whenever other system component(s) are updated.

To investigate the feasibility of such an approach, we initiate the study by focusing on
loop unrolling given its system-wide impact. By examining all possible configurations for
the loop unrolling decision, the optimal unroll factor for each unrollable loop is identified
and the performance of the current heuristic designs (i.e., Conservative and Optimistic)
are measured. Section 2.5 explains our methodology in more detail. To evaluate if the
upper bound of the unroll factor is reasonably set in the current heuristic design (e.g., 8 for
Optimistic), we explore unroll factors ranging from 2 to 10.

Figure 2.2 shows the histogram of optimal factors across all collected loops. An optimal
unroll factor of 1 represents the case that loop unrolling should not be applied. Other than
the leftmost bar, there is no dominant unroll factor. This implies that the optimal unrolling
factor varies depending on the loop characteristics and thus, the unrolling decision should

16

0

10

20

30

40

50

60

70

80

90

100

Oracle Conservative Optimistic

Pe
rc

en
ta

ge
 (%

)

Prediction Accuracy Instruction Reduction

Figure 2.3: Evaluation of current heuristic design. Prediction accuracy for optimal loop
unrolling decision and its impact on the dynamic instruction count in the resulting optimized
code are measured.

be made carefully. Also, heuristics are unable to predict optimal factors of 9 and 10, which
accounts for 8.7% of loops. This suggests the necessity for the higher upper bound on unroll
factors.

Figure 2.3 depicts the effectiveness of current heuristic designs. Note, Oracle represents
an ideal model that always makes the optimal decisions. Thus, loop unrolling can realize
23.8% of instruction count reduction at most. However, the best heuristic adopted by
a dynamic optimizer in our DBT system only shows 46% of accuracy with 13.6% of
instruction reduction in the translated code. This suggests the opportunity for improvement
with a better decision model.

2.4 Challenges and Opportunities
This section explains why previous works with a static compiler [149, 110, 97] cannot
be applied directly to dynamic binary translation for a mobile system. New challenges
and opportunities in adapting machine learning based optimization decision models to our
environment are threefold:

• Limited analysis support and increased complexity to make optimization deci-
sions: Some useful information that is concluded important for a static compiler [149]
are not available at the loop unrolling phase in our dynamic binary translation due
to their high analysis overhead: dataflow analyses, live range size, instruction fan-in,
critical path length, etc. Additionally, the optimization phases in the dynamic optimiza-
tion are more tightly coupled to each other than a static compiler [83]. Furthermore,
in our dynamic optimizer, there is an additional decision for smart unrolling. These
add a complication to the analysis and broaden the exploration space for optimiza-
tion decisions. Therefore, the optimization decision model in a dynamic optimizer
should be able to make more complicated decisions with restricted information. A

17

key question is: Can an accurate machine learning model be created without high
overhead analyses and handle the additional complexities presented in dynamic binary
translation?

• Strict restrictions on the overhead for an optimization decision: Since optimiza-
tion time is an extra run-time overhead in dynamic optimization, the cost for optimiza-
tion decisions also incur run-time overhead [92]. Consequently, a dynamic optimizer
needs to make smart decisions carefully to achieve a good balance between cost
and overall performance benefit. To find a good balance, system designers often set
strict time/memory constraints on each optimization phase. In our experiment, SVM
and nearest neighbor, which are recommended for the static compiler [149], showed
good accuracy improvement compared to the baseline heuristics. These techniques,
however, presented 8, 095× and 660× slower decision-making with significant extra
memory requirements. Key questions to address are: Are these methods affordable
for a dynamic binary translation in the mobile system? Can a better decision model
be built for our environment?

• The availability of dynamic information: In dynamic optimization, a new opportu-
nity to use dynamic information arises. Since translation is triggered during runtime,
dynamic information, which is more accurate than profiled information for a static
compiler [149], is available. However, collecting dynamic information also creates
run-time overhead. Thus, the kinds of information that can be collected are limited. A
critical question is: What type of dynamic information would be informative for the
loop unrolling decision and also affordable in terms of time and storage overheads?

To answer these questions, we explore diverse machine learning techniques to evaluate
the feasibility of each approach. Since the classifier will be tested to categorize a new
observation based on the achieved knowledge from the learning, generating meaningful
training data is a key process to build a good classifier. We describe our data generation
process in Section 2.5 and assess each classifier in Section 2.6. Then, Section 2.7 illustrates
our feature selection technique for the machine learning algorithm.

2.5 Data Generation
For each unrollable loop, a set of features and its optimal unroll factor are extracted and
combined to generate data for the classifier. Details for data generation process is described
in the following sections.

18

General loop property
Number of side exits, Number of outer loops, ...

Constraints from binary translation
Proportion of post-optimization instructions compared to its quota, ...

Benefit: opportunity for the following phases
Number of invariant loads, ...

Benefit: ILP→ Unavailable
Number of parallel computations in loop, ...

Side effect: code size
Number of static instructions, ...

Side effect: register pressure→ Unavailable
Live range size, Number of uses/defs, ...

Dynamic information
Trip count, Taken probability of side exits, ...

Instruction mix
Ratio of static loads/stores/branches, ...

Smart unrolling
Size of immediate operand in induction variable, ...

Table 2.1: A subset of features for loop unroll decision under different categories. The ratio
of each static operation is computed by dividing the number of each operation by the number
of static instructions. Note, unavailable features (e.g., live range size) in our infrastructure
are crossed out. The total of 34 features are extracted and used for the experiment.
2.5.1 Feature Extraction

For an accurate decision, characteristics of a loop must be captured properly. Thus, important
loop information that can affect the decision for loop unrolling is introduced as a feature.
For a fair comparison with current heuristics, we use the information that is already available
at the optimization phase without an additional profiling or heavy analysis.

For feature selection, we define 9 categories of features across various loop information
as presented in Table 2.1. To manage the quality of translated code regions, our DBT
infrastructure puts certain restrictions (e.g., an upper limit for the expected number of
post-optimization instructions) in each optimization phase. Thus, the constraints from the
binary translation are introduced as features. To estimate the impact of loop unrolling,
we also define categories indicating the benefit/side effect. However, the information for
instruction level parallelism or register pressure cannot be used for our experiment since
it requires dataflow analysis which is unavailable in our loop unrolling phase. In addition,
the information for loop characterization, smart unrolling, dynamic information, etc. is
employed as a feature. In total, 34 features are extracted and used for the experiment. These
34 features include all 8 features employed by heuristics.

19

2.5.2 Optimal Factor Exploration

For supervised learning and prediction accuracy measurement, the optimal factor for each set
of features should be identified. Thus, we follow an exhaustive approach. Each benchmark
trace is executed multiple times with all possible optimization decisions. In this work, unroll
factor prediction should make several decisions: (1) Whether loop unrolling should be
applied. When loop unrolling is expected to bring performance degradation, the decision
model should not enable it. (2) Whether smart unrolling should be applied. (3) Unroll factor.
In terms of the unroll factor, we explore the range from 2 to 10. Therefore, each benchmark
is executed 19 times with different configurations in loop unrolling:

Nnounroll +Nsmart ∗Nfactor = 1 + 2 ∗ 9 = 19

Each Nnounroll, Nsmart, Nfactor represents the number of cases when unrolling is disabled,
cases for smart unrolling (Enable/Disable), and cases for unroll factor (2 to 10) respectively.
As we investigate 19 configurations, there exist 19 labels that the classifier considers. This
exploration space is more than twice compared to previous work [149].

During each run, the dynamic optimizer identifies unrollable loops and dumps their
feature sets. Then, the optimizer forces the given configurations on the loops and measures
their performance. In this work, the number of dynamic instructions is measured and used
as the performance metric. We discuss our approach further in Section 2.6. Different
performance metrics can be employed depending on the objective of the system design.

After execution, the performance numbers between different configurations are compared
to find optimal configurations for each unrollable loop. When the numbers draw, the smaller
unroll factor is preferred as it has a smaller side effect (e.g. code size). Secondarily, if the
numbers between smart unrolling and regular loop unrolling with the same unroll factor draw,
smart unrolling is picked with the optimistic expectation: when the speculative assumption
for smart unrolling holds, it would outperform regular loop unrolling. The identified optimal
unroll factors for each feature set will be used as training data for supervised learning and
testing data for the evaluation.

2.6 Evaluation

2.6.1 Experimental Setup

Classifiers with five different supervised multi-class classification methods are built by using
the Python scikit-learn library [122]. To improve the performance, the library implements
its core algorithm with Cypthon [39], a package for C-Extension, and compiles it with -O3
optimization level. The selected classification methods include nearest neighbor and SVM

20

which are recommended in previous study for the static compiler [149]. To observe the
relationship between prediction cost and its benefit, we explore different configurations
for decision tree and random forest. In the library, their configuration can be controlled
indirectly by providing the maximum depth and the maximum number of leaf nodes. The
parameter setting for each classifier is described in Table 2.2. For instance, by setting
k = 3, Nearest Neighbor conducts majority voting from three most similar loops. The
classifiers which are not covered in the table use the default setting. Due to the compute-
intensive nature of neural network algorithm, we inspect a simple network to investigate its
applicability.

For performance evaluation, we base our approach on the industrial strength DBT
infrastructure and examine the quality of the translated code (i.e., internal ISA). In our
experiment, both instruction sets run with a simulator that models our new SW/HW co-
designed processor. Since only a functional simulator was available, alternatively, the
number of dynamic instructions is measured and used as the performance metric. Although
this approach has the restriction as it may not show the overall impact of the optimization
directly, researchers often adopt dynamic instruction count as an approximation for the
execution time [130, 79]. For example, Ravindar and Srikant use the dynamic instruction
count to estimate Worst-Case Execution Time (WCET) [130]. For the same reason, we
could not directly measure the overhead of classifiers by embedding them into our dynamic
optimizer. Instead, performance improvement analysis and overhead analysis for each
prediction technique are conducted separately. Thus, our performance improvement analysis
shows the enhancement in the optimized translated code after the execution is stabilized. For
overhead analysis, time and memory usage per prediction are examined for each decision
model on an Intel Core i7-4700MQ mobile processor assuming the x86 architecture in
our CPU design. For a fair comparison with classifiers, we implemented both heuristics
algorithms (i.e., Conservative, Optimistic) in Python with C-Extension and configured with
the equivalent optimization level to measure their overhead on the identical conditions.

By following a similar approach with SimPoint [123], we gathered data of 17,116 unrol-
lable loops in the hot traces from 200 real-life programs and benchmarks in various domains.
The representative benchmark suites and the breakdown of collected loops for each domain
are as follows: embedded/enterprise/games (FPMark [14], Geekbench [15], SYSmark [16],
TabletMark [17], 3DMark [13], etc.:49%), performance (SPEC CPU ’06/’17 [80, 48]: 41%),
machine learning (MLbench [103], etc.:10%). Diverse operating system environments are
also considered: Windows, Linux, Mac, Android, etc.

Throughout the experiment, we conduct the stratified 5-fold cross-validation [164]. On
average, we train each classifier with 13,652 loops and test it with 3,423 unseen loops. The

21

Classifier Parameter Setting
Nearest Neighbor k = 3
* Decision Tree 0 -
Decision Tree 1 max.depth = 20, max.leaf = 500
Decision Tree 2 max.depth = 15, max.leaf = 200
Decision Tree 3 max.depth = 10, max.leaf = 50

* Random Forest 0 trees = 10
Random Forest 1 trees = 5, max.depth = 10, max.leaf = 50

Neural Net network size = 34 * 100 * 19

Table 2.2: Configurations for the classifiers. Annotated (*) configurations are generated
without any restriction on both the maximum depth and the maximum number of leaf nodes.
loops are divided randomly and there is no intersection between them.

2.6.2 Prediction Accuracy

The accuracy is measured by counting the total number of correct classification in com-
parison to the optimal label out of all test data. For a better understanding of the classifier,
we define four different classes for accuracy so that a single prediction can be evaluated in
four different perspectives. Each class has a unique definition for ”correct classification” as
follows:

• Exact: Accuracy for exact prediction in all unrolling, smart unrolling and unroll factor
decisions.

• Unroll: Accuracy only for the loop unrolling decision.

• Smart: Accuracy only for the smart unrolling decision.

• Dist n: Compare the unroll factor only and accept the difference in factors within ’n’.
It ignores the decision for smart unrolling.

In the dynamic optimization, the decision of whether to apply the optimization has more
importance than the one in the static compilation as the optimization process is a part of a
run-time overhead. Therefore, we measure the accuracy of each optimization decision in
loop unrolling: Unroll, Smart. Also, comparison of Dist n gives the indication of how far
the prediction goes from the optimal label in terms of the unroll factor.

Figure 2.4 presents the accuracy of heuristics and classifiers. For Exact class, Conserva-

tive and Optimistic show 42.6% and 46.0% of accuracy respectively. Overall, all machine
learning techniques outperform heuristics. Especially, Decision Tree 0 and Random Forest 0

show the best accuracy which is around 75%. They are the biggest configurations for deci-
sion tree and random forest algorithm respectively. Their accuracy goes down with smaller

22

0

10

20

30

40

50

60

70

80

90

100

Exact Unroll Smart Dist0 Dist1 Dist2 Dist3

P
re

d
ic

ti
on

 a
cc

u
ra

cy
 (

%
)

Conservative Optimistic Nearest Neighbor SVM

Decision Tree_0 Decision Tree_1 Decision Tree_2 Decision Tree_3

Random Forest_0 Random Forest_1 Neural Net

Figure 2.4: Prediction accuracy with various classes.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
r
e
a
k

d
o
w

n

Wrongly Applied Missed Opportunity

(a) Class Unroll

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
r
e
a
k

d
o
w

n

Wrongly Applied Missed Opportunity

(b) Class Smart

Figure 2.5: The breakdown of wrong predictions.

configurations. For Unroll class, heuristics work pretty well. Optimistic has 88.0% accuracy,
which is better than SVM, Random Forest 1, and Neural Net. Interestingly, SVM shows
the lowest accuracy among all predictors, even lower than Conservative although it shows
the decent accuracy for Exact class. Other classifiers, such as Decision Tree 0, surpass the
accuracy of heuristics. For Smart class, all machine learning models outperform heuristics
by presenting the accuracy above 90% even though both heuristics shows desirable accuracy.
Although heuristics’ optimistic expectation generally holds, this suggests an opportunity for
improvement in their current design. For Dist n class, most models increase their accuracy
as the allowance in the difference of factors grows. Particularly, the increases in Optimistic,
Decision Tree 2, Random Forest 1, and Neural Net are notable. This implies they make
a good deal of sub-optimal predictions that are close to the optimal labels. However, the

23

accuracy change in SVM is not significant compared to others. This might be related to its
noteworthy low accuracy for class Unroll.

To understand the misprediction for Unroll and Smart, we collect its sources of prediction
failures. A prediction failure falls into either one or the other: wrongly applied, or missed

opportunity. Figure 2.5 illustrates the ratio of wrongly applied and missed opportunities
among mispredictions in the decision model. The breakdown for class Unroll is shown
in Figure 2.5a. In general, most decision models have turned out to have lots of missed
opportunity which suggests a room for performance improvement. Especially, SVM has
a conspicuous amount of missed opportunity resulting in significantly low accuracy for
class Unroll. The classifier disables loop unrolling more than necessary, resulting in overly
conservative predictions. This can also explain the observation of SVM in class Dist n. Given
that SVM shows high prediction accuracy in Exact class, the classifier is expected to have a
very high accuracy to figure out when it should not apply loop unrolling. Figure 2.2 backs up
this phenomenon. For around 40% of loops in our benchmark traces, it is the best decision
to disable loop unrolling. When comparing Conservative and Optimistic, the former makes
more missed opportunity than the latter although it has less wrong applications of loop
unrolling. This is expected when considering the nature of the conservative approach. On
the other hand, Figure 2.5b shows the breakdown for class Smart. Notably, many decision
models wrongly apply smart unrolling in many cases. Especially, both heuristics have a
significantly high ratio of wrongly applied which is greater than 80% and 95% respectively.
This implies overly optimistic expectation from heuristics would result in misuse of smart
unrolling around 10% of the time in their predictions. The high misuse rate is induced
by heuristics’ overly optimistic expectation towards the speculative assumptions for smart
unrolling. Meanwhile, SVM presents its conservative approach by showing a significantly
low ratio of wrongly applied.

2.6.3 Performance Improvement In Translated Code

To evaluate the steady-state performance of the translated code, expected instruction reduc-
tion for each loop is computed by using collected data. Figure 2.6a represents the average
in instruction count reduction for test loops. The first bar, Oracle, shows the expected
instruction reduction of a perfect predictor which always predicts optimal labels. There-
fore, its number (23.8%) will be the ideal upper limit that the decision model can achieve.
The best heuristic in our DBT infrastructure presents 13.6% of instruction reduction. All
but SVM outperforms the best heuristic significantly. This can be explained by SVM’s
significant amount of missed opportunity for loop unrolling as presented in Figure 2.5a.
Other classifiers notably outperform the best heuristic. In particular, Decision Tree 0 and

24

0

5

10

15

20

25

I
n

s
t
r
u

c
t
io

n
 c

o
u

n
t
 r

e
d

u
c
t
io

n
 (

%
)

(a) Geomean of instruction reduction for test loops.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R
a
t
io

 w
it

h
 O

r
a
c
le

Test loop

opt con Nearest Neighbors Decision Tree_0

Decision Tree_1 Decision Tree_2 Decision Tree_3 Random Forest_0

Random Forest_1 Neural Net RBF SVM

Optimistic Conservative

SVM

(b) The ratio of optimized loops compared to Oracle.

Figure 2.6: Averaged instruction count reduction and the ratio of optimized loops compared
to Oracle for each decision model.

Random Forest 0 show reductions of around 21%, which is close to the ideal upper limit.
Smaller configurations like Decision Tree 2, Decision Tree 3, and Random Forest 1 also
show notable improvement. Figure 2.6b illustrates the ratio of loops that are close to the
optimal performance. For each test loop, the instruction reduction of each classifier is
divided by that of Oracle. Oracle can not have any negative value in the reduction since it
would disable the loop unrolling when the side effect is shown. The calculated ratios are
then placed in increasing order to clearly show how much proportion of loops are close to
optimal. The points below zero represent the loops suffering from performance degradation
due to the wrongly applied loop unrolling. When points are closer to one, corresponding
loops are unrolled close to the optimal. In other words, the model with fewer points below
zero suffers less from the side effect of loop unrolling while the model with more points
close to one has more ideally optimized loops. In both heuristics, a greater number of loops
suffer from the side effect of loop unrolling than machine learning techniques. Additionally,
they have fewer loops unrolled by the optimal decision. Due to its conservative nature, SVM

disables more loop unrolling than necessary for many loops. Thus, SVM has less loops near
one while having many loops on zero. On the other hand, Decision Tree 0 and Random

Forest 0 are observed to have ideally unrolled loops significantly more than others.

2.6.4 Prediction Overhead Analysis

Figure 2.7 and Table 2.3 illustrate the inference time and memory requirement for each
decision model respectively. The memory requirements for main memory (e.g. DRAM)
is computed by its entire model size while cache is calculated by its worst-case run-time

25

0

0.3

0.6

0.9

1.2

1.5

P
re

d
ic

ti
on

 c
os

t
(µ

s)

49.0 600.7 2.7 2.4

Budget = 0.308µs

Figure 2.7: Inference time for each model with given budget.

memory footprint for an inference. As Optimistic and Conservative are essentially the same
algorithm with different parameters, their inference times are almost identical. Notably,
both inference time and memory requirement of Nearest Neighbor and SVM are significant.
Since Nearest Neighbor populates the training data to make a prediction, the data should
be stored and accessed during the inference. Thus, the large size of the training data may
cause the high prediction overhead. On the other hand, SVM makes a prediction by using
supporting vectors. Naturally, when the number of supporting vectors is high, the technique
would suffer from high memory usage and slow inference speed. In our experiment, 11, 028
supporting vectors are built during training. This approach brings an excessive prediction
cost for both memory and inference time (8, 095× slower than heuristics). Random Forest 0,
Random Forest 1, and Neural Net present large prediction costs as well. Because the random
forest algorithm maintains a group of trees, it requires sufficient memory space to store all
tree nodes and computing power to process them to achieve satisfactory prediction speed.
The compute-intensive nature of Neural Net arises its high prediction cost. Given that a
simple network with a single hidden layer is assumed in this experiment, a more complex
network is expected to have a higher prediction overhead that would be excessive for our
dynamic optimizer. The decision tree model makes a prediction by conducting a sequence
of simple tests on the nodes along with the path from the root node to the leaf node. Thus,
when the tree has a reasonable height, the model exhibits low prediction overhead.

2.6.5 Choice of Classification Algorithm

Since the optimization time induces a run-time overhead in dynamic optimization, system
designers often introduce various budgets on dynamic optimization as the design criteria.
Also, due to the limited resource in a mobile processor, there is a restriction on the mem-

26

Model Main Memory (KB) Cache (KB)
Nearest Neighbor 1,391 1,391

SVM 1,500 1,500
Decision Trees < 130 < 0.66

Random Forests < 1,122 < 6.96
Neural Net 21 21

Table 2.3: Memory requirement for each model. The requirements for decision tree and
random forest configurations are represented by their largest configurations.

ory usage. In this section, we evaluate the feasibility of each classification methods by
considering time/memory constraints and identify the best affordable method.

Firstly, we examine the feasibility in terms of time. Based on the rule of thumb widely
used by experts in the industry, dynamic binary translation could use no more than 10k ∗
N instructions to optimize the region of N instructions. Given that there are plenty of
optimization phases and a decision model for the unroll factor is only a small fraction of
loop unrolling phase, we assume 0.3% of the total budget as the time constraint for the
decision model. Therefore, 30N instructions can be used for each unroll factor prediction. To
calculate the time budget, we use the information of the processor used for the experiment:
Intel Core i7-4700MQ mobile processor (Haswell) with 2.4GHz and its averaged IPC
(1.621) [102]. Also, the averaged region size (40) [154, 64] is used for N . As a result,
0.308 µs is introduced as the time constraint for each inference and used to evaluate the
applicability of each decision model. Figure 2.7 visualizes the inference cost with the time
constraint. Overall, all machine learning techniques but the decision tree algorithm present
the inference time above the given budget. Nearest Neighbor and SVM especially show
excessively high prediction overhead. Although the previous work [149] suggests that both
techniques would be a good choice for unroll factor prediction in a static compiler, their
prediction overheads are exorbitant in our dynamic optimizer. Also, the high inference
time of Neural Network, which is over the budget, implies that even a simple network has
excessive computation overhead for our infrastructure. While Random Forest 0 presents
the highest prediction accuracy, it turned out the decision model is not affordable due to its
high prediction cost significantly above the time constraint. Decision Tree 0, which has the
comparable prediction accuracy to Random Forest 0, shows faster inference speed compared
to the other classifiers. But its prediction cost is slightly above the constraint. The smaller
decision trees, Decision Tree 1 and Decision Tree 2, exhibit relatively high prediction
accuracy with fast prediction satisfying the given budget. This implies the necessity to
consider the trade-off between prediction accuracy and cost in terms of the tree size.

27

(34, 74.61) (15, 74.53) (6, 73.09)

(2, 63.4)

(34, 0.335)

(15, 0.298)
(6, 0.286)

0

0.1

0.2

0.3

0.4

0.5

0.6

0

10

20

30

40

50

60

70

80

34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

In
fe

re
n

ce
 t

im
e

(µ
s)

P
re

d
ic

ti
on

 a
cc

u
ra

cy
 (

%
)

Number of features

Objective 1 (Left y-axis) Objective 2 (Right y-axis)

Budget = 0.308µs

Figure 2.8: The change in prediction accuracy and inference time during greedy feature
selection process. With Top 15 features (marked with stars), the decision tree model can
show an almost identical level of prediction accuracy to the model with all 34 features while
satisfying the time constraint.

We also assume 0.3% of the total memory budget as the memory constraint for the
decision model. Table 2.3 represents memory requirements for storing (main memory) and
running (cache) each model. Our assumed mobile processor can store all models without
difficulty. However, the memory constraint on cache is challenging. Since our mobile
processor contains 1 MB of L2 cache, the constraint for cache becomes 3 KB. Thus, only
decision tree and random forest with small configuration can meet the restriction.

Overall, the decision tree is the only machine learning based model that satisfies both
time/memory budgets on our infrastructure. It is also one of the models with the highest
prediction accuracy. Thus, the decision tree would be a good choice as a cost-effective
decision model for loop unrolling on our infrastructure. Additionally, the decision tree is an
interpretable model which can give insight to system designers. The learned knowledge (e.g.,
how each feature is treated) from the decision tree can be used to improve the human-made
heuristic algorithm.

2.7 Redundant Feature Pruning
To identify the important features and possibly reduce the number of features, we modify
the greedy feature selection algorithm [149]. Every iteration, our greedy method drops the
least significant feature by examining variation in prediction accuracy when each feature in
the feature set is eliminated. Starting from a full feature set (i.e., 34 features in our case),
the same process is repeated until no feature is left in the set.

Figure 2.8 presents how our greedy feature selection technique gradually narrows down
the feature set for the decision tree algorithm which is identified as the best classification

28

Top 15 features
General loop property
• The number of operands
• Step of induction variable X
• The viability of non-linear loop conversion X
Constraints from binary translation
• Proportion of post-optimization blocks compared to its quota X
• Proportion of post-optimization instructions compared to its quota X
Benefit: opportunity for the following phases
• The number of loop invariants
• The number of loop invariant loads X
Side effect: code size
• Number of duplicated exit blocks
• Number of instructions in duplicated exit blocks
Dynamic Information
• Trip count X
• The taken probability of side exits
Instruction mix
• The ratio of static stores
• The ratio of memory operations
Smart unrolling
• The size of immediate operand from induction variable X
• The size of operand for the loop condition X

Table 2.4: Top 15 features for decision tree. Check marks (X) indicate that the corresponding
features are considered in the current heuristic design: 8 out of the top 15 features are
employed by current heuristics.

technique for our DBT system in the previous section. The reduced feature set affects
tree size and availability of test that the model can perform at each tree node. Mostly,
both prediction accuracy and inference time are observed to decrease as the number of
available features gets smaller. Since the decision tree makes a prediction at a leaf node
by passing through a series of tests along the path, reducing average depth for leaf nodes
brings the improvement in the inference time. The prediction accuracy sustains a similar
level until only 6 features are employed and drops significantly after that point. Particularly,
the decision tree model can present the almost identical level of prediction accuracy with the
model employing a full feature set by using only 15 features (less than 0.1% of difference),
while satisfying the time constraint. Also, the built model requires 0.61KB of space in cache
which fits within our memory budget. Thus, in this work, Top 15 features are recommended
to use.

Table 2.4 shows those selected features. Overall, features under various categories

29

defined in Table 2.1 are chosen. This suggests loop unrolling requires information from
diverse aspects to make a good decision. Note, our binary translation puts constraints on
upper limits for the expected number of post-optimization instructions and basic blocks.
Therefore, the proportion of post-optimization instructions/basic blocks compared to its
quota plays an important role in unrolling decision. Top 15 features also include information
regarding loop invariants and the number of duplicated instructions/blocks. Each information
provides an indication for benefit and side effect from loop unrolling respectively. Dynamic
information, such as trip count and the taken probability of side exits, also takes a crucial
role by helping the dynamic optimizer to capture the actual iteration count at runtime. On the
other hand, the size of the immediate operand from the induction variable and the operand
size for the loop condition are meaningful for the decision for smart unrolling. It helps
the decision model to estimate the chance of the run-time check failure. The rest of the
information helps the optimizer to characterize each loop better.

Interestingly, all 8 features employed in the current heuristic design are chosen as Top
15 features. The significant improvement in the machine learning based model comes from
the difference in how each feature is treated (e.g., importance of each feature, threshold for
each feature) and the missing features in the heuristic design. By using their own statistical
approaches, machine learning based approach is capable of finer tuning in high dimensional
space than the hand-made model. Furthermore, the approach can suggest important features
that are missed by experts. Our investigation points out that information, such as the taken
probability of side exits and the ratio of memory operations, should be considered for the
accurate loop unrolling decision. Note, these 7 missing features are readily available or
collected with the negligible overhead at the loop unrolling phase.

2.8 Related Works
There have been efforts to build an optimization decision model by hand [163, 143]. Al-
though these results show quite impressive improvements, it is expected to become con-
tinuously harder for compiler designers to create an effective model by hand due to the
increasing design complexity. The failures with the software pipelining heuristic which is de-
signed to avoid the side effect from its overly aggressive usage are reported [104, 74]. Also,
Stephenson and Amarasinghe [149] showed that their baseline compiler predicts optimal
unroll factor only 16% of the time. To improve optimization decision, researchers started
to employ machine learning techniques. Particularly, given its system-wide impact, loop
unrolling is widely studied. Monsifrot et al. proposed an auto-generation of heuristics for a
target processor by using the decision tree algorithm [110]. They built a binary classifier that
decides whether to apply loop unrolling or not while leaving unroll factor determination to

30

the existing heuristic. To include the unroll factor in the automation process, Stephenson and
Amarasinghe [149] suggested to consider this problem as a multi-class classification prob-
lem and solved it by introducing machine learning techniques. Their best classifier shows
65% of prediction accuracy which leads to a 5% speedup (software pipelining disabled) and
1% speedup (software pipelining enabled) over the SPEC 2000 benchmark suite. While
the macroscopic approach is similar, our work assumes a dynamic binary translation in the
mobile system which is more challenging environment than a static compiler assumed in
previous works. As the prediction cost occurs in run-time overhead, five different machine
learning techniques are evaluated with varying configurations to identify the cost-efficient
machine learning algorithm and show the relation between classifier size and prediction
accuracy. Leather et al. suggested the automatic feature generation mechanism for the
decision tree model designed to predict the unroll factor [97]. They define the feature space
by a grammar and automatized the exploration by using genetic programming and predictive
modeling. This approach can be applied to our work to isolate the best set of features for the
machine learning-based decision model.

The application of machine learning techniques is also explored for the dynamic compi-
lation. In a Java Just-in-time (JIT) compiler, Cavazos and Moss [50] improved the program
speed by employing supervised learning to predict whether blocks would benefit from
instruction scheduling optimization. For the blocks expected to gain no advantage from the
instruction scheduling, their approach bypasses the optimization to improve the compilation
time at runtime. Cavazos and O’Boyle [51] proposed an automatic tuning method for
function inlining in a Java JIT compiler. They designed a genetic algorithm that searches a
large space of parameter values efficiently. In addition, the best optimization configuration
is explored in JIT compiler. Hoste et al. [83] proposed the multi-objective evolutionary
search algorithm to find Pareto-optimal in terms of compilation time and execution speed for
JIT compiler. As a result, they gained up to 40% of improvement in compilation time and
19% of improvement in steady-state performance over the default setting of Jikes RVM. On
the other hand, and O’Boyle [52] used logistic regression to determine which optimization
should be applied to each method based on its features in Jikes RVM and achieves 29% of
speedup compared to -O2 optimization level.

The comprehensive survey in the field of machine-learning based compilation is well
described in the work by Wang and O’Boyle [156].

2.9 Conclusion
To improve the optimization decision model in binary translation, we propose a statistical
and automatic approach by employing machine learning techniques. Focusing on loop

31

unrolling, our work examines the performance and feasibility of machine learning models.
We evaluate our approach with the industrial strength infrastructure and 17,116 unrollable
loops collected from various real-life programs and benchmarks. By considering both
prediction accuracy and cost, the decision tree model is identified as the best classification
model. Then, through the greedy feature selection method, its significant features are
discovered. By using them, we successfully build the effective best affordable decision
model that satisfies the given time/memory budgets and greatly outperforms the baseline
heuristics by making better optimization decisions.

32

CHAPTER 3

SRTuner: Effective Compiler Optimization
Customization By Exposing Synergistic

Relations

3.1 Introduction
Increasing complexity in both hardware and software exacerbates difficulties in performance
analysis (e.g., estimating the impact of a compiler optimization). As a result, the analysis
often relies on overly simplified assumptions to capture system characteristics [149, 70, 121].
Therefore, even the most advanced compilers frequently fail in delivering best optimization
settings for individual applications and leave substantial performance on the table [70, 124,
34, 119, 82]. As the end of Moore’s Law slows processor innovation down, leveraging this
latent opportunity is becoming more critical [78].

Although the opportunity seems obvious, maximizing the benefit from existing compiler
optimizations is an ongoing problem that has not been solved for over 50 years [42, 89], and
is still a highly challenging problem owing to the following several key observations:

First, the best optimization setting for one application may not be optimal for others [70,
34]. Even for the same application, the effect of each optimization largely depends on the
underlying environment (e.g., target hardware, compiler) [69, 70]. To attack these challenges,
various tuning methods have been studied to customize the optimization setting [32, 120, 42].
To tune any given workload, the tuning process often launches from scratch without any
prior knowledge about the running environment, such as hardware cost model or previous
tuning history, and navigates the optimization space by only utilizing the feedback acquired
during tuning. This approach is called a pure search [49] (e.g., genetic search [83, 68]).
Pure search is particularly important since it lays the groundwork for other customization
approaches. Section 3.2 discusses further details.

Second, traversing a significant fraction of entire optimization space is practically

33

impossible. Modern compilers use over 100 settings at their highest optimization levels
leading to more than 2100 possible combinations even when simply assuming binary (e.g.,
enabled/disabled) values for each. Thus, tuning methods typically examine a limited number
of promising settings within the given budget (e.g., number of trials). To navigate extremely
large search space effectively, state-of-the-arts adopt an iterative feedback-directed search
where promising candidates are generated, evaluated, and reflected upon to then generate
even more promising candidates in future trials [32, 56]. An intelligent tuning method
should identify promising subspaces and prune the worthless search space by effectively
utilizing feedback from its earlier trials.

Third, the optimization space is highly non-linear and contains numerous irregularly
distributed local optima [42]. A tuning process may achieve low-hanging fruit when it
wastes too much tuning budgets on local optima. Thus, it is crucial to escape local optima
efficiently by balancing exploration (i.e., choosing a setting for the next trial randomly in the
unknown space) and exploitation (i.e., choosing a setting for the next trial that is expected to
be beneficial based on the past trials) to maximize the tuning quality. In general, exploration-
only searches may waste an opportunity to safely achieve benefits while exploitation-only
searches may be trapped at local optima. State-of-the-arts tuning methods suggest various
approaches to handle exploration-exploitation dilemma (Section 3.2), yet there is still room
for improvement.

Lastly, we note that the lack of proper understanding for compiler optimizations is
another source of major issues in finding their best use. Given that state-of-the-art compilers
apply hundreds of optimizations, it is challenging to understand how every optimization
works and how to use it with other optimizations. This makes manual design of optimization
heuristic labour-intensive and error-prone even for experts [121]. Thus, prior tuning methods
often ignore or overly simplify inter-optimization relations [124, 119] since they can be
complicated to analyze even for compiler experts. In reality, optimization decisions are
deeply related, so without proper consideration of their relationships, these approaches are
ignoring information that could be used to better guide the tuning process and improve
overall quality.

As a breakthrough, we propose SRTuner, a novel pure search tuning method that es-
timates the impact of individual optimizations and their relationships, which allow it to
identify promising search subspaces effectively. To generate a good setting for each trial,
SRTuner configures optimizations one at a time via our multistage structure: each stage
chooses the most encouraging configuration (e.g., on/off, parameter) of its corresponding
optimization. As each optimization can make its decision on the basis of optimization
decisions configured on the earlier stages, SRTuner can naturally consider the relation

34

between optimizations.
Based on our observation that configuring high-impact optimization actually helps

later optimization decisions, we map each optimization to a stage in the order of its es-
timated impact. Despite continuous efforts, prior methods [124, 119, 57] have critical
limitations in approximating an optimization impact, such as inability to consider various
inter-optimization relations. To overcome such restrictions, we suggest a novel distribution-
based estimation method. When examining performance of settings (i.e., combination of
optimization decisions), the high-impact optimization would show clear separation in its
performance distribution depending on its configuration. Thus, we measure the extent of the
separation between distributions and consider it as the optimization impact.

As balancing between exploration and exploitation is key to maximize the tuning quality,
we define an optimization decision problem as a multi-armed bandit problem to formulate
the exploration-exploitation dilemma. Then, a tuning process becomes a game of playing
a series of bandits, which allows the adaptive optimization decision at each stage in our
multistage structure to deal with local optima efficiently.

Due to our unique tuning strategy, SRTuner can uncover important synergistic optimiza-
tions and provide this information to users at no extra cost. Section 3.6 showcases the utility
of understanding such synergistic relations in improving future optimization design and
customization methods.

The contributions of this chapter are as follows:

• Our work proposes an intelligent pure search technique, called SRTuner. We evaluate
our strategy with three representative compiler stacks on CPUs/GPUs and demonstrate
that SRTuner can extract 1.24×, 2.03×, and 34.4× averaged speedups over each
compiler’s highest optimization level and also outperform state-of-the-arts.

• We suggest a novel methodology to estimate optimization impact in the presence
of inter-optimization relations. Also, we design multistage structure that allows
SRTuner to make adaptive optimization decisions by considering interactions between
optimizations.

• SRTuner identifies important synergistic optimizations as a byproduct of its search at
no additional cost. We discuss how knowledge of a workload’s synergistic optimiza-
tions can be used to help future studies and compiler design.

3.2 Related Works
Largely, tuning methods can be categorized into two classes: (1) Workload-specific tuning:
customizes optimization setting for any given workload by investing tuning time. Pure

35

search [90, 68, 119] is the representative approach. (2) Generalization method: learns from
the previous tuning experience to predict the optimization setting for unseen workload
without paying a separate tuning time [70, 34].

As workload-specific tuning usually requires long tuning time, generalization methods
have been proposed to recommend optimizations across different inputs, programs or archi-
tectures. One of the most popular approaches is providing a few fixed sets of optimization
settings manually tuned by compiler experts as standard optimization level. However, as
these one-for-all approaches cannot handle the increasing complexity of computing sys-
tem anymore, learning-based generalization methods [70, 34, 120] are proposed. With
supervised learning, generalization methods recommend promising settings by capturing
the relationship between representative workloads and their tuned settings in the training
data [70, 49, 34]. Various studies regarding the performance portability of OpenCL programs
across different hardwares [125, 148, 151] also give insights for generalization methods.

However, their potential is fundamentally restricted by the quality of training data. High
quality of training would describe each workload accurately by using right features providing
the exact information that matters for optimization decisions and contain the fine-tuned
optimization setting [70, 34]. To collect the best possible settings for representative cases
in training data, generalization models inevitably depend on the pure search and thus, the
improvement in pure search has a particular significance. Section 3.6.2 discusses how our
technique can benefit generalization model design.

By using the only information acquired during the tuning process, pure search methods
traverse the optimization space in the feedback-directed manner. Depending on its strategy,
pure search can be categorized as follows:

Exploration-oriented Without utilizing any feedback, an Random search (RAND) al-
lows unbiased traversal in the search space. Due to its simplicity, generalization methods
often adopt random search to generate their training data [70, 34].

Exploitation-oriented Pure search can adapt its tuning process by using feedback from
previous trials [119, 68]. Franke et al. [68] proposed a strategy that modifies PBIL [38],
which integrates genetic search and competitive learning, for the compiler optimization
problem. We denote this as mPBIL.

Ensemble search To design balanced pure search, researchers have proposed ensemble
techniques that manage multiple search methods with different strategies. As a sophisticated
ensemble method, Ansel et al. [32] suggested OpenTuner that runs a collection of search
algorithms with advanced trial distribution policy. During expedition, algorithms which
perform well will be assigned more trials.

On the other hand, tuning methods usually have high evaluation cost due to the repetitive

36

evaluations. To resolve these issues, an idea of learning hardware cost model at tuning time
is proposed [56, 28]. These model-based approaches periodically trains the hardware cost
model with the machine learning method by using evaluation data accumulated during a
tuning process. Then, the constructed cost model would be used by a search strategy to
select the most promising settings that will be evaluated on the real hardware. As a core
search method, XGB tuner, a model-based approach employed by TVM, adopts an ensemble
pure search using parallel simulated annealing and random search [56]. On the other hand,
beam search is chosen for model-based approach in Halide [28].

Domain-specific knowledge can be useful to narrow the search space effectively [129].
However, as its space is still too extensive, SRTuner can be also adopted for the effective
search. Once SRTuner customizes effective optimization settings, users may also consider
finding optimal phase ordering [93, 96, 95, 60]. The comprehensive survey for auto-tuning
domain is well described in the work by Ashouri et al. [33].

3.3 Design Motivation
Due to the extremely large size of optimization space, an intelligent pure search should
determine promising subspaces efficiently to return the best output within the given tuning
budget. To tackle this challenge, we propose a novel search method that narrows down the
search space by effectively determining the most promising configuration. This section
describes the insights that motivate our design.

For the motivational experiment, we conduct statistical analysis by using 2,000 different
flag combinations randomly sampled in the optimization space of two representative compil-
ers from two different domains respectively: GCC (traditional C/C++ compiler) and TVM
(machine learning compiler) [55]. 12 binary flags under -O3 are investigated for GCC over
representative CPU programs in cBench benchmark suite [71] 1. Note that each flag follows
a form of -fno-〈optimization〉: when a flag is turned on, it will disable the corresponding
optimization. Thus, if no flags were turned on, we would be running -O3. For TVM,
we chose three convolution kernels in real-life deep learning workloads (e.g., resnet-18).
These kernels perform the same computation but have different incoming/outgoing tensor
shapes. Compared to GCC, TVM targets the GPU and mostly handles fewer but highly
parameterized flags. We denote each configuration in a form of 〈optimization〉: 〈ordinal

number of a configuration〉. To assign relevant feedback for the performance of each setting,
we introduce a concept of reward. In this motivational experiment, we simply award ”+1”
whenever a combination beats the fastest default setting (e.g., -O3 for GCC). Otherwise,

1A collection of realistic benchmarks assembled by cTuning foundation [18] for the research on program
and architecture optimization.

37

0

0.2

0.4

0.6

0.8

1

Av
g.

 R
ew

ar
d

bzip2e consumer_jpeg_c network_dijkstra
network_patricia telecom_adpcm_c telecom_CRC32

(a) GCC: Traditional C/C++ compiler

0

0.02

0.04

0.06

0.08

0.1

tile_f: 0

tile_f: 20

tile_f: 40

tile_f: 60

tile_f: 80

tile_f: 100

tile_f: 119

tile_y: 0

tile_y: 1

tile_y: 2

tile_y: 3

tile_x: 0

tile_x: 1

tile_x: 2

tile_x: 3

tile_rc: 0

tile_rc: 1

tile_rc: 2

tile_rc: 3

tile_rc: 4

tile_rc: 5

tile_rc: 6

au
to_u

n
roll_m

ax_step
: 0

au
to_u

n
roll_m

ax_step
: 1

au
to_u

n
roll_m

ax_step
: 2

u
n

roll_exp
licit: 0

u
n

roll_exp
licit: 1

A
vg

. R
ew

ar
d

conv2d_nchw_1 conv2d_nchw_2 conv2d_nchw_3

tile_f:0~119 tile_y:0~3 tile_x:0~3 tile_rc:0~6

Unroll

step:

0~2

Unroll

explicit:

0~1

(b) TVM: Machine learning compiler

Figure 3.1: Motivational experiment with two representative compilers. A reward (+1) is
assigned whenever a combination outperforms the baseline setting. By sampling 2,000
settings, averaged reward for configuring each flag is examined.

”+0” is assigned. In this case, the averaged reward implies the probability of generating a
better combination than the baseline.

3.3.1 Multistage Structure

Figure 3.1 illustrates the averaged reward when each optimization flag is configured for
target programs. A high average reward above 0.7 is observed in telecom adpcm c and
telecom CRC32 implying that -O3 is quite out-of-tune on these benchmarks. In contrast,
the baseline setting becomes harder to outperform in network dijkstra and network patricia.
Figure 3.1b shows lower average rewards on TVM because of their highly parameterized
optimizations.

We further see that optimizations can have drastically different effects depending on the
workload (red circles). For instance, -fno-inline-functions is highly likely to be beneficial in
consumer jpeg c, but likely to degrade performance in network dijkstra. -fno-split-paths

seems to slow down the execution in network patricia. TVM also presents a similar outcome
as in Figure 3.1b. Notably, unroll explicit: 1 (red circle) seems helpful in conv2d nchw 2

while any of tile f does not. In these cases, workloads have an affinity to certain optimiza-

38

0

0.2

0.4

0.6

0.8

1

A
vg

. R
ew

ar
d

network_patricia

 F1:OFF F1:ON

(a) -fno-split-paths (F1)

0

0.2

0.4

0.6

0.8

1

A
vg

. R
ew

ar
d

network_patricia

F1:OFF,F2:OFF F1:OFF,F2:ON
F1:ON,F2:OFF F1:ON,F2:ON

(b) Expose synergy between -fno-split-
paths (F1) and -fno-inline-functions (F2)

0

0.2

0.4

0.6

0.8

1

A
vg

. R
ew

ar
d

network_dijkstra

F1:OFF,F2:OFF F1:OFF,F2:ON

F1:ON,F2:OFF F1:ON,F2:ON

(c) Expose conflict between -fno-tree-partial-
pre (F1) and -fno-tree-loop-vectorize (F2)

0

0.02

0.04

0.06

0.08

0.1

A
v

g
.

R
ew

ar
d

conv2d_nchw_2

F1:0 F1:1

(d) unroll explicit (F1)

Figure 3.2: Averaged reward given extra condition: (a)-(c) for GCC, (d) for TVM. Starting
from Figure 3.1, the high-impact flag is configured for each benchmark. (a) shows the
average reward after a single stage. When more than one flags are given, the relation
between optimizations can be unveiled. (b) and (c) present the positive/negative interaction
between two given optimizations, respectively. (d) demonstrates the same approach can be
applied to TVM as well.

tions, and configuration decisions are obvious; however, in general, inextricable interactions
between various optimizations complicate the decision process.

Figure 3.2 depicts the averaged reward in typical benchmarks when high-impact opti-
mization flags have already been configured. Once again, a reward of ”+1” is assigned when
beating the fastest default setting and ”+0” is assigned otherwise. In this context, the reward
is the conditional probability to outperform the default setting when the value for another
optimization flag is predetermined. By conditioning on the configuration of a significant
flag, we can unveil its important hidden interactions with other flags. When examining
Figure 3.1a, configuring -fno-split-paths has a significant impact in network patricia and
thus, it is configured first. Figure 3.2a illustrates how the probability of generating promising
combinations can increase notably by turning off -fno-split-paths.

39

Then, conditioned on -fno-split-paths being off, we find that -fno-inline-functions impacts
the average reward the most (red circle). Since the average reward now has the highest
sensitivity to -fno-inline-functions, we configure this flag in the second stage. Figure 3.2b
shows the positive synergy between -fno-split-paths and -fno-inline-functions. Since split-

paths helps increase the optimization window by splitting paths leading to backedges, inline-

function can cooperatively broaden the optimization window and benefit latter optimizations
like dead code elimination and common subexpression elimination. Therefore, it seems
better not to provide the -fno-split-paths and -fno-inline-functions flags during compilation
so we can exploit those optimizations.

By applying the same methodology, Figure 3.2c exposes the negative interaction be-
tween -fno-tree-partial-pre and -fno-tree-loop-vectorize in network dijkstra. It suggests
that aggressive partial redundancy elimination negatively affects loop vectorization in this
benchmark. Figure 3.2d presents the results with TVM. By configuring a significant flag
correctly, we can focus on the promising subspace and expose the subtle interaction between
two loop transformations, loop unrolling and tiling: unroll explicit and tile rc (red circle).

By walking through the outlined examples, we showed that promising search subspaces
and interactions between optimizations can be revealed by configuring the highest impact
optimizations first. The approach can be iteratively applied until all configurations are
determined. This observation gave us the intuition to design a multistage optimization
process where flag values are chosen one-by-one.

3.3.2 Optimization Impact Estimation

Up until now, we have assumed high-impact optimizations are given in order to motivate our
multistage design, but it is also necessary to measure the magnitude of a flag’s performance
impact. Prior approaches estimate an optimization’s significance by fixing configurations
for the remaining optimizations and measuring the performance difference between the
resulting code with the optimization and the one without it. Figure 3.3a showcases the
methodology. Since they only consider a fixed configuration of the other optimizations from
numerous possible combinations, the interactions between optimizations are ignored [124,
119]. Furthermore, such techniques cannot handle execution failures (e.g., compile error)
since the estimation equation requires every run to provide valid performance numbers [119].
Various Design of Experiments methods also suffer from the same restriction [124, 57].

To overcome these limitations, we propose a statistical alternative. When estimating the
impact of an optimization, we let the configurations of the others vary and examine how the
resulting performance distribution is affected by the optimization decision (Figure 3.3b).
By examining the distribution rather than two scalar performance numbers, the approach

40

X1 X2 X3 X4 X5 Perf

0 1 1 1 1 1.5 s

1 1 1 1 1 0.5 s

Fixed configurations

I(𝑋1) =
𝑝𝑒𝑟𝑓 𝑋1=0 −𝑝𝑒𝑟𝑓𝑏𝑎𝑠𝑒

𝑝𝑒𝑟𝑓𝑏𝑎𝑠𝑒

=
1.5−0.5

0.5
= 2

baseline

X1 X2 X3 X4 X5 Perf

0 0 1 0 1 0.4 s

0 1 1 1 1 0.5 s

⁝ ⁝ ⁝ ⁝ ⁝ ⁝

1 1 1 0 0 1.4 s

1 1 1 1 1 1.5 s

Fr
eq

Perf

P:Dist(X1=0)

Q: Dist(X1=1)

I(X1) = DKL(P| Q

(a) Prior approaches (b) Our approach

Figure 3.3: Comparison between prior impact estimation method and our distribution-based
method. To approximate an optimization impact, prior approaches ignore inter-optimization
relations and measure the performance difference on the single fixed configurations of the
rest. However, our method estimates based on the performance distribution to consider
interactions with diverse configurations of others.

can handle execution failures as well. The approach is based on the observation that a
significant optimization with high impact shows a clear separation between the performance
distributions for its potential configurations. Figure 3.4 demonstrates our observation with
GCC. Each graph presents a discrete performance distribution illustrated by a histogram
of speedup w.r.t. the baseline performance, -O3, when a certain optimization is configured.
Figure 3.4a and Figure 3.4b contrast the impact of an optimization on the performance
distribution. Figure 3.4a shows that the configuration of -fno-tree-partial-pre has a significant
impact on the performance distribution while Figure 3.4b presents the marginal impact of
-fno-peel-loops. Based on this observation, we approximate the impact of an optimization by
measuring the degree of separation between distributions of configurations. To quantify the
extent of separation between two distributions P and Q, we adopt the following equation of
Kullback–Leibler divergence (DKL) [105]:

DKL(P ||Q) =
∑

P (x) log
P (x)

Q(x)
(3.1)

Figure 3.4c justifies the effectiveness of our idea of configuring optimization in the order of
impact: the right configuration of the significant flag helps the separation of the performance
distribution of the next flag by exposing their hidden interaction (1©). Conversely, when the
non-significant flag is configured first, it may disrupt the later optimization decision (2©) as
we can also confirm with DKL.

41

0

0.2

0.4

0.6

FA
IL

0
.9

2

0
.9

4

0
.9

7

0
.9

9

1
.0

2

1
.0

4

R
e

la
ti

ve
 f

re
q

u
e

n
cy

Speedup

DKL(OFF‖ON) = 6.34

F1:OFF F1:ON

(a) -fno-tree-partial-pre (F1)

0

0.2

0.4

0.6

FA
IL

0
.9

2

0
.9

4

0
.9

7

0
.9

9

1
.0

2

1
.0

4

R
e

la
ti

ve
 f

re
q

u
e

n
cy

Speedup

DKL(OFF‖ON) = 0.01

F1:OFF F1:ON

(b) -fno-peel-loops (F1)

0

0.2

0.4

0.6

Re
l F

re
q

Speedup

DKL(OFF‖ON) = 1.90

F1:OFF

0

0.2

0.4

0.6

Re
l F

re
q

Speedup

DKL(OFF‖ON) = 1.77

F1:OFF F1:ON

0

0.2

0.4

0.6

Re
l F

re
q

Speedup

DKL(OFF‖ON) = 4.85

F1:OFF F1:ON

(c) -fno-inline-functions (F1)

Figure 3.4: Performance distributions and their KL divergence (DKL) in consumer jpeg c
given a certain GCC optimization. Relative frequency presents an occurrence normalized
by the entire sample counts. (a) suggests to turn off the flag by showing a higher relative
frequency of outperforming the baseline (i.e., speedup above 1.0) when disabled. (c)
illustrates how a decision of earlier optimization affects latter optimization decision. Left
graph presents performance distribution when there is no other optimizations configured
and right two graphs display how the performance distribution changes when (a) or (b) are
configured, respectively.

3.3.3 Handling Local Optima

Our motivational experiments demonstrate that configuring high-impact optimizations one-
by-one actually uncovers hidden inter-optimization relations and greatly enhances the chance
of finding good settings. However, it does not necessarily guarantee the discovery of the best
setting. When such an approach falls into a local optimum, it may result in wasting trials
in the area with low-hanging fruits. Therefore, it is important to visit multiple promising
regions to maximize the chance of getting closer to global optimum. Thus, we formulate
the exploration-exploitation dilemma by introducing the concept of the multi-armed bandit
problem. At each stage, our multistage algorithm configures an optimization by weighing
the expected benefits from exploration and exploitation to narrow down the search space

42

① Generate a setting

③ Update strategy

Compile

Measure

Target Program

② Evaluate

Assign
reward

Setting

Reward

Multistage Search Strategy

…

Possible configs

Reflect
Feedback

…

Distribution-based
Impact estimation

…

Stage-Opt
mapping

SRTuner (Section 4)

Tuning DB

▪ Customized setting ▪ Tuning workload

F1 F2 …

C3 C1 …

Tuning Output

▪ Important synergistic
optimizations

▪ Optimization space

Input Tuning Database
(Section 6)

Workload feature:
• Customized setting
• Synergistic

optimizations

Flags Configs

F1 C1,C2,C3

F2 C1,C2

… …
F2 F5 …

C1 C7 …

F1

F2

…

F3

▪ Accumulate tuning
experiences.

▪ Section 6 discusses
how to utilize the
information.

F3

F5

…

F1

Figure 3.5: SRTuner overview

intelligently.

3.4 SRTuner
Figure 5.3 illustrates the overarching design of our tuning strategy. As our technique does
not depend on the underlying environment, any compiler, hardware, or performance metric
can be adopted. In this work, we focus on minimizing the execution time. Once the
optimization space is defined, the search process begins for the tuning workload. First,
SRTuner creates a promising combination via multistage generation algorithm (1©). The
framework then applies the corresponding optimization setting to the target program and
measures its run-time performance. Based on the reward policy, reward will be computed
accordingly (2©). Once an evaluation is done, SRTuner adjusts its strategy by using feedback
and re-map each optimization onto each stage by estimating the optimization impact (3©).
Within the given tuning budget, these steps will be repeated to extract the best result. Since
search algorithm (1©, 3©) is entirely orthogonal to the rest of framework, it can be easily
plugged-in to the existing tuning frameworks, such as a library tuner [116] or model-based
approach [56], or ensemble method [32]. As a result of tuning, SRTuner outputs a fully
customized setting as well as important synergistic relations among them. Optionally, every
tuning experience can be accumulated in the tuning database for the future uses. Section 3.6
demonstrates how these data can benefit future optimization decisions.

To effectively balance between exploration and exploitation, we design a multistage
process of creating an optimization combination. At each stage, the process configures an
optimization by considering each decision as the multi-armed bandit problem [53, 47]. Thus,
a process of generating a combination becomes a game playing series of multi-armed bandits.
To formulate the exploration-exploitation dilemma for each bandit, Upper Confidence Bound

for Trees (UCT) [91] is adopted. After N trials playing a K-armed bandit, UCT will pick
the most promising arm I ∈ {1, ..., K} as follows:

43

I = argmax
i∈{1....K}

{ ri
ni

+ c

√
lnN

ni

} (3.2)

where ni, ri represent the number of trials and the accumulated rewards for choosing
ith arm. c is the exploration constant. The first term of the equation describes the averaged
reward from the previous trials which implies the expectation towards the exploitation. Thus,
this term will have a large value when previous choices for the arm were rewarding. The
second term represents the component for exploration that will have a bigger value when
the arm has been less chosen. By adding up two components, UCT balances exploration
and exploitation. Note, the accumulated reward ri will be amortized by ni. Thus, UCT will
revert to exploration when the exploitation-oriented trials continuously fail in collecting
rewards. In this metaphor, each bandit would represent an optimization which has arms as
many as the number of possible configurations for the corresponding optimization. Naturally,
our algorithm can handle options which have more than two configurations and quantify the
exploration-exploitation trade-off by using Equation 3.2. Figure 3.6 illustrates our multistage
structure that reflects our idea. The structure consists of nodes and edges arranged across
the multiple stages. Each stage represents a single multi-armed bandit that configures
an optimization. A node depicts an intermediate combination built from previous stages.
It has as many outgoing edges as the number of configurations that the corresponding
optimization supports. Thus, an edge represents a configuration of each optimization on
the top of an intermediate combination of earlier optimizations. For an adaptive decision
with Equation 3.2, each node maintains information about the number of visits and the
total rewards achieved during trials. For implementation, we considered Monte-Carlo Tree
Search (MCTS) [46]. However, our experiment showed that naive application of MCTS
performs worse than random search. To make MCTS effective in our problem space, we
adapted MCTS and also developed two policies that determine how to adjust strategy based
on the feedback from previous trials: reward policy (Section 3.4.1) and stage-optimization
mapping policy (Section 3.4.2).

Figure 3.7 shows an example of how SRTuner works on the structure. Each trial consists
of three sequential phases: 1© Generate 2© Evaluate 3© Update. A trial starts with a
generation phase creating an optimization combination to test. By applying Equation 3.2 to
the information logged at each node, SRTuner makes an adaptive decision at each stage by
balancing between exploration and exploitation. When a decision leads to a node that has
not been visited before, new nodes will be randomly created until a complete combination is
forged at a terminal node. Note, conventional MCTS only creates a single new node in the
unknown space and conducts simulated play-out without further expansion. Given that the

44

n, r

1,
0

★

Stage 1
Optimization

Flag X1

Stage 2
Optimization

Flag X2

…

Stage 3
Optimization

Flag X3

…

n’, r’
Statistics

before a trial
Updated
after a trial

Figure 3.6: An example of multistage structure used in SRTuner. Each stage configures an
optimization and each node represents a combination forged at earlier stages. For example,
the annotated node (?) will configure X3 when config1 and config2 are chosen for X1 and
X2, respectively. Each node counts the number of visits, n, and accumulates rewards, r.

1,1 2,1

0,0

0,0

0,0

…

1,1

0,0 1,1

1,1 0,0

…

0,0 1,0

Lose (+0)

0,0 1,0

0,0 1,0

① Generate
③ Update

② Evaluate

(a) 2nd trial : Exploration

11,6 12,7

…

3,1

1,0 2,1

0,0 1,0

…
…

4,2

2,1 2,1

1,0 1,1

…
… …

… …… …

4,3 5,4

1,0 3,3 4,4

2,2 1,1 2,2

…
… …

Win (+1)

①

②

③

(b) 12th trial: Balanced

Figure 3.7: An example of SRTuner strategy. White nodes represent expanded nodes while
black nodes imply topmost nodes in the unknown areas. +1 reward is applied when a trial
outperforms the baseline. As tuning proceeds, SRTuner naturally exposes popular paths on
the structure, which show the constructive relations between optimization decisions.

tuning budget is extremely limited compared to the size of the search space, our algorithm
adopts a more aggressive approach. Later, we show that this also helps our optimization
impact estimation for stage-optimization mapping. Once a combination is forged, SRTuner
performs the evaluation phase that computes reward based on the actual performance of
the corresponding setting. During the update phase, new findings, such as a reward, will
be backpropagated to the nodes contributed during the generation phase and update their
information. Figure 3.7a illustrates an example of early trials. Due to the lack of information
to leverage, the search starts with random exploration. When the information is accumulated
above a certain amount, algorithm estimates benefits from exploration and exploitation to
choose the expectant configuration as in Figure 3.7b. As tuning proceeds, SRTuner naturally
identifies synergistic configurations by examining the frequently chosen decision on each

45

1

2

3

(a) Static: 0 (b) Static: 5 (c) Static: 10 (d) Static: 20 (e) Dynamic

Figure 3.8: Visualization of different reward policies

Algorithm 1 Reward policy
Constants
LB : Lower bound margin.
C : Constant multiplication factor.

1: procedure GETREWARD(perf)
2: reward← 0
3: ratio = (perfbest-perf)/perfbest
4: if ratio > LB then
5: reward← max(C ∗ (1 + ratio), 0)

6: return reward

stage and utilize them to focus on the promising subspace.

3.4.1 Reward Policy

In Equation 3.2, a higher reward makes the search focusing on its subspace longer. Since
excessively high reward may lead the search algorithm to be stuck at the local optima, it is
crucial to have an intelligent reward policy. Figure 3.8 visualizes the effect of reward policy. 2

Without any reward, the search will traverse every direction uniformly as in Figure 3.8a.
When a constant reward is awarded for settings beating the baseline, the algorithm can
exploit the past experiences and narrow down its search space (Figure 3.8b). With a larger
reward, the algorithm strongly invests more trials on the focused areas (Figure 3.8c-3.8d).
However, when the constant reward is blindly awarded, these policies may guide search to
the local optima. Ideally, to efficiently handle local optima, we want to assign high reward
on the new observation of the best performance while lowering the reward when observation
of the similar performance becomes frequent at later trials. Therefore, as in Figure 3.8e, a
dynamic reward policy is designed to dynamically adjust its focus intensity in proportion to
the information value of the performance observation.

Algorithm 1 outlines our reward policy. To find the best possible setting rather than many

2Expanded nodes (i.e., white nodes in Figure 3.7) are placed in the radial layout and non-diverging paths
are omitted for simplicity.

46

0.8

1

1.2

1.4

1.6

N
o

rm
al

iz
e

d
Im

p
ro

ve
m

e
n

t

No Reorder Reorder every 500 trials
Reorder every 300 trials Reorder every 100 trials

Figure 3.9: Analysis of reordering frequencies. Each performance is normalized by the one
without remapping.

mediocre settings, our policy only encourages a combination that shows the competitive
performance compared to the best-performance-so-far and dynamically adjusts the amount
of reward according to its information value. In our implementation, past rewards are not
re-computed at the update of perfbest since influence of previous rewards will be gradually
decayed as tuning proceeds.

3.4.2 Stage-Optimization Mapping

The observation in Figure 3.4 suggests us configuring high-impact optimization can help
latter optimization decisions and thus enhance the quality of combination generation. Also,
since the diverging path makes a node to have more visits than nodes in its subtree in
our multistage structure, it would be more effective to locate important optimizations in
the earlier stages so that they can make a better decision with more samples. However,
since impact of an optimization is highly application/hardware-dependent, the ordering
of optimizations cannot be statically determined. This motivates us to design reordering
mechanism that periodically re-maps each optimization to a stage based on our distribution-
based impact estimation method. With samples accumulated during the tuning process,
optimization impact can be approximated by measuring separation between distributions as
in Section 3.3.2.

To measure the impact of an optimization, we group run-time observations into bins to
describe a discrete distribution for each configuration. Naturally, when more samples are
available, more accurate estimation can be made. Because KL divergence is not symmetric,
we refer each distribution of a configuration in a certain order. For a parametric optimization,
two configurations presenting the maximum/minimum averaged performance are chosen
for impact estimation. Unlike conventional MCTS, when the node expansion is necessary,

47

Algorithm 2 Collect important synergistic configurations

1: procedure EXTRACTSYNERGY(root, tuned)
2: cur node← root
3: syn group← ∅
4: while cur node do
5: min num← inf
6: chosen← null
7: cur opt← cur node.optimization
8: for all child ∈ cur node.children do
9: min num← min(min num, child.num)

10: if tuned[cur opt] == child.config then
11: chosen← child
12: if IsBiased(chosen.num,min num) then
13: syn group.append(tuned[cur opt])
14: cur node← chosen
15: return syn group

SRTuner keeps expanding new nodes until reaching the terminal node. This allows the equal
number of samples for each optimization for its impact estimation.

Figure 3.9 presents the effectiveness of our stage-optimization mapping policy. When
remapping is performed every 100 trials, SRTuner can find a 1.16× better performing setting
than the tuning without remapping.

3.4.3 Extract Important Synergistic Relations

Due to our unique tuning strategy, SRTuner can suggest important synergistic relations. By
examining the optimization decisions in tuned setting, SRTuner collects biased paths on the
multistage structure that are expected to be more promising than others. Since each choice is
made based on decisions in the earlier stages, naturally, it would expose synergistic relations
between optimizations. Algorithm 2 illustrates our approach. By controlling thresholds for
bias detection, user can change the confidence level of identified synergistic relations.

3.5 Performance Evaluation

3.5.1 Experimental Setup

For evaluation, we implemented SRTuner as a portable Python package and examined the
acceleration from each auto-tuning strategy compared to the fastest setting provided in three
representative compiler stacks from various domains on different target hardwares as in
Table 3.1. While an independent tuning framework is built for GCC, SRTuner is inserted as
a search strategy into existing tuning frameworks for TVM and OpenCL compilers. In total,
3 standard optimization levels (i.e., -O1, -O2, -O3) and 100 optimization flags in GCC-7

48

Compiler Search Space Backend Benchmark Implementation
GCC

(traditional C/C++)
1030

(100 flags)
CPU cBench [71] Standalone

TVM
(deep learning)

107

(5-8 flags)
GPU Deep Learning

Workloads
Plug-in

OpenCL compiler
(heterogeneous computing)

105

(15 flags)
CPU/GPU BLAS library [117] Plug-in

Table 3.1: Experiment setup

are examined 3 On the other hand, TVM and OpenCL compilers provide several highly
parameterized optimization flags. Although their search space is narrower than GCC, it is
still too extensive to traverse without an intelligent strategy.

Once a tuning method customizes a setting, it is assessed by the averaged performance of
30 run-time measurements. The tuning quality of each method is evaluated by aggregating
results of five runs where equal budgets are allocated for each run. By referencing prior
studies [70, 56], we consider 1,000 trials are affordable and tried to maximize the tuning
quality within this budget. To show the quality across tuning runs, max/min improvements
are also presented. Usually, a tuning process took several hours and none of tuning methods
is allowed to use more tuning time than others during experiment.

3.5.2 GCC

Figure 3.10 presents the results with GCC over programs in cBench [71], a suite of repre-
sentative auto-tuning workloads 4. For comparison, we chose well-known tuning methods
designed for GCC: RAND [69], mPBIL [68], OpenTuner [32].

Figure 3.10a showcases the improvements from the tuning methods compared to -O3.
Overall, balanced search methods (i.e., OpenTuner, SRTuner) outperform exploitation-
oriented (i.e., mPBIL) and exploration-oriented (i.e., RAND) search methods by handling
the exploration-exploitation dilemma. On average, RAND and mPBIL present similar
improvement around 20% although each method performs better than each other at different
benchmarks. With a sophisticated ensemble method with a pool of unique search methods,
OpenTuner achieves further enhancement by showing 23.4%. However, unlike previous bal-
anced methods with ensemble approach, SRTuner handles exploration-exploitation dilemma
as a solo method and beats all prior tuning approaches. Given its extremely large size and
the control-flow intensive property of C/C++ benchmarks, GCC has the most challenging
optimization space among the compilers we investigated. Nonetheless, SRTuner can traverse
the GCC optimization space efficiently and successfully accelerate the execution 1.244×

3Due to a slight difference in GCC distributions [19], the supported flags are confirmed by using -fverbose-
asm.

4A few benchmarks that none of tuning methods brought 10% speedup are excluded for better visualization.

49

0%

10%

20%

30%

40%

50%

60%

Im
pr
ov
em

en
t

RAND mPBIL OpenTuner SRTuner

(a) Overall tuning result

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

Ex
ec

ut
io

n
Ti

m
e

(s)

Trials

RAND mPBIL OpenTuner SRTuner

Baseline performance (-O3)

(b) Tuning progress on consumer jpeg c

Figure 3.10: Tuning C/C++ applications with GCC on Intel Xeon E5-2430.

faster. Especially, our method outperforms state-of-the-arts greatly on the applications like
consumer jpeg c and telecom adpcm d. As we focus on delivering reliable tuning quality,
SRTuner also shows the most stable improvements across the tuning runs.

Essentially, tuning is a process of correcting optimization misuses in the context of a
given workload. Thus, due to the nature of tuning, there are some benchmarks without
significant winners. It is unavoidable that for some programs default setting (-O3) may be
already close to global optimum. In such occasions, any tuning process would converge
to the similar performance gain. security blowfish d and security blowfish e might be the
case. For applications like network dijkstra, telecom adpcm c, and bzip2d, there can be
numerous local optima with similar performance that may require many trials to escape.
Thus, although OpenTuner and SRTuner extract further speedup than others, they may
be stuck at the similar local optima and need more tuning budget to escape. Oftentimes,
effective use of feedback from the previous trials is very hard. In such cases, RAND
performs the best as in telecom CRC32.

Figure 3.10b illustrates a representative tuning progress. While other techniques waste

50

0%

5%

10%

15%

20%

25%

RAND XGB-TVM XGB-SRTuner

Im
p
ro
ve
m
en

t

1.21x

(a) resnet-18

0%

5%

10%

15%

20%

25%

30%

RAND XGB-TVM XGB-SRTuner

Im
p
ro
ve
m
en

t

1.49x

(b) mxnet

0%

5%

10%

15%

20%

25%

RAND XGB-TVM XGB-SRTuner

Im
p
ro
ve
m
en

t 1.07x

(c) mobilenet

0%

100%

200%

300%

400%

500%

600%

700%

RAND XGB-TVM XGB-SRTuner

Im
p
ro
ve
m
en

t

1.02x

(d) squeezenet v1.1

Figure 3.11: Tuning deep learning workloads with TVM on NVIDIA RTX 2080Ti.

lots of trials at the local optima, SRTuner shows more efficient escape from local optima
and finds the better setting.

3.5.3 TVM

For efficient tuning, AutoTVM provides a model-based approach with the ensemble search.
We denote this as XGB-TVM (See Section 3.2). For evaluation, SRTuner was plugged into
this model-based approach as its pure search strategy and referred as XGB-SRTuner. Overall,
four real-life deep learning workloads are examined on two GPUs: NVIDIA GeForce RTX
2080Ti and NVIDIA Quadro K620.

Figure 3.11-3.12 present the improvement from each tuning method compared to a
default setting which is determined for the running environment by referencing the TVM
database. Overall, SRTuner can extract substantial speedup across all workloads and
devices we investigated. Since the landscape of optimization space greatly varies across
different kernels and hardware devices, a default setting is hard to perform well unless
its database covers the exact same case. Since RTX 2080 Ti has closer data point in the
database than Quadro K620, optimization space on RTX 2080 Ti is more challenging to
extract performance improvement, which often causes RAND fails as in Figure 3.11b-
3.11c. However, our strategy can extract around 23% of enhancement. By effectively
handling the exploration-exploitation dilemma, SRTuner outperforms both the balanced
strategy of XGB-TVM and RAND. Especially, results in Figure 3.11a-3.11b, 3.12a-3.12c

51

0%

10%

20%

30%

40%

RAND XGB-TVM XGB-SRTuner

Im
p
ro
ve
m
en

t
1.97x

(a) resnet-18

0%

10%

20%

30%

40%

50%

RAND XGB-TVM XGB-SRTuner

Im
p
ro
ve
m
en

t

1.15x

(b) mxnet

0%

20%

40%

60%

80%

100%

120%

RAND XGB-TVM XGB-SRTuner

Im
p
ro
ve
m
en

t

1.12x

(c) mobilenet

0%

100%

200%

300%

400%

500%

600%

700%

RAND XGB-TVM XGB-SRTuner

Im
p
ro
ve
m
en

t

1.01x

(d) squeezenet v1.1

Figure 3.12: Tuning deep learning workloads with TVM on NVIDIA Quadro K620.

are considerable.

3.5.4 OpenCL Compilers

CLTune [117] provides tuning capability for OpenCL BLAS kernels with three different
strategies: RAND [69], Annealing [117] and Particle Swarm Optimization (PSO) [117].
Figure 3.13-3.14 present the tuning result on CPU and GPU, respectively. Across all bench-
marks and hardware we examined, auto-tuning shows the most significant enhancement:
SRTuner achieved 68.0× on CPU and 17.1× on GPU, respectively. Since OpenCL kernel
supports a variety of hardware backends with totally different design philosophy, each
optimization should be configured according to the target device. Thus, one-for-all approach
misses the chance to realize substantially better performance. Overall, SRTuner identifies
better customized setting than prior methods by escaping local optima efficiently.

3.6 Discussion
This section discusses potential ways for scientists and engineers to utilize information
about synergistic optimizations to better current systems.

3.6.1 Identification Of Important Misuses

Fundamentally, tuning is a process of correcting optimization misuses in the context of a
given workload. By finding optimization decisions that disagree with GCC among important

52

70

75

80

85

90

95

100

105

110

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Trials

RAND Annealing PSO SRTuner

Figure 3.13: Tuning gemm with OpenCL on Intel i7-9700K.

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Trials

RAND Annealing PSO SRTuner

Figure 3.14: Tuning gemm with OpenCL on NVIDIA RTX 2080Ti.

synergistic optimizations uncovered by , we could identify high-impact optimizations that
were configured sub-optimally for the given workload.

Figure 3.15 exhibits the performance consequences of GCC misusing the high-impact
optimizations found with . We selectively enable each flag with a baseline setting of -

O3 and observe its impact. For reference, we also display the improvement from using
a representative subset of the synergistic flags and the performance of the fully tuned
workload.

Figure 3.15a shows that consumer jpeg c suffered from the side effects of excessive
inlining. Therefore, we could extract 5% speedup by simply disabling inlining. When
manually configuring the basic block reordering algorithm to the simple heuristic from
software trace cache, which is the default for -O2 and -O3, we saw no notable change.
However, when the simple heuristic is used when inlining is disabled (third bar), it can
provide an additional 3% improvement over -fno-inline. This demonstrates the positive
relationship between two optimization configurations identified by .

Figure 3.15b shows the serious misuses of if-conversion and phi-node optimization in

53

0%

5%

10%

15%

20%

25%

setting 1 setting 2 RepSynOpts Tuned

Im
p

ro
ve

m
en

t

setting 1: -O3 -fno-inline
setting 2: -O3 -freorder-blocks-algorithm=simple
RepSynOpts: -O3 -fno-inline -freorder-blocks-algorithm=simple

(a) consumer jpeg c

0%

10%

20%

30%

40%

50%

60%

setting 1 setting 2 RepSynOpts Tuned

Im
p

ro
ve

m
en

t

setting 1: -O3 -fno-if-conversion
setting 2: -O3 -fno-ssa-phiopt
RepSynOpts: -O3 -fno-if-conversion -fno-ssa-phiopt

(b) telecom adpcm d

Figure 3.15: Examine representative subset of synergistic optimizations revealed by .

…
if(index<0) index = 0;
if(index>0) index = 88;
…
if(delta & 4) vpdiff += step;
if(delta & 2) vpdiff += step>>1;
if(delta & 1) vpdiff += step>>2;
if(sign) valpred -= vpdiff;
else valpred += vpdiff;
…
if(valpred>32767) valpred = 32767;
else if(valpred<-32768) valpred = -32768;
…

High level C/C++ code
…

movl $0, %eax
cmpl $88, %r9d
cmovg %r13d, %r9d
testl %r9d, %r9d
cmovs %eax, %r9d
…
testb $4, %dl
leal (%rax, %r10), %r11d
cmovne %r11d, %eax
…
cmovne %r10d, %eax
…
movl $-32767, %edx
…
cmovl $32767, %eax
cmovle $eax, $r8d
…

x86 assembly

ssa-phiopt

Figure 3.16: Hot code region in telecom adpcm d where if-conversion and phi-node opti-
mizations are seriously misapplied by GCC.

-O3. These are basic optimizations in GCC and are both configured in the low standard
optimization levels (i.e, -O2 and -O1 respectively). To optimize code with conditionals, the
phi-node optimization pass conducts various code transformations such as load hoisting
on diamond patterns and along with other pattern-based if-conversions 5. By disabling
each optimization individually, we could immediately achieve more than 20% speedup.
Due to their synergistic relationship, disabling both together improves performance by an
additional 5%. To better understand the source of the performance gains, we examined hot
functions from telecom adpcm d and found the code region where these optimizations are
making wrong decisions. Figure 3.16 illustrates how those two optimizations transform the
corresponding region into x86 assembly. To optimize the conditionals, both optimizations
blindly convert control dependence with if-blocks into data dependence with conditional
instructions. Although the optimization window can be broadened by eliminating control

5For example, it finds min/max/abs patterns and replaces conditional blocks with conditional instructions
like cmov.

54

0%

20%

40%

60%

80%

100%

Br
ea
kd
ow

n
RepSynOpts rest

Figure 3.17: Diverse applications with -fno-if-conversion and -fno-ssa-phiopt in their syner-
gistic optimizations. Breakdown shows their importance in each customized setting.

Model Architecture SM/SMM Shading Units L1 Cache
NVIDIA RTX 2080Ti Turing 68 4352 (64/SM) 64KB/SM
NVIDIA Quadro K620 Maxwell 3 384 (128/SMM) 64KB/SMM

Table 3.2: GPU specification. We consider RTX 2080 Ti and Quadro K620 as high-end and
low-end devices respectively.

flow, in this case, there is not much opportunity for latter optimizations (e.g., instruction

scheduling) because of the data dependency on vpdiff. Therefore, the program reaps no
benefit from eliminating control dependencies, while paying the cost of executing all control
flow paths with conditional instructions.

To correct misuses, there are two viable approaches: (1) Improve optimization design.
Currently, configuring ssa-phiopt applies various pattern-based optimizations all together
or not at all. Although its design may be intuitive for compiler designers, it may provide
sub-optimal performance since various sub-optimizations with different benefits/side effects
(e.g., load hoisting and if-conversion) will be enabled/disabled by a single optimization
decision. By separating sub-optimizations into different optimization passes depending on
their effects, we could selectively disable the troublesome sub-optimization (e.g., min/max
replacement) while applying others within ssa-phiopt without any performance penalty. (2)
Build a decision model that recommends settings tailored for each workload. Next section
motivates our future direction.

3.6.2 Generalization Of Tuning Experiences

Although our technique can significantly accelerate a program’s execution, tuning programs
is time-consuming and thus, we cannot expect to tune every workload. To make auto-tuning
more practical while still providing high performance, our future work will investigate
generalization methods [70, 34], which learn a pattern between good optimization settings
and workload features from prior tuning experiences. Ideally, a high-quality training data will

55

Possible
Decision
Boundary

(a)

k1 k2 k3 k4 k5 k6 k7 k8
100

90
80
70
60
50
40
30
20
10

Ac
tiv

e S
M

rat
io

(%
)

4

2

0

2

4
Speedup (log-scale)

(b)

Figure 3.18: Experiment with eight different kernels (k1-8) and diverse SM activation
ratios. (a) Performance ratio between high-end and low-end settings. Green and red cells
imply cases where high-end and low-end settings should be applied respectively. Blue line
represents a possible decision boundary. (b) Speed-up when choosing one of high-end
and low-end settings in the right places. Speed-up is computed against the performance of
default setting with 100% SMs.

be generated by tuning representative small programs with to tailor generalization models
that predict promising optimization settings for big unseen programs. We believe would be
helpful when developing a generalization method for two main reasons: (1) can provide
high-quality optimization settings for a generalization method to learn from. (2) Synergistic
relations can provide key insights for designing a generalization model. When constructing
a generalization model, it is important to understand which applications are similar from an
optimization perspective. In general, this is known to be extremely challenging. However,
we believe that a workload’s synergistic optimizations could be used as a way to group these
seemingly dissimilar programs. Figure 3.17 presents diverse applications that exhibited the
same synergistic optimizations. Breakdown shows how much those synergistic optimizations
contributed to the fully customized performance. Although those benchmarks seem quite
different from a programmer’s perspective, this suggests that they share certain program
properties which makes them similar from an optimization perspective. If the property
can be identified, compiler experts could characterize each workload more accurately by
including it as part of the program features, allowing the generalization model to learn
more effectively [70, 34]. On the other hand, to avoid difficulty of manual feature selection,
compiler designers may consider using automatic feature generation techniques [97, 98].
Essentially, these methods train a model to capture the pattern between workload features
and their optimization decisions by adopting supervise learning. Thus, by grouping programs
at the optimization perspective by using our synergistic relations, we believe we can do
better than manual approach in generating high-quality training data even for such automatic

56

feature generation models.
Instead of focusing on only program similarities, we could cluster hardware devices that

respond well to the same optimizations. For experiment, we tuned optimization settings in
TVM for eight different kernels from real-life deep learning workloads. For each kernel,
we acquired a tuned setting for a high-end device and a low-end device (See Table 3.2). To
explore how different hardware configurations would respond to these two sets of optimiza-
tion settings, we simulate various hardware devices by controlling the number of active
Stream Multiprocessors (SMs) inside the RTX 2080Ti via Multi-Process Service (MPS)
support [20] 6. In this experiment, a lower active SM ratio is akin to a low-end device
while a high ratio would imply a high-end device. It is worth noting that even when 10%
of SMs are activated, it would imply a higher-end device than the Quadro K620 (i.e. 6
SMs with better technology including enhanced shading units, caches, and etc.). For each
simulated hardware, we examine which customized setting is faster (high/low-end) and if
the default setting can be outperformed. Figure 3.18 illustrates the results. Figure 3.18a
showcases the pattern that a generalization model can learn via training (i.e., blue line sug-
gests one possible decision boundary). In general, the high-end setting favors the hardware
configurations with sufficient resources (green cells) while the low-end setting can be useful
when resources are limited (red cells). However, each kernel shows a different transition
point. This suggests that generalization requires careful consideration for both application
and hardware properties to characterize each workload accurately. Figure 3.18b presents
the speedup that an ideal generalization model at different resource budgets could achieve
over the default settings at 100% SMs. For every case, the ideal generalization model is
observed to outperform the baseline. Interestingly, even with significantly less resources, it
was possible to outperform the default setting with full resources.

3.7 Conclusion
To find the best use of existing optimizations, we introduce a novel auto-tuning method,
called SRTuner that effectively exposes inter-optimization relations and uses them directly
to identify promising subspace. Our evaluation demonstrates that SRTuner can provide
competitive performance compared to prior tuning approaches as well as useful information
regarding optimization relations. We also discuss use-case scenarios how to utilize this
information.

6We also tried targeting different architectures with nvcc, but no notable change was observed.

57

CHAPTER 4

Collage: Auto-tuning Deep Learning Execution
Plans With Diverse Backends

4.1 Introduction
Due to the explosive popularity of Deep Learning (DL) applications, there are tremendous
demands for powerful software/hardware stacks that allow fast and efficient execution
of DL workloads. This strongly drives both industry and academia to invest significant
amount of efforts in developing various cutting-edge hardware devices [2, 1, 7] , optimized
libraries [6, 5] , inference engines [8] , etc. Naturally, both hardware and software stacks are
diversified and result in a giant DL ecosystem.

Within this complex ecosystem, users have various choices of backends 1 to generate
efficient binaries of their DL workloads on target device and the right use of each backend is
a key to maximize their performance. Users may lower DL operator primitives to low-level
implementations by using vendor libraries (e.g., cuDNN [6], cuBLAS [5], MIOpen [86]).
Alternatively, users may choose to leverage optimized operators automatically generated by
TVM or offload their entire network to inference engines (e.g., TensorRT [8]).

To deal with diverse backend choices, existing DL frameworks, such as Tensorflow [10],
PyTorch [9] and TVM [55], provide an execution plan hand-written by system experts.
By leveraging their insights and manual analysis, these frameworks offer the rule-based
compilation strategy. In general, these rules try to offload entire workload to the vendor-
provided inference engine, if available. Otherwise, they utilize the optimized libraries based
on their fixed priorities for each operator. For example, cuDNN would have the highest
priority for convolution while cuBLAS would be the first choice for matrix multiplication.

However, our observation demonstrates that current state-of-the-arts may leave substan-
tial performance on the table. We found many occasions where the inference engine does not

1We define a backend as a software library or inference engine enabling efficient execution of DL workloads
on target device.

58

Figure 4.1: Performance of various convolution operators in ResNext-50 on NVIDIA RTX
2070; Note that there is no single backend that always delivers the fastest implementation.

provide the fastest execution. Even within the same type of operator, the most performant
backend varies depending on the underlying hardware and the input configuration of an
operator (e.g., input tensor shape, padding, etc.). Figure 4.1 showcases our observation.
Due to their unique strength and weakness, the best backend choice can be drastically
different depending on the configuration of convolution. Interestingly, the competitive
performance of AutoTVM indicates that the vendor library/inference engine may not be the
best choice on many cases. Furthermore, given that the DL ecosystem is evolving fast, the
landscape of backend performance can continuously change. As such analysis result can
be easily outdated, it is inevitable to repeatedly tune the execution strategy and this makes
the current manual tuning approach inefficient and error-prone in terms of the performance
maintainability.

To overcome the current limitation, we aim to design an intelligent auto-tuning method
that customizes the best use of diverse backends for the given DL workload and underlying
hardware device. Key challenges are as follows:

First, it is difficult to accurately describe the full capability of a library or inference
engine. In practice, different libraries and inference engines have their own unique ca-
pability and coverage. For example, optimized libraries, such as cuDNN and cuBLAS,
provide efficient low-level implementations for DL operators while inference engine, such
as TensorRT, takes entire network and creates the network-wide best execution plan with
cross-kernel optimizations. Even within these libraries, each library would cover differ-
ent set of operators: cuBLAS mainly offers matrix multiplication kernels while cuDNN
supports efficient implementation of important DL operators, such as convolution. Also,
each backend may have its unique way of fusing multiple operators into a single kernel.
Beyond a few enumerated patterns of fused operators, advanced fusion engines [55, 6, 115]

59

AutoTVM

Conv Add
Dense

Relu

Computation Graph, 𝑮 Backend Description

Possible Backend Choices Illegal Choices
(Cycle Dependency)

Conv

Dense

Relu

Add

Conv+Add

Dense+Add

Relu+Add

Conv+Relu+Add

cuDNN

Conv

Relu

Add

Conv+Add

Relu+Add

Conv+Relu+Add

cuBLAS

Dense

Batch
Matmul

TensorRT

Conv Add
Dense

Relu
Conv Add

Dense

Relu
Conv Add

Dense

Relu

Conv+Relu+Add

Dense

Conv
Dense+Add

Relu

Conv
Dense+Add

Relu

Relu+Add
Conv

Dense
Conv Add

Dense

Relu

Relu+Add
Conv

Dense

Relu+Add
Conv

Dense

Conv
Dense+Add

Relu

…

…

Conv

Relu

Add

Dense

Figure 4.2: An example of possible execution strategies for a simple workload with four
different backends. This illustrates the explosive size of the search space and the difficulty in
the efficient exploration. To assign backend, both graph topology and the supported backend
pattern should be matched. In case of lowering to fused operators or offloading partial graph
to inference engines, matched operators should not have any cyclic data dependency to avoid
deadlock.

follow complicated fusion rules to allow more flexible application of fusion. Thus, naive
pattern enumeration would not be able to capture full capability of advanced fusion engines
anymore.

Second, search space is extremely large and complicated. Although we simply assume
two backends for a network of 100 operators, the possible number of possible mappings
would be 2100 which is practically impossible to examine even its significant fraction. In
reality, there are more number of backend choices and bigger size of networks. Furthermore,
the search space traversal is difficult since both graph topology of the network and capa-
bility/coverage of each backend should be considered together. Figure 4.2 demonstrates
this challenge with a toy example. Even for a small network, it is not easy to navigate the
possible candidates and identify the best strategy.

As a breakthrough, we propose a novel auto-tuning system, called Collage, that ef-
ficiently searches for the best use of diverse backends and generates the near-optimal
execution strategy customized for the given DL workload and underlying hardware device.
For the accurate description of various backends, Collage provides the straightforward user
interface that allows users to specify supported patterns of operators via two ways: users
may explicitly enumerate patterns for simple cases or bring the pattern rules to implicitly
generate more complicated legitimate patterns for the workload with our pattern generator.

60

Once backend description is ready, our system explores the possible matches with those
patterns on the computation graph of the workload to identify how to partition the graph
and assign the most performant backend on each subgraph with the consideration for the
underlying environment (e.g., hardware device, tool chain, etc.).

To overcome excessively large search space and the difficulty of graph topology, Col-

lage propose a two-level approach that can efficiently navigate promising candidates. As
optimized libraries (e.g., cuDNN) offer operator-level point of view while inference en-
gines (e.g., TensorRT) are designed to provide graph-wide optimizations (i.e., cross-kernel
optimizations), we take two different search strategies to deal with their differences. Our
first-level explores the promising candidates at the operator-level perspective, without the
consideration for the effect from graph-wide optimizations. Without cross-kernel optimiza-
tions, the tuning problem becomes a problem of how to lower operators on the computation
graph into a set of independent low-level kernels from available backends. As fused op-
erators would pack multiple operators into a single kernel, this problem should consider
operator fusion as well. To enable the intelligent navigation, Collage defines a search as a
Dynamic Programming (DP) problem based on the additive cost model while taking into
account the topology of the computation graph and backend patterns. This cost model
also enables the cheap evaluation of a promising backend placement by reflecting factors,
such as driver overhead. With this approach, our first-level tuning method can efficiently
customize the best multi-backend execution strategy only within a few seconds. Then, based
on the decision from the first-level, our second-level applies fine-tuning by identifying which
parts of the graph would benefit from such graph-wide optimizations to fully leverage the
capability of inference engine. For the efficient search, we represent a state with a sequence
of digits and navigate its space with the off-the-shelf genetic algorithm [67]. Because of the
challenge in incorporating the graph-wide optimizations for the efficient cost model design,
our current approach evaluates each sample with the actual measurement which leads to the
longer tuning time compared to the first level. Thus, for now, we recommend the graph-level
tuning as the optional step for the users who are interested in squeezing the last drop of
performance.

All in all, our contribution is as follows:

• We propose a tuning system, called Collage, that automatically customizes the best
hybrid execution strategy with diverse backends for the given DL workloads and
hardware device. Our evaluation demonstrate Collage could not only enhance the
performance 1.18× speedup compared to the best backend choice for each workload,
but also outperform the hand-written approach in the state-of-the-arts framework by
1.31×.

61

• To fully leverage the capability of each backend, Collage provides the seamless user
interface that allows easy and accurate adoption of diverse optimized libraries with
their sophisticated fusion engines and inference engines. Our pattern generator enables
efficient descriptions of supported patterns beyond naive enumeration.

• Collage suggests two-level approach to efficiently navigate the search space with
diverse backends of different characteristics. By ignoring the cross-kernel optimiza-
tions from the inference engines, our first level tuner with the dynamic programming
method could customize the effective plan within a few seconds. To handle the poten-
tial loss from the first level, we introduce the second tuner to fine-tune the plan with
evolutionary search.

4.2 Related Work
Diversified Backends To extract the best performance from the underlying hardware, there
have been substantial efforts to design powerful backends. Hardware vendors have released
various specialized optimized libraries and inference engines. NVIDIA has actively devel-
oped cuDNN [6] to deliver optimized implementations of DL operators, cuBLAS [5] to offer
efficient BLAS kernels, and TensorRT [8] to create the fast execution plan for DL workloads
by considering graph-wise optimizations. To eliminate the overhead from the plan generation
within the inference engine, TensorRT allow users to cache the generated plan. Meanwhile,
Intel has released oneDNN [3] for optimized DL operator kernels and openVINO [4] as an
inference engine for Intel CPUs. AMD also has driven MIOpen [86] which is an open source
GPU library for DL primitives. As a third-party stakeholder, TVM [55] provides optimized
operator kernels automatically generated for various targets devices across different vendors
and hardware architectures. Users may also use AutoTVM [56] to fine-tune their operators
and extract further speed-up. Collage is designed to automatically find the best use of these
backend by intelligently dealing with their diversity and characteristics.

Operator Fusion Fusion is one of the most powerful techniques to optimize DL work-
loads by combining multiple high-level operations into a single kernel. To maximize the
benefit, advanced fusion techniques introduce their own unique fusion rules to apply this
optimization more flexible beyond a few special cases. For instance, by iterating over every
operator in the workload, TVM endeavors to seek for an opportunity to merge each operator
with its neighbors and maximize the fused operators with the union-find algorithm [55].
To efficiently explore the fusion opportunities, DNNFusion is developed to employ a de-
tailed classification of potential scenarios. To identify the best fusion plan, FusionStitching
conducts Just-In-Time tuning [168]. NVIDIA has actively improved the fusion engine in
cuDNN to merge certain patterns of operators at runtime [6]. Internally, TensorRT also

62

Figure 4.3: System overview of Collage

actively apply the fusion to optimize the memory access and scheduling overhead [8]. By
offering the highly flexible user interface to describe the pattern rules, Collage can support
these advance fusion engines as backends.

DL frameworks To provide easy and powerful platform of running a variety of DL
workloads, different frameworks have been continuously released and improved. Google
maintains TensorFlow [10] and XLA [11] to optimize the execution on various hardware
devices including TPUs [2]. By providing a dynamic environment, Pytorch supports dynamic
computation graphs more efficiently [9]. As an open-source C++ library and compiler suite
for CPUs, Intel has launched nGraph [58]. Also, to support diverse hardware backends and
offer a seamless interface to customize the compilation process, TVM [55] is developed. On
the other hand, Glow [137] is proposed to efficiently generate the optimized code for multiple
targets of heterogeneous hardware. We design Collage to help these frameworks customize
their ideal execution strategy with multiple backends and extract further performance gain
from the current manual approach.

4.3 Overview
Figure 4.3 illustrates the overarching design of Collage. As the input, our system takes a
DL workload and the specification of backends that will be used for the execution. Collage

offers two options in the user interface to describe each backend. For simple cases, users
may enumerate the supported operator patterns manually. However, this may not be enough
to cover the full capability of backends with advanced fusion engines [55, 115, 6, 8]. To
enable more flexible specification, Collage allow users to bring their pattern rules. When
those rules are provided, the backend pattern generator automatically identifies the legitimate
operator patterns on the given computation graph and adds them into the backend pattern
registry. Section 4.4 provides more details in depth.

Once patterns are ready, Collage launches the auto-tuning process in two steps. To

63

Listing 1 Example of the user interface for the backend description
1 import collage
2

3 # Pattern language to describe conv2d + add + relu.
4 conv = is_op('conv2d')(wildcard(), wildcard())
5 conv_constr = conv.has_attr({"data_layout": "NCHW"})
6 conv_add = is_op('add')(conv_constr, wildcard())
7 conv_add_relu = is_op('relu')(conv_add)
8

9 # Introduce new backend pattern to Collage.
10 collage.add_backend_pattern(backend='cuDNN',
11 pattern=conv_add_relu)
12

13 # Python function describing a pattern generation rule.
14 # It will be called by our pattern generator.
15 def pattern_rule(isSingleOpPattern, **kwargs):
16 # Checks single op pattern
17 if isSingleOpPattern:
18 # Single op is always valid pattern
19 return True
20 # Checks fused patterns
21 else:
22 # Pattern generator passes this arguments accordingly.
23 # cur_type: type of current fusion group
24 # src: seed operator node
25 # sink: post-dominator of src
26 cur_type, src, sink = **kwargs
27 # If current fusion group contains a conv/matmul
28 if cur_type == kFusable:
29 # Helper functions can be defined.
30 def fchecker(node_pattern):
31 return (node_pattern == kElemwise)
32 # Check if every operator between src and sink.
33 # Helper function can be passed as a checker.
34 if collage.check_path(src, sink, fchecker)):
35 return True
36 # ... rest of fusion rules ...
37 return False
38

39 # Introduce new pattern generation rule to Collage.
40 collage.add_backend_pattern_rule(backend='AutoTVM',
41 rule=pattern_rule)

effectively prune the worthless search space, our first tuner will customize the best execution
plan without consideration for the effect of cross-kernel optimizations in the inference
engines. By matching the patterns in the registry on the computation graph, our op-level

tuner explores promising backend placements by adopting the Dynamic Programming (DP)
approach with the additive cost model which enables an efficient evaluation of each candidate.
Then, as the second tuner, graph-level tuner will fine-tune the plan to compensate the missing
opportunity from the first tuner by examining the impact of cross-kernel optimizations. By
representing each candidate with straightforward encoding, our second tuner traverses the
search space with the genetic algorithm [67].

4.4 Backend Pattern Abstraction
To efficiently navigate the vast search space, effective pruning of invalid backend

placements is crucial. Thus, auto-tuning algorithm should be well aware of the capability

64

Pattern Generator Walkthrough

Conv Add
Relu

Tanh

Computation Graph, 𝑮

Relu Dense

Pattern Rules

def pattern_rule(…):
// line 15-37 in Listing 1

1. Choose a seed node and check it with the pattern rule.

2. Expand the scope to the next post-dominator and check nodes
between them by using the pattern rule. Repeat until it fails.

seed

seed sink seed sink

…

3. Repeat 1&2 until visiting every node in G.

Backend Pattern Registry

Generated Patterns

If valid, generate a corresponding pattern!
e.g., is_op(“conv”)(wildcard(), wildcard())

Figure 4.4: Example illustrating how the backend pattern generator would automatically
generate valid patterns with the pattern rule assumed in the listing 1.

of each backend so that it would not consider the subspace outside of the valid coverage.
To provide accurate specification of the capabilities of various backends, Collage offers
an intuitive user interface to allow users bring various backends easily. Accurate and
easy interface is important to cope with the fast evolving DL backends. For the efficient
management of numerous patterns and pattern matching, Collage uses a pattern language
that extends the Relay pattern language [136].

Listing 1 presents an example of use-case scenario. If a backend only supports a few
simple patterns, users may define those patterns manually and add them directly to the
backend pattern registry (line 4-11). Users can easily check the operation (line 4), the
relation between operators (line 6-7) and attributes, such as data layout or kernel size (line 5).
Wildcard operator can be used as a special placeholder that matches with any operator.

To fully support complicated patterns in the advanced backends [55, 115, 6, 8], Collage

allow users to describe their pattern rules to incorporate more flexible specification beyond
naive enumerations (line 15-41). Before the auto-tuning starts, automatic pattern generator
in Collage will search for valid operator patterns satisfying these rules and update the
backend pattern registry accordingly. Figure 4.4 exhibits how the pattern generator would
search for the legitimate patterns on the given computation graph. By visiting every node
in the computation graph, the pattern generator investigates how far a pattern can grow
without breaking the given pattern rule. To assess if a group of operators can be fused,
advanced fused engines [55, 115] classifies the type of each operation and determines the
fusion decision based on the relationship between different types. For example, line 28-35
defines that element-wise operators followed by operation type of kFusable, which includes

65

convolution or dense, can be fused. However, it is not valid if a kFusable operator is followed
by another kFusable operator. Whenever a group of operators satisfying the rule is found,
it generates a corresponding pattern and expands the scope of interests to see if a bigger
pattern can be found. With this approach, we could successfully adopt advanced backends,
such as AutoTVM, cuDNN, and TensorRT, for our evaluation without any missing pattern.

4.5 Auto-tuning Execution Plan

4.5.1 Backend Placement Problem

To optimize the execution plan, Collage focuses on the backend placement problem. Con-
sider a computation graph G and a set of backend operators B that are predefined in Collage

or provided by users. Note that G is a Directed Acyclic Graph (DAG) where each node repre-
sents a mathematical tensor operator (e.g., convolution, batch normalization) and a backend
operator is an optimized low-level implementation that each backend provides for the target
hardware. With M matched subgraphs gi and backend operators bi for i = 1 · · ·M , let
P(G) = {(gi, bi)|bi ∈ B,

⋃M
i=1 gi = G, gi∩gj = ∅ for all i, j ∈ {1, 2, · · · ,M}wherei 6= j}

be a on a computation graph G andM(P(G)) be the cost function of a placement P(G).
We aim to find an optimized backend operator placement P(G) such thatM(P(G)), which
is the run-time cost (e.g., execution time) of the placement, is minimized. This problem can
be formalized as follows:

Popt(G) = argmin
P(G)

M(P(G)) (4.1)

With two-level tuning approach, Collage endeavors to customize the best execution plan by
identifying Popt.

4.5.2 Op-level Auto-tuning

To enable the cost-efficient evaluation of a graph with a backend placement candidate
and prune the invalid search space effectively, Collage conducts an op-level tuning as the
first step without the consideration for cross-kernel optimizations. Its goal is to lower all
operators on the computation graph into the most efficient set of low-level implementations
from user-provided backends. As discussed earlier, the second tuner (Section 4.5.3) would
make up for the possible performance loss from this simplification.

As the relaxation would make low-level kernel implementations being independent to
each other, the following additive relationship holds between g1 and g2, which are two
different subgraphs of G without any interaction, in terms of their run-time cost for the

66

Figure 4.5: Example of Dynamic Programming (DP) procedures for pattern matching and
optimal cost update

single device execution [85]:

Cost(P1 ∪ P2) =M(P1) +M(P2) + ε

P1 = (g1, b1),P2 = (g2, b2), g1 ∩ g2 = ∅
(4.2)

ε implies a constant for factors, such as driver/switching cost. With this cost model, it is
possible to cheaply approximate the cost of a graph by fragmenting a graph into smaller
chunks and using their cost to estimate for the original graph. However, since there are
numerous ways to split a graph and the number of user-provided backends expands the
possibilities in a combinatorial manner, an intelligent method is necessary for the effective
tuning.

As a breakthrough, we propose a Dynamic Programming (DP) method as an op-level
tuning approach, which effectively navigates the vast search space while handling the
complexity from the graph topology and diverse available backend patterns. By leveraging
the additive relation (Equation 4.2) between the costs of subgraphs s and g, the following

67

Algorithm 3 Op-level auto-tuning: DP
Input: Computation graph G and set of backend operators B
Output: Optimized placement Popt(G)

1: // v0: a root of G, Q: a priority queue sorted by node depth
2: Q = {v0}
3: repeat
4: vs = Q.dequeue()
5: for bi ∈ B do
6: if bi matches any subgraph g rooted at vs then
7: // F is a set of frontier nodes after matching
8: for vj ∈ F do
9: if vj has never been added to Q then

10: Q.enqueue(vj)

11:
12: // P(g) = {(g, bi)}
13: //M is an evaluation function
14: // S is a set of subgraphs forming a complete partial graph of G between v0 and vs
15: // ε is a constant for factors like driver cost
16: for sj ∈ S do
17: if Copt(sj ∪ g) > Copt(sj) +M(P(g)) + ε then
18: Copt(sj ∪ g) = Copt(sj) +M(P(g)) + ε
19: Popt(sj ∪ g) = Popt(sj) ∪ P(g)
20: until Q = ∅
21:
22: return Popt(G)

equation could be deduced:

Copt(s ∪ g) = Copt(s) +M(P(g)) + ε

Popt(s ∪ g) = Popt(s) ∪ P(g)

s ∩ g = ∅

(4.3)

where Copt and Popt keep track of the optimal cost and placement, respectively. To traverse
the graph and manage each state, we introduce a frontier which also determines s and the
starting node of g. In this context, s represents a valid set of subgraphs that can form the part
of G between its root node and the current frontier. g means the part of the graph that will
be matched with backend patterns. It can be either single operator or multiple operators that
are going to be fused. For the efficiency, our evaluation functionM is designed to be able
to memoize the cost of g to avoid the repetitive and expensive measurement overhead (i.e.,
compilation + multiple runs on the actual hardware) except the cold run.

Figure 4.5 exhibits an example of how our DP method searches for the optimal backend

68

Figure 4.6: Example of Evolutionary Search (ES) procedure

operator placements. As inference engines, such as TensorRT, can also provide efficient
operator-level implementations, they were also included in the first level tuning 2. As an
initialization, we put a root node in the priority queue as an initial frontier node. This would
imply an unmatched operator node with the lowest depth in the computation graph. By
iterating over the queue of frontiers, this method examines if there exist valid backend
patterns that can be matched and evaluates each of new possible placement. Whenever a
better placement is found, the optimal cost and the placement of the corresponding state
will be updated. This process will be repeated until the entire graph is searched over. With
this approach, the powerful exploration for the vast search space could be possible by
eliminating the redundancy in the search process while having the highly efficient cost
evaluation method.

Algorithm 3 describes the detailed algorithm of our DP approach. Note that we iterate
frontier nodes in the increasing order of the depth to make sure we explored the all possible
states (i.e., to have complete S) before we expand the scope and consider new fragment g.
In addition, when matching fused operators, it is crucial to verify that the placement would
not result in any cyclic data dependency.

4.5.3 Graph-level Auto-tuning

As the execution plan customized by the op-level tuner is established by ignoring the effect
of cross-kernel optimizations in inference engines, Collage introduces the graph-level tuner

2Fusion rules of the inference engines are implemented based on their documentation [8].

69

to fix the potential backend mis-placements in the plan from the first level. To do so, we
need to examine which operators are better off assigning to the inference engines when the
graph-wide optimizations are considered. However, it is still a challenging problem as there
are myriad ways to split the graph into pieces and decide whether to offload each piece to
the inference engine or not.

For the efficient exploration of promising candidates, we represent each backend place-
ment state by using a sequence of digits where each digit implies the offloading decision to
inference engines. To narrow down the search space, we exclude operators that are already
mapped with the inference engine from the encoding. Fused operators will be checked
whether those can be also fused within the inference engine. If so, they will be considered
as a group and a single digit will be used to represent them in the encoding. Otherwise, each
operator will have separate digits in the encoding. With this straightforward encoding, we
could examine diverse candidates without handling the complexity from the various splits on
the graph topology. For the effective search, we adopt evolutionary search algorithm [67].

Figure 4.6 illustrates an example of how the graph-level tuner operates. For an encoding,
we assume 0 as to keep the decision from the first level and 1 as to override the decision
and offload to TensorRT. With this representation, the evolutionary algorithm can naturally
fit with the search problem and apply several rounds of mutation, selection and crossover
to customize the better placement. To help the search process, we include the first-level’s
output as a seed to provide a good starting point.

4.6 Evaluation
This section aims to answer the following questions:

• Can Collage find the best mixed-use of diverse backends that outperforms the conven-
tional single backend approach?

• Can Collage automatically customize more effective execution plans than the manual
approach in the existing DL frameworks?

• Is tuning time affordable? What is the trade-off of Collage between tuning time and
performance?

4.6.1 Experimental Setup

For evaluation, we implemented the core of Collage in the form of a portable Python
library and plugged it into TVM. By targeting NVIDIA RTX 2070, four backends with
different characteristics were adopted and their best mixed use is investigated: cuDNN [6],
cuBLAS [5], AutoTVM [56], and TensorRT [8]. To leverage their full capabilities, their

70

Figure 4.7: End-to-end performance of diverse strategies in five different workloads on
NVIDIA RTX 2070. Each performance is normalized by the performance of Collage. Note
that following state-of-the-arts backends are employed for each framework according to
their capabilities: PyTorch (cuDNN, cuBLAS), TVM (cuDNN, cuBLAS, AutoTVM) and
(cuDNN, cuBLAS, AutoTVM, and TensorRT).

supported patterns and pattern rules are provided based on their official documentation and
code bases.

For experiments, five popular real-life DL workloads, which cover a wide range of
applications, are examined. BERT [62] is a transformer-based language model that achieved
the state-of-the-art performance on a spectrum of natural language processing tasks. DC-
GAN [127] is an extension of the GAN [73] with an unsupervised representation learning
mainly for image generation. NasNet-A [170] is one of the most popular machine-generated
DL workloads that show strong performance on popular image recognition tasks. 3D-
ResNet50 [76] is an extension of widely adopted ResNet50[77] for 3D image tasks such
as action recognition. ResNeXt50 [161] introduces a grouped convolution to ResNet50
architecture and improves it in terms of model accuracy and computational complexity for
image recongnition.

4.6.2 End-to-end Evaluation

Figure 4.7 presents the end-to-end performance of Collage and other popular approaches to
utilize the diverse backends of the GPU. As the single backends, we investigated cuDNN,
AutoTVM and TensorRT. PyTorch and TVM are examined as the representative deep learn-
ing frameworks that provide manually designed execution plan with multiple backends. Note
that we denote AutoTVM as a backend to specifically refer the operator implementations
automatically generated and tuned within TVM. Due to the limited coverage of cuBLAS, it
is not directly compared to other approaches although it is still employed by multi-backend
approaches (i.e., PyTorch, TVM, Collage). In addition, while PyTorch does not officially
support TensorRT, TVM would try to offload the entire graph to TensorRT if possible.

When looking at the performance of single backends, TensorRT offers quite decent
performance for every network even though it may underperform by 5% than AutoTVM

71

Figure 4.8: Backend placement discovered by Collage on ResNeXt50 and BERT.

on ResNeXt50. cuDNN and AutoTVM compete each other by showing their own strength
on 3D-ResNet50 and ResNeXt50. Powerful implementation of 3D convolution kernel
makes cuDNN show the competitive performance to TensorRT. Because of the lack of the
competitive implementation of dense operation, AutoTVM and cuDNN suffer from the
significant slow down.

Bars for PyTorch and TVM present the performance of hand-written multi-backend
execution plan. Due to the lack of the fine-grained adjustment for each workload, their
approaches often show the worse performance than the best performant single backend.
Particularly, Pytorch shows more than 2× and 1.44× slower performance compared to each
worst single backend choice on NasNet-A and ResNeXt-50 respectively. However, Collage

showcases the best performance across the all five networks by efficiently customizing the
execution plan. Especially, the improvements on DCGAN and ResNeXt50 are significant
by extracting 19-43% of additional speedup from the best single backend. Meanwhile,
our approach also outperforms manual plans with the superior plans presenting almost 2×
faster performance on ResNeXt50. On average, Collage could improve the performance
1.18× compared to the best single backend choices while presenting 1.31× enhancement
compared to the most performant manual strategies for each workload.

72

4.6.3 Analysis of Backend Operator Placement

Figure 4.8 illustrates the representative mutli-backend plans customized by Collage on
ResNeXt50 and BERT. Even within the single network, we could observe that same operation
is mapped with different backends due to the performance diversity depending on its
configuration as pointed out in Figure 4.1. Dense operation in BERT is the representative
example. Interestingly, even with its overhead, the inference engine can be still a good
choice for the operator-level implementation as in a convolution operator in ResNeXt50
and a dense operator in BERT. Also, this figure demonstrates that Collage is capable of
leveraging various fusion patterns from each backend. As in the single operator, our hybrid
method chose the different backends according to each context for the identical fusion
pattern of Conv+Relu in ResNeXt50. Although this figure does not show the selection of
cuDNN, it is also chosen for the other parts of workloads.

4.6.4 Tuning Time

To discuss the tuning time of each tuner in our two level approach, the time took at each
level is measured separately. Figure 4.9 presents the result of our operator-level tuning with
DP. If the tuning is launched from the scratch, the entire tuning process takes around 20
seconds up to less than two minutes. This tuning time consists of two parts: measurement of
the operator cost and overhead from the DP algorithm. Due to the high evaluation cost, the
tuning time is dominated by the profiling overhead. However, as discussed in Section 4.5.2,
the repetitive profiling for operator cost can be avoided by saving the cost of each operator.
When the cost of every operator is profiled in advance, our first level tuner only takes a few
second to navigate the search space and customize the effective plan.

Figure 4.10 exhibits the tuning process of our graph-level tuner. As going through
several generations of mutations and cross-overs, the evolutionary searcher could gradually
improve the performance by leveraging cross-kernel optimizations. In BERT, the effect
of cross-kernel optimization is quite notable and thus, our second tuner could enhance the
execution plan 1.06× from the plan created by the first tuner. Overall, most of workloads are
observed to reach the saturation within an hour. Due to the lack of the efficient cost model
that can factor in the cross-kernel optimization effect, it has expensive evaluation overhead
that leads to the longer tuning time compared to the first level. Thus, we recommend
the graph-level tuning as the optional tool for the users who are interested in maximizing
performance at any cost.

73

Figure 4.9: Op-level tuning (DP) time breakdown for five different workloads. On average,
profiling overhead for operator cost measurements takes up 82% of the entire tuning time.
Note that profiling is only necessary for new operators. Once the cost of a new operator
is measured, its information will be saved in the logging database in Collage to avoid the
repetitive profiling.

Figure 4.10: Performance improvement of graph-level tuning over time for five different
workloads. The y-axis presents the speedup relative to op-level tuning (DP). We observe
that one hour of graph-level tuning empirically provides good trade-off between tuning time
and speedup for most workloads.

4.7 Conclusion
This work investigated the best uses of various software backends and suggested auto-tuning
system, Collage, that produces the execution plan with multiple backends customized for
the deep learning workload and the underlying hardware. To utilize the full capability of
diverse backends, Collage offers a seamless user interface that allows the flexible description
of operator patterns supported in each backend. For the effective navigation of the vast
search space, Collage introduces two-level auto-tuning strategies to cope with different
characteristics of backends with different approaches. For operator-level tuning, this work
suggests a dynamic programming method with the consideration of the graph topology and
backend capability. Without taking into account the effect from cross-kernel optimizations,

74

this tuner efficiently customizes a hybrid execution plan. Then, to make up for the potential
loss from the relaxation, second tuner fine-tunes the execution plan on the top of the plan
customized from the first tuner. The experimental results demonstrate that Collage could
extract 1.18× speedup compared to the most performant backend for each workload while
outperforming the hand-written approach in the state-of-the-arts deep learning framework
by 1.31×.

Acknowledgement
This is a collaboration work with Byungsoo Jeon, Peiyuan Liao, Sheng Xu, Tianqi Chen,
and Zhihao Jia at Carnegie Mellon University.

75

CHAPTER 5

Low-Cost Prediction-Based Fault Protection
Strategy

5.1 Introduction
Over the past decades, researchers have strived to reduce diverse design margins (e.g.,
noise margin) to maximize performance. However, as tight noise margin is often unable to
handle electromagnetic noise properly, computer systems are becoming more susceptible
to transient faults which may lead to execution failures [113, 169, 114, 45, 44]. To prevent
such failures, diverse techniques introduce redundancy at different levels ranging from
hardware to software. Since a transient fault can occur in random location at any given
time, the protection strategy must constantly be activated. Also, given that a failure from
a transient fault happens rarely at each device perspective, the protection scheme should
be fast and cost-efficient to be practical. In general, hardware techniques are powerful but
inevitably require design modification and often at high cost. To reduce excessive hardware
cost, researchers have proposed software techniques such as Redundant Multithreading
(RMT) [72, 112, 133, 147] or instruction duplication under the guidance of the compiler
[118, 135, 134, 63]. To provide protection, RMT-based techniques run a redundant thread
simultaneously on available built-in resources and validate computations through complex
communications between threads. The doubled resource utilization allows for the fast
concurrent execution of redundant thread but generally suffer from high energy consumption
[106]. Rather than creating a redundant thread, instruction duplication based techniques
clone instructions and compare values inside the thread without any additional resources and
complicate validation process. Continuous works from Princeton, including the detection
strategy called SWIFT [135] and full protection (both detection and recovery) strategy
called SWIFT-R [134] 1, propose compiler-directed instruction duplication techniques and

1SWIFT with TMR-based recovery mechanism.

76

provide inspiration to recent explorations [88, 63]. By optimizing instruction duplication,
their techniques successfully protect a program with the improved performance overhead.
However, slowdown due to increased dynamic instructions remains a concern which needs
to be addressed.

This chapter proposes a novel prediction-based protection strategy that greatly alleviates
run-time overhead of instruction duplication scheme. Without any extra hardware, our
strategy focuses on reducing dynamic instructions that must be executed for protection. We
postulate that replicated instructions employed by software protection techniques (referred
to as re-computation) can be bypassed if software approximation techniques can predict
fault-free computation result correctly. Otherwise, re-computation must be triggered to
check for a possible transient fault. In such cases, mispredictions cause run-time overhead,
but not incorrect output like traditional approximate computing techniques [29, 145, 140].
Avoiding any direct impact on the final output of a program, the prediction is used only for
validation. This approach may result in missed faults, but we show that their occurrences
can be effectively controlled. Sacrificing some protection quality for significant performance
improvement is not a new idea [88, 153]. However, our work investigates a different
approach in leveraging the trade-off.

We introduce RSkip, a prototype of the automatic compilation system that provides
the prediction-based fault protection. The system accepts unprotected source code and
creates a fast and resilient executable. Since we observed traditional instruction duplication
works [135, 134, 63] often suffer at the loop due to its recurring synchronization points,
RSkip focuses on improving the protection cost for the loop. As an accurate and lightweight
predictor, dynamic interpolation is proposed to estimate computation results in the loop by
capturing local trends at runtime. A large saving in run-time instruction overhead is possible
by replacing the expensive re-computation with a linear equation. As a fallback predictor,
approximate memoization [140] is also employed.

Throughout this work, a Single Event Upset (SEU) fault model is adopted and the
memory system is assumed to be protected given that the commercial DRAMs and caches
equip Error Correction Codes (ECC) [135]. Our major contributions are as follows:

• We propose a novel prediction-based protection strategy and demonstrate that software
approximate computing techniques are not limited to performance optimization in
applications that can tolerate output error. Rather, they can be effectively adapted to
detect transient faults in a cost effective and accurate manner. Although this work
demonstrates the effectiveness of our new protection strategy by using two loop output
estimation techniques targeting several popular computation patterns, its applicability
can be broaden with new approximation technique that has a wider target.

77

• By leveraging the acceptable loss in protection rate 2, our work reduces the number of
dynamic instruction greatly to 42.82% while alleviating overhead 1.8× compared to
the conventional approach.

• Two approximation techniques are adopted as the prediction model: Dynamic Interpo-

lation and Approximate Memoization. We newly propose dynamic interpolation that
utilizes redundancy for accurate low-cost value prediction. Also, performance and
efficiency of approximate memoization are improved from the previous work [140].
With both models, RSkip can bypass 81.10% of re-computation in our target loops.

• Run-time management system is inserted to handle run-time dynamics (e.g., diverse
inputs). Context signature is suggested to diagnose the current situation and give an
indication to tune approximation aggressiveness.

5.2 Motivation and Idea
Conventional instruction duplication techniques [135, 134, 63] replicate the exact same
sequence of instructions for fault detection 3 and compare computed values at synchroniza-
tion points to identify a mismatch which can be a transient fault. Synchronization points
include store, branch and possibly function calls depending on the implementation. If a
fault is detected, a recovery mechanism will be triggered. Because of the extra instructions
for re-computation and validation, previous approaches often suffer from high run-time
overhead that may not be feasible in many situations (e.g., mobile device). Thus, we consider
alternatives to reduce overhead.

Figure 5.1 illustrates the overarching idea of our prediction-based approach in compari-
son to conventional approaches. Two strategies adopt distinct approaches toward managing
redundant copies of instructions for verification. In the figure, recovery routine is omitted
for simplicity.

Figure 5.1a highlights the concept of the conventional instruction duplication techniques.
Even without considering extra overhead for recovery, the previous detection techniques
perform more than 2× dynamic instructions as the unprotected program due to extra
instructions for duplication and validation 4. As a result of parallelism inside modern
processors, slowdown of conventional detection techniques is reported less than 2× [135].
Yet implications suggest that previous approaches would suffer from a large overhead when
it is unable to fully utilize parallelism to cover increased dynamic instructions. For instance,

25 percentage point loss is considered acceptable. See Section 5.7.3 for details.
3Recovery requires additional instructions.
4With recovery mechanism, the full protection scheme may need to execute more than 3× [134].

78

Redundant copy

à Re-compute

Original copy

…
…
.

…
…
.

=

Ld Ld Ld Ld

"""

+ +

(a) Conventional

Original copy

Benefit

Prediction

Model

…
…
.

!

Ld Ld Ld

""

+ +

Redundant copy

à Predict

(b) Prediction-based

Figure 5.1: Idea of each protection strategy. (a) Re-compute and validate. (b) Estimate and
fuzzy-validate.

periodic reaching of synchronization points adds dynamic instructions with dependencies
for validations, often causing previous approaches to struggle at the loop. Given that
compute-intensive programs consume significant amount of time on the loop, it can be a
serious drawback. This phenomenon will be discussed further with the experimental data in
Section 5.7.

Rather than replicating identical chains of instructions, prediction-based approach es-
timates computation results by using software approximation techniques as shown in Fig-
ure 5.1b. If prediction and original computation agree within the predefined acceptable
range, the original computation is assumed correct and used to proceed the rest of program
execution without re-computation. In this work, relative difference is used to define accept-
able range. Naturally, benefit will be the cost gap between re-computation and prediction
model. Otherwise, a value is considered as a perturbation which may be a possible fault as
in perturbation screening [126, 139]. In such a case, re-computation will be triggered for
the exact validation. Thus, mispredictions (false positives) result in run-time overhead
without having a direct impact on the program output since estimations are only used
for validation. Traditional approximation technique requires high prediction accuracy as
it replaces the original computation and thus directly influences program output quality.
However, in our approach, prediction accuracy requirement can be relaxed: we only need
enough accuracy to recognize perturbation at runtime.

Due to the existence of fuzzy validation, a small error may avoid fault detection. A fault
must satisfy two conditions to avoid prediction-based fault detection and cause a failure.
First, a transient fault should modify the value in the original copy within the acceptable

79

0

10

20

30

40

50

60

70

80

90

100

C
o

v
er

a
g

e
o

f
P

re
d

ic
ta

b
le

C
o

m
p

u
ta

ti
o

n
s

(%
)

Trend Top 10

Figure 5.2: Proportion of dynamic instructions whose computation outputs can be estimated.
Measured in Rodinia [54] benchmark suite.

range. Otherwise, correction will be invoked. Note, a fault occurred in the redundant
copy does not influence the final output of the program since the copy is only used for
validation. Therefore, missed faults (false negatives) can occur, but their occurrences
can be explicitly kept to a small amount with proper acceptable range. With reason-
able acceptable range, we can effectively control the occurrence of false negatives with
consideration for the trade-off for the significant performance improvement. To set a
reasonable acceptable range, the occurrence of false negatives is investigated in Section 5.7.2.
Secondly, the corrupted value must be fatal to program fidelity. To avoid this situation, we
do not apply approximation on particular types of values, such as pointers or loop induction
variables, that can significantly impact program correctness. Thus, they are protected with
traditional instruction duplication. Usually, their impact on performance is marginal due to
their low computational overhead.

To maximize benefit from prediction-based protection, a approximation model should
naturally be lightweight and accurate. Since prior works struggle from high protection
overhead over the loop on which a compute-intensive program usually spends significant
time, we choose the loop as the main optimization target and design specialized prediction
models for the loop. To find an opportunity, we investigate outputs of major loops in
Rodinia benchmark suite [54] and observe the following phenomena: (1) outputs produced
in consecutive iterations tend to share a certain trend. (2) since the same computation is
conducted repeatedly in a loop, there may exist many repeating outputs. A trend in loop
outputs occurs along with spatio-value similarity [142] that arises when data elements with
spatial locality tend to be inherently consistent. If a trend can be captured accurately, it would

80

be possible to efficiently estimate outputs that require a significant amount of computations.
Compared to previous work [142] that simply groups nearby similar values, trend-based
prediction can be more effective way of utilizing spatio-value similarity by having a wider
coverage (values on the same trend might not necessarily have close values.). Likewise,
frequent output values can be used for prediction. Figure 5.2 suggests the potentiality of
such approaches. We measure prediction accuracy of each method and reflect impact of
predictable computations. For the trend-based prediction, data elements showing less than a
certain amount of changes in consecutive iterations are considered residing in the same trend.
However, sometimes, a few outliers irritate the trend-based prediction. In this motivational
experiment, we manually handle those corner cases. Also, we examined the effectiveness
of a prediction method that only uses the top 10 most frequent values. Our motivational
experiment shows that both prediction models present promising result, implying the chance
of bypassing more than 33% of dynamic instructions of the entire program.

However, existing techniques are discovered to be inaccurate or relatively expensive in
capturing varying trends. A regression analysis, for instance, requires a process of splitting
data elements to determine the coverage of a single equation. In general, however, such a
split process is out-of-scope for a regression analysis [111] and naive split policy would
result in incorrect estimations due to the tendency of total dependence on the input. Also, a
regression analysis may require high training overhead since training should be done for
each equation separately. To overcome these challenges, dynamic interpolation is proposed.
Dynamic interpolation learns how to split data elements to capture varying trends. Rather
than learning each equation during offline training, dynamic interpolation computes a linear
equation at runtime by using two endpoints in each split and use the equation to estimate
values between those endpoints.

Although dynamic interpolation can capture rapidly changing short trends (e.g., data
with low spatio-value similarity), there is an upper bound for skipping re-computation as
interpolation cannot estimate values for endpoints. To skip re-computations further, we
introduce approximate memoization [30, 31, 140] as a second-level predictor. Without
dependence on trends, the method substitutes expensive computation, such as the function
call, with a single access to a lookup table that stores popular repeating values.

Since approximate memoization is generally more expensive than dynamic interpolation,
the first prediction will be made by dynamic interpolation. When the interpolation turns out
to be wrong, approximate memoization creates a second prediction. Yet, this is profitable
as the overhead for two consecutive predictions can still be lower than the overhead of the
expensive re-computation. In blackscholes, the relative cost between dynamic interpola-
tion, approximate memoization, and re-computation measures 1:1.84:4.18 justifying our

81

Unreliable

Program

C
o

m
p

il
er

Different

Input Sets

Run-time

Management

Reliable Code w/

Prediction-based

Protection (PP)

Reliable Code w/

Conventional

Protection (CP)

Executable with new protection scheme

Figure 5.3: System Overview

approach.

5.3 System Overview
RSkip is a prototype of fully automatic compilation system that provides prediction-based
protection. The system takes unreliable source code as an input and generates a lightweight
resilient executable. It requires no hardware modification and no preprocessing on source
codes or input data sets. 5

Figure 5.3 outlines the concept of RSkip. By exploring source codes, the compiler
conducts a thorough static analysis (e.g., def-use chain) and detects optimization candidates.
Since the current prototype focuses on the loop, the compiler identifies the loop that available
approximation techniques target. Once a target loop is isolated, two different versions of the
loop will be created: a reliable version with prediction-based protection (PP) and a reliable

version with conventional protection (CP). Later, at execution time, one of two versions will
be chosen by the run-time management which is designed to handle the run-time dynamics.
CP will be chosen in cases where PP is expected to have no benefit. Code regions which
are not selected as the optimization target will be transformed into the CP without PP and
interaction with run-time management.

After one-time compilation, the executable starts the offline training process. It observes
the run-time context (e.g., trend pattern for dynamic interpolation) to recognize the current
situation and learns how to adjust the approximation aggressiveness. Run-time context can
be altered when the program runs with different input sets or the same code is executed with
different live-in values within a single run. To react such a run-time dynamics, run-time
management uses the run-time data to create a context signature for each of transformed code

5In instances where an user desires the highest protection rate in a specific code region, the acceptable
range can be specified as zero by using pragma. Otherwise, a default acceptable range will be applied.

82

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

O
u

tp
u

t
V

a
lu

e

Iteration

Start new phase

Action : Start new phase.

S
ta

rt
 a

 p
h

a
se

Original

value

(a) 1teration: Start a new phase.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

O
u

tp
u

t
V

a
lu

e

Iteration

Action : Keep current phase and

execute original computations.

!"#$%1

!"#$%2

& =
!"#$%2 ' !"#$%1

!"#$%1
()*

S
ta

rt
 a

 p
h

a
se

Extend current phase

(b) 3rd iteration: Extend the current phase.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

O
u

tp
u

t
V

a
lu

e

Iteration

Action : Cut the current phase

and conduct validation.
Skip

re-computation!

Skip

re-computation!
Skip

re-computation!

Further

Investigation!

Possible

fault! !"#$%1

!"#$%2

Prediction

value

Original

value

Linear

prediction & =
!"#$%2 ' !"#$%1

!"#$%1
> ()

S
ta

rt
 a

 p
h

a
se

E
n

d
 a

 p
h

a
se

AR

+,, > -.+,, / -.

(c) 7th iteration: Cut the current phase and conduct
validation.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8
O

u
tp

u
t

V
a
lu

e

Iteration

…

…

! =
"#$%&2 ' "#$%&1

"#$%&1
()*

Action : Keep current phase and

execute original computations.

"#$%&1

"#$%&2

Validated

E
n

d
 a

 p
h

a
se

Start new phase & Extend

(d) After 7th iteration : Repeat (b) - (c)

Figure 5.4: Sketch of dynamic interpolation. Whenever slope change is above tuning
parameter (TP), a phase is defined. During the validation process at (c), a data element is
considered as a possible fault if the difference between original value and prediction value
is greater than acceptable range (AR).

regions with PP. A signature depicts the run-time context and is used to adapt approximation
methods. Section 5.5 describes further about context signature and run-time management.

5.4 Prediction Techniques
As previously discussed, we chose approximation techniques specialized to the loop. Since
store is a synchronization point which often requires heavy computation for its value
operand, our approximation techniques estimate values that will be saved in the memory
within the loop. However, loops with certain types of value computation (e.g., pointer)
or low computation overhead (e.g., initialization) are not considered as the approximation
target loop. These will be filtered out by the static analysis with the cost estimation. For
simplicity, we target the legitimate types of value computation containing the loop or the user
function call that has the number of instructions above threshold as in Figure ??. The current
approximation target may include data that is not generally considered as approximable.
However, since the approximation would be used only for validation, it would not harm
the protection quality until a missed fault occurs on the corresponding code segment in the

83

original computation. The missed fault would impact the protection quality according to its
influence on the program fidelity, thus our experimental result reflects this factor.

5.4.1 Dynamic Interpolation

5.4.1.1 Target Computation Pattern

Dynamic interpolation targets computation that updates values in the memory at every
iteration. Either the expensive function call or computation with the loop can be replaced
with a single linear equation. Dynamic interpolation also works on multi-dimensional array.

5.4.1.2 Implementation

Skip rate (i.e., the ratio of iterations skipping re-computation in the loop) of dynamic
interpolation largely depends on how a phase (i.e., consecutive data elements that a single
equation covers) is sliced onto data elements to capture local trends. Particularly, dynamic
interpolation should be intelligent enough to maximize stride (i.e., phase length) on a long
trend. When values fluctuate widely, it should lower stride. In general, due to the tendency
of total dependence on the input, phase cannot be determined statically. To overcome
the challenge, we notice the opportunity to utilize the redundancy inserted for protection
mechanism: a copy of the computation can be used as run-time guidance to cut the phase of
a redundant computation dynamically.

Figure 5.4 demonstrates the dynamic interpolation algorithm step by step. To decide
approximation aggressiveness, we introduce a tuning parameter (TP), which represents
optimistic expectation towards outliers on phase slicing. With a higher TP, the algorithm
tries to extend a stride more aggressively by ignoring outliers. Although this example
assumes a TP is already known, in reality, it will be properly adjusted by the run-time
management. More details are explained in Section 5.5. Figure 5.4a shows the setup stage
for a new phase. Once the first point is generated, the algorithm proceeds to next iterations
to see if an extension is possible. Figure 5.4b presents the extension stage. If a change
in the latest two slopes is less than TP, a point is considered to reside in a current trend.
While the condition satisfies, the algorithm keeps the current phase and proceeds to the next
iteration. Up to this point, only original computations are performed and their results are
saved in their original memory space without allocating any extra space. In case that the
loop reads and updates same memory locations (e.g., A[i]+=1), we allocate temporary space
to keep the original value and use it for re-computation. Although managing temporary
space occurs some overhead, our evaluation shows significant improvement is still possible
(See benchmark lud in Section 5.7.1.). If a slope change is above TP, the phase is cut at the
previous iteration. The cut stage is described in Figure 5.4c. When a phase is defined, data
elements in the phase are validated with a linear prediction computed by two endpoints. If

84

the original computation and the prediction agree within the acceptable range, the algorithm
assumes fault-free and bypasses the re-computation. Otherwise, it suspects a possible fault
and triggers further investigations. Once the validation for the current phase is done, the next
phase starts. In this case, the setup stage is no longer necessary. Therefore, the extension
stage and the cut stage are repeated after iteration 7 as shown in Figure 5.4d. Note, our work
did not set any upper bound for a stride.

5.4.2 Approximate Memoization

5.4.2.1 Target Computation Pattern

To apply this method, the computation should generate the identical output on the same
input set without any side effect (i.g., I/O execution). Also, the number of inputs should
be reasonably limited as lookup table size is expected to grow exponentially. These strict
requirements force the technique to have narrower applicability than dynamic interpolation.

5.4.2.2 Implementation

Due to the limited memory space, a lookup table cannot contain all possible cases. Therefore,
approximate memoization will group the nearest inputs through the quantization process and
make them access the same entry in the lookup table. Naturally, its accuracy and performance
entirely depend on the table size and the quantization-based address calculation. In general,
a larger table shows higher accuracy, but its size should be determined with consideration
for both memory size and performance benefit. An overly large table may not fit in the
cache and induce complexity to the quantization process along with the address calculation.
Given that the technique should perform the quantization-based address calculation for
every inference, its complexity will affect access time towards the memorized result. If the
prediction target is computed by many inputs with a diverse spectrum of values, the lookup
table size needs to grow large enough to cover a variety of input combinations while being
able to return saved results faster than original computation time. Therefore, it is important
to find an intelligent lookup table management strategy and the quantization becomes a
key process in lookup table construction. In general, the construction algorithm determines
the number of quantization levels for each input by assigning a certain number of bits in
the address bits. Since the width of the address bits is decided by the lookup table size,
the smart management strategy should be able to distribute the limited number of bits to
each input while maximizing prediction accuracy. To overcome this challenge, Samadi et
al.[140] propose the systematic quantization method with the bit tuning process. By allowing
more bits, the technique enables inputs with higher impact on the final output to better
differentiate their input sets. After bit tuning, both minimum and maximum values for each
input are used to determine the coverage of each quantization level. With the assumption

85

Table 5.1: Selected benchmarks. The impact of skipping re-computation can be imagined
by provided computation type and location. Both training input and test input are randomly
generated or selected without any intersection.

Benchmark Application domain Computation type of prediction target Input

conv1d Signal processing, Machine learning A reduction loop 4048 integers

conv2d Signal processing, Machine learning Nested reduction loops
with conditional statement

200*200 integers for input vector,
15*15 integers for kernel

sgemm [152] Linear algebra Nested reduction loops 1024*1024 integer matrices

kde [109] Machine learning Nested reduction loops 1500 float vector

forwardprop [54] Machine learning A reduction loop 1024*1024*1024 network

backprop [54] Machine learning A reduction loop 1024*1024*1024 network

blackscholes [40] Finance A function call 65536 cases

lud [54] Linear algebra A reduction loop with a varying trip count 1024*1024 float matrices

YOLOv2 [132, 131] Machine learning, Computer vision A reduction loop 0.1 ˜10MB images

that inputs are uniformly distributed, they equally divide the region between the minimum
and maximum values into the assigned number of quantization levels. But, when inputs
do not follow a uniform distribution, significant inefficiency may arise with this approach.
Therefore, in this chapter, the coverage of each quantization level is dynamically determined
based on the profiling analysis. For dynamic determination, we first build a histogram with
narrow-ranged uniform-length bins and gradually combine nearby less-crowded bins. It
becomes apparent the new approach is able to build a more efficient lookup table than the
previous work. At blackscholes, the previous approach encodes three inputs out of six
with 15bit-wide address. Upon the same function, our approach encodes six inputs with
an equal width of the address. Naturally, accuracy is improved from 96.5% to above 99%
when testing with given representative inputs in the benchmark suite [40]. Once compiler
statically identifies candidate loops, lookup tables will be constructed and examined during
training phase. If the lookup table shows good prediction accuracy with training data, it will
be deployed at runtime. However, when run-time performance is not as good as expected,
run-time management may disable the deployment.

5.5 Run-time Management
Since traditional approximation techniques replace the original computation, Quality-of-
Service (QoS) management is a key process to guarantee a certain level of output quality
while providing significant performance improvement [141, 36, 99]. Green [36] is the
representative framework that guarantees QoS of approximation techniques at runtime.
Before its deployment, Green constructs a QoS model at offline by using user-provided
inputs. Later at deployment, the framework observes the run-time context and adjust
approximation decisions accordingly with its QoS model. To handle input diversity, we
follow a similar approach. In our work, the prediction accuracy of each approximation

86

0

0.5

1

1.5

2

2.5

3

L
oo

p
 o

u
tp

u
t

Iteration

O
b

se
rv

e

Adjust Adjust Adjust

O
b

se
rv

e

O
b

se
rv

e

Tuning Parameter

Generate

signature

Ask

QoS model

…

* Context signature:

…

Generate

signature

Ask

QoS model

Generate

signature

Ask

QoS model

Figure 5.5: An example of run-time management for dynamic interpolation. Run-time
management periodically generates context signatures by summarizing the current run-time
context to adjust TP based on the QoS model.

method is adopted as QoS metric. To provide high QoS, a context signature is defined to
provide each approximation technique with a meaningful summary of the run-time context.
For dynamic interpolation, the statistics of local trends can be a useful indicator reflecting
the run-time context. In our experiment, we generate a signature by using histogram of
slope changes which implies the impact of TP. For example, signature ”312” means 3rd

bin has the largest count followed by 1in and 2nd bin. Since the run-time context may
change during an execution, the management system periodically triggers observation and
adjustment processes. Thus, an executable may generate more than one signatures during
its execution. Figure 5.5 illustrates how the run-time management adjusts a parameter for
dynamic interpolation by using the context signature. Blue line indicates output values
across iterations. Note, TP needs to be adjusted based on the slope changes rather than the
number of outliers. Since our dynamic interpolation algorithm will split phases into two at
the outlier when its divergence is greater than TP, a large TP is preferred on a big trend to
ignore small outliers. Therefore, our QoS model will escalate TP in a long trend to extend
the phase aggressively. In contrast, the parameter should be decreased in widely-fluctuating
short trends to avoid wrong predictions. The QoS model will monitor the prediction accuracy
at run-time and may disable the dynamic interpolation at low accuracy. However, we could
not observe this case in our experiment. Since approximate memoization does not depend on
the parameter, its QoS model simply monitors the occurrence of misprediction and disables
its usage at poor run-time accuracy.

87

5.6 Training
During the offline training phase, RSkip will build prediction models and construct their
QoS models. By utilizing the training set provided by users, RSkip samples outputs from
detected loops. For dynamic interpolation, RSkip simulates its algorithm on samples by
sweeping various parameters and monitors performance (e.g., skip rate) to identify the
best parameter for each signature. Note, we ”simulate” algorithm (i.e., phase-splitting and
prediction) without repeatedly running a real program to minimize training time. Once the
best parameter is identified, RSkip builds a QoS model which includes a table containing
(signature, best parameter) pairs. Later at runtime, RSkip simply reference this table and
load the learned parameter when a signature is found. Otherwise, we kept the previous
tuning parameter although different policies can be chosen. In addition, the lookup table will
be built by following our construction algorithm discussed in Section 5.4.2. Then, during the
inference phase, approximate memoization makes predictions by simply reading memorized
results in the lookup table.

5.7 Evaluation
As described in Section 5.4, our prototype implementation of RSkip targets a computation
containing the loop or the user function call as a candidate for prediction-based protection
scheme to evaluate its potential. When a program does not contain such computations, they
are protected solely by the conventional protection scheme. Therefore, nine applications
with target computation types are chosen as benchmarks from various domains. For a
case study, diversity of detected patterns is also considered during benchmark selection.
The selected benchmarks represent compute-intensive applications containing dominant
loops. Especially, YOLOv2 is a successful real-life object detection application. Table 5.1
explains characteristics of each application. To ease preparation effort, both training inputs
and test inputs are randomly generated by using the input-generator or selected from well-
known image archives without any intersection between them. If inputs can be selected
manually, better training quality would be expected. Throughout the experiment, 20%,
50%, 80%, and 100% acceptable ranges 6 are assumed for RSkip (labeled as AR20, AR50,
AR80, and AR100 respectively). The rationality of the acceptable range will be discussed
in Section 5.7.3. Note, approximate memoization is only applied to blackscholes due to
its strict requirement as previously discussed in Section 5.4.2. Without focusing on the
improvement of the recovery mechanism, the re-computation based recovery technique is
chosen in this work and its impact is reflected in our analysis. Since fault detection and
fault recovery mechanism can be investigated independently [135, 88], a better recovery

6Relative difference is used in this work.

88

0

10

20

30

40

50

60

70

80

90

100

Sk
ip

 R
at

e
(%

)

AR20 AR50 AR80 AR100

(a) Average skip rate

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
o

r
m

a
li

ze
d

 E
x

e
c
u

ti
o

n
 T

im
e

SWIFT-R AR20 AR50 AR80 AR100

(b) Normalized execution time

Figure 5.6: Test result with test inputs of each benchmarks (AR : Acceptable Range)

mechanism can be incorporated if applicable. To handle interaction with the unmodified
library function, both schemes set the function call as the synchronization point. As baseline,
SWIFT-R [134] is chosen since it is one of the most well-known instruction duplication
techniques that provide full protection.The execution is forced to use a single thread and
the experiments are conducted after an automated training session with training inputs. The
extension for multi-threaded execution remains as the future work.

5.7.1 Performance Overhead

The performance of each protection scheme is measured by running benchmarks on an Intel
Xeon CPU E31230 with 3.20GHz. Also, papi library [158] is used to measure the number
of dynamic instructions and Instructions Per Cycle (IPC).

Figure 5.6 and Figure 5.7 show the performance with test inputs for all benchmarks.
Figure 5.6a presents the ratio of iterations skipping re-computation in the detected loop.

89

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
or

m
al

iz
ed

 N
um

be
r

of

D
yn

am
ic

 I
ns

tr
uc

ti
on

s

SWIFT-R AR20 AR50 AR80 AR100

(a) Normalized number of dynamic instructions

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
o

r
m

a
li

ze
d

 I
P

C

SWIFT-R AR20 AR50 AR80 AR100

(b) Normalized IPC

Figure 5.7: Test result with test inputs of each benchmarks (AR : Acceptable Range)

Overall, 67.03% of re-computation can be bypassed with the value prediction at AR20.
With a wider acceptable range at fuzzy validations, the skip rate increases steadily with
AR50 (75.67%), AR80 (78.73%), and AR100 (81.10%). The performance overhead is
also presented in Figure 5.6b. The entire program execution time of each protection
scheme is normalized by the execution time of the unprotected program. On average,
SWIFT-R suffers from 2.33× slowdown due to repeating synchronization points. A 20%
acceptable range shows a 1.42× slowdown with 67.03% skip rate. The performance also
improves due to the increasing skip rate as the acceptable range grows. When the acceptable
range is set 100%, the slowdown is measured only 1.27× with 81.10% skip rate. By
using skip rate, frequency of recovery mechanism can be rougly estimated. To further
understand the experimental results, the normalized number of dynamic instruction and IPC
for the entire program execution are presented in Figure 5.7a and Figure 5.7b respectively.

90

0

20

40

60

80

100

0

0.5

1

1.5

2

2.5

AR20 AR50 AR80 AR100

S
k

ip
 R

ate (%
)

N
or

m
a

li
ze

d
 E

xe
cu

ti
o

n
 T

im
e

Normalized Execution Time (Dynamic interpolation only)

Normalized Execution Time (Dynamic interpolation + Approximate memoization)

Skip Rate (Dynamic interpolation only)

Skip Rate (Dynamic interpolation + Approximate memoization)

(a) Test result in blackscholes.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

av
er

ag
e

0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Test Input ID

S
k

ip
 R

ate (%
)

SWIFT-R RSkip (AR20) Skip Rate

(b) Test result of AR20 in lud.

Figure 5.8: The detailed analysis for two selected benchmarks

SWIFT-R executes 3.48× dynamic instructions while having only 1.47× IPC improvement.
As the increase of IPC is not enough to hide the additional instructions for protection,
the technique suffers from slowdown. On the other hand, RSkip achieves performance
improvements by inserting significantly fewer instructions while having a similar level of
IPC with an unprotected program. AR20 inserts only 1.71× additional instructions which
can be decreased further by 1.49× at AR100.

The performance of SWIFT-R is degraded by a large amount in conv2d as the value is
calculated in nested loops with conditional statements inside them. Because of recurring
synchronization points in the code with a complicated control flow, SWIFT-R cannot exploit
the hardware parallelism well enough so that its IPC is almost the same with the unprotected
program. At the same time, it executes 3.97× extra instructions for repeating validations.
In this case, the benefit of skipping re-computation is significant. By skipping 86.67% of

91

0

10

20

30

40

50

60

70

80

90

100

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

conv1d conv2d sgemm kde blackscholes lud forwardprop backprop YOLOv2 average

O
cc

u
rr

en
ce

s
(%

)

Correct SDC Segfault Core dump Hang

(a) Fault injection experiment : 1,000 faults are injected for each benchmark.

0

5

10

15

20

25

30

35

40

45

50

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0
0

conv1d conv2d sgemm kde blackscholes lud forwardprop backprop YOLOv2 average

O
cc

u
rr

en
ce

s
(%

)

Correct SDC Segfault Core dump Hang

(b) Measurement of false negatives.

Figure 5.9: The result of the fault injection experiment. Each protection scheme is tagged
under every application.

re-computation, AR20 shows the best-averaged performance improvement in conv2d among
selected benchmarks. And the performance can be improved further with broader acceptable
ranges.

blackscholes shows the highest skip rate, which is above 99%, with every acceptance rate
due to the existence of approximate memoization as a second-level predictor. Interestingly,
even without the significant change in skip rate, the performance improvement is still
observed when the acceptable range grows. To understand this phenomenon, the detailed
analysis is conducted for this application as shown in Figure 5.8a. The figure evaluates the
presence of the fallback predictor by comparing both normalized execution time and skip
rate. Without approximate memoization, AR20 shows 2.07× runtime overhead with 11.47%
skip rate and the gradual improvement is observed as the acceptable range broadens. With
100% of acceptable range, the skip rate of dynamic interpolation increases up to 67.03%
resulting in 1.50× slowdown. This can explain the gradual performance improvement of
the RSkip with the presence of secondary predictor. When the re-computation is skipped at
the secondary predictor, the estimation cost includes the overhead of the first prediction as
well as the second predictor. Although, the cost is cheaper than re-computation, it is quite

92

expensive given the relatively high cost of approximate memoization. Thus, the contribution
of the first-level predictor in the skip rate has a noteworthy impact. Consequently, as shown
in Figure 5.8a, the performance of RSkip 7 can still improve even among the similar skip
rates due to the increase of the contribution from the first predictor in the skip rate with
broadened acceptance rate.

To assess the impact of input diversity, the variance in performance and skip rate towards
different test inputs are observed with AR20. Figure 5.8b presents a representative result
with lud. Mostly, performance and skip rate are measured close to 1.15× with 90.00%
respectively. The worst case is measured as 1.59× slowdown with 55.00% skip rate. Yet,
significant enhancement from SWIFT-R is observed. The best case is measured as 1.07×
slowdown with 97.15% skip rate. In this case, the overall run-time overhead for full
protection scheme (detection + recovery) is only 7% of unprotected program execution.

5.7.2 Reliability

The reliability aspect is evaluated using Statistical Fault Injection (SFI) [65, 88] in Gem5
simulator [41]. Each of nine benchmarks is executed 1,000 times on the out-of-order
cores with a configuration of ARMv7-A. By following the previous work [88], a single
bit flip is injected randomly into the simulated processor during each run. In our reli-
ability evaluation, faults are only injected into the detected loops to strictly evaluate
the reliability of prediction-based protection approach. Note that, in real-life execu-
tion, a fault can occur at regions outside of detected loops that are protected by the
traditional approach.

The simulation result is categorized into five classes:

• Correct: The execution generates correct output without any data corruption. Con-
ventional approximation methods often ignore certain amount of error [29, 140, 145]
in the output quality. However, our evaluation considers even small output errors
as bad quality and only 100% of output quality as ”Correct”.

• Silent Data Corruption (SDC): An influence of single bit flip silently remains until the
program termination and creates corrupted output.

• Segfault: Failure due to illegal memory access.

• Core dump: The injected fault results in a system crash or an abnormal termination of
the program.

• Hang: The program cannot terminate its execution.
7RSkip employs both dynamic interpolation and approximate memoization

93

Figure 5.9 shows the result of fault injection experiment. Fault protection rate of each
protection scheme is provided in Figure 5.9a. For comparison, the unprotected program
is included and labeled as UNSAFE. On average, 76.68% of injected faults are masked in
UNSAFE. Additionally, they suffer from 20.72% SDCs and 2.13% Segfaults. SWIFT-R
shows a 97.24% protection rate, with the decreased occurrences of SDCs and Segfaults to
1.08% and 1.40%, respectively. Such failures are caused by limitations of the software-only
protection scheme [135]. Since there is no dedicated mechanism to protect special registers,
detection is not possible when a transient fault strikes a single bit in the opcode field and
changes the instruction into operations like branch or store. Also, a transient fault may
occur at the examined register before its actual usage. In this stage, as validation is already
done, the program will proceed rest of the execution with erroneous value. Any compiler
optimization to reduce register lifetime will be helpful in this scenario.

AR20 demonstrates a comparable level of protection rate to SWIFT-R by exhibiting a
95.67% protection rate with 2.23% of SDCs and 1.63% of Segfaults. Protection rate de-
creases when acceptable range broadens: AR20 (95.67%), AR50 (94.51%), AR80 (93.42%),
AR100 (92.52%). The differences in protection rate are mainly originated by SDCs be-
cause we protect address calculation of memory instruction with the conventional strategy:
AR20 (2.23% SDCs), AR50 (3.37% SDCs), AR80 (4.30% SDCs), AR100 (5.29% SDCs).
Throughout the experiment, the occurrence for Core dump and Hang in every protection
scheme, including UNSAFE and SWIFT-R, is measured less than 0.3%.

Figure 5.9b presents the statistics of false negative. As expected, its occurrence increases
with widened acceptable range: AR20 (1.80%), AR50 (3.12%), AR80 (3.74%), AR100
(5.04%). As fuzzy validation is applied to data validation, false negatives mostly produce
SDCs. Interestingly, due to YOLOv2’s program characteristics, false negatives are generally
benign in this application. After extensive computations through multiple layers, only a label
with the highest probability for each detected object is produced as the output. Naturally,
small errors that eschewed fuzzy validations tend to be logically masked in later part of the
execution.

5.7.3 The Rationality of Acceptable Range

Before the deployment of RSkip, the acceptable range of fuzzy validation should be de-
termined with consideration of both protection rate and performance. On average, the
representative conventional scheme, SWIFT-R, can provide 97.24% of protection rate with
2.33× slowdown. As for widening acceptable range, RSkip achieves significant performance
benefits in exchange of certain loss for the protection rate : AR20 (95.67% of protection rate
with 1.42× slowdown), AR50 (94.51% of protection rate with 1.33× slowdown), AR80

94

(93.42% of protection rate with 1.30× slowdown), AR100 (92.52% of protection rate with
1.27× slowdown). With AR20, RSkip can significantly reduce protection overhead while
presenting comparable level with the conventional scheme. Also, RSkip can reduce the
overhead further to 1.27× with the same amount of loss (5 percentage point) that previous
works [87, 88] leveraged.

5.8 Related Works
Hardware techniques insert additional hardware module to protect their execution. For
example, Austin proposed DIVA [35, 157] checker which is a small core designed to
validate the computation on the fly. Despite their expensive cost, hardware techniques have
been adopted in real systems for the high fidelity [81, 146, 162]. Additionally, Racunas et al.
[126] proposed a perturbation-based screening hardware technique considering an erratic
value as a possible fault. Legitimate sets of values are defined to detect inconsistency in
values.

After Saxena et al. [144] noticed the SMT redundancy, many techniques were proposed
to reduce hardware cost [72, 112, 147]. To improve performance of thread-level approach,
DAFT [166] exploits speculation to minimize inter-thread communications for memory
operations. Yet, utilizing redundant threads generally suffers from high energy consump-
tion [106] due to an increased number of dynamic instructions for redundant threads and
validation.

Additionally, instruction duplication based protection was first introduced by Oh et al.
[118] where all instructions including memory operations were duplicated and validated.
Reis et al. proposed SWIFT [135] to optimize instruction duplication scheme by removing
unnecessary memory redundancies based on the assumption of ECC. As SWIFT did not
claim any recovery method, Reis et al. expanded SWIFT further with TMR-based instruction
level recovery technique [134]. In general, fault detection and fault recovery mechanism can
be investigated independently [135, 88]. Encore [66] and checkpoint-based methods [65,
155] are proposed as the independent recovery scheme. At wrong predictions, our prediction-
based protection scheme executes re-computation for the exact validation. In this case, the
mechanism generating re-computation for the redundant copy resembles a form of recovery
mechanism. Also, unlike previous works [135, 134, 88, 63] that trigger recovery routine
only on the actual fault detection, our approach additionally triggers recovery mechanism
on mispredictions. To enhance performance of both detection and recovery mechanisms in
RSkip, the integration of advanced recovery mechanisms [66, 65, 155] can be studied.

To reduce the protection cost, Khudia et al. [88] leveraged certain loss in protection rate
by protecting only critical variables. Similarly, Venkatagiri et al. proposed Approxilyzer

95

[153], a framework that suggests protecting critical dynamic instructions by quantifying
quality impact of a single bit flip to avoid excessive protection cost. In contrast to our work,
they reduce protection cost by narrowing down protection targets. By incorporating this
technique, a better performance can be achieved.

5.9 Conclusion
The unique properties of a transient fault force protection strategies to be fast and cost-
efficient. RSkip demonstrates that the performance of the software-only protection strategy
can be significantly improved with a newly proposed prediction-based protection scheme.
By predicting the value of computation with approximation techniques, the expensive
re-computation can be bypassed. As a result, 81.10% of re-computation can be skipped
on average with a remarkable performance improvement. While conventional technique
suffers from 2.33x slowdown compared to the unreliable execution, RSkip only suffers
1.27x slowdown with a 5% loss in protection rate.

Acknowledgement
This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research (ASCR), under Award Number
DE-SC0014134.

96

CHAPTER 6

Conclusion and Future Works

6.1 Conclusion
Due to the increasing complexity of both hardware and software systems, it becomes
a highly challenging environment for compilers to deliver the optimal executable of a
program to the users. To deal with this complexity, most of state-of-the-arts compilers
depend on the manual approach where the optimization decision heuristic is hand-written
by the compiler developers. Although this approach had been successful by leveraging
the compiler developers’ expertise, it cannot handle the recent computing environment
effectively anymore by frequently applying sub-optimal optimization decisions for the given
workload and underlying hardware. In addition, these manual approaches are naturally
labour-intensive and error-prone for the fast evolving landscape, such as deep learning
domain.

To attack this challenge, this thesis proposed diverse automatic techniques targeting
representative state-of-the-art compilers targeting various hardware architectures in diverse
domains:

Chapter 2 examined one of the most representative compiler optimizations, loop un-

rolling, and study the feasibility of automatic construction of its decision model in the
mobile dynamic binary translation system. By effectively learning from the pattern between
optimal decisions and loop features, this approach could save extra 50% in the dynamic
instruction counts compared to the baseline heuristics handmade by industry experts while
satisfying the tough constraints in memory/runtime from the mobile dynamic translation
system.

As the potential of automatic approach for single optimization decision is well demon-
strated, Chapter 3 expanded the scope of interests and endeavored to address the problem of
finding the best use of a group of optimizations in the presence of interaction between opti-
mizations. This work proposed an auto-tuning technique, called SRTuner, that customizes

97

the effective optimization setting for the given workload, compiler, and underlying hardware
by fully utilizing its tuning budget. With a multi-stage structure and novel impact estimation
method, SRTuner could reveal the important synergistic relations between optimizations
and use it directly to focus on the promising subspace. In addition, to maximize the tun-
ing quality while efficiently handling numerous local optima, the concept of multi-armed
bandit problem is adapted to compiler optimization problem. This technique is evaluated
on three representative compiler stacks from different domains: GCC (traditional C/C++
compiler) targeting CPU, TVM (domain-specific machine learning compiler) targeting GPU
and OpenCL compiler (kernel compiler for heterogeneous computing) targeting CPU/GPU.
The evaluation showed that SRTuner can extract up to 34.4× speedup from the best op-
timization setting from each state-of-the-arts compiler stack while outperforming prior
tuning approaches. Due to the unique tuning strategy of SRTuner, it can offer the analytic
information regarding important synergistic optimizations back to the users. This work also
discussed how this information can be used for future compiler design and studies.

In addition, Chapter 4 investigated the best uses of various software backends and
suggested auto-tuning system, Collage, that produces the execution plan with multiple
backends customized for the deep learning workload and the underlying hardware. To utilize
the full capability of diverse backends, Collage offers a seamless user interface that allows
the flexible description of operator patterns supported in each backend. For the effective
navigation of the vast search space, Collage introduces two-level auto-tuning strategies to
cope with different characteristics of backends with different approaches. For operator-level
tuning, this work suggests a dynamic programming method with the consideration of the
graph topology and backend capability. Without taking into account the effect from cross-
kernel optimizations, this tuner efficiently customizes a hybrid execution plan within a few
seconds. Optionally, to make up for the potential loss from the relaxation, second tuner may
fine-tune the execution plan on the top of the plan customized from the first tuner. Results
demonstrate that could extract 1.18× speedup compared to the best backend choice for
each workload while outperforming the hand-written approach in the existing deep learning
framework by 1.31×.

Lastly, Chapter 5 examined the reliability field to evaluate if a compiler can provide
a cost-efficient pure software protection scheme. This chapter proposed RSkip, which is
a novel prediction-based fault protection technology. By employing two approximation
methods, this technique could create a cheap approximation copy of a program to verify
the integrity of a program execution. If both approximation copy and original copy agree
within the acceptance range, expensive re-computation could be bypassed. To maximize
the performance while minimizing missed faults, RSkip offered an automatic method to

98

adjust the aggressiveness of approximation methods according to the run-time context. In
evaluation, prior instruction replication work showed 2.33× execution time compared to the
unreliable execution over nine compute-intensive benchmarks. However, with the proper
use of approximation methods, RSkip could successfully reduce the protection overhead to
1.27× by skipping redundant computation in our target loops at a rate of 81.10%.

6.2 Future Works
Although three important problems are addressed in this thesis, there still remain important
challenges to attack:

The first work of this thesis demonstrated the effective optimization decision model
can be automatically constructed by learning from the training dataset. Even though its
performance significantly outperforms the hand-written heuristics, there are some rooms for
improvement. This gap may be caused by either the incomplete feature set or limitation of
the current learning approach. Future works may investigate each aspect and endeavor to
reduce the gap.

Despite the decent speedup from SRTuner in the second work, it inevitably requires
expensive tuning time. To make the holistic tuning approach more practical, the general-
ization method [70, 34] is necessary to learn the pattern between workload features and
good optimization settings and make a flexible recommendation of optimization setting for
the unseen workload. Chapter 3.6 discussed the future direction of how this generalization
method can be effectively built. By accumulating a number of tuning experiences with
SRTuner in the tuning database, the future work will examine what features are necessary to
make the right decisions for a group of optimizations and train the recommendation model
accordingly to assess the idea.

As the extension of Collage in the third work, heterogeneous hardware devices can be
considered. For the fast execution of deep learning models, the state-of-the-arts frameworks
often support the heterogeneous executions by employing the multiple hardware devices with
different architectural characteristics [9]. This requires accurate decisions of (1) whether it
is beneficial to offload the task to other device given the data transfer and synchronization
overhead (2) where to offload the computation (3) which software backend should be used
for the chosen device. All these three problems are deeply intertwined and form a large
and complex search space to explore. Collage can be extended to these challenges. To
determine whether to offload the computation, the accurate and efficient cost model is
essential and it should be able to consider the data transfer overhead as well. As this can be
difficult due to the complexity of modern computing system, learning-based approach may
be considered [55]. Also, dynamic programming approach may need to be improved as the

99

additive relation between the cost of subgraphs may not hold.
Finally, for the fourth part of this dissertation, the wide adoption of various approximation

computing methods can be investigated for RSkip. As the idea of prediction-based protection
is orthogonal to the approximation techniques, less restricted prediction techniques would
help expanding the applicability of RSKip beyond the compute-intensive loops.

100

BIBLIOGRAPHY

[1] Apple neural engine (ane). https://www.apple.com/newsroom/2020/
11/apple-unleashes-m1/. Accessed: 2021-08-25.

[2] Google tensor processing unit (tpu). https://cloud.google.com/tpu. Ac-
cessed: 2021-08-25.

[3] Intel onednn. https://software.intel.com/content/www/us/en/
develop/tools/oneapi/components/onednn.html#gs.9zgc55.
Accessed: 2021-08-27.

[4] Intel openvino. https://software.intel.com/content/www/us/en/
develop/tools/openvino-toolkit.html. Accessed: 2021-08-27.

[5] Nvidia cublas. https://developer.nvidia.com/cublas. Accessed:
2021-08-05.

[6] Nvidia cudnn. https://developer.nvidia.com/cudnn. Accessed: 2021-
08-05.

[7] Nvidia deep learning accelerator (nvdla). http://nvdla.org/. Accessed: 2021-
08-25.

[8] Nvidia tensorrt. https://developer.nvidia.com/tensorrt. Accessed:
2021-08-05.

[9] Pytorch. https://pytorch.org/. Accessed: 2021-08-05.

[10] Tensorflow. https://www.tensorflow.org/. Accessed: 2021-08-05.

[11] Tensorflow xla. https://www.tensorflow.org/xla. Accessed: 2021-08-
27.

[12] Intel core i7 embedded processor, 2019-02-08.

[13] 3DMark, 2019-06-02.

[14] FPMark, 2019-06-02.

[15] Geekbench, 2019-06-02.

101

https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://cloud.google.com/tpu
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onednn.html#gs.9zgc55
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onednn.html#gs.9zgc55
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cudnn
http://nvdla.org/
https://developer.nvidia.com/tensorrt
https://pytorch.org/
https://www.tensorflow.org/
https://www.tensorflow.org/xla

[16] SYSmark, 2019-06-02.

[17] TabletMark, 2019-06-02.

[18] cTuning Foundation, 2019-11-17.

[19] GCC online documentation, 2021-04-11.

[20] NVIDIA Multi-Process Service (MPS) online documentation, 2021-04-11.

[21] GCC, 2021-08-29.

[22] LLVM, 2021-08-29.

[23] LLVM AMD GPU as a backend, 2021-08-29.

[24] LLVM Compiler Passes, 2021-08-29.

[25] LLVM NVIDIA GPU as a backend, 2021-08-29.

[26] SpiderMonkey Javascript Engine, 2021-08-29.

[27] V8 Javascript Engine, 2021-08-29.

[28] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël
Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, et al.
Learning to optimize halide with tree search and random programs. ACM Transactions
on Graphics (TOG), 38(4):1–12, 2019.

[29] Anant Agarwal, Martin Rinard, Stelios Sidiroglou, Sasa Misailovic, and Henry Hoff-
mann. Using code perforation to improve performance, reduce energy consumption,
and respond to failures. Technical report, Technical report, MIT, 2009.

[30] Carlos Alvarez, Jesus Corbal, and Mateo Valero. Fuzzy memoization for floating-
point multimedia applications. IEEE Transactions on Computers, 54(7):922–927,
2005.

[31] Carlos Alvarez, Jesus Corbal, and Mateo Valero. Dynamic tolerance region computing
for multimedia. IEEE Transactions on Computers, 61(5):650–665, 2012.

[32] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey
Bosboom, Una-May O’Reilly, and Saman Amarasinghe. Opentuner: An extensi-
ble framework for program autotuning. In Proceedings of the 23rd international
conference on Parallel architectures and compilation, pages 303–316. ACM, 2014.

[33] Amir H Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina
Silvano. A survey on compiler autotuning using machine learning. ACM Computing
Surveys (CSUR), 51(5):1–42, 2018.

102

[34] Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung Park, John
Cavazos, and Cristina Silvano. Cobayn: Compiler autotuning framework using
bayesian networks. ACM Transactions on Architecture and Code Optimization
(TACO), 13(2):21, 2016.

[35] Todd M Austin. Diva: A reliable substrate for deep submicron microarchitecture
design. In Microarchitecture, 1999. MICRO-32. Proceedings. 32nd Annual Interna-
tional Symposium on, pages 196–207. IEEE, 1999.

[36] Woongki Baek and Trishul M Chilimbi. Green: a framework for supporting energy-
conscious programming using controlled approximation. In ACM Sigplan Notices,
volume 45, pages 198–209. ACM, 2010.

[37] Felice Balarin, Paolo Giusto, Attila Jurecska, Michael Chiodo, Harry Hsieh, Claudio
Passerone, Ellen Sentovich, Luciano Lavagno, Bassam Tabbara, Alberto Sangiovanni-
Vincentelli, et al. Hardware-software co-design of embedded systems: the POLIS
approach. Springer Science & Business Media, 1997.

[38] Shumeet Baluja. Population-based incremental learning. a method for integrating
genetic search based function optimization and competitive learning. Technical report,
Carnegie-Mellon Univ Pittsburgh Pa Dept Of Computer Science, 1994.

[39] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Selje-
botn, and Kurt Smith. Cython: The best of both worlds. Computing in Science &
Engineering, 13(2):31–39, 2011.

[40] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec bench-
mark suite: Characterization and architectural implications. In Proceedings of the
17th international conference on Parallel architectures and compilation techniques,
pages 72–81. ACM, 2008.

[41] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sardashti,
et al. The gem5 simulator. ACM SIGARCH Computer Architecture News, 39(2):1–7,
2011.

[42] François Bodin, Toru Kisuki, Peter Knijnenburg, Mike O’Boyle, and Erven Rohou.
Iterative compilation in a non-linear optimisation space. In Workshop on profile and
feedback-directed compilation, 1998.

[43] Edson Borin, Youfeng Wu, Cheng Wang, Wei Liu, Mauricio Breternitz Jr, Shiliang Hu,
Esfir Natanzon, Shai Rotem, and Roni Rosner. Tao: two-level atomicity for dynamic
binary optimizations. In Proceedings of the 8th annual IEEE/ACM international
symposium on Code generation and optimization, pages 12–21. ACM, 2010.

[44] Shekhar Borkar et al. Microarchitecture and design challenges for gigascale integra-
tion. In MICRO, volume 37, pages 3–3, 2004.

103

[45] Greg Bronevetsky, B de Supinski, and Martin Schulz. A foundation for the accurate
prediction of the soft error vulnerability of scientific applications. Technical report,
Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2009.

[46] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis,
and Simon Colton. A survey of monte carlo tree search methods. IEEE Transactions
on Computational Intelligence and AI in games, 4(1):1–43, 2012.

[47] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Foundations and Trends® in Machine
Learning, 5(1):1–122, 2012.

[48] James Bucek, Klaus-Dieter Lange, et al. Spec cpu2017: Next-generation compute
benchmark. In Companion of the 2018 ACM/SPEC International Conference on
Performance Engineering, pages 41–42. ACM, 2018.

[49] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael FP O’Boyle, and
Olivier Temam. Rapidly selecting good compiler optimizations using performance
counters. In Code Generation and Optimization, 2007. CGO’07. International
Symposium on, pages 185–197. IEEE, 2007.

[50] John Cavazos and J Eliot B Moss. Inducing heuristics to decide whether to schedule.
In ACM SIGPLAN Notices, volume 39, pages 183–194. ACM, 2004.

[51] John Cavazos and Michael FP O’Boyle. Automatic tuning of inlining heuristics. In
Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference, pages
14–14. IEEE, 2005.

[52] John Cavazos and Michael FP O’boyle. Method-specific dynamic compilation using
logistic regression. ACM SIGPLAN Notices, 41(10):229–240, 2006.

[53] Hyeong Soo Chang, Michael C Fu, Jiaqiao Hu, and Steven I Marcus. An adaptive
sampling algorithm for solving markov decision processes. Operations Research,
53(1):126–139, 2005.

[54] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-Ha
Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing.
In Workload Characterization, 2009. IISWC 2009. IEEE International Symposium
on, pages 44–54. Ieee, 2009.

[55] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}: An
automated end-to-end optimizing compiler for deep learning. In 13th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 18), pages
578–594, 2018.

104

[56] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze,
Carlos Guestrin, and Arvind Krishnamurthy. Learning to optimize tensor programs.
In Advances in Neural Information Processing Systems, pages 3389–3400, 2018.

[57] Kingsum Chow and Youfeng Wu. Feedback-directed selection and characterization of
compiler optimizations. In Proc. 2nd Workshop on Feedback Directed Optimization,
1999.

[58] Scott Cyphers, Arjun K Bansal, Anahita Bhiwandiwalla, Jayaram Bobba, Matthew
Brookhart, Avijit Chakraborty, Will Constable, Christian Convey, Leona Cook, Omar
Kanawi, et al. Intel ngraph: An intermediate representation, compiler, and executor
for deep learning. arXiv preprint arXiv:1801.08058, 2018.

[59] Jack W Davidson and Sanjay Jinturkar. Aggressive loop unrolling in a retargetable,
optimizing compiler. In International Conference on Compiler Construction, pages
59–73. Springer, 1996.

[60] JW Davidson, Gary S Tyson, DB Whalley, and PA Kulkarni. Evaluating heuristic
optimization phase order search algorithms. In International Symposium on Code
Generation and Optimization (CGO’07), pages 157–169. IEEE, 2007.

[61] James C Dehnert, Brian K Grant, John P Banning, Richard Johnson, Thomas Kistler,
Alexander Klaiber, and Jim Mattson. The transmeta code morphing/spl trade/software:
using speculation, recovery, and adaptive retranslation to address real-life challenges.
In Code Generation and Optimization, 2003. CGO 2003. International Symposium
on, pages 15–24. IEEE, 2003.

[62] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[63] Moslem Didehban and Aviral Shrivastava. nzdc: A compiler technique for near
zero silent data corruption. In Proceedings of the 53rd Annual Design Automation
Conference, page 48. ACM, 2016.

[64] Kemal Ebcioglu, Erik Altman, Michael Gschwind, and Sumedh Sathaye. Dynamic
binary translation and optimization. IEEE Transactions on computers, 50(6):529–548,
2001.

[65] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke. Shoestring: prob-
abilistic soft error reliability on the cheap. In ACM SIGARCH Computer Architecture
News, volume 38, pages 385–396. ACM, 2010.

[66] Shuguang Feng, Shantanu Gupta, Amin Ansari, Scott A Mahlke, and David I August.
Encore: low-cost, fine-grained transient fault recovery. In Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 398–409.
ACM, 2011.

105

[67] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner Gardner,
Marc Parizeau, and Christian Gagné. Deap: Evolutionary algorithms made easy. The
Journal of Machine Learning Research, 13(1):2171–2175, 2012.

[68] Björn Franke, Michael O’Boyle, John Thomson, and Grigori Fursin. Probabilistic
source-level optimisation of embedded programs. ACM SIGPLAN Notices, 40(7):78–
86, 2005.

[69] GG Fursin, Michael FP O’Boyle, and Peter MW Knijnenburg. Evaluating iterative
compilation. In International Workshop on Languages and Compilers for Parallel
Computing, pages 362–376. Springer, 2002.

[70] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier
Temam, Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Cour-
tois, et al. Milepost gcc: Machine learning enabled self-tuning compiler. International
journal of parallel programming, 39(3):296–327, 2011.

[71] Grigori Fursin, Renato Miceli, Anton Lokhmotov, Michael Gerndt, Marc Baboulin,
Allen D Malony, Zbigniew Chamski, Diego Novillo, and Davide Del Vento. Collective
mind: Towards practical and collaborative auto-tuning. Scientific Programming,
22(4):309–329, 2014.

[72] Mohamed Gomaa, Chad Scarbrough, TN Vijaykumar, and Irith Pomeranz. Transient-
fault recovery for chip multiprocessors. In Computer Architecture, 2003. Proceedings.
30th Annual International Symposium on, pages 98–109. IEEE, 2003.

[73] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139–144, 2020.

[74] Ramaswamy Govindarajan, Erik R Altman, and Guang R Gao. Minimizing register
requirements under resource-constrained rate-optimal software pipelining. In Pro-
ceedings of the 27th annual international symposium on Microarchitecture, pages
85–94. ACM, 1994.

[75] Ameer Haj-Ali, Nesreen K Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic,
and Ion Stoica. Neurovectorizer: end-to-end vectorization with deep reinforcement
learning. In Proceedings of the 18th ACM/IEEE International Symposium on Code
Generation and Optimization, pages 242–255, 2020.

[76] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns
retrace the history of 2d cnns and imagenet? In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 6546–6555, 2018.

[77] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

106

[78] John Hennessy and David Patterson. A new golden age for computer architecture:
Domain-specific hardware/software co-design, enhanced.

[79] John L Hennessy and David A Patterson. Computer architecture: a quantitative
approach. Elsevier, 2011.

[80] John L Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer
Architecture News, 34(4):1–17, 2006.

[81] Robert W Horst, Richard L Harris, and Robert L Jardine. Multiple instruction issue
in the nonstop cyclone processor. In ACM SIGARCH Computer Architecture News,
volume 18, pages 216–226. ACM, 1990.

[82] Kenneth Hoste and Lieven Eeckhout. Cole: compiler optimization level exploration.
In Proceedings of the 6th annual IEEE/ACM international symposium on Code
generation and optimization, pages 165–174. ACM, 2008.

[83] Kenneth Hoste, Andy Georges, and Lieven Eeckhout. Automated just-in-time com-
piler tuning. In Proceedings of the 8th annual IEEE/ACM international symposium
on Code generation and optimization, pages 62–72. ACM, 2010.

[84] Michael R Jantz and Prasad A Kulkarni. Exploring single and multilevel jit compi-
lation policy for modern machines. ACM Transactions on Architecture and Code
Optimization (TACO), 10(4):1–29, 2013.

[85] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and
Alex Aiken. Taso: optimizing deep learning computation with automatic generation
of graph substitutions. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 47–62, 2019.

[86] Jehandad Khan, Paul Fultz, Artem Tamazov, Daniel Lowell, Chao Liu, Michael
Melesse, Murali Nandhimandalam, Kamil Nasyrov, Ilya Perminov, Tejash Shah,
et al. Miopen: An open source library for deep learning primitives. arXiv preprint
arXiv:1910.00078, 2019.

[87] Daya Shanker Khudia and Scott Mahlke. Low cost control flow protection using
abstract control signatures. In ACM SIGPLAN Notices, volume 48, pages 3–12. ACM,
2013.

[88] Daya Shanker Khudia and Scott Mahlke. Harnessing soft computations for low-
budget fault tolerance. In Microarchitecture (MICRO), 2014 47th Annual IEEE/ACM
International Symposium on, pages 319–330. IEEE, 2014.

[89] Toru Kisuki, P Knijnenburg, M O’Boyle, and H Wijshoff. Iterative compilation in
program optimization. In Proc. CPC’10 (Compilers for Parallel Computers), pages
35–44. Citeseer, 2000.

107

[90] Toru Kisuki, Peter MW Knijnenburg, and Michael FP O’Boyle. Combined selection
of tile sizes and unroll factors using iterative compilation. In Proceedings 2000
International Conference on Parallel Architectures and Compilation Techniques (Cat.
No. PR00622), pages 237–246. IEEE, 2000.

[91] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In
European conference on machine learning, pages 282–293. Springer, 2006.

[92] Chandra Krintz and Brad Calder. Using annotations to reduce dynamic optimization
time. ACM Sigplan Notices, 36(5):156–167, 2001.

[93] Prasad Kulkarni, Stephen Hines, Jason Hiser, David Whalley, Jack Davidson, and
Douglas Jones. Fast searches for effective optimization phase sequences. ACM
SIGPLAN Notices, 39(6):171–182, 2004.

[94] Prasad A Kulkarni. Jit compilation policy for modern machines. In Proceedings of
the 2011 ACM international conference on Object oriented programming systems
languages and applications, pages 773–788, 2011.

[95] Prasad A Kulkarni, Michael R Jantz, and David B Whalley. Improving both the
performance benefits and speed of optimization phase sequence searches. ACM
Sigplan Notices, 45(4):95–104, 2010.

[96] Prasad A Kulkarni, David B Whalley, Gary S Tyson, and Jack W Davidson. Practical
exhaustive optimization phase order exploration and evaluation. ACM Transactions
on Architecture and Code Optimization (TACO), 6(1):1–36, 2009.

[97] Hugh Leather, Edwin Bonilla, and Michael O’Boyle. Automatic feature generation
for machine learning based optimizing compilation. In Proceedings of the 7th annual
IEEE/ACM International Symposium on Code Generation and Optimization, pages
81–91. IEEE Computer Society, 2009.

[98] Hugh Leather, Edwin Bonilla, and Michael O’boyle. Automatic feature generation for
machine learning–based optimising compilation. ACM Transactions on Architecture
and Code Optimization (TACO), 11(1):1–32, 2014.

[99] Shikai Li, Sunghyun Park, and Scott Mahlke. Sculptor: Flexible approximation
with selective dynamic loop perforation. In Proceedings of the 2018 International
Conference on Supercomputing, pages 341–351. ACM, 2018.

[100] Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest. R
news, 2(3):18–22, 2002.

[101] Robert Lim, Boyana Norris, and Allen Malony. Autotuning gpu kernels via static and
predictive analysis. In 2017 46th International Conference on Parallel Processing
(ICPP), pages 523–532. IEEE, 2017.

108

[102] Ankur Limaye and Tosiron Adegbija. A workload characterization of the spec
cpu2017 benchmark suite. In Performance Analysis of Systems and Software (ISPASS),
2018 IEEE International Symposium on, pages 149–158. IEEE, 2018.

[103] Yu Liu, Hantian Zhang, Luyuan Zeng, Wentao Wu, and Ce Zhang. Mlbench: bench-
marking machine learning services against human experts. Proceedings of the VLDB
Endowment, 11(10):1220–1232, 2018.

[104] Josep Llosa, Mateo Valero, E Agyuade, and Antonio González. Modulo scheduling
with reduced register pressure. IEEE Transactions on computers, (6):625–638, 1998.

[105] David JC MacKay and David JC Mac Kay. Information theory, inference and learning
algorithms. Cambridge university press, 2003.

[106] Niti Madan and Rajeev Balasubramonian. Power efficient approaches to redundant
multithreading. IEEE Transactions on Parallel and Distributed Systems, 18(8), 2007.

[107] Uma Mahadevan and Lacky Shah. Intelligent loop unrolling, August 18 1998. US
Patent 5,797,013.

[108] Azamat Mametjanov, Daniel Lowell, Ching-Chen Ma, and Boyana Norris. Autotun-
ing stencil-based computations on gpus. In 2012 IEEE international conference on
cluster computing, pages 266–274. IEEE, 2012.

[109] Panagiotis D Michailidis and Konstantinos G Margaritis. Accelerating kernel density
estimation on the gpu using the cuda framework. Applied Mathematical Sciences,
7(30):1447–1476, 2013.

[110] Antoine Monsifrot, François Bodin, and Rene Quiniou. A machine learning approach
to automatic production of compiler heuristics. In International conference on
artificial intelligence: methodology, systems, and applications, pages 41–50. Springer,
2002.

[111] Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining. Introduction to
linear regression analysis, volume 821. John Wiley & Sons, 2012.

[112] Shubhendu S Mukherjee, Michael Kontz, and Steven K Reinhardt. Detailed design
and evaluation of redundant multi-threading alternatives. In Computer Architecture,
2002. Proceedings. 29th Annual International Symposium on, pages 99–110. IEEE,
2002.

[113] Shubhendu S Mukherjee, Christopher T Weaver, Joel Emer, Steven K Reinhardt, and
Todd Austin. Measuring architectural vulnerability factors. IEEE Micro, 23(6):70–75,
2003.

[114] Shubu Mukherjee. Architecture design for soft errors. Morgan Kaufmann, 2011.

109

[115] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren. Dnnfusion:
accelerating deep neural networks execution with advanced operator fusion. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, pages 883–898, 2021.

[116] Cedric Nugteren. Clblast: A tuned opencl blas library. In Proceedings of the
International Workshop on OpenCL, pages 1–10, 2018.

[117] Cedric Nugteren and Valeriu Codreanu. Cltune: A generic auto-tuner for opencl
kernels. In 2015 IEEE 9th International Symposium on Embedded Multicore/Many-
core Systems-on-Chip, pages 195–202. IEEE, 2015.

[118] Nahmsuk Oh, Philip P Shirvani, and Edward J McCluskey. Error detection by
duplicated instructions in super-scalar processors. IEEE Transactions on Reliability,
51(1):63–75, 2002.

[119] Zhelong Pan and Rudolf Eigenmann. Fast and effective orchestration of compiler
optimizations for automatic performance tuning. In Proceedings of the International
Symposium on Code Generation and Optimization, pages 319–332. IEEE Computer
Society, 2006.

[120] Eunjung Park, Sameer Kulkarni, and John Cavazos. An evaluation of different mod-
eling techniques for iterative compilation. In Proceedings of the 14th international
conference on Compilers, architectures and synthesis for embedded systems, pages
65–74. ACM, 2011.

[121] Sunghyun Park, Youfeng Wu, Janghaeng Lee, Amir Aupov, and Scott Mahlke. Multi-
objective exploration for practical optimization decisions in binary translation. ACM
Transactions on Embedded Computing Systems (TECS), 18(5s):57, 2019.

[122] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine learning
research, 12(Oct):2825–2830, 2011.

[123] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood, and
Brad Calder. Using simpoint for accurate and efficient simulation. In ACM SIGMET-
RICS Performance Evaluation Review, volume 31, pages 318–319. ACM, 2003.

[124] Rogier PJ Pinkers, Peter MW Knijnenburg, Masayo Haneda, and Harry AG Wijshoff.
Statistical selection of compiler options. In The IEEE Computer Society’s 12th Annual
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems, 2004.(MASCOTS 2004). Proceedings., pages 494–501.
IEEE, 2004.

[125] James Price and Simon McIntosh-Smith. Exploiting auto-tuning to analyze and
improve performance portability on many-core architectures. In International Con-
ference on High Performance Computing, pages 538–556. Springer, 2017.

110

[126] Paul Racunas, Kypros Constantinides, Srilatha Manne, and Shubhendu S Mukherjee.
Perturbation-based fault screening. In High Performance Computer Architecture,
2007. HPCA 2007. IEEE 13th International Symposium on, pages 169–180. IEEE,
2007.

[127] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[128] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines. Acm Sigplan
Notices, 48(6):519–530, 2013.

[129] Ari Rasch, Michael Haidl, and Sergei Gorlatch. Atf: A generic auto-tuning framework.
In 2017 IEEE 19th International Conference on High Performance Computing and
Communications; IEEE 15th International Conference on Smart City; IEEE 3rd
International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
pages 64–71. IEEE, 2017.

[130] Archana Ravindar and YN Srikant. Relative roles of instruction count and cycles
per instruction in wcet estimation. In ACM SIGSOFT Software Engineering Notes,
volume 36, pages 55–60. ACM, 2011.

[131] Joseph Redmon. Darknet: Open source neural networks in c. http://pjreddie.
com/darknet/, 2013–2016.

[132] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. arXiv preprint
arXiv:1612.08242, 2016.

[133] Steven K Reinhardt and Shubhendu S Mukherjee. Transient fault detection via
simultaneous multithreading, volume 28. ACM, 2000.

[134] George A Reis, Jonathan Chang, and David I August. Automatic instruction-level
software-only recovery. IEEE micro, 27(1), 2007.

[135] George A Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I August.
Swift: Software implemented fault tolerance. In Proceedings of the international
symposium on Code generation and optimization, pages 243–254. IEEE Computer
Society, 2005.

[136] Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh Pollock, Marisa Kirisame,
Tianqi Chen, and Zachary Tatlock. Relay: A new ir for machine learning frameworks.
In Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages, pages 58–68, 2018.

[137] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng, Roman
Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele, Roman Levenstein, et al.

111

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

Glow: Graph lowering compiler techniques for neural networks. arXiv preprint
arXiv:1805.00907, 2018.

[138] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,, 2016.

[139] Swarup Kumar Sahoo, Man-Lap Li, Pradeep Ramachandran, Sarita V Adve, Vikram S
Adve, and Yuanyuan Zhou. Using likely program invariants to detect hardware errors.
In Dependable Systems and Networks With FTCS and DCC, 2008. DSN 2008. IEEE
International Conference on, pages 70–79. IEEE, 2008.

[140] Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott Mahlke. Para-
prox: Pattern-based approximation for data parallel applications. In ACM SIGARCH
Computer Architecture News, volume 42, pages 35–50. ACM, 2014.

[141] Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati, and Scott
Mahlke. Sage: Self-tuning approximation for graphics engines. In Proceedings of
the 46th Annual IEEE/ACM International Symposium on Microarchitecture, pages
13–24. ACM, 2013.

[142] Joshua San Miguel, Jorge Albericio, Natalie Enright Jerger, and Aamer Jaleel. The
bunker cache for spatio-value approximation. In Microarchitecture (MICRO), 2016
49th Annual IEEE/ACM International Symposium on, pages 1–12. IEEE, 2016.

[143] Vivek Sarkar. Optimized unrolling of nested loops. In Proceedings of the 14th
international conference on Supercomputing, pages 153–166. ACM, 2000.

[144] Nirmal R Saxena and Edward J McCluskey. Dependable adaptive computing systems-
the roar project. In Systems, Man, and Cybernetics, 1998. 1998 IEEE International
Conference on, volume 3, pages 2172–2177. IEEE, 1998.

[145] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard.
Managing performance vs. accuracy trade-offs with loop perforation. In Proceed-
ings of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, pages 124–134. ACM, 2011.

[146] Timothy J Slegel, Robert MIII Averill, Mark A Check, Bruce C Giamei, Barry W
Krumm, Christopher A Krygowski, Wen H Li, John S Liptay, John D MacDougall,
Thomas J McPherson, et al. Ibm’s s/390 g5 microprocessor design. IEEE micro,
19(2):12–23, 1999.

[147] Jared C Smolens, Jangwoo Kim, James C Hoe, and Babak Falsafi. Efficient resource
sharing in concurrent error detecting superscalar microarchitectures. In Proceedings
of the 37th annual IEEE/ACM International Symposium on Microarchitecture, pages
257–268. IEEE Computer Society, 2004.

[148] Tyler Sorensen, Sreepathi Pai, and Alastair F Donaldson. One size doesn’t fit all:
Quantifying performance portability of graph applications on gpus. In 2019 IEEE

112

International Symposium on Workload Characterization (IISWC), pages 155–166.
IEEE, 2019.

[149] Mark Stephenson and Saman Amarasinghe. Predicting unroll factors using supervised
classification. In Proceedings of the international symposium on Code generation
and optimization, pages 123–134. IEEE Computer Society, 2005.

[150] Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May O’Reilly.
Meta optimization: improving compiler heuristics with machine learning. In ACM
SIGPLAN Notices, volume 38, pages 77–90. ACM, 2003.

[151] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. Lift: a functional
data-parallel ir for high-performance gpu code generation. In 2017 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pages 74–85.
IEEE, 2017.

[152] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. Parboil: A revised bench-
mark suite for scientific and commercial throughput computing. Center for Reliable
and High-Performance Computing, 127, 2012.

[153] Radha Venkatagiri, Abdulrahman Mahmoud, Siva Kumar Sastry Hari, and Sarita V
Adve. Approxilyzer: Towards a systematic framework for instruction-level approx-
imate computing and its application to hardware resiliency. In Microarchitecture
(MICRO), 2016 49th Annual IEEE/ACM International Symposium on, pages 1–14.
IEEE, 2016.

[154] Cheng Wang and Youfeng Wu. Tso atomicity: efficient hardware primitive for tso-
preserving region optimizations. In ACM SIGARCH Computer Architecture News,
volume 41, pages 509–520. ACM, 2013.

[155] Nicholas J Wang and Sanjay J Patel. Restore: Symptom-based soft error detection
in microprocessors. IEEE Transactions on Dependable and Secure Computing,
3(3):188–201, 2006.

[156] Zheng Wang and Michael O’Boyle. Machine learning in compiler optimization.
Proceedings of the IEEE, 2018.

[157] Chris Weaver and Todd Austin. A fault tolerant approach to microprocessor design.
In Dependable Systems and Networks, 2001. DSN 2001. International Conference
on, pages 411–420. IEEE, 2001.

[158] Vincent M Weaver, Dan Terpstra, Heike McCraw, Matt Johnson, Kiran Kasichayanula,
James Ralph, John Nelson, Phil Mucci, Tushar Mohan, and Shirley Moore. Papi 5:
Measuring power, energy, and the cloud. In Performance Analysis of Systems and
Software (ISPASS), 2013 IEEE International Symposium on, pages 124–125. IEEE,
2013.

113

[159] Markus Willems, Volker Bursgens, Thorsten Grotker, and Heinrich Meyr. Fridge:
An interactive code generation environment for hw/sw codesign. In 1997 IEEE
International Conference on Acoustics, Speech, and Signal Processing, volume 1,
pages 287–290. IEEE, 1997.

[160] Wayne H Wolf. Hardware-software co-design of embedded systems. Proceedings of
the IEEE, 82(7):967–989, 1994.

[161] Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated
residual transformations for deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[162] Ying C Yeh. Triple-triple redundant 777 primary flight computer. In Aerospace
Applications Conference, 1996. Proceedings., 1996 IEEE, volume 1, pages 293–307.
IEEE, 1996.

[163] Kamen Yotov, Xiaoming Li, Gang Ren, Michael Cibulskis, Gerald DeJong, Maria
Garzaran, David Padua, Keshav Pingali, Paul Stodghill, and Peng Wu. A comparison
of empirical and model-driven optimization. ACM SIGPLAN Notices, 38(5):63–76,
2003.

[164] Xinchuan Zeng and Tony R Martinez. Distribution-balanced stratified cross-validation
for accuracy estimation. Journal of Experimental & Theoretical Artificial Intelligence,
12(1):1–12, 2000.

[165] Guoqiang Peter Zhang. Neural networks for classification: a survey. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
30(4):451–462, 2000.

[166] Yun Zhang, Jae W Lee, Nick P Johnson, and David I August. Daft: decoupled acyclic
fault tolerance. International Journal of Parallel Programming, 40(1):118–140, 2012.

[167] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali,
Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, et al. Ansor: Generating high-
performance tensor programs for deep learning. In 14th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 20), pages 863–879, 2020.

[168] Zhen Zheng, Pengzhan Zhao, Guoping Long, Feiwen Zhu, Kai Zhu, Wenyi Zhao,
Lansong Diao, Jun Yang, and Wei Lin. Fusionstitching: boosting memory intensive
computations for deep learning workloads. arXiv preprint arXiv:2009.10924, 2020.

[169] James F Ziegler and Helmut Puchner. SER–history, Trends and Challenges: A Guide
for Designing with Memory ICs. Cypress, 2004.

[170] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transfer-
able architectures for scalable image recognition. 2018.

114

	DEDICATION
	ACKNOWLEDGEMENTS
	Table of Contents
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Introduction
	Challenges and Contributions
	Feasibility Study of Learning-Based Auto-Tuning Methods
	Customization for a Group of Compiler Optimizations
	Search for the Best Use of Diverse Backends
	Provision of Low-Cost Fault Protection

	Background
	Compilers From Diverse Domains and Their Optimizations
	Compiler Auto-Tuning

	Multi-objective Exploration for Practical Optimization Decisions in Binary Translation
	Introduction
	Background
	Our Infrastructure with Binary Translation
	Target Loops
	Smart Unrolling
	Current Heuristics

	Supervised Multi-class Classification
	k-Nearest Neighbors (kNN)
	Support Vector Machines (SVM)
	Decision Tree
	Random Forest
	Artificial Neural Network (ANN)

	Motivation
	Challenges and Opportunities
	Data Generation
	Feature Extraction
	Optimal Factor Exploration

	Evaluation
	Experimental Setup
	Prediction Accuracy
	Performance Improvement In Translated Code
	Prediction Overhead Analysis
	Choice of Classification Algorithm

	Redundant Feature Pruning
	Related Works
	Conclusion

	SRTuner: Effective Compiler Optimization Customization By Exposing Synergistic Relations
	Introduction
	Related Works
	Design Motivation
	Multistage Structure
	Optimization Impact Estimation
	Handling Local Optima

	SRTuner
	Reward Policy
	Stage-Optimization Mapping
	Extract Important Synergistic Relations

	Performance Evaluation
	Experimental Setup
	GCC
	TVM
	OpenCL Compilers

	Discussion
	Identification Of Important Misuses
	Generalization Of Tuning Experiences

	Conclusion

	Collage: Auto-tuning Deep Learning Execution Plans With Diverse Backends
	Introduction
	Related Work
	Overview
	Backend Pattern Abstraction
	Auto-tuning Execution Plan
	Backend Placement Problem
	Op-level Auto-tuning
	Graph-level Auto-tuning

	Evaluation
	Experimental Setup
	End-to-end Evaluation
	Analysis of Backend Operator Placement
	Tuning Time

	Conclusion

	Low-Cost Prediction-Based Fault Protection Strategy
	Introduction
	Motivation and Idea
	System Overview
	Prediction Techniques
	Dynamic Interpolation
	Target Computation Pattern
	Implementation

	Approximate Memoization
	Target Computation Pattern
	Implementation

	Run-time Management
	Training
	Evaluation
	Performance Overhead
	Reliability
	The Rationality of Acceptable Range

	Related Works
	Conclusion

	Conclusion and Future Works
	Conclusion
	Future Works

	BIBLIOGRAPHY

