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Abstract 

Noise is a primary factor limiting the accuracy of automatic speech recognition (ASR). 

Multi-channel beamforming is essential to suppress noise and enhance the desired speech signal. 

This thesis presents three fully-integrated ASR frontend systems that suppress noise and 

increase speech recognition accuracy in a noisy environment. The thesis focuses on the ASR 

frontend, which includes ADCs, adaptive beamforming, and feature extraction. We take advantage 

of the bitstream output of sigma-delta modulation (SDM) for fine delay resolution. We present 

three different beamformer prototypes with power/area-efficient hardware implementations. 

The first system (Chapter 2) makes use of the synergy between data conversion and signal 

processing. It combines eight-channel delay-and-sum beamforming with frequency-selective 

beamforming and a 60-feature Mel frequency extractor to enable constant-directivity 

beamforming. The system improves the angular resolution of beamsteering by directly processing 

the raw bitstream outputs of third-order SDMs. The 40nm CMOS prototype has an active area of 

1.1mm2 and consumes 4mW. It improves the keyword spotting (KWS) accuracy from 73% to 93% 

using a DNN trained with noiseless speech. 

The system in Chapter 3 combines a four-channel adaptive beamformer and a 40 feature 

Mel frequency extractor. The prototype processes the bitstream output of a 3rd order delta-sigma 

modulator output for accurate steering. For a given steering vector, the beamformer adaptively 

places a null in the noise direction by using a robust generalized sidelobe canceller (RGSC). 

Hardware sharing and DSP clock optimization reduce area and power consumption. It is fabricated 

in 40nm CMOS, occupies an active area of 0.89mm2, and consumes 0.65mW. The prototype 
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beamformer improves speech recognition accuracy in noisy conditions from 64% to 90% using 

DNN trained with noisy speech. 

Finally, the third system in Chapter 4 presents a four-channel greedy adaptive beamformer 

and a multi-mode ADC. The proposed system adapts beamforming and ADC performance to 

optimize power consumption depending on the target signal and noise. The multi-mode ADC can 

operate as a continuous-time noise-shaping SAR ADC (CT NSSAR) (80dBA/12μW), NSSAR 

ADC (65dBA/5.8μW), or as a SAR ADC (40dBA/1.5μW). The direct output of CTNSSAR 

enables the newly proposed greedy adaptive beamformer, which can track the direction of arrival 

(DOA) of the target signal, reduce signal distortion and power consumption. The 40nm CMOS 

prototype occupies 0.93mm2 and consumes 157μW in high-performance mode. It improves KWS 

accuracy from 54% to 83% in the presence of spoken-word interference using a DNN trained with 

noisy speech. 
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Chapter 1. Introduction 

1.1. Background 

Deep Neural Networks (DNN) bring significant improvements in the performance of the 

Automatic Speech Recognition (ASR) systems [1]. Moreover, the demand for ASR keeps 

increasing. The global market for smart speakers is expected to grow at a compound annual growth 

rate of 49.8% [2]. Also, every smartphone provides an ASR interface, such as Apple Siri, to the 

user. Nevertheless, noisy environments are still challenging for ASR systems. For example, the 

keyword spotting (KSW) [3] accuracy of a commercial ASR system shows large degradation when 

noise increases, as shown in [4]. There are 1000 noisy samples represented as dots and are tested 

by a specific ASR system. It includes a linear curve fit with an R2 value that shows word error rate 

is inversely proportional to SNR. The red line shows the word error rate without added noise. 

 

Figure 1-1. Word error rate versus SNR [4]. 
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Beamforming is vital for the accuracy of ASR in noisy environments. Many commercial 

products, including Google Home, Amazon Alexa, and Apple Airpods, have multiple microphones 

and beamform. For example, a teardown of Amazon Echo (Figure 1-2) shows four microphones 

and two ADC chipsets (2 channels each). As a result of beamforming with a multi-channel input, 

the system can emphasize target speech coming from the desired direction while suppressing noise 

from other directions. On the other hand, the analog frontend linearity requirement in speech 

application is less stringent than that of RF frontend in wireless application because of the 

relatively high SINR of the target signal and the ease of high-linearity analog block design. As a 

result, the ASR system places beamformers after ADC in the digital domain 

 

 

Figure 1-2. Teardown of Amazon Echo [5]. 

 

However, due to the unique characteristics of a speech signal system, the ASR frontend 

presents challenges to both ADCs and digital beamforming. First, the audio frontend ADC requires 

high SNR (>80dB) for a high-quality audio processing and speech recognition system. For 

example, Amazon Echo uses Texas Instruments TLV320ADC3101 dual sigma-delta ADCs to 

mic2

mic1

mic3

mic4

ADC

ARM CPU

ADC
LED driver
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digitize the analog inputs from four microphones [5]. Furthermore, battery-powered operation 

strictly limits power consumption. Also, as there is an increasing demand for highly integrated 

systems, the ADC circuit should adapt to more advanced technology – this is challenging for 

analog circuits due to low supply voltage, flicker noise, and device mismatch [6]. 

Second, the beamformer usually requires complex calculations since speech is a wideband 

signal ranging from 30 to 10kHz. For example, consonant (k, p, s, etc.) sounds reside primarily in 

the 2~4kHz frequency range, while the vowel sounds mainly lie below 1kHz [7]. Usually, the 

frequency range of 1~4kHz is critical for the intelligibility of the speech. On the other hand, most 

of the voice energy is in frequencies below 1kHz [7]. Hence, the signal processor becomes 

complicated to handle a multi-octave frequency range. Some beamformers separate the input 

signal into multiple bands using an FFT, then apply an independent narrowband beamforming 

algorithm to each band, and finally merge the outputs [8]. 

A noise-shaping ADC is a popular option for high SNR audio applications. A noise-

shaping ADC pushes the quantization noise to out-of-band and filters out this quantization noise 

to achieve high SNR. A noise-shaping ADC can be implemented in two different ways: discrete-

time and continuous-time. A discrete-time ADC, which is the dominant type in the market, 

operates with switched-capacitor circuit techniques. It is robust against PVT because the ratio of 

passive elements decides the filter coefficients. However, a discrete-time ADC needs an anti-

aliasing filter before the discrete input sampling. Also, the required power consumption of the 

amplifier tends to be high due to capacitive sampling because the amplifier needs to charge a 

capacitor fast enough to achieve a certain level of accuracy. 

On the other hand, a continuous-time ADC ([6], [9]) uses a continuous integrator at the 

input stage, resulting in an inherent anti-aliasing filter. Also, a continuous-time ADC tends to use 
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less power in the amplifiers than a discrete-time ADC since there is no capacitive settling. 

Therefore, recent research focuses on continuous-time ADCs due to the advantages over a discrete-

time. 

There are two categories of wideband beamformers: fixed beamformers and adaptive 

beamformers [9]-[11]. Examples of a fixed beamformer are the delay-and-sum [12][13] and the 

filter-and-sum beamformers [14][15], whose coefficients are fixed and independent of the input 

signal. However, when the noise conditions are changing, the performance of a fixed beamformer 

can degrade since the beamformer does not respond to the change. 

On the other hand, an adaptive beamformer adjusts its beampattern depending on the target 

and noise situations. Well-known adaptive beamformers are the Minimum Variance Distortionless 

Response (MVDR) beamformer, Linear Constraint Minimum Variance (LCMV) [16] 

beamformer, and Generalized Sidelobe Canceller (GSC) beamformer [17]-[20]. These 

beamformers optimize their filter coefficients in real-time to minimize the beamformer output 

power under given constraints, such as unity gain for the signal coming from the desired angle. As 

a result, the beamformers can preserve the target signal while suppressing noise.  Furthermore, 

some systems take advantage of DNNs combined with beamformers. [21][22] combines a 

conventional MVDR beamformer and DNN based direction of arrival (DOA) estimation, and [23]-

[31] utilizes DNNs to learn filter coefficients from various input and noise situations.  
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1.2. Thesis Contributions 

This thesis introduces three different fully-integrated ASR frontends. It investigates the 

following aspects: 1) effective and novel beamforming methods with the area and power-efficient 

implementations, 2) high-performance ADCs that are specialized for ASR frontends, and 3) 

synergy from co-design of the ADCs and the DSP. 

In Chapter 2, we show: 1) the direct use of an SDM bitstream output can improve the 

steering accuracy, 2) and the combination of delay-and-sum (DAS) and constant-directivity 

beamforming (CDB) is effective for wideband speech beamforming. We describe our first fully 

integrated system ([12][13]), which harnesses the efficiency of DAS beamforming by combining 

it with CDB, and consumes 4mW. The design takes advantage of bitstream processing of the SDM 

outputs for beamforming with accurate steering. CDB facilitates DAS by restricting the bandwidth 

for different microphone configurations. Processing the Mel spectrum outputs with a DNN, the 

KWS accuracy in the presence of noise improves from 74% without beamforming to 93% with 

beamforming. However, this prototype is a fixed beamformer, so it cannot handle the varying noise 

conditions. Also, we found that operating frequency optimization can improve power efficiency. 

Hence, Chapter 3 investigates: 1) design methods for combining bitstreams output of SDM 

ADCs with adaptive beamforming, 2) improving noise-suppression performance compared to the 

system in Chapter 2 through adaptive beamforming, 3) techniques for area/power-efficient 

hardware implementation of the beamformer. The prototype ([18][19]) introduces a fully 

integrated system with a 4-channel input adaptive beamformer with 0.65mW power consumption. 

It combines fast switching bitstream output of continuous-time SDMs (CT SDMs) and DAS to 

achieve a high accuracy steering angle. A time-domain RGSC adaptive beamformer can 

effectively suppress the varying noise input. Also, it shares hardware and optimizes a DSP clock 

speed for efficient implementation. As a result, the beamformer improves speech recognition 
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accuracy in noisy conditions from 64% to 90% using DNN trained with noisy speech. On the other 

hand, this prototype still consumes significant power due to the complex blocking matrix (BM) 

calculation and full-performance mode (both in ADC and beamformer) regardless of the input 

SNR condition. Also, it likely shows signal distortion because of the sensitivity in coefficient 

adaptation control. 

Finally, in Chapter 4, our main contributions are: 1) a novel adaptive beamforming 

algorithm with DOA tracking by utilizing the direct output of ADCs, 2) a multi-mode beamformer 

with novel multi-mode ADCs for a low-power operation that takes advantage of the input signal 

situation, and 3) multi-mode control schemes.  We demonstrate a fully integrated system ([32]) 

with a 4-channel multi-mode ADCs and a greedy blocking matrix beamformer consuming 157 μW 

in total. First, we replace the BM from Chapter 3 with a newly proposed greedy BM (GBM) to 

reduce signal distortion and automatically adjust the input steering error. Also, the beamformer 

has two modes to deal with varying noise conditions: fully adaptive beamforming (10μW) and 

DAS only beamforming (49μW). Second, we design continuous-time noise-shaping SAR (CT 

NSSAR) that operates in three modes: CT NSSAR (80dBA/12μW), NSSAR (65dBA/5.8μW), and 

SAR (40dBA/1.5μW) modes. In this way, our proposed beamformer can optimize its power 

consumption depending on the varying signal and noise conditions. It improves KWS accuracy 

from 54% to 83% under word interference using DNN trained with noisy speech. 
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Chapter 2. Frequency-Selective Bitstream DAS Beamformer and Feature Extractor 

2.1. Motivation 

Automatic speech recognition (ASR) has become practical thanks to the progress in deep 

neural networks. However, acoustic beamforming with multiple microphones is essential to 

suppress environmental noise and interference in realistic application scenarios. Further challenges 

are the required very high dynamic range (>80dB) and the multi-octave frequency range of speech. 

The very-wide frequency range necessitates extensive DSP for frequency-dependent beamforming 

and feature extraction. 

This work [12][13] focuses on three issues of conventional beamformers: (i) the power-

hungry multiple FFT/IFFT operations needed for wideband beamforming, (ii) the necessity of fine 

time resolution of the delay line for delay-and-sum (DAS) operation for accurate steering, and (iii) 

the limitations of the narrowband characteristic of DAS. 

A conventional wideband beamformer (Figure 2-1 left [31]) requires (i) an array of high-

resolution ADCs along with decimation filters, (ii) multiple FFTs, weighting, and IFFT for 

wideband beamforming (iii) windowing, FFT, filtering, and energy calculation for feature 

extraction [33][34]. [34] describes an efficient hardware approach for feature extraction, but its 

ADC performance is limited to ~48dB SNR, and it cannot be combined with beamforming due to 

its data processing scheme. 

______________________________________ 
*This work was done in collaboration with Seungjong Lee and John Bell. The author's main contribution is digital 

synthesis, measurement, and speech recognition MATLAB simulation. 

The text and figures are based on [12][13]. 
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In the proposed system (Figure 2-1 right), the single-bit quantizer outputs of the eight 

continuous-time SDMs directly feed to the beamformer, removing the standard requirement for 

decimation filtering. Also, the time-domain feature extractor removes multiple FFT/IFFT blocks. 

  

Figure 2-1. Overall ASR diagram of a conventional system, based on [31] (left) and proposed system (right) 
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and ultrasound imaging. As shown in Figure 2-2, DAS beamforming sums delayed signals from 

multiple microphones to reinforce the desired signal and disperse or attenuate interferers 

constructively. DAS beamforming improves the in-band SNR due to noise in the ADC and 
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frontend because the desired signal is correlated between channels, while this noise is uncorrelated. 

However, the delay resolution is a challenge with DAS, especially for digital DAS beamforming, 

because the ADC sampling rate determines the time resolution. For example, the Nyquist sampling 

rate is 16kHz for a speech bandwidth of 8kHz, leading to a time-resolution of 62.5μs, which is too 

coarse for small-aperture microphone systems. With a 1-inch spaced linear microphone array and 

a time resolution of 62.5μs, DAS beamforming is limited to a steering resolution of about 60 

degrees – this is too coarse to track a speaker in a room. [35] uses a fractional delay cell to 

overcome this time resolution problem, but it takes complex calculations. 

To solve the time resolution problem, we utilize the SDM's direct output by taking 

advantage of oversampling. This approach performs DAS on the modulator bitstream (without 

decimation), thereby exploiting the time-resolution of the over-sampling clock. As a result, the 

proposed system uses a 3.4μs delay step instead of 62.5μs, providing enough time resolution for 

accurate steering. 

 

 

Figure 2-2. Delay-and-sum beamforming enhances the desired signal (top) and attenuates an interferer 

(bottom). 
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Next, despite the advantages of oversampling, DAS is unsuited to speech because it only 

works for narrowband beamforming. For example, DAS in ultrasound imaging [36]-[38] operates 

with a single frequency band covering a ±20% frequency range. However, speech recognition 

systems typically consider a frequency range spanning 7 octaves and are interested in tens of 

frequency bands. If the microphone distance is large compared to the signal wavelength, aliasing 

occurs, and it causes some interferers to leak into the output. On the other hand, if the microphones 

are too close together, then the phase difference between each element is too small to generate 

constructive and destructive interference. As the microphone array configuration and wavelength 

determine the beamforming characteristics and the beampattern, DAS can only deal with 

narrowband signals. 

Hence, the proposed system realizes constant-directivity beamforming (CDB) 

characteristics by adopting frequency-selective beamforming and corresponding multi-

configurations of microphones to solve the narrowband limitation of DAS. 

This work includes the following features: (i) frequency-selective bitstream beamforming, 

(ii) bitstream Mel frequency-band feature extraction, and (iii) an array of efficient continuous-time 

SDMs without area/power-intensive decimation and FFT/IFFT. 
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2.2. System Implementation 

2.2.1. Overview 

This work takes advantage of the simplicity of DAS in frequency-selective beamforming. 

By combining CDB and DAS, we restrict DAS operation to relatively narrow frequency ranges 

while optimizing the microphone placement in those frequency ranges. Furthermore, we argue that 

merging spectrogram generation with beamforming is essential for the efficient combination of 

CDB and DAS. Typically, in ASR systems, a Short-Time-Fourier-Transform (STFT) generates 

the spectrogram from the beamformed signal. Instead, our approach combines a bandpass filter 

bank with energy-detectors to replace the SFTF. In addition to saving energy over the STFT 

approach, we will see that a crucial advantage of the filter-bank is that it facilitates the appropriate 

combination of CDB and DAS. 

 

 

Figure 2-3. Simplified system block diagram. 

 

Figure 2-3 is a simplified depiction of how we combine CDB, DAS, and spectrogram 

generation. A dedicated ADC digitizes each microphone signal. The single-bit output of each ADC 

output feeds a delay line, and in turn, the delay lines feed a bank of bandpass filters. The delay 

lines ensure a fine delay resolution. The input to each bandpass filter in the filter-bank is the 

weighted sum of selected taps from selected delay lines. In this way, each frequency band has its 

M
ic

ro
p

h
o

n
e

 A
rr

ay

ADC

ADC

ADC

Filter-bank

Features
Frequency 

optimized 

beam selector

+

DAS 

beamformer



 12 

own DAS beamforming configuration. Furthermore, setting a weighting to zero excludes a 

particular microphone from the beamforming for that frequency band. Therefore, the weightings 

allow each frequency band to have a unique microphone configuration, thereby facilitating CDB. 

The filter-bank is an array of bandpass filters with an approximate Mel-frequency (i.e., log) 

spacing. Sliding window energy detectors form the spectrogram at the filter outputs. 

 

2.2.2. System Architecture 
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Figure 2-4. Detailed system diagram showing frequency-dependent DAS, the Mel filter bank, and the band 

energy calculation. 

 

Figure 2-4 shows a system-level diagram of the proposed system. Flexible frequency-

selective beamforming is essential for sophisticated beamforming techniques, including CDB and 

2D-array beamforming. The eight bitstream outputs of the SDMs feed eight bitstream delay lines. 

Sixteen summers tap and sum programmable positions of the delay lines to form sixteen different 

beams. The 15 lower-frequency feature filters (i.e., 1-15) are each fed independent beams. The 

higher band filters (i.e., 16-60) share a single beam. An advantage of the proposed structure is that 
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the incremental cost of additional microphones is low because there are no individual decimators 

or FFT units. 

 

2.2.3. CDB Array configurations 

The proposed system uses two different microphone configurations for constant-directivity 

beamforming of high and low frequencies. Although our prototype supports 16 simultaneous 

frequency-dependent configurations, we demonstrate that two configurations provide good 

performance. 

When designing the microphone array, it is best to make the sensor spacing as large as 

possible to better beamform low-frequency signals. However, the large wavelengths at low 

frequency suggest impractically large spacings; for example, the half-wavelength for a 600Hz tone 

is 11 inches. Therefore, to demonstrate a practical solution, we limit the array area size to fit within 

a 5-inch diameter, similar to commercial speech-beamforming products such as Amazon Echo and 

Google Dot.  
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Figure 2-5. Fig. 6. (a) Microphone array configurations, (b) simulated beampatterns at 597.7Hz, and (c) 

simulated beampatterns at 6kHz. 

 

Figure 2-5 (a) shows the microphone configurations for the two frequency ranges. We use 

a Uniform Linear Array (ULA) for high-frequency beamforming since it has high directivity. We 

use a Uniform Circular Array (UCA) for low frequencies, which offers the largest distance 

between sensors and enough microphones for a good SNR. The two configurations share the 

microphones located at the top and bottom. Figure 2-5 (b) and (c) show the simulated beampatterns 

for a beam steered to 0 degrees.  
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Beginning with high-frequency inputs, we see that at 6kHz, ULA provides strong 

directivity in the desired direction while attenuating the most prominent side lobes by 12.5dB. In 

contrast, UCA only attenuates the side lobes around ±90 degrees by less than 1dB, which means 

there is little directivity. The situation is the opposite for lower frequencies. At 597.7Hz, ULA 

provides a near-uniform response with only 1dB of rejection at ±90 degrees. The four-element 

UCA provides the classic cardioid response at low frequencies. Unlike ULA, UCA attenuates 

signals from the rear providing a 4.5dB better noise rejection compared to ULA. Although the 

distance between sensors is only 16% of the wavelength, directivity and SNR are better than a 

two-microphone linear configuration. A critical advantage of the cardioid response is the strong 

rear rejection – this is vital for suppressing echoes and reverberation in practical scenarios. In 

conclusion, using the different microphone configurations at different frequency ranges improves 

directivity and signal quality. 
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2.3. Circuit Implementation 

2.3.1. Digital Signal Processor 
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Figure 2-6. Details of a bitstream delay line, 60 channel filter-bank, and energy accumulator. 

  

Figure 2-6 shows the digital processor in detail. A beamforming slice for each SDM passes 

the 1-bit SDM output through a 125-tap delay line. Each tap provides 3.4μs of delay, which 

corresponds to a beamforming resolution of 2.6 degrees for a 1-inch linear microphone array. The 

nominal delay line output values are -1 and 1; however, an output can be fixed to 0 so that a 

microphone does not contribute to a formed beam. The 16 full-rate 5-bit beamformed signals feed 

the filter-bank. The high-band filters are simple 4th-order IIR filters. Due to the narrow transition 

band and the limited coefficient precision, the high oversampling rate makes the low-frequency 

filters more challenging to implement. We solve this challenge with a 4th-order interpolation IIR 
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structure and remove the high-frequency images created by the interpolation with a low-order low-

pass filter. 

The filter-bank outputs are down-sampled to 8kHz and sent to a windowing energy 

calculator (Accumulator in Figure 2-6). The energy calculator determines the sum of the signal 

squared within two parallel windows. The windows overlap in time, similar to the way the 

windows of a Short-Time Fourier Transform overlap. The energy in each window is then passed 

to the ASR algorithm. 

 

2.3.2. Continuous-time Delta-sigma Modulator 

 

Figure 2-7. Third-order continuous-time SDM with chopping and 85dBA SNDR. 

 

Figure 2-7 shows a schematic of the continuous-time SDM. The measured SNDR of a 

single SDM is 85dBA. The overall system benefits from the array gain so that the entire array with 

eight parallel SDMs has an SNR that is 9dB higher. The modulator is a 1-bit 3rd-order feed-

forward architecture. The sampling frequency of the modulator is 2.048MHz for an 8kHz 

bandwidth, corresponding to an oversampling ratio of 128. In the first integrator, chopping 

suppresses flicker noise. A 3-stage class AB amplifier improves current drive, efficiency, and 

linearity. The SDM occupies 0.054mm2 and dissipates 91µW.  
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2.4. Measurement Results 

The prototype is fabricated in a 40-nm general-purpose CMOS process. The total active 

area is 1.1mm2. Figure 2-8 shows the layout and identifies the main blocks. Since the digital 

circuitry operates at low speed, the digital supply voltage is 0.55V. The analog circuitry operates 

under a 1.0V supply for better noise performance. 

 

Figure 2-8. Die photo. 

 

2.4.1. Test Setup 

The test setup facilitates high-accuracy measurement of beampatterns as well as 

characterization of keyword spotting accuracy with and without background noise (Figure 2-9). 

An 8-channel 24-bit audio DAC (Cirrus Logic CDB3485) provides eight audio inputs to the 

prototype IC, emulating a microphone array. The DAC channels can carry independent signals; 

however, an essential advantage of the 8-channel DAC is that the phase relationship between 

 

ADC 1

ADC 2

ADC 3

ADC 4

ADC 5

ADC 6

ADC 7

ADC 8

Beam-

former

Filterbank

Decap

1
.5

m
m

1.3mm

1.3mm

1
.5

m
m

0.35mm

0
.1

8

m
m

0.9mm

0
.3

6
m

m

0.28mm



 19 

channels is well controlled. An Opal-Kelly XEM 7001 FPGA board controls the eight-channel 

DAC. Eight low-noise single-to-differential amplifiers (Analog Devices ADA4940) convert the 

single-ended DAC outputs to differential signals. The FPGA also reads the prototype IC's 

spectrogram outputs and sends this information to a PC that performs the final stages of keyword 

spotting in MATLAB. 

 

 

Figure 2-9. Block diagram of the test setup. 
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2.4.2. Measured Beampatterns 

Our microphone array combines cardioid and linear configurations (Figure 2-10) to 

optimize high-frequency and low-frequency performance. For high frequencies, the center six 

microphones form a linear beamforming array. For low frequencies, the outer four microphones 

operate in a cardioid configuration. Cardioid beamforming also provides backside rejection. Figure 

2-10 plots the measured beam patterns for two different frequencies and two different steering 

angles. 

 
(a) 

 
(b) 

Figure 2-10. Array configuration and measured beam patterns for steering angles of 0 and 30 degrees for (a) 

high frequency (6kHz) and (b) low frequency (597.7Hz). The measured beam patterns are near-identical to 

the simulated ones. 
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2.4.3. Speech Recognition Test 

2.4.3.1 Training DNN without Noisy Data (Measurement) 

We verify the speech recognition performance of our prototype with the Tensorflow speech 

dataset. In testing, an 8-channel 24-bit audio DAC emulates an 8-element microphone array. We 

apply the MATLAB deep learning toolbox to implement an off-chip DNN. The dataset [39] 

consists of 720 utterances of 8 words, 1440 unknown words, and 1600 samples of background 

noise. We divide the dataset into training and validation samples with an 8:1 ratio. The measured 

recognition accuracy of our prototype without noise is 95%. 

To demonstrate the advantages of beamforming, we also measure recognition accuracy in 

the presence of a noisy interferer, both with and without beamforming. With the 8-microphone 

configuration in Figure 2-11, we place the speaker at 0° and a random noisy interferer at 130°. 

Spectrograms in Figure 2-12 plot measured features for 1sec of speech with interference without 

and with beamforming. Beamforming improves the recognition accuracy from 74% to 93%. Figure 

2-13 shows its confusion matrix. 

 

 
                                                     (a)                                                                (b) 

Figure 2-11. Microphone configurations, (a) without, and (b) with beamforming. 
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Figure 2-12. (left) Measured noisy speech waveform, (right) Beamforming improves the measured 

spectrogram (i.e., BF off vs. BF on). 

   

 
                                           (a)                                                                 (b)                                             (c)  

Figure 2-13. Confusion matrix (a) for noiseless speech, (b) with noise and without beamforming, and (c) with 

noise and with beamforming enabled. 
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2.4.3.2 Training DNN with Noisy Data (MATLAB Simulation) 

Although training a DNN with a noisy input improves classification accuracy, our 

MATLAB simulations highlight the benefits of beamforming. We first consider a white noise as 

an interferer and later consider random speech as the interferer. We set the training condition to be 

the same as the test condition, and the DNN is trained with added white noise (15.5dB SNR). If 

the input SNR is 15.5dB for a white noise interferer, the simulations show no performance 

degradation even without beamforming (92.8%). However, the classification accuracy 

significantly decreases to 75% without beamforming in the presence of a stronger interferer (i.e., 

6dB SNR). In this case, beamforming improves the accuracy to 81.3%, suggesting the benefit of 

beamforming in unpredicted noise conditions. The advantage of beamforming is even more 

significant when the DNN is trained without noise. In this case, beamforming improves accuracy 

from 59.2% to 79.9% for an input SNR of 6.0dB. 

Beamforming is even more effective if the interference is random speech. Training the 

DNN with white noise does not improve the classification accuracy if the interference is random 

speech, but beamforming significantly increases accuracy. If the desired signal and the random 

speech interferer have a power ratio of 15dB, then regardless of the DNN training condition, 

beamforming improves the classification accuracy and enables 90% accuracy. With more 

substantial interference (5dB ratio), beamforming improves accuracy by 13% to 77% when the 

DNN is trained both with or without noise. These simulations show that beamforming is beneficial 

in practical speech recognition scenarios. 

We also use MATLAB simulations to investigate the effect of the signal's direction of 

arrival (DOA) and the interference on the recognition accuracy. We use the same DNN training 

with a noisy signal (15.5dB SNR with white noise). We first sweep the input signal's arrival 

direction from 0 to 360 degrees with no interferer (Figure 2-14 (a)). As expected, the accuracy 
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does not degrade thanks to the fine resolution of the DAS beamformer. Figure 2-14  (b) shows the 

same signal DOA sweep but with a large white noise interferer at 130 degrees (6dB SNR). The 

accuracy degrades when the noise and input signal come from the same direction since the 

beamformer cannot separate the noise and the signal. 

 

 
                                               (a)                                                                                       (b) 

Figure 2-14. Polar plot showing classification accuracy versus DOA of the input signal: (a) without noise, and 

(b) with noise (6dB SNR) from 130 degrees. 

 

Next, we consider the effect of the DOA of the interference, again using a DNN trained 

with a 15.5dB SNR white noise dataset to classify the simulated spectrogram. Figure 2-15 shows 

a polar plot of the classification accuracy versus the DOA of the interference: (a) with white noise 

interference and (b) with random speech interference. We fix the DOA of the desired signal and 

sweep the DOA of the interference. Figure 2-15 (b) highlights the advantages of beamforming in 

the presence of interfering speech. 
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                                (a)                                                                                    (b) 

Figure 2-15. Polar plot showing classification accuracy versus DOA of the interference: (a) with white noise 

(15.5dB SNR), (b) with random speech interference (15dB signal power ratio). The DOA of the input signal is 

fixed at 0 degrees. 
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2.4.4. Power Breakdown 

Figure 2-16 shows the power distribution. The total power consumption is 3.95mW. 74% 

of this power is from drain-source leakage. Leakage is high even with a low supply due to the use 

of the general (low Vth) process. Simulations show that a low leakage process would greatly 

reduce leakage and power consumption. The simulations show that the leakage power decreases 

to ~5μW; however, a low leakage process requires an increased digital supply (0.7V) [19] and a 

simulated 80μW increase in dynamic digital power consumption. 

 

Dig. (Leakage)

2.94 mW

Dig. (BF)

76 mW

Dig. (FEx)

122 mW

Ana. (Leakage)

82 mW
Ana. (Amp1)

376 mW

Ana. (Amp2~4)

336 mW

Ana. (Comp)

14 mW

 

Figure 2-16. Power breakdown. The BF (i.e., beamformer) power includes the FIFOs and summers. The FEx 

(i.e., feature extractor) includes the filter-banks and energy calculators. 
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Chapter 3. RGSC Beamformer with Feature Extractor 

3.1. Motivation 

The prototype in Chapter 2 takes advantage of the simplicity of delay-and-sum 

beamforming (DASBF) for low-power applications. However, a fixed beamformer does not 

effectively suppress varying noise, limiting practical applications in the real world, where noise is 

usually not stationary. In this chapter, we present an adaptive beamformer that suppresses varying 

noise sources. 

To begin with, we review DASBF. DASBF uses time-alignment and summation (e.g. [12]). 

Figure 3-1 describes the principle of DASBF. When the signal comes from a certain direction, 

each microphone will receive the same signal with different delays. As shown in Figure 3-1 top, 

the 1st ADC receives the signal first, and Mth ADC receives the last. If we set td,1-M properly, we 

can align the phases of each channel's signal. Summing the aligned signal will result in an enhanced 

signal. Next, we assume td,1-M are fixed to these values and consider noise coming from another 

direction. In this case, the given td,1-M do not align the noise since the relative phases of received 

signals are different from the previous ones. Hence, signals are not aligned after the delay, and 

summing the un-aligned signal will attenuate its magnitude. As a result, the DASBF can enhance 

or suppress the signals depending on its direction of arrival (DOA) by setting td,1-M. However, as 

mentioned earlier, a critical drawback is that DASBF can only suppress noise from a fixed 

direction, making it ineffective for practical scenarios with multiple constantly changing noise 

sources. 

______________________________________ 
*The text and figures are from [18][19]. 
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Figure 3-1. The principal of delay-and-sum beamformer. 

 

On the other hand, adaptive beamforming (ABF) solves the limitation of DAS by 

automatically and adaptively suppressing noise from multiple, varying sources (Figure 3-2). 

However, high power and large area impede the implementation of conventional ABF. Another 

challenge is that high angle accuracy is crucial for ABF to avoid severe distortion of the desired 

signal [17]. We address these challenges by combining the robust generalized sidelobe canceller 
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(RGSC) algorithm [17] with bitstream processing for accurate steering and low-power ABF [18]. 

Hardware sharing and an optimized DSP clock rate further reduce power and area. The prototype 

system [18][19] includes multi-channel digitization, beamforming, automatic noise suppression, 

and feature extraction for a robust sub-mW single-chip speech-processing frontend.  
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Figure 3-2. (left) DASBF cannot adapt to changing noise direction and has a limited angular resolution, and 

(right) bitstream ABF automatically places nulls in the noise directions and has high angular accuracy. 

 

Figure 3-2 compares ABF with conventional DASBF, using polar plots to indicate 

directional gain. A serious deficiency of DASBF is that its beamforming nulls are fixed and 

therefore do not suppress interfering noise sources. In comparison, ABF automatically adapts null 

locations to suppress noise sources optimally. A further challenge is that DASBF with a 

conventional 16kS/s ADCs (i.e., 2x audio bandwidth) cannot accurately select the target signal. 

Our approach combines ABF with bitstream processing for optimal suppression of varying noise 
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sources and highly accurate target selection. The prototype includes four ADCs, ABF processor, 

and a frequency-domain speech feature extractor in a 40nm LP CMOS die. The entire noise-

canceling and feature-extraction system consumes 0.65mW and improves speech recognition 

accuracy in the presence of two noise sources from 64% to 90%. 
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3.2. System Implementation 

3.2.1. System Overview 

 

Figure 3-3. The prototype IC includes four DSM ADCs, an adaptive beamform processor, and a frequency-

domain feature extractor. 

 

Figure 3-3 shows a block diagram of the prototype system, including the RGSC ABF 

processor. Compared to frequency-domain sidelobe cancellers, the RGSC algorithm has three 

important advantages: (1) time-domain operation avoids the need for expensive FFT/IFFT and 

matrix calculations required in other ABF schemes [40]; (2) A time-domain algorithm tends to 

have less phase distortion; and (3) RGSC provides a flat directional response around the desired 

direction providing robustness to direction errors. 

 

 

 

 

______________________________________ 
*Except for the ADC, all blocks are implemented in Verilog and synthesized. 
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Four Continuous-Time Delta-Sigma Modulator (CT DSM) ADCs digitize the analog 

signals from four microphones to generate x1-4(k). Bitstream-processing DASBF generates an 

initial estimate of the desired signal, d(k) from x1-4(k). Our ABF uses RGSC to remove noise from 

d(k). First, the blocking matrix (BM) adaptively removes the target signal from the time-aligned 

individual microphone outputs, x1-4,aligned(k), using the estimate, d(k), to produce noise 

components, y1-4(k). Next, a multiple-input-canceller (MC) adaptively subtracts y1-4(k) from d(k) 

to form the noise-reduced output, OUTABF. An adaptation-mode controller (AMC) selects whether 

to tune BM or MC coefficients depends on the noise condition. Finally, our system identifies 

frequency-domain energy features in the ABF output to facilitate speech recognition. Our time-

domain beamformer does not use FFTs.  We use simple bandpass filters to extract 40 features. 

We directly process the bitstream outputs of the DSMs without decimation and 

downsampling to ensure sufficient beam-angle accuracy for RGSC. This greatly increases the 

effective sample rate and avoids the fundamental angular-resolution limit of conventional time-

domain (i.e., delay-and-sum) beamforming. For example, an ADC sampling rate of 16kHz and a 

2.54cm microphone spacing limit the angular resolution to only 60 degrees. Instead, our 

beamformer harnesses the relatively high sampling rate (2.048MS/s) of the DSMs for a much finer 

angular accuracy of 4.2 degrees. 
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3.2.2. Adaptive Beamformer 

3.2.2.1 DASBF Operation 

Figure 3-4 shows the detailed structure of the adaptive beamformer. First, the DASBF time-

aligns and sums the single-bit outputs of the 4-channel 3rd order DSM ADCs with 3.4µs resolution. 

A 4th order cascaded integrator-comb (CIC) filter decimates the DASBF output (d2MHz) and x1-

4,2MHz by 128, producing d(k) and x1-4,aligned. Decimation by 128 with an FIR filter requires many 

taps making it unsuitable for low power applications, while the CIC filter is efficient since it only 

uses adders and subtractors. 
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Figure 3-4. Detailed structure of the adaptive beamformer. 

 

3.2.2.2 BM and MC Operation 

A normalized-least-mean-squares (NLMS) algorithm in the blocking matrix (BM) adapts 

the coefficients of coefficient-constrained adaptive filters (CCAF) to minimize the desired signal 

component in the noise estimate, y1-4(k). The CCAF coefficients adapt quickly and accurately 

when the correlated signal between x1-4,aligned(k) and d(k) is strong. On the other hand, if the target 

signal is strong, the dominant component of x1-4,aligned(k) and d(k) is a target signal, hence the 

correlation is likely large. Thus, a strong target signal (i.e., high SNR) favors CCAF adaptation. 
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An NLMS algorithm in the MC adapts the norm-constrained adaptive filter (NCAF) 

coefficients to optimally subtract the noise estimate to form OUTABF. Noise is the main signal in 

the NCAF,  indicating that NCAF adaptation favors high noise, low SNR situations. Hence, we 

separately enable adaptation for the BM and the MC depending on the estimated SNR. Therefore, 

the AMC (Figure 3-3) directs the BM to update the CCAF coefficients during periods of high SNR 

and allows the MC to update the NCAF coefficients during low-SNR periods [41]. The target 

signal and the noise are dominant components of d(k) and y1-4(k), respectively. Therefore, a simple 

shifter and lookup table roughly calculate the ratio between d(k) and y1-4(k) to estimate the SNR. 

Figure 3-5 shows its related equations. 

 

 

Figure 3-5. Equation of ABF operation [17]. 

 

We select 28 FIR filter taps as a compromise between BM performance and convergence 

time. Although using more taps leads to better filtering of the target signal, a larger filter increases 

convergence time and power consumption. For example, simulations show that if CCAF with a 28 

tap FIR filter takes 0.2 seconds to converge, then a 40 tap filter takes 0.5 seconds. 
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The output of the adaptive beamformer, OUTABF, feeds to a log-Mel 40-band 4th order IIR 

filter. A single shared multiplier calculates the power in each band. The frequency-bank energy 

features accumulate over 25ms [42]. Features overlap by 10ms and update at 67Hz. 

 

3.2.2.3 Arithmetic Calculation 

The proposed system optimizes the word length of the digital signal in each calculation 

stage depending on the precision requirements to achieve an energy-efficient implementation. We 

choose a fixed-point number system over a floating-point number system for two reasons. First, 

the calculation block is simpler because the fixed-point word length is smaller than with floating-

point. Because the magnitude of the signal range is well-defined (e.g., a voltage-type digital signal 

is strictly limited to ±1), the extra exponent bit of floating-point is not necessary. Second, it is 

easier to implement since there is no need to handle the exponent part. 

 

171 d(k)

3 201 h0
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171 d(k-27)
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Figure 3-6. Calculation of fixed-point numbers in FIR filter. h0~27 represents the coefficient of CCAF. 
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Figure 3-6 describes how the CCAF FIR filter calculates with fixed-point. We chose a 28-

taps FIR filter considering the following trade-off: large taps give better performance of BM since 

it can cover lower frequency, but it takes a longer time to converge and consumes more power. 

The d(k) integer bit is zero since the analog input is always less than 1V. The fractional bit of 

CCAF coefficients (h0-27) is 20 for accurate convergence. We set the integer part of h0-27 as 3 bit 

since the simulations show the coefficients do not exceed 8 with enough margin. The product of 

d(k) and h0-27 has a fractional bit as 37 (=17+20), which is a sum of fractional bits of d(k) and h0-

27 to preserve the precision before addition. Next, we need 5 extra integer bits when adding 28 taps 

to cover the maximum range (ceiling of log228). Meanwhile, the range of OUTCCAF,temp is also 1V 

since it tracks the input desired signal.  Hence, the system reduces word length for hardware 

efficiency by removing the integer part of OUTCCAF,temp through limiting and truncating the 

fraction part to 15 to meet the required precision. 
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3.2.2.4 Hardware Sharing    
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Figure 3-7. CCAF filter implementation with hardware sharing. 

We share blocks and simplify some operations to reduce leakage power and die area. 

Operating at the decimated data rate of 16kHz would result in an unacceptably large die area and 

leakage power. We share four multipliers through multi-phase operation to implement the four 

channels of 2 x 28 tap FIR filters for CCAFs and NCAFs, as shown in Figure 3-7. We also share 

arithmetic blocks used in coefficient calculation. The shared blocks operate at the 2.048MHz DSM 

clock rate. Sharing multipliers in the BM block reduces area by 36x, and sharing multipliers and 

dividers in the MC reduces area by 40x. Approximation with a lookup table further reduces the 

area and power consumption of the square-root operations in the NCAF coefficient calculations. 

Figure 3-8 shows the timing diagram of internal signals regarding hardware sharing. First, 

DASBF generates d(k) by summing time-aligned x1-4,2MHz(k) at t1. At this moment, CCAFcoeff,1-

4(k) is ready, while NCAFcoeff,1-4(k) is not. Then BM starts calculating y1-2(k) using CCAFcoeff,1-

2(k) at t1, and finishes at t2. Since y1-2(k) and y3-4(k) calculations share the same hardware, the 

calculation of y3-4(k) can start at t1 after y1-2(k). At t1, BM can calculate CCAFcoeff,1-2(k) since y1-
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2(k) are ready. At t2, y3-4(k) are ready, so BM starts calculating CCAFcoeff,3-4(k). Meanwhile, at t2, 

y1-4(k) is ready. So, MC starts calculating all OUTNCAF1-4(k) at the same time. Since it requires 

more calculation time than y1-4(k), each channel has its own calculation hardware and calculates 

simultaneously. Then at t4, OUTNCAF1-4(k) is ready, and the final output OUTABF(k) comes out. 

Finally, MC calculates NCAFcoeff,1-4(k) simultaneously from t4 using four calculation hardware and 

finishes it when needed. 

 

 

Figure 3-8. Timing diagram of signals and coefficients calculation. 
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3.2.2.5 Clock Frequency Optimization 

We optimize the DSP clock speed for energy efficiency. Decimation enables much slower 

processing in blocks that do not need high time accuracy. The slower processing rate reduces 

dynamic power and facilitates hardware sharing, reducing both die area and leakage power. For 

instance, a single 28-tap FIR filter operating at 16kHz is 90 times more power-efficient than one 

running at 2.048MHz (Figure 3-9). While the multipliers and adders are simpler for 2.048MHz 

operation due to smaller bit-widths, each arithmetic operation occurs 128 times more often, 

resulting in higher overall power consumption. Also, the 2.048MHz FIR filter occupies 15 times 

more area than the 16kHz one. Furthermore, hardware sharing in a 2.048MHz filter does not help 

much because the non-sharable delay line occupies most of the area. Also, sharing multipliers for 

2.048MHz operation require a higher main-clock frequency. 
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Figure 3-9. Two ways to implement an FIR filter after (16kHz) and before decimator (2MHz) with identical 

functionality. The 16kHz case consumes 90 times less power. 
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3.2.2.6 CIC Filter (decimator) Implementation 

We use the MATLAB [43] Filter Designer tool to implement the decimator as shown in 

Figure 3-10. We choose the CIC filter as a decimator due to its simplicity. We choose the 'number 

of sections' to be 4 to suppress shaped quantization noise since the ADC is third-order noise-

shaping [44]. The output word length should support the target SNR of the signal. We use the 

MATLAB 'Generate HDL' function and make Verilog code. We set the parameters for 4-bit signed 

input d(k) as shown in Figure 3-11. After auto-generating Verilog code, we modify the output bit 

assignment as shown at the bottom of Figure 3-11 by matching the input and output range through 

simulation. 

 

Figure 3-10. CIC decimator implementation with the MATLAB filter designer. 
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// ------------------------------------------------------------- 

// HDL Implementation    : Fully parallel 

// ------------------------------------------------------------- 

// Filter Settings: 

// 

// Discrete-Time FIR Multirate Filter (real) 

// ----------------------------------------- 

// Filter Structure        : Cascaded Integrator-Comb Decimator 

// Decimation Factor       : 128 

// Differential Delay      : 1 

// Number of Sections      : 4 

// Stable                  : Yes 

// Linear Phase            : Yes (Type 1) 

// 

// Input                   : s4,1 

// Output                  : s18,-13 

// Filter Internals        : Minimum Word Lengths 

//   Integrator Section 1  : s32,1 

//   Integrator Section 2  : s32,1 

//   Integrator Section 3  : s31,0 

//   Integrator Section 4  : s26,-5 

//   Comb Section 1        : s23,-8 

//   Comb Section 2        : s22,-9 

//   Comb Section 3        : s21,-10 

//   Comb Section 4        : s20,-11 

// ------------------------------------------------------------- 

 

// Manually moidified part by author 

assign output_typeconvert = section_out8[18:1]; 

 

Figure 3-11. MATLAB filter design parameters for 4-bit signed input decimator. 
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3.2.3. Continuous-time Delta-sigma Modulator 

Figure 3-12 shows the 3rd order CT DSM [12] used in the proposed system. A CT DSM 

has several advantages over a discrete-time (DT) DSM. First,  a CT DSM has an inherent anti-

aliasing filter [45], removing the need for an additional input low pass filter. Second, a CT DSM 

has a resistive input. Hence the preamplifier does not need to drive the large sampling capacitor of 

DT DSM, so the overall system efficiency, including the microphone, can be improved. Third, a 

CT DSM relaxes the performance requirements of 1st stage amplifier. Because CT DSM does not 

have a settling operation, the required amplifier gain bandwidth is much smaller than a DT DSM. 

 

INP
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Figure 3-12. Schematic of 3rd order continuous-time delta-sigma modulator. 
 

 

 

 

 

 

 

 

 

 

 

______________________________________ 
* Seungjong Lee is the primary designer of ADC. 
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3.3. Measurements 
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Figure 3-13. Die micrograph. 

 

The prototype is fabricated in 40nm LP CMOS and has an active area of 0.89mm2 (Figure 

3-13). The measured SNDR of the ADC is 83.3 dBA. Note that dBA is A-weighted decibels and 

is based on the response of the human ear. This weighting is implemented in MATLAB [46] and 

modifies the FFT spectrum when calculating SNDR. 
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Figure 3-14. Measured 32k point FFT for a single CT DSM. 
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3.3.1. Test Setup 
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Figure 3-15. Board diagram and photo of the test setup. 

 

A 4-channel audio DAC (Cirrus Logic CDB4385) controlled by an FPGA applies audio 

inputs to the ADCs to emulate microphone inputs. The sound signal is far-field and anechoic. 

External single-to-differential amplifiers (Analog Devices ADA4940) convert the single-ended 

DAC outputs to the differential with a 0.5V bias. 
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3.3.2. Coefficient Adaptation 
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Figure 3-16. AMC controls the adaptation mode by estimating SNR (upper), and its coefficients convergence 

(bottom). 

 

Figure 3-16 tracks the output of the AMC and the coefficient update. While there is a signal 

(i.e., 0~15s), the AMC output is high, indicating a strong target signal in the given direction. 

Hence, the BM starts to adapt the CCAF coefficients. On the other hand, when there is no target 

signal (15~30s), the AMC output becomes low, and the MC adapts NCAF coefficients. After the 

coefficients convergence, we fix the coefficients and measure the beampattern. 
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3.3.3. Measured Beampattern 

Figure 3-17 shows simulations of the noise suppression for different DOAs of noise. We 

use a cardioid microphone array, as shown in Figure 3-18, and fix the target DOA while sweeping 

the noise DOA. For each noise DOA, we adapt the beamformers coefficients with 15dB SNR. The 

beamformer consistently suppresses noise over a wide range of noise DOA regardless of the target 

DOA. However, if the noise DOA is within 10 degrees of the target DOA, the beamformer cannot 

fully suppress it. 
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Figure 3-17. Simulated noise rejection for a sweep of the DOA of Gaussian noise. 

 

Figure 3-18 plots measured beam patterns for different noise environments. It is clear from 

the measurements that the beamformer adaptively places nulls in the noise direction while 

maintaining a near-unity gain in the desired direction. Furthermore, we notice the adaptive 

beamformer assigns a larger-than-unity gain to the noise-free direction - this does not affect 

performance as the beamformer adapts its null if the noise-source direction changes (e.g., to 270°, 

Figure 3-18), then the beamformer correctly adapts its null to that angle. 
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Figure 3-18. Cardioid microphone configuration (left), measured beamforming patterns for adaptive 

beamforming (ABF) and fixed DASFB with different noise directions (right). ABF automatically directs the 

nulls towards the noise sources. 
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3.3.4. Speech Recognition Test 
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Figure 3-19. (top) Signal and noise directions, beamformer input and output and (bottom) Mel features 

generated by chip without beamforming, with DAS beamforming and with adaptive beamforming. 

 

We use the Tensorflow keyword dataset [39] to demonstrate the noise suppression of 

adaptive beamforming. In this test, a 4-channel 24-bit DAC array replaces the microphones. The 

FPGA collects a 1-second duration of the 40 features generated by the chip, transmits this data to 

a PC, which runs MATLAB DNN [47] for classification. The dataset consists of 1200 utterances 

of 9 words, 2000 unknown sounds, and 2000 background noise samples. The dataset is divided 

into training and validation with an 8 to 1 ratio. The measured recognition accuracy without noise 

is 93.5%. To assess the advantages of adaptive beamforming, we measure recognition accuracy 

with two noise sources after adaptation. The target signal direction is at 90°, while the two noises 
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are placed at 30° and 135°. The noise is random background noise from Tensorflow and is 15dB 

lower in power than the target signal. Figure 3-19 shows that ABF dramatically improves the 

spectrogram. The adaptive beamformer improves speech recognition accuracy from 64% (no 

beamforming) to 90%. 

Figure 3-20 shows the simulated recognition accuracy for each word. Single-syllable words 

are more affected by noise because the high-frequency noise can easily obscure consonants, which 

are usually high-frequency and small in magnitude. The beamformer effectively suppresses high-

frequency noise (Figure 3-18) and hence significantly improves accuracy. A very low SNR may 

cause misdetection by the AMC, leading to inappropriate adaption. Simulations with incorrect 

AMC operation show a 10-15% degradation in recognition accuracy. 

 

 

Figure 3-20. Accuracy for 9 words and unknown. 

 

  

Accuracy [%] down eight go happy no 

w/o BF 72 68 59 76 49 

with ABF 91 93 89 93 87 

  seven stop up yes unknown 

w/o BF 66 71 49 83 71 

with ABF 89 91 92 94 85 
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3.3.5. Power Consumption Analysis 

 The total measured power consumption is 0.65mW from 1V analog and 0.7V digital 

supplies. Figure 3-21 shows a breakdown of the power consumption. A single ADC consumes 

91µW, and half of this power is consumed by a first-stage amplifier. The BM and MC blocks are 

responsible for 70% of the digital power consumption because the coefficient calculations include 

multiplication and division. Table 1 compares ASR frontends. Only our system integrates both 

high-resolution ADCs and adaptive beamforming and does so with sub-mW power consumption. 

ana dyn
abf

fbf

fe

dec

digital leak

Analog

(367 mW)

BM+MC

(195 mW)

Decimator (29 mW)

DASFB (38 mW)

Feature extractor (14 mW)

Dig. Leakage (4.3mW)

 

Figure 3-21. Power consumption breakdown. 

Table 1: Comparison with high-SNDR beamforming feature extraction systems 

  This Work [12] Lee [48] Liu [27] Sainath Google Home Amazon Echo 

Implementation 
Analog mic. 

+Single chip 

Analog mic. 

+Single chip 

Digital mic. 

+Multichip 

Digital mic. 

+Software 

Digital mic. 

+Multichip 

Analog mic. 

+Multichip 

Technology 40nm LP CMOS 40nm GP CMOS 90nm CMOS - - - 

Area (mm2) 0.89 1.1 0.47 N/A N/A N/A 

VDD 

(Analog / Digital) 
1.0V / 0.7V 1.0V / 0.55V - / 0.33V - -   

# Signal Sources 4 8 2 2 2 7 

Functionality 

ADCs, 

beamforming, 

feature extraction 

ADCs, 

beamforming, 

feature extraction 

Beamforming (no 

steering), feature 

extraction 

Beamforming, 

feature extraction, 

classification 

ADCs, 

beamforming, 

feature extraction, 

classification 

ADCs, 

beamforming, 

feature extraction, 

classification 

DR [8kHz BW] 83dBA 85dBA - - 108dBA 
98dBA (mic.) 

97dBA (ADC) 

BW 8kHz 8kHz 8kHz 8kHz 8kHz 8kHz 

Beamforming Type Adaptive RGSC 
Fixed 

delay-and-sum 

Adaptive Griffiths-

Jim 

Adaptive 

filter-and-sum with 

trained coefficients 

- - 

Feature Type 
Log-Mel filter 

bank energy 

Mel filter bank 

energy 

FFT-based Log 

filter bank 

Convolutional long 

short-term memory 

DNN filter bank 

- - 

# Features 40 60 8 128 - - 

Power 

Consumption 
0.65mW 3.95mW 0.1mW* - 4.4mW** 47mW** 

* Excludes ADCs,  ** Calculated from datasheets, only includes MEMS microphones, ADCs. 
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Chapter 4. A Multi-Mode Speech Recognition Frontend with Self-DOA Correction 

Adaptive Beamformer 

 

4.1. Motivation 

Fixed delay-and-sum (DAS) beamforming in Chapter 2 is simple to implement, but only 

suppresses noise from a fixed direction of arrival (DOA) [12]; hence, it is ineffective in real 

varying noise conditions. [49] implements ultra-low-power keyword spotting (KWS) with noise 

suppression, but the lack of an ADC and beamforming limit practical application.  

In Chapter 3, we focus on adaptive beamforming (ABF), which actively adjust nulls to 

suppress varying noise sources. Adaptive beamforming with a trained DNN is promising [21]-[31] 

but requires extensive training data and high power consumption and is not applicable for battery-

operated systems. The prototype in Chapter 3 [18] (Figure 4-1) adaptively reduces noise and 

interference in the output of a fixed DAS beamformer with reasonable power consumption and an 

accurate steering angle. However, the prototype is still hampered by: 1) High DSP power 

consumption due to high ADC sampling rate and the need for complex calculations, especially in 

the blocking matrix (BM); 2) Target signal direction errors in DAS cause severe signal distortion; 

and 3) Worst-case input-SNR design causes high ADC and DSP power regardless of actual signal 

conditions. 

 

 

 

________________________ 
*This work was done in collaboration with Seungjong Lee and Seungheun Song. They are the main contributors to 

ADC design. 

Some text and figures are from [32]. 
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Figure 4-1. Conventional Adaptive Beamformer [18] (top) and proposed multi-mode automatic speech 

frontend end with Greedy Adaptive Beamformer (GABF) and multi-mode ADCs (bottom). 

 

Our ASR frontend system (Figure 4-1) addresses the problems of the prototype ABF in 

Chapter 3 with: (1) Low DSP power consumption (3x lower than state-of-art ABF [18]) thanks to 

an innovative greedy blocking matrix (GBM) with simple calculations and a reduced-sample-rate 

ADC; (2) Automatic DOA error compensation with a DOA tracking DAS beamformer (DTDAS) 

aided by the GBM, (3) A multi-mode hybrid ADC architecture adapts to signal conditions and 

consumes an order-of-magnitude less power than the state-of-art; and (4) Multi-mode 

beamforming takes advantage of high signal SNR to reduce total power consumption by up to 

46%. 
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4.2. System Implementation 

4.2.1. System Overview 

Our speech-processing frontend connects to four microphones and outputs frequency-

domain speech features (Figure 4-1). After digitization by the multi-mode ADC array, the DTDAS 

beamformer corrects speaker-direction estimate errors by appropriately time-aligning the ADC 

outputs. First, DTDAS generates an enhanced target signal OUTDAS and outputs correctly aligned 

ADC outputs, x1-4. Next, the GBM removes the target signal from x1-4 to generate a residual noise-

dominant signal, y1-4. Then, an FIR-based multiple-input canceller (MC) cancels the noise in 

OUTDAS to produce a clean beamformer output, OUTGABF. Finally, a feature extractor generates 

40 log-Mel frequency energy features [50] for speech recognition. A mode controller estimates 

target power and noise power floor [51] from the output of the feature extractor. The mode 

controller controls greedy adaptive beamformer (GABF) coefficient adaptation, beamformer 

mode, and ADC mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Except for the ADC, all other blocks are implemented in Verilog and synthesized.  
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4.2.2. Greedy Adaptive Beamformer (GABF) 

4.2.2.1 Greedy Blocking Matrix (GBM) 

Figure 4-2 shows a conceptual diagram of the blocking matrix (BM). The primary role of 

BM is to generate a noise-dominant signal, ym, from the inputs. The simplest BM is a fixed BM 

[20] shown in Figure 4-2 (bottom-left) using only a subtractor. If xm and xm+1 contain the same 

target signal and their phases are aligned, a simple subtraction can remove the common target 

signal and result in noise-dominant, ym. However, a DOA error (i.e., xm and xm+1 are not aligned) 

causes leakage of the target signal into ym, which is not desirable. To compensate for the alignment 

error, we add a variable delay cell to align the signals. 

 

 

Figure 4-2. Conceptual diagram of GBM. 

 

Figure 4-3 shows how the adjustable delay cell reduces target signal leakage in ym. For 

ease of understanding, we choose single-tone sinewave as a target signal.  Figure 4-2 (left) shows 

that non-alignement between d and xm cause leakage of the target signal (sinewave) into ym. This 
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leakage causes signal distortion in the next block, the MC. On the other hand, the variable delay 

cell aligns d and xm,aligned (right waveform in Figure 4-3), and then subtraction results in ym without 

target signal leakage. 

 

 

Figure 4-3. Example of GBM waveforms. 

 

We implemented an adaptive beamformer with a newly proposed blocking matrix (Figure 

4-4) using variable delay lines (TD1-4 and TDC1-4,a-c). DOA errors are inevitable due to speaker 

movement or DOA estimation errors from external sources. The timing misalignment causes 

significant signal distortion, especially for high-frequency signals due to their short wavelength. 

This is critical for speech because high frequencies (i.e., consonants) are vital for speech 

intelligibility. However, a conventional BM cannot correct direction errors since it uses fixed DAS 

[18]. Furthermore, the FIR filters in a conventional BM cause high power (80x more than the 

proposed GBM) and slow adaptation (e.g., 5s [18]). Instead, the GBM generates a noise-dominant 

signal with simple adjustable delay lines (TD1-4) and automatically corrects DOA errors. 
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Figure 4-4. Block diagram of the proposed GABF. 

 

 

Figure 4-5. Greedy algorithm to find optimum time delay. 
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noise. Hence, the GBM selects the TDCm,a-c path with the minimum ym power, indicating the best 

removal of the target signal. Next, the GBM updates the TDCm,a-c delays with the previously 

chosen TDCm as the center (TDCm,b) delay, and repeats the process. As a result, TDCm,b gradually 

approaches the optimum value (Figure 4-5). 

We can correct DOA errors in TD1-4 by observing TDC1-4,b. When DTDAS accurately 

steers toward the target signal, TD1-4 of DTDAS align the x1-4 perfectly; hence the compensation 

delay TDCm,b in the 'phase aligned path' (Figure 4-4) should do nothing (i.e., TDCm,b = 0). In other 

words, if TDCm is non-zero, it indicates that errors exist in TD1-4. Hence, the proposed GBM feeds 

a partial TDCm,b (e.g., TDCm,b/4) to TDm to compensate TDm's error (Figure 4-6). After some 

iterations, TD1-4 is optimally tuned, and TDCm,b reaches zero, indicating that DOA estimation error 

is corrected. 

The advantage of DOA correction with GBM is that it does not require the knowledge of 

prior microphone locations. Also, GBM keeps the simple calculation even with the number of 

microphones increasing. We describe the future work related to this advantage in Chapter 4.4. 

 

 

Figure 4-6. TDm update for DOA correction by GBM. 
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Figure 4-7. Greedy algorithm to find optimum time delay. 

 

A potential problem with the greedy algorithm is local minima. For example, if the space 

between microphones is longer than half of the wavelength, multiple optimum points are causing 

spatial aliasing. Hence, the GBM uses low-pass filters (LPF) to prevent spatial aliasing (Figure 

4-7). These filters do not degrade the search performance since most speech energy lies at low 

frequency. We design a "Direct-Form FIR" low-pass filter using the MATLAB filter design tool 

[52] -Figure 4-8 shows the MATLAB code and filter frequency response. We use the generated 

coefficients to make the FIR filter in Verilog. 

Figure 4-10 shows MATLAB simulation of GBM adaptation. We use a random speech 

signal as a target signal and a Gaussian noise signal. The signal and microphone setup are shown 

in Figure 4-9. The voice activity detector (VAD) signal from the mode controller allows GBM 

delay adaptation during speech duration. Initially, the beamformer is steered to 90° while the actual 

target signal comes from 110°. GBM adjusts the DOA, and TDm converges well after 3s. 
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% MATLAB code 

 

fs=16000; 

d = fdesign.lowpass('N,Fc',10,fs/8,fs); 
Hd = design(d); 

 

 

Figure 4-8. MATLAB code generates a low-pass filter for preventing the local minima issue and its 

frequency response. 

 

 

Figure 4-9. MATLAB simulation setup for Figure 4-10. 
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Figure 4-10. MATLAB simulation of GBM convergence. The input is a random speech signal. 
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4.2.2.2 DOA Tracking Delay and Sum Beamformer (DTDAS)   

The proposed DTDAS (Figure 4-4) has two advantages over conventional DAS 

beamformers. First, it can correct initial TD1-4 by GBM feedback, as mentioned in the previous 

section. Second, it turns off unused delay cells to reduce switching power, as shown in Figure 

4-11. (The actual schematic is different because it is implemented in Verilog in practice). Each 

channel has 120 delay cells composed of 4bit flip-flops operating at 384kHz. 

 

 

 

Figure 4-11. A conceptual schematic of DTDAS and its pseudo-Verilog code. 
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4.2.2.3 Multiple-input Canceller (MC) 

The proposed system improves the robustness of conventional MC when adaptation mode 

changes by using rollback coefficients. The generalized sidelobe canceller type beamformer (used 

in this work) adapts the BM and the MC in different signal situations. For example, the GBM 

adapts its coefficients when the target signal is strong, but the MC adapts when noise is strong. 

Hence, a system controller needs to sense the signal status (e.g., SNR estimator) and control the 

GBM and MC adaptation. The proposed system uses a VAD to determine adaptation; it adapts 

GBM when VAD=1 and adapts MC when VAD=0. 

 

 

Figure 4-12. A mismatch between actual and estimated signal conditions and the adaptation of GBM and 

MC. 
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adaptation from t1 to t2, even though the target signal is present. Then, y1-4 has target signal leakage 

from t1 to t2 due to the incomplete GBM adaptation. As a result, the MC experiences different 

signal conditions between 0~t1 and t1~t2 while adapting coefficients. Ideally, the MC should stop 

adaptation at t1. If the VAD detector does not notice the change of signal condition, it may lead to 

an undesired change in the coefficients of MC at t1~t2.  

Figure 4-13 shows the simulated waveforms. Due to a wrong GBM adaptation from the 

wrong VAD, MC coefficients changes drastically during t1 to t2, as shown in the middle of Figure 

4-13. To mitigate this unwanted behavior, our proposed MC rollbacks the coefficients at t1 from 

t2, as shown at the bottom of Figure 4-13. As a result, the MC coefficients keep their correct value 

after the mode change. 
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Figure 4-13. Simulated waveforms of the adaptation of MC from t1 to t2 in Figure 4-12 with/without 

rollback. 
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4.2.3. Multi-mode ADC 

 

Figure 4-14. Multi-mode ADC showing (top) high-resolution operation with CTNSSAR hybrid and (bottom) 

low-power NSSAR mode and ultra-low-power SAR mode. 
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low ADC sample rate reduces the area and power of the DTDAS. 3rd order noise shaping and a 4-

bit quantizer facilitate a low ADC sample rate of 384 kHz with OSR=24. We selectively operate 

blocks depending on the required SNR. The high-performance mode (80dBA SNDR 12μW) 

activates all blocks and works as CTNSSAR. The low-power mode (65dBA SNDR 5.8μW) 

enables only the NSSAR, while an ultra-low-power mode (40dB SNDR 1.5μW) uses only the SAR 

block within the NSSAR. 

The high-performance CTNSSAR mode combines a 1st-order CT modulator loop and a 

2nd-order NSSAR (Figure 4-14). An advantage of the CT loop is the inherent anti-aliasing 

filtering, but the two-stage CT amplifier (Figure 4-15) consumes half the total ADC power. The 

low-power mode turns off the CT loop and operates only the DT NSSAR block. The low-power 

mode re-uses the input resistor and capacitor of the CT stage as an RC low-pass filter to maintain 

anti-aliasing. Attenuation capacitors in the SAR ensure ADC-gain matching between different 

modes. Adjusting the NSSAR integrator capacitor, CI1 maintains noise transfer function (NTF). 

Dynamically-enabled folded-cascode amplifiers in the NSSAR save power [53]. A current 

feedback DAC (IDAC) is smaller and more efficient than a resistor DAC (Figure 4-16). Finally, 

the IDAC and CDAC share a DWA block to improve linearity. 
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Figure 4-15. Schematic of 1st stage amplifier. 

 

 

 

Figure 4-16. Schematic of current DAC (IDAC). 
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4.2.4. Mode Controller 

The mode controller (Figure 4-1) of the proposed system controls three different modes: 

1) GBM and MC adaptation timing controlled by VAD, 2) beamforming modes controlled by 

noise floor, and 3) ADC modes controlled by signal floor. Figure 4-17 shows a flow chart for the 

mode controller. In principle, our system can work with any VAD algorithm. The mode controller 

is fully implemented in Verilog and synthesized. 

 

 

Figure 4-17. Flow chart of mode control. 
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4.2.4.1 VAD Generation 

The mode controller uses an energy-based VAD for simplicity [51] - Figure 4-18 shows 

the calculation flow chart. Since speech energy primarily lies in low frequencies, our mode 

controller selectively chooses the output of the feature extractor (Feature in Figure 4-1) and 

calculates the signal floor. Figure 4-19 shows a simulated waveform, and VAD well indicates the 

existence of speech l. In the simulation, A=0.97, B=0.6, TDWN=0.9, and TUP=1.1 are used. 

 

Figure 4-18. Flow chart of VAD signal generation [51] with proposed frequency-selective calculation. 
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Figure 4-19. Simulated waveforms of VAD generation. 
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Figure 4-20. Simulated waveforms of GBM and MC adaptation controlled by VAD signal. 
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4.2.4.3 Beamformer Mode Control 

 

Figure 4-21. System diagram of the two-mode beamformer. 
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works as DAS. In a low noise situation, the DTDAS alone can do enough job for noise suppression. 

To turn off GBM and MC, we short the inputs of GBM (x1-4) to zero. Also, the calculation blocks 

use a 16kHz clock from the decimator to trigger operation. When we turn off the adaptive 

beamformer, we disable this clock disabling these calculations. 

To estimate the noise level, we calculate the signal floor from OUTDAS based on the 

algorithm in Figure 4-22. Whereas VAD uses only a low-frequency component for calculation, the 

noise floor uses the entire frequency span of signal OUTDAS since the noise includes high-

frequency. The mode controller calculates the noise floor of OUTDAS only when VAD=0 (when 

only noise exists), and Figure 4-22 shows the flow chart of this calculation. Figure 4-23 shows the 

MATLAB simulated waveforms. The integration duration of OUTDAS is 64ms in the simulation. 

The calculated noise floor increases when the background noise is stronger. 

 

 

Figure 4-22. Flow chart of noise floor estimation based on [51]. 
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Figure 4-23. Simulated waveforms of noise floor calculation. 
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Figure 4-24. Simulated speech recognition accuracy Vs. ADC ENOB while sweeping input signal power. 
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Figure 4-25. Flow chart of signal floor estimation based on [51]. 

 

 

 

Figure 4-26. Simulated waveforms of signal floor calculation.   
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4.2.5. Feature Extractor 

 

Figure 4-27. System diagram of feature extractor. 

Figure 4-27 shows a system diagram of the feature extractor. We share a single squaring 

operator for the 40 bandpass filters to save area. To generate IIR bandpass filters, we use MATLAB 

designfilt function, where DesignMethod is butter and FilterOrder is 4. Then we convert the digital 

filter to a state-space representation and implement Verilog filters using manual code. Figure 4-28 

shows the frequency response of the generated filters. The feature has a 25ms accumulation 

window with a 10ms overlap. 

 

 

Figure 4-28. Frequency response of Mel-frequency filter-bank. 
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4.3. Measurements 

 

Figure 4-29. Die micrograph. 
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4.3.1. Test Setup 

 

Figure 4-30. Board diagram and photo of the testing setup. 
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4.3.2. Coefficient Adaptation Timing 

 

Figure 4-31. The measured waveform shows GBM and MC coefficient adaptation timing. 

 

Figure 4-31 shows how the mode controller adapts GBM and MC depending on VAD. The 

mode controller calculates signal floor using the low-frequency features (since low frequencies 

dominate speech energy) and generates a voice activity detection (VAD) signal. The GBM adapts 

TD1-4 when VAD is high (speech exists). The MC adapts the coefficients of the 28-tap FIR filters 
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4.3.3. GBM Adaptation (DOA Tracking) 

We test the GBM adaptation with a 2kHz single tone sinewave with a linear microphone 

array to illustrate DOA tracking, as shown in Figure 4-32. We choose a linear configuration 

because it shows more intuitive results than a cardioid configuration. Initially, the given DOA is 

90°, and TD1-4 are set to zero. However, the actual signal is coming from 70°. Since the input 

sinewave is assumed as a far-field signal, we can calculate the desirable TD1-4 using the equations 

from Figure 4-33. For example, microphone 1 receives a signal later than microphone 4 by Δt1. 

Hence, assigning Δt1 to microphone 4 will align the target signal between 1 and 4. 

   
Figure 4-32. Microphone configuration for DOA tracking testing. 
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signal slower than microphone 4 by Δt1. 

2.54cm

Actual DOA of 

Target Signal

 = 70° 

Initial Steering Direction

= 90° 

1 2 3 4

1 2 3 4

d = 2.54cm

70° 

Δt1 = 3d x sin(20°) / c = 77μs

Δt2 = 2d x sin(20°) / c = 51μs

Δt3 = 1d x sin(20°) / c = 26μs

*c : speed of sound, 340m/s
cΔt1

cΔt2

cΔt3

Target Signal



 82 

 Figure 4-34 shows the measured waveforms for GBM adaptation. In the beginning, TD1-

4 are all zero since the initial steering angle is 90°. The top-right waveform shows a 2kHz sinewave 

received by the four channels. It shows a 77μs phase difference as calculated in Figure 4-33. Then, 

we enable GBM adaptation at t=0.2s. TDC1-4,b tries to align the signal by using the greedy 

algorithm. Then, GBM feeds back TDC1-4,b to TD1-4 of DTDAS. After t=0.6s, the TD1-4 arrive at 

the correct delay values, and TDC1-4,b settle to zero, indicating the DOA correction is complete. 

As a result, the input sinewaves are aligned, as shown in the bottom-right of Figure 4-34. 

 

  

Figure 4-34. The measured waveforms of GBM adaptation. The proposed GBM adjusts 20° of DOA error by 

adapting TD1-4 and TDC1-4,b as shown in the left two waveforms. The waveforms on the right show the 
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4.3.4. ADC Measurements 

The measured ADC SNDR is 79.6 dBA and 65.4 dBA in CTNSSAR and NSSAR modes. 

Figure 4-35 plots 32k point FFTs. The input is a 2kHz sinewave. Note that the cliff at 8kHz in 

FFT comes from the A-weight function. 

 

Figure 4-35. Measured 32k point FFT for single ADC in CTNSSAR and NSSAR modes 
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Figure 4-36. Performance summary of ADC. 

 

4.3.5. Mode Change 

Figure 4-38 shows how the system adapts mode to the target power and noise floor. This 

test applies a random conversation (i.e., the target) at a 90° DOA and Tensorflow background 

noise at 30°, as shown in Figure 4-37. We repeat the same conversation source in Zone1-3 (Figure 

4-38) while changing speech and noise power. 
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In zone 1 of Figure 4-38, the noise is stronger than in other zones. Hence, the estimated 

noise floor by the mode controller (shown in the bottom waveform of Figure 4-38) is high, and the 

system fully activates the beamformer. We see that the system effectively suppresses noise in the 

beamformer output, OUTGABF. In this mode, the DSP consumes 109μW, and ADC consumes 

48μW. 

In zone 2, we lower the noise level while keeping the target speech power the same. As a 

result, the noise power decreases, so the mode controller turns the GBM and the MC off, and only 

DTDAS operates. As a result, DSP power reduces from 109μW to 49μW. One possible drawback 

of turning off the GBM and the MC is that the beamformer no longer has a DOA tracking feature. 

Thus, depending on the application, a user might fully operate GABF regardless of the noise 

conditions. 

In zone 3, we increase the target speech amplitude while keeping the noise level the same. 

Hence, the estimated target power increases, allowing the ADCs to switch to low-power mode 

(NSSAR only). As a result, the analog power decreases to 23μW from 48μW, saving 25μW. The 

zoomed-in waveform in the inset shows the smooth mode transition in the ADC output. 
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Figure 4-38. Measured adaptation to target power and noise floor. 
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4.3.6. Measured Beampatterns 

Figure 4-39 shows measured beampatterns for different target and noise environments 

assuming a 3.59 cm-spaced cardioid microphone array. To measure beampatterns, we adapt 

coefficients of MC first with the target and two noise signals. Both target and noise signals are 

Gaussian signals. Meanwhile, we assume the steering angle is accurate with the actual DOA of the 

target signal; hence we assign the corresponding TD1-4 to DTDAS and all 0s to TDC1-4,b.  

The target signal is a single-tone sinewave, and we sweep the DOA and measure the power 

of single-tone output using FFT. The proposed beamformer suppresses the noise well by placing 

nulls while maintaining the near-unity gain of the target direction, as shown in Figure 4-39. 

 

 

Figure 4-39. Cardioid microphone configuration (left bottom), measured beamforming patterns for proposed 

adaptive beamforming (GABF), and fixed DAS with different target and noise directions. 
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4.3.7. Speech Recognition Test 

We use the Tensorflow speech dataset to validate the advantages of GABF for speech 

recognition. A MATLAB DNN with five convolutional layers and a single fully connected layer 

processes the chip spectrogram output [47]. The dataset includes 16 different words (with and 

without added random noise) and background noise. We train the DNN with feature extractor 

outputs from the prototype. The recognition accuracy without noise is 94.4%. Next, we test with 

interfering noise and interfering random background words to show the benefits of GABF. The 

interfering noise (or random words) are from DOAs of 30° and 135° and 9dB lower in power than 

the target with a cardioid microphone array. 

The spectrograms in Figure 4-40 indicate that the GABF effectively suppresses noise. 

When the added noises are Tensorflow random background noise, full GABF beamforming 

improves the measurement recognition accuracy from 76% to 89%. The accuracy without 

beamforming is already high as 76% since the DNN is capable of handling the same kind of noise 

as used in training. 

On the other hand, if the added noises are random words, GABF full beamforming 

significantly improves the accuracy from 54% to 83% (the overall accuracy is lower with word 

interference because the DNN is trained with added background noise).  The accuracy without 

beamforming is 54% which is lower than that of testing with background noise since it is a different 

type of noise source used in training. However, the DTDAS beamforming alone only increases the 

accuracy by 3% due to its lack of noise suppression. Figure 4-41 shows its measured confusion 

matrix. 
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Figure 4-40. Measured spectrogram generated by the chip with different beamformer modes. 

 

 

 

Figure 4-41. Measured speech recognition confusion matrix of: without noise, with random word noise 

with/without GABF beamforming. The prototype beamformer increases the recognition accuracy from 54% 

to 83%. 
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4.3.8. DSP Power Consumption Analysis 

Figure 4-42 shows a power breakdown of DSP. There are two operation phases when 

GABF is fully turned on; MC adaptation or GBM adaptation (VAD signal controls their adaptation 

as discussed in mode controller session). When MC adapts, the whole DSP consumes 168 μW. 

MC consumes a majority of the power due to its FIR filter and coefficients calculation. On the 

other hand, when GBM adapts, the power consumption of MC significantly decreases since the 

coefficient calculation stops. As a result, the DSP consumes 50 μW. To represent the total GABF 

power consumption, we average the MC and the GBM adaptation power to get 109 μW. In DTDAS 

only mode, the GBM and the MC are turned off, and the DSP consumes 49 μW. 

 

 

Figure 4-42. DSP power breakdown for different modes. 
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Table 2: Comparison with high-SNDR beamforming feature extraction systems. 

 This Work [4] Kang [1] Lee [8] Liu [3] Sainath Google Home 

Implementation 
Analog mic. 
+Single chip 

Analog mic. 
+Single chip 

Analog mic. 
+Single chip 

Digital mic. 
+Multichip 

Digital mic. 
+Software 

Digital mic. 
+Multichip 

Technology 40nm LP CMOS 40nm LP CMOS 40nm GP CMOS 90nm CMOS - - 

Area (mm2) 0.94 0.89 1.1 0.47 N/A N/A 

VDD 
(Analog / Digital) 

1.0V / 0.7V 1.0V / 0.7V 1.0V / 0.55V - / 0.33V - - 

# Signal Sources 4 4 8 2 2 2 

Functionality 
ADCs, adaptive 
beamforming,  
feature extraction 

ADCs, adaptive 
beamforming, 
feature extraction 

ADCs, fixed 
beamforming, 
feature extraction 

Adaptive 
beamforming 
(fixed steering), 
feature extraction 

Adaptive 
beamforming, 
feature extraction, 
classification 

ADCs, 
beamforming, 
feature 
extraction, 
classification 

DR [8kHz BW] 80 / 65dBA* 83dBA 85dBA - - 108dBA 

BW 8kHz 8kHz 8kHz 8kHz 8kHz 8kHz 

Beamforming Type Adaptive GABF Adaptive RGSC 
Fixed 
delay-and-sum 

Adaptive Griffiths-
Jim 

Adaptive 
filter-and-sum with 
trained coefficients 

- 

DOA Correction Yes No No No N/A N/A 

Multi-mode 
Operation 

Yes No No No No N/A 

Feature Type 
Log-Mel filter bank 
energy 

Log-Mel filter 
bank energy 

Log-Mel filter bank 
energy 

FFT-based Log 
filter bank 

Convolutional long 
short-term memory 
DNN filter bank 

- 

# Features 40 40 60 8 128 - 

AFE Power 
Consumption 

48 / 23μW* 367μW 0.81mW - - - 

DSP Power 
Consumption 

109 / 49μW** 280μW 3.1mW 0.1mW*** - 4.4mW**** 

*CTNSSAR / NSSAR, **GABF full / DTDAS only, *** Excludes ADCs,  **** Calculated from datasheets, only includes MEMS microphones, ADCs. 
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4.4. Future Work - Locating Microphone 

 

 

Figure 4-43. The method of locating the microphone using GBM. 

 

We suggest that the proposed GBM algorithm find the location of microphones (or any 

other sensors) with an external sinewave source, as shown in Figure 4-43. Assume that there are 

multiple microphones with unknown locations. Then, we apply a single-tone sinewave from the 

known external source and sweep its DOA. For example, we can get a set of TD1,DOA1 to TDm-

1,DOA1 after convergence of GBM with DOA1. With enough sweep of DOA, one can use these 

delays to estimate the microphone array reversely. 

The advantage of this method is that it can locate the microphones without extra equipment, 

such as a camera or ruler. Also, the GBM is very efficient in finding the optimum aligning delay 

because it does not require excessive parameter sweeps. For example, if there are 100 microphones, 

one way to find the optimum delay is to adjust the microphone one by one. However, GBM can 

align 100 microphones at once with some iterations. 
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Figure 4-44. Example of locating microphones of a simple linear array. 

 

The simplest example would be a linear microphone array with unknown spacing. In this 

case, the required number of DOA is just one. After convergence of GBM, the distance between 

two microphones can be calculated as shown in Figure 4-44. 

1 2

θ

c x TD1 

c x TD1 / cos θ  

c x TD2 
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Chapter 5. Conclusion 

This thesis presents three prototype acoustic beamformers with a high SNR ADC array and 

feature extractor for a complete ASR frontend. In all three, we utilize the direct output of the SDMs 

before decimation to take advantage of fine delay resolution. In addition, we suggest solutions to 

deal with wideband speech input and power-hungry hardware. 

The prototype in Chapter 2 verifies the effectiveness of the bitstream process regarding 

steering accuracy. Furthermore, to deal with wideband signals, it realizes CDB by using selective 

frequency-selective beamforming. However, the fixed DAS has limitations in varying noise 

situations. 

We propose an adaptive beamformer in Chapter 3 to suppress varying noise. Again, the 

prototype also uses bitstream signals for accurate steering. The RGSC beamformer is effective in 

varying noise suppression. Also, we present hardware sharing and DSP clock optimization to 

reduce area and power consumption. The prototype improves speech recognition accuracy in noisy 

conditions from 64% to 90% using a DNN trained with noisy speech. However, the complicated 

calculations of the BM hinder the adaptation speed and consume considerable power. An 

advantage of RGSC is that it separates the target signal and noise – we take advantage of this in 

the multi-mode beamformer in Chapter 4. 

Chapter 4 presents a new beamforming algorithm (GABF) with a four-channel multi-mode 

ADC array. We focus on two points: 1) multi-mode ADC and beamformer to optimize the power 

consumption without performance degradation, 2) new beamforming algorithm that solves the 

conventional RGSC problem. The multi-mode ADC can operate in CTNSSAR (80dBA/12μW), 
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NSSAR (65dBA/5.8μW), and SAR (40dBA/1.5μW) modes. The system controls the ADC mode 

depending on the target signal power. Also, the prototype operates the beamformer in two modes 

by taking advantage of the RGSC structure (separate target and noise path) to save power when 

the noise level is low. On the other hand, the newly proposed GABF utilizes the direct ADC output 

with fine delay resolution. Compared to the conventional BM from Chapter 3, the improved design 

tracks the DOA of the target signal, reduces signal distortion, and reduces power consumption. 

The 40nm CMOS prototype occupies 0.93mm2 and consumes 157μW in high-performance mode. 

It improves KWS accuracy from 54% to 83% under word interference using a DNN trained with 

noisy speech. 
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