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Abstract

Annual anthropogenic greenhouse gas emissions must be cut by 40-70% by 2050 to limit global
warming this century to 2 °C above the pre-industrial temperature and avoid the worst consequences
of climate change. This cut in global emissions is likely infeasible without U.S. decarbonization
efforts equaling the global target. The transport and industry sectors account for 57% of U.S. GHG
emissions. These two sectors must decarbonize and match the target if the U.S. is to achieve the
necessary cut in emissions.

Emissions from U.S. transport and industry are coupled with advanced transport technologies
(e.g., electric vehicles with Li-ion batteries) typically requiring emissions-intensive manufacturing.
Previous studies have largely ignored the transport-industry emissions nexus. Instead, this thesis
presents a parametric fleet-scale production-use-disposal model that combines life cycle assessment
with macro-level demand parameters to calculate consumption based cumulative emissions and
global temperature changes attributable to U.S. light duty vehicles (LDVs). Future pathways account
for emerging powertrain technologies, electricity decarbonization, transport demand, recycling
rates, and vehicle lifespans. Only 3% of the 1,512 modeled pathways meet the emissions target.
Without aggressive actions, U.S. LDVs will likely exceed the cumulative emissions budget by 2039.
Cumulative emissions are most sensitive to transport demand, the speed of fleet electrification and
electricity decarbonization. Increasing the production of battery electric vehicles (BEVs) to 100% of
sales by 2040 (at the latest) is necessary, and early retirement of internal combustion engine vehicles
is beneficial. Rapid electricity decarbonization minimizes emissions from BEV use and increasingly
energy-intensive vehicle production. Deploying high fuel economy vehicles can increase emissions
from the production of BEVs and lightweight materials. Increased recycling has only a small effect
on these emissions because over the time period there are few batteries and lightweight materials
available for recycling.

A quarter of U.S. industry emissions are from the steel and aluminum sectors. Previous studies
have shown that there are limited opportunities for further energy efficiency improvements in these
upstream industries; however, increased material efficiency might prove fruitful, where services
are delivered using less emissions-intensive materials produced from natural resources. Detailed
material flow analyses (MFAs) are needed to identify the opportunities for material efficiency
and to model the supply chain emissions. MFA construction is time-consuming and fraught with

xv



missing and contradictory data. This thesis presents an easily updatable nonlinear least-squares
data reconciliation framework for MFA that is then applied to the annual U.S. steel flow. The MFA
reveals key opportunities for U.S. steel material efficiency: increased manufacturing process yields
and domestic recycling of landfilled and exported scraps.

To understand the barriers to increased recycling, an optimal reverse supply chain model is
derived using linear programming (LP). It shows that U.S. domestic steel and aluminum recycling is
already constrained by compositional mismatches between the scrap streams and industry demand.
The LP model is coupled with a dynamic material flow analysis to show that the increasing volumes
of high-quality wrought aluminum being used in U.S. vehicles are likely to be downcycled or
landfilled at vehicle end-of-life. The LP model is revised to show the potential for using emerging
scrap separation and refining technologies to increase closed-loop recycling rates to over 90%.

The technical assessments presented in this thesis highlight the scope for change. In future work,
socioeconomic analyses could be coupled with these models to further assess the viability of the
material efficiency strategies highlighted throughout.
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Chapter 1

Introduction

Since the industrial revolution, human activities (e.g., burning of fossil fuels and agriculture
development) have had an increasing impact on the climate at a global scale. Many extreme climate
events have been observed especially after 1950 (IPCC, 2014). Examples include shrinking glaciers,
rising sea levels, shifting plant and animal ranges, and more frequent occurrences of extreme
weather (IPCC, 2014). The emissions of greenhouse gases (GHGs) from human activity have
substantially enhanced the greenhouse effect and caused the increasing global mean temperature
(IPCC, 2014). It is unequivocal that anthropogenic GHG emissions have been the dominant cause
of global warming and climate change related events since the mid-20th century (IPCC, 2014).
Climate scientists have high confidence that the global mean temperature will continue to rise and,
in a business-as-usual scenario that does not limit global anthropogenic GHG emissions, the global
mean surface temperature is likely to increase from the pre-industrial levels by 2.6 °C to 4.8 °C by
the end of the 21st century (IPCC, 2014).

To avoid the worst consequences of climate change, the Intergovernmental Panel on Climate
Change (IPCC) recommends that we limit the global mean temperature rise to a less than 2 °C
rise above the pre-industrial revolution temperature by reducing GHG emissions (IPCC, 2014).
To achieve the 2 °C target, the most recent (5th) IPCC report (2014, by the time of this research
was conducted and dissertation were written) recommends a 40-70% reduction in global annual
anthropogenic GHG emissions by 2050 compared to the 2010 level and that anthropogenic emissions
reach net zero or below by 2100 (IPCC, 2014).

1.1 The Contribution of U.S. Emissions to Climate Change

To understand a country’s contribution to the climate change problem, it is important to look at
not only the current and future GHG emissions but cumulative historical emissions because climate
change is largely a result of cumulative emissions and because cumulative national levels are an
approximate indicator of a country’s development and cumulative wealth (Baumert et al., 2005;
IPCC, 2014). Cumulatively, the U.S. has emitted more GHG emissions than any other country
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(Gütschow et al., 2021; Damassa, 2014). Data on country-level GHG emissions shows that the
U.S. has emitted around 20% of the global cumulative GHG emissions since 1850 (Gütschow et al.,
2021; Damassa, 2014).

Until 2005, the U.S. was still the world’s greatest annual GHG emitter (Gütschow et al., 2021;
Damassa, 2014). In 2018, the U.S. emitted 15% of global annual CO2eq. emissions (Gütschow et al.,
2021; Damassa, 2014), second only to China but where a significant chunk of Chinese industrial
GHGs have in recent years been emitted during the production of goods for export to the U.S. (Yang
et al., 2020). On a per-capita basis, the U.S. ranks 4th highest among all the countries and nations
in 2020 at 16.56 t CO2eq./capita annually which is 2.34 times that of Chinese per capita CO2eq.

emissions (UCUSA, 2019).

(a) Electric power industry as a separate sector. (b) Electric power emissions allocated.

Figure 1.1: Annual U.S. GHG emissions by economic sectors in 2015 (U.S. EPA, 2021)

According to the U.S. Environmental Protection Agency (U.S. EPA, 2021) transport, electric
power and industry are the top three economic sectors that dominate U.S. annual direct GHG
emissions. Direct GHG emissions (also called scope 1 emissions) are emissions from sources that
are owned or controlled by the reporting entity; e.g., on-site fossil fuel combustion emissions and
tailpipe emissions (U.S. EPA, 2021). Direct transport sector emissions account for around 28.6% of
the U.S. GHG emissions and rank the highest among all the economic sectors. Direct emissions
from the industry sector account for 22.9% of overall emissions and are only lower than the transport
and electric power sector. If the electricity-related emissions are allocated to the corresponding
economic sector in which the electricity is used, then industry and transport sector emissions rise to
29.7% and 28.7% respectively. The U.S. transport and industry sectors, therefore, dominate
U.S. GHG emissions (see Figure 1b). Any decarbonization strategy for the U.S. must address
these two sectors.
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1.2 Emissions from U.S. Transport

U.S. transport sector direct emissions (Figure 1.2) account for around 4% of global anthropogenic
GHG emissions. If emissions from the vehicle, fuel, and electricity production are allocated to
the U.S. transport sector, the overall U.S. transport emissions rise to 5.5% of global anthropogenic
GHG emissions ((Figure 1.2)). The enormous emissions from the U.S. transport sector are because
of the much higher travel demand in the U.S. than in many other countries. The U.S. has one of the
highest demands for per-capita light-duty vehicle (LDV) travel in the world (U.S. average: 23,000
vehicle km/year-capita vs. European average: 10,800 vehicle km/year-capita (FHWA, 2020)) and
this demand is projected to increase by 0.9%/year between 2018 and 2048 (FHWA, 2020). LDVs
encompass passenger cars, SUVs, and light trucks. Among all the categories in the transport sector,
LDV emissions account for almost 60% of U.S. transport emissions. Reducing LDV emissions is a
priority for the decarbonization of U.S. transport.

(a) Global GHG emissions. (b) U.S. transport attributable emissions.

Figure 1.2: Annual global GHG emissions and U.S. transport attributable (production, use, and
disposal) GHG emissions in 2015. Prod stands for production emissions. F&E stands for fuel and
electricity production emissions. HDVs: heavy duty vehicles. LDVs: light duty vehicles. See
Appendix A for data and derivations

Looking beyond the direct transport GHG emissions from vehicle tailpipes, fulfilling LDV travel
demand also requires the production of fuels, vehicles, and infrastructure which induce “indirect”
emissions (emissions that result from the generation of electricity, heat, or steam purchased by
the agency from a utility provider (U.S. EPA, 2021)). EPA’s emission accounting method (used
to generate Figure 1.1) only attributes the direct tailpipe GHG emissions to the transport sector
while attributing the fuel and vehicle production emissions to industry. Estimation of 2015 U.S.
vehicle production and use shows that the fuel and vehicle production emissions can contribute a
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significant portion of LDV emissions – equivalent to 30% of direct use-phase tailpipe emissions
(see Appendix A). As travel demand increases, more vehicles will be needed to satisfy the demand
which will further increase the material and vehicle production emissions. Furthermore, alternative
fuel vehicles (e.g., battery electric vehicles), which are likely to be needed for decarbonization, have
higher absolute and relative (to use-phase) production emissions (Elgowainy et al., 2018; Ellingsen
et al., 2016; Hawkins et al., 2013).

1.2.1 Opportunities to Reduce U.S. LDV Emissions

Strategies to reduce LDV emissions can be classified as use-phase oriented or production-phase
oriented. U.S. regulations (the CAFE standard) and previous analyses in the literature (Greene and
DeCicco, 2000; Kim et al., 2010; Luk et al., 2017; Ward et al., 2019) typically focus on reducing
use-phase emissions by improving the vehicle fuel efficiency. The use-phase has likely been the
focus of previous studies because previous single-vehicle life cycle assessments (LCAs) have shown
that the use-phase accounts for over 90% of a typical internal combustion engine vehicle (ICEV)’s
life cycle GHG emissions (Bauer et al., 2015; Hawkins et al., 2013; Ma et al., 2012). Examples
of use-phase strategies are vehicle lightweighting, engine efficiency improvement, tire friction
reduction, vehicle electrification, and substituting LDV travel with more public transportation and
active traveling (exercise), etc. (Greene and DeCicco, 2000; Kim et al., 2010; Luk et al., 2017;
Ward et al., 2019). However, many of the use-phase strategies reduce use-phase emissions while
shifting the emission burden from the transport sector to the industry and electric power sectors. For
example, vehicle electrification requires mass production of traction batteries which significantly
increases the vehicle production emissions for the automotive battery industry (Elgowainy et al.,
2018; Ellingsen et al., 2016; Hawkins et al., 2013; Karabasoglu and Michalek, 2013; Lewis et al.,
2014; Majeau-Bettez et al., 2011).

Previous studies have looked at how the use-phase emissions from the U.S. LDV sector could be
reduced in line with the 2 degree C target targets (Yang et al., 2009; Greene et al., 2010; Bastani
et al., 2012; Supekar and Skerlos, 2017). McCollum and Yang (2009) calculate that 2050 U.S.
LDV fleets consisting of either 100% biofuel-powered vehicles or a combination of hydrogen fuel
cell vehicles (FCVs), battery electric vehicles (BEVs), and ICEVs would result in 2050 GHG
emissions being 80-90% lower than in 1990. Later, Greene et al. (2011) and Bastani et al. (2012)
estimate that a 50-65% emissions reduction by 2050 (from 2010) is possible if biofuels, FCVs, and
BEVs comprise 40-65% of the 2050 fleet and vehicle mileage is reduced by 0-20%. Replogle and
Fulton (2014) estimate that if 50% of urban U.S. LDV mileage (equaling 30-35% of total U.S. LDV
mileage) could be replaced by 2050 with public transportation, cycling, and walking (replicating
average EU urban transport patterns), it would reduce urban U.S. LDV use-phase emissions by 60%
compared to 2010 (Replogle and Fulton, 2014). Elsewhere, Supekar and Skerlos (2017) analyze
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how the U.S. automotive and electricity sector can collectively meet a 70% reduction in use-phase
GHG emissions by 2050 (from 2010) using a least-cost approach. They find that climate action
must begin by 2023-2026 if the target is to remain feasible and that any delay only increases costs.
Supekar and Skerlos exclude emissions from vehicle production and power plant construction.
However, without considering the vehicle production and disposal, the climate mitigation actions
could lead to spillover of the GHG emissions from the transport sector to industry and power sectors.

No regulations in the U.S. have attempted to reduce vehicle production emissions. Several
studies, though, have investigated vehicle production emission reduction through material efficiency
strategies such as recycling and vehicle downsizing (Wolfram et al., 2021; Milovanoff et al., 2019,
2020; Serrenho et al., 2017). However, these studies are either not U.S. centered or did not
investigate how the LDV production and use-phase together could reduce their emissions in line
with the 2 °C target. Therefore, a holistic study that investigates how the LDV production, use,
and disposal emissions could be limited to meet the IPCC recommended climate change target is
needed.

1.3 Emissions from U.S. Industry

The U.S. industry sector emits 29% of U.S. GHG emissions (Figure 1.2b) and this does not
account for the emissions associated with many imported raw materials, semifinished products,
and finished goods (U.S. EPA, 2021). Although domestic industrial emissions have declined
significantly since 1990, largely due to production shifting to other countries, the GHG emissions
attributable to U.S. industry product consumption continue to increase (U.S. EPA, 2021). Figure
1.2a shows the breakdown of U.S. industrial processes and product GHG emissions. Industrial
GHG emissions come from both the burning of fuels to produce energy (e.g., natural gas-fired
heat treatment furnaces) and as a byproduct of the chemical and physical transformations needed
in material production (e.g., reduction of iron ore using coke results in liquid iron and carbon
dioxide waste gases) (U.S. EPA, 2021). These chemical and physical transformations can result
in the release of GHGs such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and
fluorinated greenhouse gases (e.g., HFC-23). The GHG byproduct generating processes include iron
and steel production, metallurgical coke production, cement production, petrochemical production,
lime production, etc. (U.S. EPA, 2021).
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Figure 1.3: Annual U.S. industry GHG emissions including direct and indirect emissions (U.S. EPA,
2021)

1.3.1 Emissions from the Steel and Aluminum industry

Among all the industrial processes, material production dominates industry emissions; e.g.,
iron and steel production contributes to around 24% of U.S. industry GHG emissions. Aluminum
production, as the second-largest metal industry GHG emitter, accounts for around 1% of U.S.
industry GHG emissions (Figure 1.3). The GHG intensity of primary aluminum production is
8.6 t CO2eq. eq./t, more than five times the GHG intensity of primary steel production (Milford
et al., 2011). These steel and aluminum products are consumed across transport, construction
(buildings and infrastructure), energy, consumer goods, and other sectors. More than 82 Million
tons (Mt) of finished steel products (USGS, 2021b) and 2.87 Mt of finished aluminum products
(USGS, 2021a) were consumed by the U.S. in 2020. Although consumption declined in 2020 due to
supply chain interruptions because of the COVID-19 pandemic, U.S. steel and aluminum demand
is expected to recover (Holcomb, 2021; Egan, 2021) and the aluminum demand is predicted to
increase continuously, driven by the expanded production of lightweight vehicles(Egan, 2021).

The emissions from the transport and industry sector are highly linked. Among all the end-
use sectors, 26% of steel products (Zhu et al., 2019) and 44% of aluminum products (Zhu and
Cooper, 2019) are produced for use by the transport sector. This is because around 60% of vehicle
components (by weight) are steel and 10% are aluminum (Argonne, 2020). As U.S. LDV travel
demand continues to increase (FHWA, 2020), more materials need to be produced for use in new
vehicles to supply the transport need. This increased vehicle production and vehicle lightweight
design using high-strength steel and aluminum (Kim et al., 2010; Milovanoff et al., 2019) will likely
drive the demand and emission increase from the automotive steel and aluminum industry.
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1.3.2 Opportunities to Reduce U.S. Steel and Aluminum Emissions

To reduce the steel and aluminum sector emissions, energy efficiency strategies have been
proposed (Tanaka, 2011; Worrell et al., 2009). Energy efficiency strategies include implementing
the best available technologies or innovative technologies at steel and aluminum production facilities.
For example, Worrell et al. (2007) indicate that coke substitution in primary steel production and
more efficient electrolysis in primary aluminum production could improve the energy consumption
and emission performance at current steel and aluminum production facilities. Allwood et al.
(2012) and Ryan et al. (2020) looked at adopting innovative technologies, e.g., smelt reduction
and electrolysis for steel and inert anodes in aluminum production. However, even with the most
innovative technologies implemented, Allwood et al. (2010) estimate the energy efficiency strategies
can only achieve a 34% reduction of global steel production emissions and a 23% reduction of
aluminum production emissions because the current practice of steel and aluminum making are
approaching the practical thermodynamic limit (Gutowski et al., 2013). It is impossible to achieve
the required 70% emission reduction target suggested by IPCC with energy efficiency strategies
only. Therefore, Allwood et al. (2010) indicate that material efficiency strategies are needed for the
industry to meet its emission reduction obligations. Material efficiency means delivering services
with smaller amounts of materials (Cooper, 2014). Examples of material efficiency strategies
include improving fabrication process yield and increased recycling (Allwood et al., 2010).

Figure 1.4: Direct and indirect GHG emissions intensity of steel and aluminum production derived
from International Energy Agency (2007); International Aluminum Institute (2007) and Milford et
al. (2011)

To identify where in the metal supply chain system material efficiency strategies could be applied,
a detailed understanding of the material flow and thus loss and scrap generation is needed. Material
flow analysis (MFA) is often used to quantify the stocks and flows of materials in defined temporal
and economic or geographic boundaries, and a detailed MFA gives insight into the chemical
composition of flows and the difficulties of recycling (e.g., copper wiring contamination in steel
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scrap). Although numerous detailed steel MFA studies have been conducted for the UK (Michaelis
and Jackson, 2000a,b) and globally (Cullen et al., 2012), no such MFA exists for the U.S. steel
industry.

Constructing a high-quality MFA often requires a large amount of information which leads to the
common problem of data scarcity and inconsistency (Brunner and Rechberger, 2017; Kopec et al.,
2016). Current MFA studies are heavily dependent on expert knowledge and the data are often
manually manipulated to satisfy the mass balance and other constraints of the network (Brunner and
Rechberger, 2017; Cullen et al., 2012). The resulting MFA networks are thus susceptible to personal
bias during the data reconciliation process and lack the updatability and flexibility to accommodate
new data or a change in network structures (e.g., new exports and consumption of U.S. produced
direct reduced iron (DRI) resulting in a change to the upstream material flows). Given the data
availability and inconsistency issues in MFA, at least three formal data reconciliation methods have
been proposed: nonlinear least-square optimization (Kopec et al., 2016), Bayesian updating (Lupton
and Allwood, 2018), and the RAS input-output matrix method (Ploeg, 1988) to solve the problem.
However, the previous data reconciliation research often only focuses on the theoretical applicability
aspect with a problem-dependent set up to address the specific data reconciliation issue. A general
framework to produce MFA networks in a fast, flexible, and updateable manner is needed in order
to evaluate the potential for increased material efficiency in materials systems such as the U.S. steel
sector.

Unlike the status of steel MFA studies, several detailed MFA studies have been conducted for
the U.S. aluminum industry (Hatayama et al., 2010; Chen and Graedel, 2012; Bertram et al., 2017).
Reviewing the aluminum MFA studies reveals that currently, the U.S. end-of-life (EOL) aluminum
recycling rate is between 34-63% (Hatayama et al., 2010; Chen and Graedel, 2012; Bertram et al.,
2017) which is much lower than the 90% recycling rate suggested by previous studies to meet the 2
°C target (Allwood et al., 2010). Part of the collected scraps is exported and recycled overseas which
further contributes to the material loss in the U.S. (USGS, 2021c). Compared to primary production,
secondary steel and aluminum production reduces the GHG emissions by 75% and 95% respectively
(Figure 1.4). In order to improve the recycling rate, studies have looked at the reasons for the low
EOL aluminum recycling rate in the U.S. (Atherton, 2007; McMillan et al., 2010; Hatayama et al.,
2012). They point out that the scrap collection, scrap contamination, scrap mixing, and new alloy
chemical composition requirement potentially cause the low current aluminum recycling rates in
the U.S. while the quantitative impact of each potential reason is unclear. Among all the aluminum
end-use sectors, the automotive wrought aluminum sector is driving U.S. aluminum demand while
the closed-loop recycling rate of current automotive wrought aluminum is close to zero. Research is
needed to analyze this emerging market to prepare manufacturers and recyclers for future aluminum
wastes.
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Laboratory scale scrap separation and refining technologies have been proposed to remove the
tramp elements in contaminated and mixed scraps so that they can be used to produce products
that meet the new alloy demand (Gaustad et al., 2012; DeYoung et al., 2011; Ambrose et al., 1983;
Gesing et al., 2010; F. and V., 2017). Many of these technologies are still in their infancy, require
long R&D times, huge investment, and the potential impact/benefits in the supply chain system
remain unclear. Therefore, a holistic model is needed to quantitatively understand the problems that
constrain the recycling rates and the potential of emerging recycling technologies to overcome the
barriers to increase recycling .

1.4 Thesis structure

In light of the review presented in Sections 1.1-1.3, this thesis presents research on how to reduce
U.S. LDV sector emissions and U.S. steel and aluminum industry emissions.

The objectives of Chapter 2 are to answer the following research questions:

• What is the effect of increasing deployment of U.S. alternative fueled vehicles on cumulative
emissions and the global mean temperature between now and 2050?

• How can the U.S. LDV sector meet a 70% cut in attributable emissions (production, use and
disposal) by 2050?

The objectives of Chapter 3 are to answer the following research questions:

• How to record and reconcile inconsistent MFA input data and produce an easily updateable
and internally consistent material flow network?

• How does U.S. steel flow from iron ore through steel processing and fabrication to end-use
consumption as products?

• Where are the key opportunities for the U.S. steel industry to become more materially
efficient?

The objectives of Chapter 4 are to answer the following research questions:

• How does scrap collection and the chemical compositional mismatch between the available
scrap streams and demand for metal affect U.S. EOL aluminum recycling rates?

• How are the composition and scale of demand and scrap availability going to change in the
key aluminum demand driver, the U.S. automotive aluminum sheet market?
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• What is the performance (efficacy, energy, cost, yield, and environmental impact) of key
existing and emerging aluminum recycling technologies and how could they be used to
increase the recycling rate of U.S. EOL autobody aluminum sheet scrap?

A summary of the contributions is presented in Chapter 5, along with potential future research
that could be conducted in these three research areas.
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Chapter 2

Reducing Greenhouse Gas Emissions from US Light-Duty Transport in Line
with the 2 °C Target

Publication related to this work:
Conference articles:

• Zhu, Y., Skerlos, S.J., Xu, M. and Cooper, D.R., 2020. System level impediments to achieving
absolute sustainability using LCA. Procedia CIRP, 90, pp.399-404.

Journal articles:

• Zhu, Y., Skerlos, S.J., Xu, M. and Cooper, D.R., 2021. Reducing Greenhouse Gas Emissions
from US Light-Duty Transport in Line with the 2 °C Target. Environmental Science &

Technology, 55 (13), pp.9326-9338.

Making, driving, and disposing of U.S. light-duty vehicles (LDVs) accounts for 3% of global
greenhouse gas emissions related to energy and processing. This chapter calculates future emissions
and global temperature rises attributable to U.S. LDVs. We examine how 2021-2050 U.S. LDV
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cumulative emissions can be limited to 23.1 Gt CO2 eq., helping to limit global warming to less
than 2 °C. We vary four vehicle life cycle parameters (transport demand, sales share of alternative
fuel vehicles, vehicle material recycling rates, and vehicle lifespans) in a dynamic fleet analysis
to determine annual LDV sales, scrappage, and fleet compositions. We combine these data with
vehicle technology and electricity emissions scenarios to calculate annual production, use, and
disposal emissions attributable to U.S. LDVs.

Only 3% of the 1512 modeled pathways stay within the emission limit. Cumulative emis-
sions are most sensitive to transport demand, and the speed of fleet electrification and electricity
decarbonization. Increasing production of battery electric vehicles (BEVs) to 100% of sales by
2040 (at the latest) is necessary, and early retirement of internal combustion engine vehicles is
beneficial. Rapid electricity decarbonization minimizes emissions from BEV use and increasingly
energy-intensive vehicle production. Deploying high fuel economy vehicles can increase emissions
from the production of BEV batteries and lightweight materials. Increased recycling has a small
effect on these emissions because over the time period there are few postconsumer batteries and
lightweight materials available for recycling. Without aggressive actions, U.S. LDVs will likely
exceed the cumulative emissions budget by 2039 and contribute a further 0.02 °C to global warming
by 2050, 2.7% of the remaining global 2 °C budget.

2.1 Chapter Background

The Intergovernmental Panel on Climate Change (IPCC) recommends that humanity cuts global
annual anthropogenic greenhouse gas (GHG) emissions by 41-72% by 2050 from the 2010 level to
avoid the worst consequences of climate change and to prevent global warming this century of more
than 2 °C above the pre-industrial temperature (IPCC, 2014). Over three-quarters of anthropogenic
GHG emissions are from the use of energy and industrial processes (Masson-Delmotte et al., 2018).
Almost 3% of these emissions (Figure 2.1) are attributable to U.S. light-duty vehicles (LDVs),
which comprises passenger cars (sedans/wagons), SUVs (car SUVs and truck SUVs), and light
trucks (minivans/vans and pickups). Attributable emissions include production emissions at the start
of a vehicle’s life cycle (material production and manufacturing processes), use phase emissions
released throughout the vehicle lifespan as a consequence of driving the vehicle, and disposal
emissions from end-of-life (EOL) processing.
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Figure 2.1: Global GHG emissions (left), U.S. transport GHG emissions (middle) and U.S. transport
GHG emissions splitting domestic and import(right) in 2015

Most previous LDV emissions research and all current U.S. legislation focus on use phase
emissions, which are released from tailpipes, fuel production, and electricity generation (for vehicle
charging). Life cycle assessments (LCAs) of internal combustion engine vehicles (ICEVs) show
that the use phase accounts for over 90% of a single vehicle’s life cycle emissions (Hawkins et al.,
2013; Bauer et al., 2015; Messagie et al., 2014; Ma et al., 2012; U.S. EPA and NHTSA, 2016).
Options explored in the literature and by industry to reduce use phase emissions include improved
air-conditioning systems (Farrington and Rugh, 2000), lightweighting through material substitution
and/or downsizing (Wolfram et al., 2021; Heywood et al., 2015; Kim et al., 2011; Luk et al., 2017),
more intensive use (Wolfram et al., 2021), exhaust after-treatment devices (Black et al., 1980),
improved engine and transmission efficiencies (Greene and DeCicco, 2000), and alternative-fueled
vehicles such as battery electric vehicles (BEVs) (Javid and Nejat, 2017; Mayyas et al., 2017; Miotti
et al., 2016). U.S. legislative efforts to curb use phase emissions include the federal Corporate
Average Fuel Economy (CAFE) standard (U.S. EPA and NHTSA, 2016), which regulates new
vehicle use phase fuel economy and GHG emissions. In 2020, the Safer Affordable Fuel-Efficient
(SAFE) Vehicles Rule was issued that eases the previous CAFE standard from a 4% annual fleet
average fuel economy increase to 1.5% (U.S. EPA and NHTSA, 2016). In addition, the California
Air Resources Board sets its own Advanced Clean Cars Program (Board, 2020) which has been
(partially) adopted by at least 11 other states to promote the deployment of vehicles with zero
tailpipe GHG emissions. No U.S. legislation to date aims to curb GHG emissions from vehicle
production or disposal.

Several studies have analyzed how U.S. LDV use phase emissions can be cut in line with IPCC
targets (Yang et al., 2009; Greene et al., 2014; Bastani et al., 2012; Replogle and Fulton, 2014;
Supekar and Skerlos, 2017). McCollum and Yang (2009) calculate that 2050 U.S. LDV fleets
consisting of either 100% biofuel-powered vehicles or a combination of hydrogen fuel cell vehicles
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(FCVs), battery electric vehicles (BEVs), and ICEVs would result in 2050 GHG emissions being
80-90% lower than in 1990. Later, Greene et al. (2011) and Bastani et al. (2012) estimate that a
50-65% emissions reduction by 2050 (from 2010) is possible if biofuels, FCVs, and BEVs comprise
40-65% of the 2050 fleet and vehicle mileage is reduced by 0-20%. Replogle and Fulton (2014)
estimate that if 50% of urban U.S. LDV mileage (equaling 30-35% of total U.S. LDV mileage)
could be replaced by 2050 with public transportation, cycling, and walking (replicating average EU
urban transport patterns), it would reduce urban U.S. LDV use phase emissions by 60% compared
to 2010. Elsewhere, Supekar and Skerlos (2017) analyze how the U.S. automotive and electricity
sector can collectively meet a 70% reduction in use phase GHG emissions by 2050 (from 2010)
using a least-cost approach. They find that climate action must begin by 2023-2026 if the target is
to remain feasible and that any delay only increases costs. Supekar and Skerlos exclude emissions
from vehicle production and power plant construction.

Despite the dominance of use phase emissions in most LCAs, there are at least three reasons why
production and disposal emissions are important to consider in analyses of future LDV emissions:

• Vehicle production emissions are increasing both in absolute terms and relative to life cycle
emissions. Lightweight structural materials (e.g., aluminum and composites) are increasingly
used in vehicle construction but are more emissions-intensive to produce than traditional steel
vehicle structures (Zhu et al., 2020). The shift in powertrains is also increasing production
emissions with recent LCAs finding that production accounts for 40-70% of BEV life cycle
GHG emissions depending on the battery size (Hawkins et al., 2013; Kelly et al., 2015;
Elgowainy et al., 2018; Ellingsen et al., 2016; Karabasoglu and Michalek, 2013; Lewis et al.,
2014; Majeau-Bettez et al., 2011). Dai et al. (2019) estimate that 70% of Li-ion battery
production emissions are from battery cell manufacturing where half of those emissions are
from mining and refining the electrode materials (e.g., Li2CO3 and CoSO4) (Dai et al., 2019).
Increased EOL recycling could reduce production emissions (Harper et al., 2019). Ciez and
Whitacre (2019) and Dai et al. (2019) claim that direct physical recycling of battery cathode
materials could reduce battery production emissions by 15-20% (Harper et al., 2019; Ciez
and Whitacre, 2019).

• “Fleet effects” amplify production emissions (Field et al., 2000; Kim et al., 2010). Growing
production rates, with a greater number of new (production) emissions-intensive LDVs
produced each year, means that the annual fraction of emissions attributable to production
is greater than in single vehicle LCAs (Zhu et al., 2020; Sutherland et al., 2020). Zhu et al.
(2020) showed that this effect can delay the benefit of reduced cumulative emissions when
switching to vehicles with lower life cycle (but higher production) emissions (Zhu et al.,
2020).
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• The effect of LDVs on the global temperature may depend on the timing and species of GHGs
released. The global temperature response to an impulse of emitted GHG depends on both
the time that has elapsed since the release of the emissions and the GHG species; e.g., the
temperature impulse responses to CH4 and N2O peak after 10 and 30 years, respectively
(Sterner and Johansson, 2017; IPCC, 2014). The release of production emissions early in
the vehicle life cycle will increase global temperatures. Over time, the share of different
GHG species will also likely vary between production and use. For example, analysis of
GREET model (Argonne, 2020) emissions factors indicates that a greater proportion of CH4

is released in coal and natural gas production (and therefore current electricity generation and
subsequent vehicle production) than in gasoline production.

Few studies consider production as well as use phase emissions attributable to future U.S. LDVs.
Exceptions are Onat et al. (2016) and Milovanoff et al. (2019, 2020). Onat et al. consider four vehicle
deployment scenarios (ICEV dominant, HEV dominant, PHEV dominant, and BEV dominant) and
find that 100% BEV new vehicle sales in 2050 can reduce annual emissions by 30% compared to
2010. Milovanoff et al. (2019) calculate a maximum reduction in annual emissions of 25% when
combining lightweighting (by material substitution) and electrification scenarios. Milovanoff et al.
(2020) calculate that electrification can reduce 2015-2050 cumulative CO2 emissions (excluding
other GHGs) in line with the 2 °C target if BEVs reach 60% of sales by 2040 combined with 100%
renewable electricity and increasingly efficient and lightweight ICEVs. However, their CO2 budget
(Milovanoff et al., 2020), based on an extrapolation from GCAM data, is less stringent (>25%
higher) than those used in comparable studies (McCollum and Yang, 2009; Greene et al., 2014;
Bastani et al., 2012; Replogle and Fulton, 2014; Supekar and Skerlos, 2017). Relaxing the emissions
budget for any of the major emitting sectors is likely to render the targets in the remaining sectors
infeasible (Allwood et al., 2010). As part of a sensitivity analysis, Milovanoff et al.’s model finds
no solution for meeting a lower emissions budget as used in the majority of studies (including the
present article); however, they assume a negligible improvement in future BEV fuel economies and
model neither decarbonization of the electricity used in vehicle production (other than aluminum
production) nor policies that increase public transport or accelerate the turnover/decarbonization
of the existing fleet. Studies that are not focused on the U.S. include Modaresi et al. (2014).
They estimate that lightweighting through greater use of high-strength steel (HSS) or aluminum
could reduce cumulative global passenger car emissions (2010-2050) by 4-8% with a further 2-3%
reduction possible through closed-loop recycling of the lightweight materials (Modaresi et al., 2014).
Elsewhere, in an analysis of Great Britain’s passenger car emissions, Serrenho et al. (2017) find
that a combination of lightweighting, increasing vehicle intensity of use, and increasing BEV and
PHEV sales (60% by 2030 and 100% by 2050) could reduce cumulative emissions (2015-2050) by
21% (Serrenho et al., 2017). In both these studies, emissions-intensive light trucks account for a
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negligible fraction of vehicle sales; whereas, light truck (truck SUV, minivan, and pickup) sales
have accounted for around 42% of all LDV sales in the U.S. over the last decade (U.S. EPA, 2020).

2.1.1 Scope of This Chapter

This chapter seeks to understand the physical basis for how the U.S. LDV sector can cut annual
fleet life cycle GHG emissions (the sum of vehicle production, use phase including fuel cycle, and
disposal emissions in a single year) by 70% by 2050 from the 2010 level, which is close to the
maximum reduction recommended by the IPCC for meeting the 2 °C target (IPCC, 2014). We model
the annual life cycle GHG emissions and the global temperature rise attributable to the U.S. LDVs
between 2021 and 2050 under a variety of pathways informed by the literature reviewed above and
existing policies elsewhere in the world. We attribute to U.S. LDVs any emissions released outside
of the U.S. in making or disposing of vehicles and fuels used in the U.S. A business-as-usual (BAU)
pathway is defined as the base case set of vehicle life cycle parameters combined with the base case
vehicle technology and electricity emissions scenarios (see Section 2.2 Methods).

2.2 Chapter Methods

2.2.1 Calculating U.S. LDV Emissions and Targets

The basis of the analysis is summarized in Eqns 2.1 and 2.2:

Annual emissions[kgCO2/CH4/N2O] =
∑
P.T.

(EIprodP.T. × ProdP.T.

+ EIuseP.T. × Fleet sizeP.T.

+ EIdisposalP.T. × V ehicle scrappedP.T.)

(2.1)

Global mean temperature rise2050[
oC] =

∑
i

∫ t=2051−2021

0

(Annual emissionsi(s)

· AGTPi(t− s))ds

(2.2)

The GHG attributable to U.S. LDVs is the sum of emissions from vehicle production, use, and
disposal. For each year of the analysis (2021-2050), we calculate the number of vehicles produced
(both domestically and internationally) for U.S. consumption (Prod in Equation 2.1), the fleet size,
and the number of vehicles scrapped. Then, we calculate the emissions of the major GHG species
(CO2, CH4, and N2O (IPCC, 2014)) released per vehicle in each year of the vehicle life cycle
(emissions intensity, EI). For each year of the analysis, these emissions species are agglomerated in
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CO2 equivalents using the characterization factor (global warming potential (GWP) with a 100-year
time horizon). Equation 2.1 is used to calculate a cumulative emissions budget (2021-2050) of 23.1
Gt CO2 eq. (Appendix A), which corresponds to a 70% reduction in annual emissions (at a constant
annual rate) by 2050 from 2010. This budget is similar to previous estimates assuming an equal
proportional emissions reduction across all end-use sectors (Yang et al., 2009; Greene et al., 2010;
Bastani et al., 2012; Replogle and Fulton, 2014; Supekar and Skerlos, 2017).

The world’s remaining temperature budget between 2021 and 2050 if the globe is not to exceed
the 2 °C target is 0.87 °C (Appendix A, medium IPCC scenario (Masson-Delmotte et al., 2018)).
The annual release of individual emissions species calculated using Equation 2.1 is used in Equation
2.2 to determine the future contribution of U.S. LDVs to the global mean surface temperature rise.
Equation 2.2 uses the convolution integral over time of the annual emissions of each GHG species
(i) and the Absolute Global Temperature Change Potential (AGTP) (i.e., global temperature impulse
response) of the different GHG species (Appendix A). The global mean temperature rise metric
is further down the cause-effect chain from emissions to climate change impacts than the GWP. It
may be more relevant for determining the environmental consequences of emissions; however, the
calculation is also far more uncertain (Levasseur et al., 2016). It is important to determine whether
the temperature rise closely correlates with cumulative CO2 eq. and therefore whether the conclusions
of an emissions analysis are robust across these different climate metric approaches (Levasseur
et al., 2016). A gross decoupling of results determined using the two metrics may indicate that over
the time period of interest GWP alone is an insufficient metric on which to base mitigation and
adaptation policies (Levasseur et al., 2016).

We analyze ten types of powertrains (P.T.) for passenger cars and light trucks: gasoline ICEVs
(which can be retrofitted to use bioethanol gasoline (Fuel Flex kit, 2021)), 100-mile BEVs, 200-mile
BEVs, 300-mile BEVs, 10-mile all-electric range gasoline plug-in hybrid electric vehicles (PHEVs),
40-mile all-electric gasoline PHEVs, hybrid electric vehicles (HEVs), FCVs, compressed natural
gas vehicles (CNGVs) and diesel ICEVs. All these powertrains are included in the U.S Energy
Information Administration’s (EIA) prediction of powertrains sold into the U.S. LDV fleet between
2020 and 2050 (U.S. EIA, 2020). We model vehicle size class at the resolution of passenger cars,
SUVs, and light trucks due to LCA data limitations.

2.2.2 Annual Vehicle Production, Fleet Size, and EOL Flows (see section A3 of the Appendix
A for more details)

The future number of passenger cars, SUVs, and light trucks produced, used, scrapped, and
recycled each year containing each type of powertrain (needed in Equation 2.1) depends on the size,
age, and powertrain composition of the current LDV fleet and the vehicle life cycle parameters:
the aggregate LDV vehicle travel demand (measured in kilometers) needed to provide transport

17



services, the percentage sales of alternative fuel vehicles that determines the addition of different
car, SUV and light truck powertrains to the fleet, the vehicle lifespan that determines how often
vehicles need to be replaced, and the recycling rate that helps to determine production emissions.
These four parameters were selected so that the vehicle and material flow occurring at each stage
of the life cycle could be adjusted: production, use, and disposal. The selection was informed by
a mechanistic understanding of what drives LDV production (provision of transport services not
satisfied by public transport), the fuel requirements of the fleet (the fleet size, age, and powertrain
composition), and LDV disposal (vehicle lifespans).

The current age and composition of the U.S LDV fleet (Equation 2.3) were determined using a
flow-driven dynamic material flow analysis (DMFA) approach, using LDV production data (1975-
2018) from EPA (2020), and vehicle lifespan probability mass functions for passenger cars, and
light trucks produced between 1975 and 2020 from Liao et al. (2021) (Liao et al., 2021). In the
absence of other data, the vehicle lifespan for SUVs is assumed to be the average of passenger cars
and light trucks.

Fleet sizet =
t∑

to=1975

(Prodt0 × (1− Ft0,t−t0+1)) (2.3)

where F(t0, t− t0 +1) is the cumulative distribution function of the vehicle lifespans (Liao et al.,
2021). Future vehicle flows are calculated using a fleet-driven (stock-driven) DMFA where for a
given year (t) the number of vehicles scrapped of each powertrain, size, and age (a) is given by
Equation 2.4. The production of new LDVs of different powertrains for U.S. consumption is given
by Equation 2.5, and the aggregate fleet size is given by Equation 2.6.

V ehicle scrappedt,a = Prodt−a × Ft−a (2.4)

Prodt =(aggregate LDV travel demandt−
amax−1∑
a=1

((Fleet sizet−1,a − V ehicle scrappedt,a+1)

× km traveled per vehiclet,a+1))/(km traveled per vehiclet,a=1)

(2.5)

Fleet sizet =Prodt +
amax∑
a=1

Fleet sizet−1,a −
amax∑
a=1

V ehicle scrappedt,a (2.6)

To determine the inputs to the fleet-driven DMFA, three life cycle parameters are needed: the
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vehicle travel demand, the percentage sales of alternative fuel vehicles, and the vehicle lifespan.
The vehicle material recycling rate is then applied to the vehicle DMFA results to determine the
recycled content of vehicle materials that will affect vehicle production emissions.

2.2.2.1 Vehicle Life Cycle Parameter Values Simulated

The future LDV fleet size depends on the aggregate LDV vehicle travel demand (in vehicle
km/year) and the average km traveled per vehicle of age a (in vehicle km/vehicle-year which is
a function of both year and vehicle age). We define four values of vehicle travel demand: three
extrapolations of the historical U.S. travel trend (base case, low growth, and high growth vehicle
travel demand), and a demand substitution case that models increased public transportation, walking,
and cycling. The base case aggregate LDV vehicle travel demand is informed by the Federal
Highway Administration’s report of 1969-2019 LDV travel trends (4.63 trillion LDV km in 2019)
(FHWA). (2021) and a prediction that this aggregate demand is likely to increase at an average rate
of 0.7% annually (FHWA, 2020), which is consistent with EIA (2020)’s reference case prediction.
Sensitivity analyses are included equal to 0.1% and 1.0% annual growth in aggregate demand,
corresponding to the EIA (2020)’s low and high economic growth case predictions respectively
(see A3 in Appendix A). In any year, the annual km traveled per vehicle of age a years is a fraction
(less than 1) of the kilometers travelled by the vehicle at age 1 year. The decline in the annual
km travelled for older vehicles (Appendix A) is derived from U.S. EPA and NHTSA (2016). The
annual km traveled per vehicle of age 1 year (new vehicles) is assumed to increase at a constant
annual rate of 0.2% between 2021 and 2050 calculated from EIA (2020)’s reference case prediction
(A3 in Appendix A). The demand substitution case builds on the analysis of Replogle and Fulton
(2014): a transition to European urban transportation patterns that will see increased personal
exercise, a doubling in public transport, and both the aggregate and per vehicle U.S. LDV travel
demand decrease by 30% at a constant rate from 2023 to 2050 (A4 in Appendix A). When modeling
replacement of personal LDV travel with public transportation, we include the additional emissions
from vehicle production for public transport (e.g., busses, trains etc.) calculated from Chester and
Cano (2016) and Chan et al. (2013) and the use-phase emissions of the new public transport vehicles
calculated from Replogle and Fulton (2014) and Logan et al. (2020). However, we do not model
the embodied emissions of new public transport infrastructure (e.g., constructing new urban rapid
transit systems), which is a limitation of this chapter.

This chapter does not include autonomous vehicle (AV) deployment scenarios because the
effect on emissions of level 5 AVs, if and when they became commonplace, is very unclear.
Some researchers have suggested that AVs will lower emissions by reducing congestion, parking
infrastructure, and leading to lighter vehicles and platooning (Greenblatt and Saxena, 2015; Kopelias
et al., 2020). However, others indicate that emissions could rise as AVs lead to increased vehicle
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speeds, commuting distances, and unoccupied travel (Fagnant and Kockelman, 2014; Harper et al.,
2016; Miller and Heard, 2016; Taiebat et al., 2018).

While the aggregate LDV vehicle travel demand determines the fleet size, the sales share of
alternative fuel vehicles determines the powertrain composition of the new LDVs produced and
the fleet. We model 7 sales share cases for alternative fuel vehicles. The base case equals the
EIA (2020) prediction of future vehicle sales that includes sales of all 10 powertrains and an
increasing sales shares for alternative fuel vehicles from 6% in 2020 to 16% of new LDV sales
by 2050 (Figure A3 in Appendix A). All other cases simulate a constant increase in the sales
share of a single powertrain from the 2020 value. Four cases simulate a 100% sales share by 2050
for HEVs, PHEV40s (already proven and popular technologies (at Argonne National Laboratory,
2020)), biofuel fuel flex vehicles (a 100% biofuel share is deemed feasible by McCollum and Yang
(McCollum and Yang, 2009)), and BEV300s (BEV300 2050) respectively. Our LCAs (Figure A20
in Appendix A) and cumulative emissions results (Figure 2.2) showed that BEVs have the greatest
potential to lower life cycle emissions. Therefore, we conducted two further sets of simulations
of accelerated BEV300 sales: 100% BEV300 sales by 2040 (BEV300 2040) and 2030 (BEV300
2030). BEV300 vehicles (which have a comparable range to top-selling U.S. ICEVs (Van Haaren,
2011)) are assumed to dominate BEV sales due to range anxiety, as indicated by existing consumer
preferences recorded by Accenture (Accenture, 2011). The accelerated BEV sales share simulations
are informed by EV deployment plans elsewhere in the world; e.g., the BEV300 2030 case is
comparable to the California (Office of Governor Gavin Newsom, 2020), Norway (Norwegian
E.V. policy., 2021) and UK’s (Twidale, 2020) EV deployment plan. The BEV300 2040 case is
comparable to BloombergNEF’s prediction of China and Europe EV sales (BloombergNEF, 2020)
and the BEV300 2050 case is comparable to BloombergNEF’s prediction of the U.S. EV sales shares
(BloombergNEF, 2020). FCVs, CNGVs and diesels have the lowest current sales of all the LDV
powertrains considered (each <1% in 2019 (U.S. EIA, 2020)). Although emissions attributable to
these vehicles are modeled in the base case sales share, we do not simulate FCV dominant, CNGV
dominant and diesel-dominant pathways.

Three vehicle lifespans (base case, ICEV early retirement at 20 years, and ICEV early retirement
at 10 years) are modeled to determine when a vehicle is likely to be disposed of once it enters the
LDV fleet. The base case vehicle lifespan is equal to Liao et al.’s prediction, which models current
and future lifespan probability mass functions for U.S. passenger cars, SUVs and light trucks with
respect to the year of production. The ICEV early retirement simulations are motivated by our
LCAs (section 2.2.3), which show ICEVs have the highest life cycle (and use phase) emissions of
all the powertrains analyzed, and the precedent set by the 2009 U.S. “Cash-for-Clunkers” program
(Morrison et al., 2010). In the early retirement simulations, ICEV vehicles that have survived to 10
or 20 years old (depending on the simulation) are then scrapped. The scrappage of the old ICEV
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vehicles is phased in over a ten-year period (2023-2033) to prevent a large and temporary spike in
demand for new vehicles that could not be met by industry. So, in 2023, ICEVs that are 10 years
older than the target retirement age (e.g., 20 years old for the case of ICEV early retirement at 10
years) are scrapped. In 2024, ICEVs 9 years older than the target retirement age are scrapped, and
so on until all ICEV vehicles reaching the target retirement age are scrapped by 2033 and thereafter.
The 10 and 20-year lifespans are selected because they roughly correspond to the range of minimum
vehicle ages used to qualify for a subsidy in previous vehicle early retirement programs such as
“Cash-for-Clunkers” (Morrison et al., 2010).

Two sets of vehicle material EOL recycling rates are simulated to determine the availability
of 13 secondary material feedstocks for new vehicle production. The base case assumes that the
recycling rates from 2020 remain constant (A3, Table A4 in Appendix A). The 90% recycling
rate case models a constant rate increase in the recycling rate for each material (including those
where significant challenges to economic recycling remain; e.g., composites) from the current value
to 90% in 2050 starting from 2023. Simulating this high recycling rate case is motivated by the
potential for emissions savings from increased recycling (Milford et al., 2011) and the scope for
improvement between current closed-loop recycling rates (e.g., 12% for wrought aluminum) and the
90% suggested as a practical maximum by previous researchers (Allwood et al., 2010; RU., 1999).

2.2.3 Life Cycle Emissions Released per Vehicle (A4 in Appendix A)

The emissions released in the production, use, and disposal phases of the vehicle (the EIs in
Equation 2.1) are dependent on the energy requirements in each phase and the emissions intensity
of the supplied energy. We first define vehicle technology scenarios which are then translated into
production, use-phase and disposal energy requirements. Throughout, the split between electrical
and non-electrical fuel energy is tracked and, for production, material production vs. manufacturing
and assembly energy requirements are disaggregated in order to determine the effect of increased
material recycling. The life cycle energy requirements are then translated into life cycle emissions
per vehicle using fuel emissions intensities, and electricity emissions scenarios. Figures A20 in
Appendix A summarize the calculated life cycle emissions per vehicle for all the powertrains in this
analysis.

2.2.3.1 Vehicle Technology Scenarios

For each combination of powertrain and vehicle size (car, SUV, and light truck), vehicle tech-
nology scenarios were defined by reviewing 12 vehicle technology forecasts extracted from the
academic (Hawkins et al., 2013; Supekar and Skerlos, 2017; Kim et al., 2010; Milovanoff et al.,
2019; Ahmadi et al., 2018; Grunditz, 2016; Shabbir and Evangelou, 2014; Thomas, 2014; Phlips
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and Megli, 2017; Ambrose et al., 2020) and grey literature (U.S. EPA and NHTSA, 2016; U.S.
Department of Energy (DOE), 2015; Moawad et al., 2016). The three vehicle technology scenarios
(base case, moderate and high fuel economy improvement scenarios, see Table A6 in Appendix A)
are based on increasingly aggressive improvements to the following vehicle characteristics: power-
train efficiency, aerodynamics, rolling resistance, accessory power load (e.g., safety features, air
conditioning, and other comfort features), and vehicle lightweighting (through material substitution
and battery weight reduction). Full details are in A4 in Appendix A.

The current (2021) powertrain efficiency, aerodynamic drag, rolling resistance, and accessory
load for each combination of powertrain and vehicle size are extracted from U.S. EPA and NHTSA
(2016). Future powertrain efficiency improvements are informed for: gasoline and diesel ICEVs,
and CNGVs by Thomas (2014), Phlips and Megli (2017) and Moawad et al. (2016) ; for BEVs by
Ahmadi et al. (2018), Ahmadi et al. (2018), Grunditz (2016), and Moawad et al. (2016); and, for
FCVs, PHEVs and HEVs by Moawad et al. (2016). For all vehicles, we apply the range of potential
improvements to aerodynamic drag, rolling resistance, and accessory load described by Moawad
et al. (2016).

The current (2021) material compositions for all combinations of powertrain and vehicle size
are extracted from GREET (Argonne, 2020). The GREET material data is chosen because of
its U.S. centered production assumptions, comprehensiveness, transparency, widespread use, and
public accessibility. Regarding vehicle weight, the base case, moderate and high fuel economy
improvement scenarios correspond to vehicle weights in 2050 that are respectively 10%, 20%, and
30% lighter than in 2020. In the base case, it is assumed that HSS will continue replacing mild
steel (mass substitution factor of 0.67) until 50% of the mild steel in current vehicles is replaced
by 2050. In the moderate fuel economy improvement scenario, 80% of the mild steel in current
vehicles is replaced by 2050 with wrought aluminum (mass substitution factor of 0.55). These
lightweighting scenarios are defined by calculating the average vehicle lightweighting potential of
HSS and aluminum from Kim et al. (2010), Kelly et al. (2015), and Milovanoff et al. (2019). In
the high fuel economy improvement scenario, 80% of the mild steel and all of the aluminum in a
current vehicle is replaced by 2050 with carbon-fiber-reinforced plastic (CFRP) (CFRP for mild
steel: mass substitution factor of 0.50; CFRP for aluminum: mass substitution factor of 0.93). This
high fuel economy improvement scenario is informed by the vehicle lightweighting potential of
CFRP described by Kelly et al. (2015) and U.S. Department of Energy (DOE) (2015). For PHEVs
and BEVs, the weight of the NMC (Ni, Mn, and Co cathode) Li-ion battery is simulated to be 36%
lighter by 2025 and constant thereafter across all fuel economy improvement scenarios. Li-ion
battery lightweighting is likely as carmakers transition from using the current NMC622 (60% Ni,
20%Mn, 20% Co) traction batteries (Schmuch et al., 2018) of around 150 Wh/kg system level
energy density to cheaper and higher energy density NMC 811 batteries. New Li-ion batteries are
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assumed to reach a system level (i.e., battery level) energy density of 235 Wh/kg by 2025 equal
to the goal set for commercialization batteries set by USABC (USABC, 2020). It has also been
widely recognized that reaching a system level energy density of 235 Wh/kg is necessary if the cost
and weight of long range electric vehicles is to be similar to ICEVs (Schmuch et al., 2018). We
assume that the Li-ion battery capacity, chemistry, and energy density remain unchanged between
2025 and 2050 to avoid modeling the high uncertainties in future battery chemistry choices and
associated life cycle impact estimations. The energy density of lead-acid batteries for ICEVs and
nickel metal hydride (NiMH) traction batteries (for HEVs and FCVs) are assumed constant (Xu
et al., 2017; Ding et al., 2019).

2.2.3.2 Use Phase Fuel Economy

The vehicle technology scenarios define the vehicle characteristics for new vehicles produced
in each year of the analysis and for each combination of powertrain and vehicle size. The vehicle
characteristics are used in the FASTSim vehicle simulation tool88 with the Federal Test Procedure
(FTP/EPA75) drive cycle (Brooker et al., 2015) to estimate the fuel economy of new vehicles
over time (see Fig. A10 in Appendix A for simulated fuel economies); thus, for each type of
vehicle the three vehicle technology scenarios correspond to three different projections of new use
phase fuel economy over time. The FASTSim vehicle simulator is chosen among many vehicle
simulation tools (e.g., ADVISOR, AVL CRUISE, IGNITE by Ricardo) because it is open source
(vehicle technology scenarios can be easily edited), computationally fast, and has 90-95% simulation
accuracy compared to real-world fuel economy (Brooker et al., 2015). The simulated annual fuel
economy improvements lie between the minimum annual improvement rate (1.5%/year) in the
recent SAFE standard and the maximum annual improvement rate (5%/year) specified under the
previous CAFE standard.

2.2.3.3 Production and Disposal Energy (A4 in Appendix A)

Production energy is the sum of material production, assembly, and finishing (e.g., painting)
energy requirements. The vehicle technology scenarios specify vehicle material compositions.
These material compositions are converted to material production energy requirements via the
energy intensity of primary and secondary production for each material (Table A11 in Appendix
A)) and each material’s recycled content is calculated from the DMFA results and recycling rate
parameter (Table A4 in Appendix A)). Energy requirements per vehicle for vehicle assembly and
vehicle painting are assumed constant and independent of the vehicle technology scenario and
powertrain. For the vehicle disposal phase, we account for the energy needed to disassemble the
vehicle, i.e., 1.1 MJ/kg of vehicle mass for disassembly (Argonne, 2020).

23



2.2.3.4 Converting Energy to Emissions

The emissions intensities (EIs) of the fuel and electricity used in each stage of the vehicle life
cycle are needed in order to convert the fuel economy, production energy, and disposal energy to
GHG emissions. The current (2020) EI of biofuel (production and combustion) is extracted from
the EPA report on biofuel life cycle emissions (U.S. EPA , 2020) and the EIs of all other fuels are
extracted from GREET. The average proportion of fuel ethanol in typical U.S. gasoline (a blend of
gasoline and ethanol) is modeled to increase from 10% in 2021 to 15% by 2050 based on EPA’s
analysis (U.S. EPA , 2019). For all fuels other than biofuel, the EIs are assumed to be constant
over the modeling time period because combustion emissions are dominant and stoichiometrically
determined. For biofuels (i.e., fuel ethanol), production emissions are dominant and could decrease
significantly with changes to the feedstock and production technologies. 96% of current fuel ethanol
is produced from corn starch through conventional dry milling (Garside, 2020) and their EI is
averaged around 80% of gasoline (U.S. EPA , 2020). Cellulosic ethanol production, e.g., from
switchgrass, has an average EI of 30% that of gasoline (U.S. EPA , 2020) and currently accounts
for <1% of fuel ethanol production (Garside, 2020). The Energy Independence and Security Act
of 2007 set the goal of 16 billion gallons of cellulosic ethanol production by 2022 but this is
not happening yet (Garside, 2020; U.S. EPA , 2007; U.S. Department of Energy , 2016). In this
analysis, cellulosic ethanol production is modeled to account for 10%, 50%, and 80% of all biofuel
production in 2050, corresponding to the base case, moderate and high fuel economy improvement
scenario respectively.

Approximately 17% of current (2021) U.S. electricity is generated from renewable sources
(U.S. EIA, 2020), corresponding to an average U.S. EI of 421 g CO2 eq./kWh delivered. Various
U.S. electric companies (e.g., Pacific Gas and Electric (2017)) have plans for low carbon grids by
2050, and numerous researchers have shown that 80-100% renewable grids are feasible (Pacific
Gas and Electric, 2017; Cochran et al., 2015; Heard et al., 2017; Pleßmann et al., 2014; Connolly
et al., 2011). In this analysis, we, therefore, define three electricity emissions scenarios (Table
A10 in Appendix A) corresponding to increasingly aggressive, but feasible, grid decarbonization:
(1) A base case 30% electricity EI reduction following EIA’s reference scenario prediction in the
Annual Energy Outlook 2021 (from 421 g CO2 eq./kWh in 2021 to 295 g CO2 eq./kWh in 2050 with
rapid decline before 2035), (2) An electricity EI decreasing by 50% at a constant rate from 421 g
CO2 eq./kWh in 2021 to 211 g CO2 eq./kWh in 2050, and (3) An electricity EI decreasing by 80% at
a constant rate from 421 g CO2 eq./kWh in 2021 to 84 g CO2 eq./kWh in 2050.
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2.3 Chapter Results and Discussion

In this analysis, we simulated 1,512 future pathways for the U.S. LDV sector: 4 LDV transport
demands, 7 different deployments of alternative fuel vehicles, 2 recycling rates, 3 vehicle lifespans,
3 vehicle technology scenarios, and 3 electricity emissions scenarios (Table A13 in Appendix A).
The BAU pathway results in 34.8 Gt.CO2 eq. of cumulative emissions (2021-2050): 51% above
the cumulative emissions limit compatible with 2 °C of global warming (23.1 Gt.CO2 eq.). Across
all simulation pathways, the dominant GHG is CO2, accounting for 91-95% of carbon dioxide
equivalent cumulative emissions. Use phase emissions account for the majority of the cumulative
emissions under all simulated pathways. Disposal emissions are negligible (<1%) and production
emissions vary from 7% to 35% of cumulative emissions.

Only 3% of the simulated pathways stay within the emissions limit. Figure 2.2 shows the
sensitivity of the cumulative emissions to the simulated powertrain sales share parameter. Even with
a 100% sales share of alternative fuel vehicles by 2050, none of the pathways meet the cumulative
emissions limit. A BEV300 2050 pathway comes close but only when combined with the most
favorable set of vehicle life cycle parameters and electricity and fuel economy scenarios.

Figure 2.2: Cumulative CO2 eq. emissions for the powertrain sales share simulations. The circular
data points show the emissions when all other parameters and scenarios are base cases. The error
bars show the range of cumulative emissions achieved by varying the other vehicle life cycle
parameters and the electricity decarbonization and fuel economy scenarios. Table A14 describes the
pathways corresponding to the error bar limits for each sales share simulation.
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Figure 2.2 shows that accelerating BEV deployment to 100% of sales before 2050 might enable
the emissions target to be met. Hydrogen FCV dominant, CNGV dominant, and diesel dominant
pathways were not simulated and are not included in Figure 2.2. These powertrains each account
for <1% of current U.S. vehicle sales. Vehicle level LCAs (Figure A20 in Appendix A) also show
that these powertrains are unlikely to deliver the same emission savings as BEVs, PHEVs, or HEVs.
For example, hydrogen FCVs use more electricity than equivalent BEVs because of energy losses
from converting electricity to hydrogen and then back to electricity as well as potential hydrogen
losses in storage (Bauer et al., 2015; Shinnar, 2003).

Figure 2.3 presents how the percentage of simulated pathways (not to be interpreted as probabili-
ties) that stay within the cumulative emissions limit changes with the modeled vehicle life cycle
parameters, vehicle technology scenarios, and electricity emissions scenarios. Figure 2.3 shows that
the cumulative emissions are most sensitive to the speed of fleet electrification: the sales share of
BEVs, the electricity EI, ICEV lifespans, and the demand for LDV transport. Cumulative emissions
are relatively insensitive to increases in the EOL recycling rate and the fuel economy of individual
powertrains.

Figure 2.3: The percentage of pathways that stay within the cumulative emissions limit (i.e.,
‘successful’ pathways) for changing vehicle life cycle parameters (top and bottom-left), vehicle
technology scenarios (bottom-center), and electricity emissions scenarios (bottom-right).
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2.3.1 How the U.S. LDV Sector Can Meet the Emissions Target

Figure 2.4 focuses on the base case and BEV dominant pathways. It presents how the parameters
and scenarios combine to determine the cumulative emissions for each pathway, the fraction of those
emissions attributable to vehicle production, and which combinations stay within the cumulative
emissions limit. We focus on BEVs because both our LCAs (section 2.2.3 2.3 and A4.4 in Appendix
A) and system-level results (Figure 2.2) showed that deploying BEVs has the greatest potential to
lower life cycle emissions. The results shown in Figure 2.4 are likely to be indicative of similar
interactions (e.g., the variation in cumulative emissions attributable to changing fuel economies) for
other powertrain deployments.

(a) The horizontal position of a node on a flag corresponds to the Electricity emissions scenario and the
vertical position of the node corresponds to the Sales share of alternative fuel vehicles.
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(b) Cumulative emissions for varying vehicle life cycle parameters, vehicle technology scenarios. and
electricity emissions scenarios. The higher dashed horizontal lines refer to BAU pathway emissions and the
lower dashed lines refer to the cumulative emissions limit. FE: fuel economy. BC-RR: base case recycling
rates. 90% RR: 90% recycling rates. The numbered arrows correspond to the cumulative emissions wedge
plot shown in Figure 2.5

Figure 2.4: Cumulative CO2 eq. emissions attributable to U.S. LDVs. The cumulative emissions
limit compatible with the 2 °C target is 23.1 Gt CO2 eq., 38% lower than the BAU emissions. An
equivalent figure showing global temperature increases is presented in Figure A23 in Appendix A.
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All pathways in Figure 2.4 that stay within the cumulative emissions limit represent a significant
departure from BAU. No single strategy represents a ‘silver bullet’. Immediate actions are needed to
accelerate fleet electrification and electricity decarbonization (section 3.2), limit transport demand
(section 3.3), and limit the growth of production emissions (section 3.4). Figure 2.5 shows that
without intervention (BAU pathway), the U.S. LDV sector is likely to exceed its cumulative
emissions budget by 2039 and cause 2.7E-3 °C of global warming by 2050, 2.71% of humanity’s
remaining 2 °C budget. Figure 2.5 also shows one pathway for how multiple strategies may be
combined to satisfy the emissions limit and reduce the contribution to global warming to 1.59% of
the remaining 2 °C budget.

Figure 2.5: Cumulative CO2-equivalent U.S. LDV emissions and attributable global warming.
Decarbonization strategies correspond to the numbered arrows in Fig 3b.

Figure 2.5 shows the close correlation between LDV cumulative carbon dioxide equivalent
emissions and the attributable global temperature increase; thus, the conclusions of this chapter are
robust across these two climate metrics. This close correlation is likely because CO2 dominates
annual GHG emissions (91%-95%) in all the simulated pathways and has a relatively constant
temperature response. We would expect less correlation in a system (e.g., a natural gas power plant)
with greater emissions of GHGs (e.g., CH4) that exhibit a clearer time-varying temperature impulse
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response (Edwards and Trancik, 2014).

2.3.2 The Role of Fleet Electrification

All successful pathways require quicker BEV deployment than in the BAU pathway (12% sales
share in 2050). 100% BEV sales before 2050 is a necessary condition of meeting the target (Figure
2.3) and 100% BEV sales by 2030 is likely to be required unless transport demand plummets (Figure
2.3)). This rapid increase in sales will likely require a U.S. government BEV deployment plan
similar to that in the UK (reaching 100% alternative fueled vehicles by 2030 (Twidale, 2020)) or
California (reaching 100% alternative fueled vehicles by 2035 (Office of Governor Gavin Newsom,
2020)). Switching from the BAU pathway to 100% BEV300 sales by 2030 reduces cumulative
emissions by 20% but still exceeds the limit (Fig. 2.4). Combining 100% BEV300 sales by 2030
with an 80% reduction in the electricity EI by 2050 further reduces cumulative emissions but is
still insufficient to meet the emissions limit. Early retirement of ICEVs is likely to be needed to
accelerate the conversion of the LDV fleet to BEVs.

The quickest conversion of the fleet to BEVs simulated in this analysis (100% BEV300 sales
by 2030 with retirement of ICEVs older than 10 years phased in between 2023 and 2033) sees a
BEV only fleet by 2040 which, when combined with an 80% decrease in electricity EI, reduces
cumulative emissions from the BAU by 36% to 22.4 Gt CO2 eq., successfully satisfying the emissions
limit (see Figure 2.4)). A decades-long retirement plan requires U.S. government support and would
be expensive: the 2-month U.S. “cash-for-clunkers” program in 2009 increased annual sales by
3-5% but cost $3 billion (Mian and Sufi, 2012). As a cheaper alternative to early retirement, we
also simulate converting all ICEVs older than 10 years from 2023 onwards to run on 85% (low
emission cellulosic) ethanol-gasoline by retrofitting them with ethanol fuel flex engine injector kits
($300-500/vehicle (Fuel Flex kit, 2021)). Combined with 100% BEV300 sales by 2030 and an
80% decrease in electricity EI, this retrofitting strategy reduces cumulative emissions from the BAU
pathway by 36% in the base case transport demand (just below the emissions limit) and assumes
that the challenges associated with the rapid increase of cellulosic ethanol production are overcome.

The annual electricity demand for LDVs increases under all simulated pathways. Decarbonized
electricity not only benefits new vehicle production and BEV operation but also reduces the use
phase emissions of BEVs and PHEVs (but not HEVs) already on the road. In 2021, 78 TWh of
electricity (the equivalent of 2% of 2020 U.S. delivered electricity, 3,754 TWh) was used to make,
use, and dispose of U.S. LDVs. Under the BAU pathway, electricity demand will increase by
170% to 210 TWh in 2050. Annual electricity demand is even higher in 2050 under the successful
pathways: an average of 1,380 TWh (9% production, 91% use phase, <1% disposal) and equivalent
to 37% of 2020 U.S. delivered electricity. Supekar and Skerlos (2017) calculate that high adoption
of wind and solar power combined with the early retirement of coal/petroleum power plants is
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needed between 2030 and 2050 to ensure that at least 50% of this increased electricity demand
is generated from renewables by 2035. Without grid decarbonization, the benefits of BEVs are
significantly diminished as can be seen in Figure A20 in Appendix A (vehicle LCAs as a function
of electricity grid EI) and by the stretching of each individual flag plot in Figure 2.4 towards the
bottom-right. In addition to the potential GHG emissions benefits, converting the fleet to BEVs also
reduces emissions of air pollutants such as volatile organic compounds, NOx, SO2 and PM2.5 (Ke
et al., 2017).

2.3.3 The Role of LDV Transport Demand

The results show the importance of driving less in being able to meet the emissions target.
Cumulative emissions are sensitive to even the modest variation in transport demand predicted
by the EIA (Figure 2.3). The 30% reduced LDV demand case (accompanied by increased urban
public transport and exercise) further reduces cumulative emissions and makes it possible to observe
the emissions limit without early retirement of ICEVs (Figure 2.4). Increasing low-carbon public
transportation is a priority of the new Biden administration (Biden, 2021); however, delivering
European style urban transport systems will require $trillion-level investments in efficient and
widespread public transport as well as safe and attractive conditions for walking and cycling
(Replogle and Fulton, 2014). Previous studies have found that these changes may be difficult in
the U.S. due to the population density, historical transport policies, and cultural attitudes (Sager
et al., 2011; Buehler, 2011; Ercan et al., 2016). Another barrier to reducing transport demand while
also improving fuel economies (and a limitation of this chapter) is the potential for rebound effects.
For example, Craglia and Cullen (2020) found that improving vehicle efficiency has resulted in
increased travel in the U.K. with a rebound effect of around 5%. EPA and NHTSA (2016) assumed
a rebound effect of 10% in the technical assessment report for CAFE standard based on another
U.K. study by Sorrell and Dimitropoulos (2008) while the California Air Resources Board used
a rebound effect of 3% when setting the Advanced Clean Cars Program. Some of the pressure to
reduce LDV mileage through increased public transport may be relieved through increased remote
work: 30% of U.S. LDV transport vehicle mile demand is for commuting to work (NHTSA, 2017).
Recent U.S. worker surveys reveal that 24-35% of U.S. workers are able to work remotely (Duffin,
2020; Statista, 2021).

2.3.4 The Role of Production Emissions

Production emissions will account for an increasing share of LDV emissions in the coming
decades. In the successful pathways, the average share of annual emissions attributable to production
is 38% in 2050. This compares to 10% of annual emissions in 2021. The share of production
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emissions is increased by the shift towards BEVs, the use of lightweight structural materials, the
early retirement of ICEVs, and the rapid production of new public transport vehicles (Figure 2.3).

Figure 2.4 shows that in the high fuel economy improvement scenario (where CFRP is used to
extensively replace mild steel and aluminum), cumulative emissions are typically higher than in the
moderate fuel economy improvement scenario and can even exceed the cumulative emissions in
the base case fuel economy improvement scenario if early retirement takes place. This increase in
cumulative emissions is caused by an increase in annual production emissions under the high fuel
economy improvement scenario (all over scenarios and parameters being equal to their base case
values) of 108% by 2050 and despite a decrease in annual use phase emissions of 47% (Figure A21
in Appendix A).

Increasing the EOL recycling rate for vehicle materials to 90% by 2050 decreases cumulative
emissions by only 1-5% (Figure 2.4). Approximately a third of these savings are from EV battery
recycling and two thirds are from increased recycling of structural materials. The savings are small
because either recycling rates are already high (for traditional vehicle materials) or it will be decades
before scrap volumes rival new material demand (for EV batteries and emerging structural materials
such as aluminum sheet and composites, Figure A25 in Appendix A). Similarly, BEV battery
recycling will not be able to supply a significant share of the critical materials (cobalt, lithium,
manganese) needed for lithium-ion battery production.

Electricity currently accounts for approximately 30% of vehicle production energy and will
increase to an average of 39% in the successful pathways because of electricity-intensive NMC
Li-ion battery production. Therefore, the electricity EI has a significant effect on the production
as well as use phase emissions (Figure A20 in Appendix A). The EI of upstream production (e.g.,
aluminum-making) might be reduced through sourcing more material from smelters using renewable
hydro energy rather than coal-heavy grids (Cooper et al., 2017). In downstream manufacturing,
there is the potential to reduce material demand by increasing process material utilization (Cooper
et al., 2017; Allwood et al., 2010) and to build “passive” factories powered by on-site renewable
energy generation (Raykar, 2015). Otherwise, vehicle downsizing (without extensive material
substitution) could reduce production (as well as use phase and disposal) emissions but is in conflict
with current U.S. customer preferences for larger vehicles (U.S. Department of Commerce, 2018).
Customer preferences could change, and sales of smaller vehicles could be incentivized by the
government. The potential emissions savings are significant. For example, if all SUV and light
truck sales from 2023 onwards were instead purchases for passenger cars, then that alone would
reduce cumulative emissions from the BAU pathway by 10-18%.
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2.3.5 Chapter Conclusions and Limitations

This chapter has laid out the scale and urgency of the transformation needed for emissions
from U.S. LDVs to reduce in line with the 2 °C target. New policies are needed to address key
challenges including rapid BEV deployment and electricity decarbonization, supplying cellulosic
biofuels at scale, financing public transport systems and “cash-for-clunkers” programs to accelerate
BEV penetration, and changes to behavior/work to reduce transport demand. This analysis has
highlighted the need for low carbon vehicle production because of the shift towards transport
production emissions. This effect is likely to be repeated, at least in the short term, in the power
sector as new renewable power and BEV infrastructure is built; therefore, an increasing focus is
needed on low carbon production as well as on reducing use phase emissions.

Several limitations have been discussed in the analysis. The environmental impacts associated
with the public transportation infrastructure and charging infrastructure are not considered in this
analysis due to modeling complexity. A direction for future research would be a comprehensive
analysis of transport sector, industry sector, building and construction sector to avoid the danger
of shifting the environmental burden from the transport sector to the other sectors. The option of
autonomous vehicles is not considered in this analysis due to high uncertainties associated with
L-5 autonomous driving. In addition, there are uncertainties with the future LDV travel demand
predictions due to possible rebound effects with autonomous vehicles, fuel efficient vehicles or
electric vehicles. This rebound effects will likely increase emissions from vehicles and make it even
harder for the U.S. LDV sector to meet the 2 °C target.

Chapter reprinted with permission from Zhu, Y., Skerlos, S.J., Xu, M. and Cooper, D.R., 2021.
Reducing Greenhouse Gas Emissions from US Light-Duty Transport in Line with the 2 °C Target.
Environmental Science & Technology, 55 (13), pp.9326-9338.. Copyright 2021 American Chemical
Society.
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Chapter 3

Mapping the Annual Flow of Steel in the United States

Publication related to this work:
Journal articles:

• Zhu, Y., Syndergaard, K. and Cooper, D.R., 2019. Mapping the annual flow of steel in the
United States. Environmental science & technology, 53(19), pp.11260-11268.

• Cooper, D.R., Ryan, N.A., Syndergaard, K. and Zhu, Y., 2020. The potential for material
circularity and independence in the US steel sector. Journal of Industrial Ecology, 24(4),
pp.748-762 .

A detailed understanding of material flows is needed to target increased material efficiency and
the circular economy. In this chapter, the U.S. steel flow is modeled as a series of nodes representing

34



processes and products. An easily updatable nonlinear least squares optimization is used to reconcile
the inconsistencies across 293 collated data records on flows through and between the nodes. The
data come from an integrated analysis that includes top-down estimates of steel flow from trade
bodies and government statistical agencies, bottom-up estimates of the steel embedded in products
based on production statistics and bills of materials, and the mass of imports and exports based
on international money flows. A weighting methodology is used to consistently assign confidence
scores to the data and the optimization is used to achieve mass balance and minimize the sum of the
squares of the weighted residuals. The results indicate that yield improvement efforts should focus
on sheet metal forming in the car industry, which accounts for nearly half of all generated fabrication
scrap. The quantity of end-of-life scrap exported and landfilled is greater than the quantity of steel
products imported. Increased domestic recycling of end-of-life scrap might displace around a third
of these imports.

3.1 Chapter Background

The steel industry accounts for 30% of global industrial greenhouse gas emissions (GHG)
(International Energy Agency, 2008). The Intergovernmental Panel on Climate Change (IPCC)
recommends an overall 40% to 70% reduction in GHG emissions from 2010 levels by 2050 (IPCC,
2014). However, with current best steelmaking practices already approaching thermodynamic limits,
even deployment of cutting-edge production technologies will not be enough for the steel industry
to meet the IPCC’s emissions targets (Allwood et al., 2010; Gutowski et al., 2013).

The realization that steel production must decrease if emissions targets are to be achieved has
helped lead to new research areas under the banners of ‘material efficiency’ (Allwood et al., 2010)
and the ‘circular economy’ (Ellen MacArthur Foundation, 2013), both aimed at reducing emissions-
intensive material production. Researchers in these new areas require a detailed material map in
order to identify opportunities.

Unlike in the developing world, U.S. per capita steel stocks plateaued around 1980. The stock
saturation level has been estimated at 9.1-14.3 t/capita (Hatayama et al., 2010; Muller et al., 2006;
Pauliuk et al., 2013). Per capita stocks are expected to saturate in much of the developing world to a
level similar to those in the U.S. by the late 21st century (Pauliuk et al., 2013; Milford et al., 2013).
Therefore, the derived U.S. consumption pattern may represent a population-scaled surrogate model
of the future global state.

3.1.1 Previous Steel Maps and Production Statistics

A detailed snapshot of global production and consumption in 2008 is provided by Cullen et al.
(2012), and Pauliuk et al. (2013) estimate the in-use iron stocks for 200 countries for the same year.
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Wang et al. (2007) construct global and country level iron cycles for the year 2000. Other global
flows focus on the production of crude steel without analyzing the flow of intermediate products
(Hatayama et al., 2010; Hernandez et al., 2018; Yellishetty et al., 2010).

There have been numerous studies on steel use in regions and states, including for the U.K.
(Michaelis and Jackson, 2000a,b), Japan and Asia (Igarashi et al., 2007; Nakajima et al., 2005), the
U.S.(Hatayama et al., 2010; Muller et al., 2006; Pauliuk et al., 2013; Muller et al., 2011), and North
America (Pauliuk et al., 2013). However, these studies either present steel flow data at such a low
resolution as to make it difficult to glean detailed recommendations or are mainly concerned with
steel stock levels and scrap discards, which are only a portion of the overall steel flow.

U.S. focused studies that provide a one year snapshot of the steel flow include Andersen and
Hyman, who create calibrated energy and material flow models for the steel industry in 1994 based
on publicly available data and starting with raw materials and proceeding through to semi-finished
products (Andersen and Hyman, 2001). Müller et al. constructed a flow diagram for steel in 2000
including imports and exports, but only showing aggregated flows of products (e.g., “construction”)
(Muller et al., 2006).

The World Steel Association (WSA) releases a yearly dataset showing production, consumption,
and trade data for over 80 countries (WorldSteel, 2017). High resolution domestic production data
are presented for intermediate products such as hot rolled coil or construction reinforcement bar
(rebar). The WSA also publishes international trade data as mass flows but aggregates direct trade
(imports and exports of steelmaking raw materials such as iron ore and steel mill products such as
cold rolled coil) into broad categories such as “flat products,” and only provide an overall indirect
trade mass flow. Indirect trade is of finished products (e.g., automobiles) that contain steel. The
WSA provides no information on finished goods fabrication or scrap generation and trade.

The United States Geological Survey (USGS), using data largely derived from the trade body
American Iron and Steel Institute (AISI, 2015), presents more specifics on the U.S. steel industry than
the WSA. A yearly “Minerals Yearbook” has sections on iron and steel (United States Geological
Survey, 2016b), iron and steel scrap (United States Geological Survey, 2016c), and iron ore (United
States Geological Survey, 2016d). Unlike the WSA, USGS reports granular data on the intermediate
product (direct) imports and exports, and scrap consumption. Neither USGS nor the WSA publishes
statistics with standard deviation errors; however, errors are clearly present that manifest themselves
as discrepancies both within and across the data sources. One source of error is the process of
collecting and aggregating the data through regular surveys of steel companies. For example, the
Iron and Steel Scrap section of the 2015 USGS Minerals Yearbook(United States Geological Survey,
2016c) notes that data are derived from voluntary monthly or annual surveys, and that about 68%
of known pig iron and raw steel producers responded that year, representing only 32% of the total
scrap consumed that year. USGS reports data for the most recent year and several previous years.
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Numbers for previous years have often been revised as the result of continuing industry survey
returns. There is therefore a tradeoff between the pertinence and the reliability of the data when
using the comprehensive USGS datasets to help examine steel flows.

3.1.2 Scope of this Chapter

A detailed U.S. steel material flow analysis (MFA) is needed to determine the production (and
hence emissions) attributable to U.S. consumption and to identify the most effective strategies to
reduce steel demand. This chapter focuses on 2014 as the most recent year for which detailed and
reliable production and intermediate product data are available from USGS and the WSA.

The MFA is tabulated in the Supporting Information (Table B2 in Appendix B) and is presented
as a Sankey diagram, which is a common form of depicting energy and mass flows (Schmidt,
2008a,b). The flow from U.S. mining and scrap purchases to final U.S. consumption (flow of steel
into use) is shown sequentially from the left side of the diagram to the right. The width of the lines
on the diagram are proportional to the size of the mass flows.

3.2 Chapter Methodology

Several methods exist which could generate a U.S. steel map. Economic data could be used to
assign steel flows to monetary flows based on commerce reporting. However, formal input-output
tables only provide sectoral level resolution (e.g., construction) and the conversion from money
flows to steel flows varies widely among products. Otherwise, top-down data on steel production
(e.g., the WSA Statistical Yearbook) can be used to estimate low resolution steel flows to the level
of intermediate products (e.g., wire rod) and in some cases low resolution sectors (e.g., transport).
The opposite approach of using bottom-up data is based on combining sales data for specific classes
of products with average bills of materials.

An integrated analysis is used in this chapter that leverages the knowledge embedded in all the
above techniques. Data from trade organizations (e.g., the WSA), governmental scientific agencies
(e.g., USGS), and academic literature (e.g., Wang et al. (2007)) is combined with monetary trade
statistics (e.g., Comtrade data on imports and exports (UN, 2020)), and bottom-up estimates derived
by the authors (see Data Records on U.S. Manufacturing. . . ). The steel flow is modeled as a series
of connected nodes representing major steel processing technologies (e.g., the blast furnace) and
major products used and created by industry (e.g., iron ore or passenger cars). Data records from
the integrated analysis are cataloged (B3 in Appendix B) under the corresponding flow coordinate
shown in Figure 3.1. For example, USGS (United States Geological Survey, 2016d) states that
26.8 Mt of iron (contained within iron ore) enters the blast furnace (BF). This datum is cataloged
under the coordinate (1,2). Multiple, potentially conflicting data records may be cataloged under the
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same coordinate; e.g., data sources report that domestically produced pig iron exports in 2014 were
equal to 6.77 kt (United States Geological Survey, 2016b), 7 kt (United States Geological Survey,
2016a), and 52 kt (WorldSteel, 2017). All these records are cataloged under the coordinate (2,49).
Unconventional data referring to multiple flows are cataloged as well. For example, United States
Geological Survey (2016b) does not record the production of continuously cast billets, blooms, and
slabs separately (each is a “node” in the steel map) but does record the sum of the three. This datum
is recorded under coordinate (8,55).

Inconsistencies between the collated and derived data records are reconciled using a least squares
optimization model (see Data Reconciliation). The next three sections describe the modeled steel
flow and the origin of key data records used to generate the steel map. All data records used in this
analysis can be found in the Appendix B.

Figure 3.1: The coordinate system used to define the steel flow and catalogue data records. See
B1.2 for complete details of the cataloguing method

3.2.1 Data Records on the U.S. Steel /industry (Nodes: 1-23)

Steel “flows” from liquid steel production through casting, intermediate product manufacturing,
fabrication of end-use goods, use, and finally end-of-life (EOL) processing. There are additional
flows into and out of these categories in the form of imports, metal losses, scrap generation, and
exports.
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3.2.1.1 Liquid Metal Production

In primary steelmaking, iron ore is first converted to pig iron in a blast furnace (BF) and then
to steel in a basic oxygen furnace (BOF). Small amounts of scrap, DRI, and other iron inputs are
consumed alongside iron ore in the BF. The quantities of each input are reported by United States
Geological Survey (2016b). Iron ore production, import, and export are reported in the USGS
Minerals Yearbook in both the Iron and Steel section and the Iron Ore section. Iron ore is also
used to produce direct reduced iron (DRI), which is another raw material used in steelmaking.
The production, import, and export of DRI are reported in the (WorldSteel, 2017) and by Midrex
(Midrex Technologies, Inc., 2014).

Liquid high-carbon-content pig iron is typically sent straight from the BF to the BOF, where it is
combined with scrap that helps to cool the melt (Yellishetty et al., 2010). However, the pig iron may
instead be cast into ingots that are later used for iron castings, scrap contaminant dilution in EAFs,
or in BOFs not situated near the BF. The WSA reports the production, import, and export of pig
iron in the U.S. (United States Geological Survey, 2016b).

In secondary steelmaking, scrap metal is melted in electric arc furnaces (EAFs) (United States
Geological Survey, 2016b). EOL and manufacturing scrap consumption is reported in the USGS
Minerals Yearbook in the Iron and Steel Scrap section 25. Some pig iron and DRI, up to 50% of the
melt (OICA, 2016),ares also used in the EAF to control the concentration of steel scrap impurities.

A small percentage (<1%) of U.S. liquid steel production uses coke-fired cupola furnaces, which
use scrap and pig iron as metal inputs (United States Geological Survey, 2016b). The quantities
of pig iron, steel scrap, and DRI consumed separately in the BOF, EAF, and cupola furnace are
reported in the Iron and Steel Scrap section of the USGS Minerals Yearbook.

3.2.1.2 Continuous Casting of Semi-Finished Products

Liquid steel is refined in a secondary metallurgy process, which happens either in the BOF, EAF
or in holding furnaces prior to casting (Pretorius, 2018). The output from the secondary metallurgy
process is reported by furnace type in the WSA Yearbook (WorldSteel, 2017). The refined liquid
steel is either continuously cast into “semi-finished” shapes (i.e. billets, blooms, and slabs) or cast
into ingots, which require additional processing before forming in the “primary mill.” The WSA
reports that 98.5% of all steel in the U.S. was continuously cast in 2014 (WorldSteel, 2017). Billets,
blooms, slabs, and ingots are rolled into intermediate steel products such as rods, bars, sheets, and
plates. Steelmaking, continuous casting, and intermediate product forming frequently occur in the
same facility 24, called an integrated mill, reducing the need for reheating between the steps.

No statistics exist on U.S. production of the separate billet, bloom, and slab categories; however,
these semi-finished products are used separately to make different types of intermediate good (e.g.,
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billets are used to make rod and bar while blooms are used to make sections) and the quantity of
each can therefore be inferred by examining the quantity of different intermediate goods produced
(B2.2 in Appendix B). The liquid steel flow is simplified by assuming that all steel made in the
BOF, which has a low tramp element concentration (e.g., pig iron contains less than 0.01 wt.%
copper (Cu) (Company, 2018)) is destined for flat (slab) products, which have a low contamination
tolerance; e.g., less than 0.06 wt.% Cu for drawing steels (Daehn et al., 2017). Steel from the EAF
supplies the balance of demand for flat products and all demand for billet and bloom products.

3.2.1.3 Producing Intermediate Products

Steel mills sell intermediate steel products and the quantities shipped are reported by USGS
at a fine resolution: production, import, and export data are shown for 13 flat product categories,
8 tubing and pipe categories, 6 rod and bar categories, 2 section categories, and 3 cast product
categories (United States Geological Survey, 2016d). The WSA also reports domestic production
statistics at a similar resolution (B2.3 in Appendix B).

3.2.2 Data Records on U.S. Manufacturing and End-Use Products (Nodes: 24-47)

U.S. manufacturers convert cast and intermediate products into finished components and assem-
bled products. For the steel map, it is necessary to estimate the quantity of different intermediate
products used to make different end–use goods, the manufacturing scrap generated by this conver-
sion, and the steel embedded in the end-use products.

Top-down data on the steel flow from intermediate to end-use products are sparse. AISI (2018)
estimates the fraction of intermediate steel used to make products belonging to different end-use
sectors (B2.4 in Appendix B); e.g., they estimate that 40% of all intermediate products (by mass) are
used to make construction products (United States Geological Survey, 2016c). The AISI breakdown
reveals neither the types of intermediate products used during manufacturing different end-use
products, the quantity of scrap generated during manufacturing, nor the quantity of steel embedded
in the final product. United States Geological Survey (2016a) records some data on the annual
generation of manufacturing scrap belonging to categories such as turnings and borings. These
scrap types can be linked to manufacturing processes (e.g., turnings are created by machining). The
scrap quantities recorded by USGS are used in this analysis as lower bounds on the scrap generated
from different manufacturing processes and EOL scrap discards.

The above top-down data are supplemented with higher resolution estimates provided by bottom-
up analyses conducted by the authors (B2.6 in Appendix B). First, the steel embedded in the different
end-use products is estimated by multiplying production numbers with typical product masses and
the steel fraction. For example, OICA reports that 4,253,098 passenger cars were produced in the
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U.S. in 2014 (OICA, 2016). These cars had an average empty mass of 1,614 kg (U. S. EPA, 2018),
of which 65% was steel (13,35,38); therefore, 4.4 Mt of steel was embedded in finished passenger
cars produced in the U.S. in 2014. The type as well as quantity of embedded steel is needed to
estimate the flow from the various intermediate product nodes to the end-use product nodes. The
quantity of an intermediate product category embedded in an end-use product (Int.productembedded)

is estimated through literature reviews on bills on materials. For example, Schnatterly states that
16.3% of the mass of North American passenger cars is galvanized cold rolled coil (CRC galv.)
(Schnatterly, 2010). Therefore, a bottom-up estimate used in the catalogue is that 717 kt of CRC
galv. is embedded in U.S. produced passenger cars.

The quantity of intermediate product used to manufacture an end-use product (Int.productmanf )

is equal to the (Int.productembedded) divided by the process yield (γ). The difference between
(Int.productmanf ) and (Int.productembedded) is equal to the quantity of manufacturing scrap gen-
erated when fabricating the end-use product. The process yield γ = (0, 1) is equal to the mass of
useful outputs (product or component) from a process divided by the mass of the steel inputs. The
process yield depends on both the intermediate product being processed and the final geometry
produced; e.g., the process yield when making an irregular sheet metal car side body panel (38%,
(Omar, 2011)) is lower than when making rectangular sheet metal domestic appliance panels (80%).
Process yields for intermediate product to end-use product flows are extracted from the literature,
e.g., Milford et al. (2011) and Horton and Allwood (2017) for stamping) and used as data points in
the reconciliation (see Section Data Reconciliation).

3.2.3 Data Records on International Trade (Nodes 48 and 49)

The mass flows associated with international trade of steel mill products (direct imports and
exports) are reported by United States Geological Survey (2016a,b,c,d), U.S. Census Bureau (2015),
and the U.S. International Trade Commission (2018). The WSA also reports an aggregated annual
estimate of the steel mass flow associated with the international trade of steel-containing finished
goods (indirect imports and exports) (United States Geological Survey, 2016b). In this work, finer
resolution estimates of indirect steel trade are derived using the U.N. Comtrade Database (UN,
2020). The trade of 29 steel intensive products—as defined by Wang et al. (2007)—is extracted
from the database. The traded product mass, when reported by Comtrade, is converted into the
traded steel mass by multiplying by steel content factors for each product taken from Wang et al.
(2007). The steel traded within the other product categories (for whom Comtrade has only reported a
monetary value associated with the trade) is estimated by deriving an empirical relationship between
steel intensity (kg.steel per USD of trade) and different product attributes; e.g., end-use sector and
fractional iron content (B2.7 in Appendix B).
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3.2.4 Data Reconciliation (B1)

The integrated analysis inevitably introduces data contradictions and inconsistencies. One
method of reconciling incompatible mass flows is to combine the law of mass conservation with
expert industry knowledge and judgments on the reliability of the collected data; thus, the practitioner
uses her discretion to adjust mass flows while satisfying mass conservation constraints. Such an
informal reconciliation was used in Cullen et al.’s seminal work on global steel and aluminum flows
(Cullen et al., 2012; Cullen and Allwood, 2013); however, this approach will typically result in a
material map that is a suboptimal fit to the available data. This is because, even in the event of a data
fit metric being calculated (e.g., sum of the square residuals), it is unlikely that a practitioner can
achieve a significant improvement in fit without employing mathematical optimization techniques.
Updates to and adaptations of an MFA are time-consuming and require significant industry expertise.
This is because, using the informal reconciliation method, the practitioner must manually evaluate
the repercussions of any new or deleted flows on the whole network. In this chapter, a formal
reconciliation method is used instead to generate the steel map (Figure 3.4).

An informally reconciled steel map is still derived manually in order to compare the methods
(B1.5 in Appendix B).

3.2.4.1 Formal Reconciliation Options

At least three formal MFA data reconciliation methods have been identified in the literature
(B1.1 in Appendix B): nonlinear least-square optimization (Kopec et al., 2016), Bayesian updating
(Lupton and Allwood, 2018), and the RAS input-output matrix method (Ploeg, 1988). This chapter
implements a generalized nonlinear least squares optimization method because of its ability to
handle a plethora of data types (e.g., pig iron mass flows from BF to BOF, stamping process material
yields, and the sum of welded and seamless tube products) and its effectiveness even when few data
sources exist per flow variable (Kopec et al., 2016). The STAN software package is the most widely
used method of performing a nonlinear reconciliation MFA (Cencic, 2016). STAN is not used in
this study because it neither allows multiple data records to be directly considered for an individual
flow variable, nor does it include data quality measures.

A generalized least squares method was introduced by Kopec et al. (2016) to revise Cullen et
al.’s global steel flow (Cullen et al., 2012). Kopec et al. achieved a significant reduction in the sum
of square residuals (between the final MFA variables and data sources) but they did not present a
revised steel map. To the authors’ knowledge, this chapter will be the first time that a generalized
nonlinear least squares data reconciliation method has been used to derive a new material flow map.
In addition, a new weighting methodology is presented with which to assign consistent confidence
scores to the data sources, and a matrix-based cataloging structure is introduced (Figure 3.4) that
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makes it easy for a practitioner to update and adapt the steel map.

3.2.4.2 Formulation

Figure 3.1 sets up a basic template for systematic data recording based on the MFA network
structure. The matrix template is repeated many times in the code used to define the reconciliation
and run the optimization. The different copies of the matrix are used to define different parameters
of the steel flow (e.g., the existence or not of a flow between two nodes or the upper bound on a
flow) and to enter the data records. Figure 3.2 shows how the matrix in Figure 3.1 is repeated to
become a multi-dimensional matrix used to define the flow and catalog the data records. Alongside
the schematic in Figure 3.2 , are definitions and examples.

Once the matrix is set up for an MFA study, MFA practitioners could follow the procedures
listed in Figure 3.3 to perform the formal data reconciliation. The objective function (Equation
3.1) minimizes the sum of weighted normalized square residuals ri,j between final assigned MFA
variables xi (where i is the variable index) and up to Ji empirical values x̂i for the same MFA
variables recorded from the integrated analysis (x̂i values are recorded in B3.2 in Appendix B). xi

may refer to any relevant steel flow data; e.g., flows into and out of nodes, between nodes, yield
ratios, sums of flows through nodes, etc. A confidence score Φi,j is assigned to each residual-squared
to decrease the chance of distorted MFA results due to the inclusion of erroneous data sources. The
confidence score corresponding to each empirical data source (see B3.2 in Appendix B) is calculated
as the weighted sum across three quality criteria (see Table 1): (1) industry coverage of the data
source; (2) recording frequency of the data source; and (3) the spatial coverage, geographically
and/or across different manufacturing processes. The criteria were defined by examining common
characteristics of widely cited and trusted data sources (e.g., USGS). This methodology helps to
ensure a consistent evaluation of data quality.

Minimize :
I∑

i=1

Ji∑
j=1

Φi,j · r2i,j/Ji (3.1)

Where ri,j = (xi − x̂i,j)/x̂i,j are the residuals (normalized to the corresponding data record) and
Ji is the total number of empirical data records for each MFA variable xi.
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Figure 3.3: A flow chart showing the tasks a practitioner must follow in order to produce a material
map using the cataloging structure shown in Figure 3.2

The steel flow contains 464 non-zero variables (Table B3 in Appendix B), comprised of 270
variables representing flows between nodes, 83 variables representing process yield ratios, 78
variables representing total steel flows into and out of nodes, and 33 unconventional variables
representing, for example, the sum of all intermediate goods used to make construction products.
The optimization is subject to mass conservation constraints (Table B4 in Appendix B): the sum
of all flows into a node is equal to the sum of all flows leaving a node. The flow variables were
reconciled around 293 empirical data records (elements of x̂, Table B5 in Appendix B), collated and
derived using the integrated analysis described in Section Data records on the U.S. steel industry,
Data records on U.S. manufacturing. . . and Data records on international trade.

A sensible initial set of flow variables is derived (B1.4 in Appendix B) to increase the likelihood
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Data record (example)
Coor 6,53: EAF Node out.

Data quality criteria Score range (1-4) Weight WSA U.S. Dept of Commerce
Coverage 4: 50% of industry

3: 50% of industry
2: Clusters of case
studies
1: Single case study 33% 4 3

Frequency 4: Monthly
3: Annually
2: Infrequent
1: Lone data point 33% 3 2

Spatial boundary 4: U.S. only / Same
process
3: U.S. Canada/ Parent
process group
2: Other industrialized
country/Similar process
1: Global Scaling from
elsewhere in industry 33% 4 4

Weighted total score 3.67 3
Confidence score (Φi,j:0-1) 0.92 0.75

Table 3.1: Methodology for assigning confidence scores to data records
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of the optimization converging to a near global optimum solution. Where available, the initial
set uses the weighted mean of all recorded data points for each variable. If no recorded data are
available, initial values are calculated using a simple mass balance (B1.3 in Appendix B). The
optimization was implemented with Matlab’s fmincon algorithm using the ‘interior-point’ method
(Byrd et al., 1999; Fmincon Nonlinear, 2013). It took 450 iterations for the objective function to
converge (Figure B3 in Appendix B): 30 hours using an Intel(R) CoreTM i7-6600U CPU, 2.81 GHz,
with 16 GB of RAM. The optimization achieved mass balance after an initial maximum constraint
violation of 10.9 Mt (corresponding to a discrepancy between reported ferrous flows into and out of
the EAF: Table B23 in Appendix B) and reduced the objective function by 74% from a maximum
of 57.5 during mass balancing to 14.7 at convergence (Figure B3 in Appendix B). Meanwhile, the
informally reconciled steel map (B1.5 in Appendix B) has an equivalent objective function value of
19.6.

When new data records are collected, the MFA practitioners could easily add them to the data
record matrix shown in Figure 3.2. If the MFA network structure is changed (e.g., if technology
advance enables direct reduction iron to be used in the basic oxygen furnace), new MFA variable
needs to be added by switching the corresponding flow index from 0 to 1. No other changes
to the optimization algorithm will be needed and the MFA practitioners only need to re-run the
optimization to generate the new internal consistent material flow network. To reduce the time
needed for optimization, previous optimization results could be used as the initial guess for the new
optimization.

3.3 Chapter Results

The estimated 2014 U.S. steel flow is shown in Figure 3.4 and Table B2 in Appendix B. In Figure
3.4, light grey lines represent scrap flows and black lines represent system losses (e.g., oxidation
losses from the EAF). Nearly two-thirds (63%) of U.S. steel production is from EAFs. The recycled
content of the inputs to the U.S. steel industry (BOF, and EAF) is 63% but the EOL scrap recycled
content is only 40%. Approximately 112 Mt of new steel products entered U.S. service in 2014,
requiring the domestic production of 88 Mt of liquid steel and the net import of a further 43 Mt in
the form of semi-finished, intermediate, and finished products.

Using E-Sankey software, we create live links between the data reconciliation optimization
results file and an automatically updated Sankey diagram (Figure 3.4 ). The live link files allow the
users to regenerate annual U.S. steel maps that require less than an hour to revise the results format,
and which could be further automated. This matrix method proves the feasibility of a universal
structure for resource flow studies. The quick and updateable feature of the method can greatly
reduce the effort required for resource flow research.
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3.4 Chapter Discussion

The steel flow was calculated by first implementing an integrated analysis that leverages the
great quantity of data available on U.S. steel flows. This was followed by a nonlinear least squares
data reconciliation that ensures conservation of mass and minimizes the deviations of the final flow
from recorded data. Distortion of the final result due to the inclusion of erroneous data records was
minimized by using a new, structured, weighting methodology to assign confidence scores to the
data sources. The optimization reduces the objective function by decreasing the quantity and size of
large residuals (Figure B5 in Appendix B). For example, the flow from iron casting to machinery
equals 434 kt in the informally reconciled map (weighted normalized residual: 3.11) compared
to 267 kt in the formally reconciled map (weighted normalized residual: 0.99). Other differences
include less domestically recycled scrap in the formally reconciled steel map (62.1 Mt) than in the
informally reconciled map (69.2 Mt) (Figure B4 in Appendix B). This is because the creator of the
informally reconciled map, increased the domestic scrap flow to account for an apparent shortfall in
ferrous inputs to the BOF and EAF. In contrast, the formal method smoothed the reconciliation of
mass imbalances across the network.

3.4.1 Completing the Picture: In-Use Stocks and Scrap Flows

A low-resolution steel map for 2014 (Figure 3.5) is produced by combining the results in
Figure 3.4 with EOL steel scrap data (United States Geological Survey, 2016c) and Cooper et al.’s
calculated U.S. in-use steel stocks and scrap availability (B4 in Appendix B). The process yields in
the Rest of the World (RoW) steel flow are calculated from Cullen et al.’s global map (Cullen et al.,
2012). American industry and consumers drove 203 Mt of liquid steel production in 2014, 55% of
which took place overseas. Per capita U.S. steel consumption (351 kg/person/year) is double the
global average (162 kg/person/year (Cullen et al., 2012)).
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Figure 3.5: Low resolution U.S. steel map for 2014. U.S. population in 2014: 318.6 million.

3.4.2 Reducing U.S. Demand for New Steel

There are opportunities to decrease new steel demand by reducing new scrap generated by
industry (22 Mt: Figure 3.4). New scrap is not directly lost from the steel cycle, but the energy
invested in forming and heat treating the steel has been wasted and additional energy must be
invested to recycle the scrap, where mass losses amount to 13% of the scrap inputs. The steel map
shows that nearly half (46%) of fabrication scrap is generated from manufacturing sheet metal into
automobile parts. This 6.8 Mt scrap flow is double the relative size of the global sheet metal scrap
flow, which accounts for only 25% of global fabrication scrap. U.S. industry yield improvements
efforts should therefore focus on the automotive industry. Horton and Allwood (2017) find no
correlation between stamping process yield and the size of vehicle, production volumes, or the
number of sheet metal components. However, scrap quantities may be reduced through stamping
innovations. For example, novel technologies could be developed that reduce or replace the gripping
area around the periphery of the part during forming. The gripping area is sacrificial material
currently necessary to prevent wrinkling and springback of the part. Alternatively, technologies may
be developed that allow high-density nesting of otherwise poorly tessellating blank shapes (Carruth
and Allwood, 2013). Morgan and Liker show that greater emphasis on minimizing process scrap
during new vehicle product and process development could deliver 10% improvements to material
utilization without capital investments (Morgan and Liker, 2018). For example, they recommend
inserting utilization checks into the design and manufacturing process and making both designers
and stamping engineers jointly responsible for achieving utilization targets. Policymakers could
encourage greater material efficiency in the car industry by funding metal forming research into
reduced scrap generation and by incorporating embodied energy and material utilization metrics
into vehicle environmental standards (e.g., CAFE).
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U.S. scrap sent to landfill and export (34 Mt) exceeds carbon-intensive pig iron production (24
Mt) and intermediate steel product imports (29 Mt). On the face of it, increased domestic recycling
could help to displace these carbon-intensive steel sources. However, a technical barrier to realizing
this opportunity is contamination of EOL scrap with tramp elements, of which copper is the primary
concern (Material Economics, 2018). Daehn et al. showed that copper contamination does not
currently constrain global recycling rates. Their study highlighted that the construction products, in
particular rebars (≤0.4wt.%Cu), act as impurity sinks. In contrast, the cold rolled sheet used mainly
in transport applications has the strictest impurity requirements (≤0.06 wt.% Cu). The U.S. has a
relatively large end-use transport sector 26% of final consumption in the U.S. (Figure 3.4) versus
13% globally (Cullen et al., 2012) and a small construction sector (38% vs. 55% globally (Cullen
et al., 2012)). Moreover, the new steel map shows that just 21% of U.S. construction demand is for
impurity-tolerant rebar, compared to 28% globally (Cullen et al., 2012). A smaller construction
sector with less rebar means a smaller sink for scrap contaminants.

EOL scrap contains 0.18-0.4wt.%Cu Daehn et al. (2017). With modest additions of pig iron and
DRI to the EAF (see Section Recycling contaminated scrap), it is assumed that EOL scrap currently
exported and landfilled could be domestically recycled into intermediate products that have a copper
tolerance above 0.2wt.%Cu. Therefore, increased domestic recycling might displace around 8.4
Mt (29%) of direct steel imports (B5), including all imports of rebar and sections, but excluding
pipe and tubing (≤0.15wt.%Cu). Further displacement would require either significant dilution
with primary iron or an aggressive increase in product design for recycling approaches that reduce
EOL scrap contamination; e.g., designing easily detachable copper wiring harnesses for vehicles
(Economics, 2018).

3.4.3 Global Lessons for the Circular Economy

A circular economy is hindered both in the U.S. and globally by the continuing increase in
absolute material stocks and by the imperfect recycling of (often contaminated) EOL scrap. Haas et
al. estimate that two-thirds of current global metal production is used to add to, rather than replace,
stocks (Haas et al., 2015). For steel specifically, Allwood et al. report that 60% of global production
was added to stock in 2006. The American experience analyzed in this study (Figure 3.3) shows that
even modest population growth (≈1%/year) can drive significant new production: despite saturated
per capita stocks, 35% of U.S. steel consumption is added to absolute stocks, providing services to
new American consumers. A circular U.S. economy could therefore only be realized by a reduction
in per capita U.S. stocks, facilitating a proportionate increase in population with no new material
being required (if existing material could be perfectly reused or recycled). Strategies to decrease per
capita stocks (without a loss in material services) are shown in Table 3.2 alongside design principles,
U.S. opportunities, and policy suggestions.
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3.4.3.1 Recycling contaminated scrap

A small construction sector with relatively little use of rebar means that the U.S. has a small
sink for scrap contaminants. The U.S. has partly responded by exporting 29% of the steel scrap it
does collect to developing markets with high demand for impurity tolerant construction materials
(Pauliuk et al., 2012). The U.S. has also improved the quality of its recycled steel. Globally, high
quality flat steel products are overwhelmingly produced using BOF primary metal; no flow from the
EAF to flat products is shown in Cullen et al.’s global map. In contrast, Figure 3.4 shows that 28 Mt
of U.S. EAF steel is made (mainly by Nucor) into flat products, such as class A car panels. Nucor’s
strategies include dilution of scrap impurities with virgin metal (pig iron and DRI), the proximity
of their mills to generators of clean industry scrap (e.g., car stamping factories), shorter oxidation
times, and chemical composition adjustments during remelting (Rod et al., 2006).

Global data on material footprint versus GDP shows a trend of decreasing construction con-
sumption (as a ratio of the total) with increasing prosperity (B6 in Appendix B). Therefore, the
relative size of the global contaminant sink (construction) is likely to decrease in the decades ahead
while, concurrently, global production shifts towards more recycling (Pauliuk et al., 2013). Nucor’s
approach should then be implemented globally to help promote the production of high-quality
recycled material that can displace primary production.

3.4.3.2 A Surrogate Model for Future Global Consumption

Per capita U.S. steel stocks saturated around 1980 (Muller et al., 2006). Steel flow analyses of
other countries suggest that saturation is a feature of postindustrial societies (Muller et al., 2011).
The authors believe the U.S. steel flow can therefore be used to help identify broad global trends that
are likely to manifest as developing countries industrialize. These trends, reflected by comparing
the current global (Cullen et al., 2012) and U.S. flows (Figure 3.4), are likely to include reduced
demand for construction products and increased demand for transport products relative to total
end-use consumption. Also, new scrap flows will be increasingly dominated by transport sheet
metal scrap and, as the global percentage of consumption “added to stock” decreases, new scrap
generation will decrease relative to end-of-life scrap flows.

A country’s per capita saturation level will still depend on its development path. For example,
both the U.K. and France have saturated per capita stocks that are around 2 t/cap lower than in the
U.S. (Muller et al., 2011). Caution must also be exercised when extrapolating granular U.S. flows
to the global level. Some features in Figure 3.4 are due to short-term factors. For example, the
high (import) demand for pipe and tubing is probably due to the U.S. shale gas energy revolution.
This led to a peak in demand for oil country tubular goods from which domestic producers were
unable to fully respond (Preckel and Vivian, 2018; Nemec, 2018). Elsewhere, the breakdown of
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intermediate products entering construction is as dependent on national preferences for different
building materials as it is on economic maturity: reinforced concrete frames are preferred in France,
China, and India; while, structural steel frames are preferred in the U.S., U.K. and Japan (Moynihan
and Allwood, 2012). At this granular level, the U.S. provides just one sensible scenario of what
future global steel flows may look like.

3.5 Chapter Conclusions and Limitations

This chapter presents a novel matrix cataloging system that provides an easy data recording and
reconciliation framework for material flow analysis. Using the framework, we evaluated the U.S.
steel flow network and identified material efficiency opportunities in the U.S. steel industry and
supply chain. However, there are uncertainties in the developed steel flow network related to data
sources as well as the network structure. We use the data quality weighting system with weighted
least square optimization method to minimize result uncertainties due to low quality data. To study
the structural uncertainties related to existence of nodes or flows in the steel flow network, future
research is needed on new methods such as Bayesian updating.

Chapter reprinted with permission from Zhu, Y., Syndergaard, K. and Cooper, D.R., 2019.
Mapping the annual flow of steel in the United States. Environmental science & technology, 53(19),
pp.11260-11268.. Copyright 2021 American Chemical Society.
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Chapter 4

An Optimal Reverse Material Supply Chain for U.S. Aluminum Scrap

Publication related to this work:
Conference articles:

• Zhu, Y. and Cooper, D.R., 2019. An optimal reverse material supply chain for US aluminum
scrap. Procedia CIRP, 80, pp.677-682.

Journal articles:

• Zhu, Y., Chappuis, L.B., De Kleine, R., Kim, H.C., Wallington, T.J., Luckey, G. and Cooper,
D.R., 2021. The coming wave of aluminum sheet scrap from vehicle recycling in the United
States. Resources, Conservation and Recycling, 164, p.105208.

Increased recycling is one of the most promising material efficiency strategies to reduce aluminum
industry GHG emissions (Allwood et al., 2010; Gutowski, 2013). However, current U.S. EOL
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aluminum recycling rates (34-63% (Chen and Graedel, 2012; Kelly and Matos, 2006; Gaustad et al.,
2010)) are well below the level necessary (90% by 2050) to meet the IPCC’s climate mitigation
target as suggested by previous studies (Allwood et al., 2010; Gutowski et al., 2013). In order
to improve the U.S. EOL aluminum recycling rate and intelligently target research efforts, it is
important to know the technical barriers behind current low recycling rates. Potential technical
underlying barriers to greater recycling identified in the literature include low scrap collection rates
(Atherton, 2007) and, what we term, the chemistry mismatch between collected scrap streams
and the alloys demanded by the industry. The compositional mismatch means that scrap must
be “sweetened” during recycling with virgin metals (primary unalloyed aluminum and alloying
elements) to satisfy the chemistry constraints of the new alloys. We identify the origins of this
chemistry mismatch including scrap mixing (Lovik et al., 2014; Hatayama et al., 2008) (e.g.,
wrought aluminum scrap mixed with cast aluminum scrap), scrap contamination (McMillan et al.,
2012; Lovik et al., 2014; Gaustad et al., 2010) (e.g., automotive aluminum scrap contaminated by
steel rivets), and current industry demanding alloy compositions that are different from in previous
years when the material that is now entering the scrap stream was first produced (Bertram et al.,
2017; Lovik et al., 2014; Gaustad et al., 2010) (e.g., vehicle electrification leads to decreasing
cast aluminum demand for engine components). Due to this compositional mismatch, the majority
of aluminum scraps are not recycled into the original alloys. Instead, aluminum alloy scrap is
downcycled into lower purity and lower value alloys (Lovik et al., 2014) (e.g., 1xxx alloys from
electrical power cables recycled into 6xxx extrusion alloys or cast alloys for transmission housing
(Lovik et al., 2014)). If the mismatch is too great, then recycling becomes unviable.

In this section, we answer the following questions:

• How does scrap collection and the compositional mismatch between the available scrap
streams and demand for metal affect U.S. EOL aluminum recycling rates? Section 4.1
uses a linear optimization model to quantitatively show that increasing the collection rate alone
can only lead to a limited increase in the domestic recycling rate and it is the compositional
mismatch between scrap and new alloys that ultimately determines the technical limit to
recycling.

• How are the composition and scale of demand and scrap availability going to change in
the key U.S. aluminum market, the U.S. automotive aluminum sheet? Section 4.2 uses a
dynamic material flow analysis (DMFA) and chemical composition analysis of four leading
U.S. aluminum-bodied vehicles to show that scrap separation and refining technologies are
needed to increase recycling of the incoming wave of aluminum autobody sheet (ABS) scraps.

• What is the performance (efficacy, energy, cost, yield, and environmental impact) of key
existing and emerging aluminum recycling technologies and how could they be used to
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increase the recycling rate of U.S. EOL autobody aluminum sheet scrap? Section 4.3
presents an overview of 11 aluminum recycling technologies and apply a modified version of
the linear optimization model from Section 4.1 to the U.S. ABS DMFA results from Section
4.2 to show how representative scrap separation and refining technology could be used to
increase EOL aluminum ABS scrap recycling rates to 100%.

4.1 Current U.S. EOL Aluminum Recycling

Only around half of U.S. end-of-life (EOL) aluminum scrap is recycled. We investigate the
extent to which the EOL recycling rate is constrained by the ability to collect EOL scrap versus the
ability to recycle scrap into new alloys given the compositional mismatch between available scrap
and the new alloys demanded by the industry. The compositional mismatch means that scrap must
be “sweetened” during recycling with virgin metals (primary unalloyed aluminum and alloying
elements) to satisfy the chemistry constraints of the new alloys. If the mismatch is too great, then
recycling becomes unviable.

We first review the reasons for the compositional mismatch by examining its three causes:
contamination with tramp elements; mixing of different aluminum scraps during recycling; and
shifting demand for new alloys. A linear optimization model is then used to analyze the current and
potential domestic U.S. recycling rate at different levels of collection from end-use scrap categories
such as buildings. The model determines the minimum quantity of virgin metal needed to satisfy
new alloy demand if different metal sources (including scrap and virgin metal) can be combined to
make the new alloys just like they are in the recycling industry. Optimization constraints include not
exceeding the use of available scrap, satisfying the demand for new alloys, meeting the chemical
composition limits of the new alloys, and an economic furnace constraint that limits the weight
fraction of virgin metals used in a recycling furnace. The results show that even if all EOL aluminum
scrap could be collected in the U.S. then, because of the compositional mismatch between scrap
and new alloys, only around 70% could be recycled domestically.

4.1.1 Section Background

The quantity of greenhouse gas (GHG) emissions released from aluminum recycling (0.43
t CO 2eq/t metal) is just 5% of that released from primary aluminum production (Allwood et al.,
2010). Previous researchers (Allwood et al., 2010; Bauer, 2012; Milford et al., 2013; Pauliuk et al.,
2013) have found that 90% end of life (EOL) metal recycling rates are necessary for meeting the
Intergovernmental Panel on Climate Change’s (IPCC) 2 °C target (IPCC, 2014). Despite the need
for 90% recycling rates, estimates of the U.S. EOL aluminum scrap recycling rate range from 34%
to 63% (Chen and Graedel, 2012). It is necessary to explore the main factors that limit the current
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EOL aluminum scrap recycling rate in order to inform policy making on how to motivate higher
recycling rates.

Beyond the environmental benefits, a higher U.S. recycling rate could help meet the rising U.S.
demand for aluminum using domestic resources without importing expensive, new aluminum from
other countries. This is an important consideration given the U.S. tariffs imposed in 2018 to cut
aluminum imports (U.S. Department of Commerce, 2018).

Previous research includes case studies on the current and optimal EOL strategy for specific
product categories such as vehicles, mobile phones, and other electronic devices (Gesing and
Wolanski, 2001; Jang and Kim, 2010; Jofre and Morioka, 2005; Modaresi and Muller, 2012). Few
studies attempt to find the underlying reasons for the low recycling rate. Atherton (2007) pointed out
that the industry has limited ability to collect EOL scrap because of metal loss during use, dispersion
as hibernating stocks, and difficulties in separating components (Atherton, 2007). Later research by
McMillan et al. (2012) suggests that more limiting on the recycling rate than the collection rate
per se could be the contamination of the EOL scrap coupled with the new alloys’ compositional
constraints (Mcmillan et al., 2012). Hatayama et al. (2009) determine the maximum aluminum
recycling potential in select countries by applying a multi-material pinch analysis to data on the
quantity and composition of Japanese scrap discards and new alloy demand (Hatayama et al., 2009).
They assume that all EOL aluminum scrap is available for recycling and that all scraps from the
same product category (e.g., building and construction) have homogeneous compositions. In reality,
within a scrap category, the purest/highest value scrap will be recycled first. Across scrap categories
though, mixing with other materials in the waste stream means that some of the purest aluminum
alloys (e.g., foil) are those least likely to be collected for recycling.

This section is a U.S. specific study that recognizes the reality of imperfect collection rates, the
heterogeneity of scrap compositions within as well as across scrap categories, and the compositional
mismatch between collected scraps and new metal alloys. We examine how simulated changes to
the EOL scrap collection rate and the purity of the collected scrap effects the modeled maximum
domestic recycling rate. All analysis is for 2017 and neither scrap exports nor recycling melt losses
are included in this study. Both will be included in future work.

4.1.2 Section Methodology

In order to evaluate the influence of the scrap collection rate and scrap chemical composition
on the recycling rate, we need to determine the quantity and chemistry of the collected scrap and
the quantity and chemistry constraints of the new alloy demand. Section 2.1 describes how we
estimated the quantity of different alloys needed to produce new products in 2017, and how we
estimated the quantity of different types of aluminum scrap that were discarded that year. Section
2.2 first describes the different reasons for the compositional mismatch between the available scrap
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and the new alloys demanded by the industry. It then describes how we estimated the chemical
composition of scrap collected from different product categories as well as the new alloys’ chemistry
constraints. In Section 2.3, a minimum virgin metal optimization model is formulated as a linear
blending problem using the data generated in Section 2.1 and 2.2. Table 4.1 lists the nomenclatures
used in the section.

Table 4.1: Nomenclature

d A metal alloy demanded by industry; e.g., AA6063.

D Total number of new metal alloys. D=18.

s

A metal source; e.g., unalloyed primary aluminium.
Unalloyed primary aluminium: s=1.
Six alloying elements: s=2:7 (see Figure 4.2).
Eight scrap categories: s=8:15 (see Figure 4.1).

S All types of metal sources. S = 15.

k An alloying or tramp element; e.g., copper.

K All alloying or tramp elements. K = 7 (see Table 4.1.2.2).

θd,s Quantity of metal source s used to produce new alloy d [Mt].

Alloy demandd Demand for new metal alloy d [Mt].

Metal sources=8:15 Availability of scrap source s = 8:15 [Mt].

c sources,k Concentration of element k in metal source s [%].

c alloylbd,k Lower bound concentration of element k in new alloy d [%].

c alloyubd,k Upper bound concentration of element k in new alloy d [%].

c alloymrd,k Midrange concentration of element k in new alloy d [%].

4.1.2.1 New Alloy Demand and Scrap Availability

Material flow analysis (MFA) is a method for quantifying the stocks and flows of metals in a
defined temporal and economic or geographic boundary. It can be dynamic, which assesses the
stocks and flows of material in a system over time, or static, which is a snapshot of the system
usually for a single year (McMillan et al., 2010). In this work, we use Hatayama et al.’s (2008) U.S.
dynamic MFA results (2003-2050) to estimate U.S. aluminum demand and scrap discards from
seven product categories in 2017: consumer durables, container and packaging, machinery and
equipment, electrical, transportation (which can be further split into wrought and cast products),
building and construction, and an “other” sector (Hatayama et al., 2009). Figure 4.1 shows the
estimated aluminum demand for these product categories and the estimated scrap arising from these
product categories in 2017. The quantity of collected scrap, which includes scrap that is recycled
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both domestically and overseas, is estimated by the International Aluminum Institute (IAI) and is
shaded in Figure 4.1b with the collection rate labeled above the columns (Bertram et al., 2017). The
overall collection rate is estimated to be 63% (Bertram et al., 2017).

The demand for 18 metal alloys used in the product categories is determined from the product-
to-alloy breakdown shown in Hatayama et al. (2007) for wrought alloys and Carruth and Allwood
(2013) for cast alloys.

Figure 4.1: (a) Demand estimate; (b) Scrap discard estimate with actual collection rate shown
(Bertram et al., 2017; Hatayama et al., 2009)

4.1.2.2 Composition of Collected Scrap and New Alloys

A compositional mismatch often exists between the collected scrap and the new alloys demanded
by industry because of scrap contamination with tramp elements, shifting new alloy demand, and
mixing of different scrap types. Common non-metallics in aluminum scrap piles such as rubber,
plastic, and foam are removed by hand sorting and air suction (Gaustad et al., 2012). Industry uses
magnetic and eddy current separation as well as salt fluxing during the remelt to minimize the
contamination of the scrap with foreign tramp elements such as iron, copper, and silicon. However,
it is often commercially infeasible to reduce the concentration of impurities to sufficiently low levels
to prevent problems in subsequent forming processes. Table 4.1.2.2 summarizes the source and
impact of common alloying or tramp elements in aluminum.
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Table 4.2: Common alloying and tramp elements in aluminum scraps (Davis, 2001; Gaustad,
Olivetti, and Kirchain, 2012).

Element Source Advantage Disadvantage
Iron Mixed iron scraps (rivets) or

die-casted molds.
Increases strength at ele-
vated temperature.

Reduces ductility and
toughness. Causes corro-
sion.

Silicon Cast aluminum. Reduces melting temper-
ature for casting.

Reduces ductility and
toughness.

Copper Mixed copper wires and mo-
tors or copper alloyed alu-
minum.

Basis of heat treatable al-
loys containing copper.

High copper content re-
duces ductility.

Manganese 3xxx series wrought alu-
minum.

Increases alloy stability
in the presence of mag-
nesium.

Reduces ductility. High
manganese content leads
to cracking in hot rolling.

Magnesium 5xxx & 6xxx series wrought
and 3xx.x & 5xx.x series
cast aluminum.

Increases corrosion resis-
tance and weldability.

Reduces ductility. High
magnesium content leads
to cracking in hot rolling.

Shifting demand for new alloys is another reason for the compositional mismatch. Metal scrap
is collected from discarded products often many years after the products were made. Over the
intervening years, the quantity and composition of new products may have changed significantly.
For example, demand for aluminum alloys for car production has increased significantly since
the early 1990s due to the focus on reducing component weights. In the future, demand for cast
aluminum alloys (having higher silicon content compared to wrought alloys) for the car industry
may reduce because emerging electric vehicles do not require a cast engine block.

In this study, we estimate the composition of scrap from a product category (e.g., machinery) as
the weighted sum of the compositions of the alloys used in that product category (using midrange
element concentrations, c alloymrd,k). As described in section 4.1.2.1, the breakdown of alloys
used in each product category is determined from Hatayama et al. and Cullen et al. The calculated
composition of each of the eight scrap categories is shown in Figure 4.2 within the orange boxes
on the left-hand side. This estimation of scrap composition assumes that the scrap only contains
alloying and tramp elements existing in the original products. Future work will relax this assumption.

The elemental composition constraints of the new alloys determine the degree of sweetening
needed to recycle the scrap, and were determined from ANSI/ISO standards (Hatayama et al.,
2006; ISO 7376:2009, 2008; Schlesinger, 2014; The Aluminum Association Inc., 2006). The
concentration range (from lower to upper bound) of seven key elements in eighteen alloys was
included in the model. An example of the elemental concentration range is shown in Table 4.3 for
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Al 3003. The mid-range elemental concentration for all studied alloys is shown in Figure 4.2.

Table 4.3: Example of new alloy compositional constraints

Alloy
Elemental composition (weight %)

Si Fe Cu Mn Mg Al Other

Al 3003 0-0.6 0-0.7 0.05-0.20 1.0-1.5 0-0.05 96.7-99 0-0.25

4.1.2.3 Optimization Model for Minimizing Virgin Metal Demand

In the model, different metal sources are mixed together to satisfy the demand for new metal
alloys while simultaneously minimizing the demand for virgin metals (the sum of unalloyed primary
aluminum and alloying elements). There are D types of new metal alloy demand and S metal
sources (including unalloyed primary aluminum, alloying elements, and EOL scraps). Elements in
matrix θd,s represent the quantity (in mass units) of metal source s used to produce metal alloy d.

Linear optimization is used in this study to increase computational speed and to avoid the
complication of multiple local minima. The decision parameters are physically independent;
however, it is recognized that weak coupling may exist through socio-economic effects (e.g., scrap
price elasticity of the collection rate). Linear optimization blending problems are a well-studied topic
in mathematical programming and operations research (Diwekar, 2003; Williams, 2013). Previous
studies include those focused on waste stream treatment and food production; e.g., minimizing
the cost of producing sausages from a mixture of meat and ingredient while meeting nutrition
requirements such as minimum protein content and maximum sodium content (Steuer, 1984). We
adopt the blending problem setup to investigate how new metal alloy demand can be met with
a minimum quantity of virgin metal production; thus, maximizing the recycling rate. The main
model assumptions are that there is unlimited availability of virgin metal and no melt losses during
recycling. The model only includes domestic new metal alloy demand, predicting a maximum
domestic recycling rate. Scrap collected in the U.S. but recycled overseas is not considered.

The objective function is shown in Equation 4.1, subject to the inequality constraints shown in
Equation 4.1-4.6. Note that s=1 represents unalloyed primary aluminum and s=2:7 represents the
six alloying elements shown in Table 4.1.2.2.

Minimize :
D∑

d=1

s=7∑
s=1

θd,s (4.1)

Subject to :
S∑

s=1

θd,s ≥ Alloy demandd (4.2)
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D∑
d=1

θd,s=8:15 ≤ Metal sources=8:15 (4.3)

∑S
s=1 (θd,s · c sources,k)∑S

s=1 θd,s
≥ c alloy lbd,k (4.4)

∑S
s=1 (θd,s · c sources,k)∑S

s=1 θd,s
≤ c alloy ubd,k (4.5)

α ·

(∑S
s=1 θd,s · c sources,k
c alloy mrd,k

)
≤

s=15∑
s=8

θd,s=8:15 (4.6)

There are four groups of inequality constraints: alloy demand constraints; scrap supply con-
straints; alloy chemistry constraints; and economic furnace constraints. The 18 (D = 18) alloy
demand constraints (Equation 4. 2) ensure that the production of each new metal alloy, d, is greater
than or equal to alloy demand (Alloy demandd). The 8 (s = 8 : 15) scrap supply constraints
(Equation 4. 3) ensure that the quantity of a used scrap source does not exceed the amount available
(Metal sources=8:15). The 252 (D × K × 2 = 18 × 7 × 2)) alloy chemistry constraints ensure
that the elemental composition of the new metal alloys falls between the lower bound (Equation
4. 4) and upper bound (Equation 4. 5) of that specified by ANSI/ISO standards (Hatayama et al.,
2006; ISO 7376:2009, 2008; Schlesinger, 2014; The Aluminum Association Inc., 2006). The 126
(D ×K = 18× 7) economic furnace constraints (Equation 4. 6) ensure that the scrap content in a
recycling furnace is no less than the required weight fraction α.

4.1.2.4 Simulations

Two sets of twenty-one simulations are conducted in order to explore the effect of changing
collection rates and scrap purity on the U.S. domestic recycling rate in 2017 and 2050, respectively.
The first set of twenty-one simulations are based on 2017 U.S. demand for new alloys (quantity
and chemical constraints) and the second set of twenty-one simulations are based on the 2050 U.S.
demand for new alloys (quantity and chemical constraints) derived from Hatayama et al. (2009).

In the first set of simulations, simulation A models the actual collection rate in 2017, when
4.77 Mt of scrap (63% of all discarded aluminum) was collected (see shaded bars in Figure 4.1b).
Simulation B models a theoretical 100% collection rate scenario (7.55 Mt of available scrap
(Hatayama et al., 2009): see full bars in Figure 4.1b) where the composition of the new scrap
available in the model (but that was landfilled in reality and implicitly in Simulation A) is assumed
to be identical to the rest of the scrap from that product category. Additional simulations then model
this additionally available scrap at decreasing levels of aluminum purity. Simulation C corresponds
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to a 1% decrease in aluminum concentration for previously landfilled scrap, Simulation D models a
2% decrease, and so on until Simulation G which models a 5% reduction in aluminum concentration
for previously landfilled scrap. Note that Simulation G corresponds to a 2% reduction in the mean
aluminum content of all scraps (90% to 88%, see Figure 4.4).

The second set of simulations model scrap availability and alloy demand in 2050 according
to Hatayama et al. (2009), when 12.92 Mt scraps are discarded and 15.48 Mt alloys are needed.
Simulation A models the collection rate in 2050 when 8.64 Mt of scrap (67% of all discarded
aluminum in 2050) was collected. Simulation B - G model the theoretical 100% collection rate
scenarios while the level of aluminum purity decrease from B to G as in 2017 simulation.

A realistic value for the economic furnace constraints parameter (α) was determined through
site visits to aluminum recyclers and interviews with industry experts, suggesting α = 0.5 reflects a
typical operation limit for rotary and reverberatory furnaces (the most common aluminum recycling
furnaces). A sensitivity study reveals the effect of reducing α on the modeled recycling rate (see
Figure 4.4).

The optimizations were run using MATLAB’s linprog solver (Zhang, 1998) and an Intel(R)
CoreTM i7-6600U CPU, 2.81 GHz, with 16 GB of RAM. Convergence times were less than 10
seconds.

4.1.3 Section Results and Discussion

Figure 4.3 presents the simulation A results in 2017, modeling the actual collection rate. The
2017 simulation A results show the use of different metal sources, their destination in different
new alloys, and the recycling rate in different scrap categories. The reliability of the model is
assessed by comparing the simulation results shown in Figure 4.3 to what actually happened in
2017, as estimated in Figure 4.1. The simulated and actual recycling rates are within ±0.5% in
all but one category (cast transport scrap), where the collection rate in Figure 4.1 is 80% but the
simulated domestic recycling rate in Figure 4.3 is 26%. The explanation for this difference is that
our recycling rate prediction only considers domestically recycled scrap while IAI’s (Bertram et al.,
2017) value includes a portion of scrap that is exported and recycled overseas. Significant quantities
of low-grade, silicon-rich scrap are exported from the U.S. to meet developing world demand for
lower grade material (Cooper, 2018). The scrap destination as predicted by our model is further
checked against the common industrial practice; e.g., in reality, the majority of recycled container
and packaging scrap is used to make beverage cans (closed loop recycling) and, consistently, the
Simulation A results show the production of new 3004 and other 3xxx series alloys (used in beverage
can bodies) from the container scrap.
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Figure 4.3: 2017 simulation A results (α = 0.5). Virgin metal and scrap sources used to meet U.S.
aluminum demand in 2017

4.1.3.1 Effect of Collection Rate and Scrap Purity on the Modeled Recycling Rate

The Simulation A result suggests that the optimization model is giving representative results of
the current recycling reality. The results of Simulations B-G are shown in Figure 4.4 and are used
in this section to evaluate the potential impact on the maximum recycling rate of changes to the
collection rate and scrap purity.

The points labeled ”A” in Figure 4.4 show the potential domestic recycling rate if only scrap that
is currently collected is assumed available. Blue point A in Figure 4.4 corresponds to the results
shown in Figure 4.3. The orange and yellow As show the recycling rates under relaxed furnace
constraints. It is found that relaxing the furnace constraint (from α = 0.5 toα = 0) increases
the simulated domestic recycling rate (based on current collection rates) to a maximum of 62%,
which would also allow some of the dirty aluminum scrap that is currently exported to be recycled
domestically. However, this situation would require recyclers to use much more virgin metal which
seems unlikely in the short term for cost reasons. For example, if a scrap contains 98% AA3005
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alloy and 2% iron contaminant then it would require around 600% dilution with primary unalloyed
aluminum to make a new AA3005 ingot (containing less than 0.3% iron). This is possible, but if
such dilutions became typical then the predominant throughput of a recycling facility would be
virgin metal, not scrap.

Figure 4.4: 2017 Simulation A-G results showing sensitivity to economic furnace constraint
parameter (α )

The points labeled ”B” in Figure 4.4 assume a 100% collection rate and that all scrap belonging
to the same product category (the columns in Figure 4.1b) have the same composition. Figure 4.4
shows that even if the collection rate is increased to 100% with no furnace constraint in the extreme
case (yellow point B) then still less than 90% of all scrap discards get recycled.

It is likely that in reality, the scrap that is currently not collected is, overall, less pure than the
scrap that is collected. To reflect this likelihood, the model is run where the additional scrap made
available by increasing the collection rate from 63% to 100% is less pure than the scrap that is
already collected. The results of these analyses are shown by the lines from the Bs to the Gs in
Figure 4.4. As expected, more contaminated/lower quality scrap lowers the potential recycling rate
even further.
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Figure 4.5: 2050 Simulation A-G results showing sensitivity to economic furnace constraint
parameter (α )

Figure 4.5 presents the analysis results of U.S. recycling rates in 2050 under varying scrap
collection and contamination assumptions. In figure 4.5, points ”A” assumes 67% scrap collection
rate and the scrap recycling rate drops to 40% due to lower demand to scrap ratio and lower scrap
quality. The scrap quality is estimated from the weighted average of the compositions of discarded
scraps according to Hatayama et al. (2009)’s prediction. Lower demand to scrap ratio and lower
scrap quality indicate fewer dilution opportunities and aggressive compositional mismatch problems
between the scrap and new alloy demand.

In short, this investigation indicates that increasing the collection rate alone (even to 100%) can
only lead to a limited increase in the domestic recycling rate and it is the compositional mismatch
between scrap and new alloys that ultimately determines if and how the scrap is recycled.

4.1.3.2 Policy Implications

The results show that in order to achieve a higher recycling rate, more effort should be put into
reducing the compositional mismatch between scraps and alloy products. Suggestions include
developing advanced separation technologies to acquire cleaner scraps (e.g., continued commer-
cialization of LIBs (Wyss and Schultz, 1999)) and updating alloy composition requirements to be
more tolerant of impurities (Gaustad, Olivetti, and Kirchain, 2010). Moreover, emerging refining
technologies, such as fractional crystallization (Muñiz-Lerma et al., 2017) and hot crush techniques
(Ambrose et al., 1983) should be evaluated using the proposed optimization method to determine
their potential impact on recycling rate and thus the appropriate level of investment and government
support through tax-breaks, etc.
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4.1.4 Section Conclusion

This study suggests that even if all U.S. EOL aluminum scrap could be collected then only around
70% could be recycled domestically (up from around 45% today). Without the deployment of
advanced scrap separation and refining technologies then the compositional mismatch will prevent
recycling rates in excess of 90%, which are necessary if the industry is to achieve the IPCC’s
recommended emissions cuts.

4.2 The Coming Wave of Aluminum Sheet Scrap from Vehicle Recycling in the U.S.

The emergence of mass-produced aluminum sheet-intensive vehicles presents an opportunity for
recyclers to shift towards high value recycling into wrought alloys. We use dynamic material flow
analyses (2015-2050) to estimate the timing, scale, and composition of U.S. aluminum automotive
body sheet (ABS) scrap generated from the aluminum ABS intensive vehicles with the highest U.S.
sales: Ford F-150, Super Duty, Expedition, and Lincoln Navigator. Lifespan distribution models
are derived for each vehicle, and 5xxx and 6xxx series sheet alloys are aggregated according to
their copper and magnesium content. A Markov chain model is used to estimate the fraction of
deregistered vehicles scrapped domestically versus exported.

It is found that the above four vehicles account for around 1,200 kt of aluminum ABS embedded
within the 2020 U.S. fleet. The aluminum ABS intensive construction of these vehicles presents a
unique opportunity to U.S. recyclers. If production continues at the current volumes, aluminum
ABS scrap from these vehicles will increase to approximately 121 kt/year in 2035 and 239 kt/year
in 2050. The majority of this scrap will be available for U.S. processing with ≪10% of deregistered
vehicles exported or achieving vintage status. For comparison, only 121 kt of aluminum auto shred
(containing negligible aluminum ABS) was domestically consumed in the U.S. in 2017. We analyze
the composition of the future potential scrap streams, revealing the need for alloy separation and
tramp element removal if closed loop aluminum ABS recycling is to be achieved.

4.2.1 Section Background

Aluminum has long been recognized as a lightweight alternative to steel that can deliver signif-
icant transport fuel savings depending on the degree of material substitution and the subsequent
reduction in vehicle weight (Kim and Wallington, 2013). The downside is that primary aluminum
production is energy-intensive (9 times greater than primary steelmaking according to Milford et al.,
(2011)); however, Modaresi et al. (2014) point out that in the future there will be greater opportuni-
ties to use aluminum vehicle scrap to increase the recycled content and lower the energy-intensity of
aluminum in vehicles. Closed loop recycling will be required to realize this opportunity (Modaresi
et al., 2014; Milovanoff, et al., 2019).
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Aluminum automotive body sheet (ABS) first appeared on vehicle hoods in the late 1970s and its
use in bolt-on body components on U.S. vehicles has increased significantly since then. Aluminum
body vehicle structures included the 1991 Acura NSX, 1994 Audi A8, 2001 Honda Insight, 2012
Tesla Models S, and 2012 Land Rover (Chappuis and Sanders, 2019); however, these vehicles
represent a negligible portion of overall U.S. vehicle registrations. In the 2015 model year, Ford
Motor Company introduced the mass produced aluminum-bodied F-150 pickup truck, which makes
extensive use of aluminum ABS (Arowosola and Gaustad, 2019; Chappuis, 2015). Ford introduced
aluminum-bodied Super-Duty trucks in 2017, and the Expedition and Navigator full-size SUV in
2018. This growing use of aluminum ABS means that there will be a wave of aluminum ABS scrap
becoming available for recycling as the first mass produced aluminum intensive vehicles reach
end-of-life/end-of-service (EOS).

Recycling aluminum sheet intensive vehicles presents an opportunity for recyclers to enter higher
value markets (i.e., selling wrought rather than casting alloys) and an opportunity for automotive
manufacturers to close the loop and use recycled aluminum for sheet components; thus, reducing
the embodied impacts of the vehicle, which refers to the environmental impacts caused by material
extraction and vehicle production. However, closed loop wrought scrap to wrought alloy recycling
poses a technical challenge due to the stringent compositional requirements of aluminum ABS.
Auto makers and recyclers need to have estimates of when significant quantities of aluminum ABS
scrap from U.S. vehicles will become available for domestic manufacturing so that they can then
plan by implementing design for recycling paradigms to vehicle production and/or by developing
scrap separation and refining technologies. We provide the first analysis of the scale and timing of
the future opportunity to recycle high quality aluminum ABS from U.S. vehicles.

4.2.1.1 Current Recycling of Aluminum from Vehicles

The materials in a discarded vehicle go through multiple processes before entering a recycling
furnace (Kelly and Apelian, 2016). First, scrap dealers drain all fluids from the vehicle and remove
the reusable and hazardous components such as the filters, brake calipers, water pumps, starters,
alternators, and batteries (Kelly and Apelian, 2016). The remaining vehicle is crushed and shredded
at auto-shredding plants. Common separation techniques such as magnetic separation and air
separation are then used to separate the shredded scraps into a ferrous scrap stream and a non-
ferrous light metal scrap stream. The latter, also named ”Zorba”, typically contains at least 65%
aluminum by weight with possible contaminants including magnesium, zinc, iron, and copper. From
Zorba, aluminum alloy scraps are extracted using processes such as hand sorting, eddy-current
separation, and air separation. The extracted aluminum scraps contain 90-98% aluminum alloy by
weight and are named Twitch or Tweak depending on the separation method used. These scraps
are usually mixed together with other scrap sources such as aluminum wheel scraps, aluminum
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bumper scraps, and aluminum turning scraps to produce secondary aluminum alloys. In the recycling
furnace, scraps are melted and processed by fluxing, degassing, and filtering to remove contaminants
and impurities such as alkali elements, moisture, and oxides. However, these basic refining processes
are not able to reduce excess alloy concentrations of, for example, iron, silicon, magnesium, or
copper. The molten scrap is cast into ingots (<25 kg), T-bars, or sows (<500 kg) for sale or shipped
to nearby casting shops using over-the-road crucibles for further shape casting (Schlesinger, 2018).

The ability to recycle aluminum scrap in a closed loop fashion is determined by the quality
(compositional homogeneity) of the scrap stream. Mixed aluminum alloy scrap streams and contam-
ination with non-aluminum tramp elements can result in a scrap stream composition that reduces
the quality of the recycled aluminum. For example, excessive quantities of iron contamination (e.g.,
from rivets) or copper contamination (e.g., from wiring or 2xxx series aluminum ABS alloys used
in the early aluminum hoods, rotors, wheel spokes, and structural components (Arowosola and
Gaustad, 2019; Kumar et al., 2015)) can reduce the ductility of the recycled aluminum. Insufficient
alloying element concentrations can be remedied by adding alloying elements to the recycled metal;
however, excess alloy and tramp element concentrations are a greater problem and require dilution
of the recycled metal with energy-intensive primary aluminum and/or down cycling.

Traditionally, recyclers have typically processed both cast and wrought aluminum scrap into
casting alloys (e.g., A356). This is because casting alloys are tolerant of mixed alloy compositions
(e.g., mixed wrought and cast scrap) and tramp element contamination. Also, until recently, the
demand for castings (e.g., for engine blocks, wheels, and suspension frames etc.) has been sufficient
to provide a market for the aluminum scrap recycled into casting alloys. However, there is now
strong evidence that U.S. domestic recycling of aluminum is being limited by the inability to
maintain the value of wrought alloys during recycling. Bertram et al. (2017) showed using a
material flow analysis (MFA) that U.S. casting demand is smaller than U.S. scrap arisings, and Zhu
and Cooper (2019) showed using an MFA coupled to a linear programming model that only around
70% of domestically available aluminum scrap in 2017 could have been recycled domestically due
to compositional constraints. Exports of aluminum scrap (particularly to China) helped to mask the
U.S. recycling issue until recently. In 2017, 1,570 kt of U.S. aluminum scrap was exported (USGS,
2017). The majority of this exported scrap was auto shred scrap (Southwood, 2019) with only
121 kt of aluminum auto shred scrap domestically consumed in the U.S. that year (USGS, 2017).
In 2018, China tightened restrictions on metal scrap imports (Reuters, 2019; Aluminium Insider,
2019) and, in 2019, aluminum scrap was accumulating in U.S. scrap yards (Tita, 2019; Desai, 2019)
waiting for either alternative foreign buyers to be found or new recycling strategies to be employed.
These difficulties in recycling U.S. aluminum scrap might be further exacerbated by a shift towards
electric vehicles (Hatayama et al., 2012), which could decrease casting demand as cast aluminum
engine blocks and transmission casings are eliminated (Løvik et al., 2014; Modaresi and Müller,
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2012).

4.2.1.2 Scope of the Section

Dynamic material flow analyses (DMFAs) are developed for four aluminum ABS intensive
vehicle models: Ford F-150, Super Duty, Expedition, and Lincoln Navigator. We focus on these
vehicles because they dominate U.S. sales of aluminum ABS intensive vehicles, accounting for
around 65% of all the aluminum ABS embedded in the U.S. light-duty vehicle fleet and around
61% of the aluminum ABS added to the U.S. fleet each year (see Figure 4.6) (Chappuis, 2018).
The four vehicle models share structural commonalities (e.g., body-on-frame designs with vehicle
bodies containing similar 9 to 1 ratio of aluminum sheets to extrusions) that provide a common
basis on which to evaluate recycling options. Figure 4.6 shows that the other contributions to the
U.S. stock of aluminum ABS are thinly spread across 15 brands. These contributions are even more
diffuse at the level of individual vehicle models. Limited alloy, production, and vehicle lifespan data
availability prevent rigorous DMFAs on all these diffuse uses of aluminum ABS and are beyond the
scope of the present paper.

Figure 4.6: Brands share of aluminum ABS contributions to the U.S. fleet in 2018 (aluminum ABS
embedded in sales). Derived from Chappuis (2018) with data provided on the condition of brand
anonymity.

The vehicle DMFAs presented in this study are used to estimate the aluminum ABS (rolling)
stock embedded in the U.S. vehicle fleet and the future availability of aluminum ABS scrap from
deregistered U.S. vehicles. An analysis of the fate of deregistered vehicles is used to find the
probability that the aluminum ABS embedded in deregistered vehicles will become available for
U.S. scrap processing versus either being exported as part of a used vehicle or reaching hibernating
status embedded within a vintage vehicle. The results are used to discuss the opportunities and
barriers to future aluminum recycling.
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4.2.2 Section Methodology

The DMFAs require estimates of material composition, lifespan, and annual production for each
type of vehicle. Figure 4.7 shows a schematic of the methodology.

Figure 4.7: Methodology used to estimate the on-road aluminum ABS stock and future availability
of aluminum ABS scrap from discarded vehicles

Section 4.2.2.1 describes the quantity and alloy specification of the aluminum ABS in each of
the four types of vehicles studied in this analysis. Section 4.2.2.2 describes how survival rate curves
are derived for each type of vehicle by comparing historical production, vehicle registration, and
accident totaling loss data. Section 4.2.2.3 then describes how the survival rate curves are combined
with the composition data and estimates of future annual production in a flow driven DMFA. Some
of the deregistered vehicles in the U.S. are not sent for domestic scrap processing but are instead
exported for use as second-hand vehicles in mainly developing countries. Section 4.2.2.4 describes
the modeling and export data used to estimate the impact of used vehicle exports on the availability
of automotive aluminum scrap for domestic U.S. recycling.
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4.2.2.1 Vehicles Analyzed

We focus on the top four selling aluminum intensive vehicles in the U.S.: Ford’s 2015 F-
150 (production began in 2014), 2017 Super Duty (production began in 2016), 2018 Expedition
(production began in 2017), and 2018 Lincoln Navigator (production began in 2017). For example,
in 2019, 14,100 Tesla Model S vehicles (another aluminum bodied vehicle) were sold in the U.S.
(CSB, 2020) compared to 1,011,604 aluminum intensive Ford vehicles (Ford, 2020). Other U.S.
automotive companies, such as light truck manufacturers Ram and Chevrolet, are focusing on the
use of high-strength steels for lightweight vehicle design (WAS, 2020; White and Carey, 2018), and
General Motors is developing composite solutions such as the carbon-fiber pickup box (WardsAuto,
2019).

The aluminum ABS content of the four aluminum intensive vehicles is shown in Table 4.4. The
alloys are grouped according to the two major alloying elements, copper, and magnesium. The alloy
specifications are published by Ford to inform sheet aluminum suppliers (Ford, 2014 and 2020).
Ford specifies the acceptable composition window for eight elements for each aluminum ABS alloy.
These elements (silicon, iron, copper, manganese, magnesium, chromium, zinc, and titanium) help
determine the mechanical property of the alloys. The upper and lower elemental limits of Ford’s
aluminum 5xxx and 6xxx series aluminum ABS alloys are closer together than those recorded for
the alloys in the Aluminum Association’s ”Teal Sheet” standards (Aluminum Association, 2009).
These narrower compositional limits allow greater control of the mechanical properties and enable
efficient closed-loop prompt scrap recycling by sheet metal suppliers.
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Table 4.4: Average aluminum ABS content in the F-150, Super Duty, Navigator, and Expedition

Sheet alloy

grouping
Compositional tolerance Included alloys

Mass in each vehicle (kg)

F-150 Super Duty SUVs

(Navigator and

Lincoln

Expedition)

Low Cu ≤0.20 wt.% copper

0.50-1.00 wt.% silicon

≤0.30 wt.% iron

≤0.15 wt.% manganese

0.40-0.80 wt.% magnesium

≤0.10 wt.% chromium

≤0.10 wt.% zinc

≤0.10 wt.% titanium

6xxx series (skins) 92.6 102.6 65.3

High Cu 0.5-0.8 wt.% copper

0.55-0.95 wt.% silicon

≤0.30 wt.% iron

≤0.30 wt.% manganese

0.55-0.95 wt.% magnesium

≤0.10 wt.% chromium

≤0.10 wt.% zinc

≤0.10 wt.% titanium

6xxx series (high

strength structural)

95.2 92.0 142.8

Low Mg 2.9-3.5 wt.% magnesium

≤0.25 wt.% silicon

≤0.35 wt.% iron

≤0.10 wt.% copper

≤0.50 wt.% manganese

≤0.10 wt.% chromium

≤0.10 wt.% zinc

≤0.10 wt.% titanium

5xxx series (non-

heat treatable)

31.4 27.5 41.8

High Mg 4.2-5.0 wt.% magnesium

≤0.20 wt.% silicon

≤0.35 wt.% iron

≤0.10 wt.% copper

0.20-0.50 wt.% manganese

≤0.10 wt.% chromium

≤0.10 wt.% zinc

≤0.10 wt.% titanium

5xxx series (high

formability, non-

heat treatable)

19.7 18.0 27.1
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4.2.2.2 Vehicle Longevity (C1 section of Appendix C)

Estimates of vehicle longevity are needed to determine fleet turnover periods and therefore the
length of time between an aluminum alloy entering the fleet and its emergence as aluminum scrap in
a discarded vehicle. Vehicle survival rate studies have used historical vehicle registration data (EPA
and NHTSA, 2012; Fridstrøm et al., 2016; Greenspan and Cohen, 1999; NHTSA, 2006; NHTSA
and EPA, 2018); however, previous research was focused on national level fleet average survival
rates for passenger cars and light trucks rather than specific vehicle types.

The aluminum ABS intensive vehicles in our study are no more than five years old; therefore, very
few of these vehicles have been scrapped and there is little data with which to directly understand
their lifespans. However, traditional steel intensive versions of each of the four types of vehicles
have been produced for far longer and can be used to make sensible estimates of the longevity of
the new aluminum intensive versions. In this study, survival rate curves and lifespan probability
mass functions were developed for all four vehicles of interest using historical annual production
data (Gunnell, 2003), registration data (IHS Markit, 2019), and collision totaling rates (CCC, 2015;
Hartwig and Weisbart, 2016). As such, vehicle lifespan here refers to the time between production
and deregistration of the vehicle. The final destination of these deregistered vehicles (e.g., the scrap
yard versus used car exports) is investigated in Section 2.4. A detailed explanation of how each
longevity model was derived (alongside the graphical result) is given in the Appendix C with a
summary given below.

A survival rate curve shows the fraction of vehicles produced in model year t0 that are in the fleet
at age a in year t, where t = t0 + a + 1. Vehicle model year is used to describe the version of the
vehicle. Production of vehicles in a new model year typically starts in August to September before
the corresponding calendar year. However, there is usually a delay between when the vehicles
are produced and when all the vehicles of the model year are sold. For example, a 1990 model
year vehicle is likely to be sold by 1991 and turns into a one-year-old vehicle in 1992. Survival
rate curves for different model years were determined for each of the four types of vehicles using
Equation 4. 7.

Survival rate (a, t) =
Fleet size (a, t)

V ehicle production volume (t0)
(4.7)

Where t0 = t − a − 1. For all four types of vehicles, the age (a) distribution of the vehicles
within the vehicle fleet in year t, was determined for each year between 2000 and 2008 using U.S.
vehicle registration data available from IHS Markit (2019). This date range was used due to a lack
of available data before 2000 and a change in IHS Markit data collection methodology in 2009 that
makes the more recent data incompatible with the 2000-2008 dataset (NHTSA, 2018; EPA, 2018).
For the F-150 and Super Duty vehicles, survival rate curves for each model year were derived by
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comparing the fleet age distribution between 2000 and 2008 with the annual production volumes
between 1966 and 1994 taken from Gunnell (2003). No production data were available for model
years 1994-2000. For the Expedition and Navigator SUVs, the survival rates for vehicles between 1
and 7 years old were determined using the 2000-2008 fleet age distribution dataset by assuming that
the vehicle fleet size in year t0 +1 is approximately equal to the production volume (IHS Markit,
2019). Estimated survival rates for older SUVs (8-17 years old) had to be estimated using the fleet
age distribution from 2000 to 2008 for the Ford Explorer as a proxy. This was because the first
production year of the Expedition and Navigator was 1997 and 1998 respectively, whereas, the
Explorer has been produced since 1990. For each type of vehicle, survival rate data at different ages
is grouped according to the vehicle generation (Figure C3), which refers to a number of consecutive
production years in which the vehicle went without a major redesign (Table C1).

An inherent problem in using registration data in the survival rate calculations is the double
counting of vehicles that are registered in two or more U.S. states within the same calendar year. In
the years immediately after production (when few vehicles have been scrapped), this inflated number
of registered vehicles can rise above the original production volume, resulting in erroneous negative
survival rates being calculated. To avoid this problem, the survival rate data calculated from the
registration and production data are combined with data on ”totaling” of vehicles. Vehicle totaling

is a term used by insurance companies to describe when a vehicle needs to be scrapped because it
is not economically advantageous to repair it due to severe damage from an accident. A vehicle
declared ”total loss” is usually sold for part dismantling; however, it is noted that some of the totaled
vehicles may be re-registered after repair (see Appendix C1.1). For vehicles less than ten years old,
the survival rate is largely determined by the totaling rate (Figure C1). Hartwig and Weisbart (2016)
report the likelihood of vehicles of different ages being involved in a collision that results in an
insurance claim being made. CCC (2015) reports the percentage of insurance claims for vehicles
of different ages that are flagged as a ”total loss”. The totaling data from Hartwig and Weisbart
(2016) and CCC (2015) are combined to calculate a mean vehicle survival rate just based on the
avoidance of totaling the vehicle (Figure C2). For each type of vehicle and each vehicle generation,
a nonlinear least-squares optimization is then conducted (using Matlab’s fmincon function) to fit
the NHTSA (2006) survival rate functional form (shown in Equation 4. 8) to the survival rate data
extracted from the registration data/production volume comparison with an inequality constraint
applied that the survival rate of all types of vehicle and vehicle generations for the first 9 years
of vehicle life is within a ±5% band of the mean survival rate calculated from the totaling data.
This ±5% band is slightly greater than the uncertainty suggested by the error bars provided in the
analyses by CCC (2015) and Hartwig and Weisbart (2016).

Survival rate (a, g) = 1− exp(− exp (c1 + (c2 × a))) (4.8)
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Where a is the age of vehicles from model generation, g, and c1 and c2 are fitted constants that
define the shape of the survival rate curve.

Lifespan pmf (a, g) = survival rate (a− 1)− survival rate(a) (4.9)

The methodology described above generates survival rate curves for multiple generations (defined
in Table C1 in Appendix C) of each of the four types of the vehicle of interest. These survival rates
are converted to lifespan distributions using Equation 4.9. The lifespan distribution is expressed
as a probability mass function (pmf) because the original data sources are in reference to discrete
years or ages.

For each type of vehicle, the generational lifespan distribution with the highest mean lifespan is
designated the baseline lifespan scenario used in the DMFAs because it corresponds to the most
recent vehicle generation (see Table C2 in Appendix C). For each type of vehicle, the generational
lifespan distribution with the lowest mean lifespan is designated as the pessimistic lifespan scenario
used in the DMFAs. An optimistic lifespan scenario is then defined for each type of vehicle by
assuming that the percentage improvement in average vehicle lifespan between the pessimistic and
baseline scenario can be replicated again between the baseline and optimistic scenario. Moving from
pessimistic, baseline, to optimistic lifespan distributions captures the trend of increasing vehicle
longevity over time, which is consistent with the findings of the NHTSA and EPA (NHTSA, 2006;
NHTSA and EPA, 2018). Comparing historical and current U.S. light-duty vehicle survival rates
show that in general new vehicles are lasting longer and showing a higher survival rate early in their
lives (NHTSA, 2006; NHTSA and EPA, 2018).

4.2.2.3 Dynamic Material Flow Analysis (C2 in Appendix C)

A flow-driven DMFA is used to estimate the annual aluminum ABS stock and scrap availability
in the U.S. between 2015 and 2050. A flow-driven DMFA is used because light duty vehicle sales
growth predictions are available from the U.S. Energy Information Administration (EIA, 2019)
and a stock-based DMFA is not practical when analyzing individual vehicle models that are far
from saturation (see Appendix C2 for more details). Historical annual U.S. sales data for the
four aluminum ABS intensive vehicles (2015-2020) are collated from Ford financial reports (Ford,
2020). Future annual vehicle sales are used as exogenous variables and are simulated for a range of
scenarios including a cessation of aluminum ABS intensive vehicle production in 2021, and also
continued annual vehicle sales growth of 0.8% (the baseline scenario), -0.1% and 1%. These growth
figures correspond to the U.S. Energy Information Administration’s prediction of light duty vehicle
sales under expected, low, and high economic growth scenarios (EIA, 2019). Figure C6 presents all
historical and prospective annual sales profiles used in this analysis.
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For each type of vehicle, the annual aluminum ABS scrap arising from discarded vehicles is
calculated using Equation 4.10. The stock of aluminum ABS embedded in the vehicle fleet for each
type of vehicle in year t is calculated using Equation 4.11. The maximum age, amax, equals the
age of the oldest vehicle model produced since 2015 for F-150, 2017 for F-50s, and 2018 for the
Navigator and Expedition.

Scrap (t) =
amax∑
a=1

(SalesU.S.(t− a− 1)× pmf(a)) (4.10)

Stock (t) = Stock (t− 1) + SalesU.S. (t)− Scrap(t) (4.11)

4.2.2.4 Exported and Vintage Vehicles (C3 in Appendix C)

The DMFAs are used to estimate the annual number of vehicles, and the corresponding quantity
of aluminum ABS, reaching EOS in future years. However, these DMFA results are driven by
lifespan predictions based on vehicle registrations. When a vehicle ceases to be registered, it is
either scrapped, exported for secondhand use abroad, or ”hibernated” in the form of a vintage
vehicle. It is noted that some U.S. states do however require vintage vehicles to be registered under
a special category (Fridstrøm et al., 2016). Araghi et al. (2017) report an increasing fleet of U.S.
vintage vehicles since the 1990s (Araghi et al., 2017). Regarding export, Davis, and Kahn (2010)
report that the U.S. exported 2.45 million used vehicles to Mexico alone between August 2005 and
July 2008. Coffin et al. (2016) estimate that used vehicle exports accounted for 14% of U.S. vehicle
exports in 2014. Exported and vintage vehicles will not enter the U.S. scrap processing supply chain
and therefore cannot be treated as a valuable source of aluminum for U.S. recyclers.

In this section, estimates are made of the fraction of deregistered vehicles that are either exported
or ”hibernated” in vintage vehicles. A simple absorbing Markov chain of vehicle states is developed
for each type of vehicle to show the probability that, at a given age, a vehicle will transition to one
of the three absorbing states: scrapped, exported, or hibernated as a vintage vehicle. The transition
matrix is estimated by combining fleet export data from the U.S. International Trade Commission
(2019) with specific export data (trade volumes and vehicle ages) for the four types of vehicle in this
study, derived using data collated from Car Export America (2019), and a study of vintage vehicles
by Araghi et al. (2017). A detailed explanation of how the transition probabilities were derived is
given in the SI with a summary given below.

The U.S. International Trade Commission (2019) provides annual statistics on used vehicle
exports: an average of approximately 700,000 used vehicles was exported every year between 2014
and 2018. Among all the exported vehicles, the share of the four types of the vehicle of interest in
this study was estimated by analyzing the sales data on Car Export America (2019), which as of
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September 2019 listed 63,266 used U.S. vehicles for export. The four Ford vehicles accounted for
2.5% of export sales with the majority being the F-150 or Super Duty. For each vehicle in this study,
the probability of a vehicle at a given age either being exported or remaining as a U.S. registered
vehicle was estimated by comparing the export sales with the fleet registration data (IHS Markit,
2019). The probability that a vehicle older than 30 years transitions to vintage status is estimated
such that 1% of all vehicle types end up as a vintage vehicle, per Araghi et al. (2017). The final
destination of different types of vehicles into each of the absorbing states (scrapped, exported, or
hibernated as a vintage vehicle) was determined by calculating the limiting matrix of the Markov
chain model.

4.2.3 Section Results (C4 in Appendix C)

Figures 4.8 and 4.9 show the modeled vehicle survival rate and corresponding lifespan distribu-
tion models, respectively. In the baseline scenario, the Super Duty has the highest mean lifespan
(21 years), followed by the F-150 (19 years), and then the Expedition and Navigator (17 years).
The trend that light trucks last longer than SUVs (and passenger cars) aligns with previous analysis
(NHTSA, 2006; NHTSA and EPA, 2018). This could be related to the durability requirement for
light trucks and the higher average cost of light trucks compared to SUVs or passenger cars.

Figure 4.8: Vehicle survival rates based on U.S. vehicle registrations (some deregistered vehicles
are exported)
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Figure 4.9: Vehicle survival rates based on U.S. vehicle registrations (some deregistered vehicles
are exported)

The left-hand side of Figure 4.10 shows the estimated number of vehicles sold, vehicles present in
the U.S. fleet, and vehicles deregistered in each year between 2015 and 2050. The right-hand side of
Figure 4.10 shows the estimated mass of aluminum ABS in these vehicles. The grey shaded pattern
region in Figure 4.10 corresponds to the vehicles that have already been sold (before 2021). Across
all simulated scenarios, the aluminum ABS alloys associated with deregistered vehicles arising in
2050 was smallest under the optimistic lifespan and low sales growth scenario at 203kt/year, and
largest under the pessimistic lifespan and high sales growth scenario at 269 kt/year (Figure 4.10c
(right)), compared to the baseline scenario of 246 kt/year (Figure 4.10c (right)).
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(a) Vehicle (left) and alloy (right) sales from 2015 to 2050.

(b) Vehicle (left) and alloy (right) stock from 2015 to 2050.

(c) Vehicles deregistered (left) and alloy scrap arising (right) from 2015 to 2050.

Figure 4.10: Vehicle and alloy annual sales, stock level, and de-registrations from the U.S. fleet.
The grey areas correspond to vehicles already sold in 2015-2020. F-Series is composed of F-150
and Super Duty.
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Figure 4.11 and Table 4.5 shows the absorbing Markov chain of vehicle states for the four vehicle
models. Across the four vehicle models, between 1% and 7% of deregistered vehicles are exported.
A small percentage (1%) achieve vintage/hibernating status, and the remainder will enter the scrap
processing system in the U.S.

Figure 4.11: Markov chain transition diagram of an aluminum intensive vehicle (left); Sankey
diagram representation of vehicle lifespan and destinations (indexed to 100 vehicles) derived from
baseline F-150 data shown in Table 4.5.

Table 4.5: Transition probability values for the Markov chain transition diagram (Figure 4.11)
assuming mean characteristics for baseline, pessimistic (short), and optimistic (long) vehicle
lifespan scenarios.

Transition probabilities Fraction of vehicles in the ab-

sorbing state

a b c d e f g h i scrap export vintage

Lifespan

scenario

Navigator

baseline 0.10 0.86 0.04 0.89 0.09 0.02 0.87 0.13 0.00 0.93 0.06 0.01

pessimistic 0.13 0.82 0.05 0.92 0.05 0.02 0.77 0.23 0.00 0.92 0.07 0.01

optimistic 0.08 0.89 0.03 0.85 0.13 0.02 0.92 0.08 0.00 0.94 0.05 0.01

Expedition

baseline 0.09 0.88 0.03 0.91 0.08 0.01 0.85 0.15 0.00 0.95 0.04 0.01

pessimistic 0.13 0.82 0.04 0.93 0.05 0.02 0.78 0.22 0.00 0.94 0.05 0.01

optimistic 0.07 0.90 0.02 0.87 0.11 0.01 0.90 0.10 0.00 0.95 0.04 0.01

Super Duty

baseline 0.10 0.89 0.00 0.76 0.22 0.02 0.94 0.05 0.01 0.97 0.02 0.01

pessimistic 0.17 0.83 0.01 0.85 0.13 0.02 0.90 0.09 0.01 0.97 0.02 0.01

optimistic 0.06 0.94 0.00 0.61 0.37 0.02 0.96 0.03 0.01 0.97 0.02 0.01

F-150

baseline 0.14 0.86 0.01 0.83 0.17 0.00 0.93 0.07 0.00 0.98 0.01 0.01

pessimistic 0.18 0.81 0.01 0.90 0.10 0.00 0.87 0.13 0.00 0.98 0.01 0.01

optimistic 0.10 0.90 0.00 0.75 0.25 0.00 0.95 0.05 0.00 0.98 0.01 0.01
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4.2.4 Section Discussion

4.2.4.1 Scale of the Opportunity

The DMFAs (Figure 4.10 and Section C4) show that the U.S. aluminum intensive vehicle fleet
size is growing rapidly and that the fleet of four vehicles studied in this analysis is projected to reach
23±518-28 million vehicles by 2050. The Markov chain model (Figure 4.11) suggests that 92-98%
of the four vehicles are likely to be scrapped in the U.S., and therefore they present a potentially
valuable resource to the domestic recycling industry so long as they are not shredded and then
exported. In the baseline scenario, the aluminum ABS scrap generated in 2035 from discarding
the four vehicle types studied in this analysis is 121 kt (this number excludes any aluminum ABS
embedded in vehicles that are exported or achieve vintage status) which is nearly half of the
projected new sales that year (282 kt). Even if production of these four aluminum vehicles were
to cease today, aging of the existing stock of 4 million vehicles (around 1,180 kt of embedded
aluminum ABS) would result in the scrap availability peaking at 54 kt/year in 2035 (excluding
aluminum ABS in exported and vintage vehicles). These aluminum ABS scrap volumes represent a
potential doubling of the U.S. automotive aluminum scrap consumption in a little over ten years;
U.S. aluminum auto-shred scrap consumption (which presently contains negligible aluminum ABS)
is currently around 121 kt/year according to the latest USGS Aluminum Minerals Yearbook (USGS,
2017). Further into the future, domestic aluminum ABS scrap availability from the four vehicle
types is expected to reach 239 kt/year by 2050 and continue rising.

Recycling of aluminum ABS presents both environmental and economic benefits. The energy
requirements and greenhouse gas emissions associated with recycling aluminum are only around
5% of those associated with primary aluminum production (Milford et al., 2011). Automotive
manufacturers could therefore decrease the embodied impacts of vehicle production if they are
able to source aluminum ABS made from aluminum ABS scrap. The price gap between these
post-consumer scraps and primary aluminum represents the maximum profit opportunity attainable
from closed loop recycling or reuse of old sheet into high quality wrought alloys (Allwood et al.,
2010; Cooper and Allwood, 2012), and may be sufficient to prompt investment into advanced
recycling technologies (see Section 4.3). Figure C18 in the SI shows the price profile for two grades
of post-consumer automotive scrap (Twitch and Taint) alongside the primary aluminum price. The
price of Twitch and Taint in the U.S. in 2012 was around 41% and 21% of the primary aluminum
price, respectively (Schlesinger, 2014).

4.2.4.2 Recycling Aluminum Automotive Body Sheet Scrap (C5)

This subsection presents a high-level analysis of the opportunities and barriers to the recycling of
aluminum ABS scraps. The recycling of aluminum ABS first requires the removal of non-aluminum
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contaminants. As introduced in Section 4.2.1, current vehicle aluminum recycling already involves
multiple stages to separate the aluminum from fluids, ferrous metals, plastics, etc. However, due
to the inefficacy of the separation processes, tramp element contaminants are often present in the
segregated aluminum scrap stream. For example, the ferrous rivets used to assemble aluminum ABS
panels are difficult to remove completely during scrap processing. The iron level in EOS automotive
aluminum scraps such as Twitch or Tweak can be as high as 1-1.5 wt.% (Kelly and Apelian, 2016),
which is significantly higher than the iron tolerance of the aluminum ABS alloys (<0.3-0.35 wt.%.).
Opportunities to reduce tramp element contamination include higher density shredding of the scraps
to improve the efficacy of conventional separation processes such as magnetic separation (Sekulic
et al., 2017). Electrolytic and fractional crystallization-based refining technologies are available but
remain niche and expensive processes at present (Gaustad et al., 2012; Zhu and Cooper, 2021). In
addition to separation and refining, another strategy for reducing iron contamination is to eliminate
steel rivets in car body constructions. However, alternative joining technologies (e.g., resistance
spot welding or laser welding) cannot fully replace riveting at present due to their low production
rate, high capital, and energy costs, and the limited mechanical performance of the resulting joints.

There are three main categories of aluminum vehicle components: sheet components, extrusions,
and castings. For closed loop recycling of aluminum ABS scrap into new aluminum ABS sheet
(maximum silicon limit of 0.2-1 wt.%, Table 4.1), then the aluminum ABS scrap must be separated
not only from non-aluminum contaminants but also from the scrap aluminum castings (silicon
compositional range of 7 – 10 wt.%). If the whole vehicle is shredded, then a potential method
for segregating wrought and cast alloys is to use a separation technology such as the laser-induced
breakdown spectroscopy (LIBS) process (Gaustad et al., 2012; Zhu and Cooper, 2021). However,
each of the four vehicles examined in this study has a body-on-frame design where the aluminum
castings are located in the vehicle frame. The sheet-intensive vehicle bodies could therefore be
isolated from the cast components by separating (unbolting) the body from the frame. For all
four vehicles, the aluminum in the vehicle body is approximately 90% sheet and 10% extrusions.
Aluminum ABS scrap contamination with extrusion scrap (≈AA6082) is unlikely to be a great
hurdle to closed loop aluminum ABS recycling because the copper content of the extrusions (<0.1
wt.%) is lower than the copper content of all the aluminum ABS sheet alloys: both high and low
magnesium aluminum ABS alloys have <0.1 wt.% copper; low copper aluminum ABS alloys have
<0.2 wt.% copper; and, high copper ABS alloys have 0.5-0.8 wt.% copper. The magnesium content
of the extrusions (≈0.6-1.2 wt.%) is also lower than the magnesium content of the high and low
magnesium aluminum ABS alloys (≈2.9-5.0 wt.%) and is similar to the magnesium content of the
high and low copper aluminum ABS alloys (≈0.4-0.95 wt.%). Alloying elements (e.g., copper and
magnesium) can be added to the recycled aluminum to correct the composition.
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Figure 4.12: Summary of 2035 (baseline scenario) aluminum ABS compositional limits and
estimated mixed scrap and new alloy compositions and quantities for the four vehicles in this study.
The blue x-axis represents different scrap mixtures and the blue ring-shaped radar plots represent
the lower and upper bound composition for five key alloying elements. The green y-axis represents
new aluminum ABS alloy demand and the green ring-shaped radar plots represent the lower and
upper compositional limit for the same five key alloying elements.

Closed loop recycling of aluminum ABS scrap is best facilitated by complete segregation of the
four aluminum ABS alloys (see Table 4.4); however, given the difficulties of sheet alloy separation
(Modaresi and Muller, 2012) then it is likely that some sheet alloy mixing will occur during recycling.
To evaluate the potential for closed loop recycling under different sheet mixing conditions, Figure
4.12 shows the possible composition of mixed sheet scraps compared to the original sheet alloys.
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The green ring-shape radar plots in Figure 4.12 present the upper and lower composition limits for
copper, magnesium, manganese, silicon and iron in the four types of aluminum ABS used in the
F-Series, Expedition and Navigator vehicles that can be found in the Ford engineering material
specification documents (Ford, 2014 and 2020). These five alloying elements have been selected
because they have narrow but varying compositional limits across all aluminum ABS alloys in this
section. Copper increases alloy strength and facilitates precipitation hardening but may also reduce
ductility and corrosion resistance. Magnesium is the major alloying element in 5xxx and 6xxx series
wrought alloys used to increase strength. Silicon in 6xxx series aluminum makes for precipitation
hardening heat-treatable alloys (Schlesinger, 2014). Iron is one of the most troublesome impurities
in aluminum ABS because it promotes the formation of intermediate phases that reduce ductility
(De Moraes, et al., 2006). Manganese increases strength through strain hardening by cold rolling,
stretching, or drawing while it can also reduce ductility and corrosion resistance (Goel et al., 2014).
Note that the composition limits of chromium, zinc, and titanium are identical across all the studied
aluminum ABS alloys (Table 4.4) and are not discussed here.

The blue ring-shape radar plots in Figure 4.12 show the elemental composition of aluminum
ABS scrap after different levels of sheet mixing that are likely to occur during scrap processing. No
tramp element or casting/extrusion alloy contamination is considered in Figure 4.12. The mixed
aluminum ABS scrap compositions are calculated for 2035 because this is the year in which the
scrap availability from the current vehicle fleet will peak; however, additional scrap composition
calculations shown in Section C5 of the SI show that only minimal changes are likely in mixed
scrap composition between now and 2050. The DMFA results (see Figure 4.10) show that the total
of all 6xxx series (high and low copper) scraps is consistently higher than the 5xxx series (high and
low Mg) scraps while the total amount of scrap changes significantly over time. For example, in the
2035 baseline scenarios, the results are 98 kt and 27 kt for all 6xxx series and 5xxx series scraps,
respectively. In the 2050 baseline scenario results, there are 192 kt and 54 kt of 6xxx series and
5xxx series scraps, respectively.

Figure 4.12 shows that closed loop recycling of aluminum ABS scrap into aluminum ABS alloys
will likely require at least separation of the aluminum ABS scrap alloy families (5xxx versus 6xxx)
and ideally separation of each individual alloy. Figure 4.12 shows that in the fully mixed aluminum
ABS scrap scenario (first column of Figure 4.12); the scrap cannot be easily recycled into any of the
original aluminum ABS alloys without significant dilution with primary aluminum and the addition
of alloying elements. This is because the composition of the fully mixed scrap (blue areas in the first
column of Figure 4.12) falls outside of the compositional tolerance of all the aluminum ABS alloys
(green areas in rows 1-4). For example, the copper content in the fully mixed alloy scrap stream
(0.21-0.43 wt.%) is lower than the composition limits for the high copper aluminum ABS alloy
(0.5-0.8 wt.%); whereas, the magnesium content of the fully mixed alloy scrap stream (1.12-1.58
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wt.%) is above the limits of the high copper aluminum ABS alloy (0.55-0.95 wt.%). Columns 2 and
3 in Figure 4.12 show the estimated composition of the scrap flow assuming all aluminum-copper
scraps (6xxx series) or all aluminum-magnesium scraps (5xxx series) are mixed up, respectively.
Comparing the composition of mixed aluminum-copper alloy (6xxx) scraps (column 2) and the
aluminum-copper aluminum ABS alloys, the scraps can be recycled into the high copper alloy (row
2) with a <0.3 wt.% addition of copper. Similarly, mixed aluminum-magnesium aluminum ABS
(5xxx) scraps (column 3) can be recycled into the high magnesium alloy (row 4) with <1 wt.%
addition of magnesium.

In order to realize closed loop recycling of the aluminum sheet, emerging separation technologies
such as LIBS could be implemented to separate alloy families and individual alloys (Gaustad et al.,
2012; Zhu and Cooper, 2020). In LIBS, a focused laser pulse vaporizes a small sample of the scrap
surface, and atomic emission from the resulting plasma is used to identify the metal compositions.
Currently, the industrial application of LIBS is inhibited by its high cost and low throughput speed:
millions of dollars of capital investment are needed for an installed capacity of just 5 tons/hr (Zhu
and Cooper, 2021). Other options to increase the recycling of aluminum ABS scraps include the
design for dismantling which can increase the separation by alloy family or by individual alloys,
and increased research on design for recycling that uses impurity tolerant alloys in new vehicle
production. There is also the potential for recyclers to work with OEMs to identify component
alloys. (Semi-)automated dismantling equipment could then be used to separate the high-value sheet
aluminum alloys from other vehicle components. Automated component separation has already
been demonstrated for other product systems, e.g., hard drives (Simon et al., 2017) and smart phones
(Laser and Stowell, 2019).

4.2.4.3 Planning for the Sheet Scrap Wave

Limited demand for low quality casting alloys has already constrained the domestic U.S. alu-
minum recycling rate. This problem will be exacerbated as aluminum ABS intensive vehicles start
to reach EOS and enter a recycling system currently configured for producing casting alloys. The
present work is a first step towards planning for that coming wave of U.S. aluminum ABS scrap,
finding that the supply of aluminum scrap from vehicles for U.S. recycling is likely to double by the
mid-2030s. Both U.S. recyclers and automotive manufacturers can take actions to help ensure this
wave of scrap is recycled into high value aluminum ABS. For U.S. recyclers, increasing investment
in new scrap separation and refining technologies (see section 4.2) will be needed to ensure alloy
separation and tramp element removal. Automotive manufacturers could further embrace Design

for Recycling, ensuring easy separation of individual alloys or at least alloy families. Manufacturers
and recyclers could directly collaborate to make car redesign and recycling technology investment
decisions based on recycling experiments of early prototype builds. All these actions could be
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further stimulated by government research and development funding or financial incentives such as
tax breaks for recyclers who invest in separation and refining technology.

4.3 Emerging Aluminum Separation and Refining Technologies

The work in Section 4.3 has yet to be published as either a journal or conference article; however,

it is included in this thesis for completeness as it begins to address the recycling constraint barriers

discussed in Sections 4.1 and 4.2.

Analysis of the U.S. aluminum recycling industry and the automotive aluminum sheet market
reveals that the chemical compositional mismatch between the available scrap streams and the
demand for metal constrains current and future U.S. EOL aluminum recycling rates. To solve the
compositional mismatch problem, scrap separation and refining technologies have been proposed
and developed in previous studies as potential solutions. To understand the efficacy of emerging
aluminum scrap separation and refining technologies in the optimal aluminum reverse supply
chain, we have developed a recycling technology catalog. The catalog data is combined with the
linear blending optimization model to quantitatively evaluate the potential of emerging recycling
technologies in improving future EOL automotive aluminum closed-loop recycling rates.

The recycling technology catalog was developed by reviewing 46 academic papers and 8
grey literature sources. In total, three separation technologies and eight refining technologies are
investigated in the catalog.

Separation:

• Color sorting and etching

• Hot crush

• Laser induced breakdown spectroscopy

Refining:

• Basic melting: reverberatory furnace

• Fluxing

• Hoopes process

• Low temperature electrolysis

• Fractional crystallization

• Vacuum distillation
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• Electro-refining for Mg removal

• Membrane purification

For each separation and refining technology, the catalog includes information about the separation
and refining potentials (i.e., the ability to separate a material stream into its constituent parts),
material losses, costs, energy consumptions, emissions, and describes the likely use of each
technology in parallel or in a series with other recycling technologies. Details of how this information
is derived from the literature are explained in the following sections and appendix D. The above
technologies are selected based on a review of the last 30 years of literature on aluminum recycling
technologies and preliminary discussions with global recycling producers e.g., Rio Tinto. Most
research developments of the aluminum recycling technologies happened before or at the beginning
of the 21st century while recently, these technologies are attracting more attentions from the industry.
Section 4.3.1 summarizes the methodology used to develop the recycling technology catalog and
summary of key technologies. Section 4.3.2 presents the modified linear optimization model and
how the separation and refining technologies could be used to increase the closed loop recycling
rate of EOL aluminum ABS scraps using DMFA results from section 4.2.

4.3.1 Summary of the Aluminum Separation and Refining Technology Catalog

During typical aluminum recycling today, the process starts with the shredding of raw scrap
from collected vehicles or scrap stored on site at the scrap yard. The shredding operation turns raw
scrap into manageable dimensions so that the shredded chips can be processed by the following
operations. Common separation processes (solid-state sorting of scraps) (e.g., air separation,
magnetic separation, and eddy current separation) are are used to remove the most nonmetallic
and ferrous tramp elements from the shredded aluminum scrap. Additional emerging (solid-state)
separation and/or (liquid-state) refining technologies can be used to further purify the scraps. The
resulting molten scrap charge is mixed with virgin metals to produce new alloys demanded by the
market. The flow of scraps during this recycling process is summarized in Figure 4.12. We define
”process coupling” during the recycling process as when a refining technology is implemented after
an additional separation process. Process coupling contributes to the diversity of scrap process
routes and can potentially increase the recycling rate at lower energy consumption. The final step of
the recycling process is to melt the scrap, adjust the composition with virgin metal, and cast it into
an ingot or parts.
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Figure 4.13: Flowchart of the aluminum recycling process

The focus of this study is the third and fourth steps of the recycling process as shown in Figure
4.13. The system boundary of each technology model includes the utilities and consumables
used on site, human labor, machinery, and maintenance. Consumption of raw scrap (its cost and
environmental impacts) is modeled separately in the linear optimization model and thus not included
in the emerging technology models. The performance of each technology is measured along five
dimensions: separation and refining potential, process yield ratio, cost, emission, and current
industrial use.

The separation or refining potential is the ability of a technology to separate scrap alloys and/or
remove impurities. In this work, the separation or refining potential of a technology is represented
by the elemental composition of the processed scraps, which depends on the separation and/or
refining technology used and the composition of the incoming scrap streams. The composition
of incoming scrap depends on the alloy breakdown of the scrap stream and the quantity of tramp
element contamination, both of which may change over time. For a separation process (e.g., LIBS
process), the chemical compositions of the separated scraps are assumed to be the same as those of
the corresponding pure alloy stream. For example, if a kt of mixed low Cu and high Cu scraps are
separated by the LIBS process, then the separated scraps will contain b kt of low Cu scraps and c kt
of high Cu scraps. The mass of separated scraps and input scraps satisfy the mass conservation and
the ratio of b to c depends on the ratio in the mixed Cu scraps which can be derived from the DMFA
results.

a kt · compk,mixed Cu scraps → b kt · compk,low Cu + c kt · compk,high Cu (4.12)

a = αLIBS ∗ (b+ c) (4.13)

If there is contamination in the input scrap stream, it is assumed that the contamination remains
in the separated scraps. This assumption is made because the contaminant is likely firmly attached
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to the scrap and unlikely to have been separated in the upstream separation processes. For example,
if the mixed Cu alloying aluminum autobody sheet scrap is contaminated with 1% iron (unremoved
rivets), the composition of mixed Cu scraps before separation is modeled as:

compk=iron,mixed Cu scraps1% Fe contaminate = compk=iron,mixed Cu scraps uncontaminated + 1% (4.14)

The composition of separated low Cu and high Cu scraps are modeled as:

compk=iron,low Cu1% Fe contaminate = compk=iron,low Cu + 1% (4.15)

compk=iron,high Cu 1% Fe contaminate = compk=iron,high Cu + 1% (4.16)

For a refining process, the chemical composition of the refined scrap is a function of the input
scrap composition. For example, if the Hoopes process is used to refine scrap with chemical
composition compk,input where k indicates the alloy elements, then the compk=aluminum,refined of
the Hoopes process equals 99.97% and the alloying element composition is calculated using the
Equation 4.17. As the scrap composition changes over time, the refined scrap aluminum content
always equals 99.97% while the other alloy content changes following the same calculation. If the
scraps are contaminated by any trace elements, the trace element content increases in the input
scrap stream. The refined scrap aluminum content still equals 99.97% and the other alloy content is
calculated using the same procedure as in Equation 4.17.

compk,refined = compk,input ∗ (100%− compaluminum,refined) (4.17)

During a separation or refining process, materials may be lost due to the removal of contaminants
(e.g., removal of steel rivets and surrounding aluminum sheet) or melting (e.g., oxidation of exposed
aluminum melt). Process yield quantifies the ratio of the mass of material recovered to the mass of
material input and indicates the level of material loss of technology. In this study, the process yield
ratio is expressed as α [%] which is used in the cost and energy estimations later. The process yield
of technology is assumed to be the same irrespective of scrap input s or alloy demand d and may
change over time (year t).

The cost of a separation or refining technology includes both variable costs such as utilities
(e.g., electricity and natural gas), consumables (e.g., salt), etc., and fixed costs such as machinery.
For a typical separation process such as color sorting and etching, the lifetime cost (Ctotal[$]) of
processing a total amount of xtotal[metric ton] aluminum scraps is as follows:
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Ctotal = xtotal × (cutilities + cconsumables + clabor) + Cmachinery + Cmaintenance&repair (4.18)

Where cutilities[$/metric ton input], cconsumables[$/metric ton input], and clabor[$/metric ton input]
are the specific costs per metric ton aluminum scrap of utilities (e.g., electricity), consumables
(e.g., etching chemicals) and operating labor respectively, Cmachinery[$] is the investment of the
construction and machinery and Cmaintenance&repair[$] is the lifetime maintenance and repair cost.
For a separation technology, the machinery costs and utilities or consumables used are usually
identifiable from academic and grey papers or specifications of similar machines in other markets
(e.g., sewage water vacuum evaporator to approximate aluminum vacuum distillation for zinc
removal) and the energy column of the catalog records the utilities consumed per metric ton input
of the technology. Specifically, the electricity cost is modeled at 6.91 cents/kWh and the natural
gas cost is modeled at $4.14/1000 cubic feet. The labor cost is modeled at a constant value of
$10.8/metric ton of scrap input for separation technologies according to Pressley et al. (2015)’s
analysis of aluminum separation facilities in the U.S. Maintenance and repair cost is approximated
as 56% of machinery cost according to Enparantza et al. (2006)’s life cycle analysis of industrial
machines. The value of xtotal is estimated from throughput rate t [metric ton/hr], process yield ratio
α [%] and machine life m [hr] as shown in Equation 4.19.

xtotal =
t

α
×m (4.19)

Throughput rate and process yield ratios are both process specific data obtained from literature
or machine specification reviews. For example, the yield of the Hoopes process is assumed to be
95% according to DeYoung et al. (2010). For machine lifetime estimates, Erumban (2008) found
that the average service life of industrial machines is around 30 years, and each machine is assumed
to operate at 300 days/year and 18 hrs/day which gives the total machine life in hours. The lifetime
cost Ctotal is then converted to unit mass based specific cost ctotal[$/metric ton input] by amortizing
it among xtotal metric tons of material as shown in Equation 4.20.

ctotal =
Ctotal

xtotal

= cutilities + cconsumables + clabor +
Cmachinery + Cmaintenance&repair

xtotal

(4.20)

The specific cost of a refining technology can be calculated similarly using Equation 4.20. In
the case of coupled processes, where a separation technology is followed by a refining technology,
the cost of the coupled processes is computed as Equation 4.21. The inclusion of the separation
technology yield ratio (α separation) accounts for the material loss during the separation process. The
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cost data is collected to prepare for future analysis of potential cost savings or industry investment
needed to switch from current recycling routines to emerging technologies as part of a future
Department of Energy project. In this case study of U.S. aluminum ABS recycling, the cost data is
not used.

ctotalcoupledprocess = cseperation + αseperation × crefining (4.21)

The specific energy etotal [MJ/kg of scrap input] from a separation or refining technology is
quantified by the process energy (utilities) and embodied energy of materials.

etotal = eutilities + econsumables (4.22)

For coupled separation and refining process, the combined specific energy is calculated as
Equation 4.23.

etotalcoupledprocess = eseperation + pseperation × erefining (4.23)

Information about the level of industrial use of each technology is collected as a reference for
analyzing its potential future market share. For example, hot crush is one of the technologies that has
only been mentioned in academic research papers and not used in the industry. Thus, its industrial
use is assumed to be currently zero and recorded as ”laboratory scale”. Other levels of industrial use
considered in this analysis include: ”some industrial uses” (e.g., LIBS separation process which has
been deployed in pilot scrap processing facilities (Steinert, 2018)) and ”widely used” (reverberatory
furnace melting which is the most widely used recycling technology in the U.S.).

For each technology parameter, a data confidence level—high (H), medium (M), or low (L)—is
assigned according to three measures: (1) date of the data sources (e.g., post 2010 vs. pre-2000)
(2) integrity of the data source (e.g., peer-reviewed vs. anecdotal); and (3) the degree to which
(proxy) data from multiple sources is required to calculate the technology parameter. For example,
the heating system for the semi-solid hot crush process was modeled using proxy reverberatory
furnace data which is assigned a score of 2 in third measurement category. The weighted scores in
the three measurement categories are summed up to get a total score. If the total score is higher
than 90%, it is assigned a confidence level of high(H). Similarly, if the score is within 70% - 90%, it
is assigned a confidence level of medium (M) and a low (L) if less than 70%. A data source with a
confidence level of high is assumed to vary within 10% of the nominal value, and a similar 20% or
30% variation is assumed for medium or low confident data sources respectively. Table 4.6 below
is the example weighting rubric for assigning the confidence level to each data source. The data
confidence measurement will be used for future sensitivity analysis of the reverse aluminum supply
chain optimization.
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Table 4.6: data confidence level measuring rubric

technology parameter

data con-

fidence

criteria

score range weight cost of Labor refining poten-

tial of fractional

crystallization

cost of electro-

refining technol-

ogy for Mg re-

moval

date of the

data source

3: post 2010

33.33% 3 1 32: 2000-2010

1: pre-2000

integrity of

the data

2: peer-reviewed
33.33% 2 2 2

1: anecdotal

degree to

which (proxy)

data from

multiple

sources is

required

3: research and industry

data (no approximation

needed)

33.33% 1 2 3

2: approximated with

aluminum related

process or extrapolated

from experimental data

1: approximated with

other processes

weighted total

score (%)

77% 67% 100%

confidence level medium low high

4.3.1.1 Color Sorting and Etching

Color sorting and etching has been widely used in industry to separate metal scraps since the
1970s (Bell et al. 2003; Wyss and Schultz 1999). However, it was not used to separate aluminum
scraps by alloy groups until 1999 (Bell et al. 2003; Wyss and Schultz 1999). During the color
sorting process, scraps are treated with chemical solutions, e.g., sodium hydroxide solution, under
controlled temperatures to produce different surface colors according to their alloy compositions.
An optical sensor and automated sorting mechanism are then used to separate the color etched
scraps into alloy groups. In the case of similar alloy compositions, more than one round of chemical
treatment can be applied to produce distinctive surface colors and further distinguish the scraps.
Wyss and Schultz (1999) used two rounds of solution treatment to produce distinguishable color
on the surface of 2xxx, 3xxx, 5xxx, 6xxx, and 7xxx wrought aluminum scraps which were then
detected by an industrial level CCD camera. According to Brown (1982), the yield ratio of industrial
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level color sorter can be higher than 99%. The cost of color sorting and etching is estimated at
around $13/metric ton aluminum input while the energy consumption is estimated at around 400
Wh/metric ton aluminum input.

Compared to traditional separation methods (e.g.,air separation and magnetic separation), the
major advantage of color sorting is its ability to separate scrap by alloy families and manage a scrap
of various sizes and shapes (Gausted et al., 2012). However, color sorting has not been widely
adopted in the aluminum recycling industry because of the high investment requirement and the
inaccuracy in sorting the etched scraps (Steinert, 2019; Rio Tinto, 2019). Inaccuracies may be
caused by coating and surface finish of the scraps, temperature control, and chemical solution
choices (Wyss and Schultz, 1999; Bell et al., 2003; Gausted et al., 2012).

4.3.1.2 Hot Crush

Hot crush is a technique that separates casting and wrought aluminum scraps based on their
distinguishing thermal-mechanical behaviors at sub-melting point temperatures (Ambrose et al.
1983; Duane 1985; Brown et al., 1985). Within the temperature range between 525oC and 625oC,
casting aluminum alloys become more brittle (which is called hot shortness) while wrought alu-
minum alloys are still ductile. Based on these thermal-mechanical behaviors, Ambrose et al. (1983),
Duane (1985), Brown et al. (1985) designed and tested the hot crush process where the mixed
casting and wrought aluminum alloys are heated to 525 - 625oC and crushed using jaw crushers or
other smashing mechanism. The casting alloys can be crushed into smaller pieces while wrought
metal remains in the original size. Subsequent screening and sorting operations then separate the
wrought scraps from casting scraps based on sample size. Duane et al. (1985) estimated that the
yield rate of the hot crush process is around 97% and the loss mainly occurs due to oxidation in the
furnace heating operation. The cost and energy consumption of hot crush are estimated at around
$70/metric ton aluminum input and 867 kWh/metric ton aluminum input respectively.

The hot crush process relies on the thermal-mechanical behaviors of aluminum alloys rather
than chemical solution treatment, reducing the need for subsequent surface cleaning and drying.
Major disadvantages of the hot crush technique include (1) high energy cost compared to traditional
separation techniques in order to reach sub-melting temperature; (2); long preheating time (1 hr. to
6 hrs.) for homogeneous scrap temperature (Duane, 1985) (3) complexity of screening mechanism
design for different wrought and cast scrap mixture; (4) potential contamination in sorted wrought
scrap due to melted casting alloys (Ambrose et al. 1983; Duane 1985). No industrial usage has been
found for hot crush technique in the aluminum recycling industry.
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4.3.1.3 Laser-Induced Breakdown Spectroscopy (LIBS)

Laser-induced breakdown spectroscopy (LIBS) process separates aluminum scraps by individual
alloy type (Gausted et al., 2012). During the LIBS process, elements on the scrap surface are excited
by the energetic laser pulse. The emitted light from the scrap is captured to produce spectrums
which are analyzed to identify the chemical composition of the specific scrap. The LIBS technology
was first invented by the Los Alamos National Laboratory in the 1980s (Javaid and Essadiqi, 2003).
Currently, it has been applied to metal scrap sorting by U.S. companies such as Huron Valley Steel
(Gesing and Wolanski, 2001) and Austin AI (Austin AI, 2019) as well as EU companies such as
Constellium, TriTech and Steinert (Rio Tinto, 2019; Steinert, 2019). According to Gesing et al.
(2010), for a single pass sorting of three-alloy mixture, the recovery rate for each alloy ranges from
96% to 99%. Campanella et al. (2017) tested the LIBS system with uncleaned aluminum scraps and
achieved yield ratios between 47% and 90% under various experimental setups. We approximate
the yield ratio of the LIBS process as the average of all data sources at 83%. The cost of LIBS is
estimated at around $10/metric ton aluminum input while the energy consumption is estimated at
around 640 Wh/metric ton aluminum input.

LIBS process requires no heat treatment or chemical solution treatment. However, in order for
the pulse laser to reach the surface of the scrap for accurate detection, the scrap must be cleaned
and de-coated before screening. Scrap size is another factor that limits sorting accuracy because if
the scrap size is too small, it may bypass the laser detector or be incorrectly identified according to
Gesing et al. (2010). LIBS process throughput rate is limited by the conveyor system design and
sorting requirement. Current LIBS sorters usually can sort a mixture of two or three alloys at a time.
In the case of complex EOL scrap streams, more than one round of sorting is required to separate
the scraps into individual groups (Gesing et al., 2010; Austin AI, 2019).

4.3.1.4 Basic Refining: Reverberatory Furnace

A reverberatory furnace is a type of large scale natural-gas-fired smelting furnace that is com-
monly used in secondary aluminum production in the U.S. In a reverberatory furnace, aluminum
scraps are charged into the hearth (bottom of the furnace) directly or from sidewalls, and the heat
generated from burning the natural gas transfers directly to the aluminum scrap by radiation and
convection. Common aluminum secondary production remelts the solid aluminum scrap mixture
in a reverberatory furnace to form a molten aluminum charge. The molten aluminum charge has
a homogenous chemical composition which can be estimated from the weighted average of the
chemical composition of input scrap. Melting loss occurs in a reverberatory furnace due to oxidation
of molten aluminum that is directly exposed to the air-fuel combustion mixture. The yield rate of
reverberatory melting is estimated at 96% (Deyoung et al., 2011; Schlesinger, 2014; Milford et al.,
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2011). The cost and energy consumption of reverberatory furnace melting are estimated at around
$262/metric ton aluminum input and 1543 kWh/metric ton aluminum input respectively.

Reverberatory furnace melting is a batch process that has higher productivity and lower mainte-
nance cost compared to the other common re-melting furnace, i.e., the rotary furnace. However, it
may suffer from low energy efficiency because of the stationary heat transfer design (Li et al., 2006).
A recent study has suggested that adding oxygen to aid the natural gas burning in the reverberatory
furnace can increase the furnace energy efficiency compared to traditional air-fuel combustion
(Gangoli et al., 2017).

4.3.1.5 Fluxing for Magnesium Removal

Fluxing is a commonly used technique to prevent metal oxidation and to remove inclusions,
alkali metals, and magnesium in aluminum recycling (Utigard et al., 1998; Utigard et al., 2001;
Wtlliams, et al., 2016)). Chlorine gas, a typical fluxing gas, reacts with magnesium in the molten
aluminum charge and forms magnesium chloride which is then removed as part of the dross (Tiwari,
1982; Fu and Evan, 2007; Qian et al., 1998). Dross is the semi-solid floating layer formed during the
re-melting process that contains a mixture of molten aluminum, various oxides, chloride compounds,
etc. Lately, the use of chlorine as the fluxing agent has been gradually abandoned because of health
concerns related to its toxicity (Schlesinger, 2014). In addition to chlorine gas, solid chlorine or
fluoride containing fluxes, e.g., AlCl3, AlF3 and NaAlF4 can be used to remove magnesium in the
form of chloride or fluoride dross (Majidi, et al., 2007; Leboeuf et al., 2016; Gaustad et al., 2012).
However, AlF3 is expensive for secondary aluminum production and use of fluoride-based salts
also presents potential workplace hygiene concerns (Gaustad et al., 2012). The cost of fluxing is
estimated at around $142/metric ton aluminum input. Fluxing is usually performed on melted scraps
and the additional energy to melting is minimal.

Fluxing process often requires a large amount of gas or salt to enable efficient removal, e.g., 2.95
kg of chlorine is needed to remove 1.0 kg of magnesium (Schlesinger, 2014). The chemicals used
(e.g., chlorine as fluxing gas, AlCl3) or produced (e.g., HCl vapors generated during the fluxing
process) in the fluxing process present health and environmental concerns (Gaustad et al., 2012).
In addition, the reaction of salts with the alloying elements may produce new contamination in
the alloys. and generate large amounts of salt cakes (e.g., 200-500 kg per metric ton of aluminum
produced) which contain mostly nonmetallic salt that requires further waste treatment (Utigard et
al., 1998).
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4.3.1.6 Hoopes Process

The Hoopes process is a three-layer electrolysis process that refines liquid aluminum to produce
high purity products (higher than 99.97 wt.% aluminum content) such as 1xxx series foil (Gaustad
et al., 2012). It was first developed by J.W. Hoopes et al. in the early nineteenth century as a primary
aluminum refining technology (Lindsay, 2014). In the Hoopes process, the molten aluminum scrap
forms the anode layer and the pure aluminum concentrates at the cathode layer. The remaining
elements are lost in the electrolyte layer (Gaustad et al., 2012). The yield ratio of the Hoopes
process is modeled at 95% according to DeYoung et al. (2011). The cost of the Hoopes process is
estimated at around $1165/metric ton aluminum input while the energy consumption is estimated at
around 17,500 kWh/metric ton aluminum input.

The Hoopes process is energy intensive as it requires high operation temperature (between 700oC
and 900oC) and high electricity input to enable electrolyzing of molten aluminum. According
to Hammer et al. (2014), the environmental saving of Hoopes refining is only 17% of primary
aluminum production. The Hoopes process suffers from low productivity and its market share is
very limited in the current aluminum primary or secondary industry (Rio Tinto, 2019).

4.3.1.7 Low Temperature Electrolysis

Low temperature electrolysis is an electro-refining process that produces high purity aluminum
at a lower temperature (around 100oC) compared to traditional electrolysis (e.g., the Hoopes process
that usually operates at 700-800oC) (Endo, et al., 2014; Gaustad et al., 2012; Kamavaram et
al., 2005). Instead of using cryolite as the electrolyte, which is a common practice in the Hall
Heroult primary aluminum production process, room-temperature-ionic-liquids are used in low
temperature electrolysis to enable electro-deposition of pure aluminum (Pradhan and Reddy, 2014).
The common setup for low temperature electrolysis has three layers: the scrap aluminum anode, the
pure aluminum or copper cathode, and the room-temperature-ionic-liquid as electrolyte. Purified
aluminum is electro-deposited on the cathode which removes tramp elements such as manganese,
iron, silicon, copper, zinc, nickel, and lead (Gaustad et al., 2012). The cost of low temperature
electrolysis is estimated at around $387/metric ton aluminum input and the energy consumption is
estimated at around 4950 kWh/metric ton aluminum input.

Low temperature electrolysis saves energy compared to traditional electro-refining technologies,
e.g., the Hall Heroult process and the Hoopes process. In laboratory tests, the energy consumption
ranges between 3.2 and6.7 kWh/metric ton aluminum according to Kamavaram et al. (2005). It also
avoids possible toxic or harmful gas emissions compared to fluxing. However, the low temperature
electrolysis may suffer from low processing rate, e.g., the experimental purification rate is only
around 0.003 g/hr according to Kamavaram et al. (2005). Low temperature electrolysis is still at
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experimental stage and no industry usage of low temperature electrolysis has been found (Rio Tinto,
2019).

4.3.1.8 Fractional Crystallization

Fractional crystallization is a popular method for ore and primary metal refining invented in the
nineteenth century (Muniz-Lerma et al., 2017; Gaustad et al., 2012; Drini et al., 2005; Kahveci and
Unal, 2000; Sillenkens, 1999). Several studies investigate the usage of fractional crystallization
to purify and produce high-purity aluminum metals with 99.99 wt.% or higher aluminum content
(Muniz-Lerma et al., 2017; Drini et al., 2005; Kahveci and Unal, 2000; Sillenkens, 1999). During
the fractional crystallization process, the surface of scrap melt is cooled in a controlled manner
(usually by air blow/quench) to allow for the formation of aluminum crystals, leaving the impurities
in the remaining melt. A continuous filtering mechanism is used to collect the purified aluminum.
In theory, the fractional crystallization process can remove most eutectic impurities such as silicon,
iron, copper, nickel, magnesium, gallium and zinc from the aluminum melt (Drini et al., 2005;
Sillenkens, 1999). Yield rate of fractional crystallization ranges between 40% and 80% based on
different experimental setups (Muniz-Lerma et al., 2017; Drini et al., 2005; Kahveci and Unal, 2000;
Sillenkens, 1999). The cost of fractional crystallization is estimated at around $172/metric ton
aluminum input and the energy consumption is estimated at around 2300 kWh/metric ton aluminum
input.

Due to the fact that metal tends to form solid solutions, the crystallization process has to be
repeated in order to achieve desired purity. There is also a large amount of unavoidable yield
loss during the fractional crystallization process since downgraded impure aluminum is created
in each cycle of the crystallization. In addition, this refining technique requires a large equipment
capacity to allow consistent crystallization to happen. Due to the low productivity, high investment
requirement and yield loss, fractional crystallization has only been seen in few aluminum primary
facilities (Rio Tinto, 2019).

4.3.1.9 Vacuum Distillation

Vacuum distillation removes impurities, e.g., lithium, magnesium, manganese, and zinc from
aluminum baths under reduced pressure based on distinct boiling point differences between impurity
elements and aluminum (Gaustad et al., 2012). Molten aluminum that enters the vacuum furnace
is held at certain temperatures, e.g., 30 mins at 750oC to 900oC, to allow impurity elements e.g.,
zinc, to vaporize. Ithaki, Arakawa and Murata (2000) experimentally reduced the zinc content in
the aluminum bath from 3 wt.% to less than 0.1 wt.% and collected the zinc vapor at water-cooled
flanges. According to Gilstad (2013), the yield ratio of distillation process, which is similar to
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that of the fractional crystallization process, is modeled at 80%. The cost of vacuum distillation is
estimated at around $212/metric ton aluminum input while the energy consumption is estimated at
around 3841 kWh/metric ton aluminum input.

A major advantage of vacuum distillation is that the vaporized impurity elements, such as zinc,
can be collected and reused which adds to the economic value of the technology. However, the
effectiveness of impurity removal is limited by pressure and the ratio of free surface to the volume
of aluminum melt (Gaustad et al., 2012). No industrial usage of vacuum distillation in the aluminum
recycling industry has been found (Rio Tinto, 2019).

4.3.1.10 Electro-Refining for Magnesium Removal

The electro-refining for magnesium technique was developed by Gesing and Das from Phinix,
LLC and MER Corporation under a US DOE project (Gesing and Das, 2017; Gesing, Das and
Loutfy, 2016). This process is designed to extract magnesium from molten aluminum scrap by
integrating an electro-refining cell in a reverberatory furnace (Gesing and Das, 2017; Gesing,
Das and Loutfy, 2016). The aluminum scrap melt circulates through the electro-refining cell and
excessive magnesium (with minor aluminum content) deposits on the cathode which can be removed
as a continuously cast solid rod. A selected electrolyte (NaCl-SrCl2-MgCl2 and LiF-MgF2) allows
for the separation of magnesium from aluminum melt by density and has the potential to remove
lithium, sodium, calcium, strontium from the scrap aluminum melt. The theoretical purity of the
refined aluminum product (3 x 10-5 mol pct.) can meet the chemical composition requirement
for both wrought and casting aluminum alloys (Gesing and Das, 2017; Gesing, Das and Loutfy,
2016). The cost of electro-refining for magnesium technique is estimated at around $272/metric
ton aluminum input while the energy consumption of electro-refining for magnesium technique is
estimated at around 2500 kWh/metric ton aluminum input.

Major advantages of the electro-refining for magnesium technique include (1) reclaiming alloyed
magnesium (2) replacing conventional chlorination refining process and avoiding associate health
and environmental concerns. Disadvantages of this process include possible moisture or residual
contaminations e.g., sodium in the processed scraps (Gesing and Das, 2017; Gesing, Das and Loutfy,
2016). This technology has only been tested in laboratory and no industry usage has been found
(Das, 2019).

4.3.1.11 Membrane Purification Cell

Membrane purification cell is an electro-refining process that uses a horizontal membrane cell
anode to replace the aluminum-copper alloy anode in a typical Hoopes process (DeYoung et al.,
2011). It can remove common contaminants in aluminum scraps such as copper, silicon, iron,
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manganese, etc. According to DeYoung et al. (2011), the membrane purification technology
has lower energy consumption and emission compared to the Hoopes process. The cost and
energy consumption of membrane purification technology are estimated at around $446/metric ton
aluminum input and 6393 kWh/metric ton aluminum input respectively.

Compared to other refining processes, membrane purification cell has a relatively low melt loss
(yield ratio around 95%) due to the enclosed melting chamber design that prevents exposure of
molten aluminum to the combustion product or atmosphere. The membrane cell can serve as both a
purification system and an electric melting system to save the operation cost of re-melting furnaces
(DeYoung et al., 2011). Similar to other electro-refining processes, the membrane purification cell
is likely to suffer from low production rate. No industry usage has been found for the process (Rio
Tinto, 2019).

4.3.2 Applying Emerging Recycling Technologies to Upcoming U.S. ABS Scrap for
Closed-Loop Recycling

We combine the technology catalog with the modified linear programming model introduced in
Section 4.1 to evaluate the potential of emerging recycling technologies on the upcoming stream of
the U.S. aluminum ABS scrap. Equation 4.24-4.29 shows the modified linear programming model.

Minimize :
D∑

d=1

S∑
s=1

P∑
p=1

αd,s,p · θd,s,p · energyd,s,p, for each year (4.24)

S∑
s=1

P∑
p=1

αd,s,pθd,s,p ≥ Alloy demandd, for each d (4.25)

D∑
d=1

P∑
p=1

θd,s,p ≤ Metal sources, for each s (4.26)

∑S
s=1 θd,s,p ∗ αd,s,p ∗ comp lowerk,s,p∑S

s=1 θd,s,p ∗ αd,s,p

≥ comp limit mind,k, for each [d, p] (4.27)

∑S
s=1 θd,s,p ∗ αd,s,p ∗ comp upperk,s,p∑S

s=1 θd,s,p ∗ αd,s,p

≤ comp limit maxd,k, for each [d, p] (4.28)

∑
s=scraps

θd,s,p ≥ a ∗
∑
s

θd,s,p, for each [d, p] (4.29)
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The objective function is shown in Equation 4.24, subject to the inequality constraints shown in
Equation 4.25-4.29. For each year between 2021 and 2050, we minimize the total energy needed to
produce the demanded alloys (total of D alloy types) as predicted in the DMFA section. The total
energy includes the embodied energy of scrap (GREET, 2020) and virgin metals (Ashby, 2012)
as well as process energy derived in the technology catalog. In this case study, D = 6 which are
low Cu alloy, high Cu alloy, low Mg alloy, high Mg alloy (shown in Figure 4.11 in Section 4.2.5),
extrusion (A6082), and casting (A356.0). The quantity, yield ratio, and energy consumption of
metal source s used to produce new alloy d through technology p [Mt] are represented by θd,s,p,
αd,s,p and energyd,s,p, respectively. There is a total of S metal source types. Among all the metal
sources, s=1 represents unalloyed primary aluminum, s=2:6 represents the five alloying elements
and the rest of s to S represents the scrap sources (aluminum ABS scrap, extrusion scrap, casting
scrap or mixture of scraps).

There are four groups of inequality constraints: alloy demand, scrap supply, alloy chemistry,
and economic furnace constraints. The alloy demand constraints (Equation 4.26) ensure that the
production of each new metal alloy, d, is greater than or equal to alloy demand (Alloy demandd).
The scrap supply constraints (Equation 4.27) ensure that the quantity of a used scrap source does
not exceed the amount available (Metal sources). The alloy chemistry constraints ensure that the
elemental composition of the new metal alloys falls between the lower bound (Equation 4.28) and
upper bound (Equation 4.29) of that specified by ANSI/ISO standards. The comp lowerk,s,p and
comp upperk,s,p represent the lower and upper bound concentration of element k in metal source s

processed by technology p. The economic furnace constraints (Equation 4. 30) ensure that the scrap
content in a recycling furnace is no less than the required weight fraction a, which eliminates the
scenario where the optimization model simulates any alloy production that contains only a small
fraction (e.g., 5%) of scrap in recycling furnaces. This is an unrealistic and economically infeasible
scenario as it corresponds to buying and remelting mainly primary materials. Details about how the
constraints are implemented are explained in Section 4.3.2.1.

The raw scrap inputs to the model are the aluminum ABS scraps disassembled from EOL
aluminum bodied vehicles. The examined vehicles have a body-on-frame design of which the
aluminum castings are located in the vehicle frame (Section 4.2). If shredding together, the cast
aluminum could be mixed (as is currently the case) with the sheet and extrusion aluminum from the
vehicle body. If unbolted, the cast aluminum frame could be separated from the sheet and extrusion
aluminum body structure. Based on the vehicle material composition, we define four scrap mixing
scenarios for the optimization analysis:

• All aluminum automotive body and chassis scrap (aluminum ABS, extrusion and casting
scraps) mixed together,
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• Aluminum automotive body and chassis scrap separated by wrought and cast family

• Aluminum automotive scraps separated by sheet (aluminum ABS), extrusion and cast

• Aluminum automotive scraps separated by alloy (aluminum low Cu, high Cu, low Mg, high
Mg, extrusion and casting alloys)

Figure 4.14: Illustration of the Ford vehicle structure (figure constructed from SAE, 2015 and Darby,
2015)

In addition to scrap mixing, scrap contamination can also contribute to the compositional
mismatch problem (Section 4.1). Potential contaminations of the EOL scrap stream from the
aluminum-bodied vehicles include the mixing of steel rivet and copper wiring. According to
Chappuis (2015) and GREET (Argonne, 2020), the steel content in aluminum-bodied vehicle body
and chassis is between 7-9%, and the copper content is around 4%. In reality, even though the
shredded scraps usually have gone through magnetic separation, eddy current separation, or other
separation processes, there is still the possibility of steel and copper scraps that have remained
undetected during separation (Kelly et al., 2017). To analyze the contamination’s impact on the
recycling rate, we define four scrap contamination scenarios (each applies to the four scrap mixing
scenarios defined above).

• Base case no contamination scenario

• 1% iron contamination due to remaining steel scraps from rivet

• 1% copper contamination due to remaining copper scraps from wiring

• 1% iron contamination and 1% copper contamination
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The 16 scrap scenarios (4 mixing scenarios x 4 contamination scenarios) are combined with four
recycling technology scenarios to evaluate the effectiveness of recycling technologies in separating
and refining mixed and/or contaminated scraps and improving the recycling rate of EOL ABS
scraps:

• If only dilution through the reverberatory furnace is available.

• If dilution and a separation technology are available.

• If dilution and a refining technology are available.

• If dilution, a separation and a refining technology are all available.

The first technology scenario setting is based on the current recycling practice that most recyclers
only dilute the scraps with primary unalloyed aluminum and need alloying elements to meet the
desired chemical composition requirements of alloy products. The second to fourth scenarios
respectively examine the effectiveness of representing separation, refining, and coupled process
with separation and refining technologies.

4.3.2.1 Implementing the Optimization Model using MATLAB

In order to implement the optimization model, the MATLAB linprog function is used. MATLAB
linprog function is a linear programming solver that finds the minimum of a problem specified by:

minx fTx (4.30)

A · x ≤ b (4.31)

Aeq · x = beq (4.32)

lb ≤ x ≤ ub (4.33)

Where f, x, b, beq, lb, and ub are the objective function, design variables, inequality constraint
vector, equality constraint vector, variable lower bound and upper bound, respectively. A and Aeq

are the inequality and equality constraint matrices. In order to model the five inequality constraints
of the problem (Equation 4.25 - 4.29), the coefficients A and b are needed. Dimension of matrix
A and b depends on the number of constraints and the size of the design variable. In this analysis,
the design variable is represented by θ, which is a K-by-1 array where value of K depends on
the recycling technology scenarios and the number of alloy product types. The number of design
variable elements needed for each recycling technology is defined as Kp, representing the liquid
metal alloying and scrap flows to the recycling process and K = D ∗

∑
pKp. For example, in the
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primary production, only the major alloying elements and primary aluminum are needed (first row
in Figure 4.15), thus K1 = 6. For secondary production with only dilution, not only the alloying
elements and primary Al ingot but also EOL scraps are needed (second row in Figure 4.15), thus K2

= 6+18=24. Although there are only six types of pure alloy scrap streams as defined in the scrap
mixing scenario, we set up the design variable that can potentially incorporate all possible scrap
mixtures scenarios to prepare for future research.

Figure 4.15: Illustration of design variable setup

The 18 types of pure scrap stream and mixed scrap streams included in the design variable are as
follows:

• low Cu

• high Cu

• low Mg

• high Mg

• extrusion

• casting

• mixed Cu

• mixed Mg

• Cu+extrusion

• Mg+extrusion
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• Cu+casting

• Mg+casting

• Cu+extrusion +casting

• Mg+extrusion +casting

• All ABS scrap mixed

• ABS +extrusion

• ABS+casting

• ABS +extrusion +casting

Each cell named ”scrap”, ”scrap refined”, ”scrap separated”, or ”scrap separated and refined”
in Figure 4.15 contains all 18 types of scrap streams. The difference between unprocessed scrap
and refined scrap is their composition. For example, unprocessed ABS scrap has 0.15-0.35%
Cu, 1.2-1.7% Mg, 0.02-0.29% Mn, 0.38-0.78% Si, 0-0.31% Fe, and 96-98% Al while Hoopes
process purified ABS scraps contain 99.9% Al and less than 0.1% of alloying element contents. For
separated scrap, we model the LIBS separation process which separate mixed scraps into individual
alloys. The pure scrap stream in the separation process represents the separated scrap and the mixed
scrap streams represent the input scrap to the process. The separated output scrap and the mixed
input scrap stream are mass balanced based on the scrap mix ratio in the original scrap supply
(Equation 4.12).

If refining technology is available when recycling, not only pure alloying elements, primary Al,
and unprocessed EOL scraps but also refined EOL scrap are available, thus K3 = 6+18+18=42.
Similarly, for secondary production when separation technology is available, K4 = 6+18+18=42.
For secondary production when both separation and refining technologies are available, K5 =

6+18+18+18=60. For the four recycling technology scenarios, the corresponding design variable K
value is as follows:

• K = D∗(K1+K2) = 6∗30=180. If only dilution through the reverberatory furnace is available.

• K = D∗(K1+K2+K3) = 432. If dilution and a separation technology are available.

• K = D∗(K1+K2+K4) = 432. If dilution and a refining technology are available.

• K = D∗(K1+K2+K3+K4+K5) = 1044. If dilution, a separation, and a refining technology
are all available.
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In technology scenarios 3 and 4 that include the separation process, the matrix A for the scrap
supply constraint needs to be set so that the sum of scraps that are separated but not recycled
and the scraps that are separated and recycled cannot exceed the amount of scraps input to the
separation process. Also, the input scraps of separation process need to meet the original scrap
supply constraint. This splits the scrap supply constraint into two parts. The first part (Equation
4.34) ensures that the scrap that is separated and recycled by all separation processes p is no more
than the mixed scraps flowing into the system.

∑
p

xi=separated scrap,p

αi,p

≤
∑
p

xi=mixed scraps,p ∗ ratioalloyi (4.34)

The second part of the scrap supply constraint ensures that the scrap (excluding the separated
scraps to avoid double counting as they are constrained by the mixed scrap supply constraint and
Equation 4.34 above) flowing into all recycling systems does not exceed the total scrap supply
(the original scrap supply constraint Equation 4.26). The corresponding matrix A is the coefficient
matrix derived through factorization of the constraint Equation 4.34 (summing of specific elements
in design variable θ is replaced by the dot product of a vector with value 1s at the specific indices
and the design variable).

4.3.2.2 Preliminary Analysis Results for U.S. Aluminum ABS Scrap Recycling

Table 4.7-4.10 shows the preliminary analysis for the U.S. aluminum ABS scrap recycling in
2050 using a minimum energy consumption optimization approach and the DMFA results in Section
4.2.4. A total of 64 scenarios are considered (4 contamination scenarios x 4 scrap mixing scenarios
x 4 recycling technology scenarios). For each scenario, we calculate the recycling rate (RR: mass
ratio of scrap recycled to the scrap supply for each scrap stream accounting recycling yield losses),
recycled content (RC: mass ratio of scraps to primary and secondary alloy product), and cumulative
energy demand (CED) needed to fulfill the 2050 automotive aluminum demand for the aluminum
intensive vehicles (including primary and secondary production). A 50% furnace constraint is
applied (a = 50%) to ensure economic operation of the recycling process. In the scrap mixing
scenarios where scraps are assumed to be pre-separated (e.g., ABS scrap separated from casting
scraps), and the energy consumption of pre-separation are not considered. This is to incorporate the
potential disassembly operations like unbolting of chassis from vehicle body before shredding. The
estimated CED in these scenarios is thus a lower bound estimation of reality.
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Table 4.7: 2050 recycling rate (RR) and recycled content (RC) of six major aluminum alloys and
scraps without contamination

Base case no contamination scenarios

Scrap

mixing

scenario 1:

all

automotive

scraps

mixed

Scrap mixing

scenario 2:

automotive

scraps

separated by

wrought and

cast

Scrap mixing

scenario 3:

automotive scraps

separated by sheet

(ABS), extrusion and

cast

Scrap mixing scenario 4: all automotive

scraps separated by alloys

Recycling

technol-

ogy

scenarios

Scenario

outputs

Scrap

stream 1:

ABS

+extrusion

+casting

Scrap

stream

1: ABS

+ extru-

sion

Scrap

stream

2:

Cast-

ing

Scrap

stream

1:

ABS

Scrap

stream

2:

Extrus.

Scrap

stream

3:

Cast-

ing

Scrap

stream

1:

Low

Cu

Scrap

stream

2:

High

Cu

Scrap

stream

3:

Low

Mg

Scrap

stream

4:

High

Mg

Scrap

stream

5: Ex-

trus.

Scrap

stream

6:

Cast-

ing

BAU

recycling

RR 0% 26% 98% 39% 98% 98% 98% 98% 98% 98% 98% 98%

Low Cu RC 0% 0% 0% 0% 0% 0% 74% 1% 0% 0% 0% 1%

High Cu RC 0% 60% 0% 89% 0% 0% 0% 72% 0% 1% 0% 1%

Low Mg RC 0% 0% 0% 0% 0% 0% 2% 0% 74% 12% 0% 0%

High Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 51% 0% 0%

Extrusion RC 0% 0% 0% 0% 75% 0% 0% 0% 0% 1% 75% 1%

Casting RC 0% 7% 78% 11% 0% 78% 0% 0% 0% 0% 0% 77%

CED (PJ) 9.60E+04 5.98E+04 4.26E+04 2.54E+04

Deploy

Hoopes

scrap

refining

technol-

ogy

RR 95% 95% 98% 95% 98% 98% 98% 98% 98% 98% 98% 98%

Low Cu RC 100% 70% 0% 70% 0% 0% 58% 0% 0% 0% 0% 0%

High Cu RC 54% 99% 0% 99% 0% 3% 23% 74% 0% 0% 0% 3%

Low Mg RC 0% 50% 0% 50% 0% 1% 0% 0% 70% 8% 0% 1%

High Mg RC 0% 49% 0% 49% 1% 1% 0% 0% 0% 62% 1% 1%

Extrusion RC 98% 15% 55% 15% 62% 17% 8% 0% 6% 0% 62% 17%

Casting RC 92% 9% 69% 9% 2% 73% 0% 0% 0% 0% 2% 73%

CED (PJ) 3.94E+04 3.22E+04 2.88E+04 2.54E+04

Deploy

LIBS

scrap sep-

aration

technol-

ogy

RR 95% 95% 98% 95% 98% 98% 98% 98% 98% 98% 98% 98%

Low Cu RC 51% 60% 0% 60% 0% 0% 58% 0% 0% 0% 0% 0%

High Cu RC 96% 98% 0% 98% 0% 3% 23% 74% 0% 0% 0% 3%

Low Mg RC 0% 55% 0% 55% 0% 1% 0% 0% 70% 8% 0% 1%

High Mg RC 73% 41% 0% 41% 1% 1% 0% 0% 0% 62% 1% 1%

Extrusion RC 99% 21% 77% 21% 62% 17% 8% 0% 6% 0% 62% 17%

Casting RC 82% 10% 66% 10% 2% 73% 0% 0% 0% 0% 2% 73%

CED (PJ) 3.12E+04 2.90E+04 2.72E+04 2.54E+04

Deploy

LIBS and

Hoopes

scrap

technolo-

gies

RR 96% 96% 98% 96% 98% 98% 98% 98% 98% 98% 98% 98%

Low Cu RC 48% 60% 0% 60% 0% 0% 58% 0% 0% 0% 0% 0%

High Cu RC 99% 98% 0% 98% 0% 3% 23% 74% 0% 0% 0% 3%

Low Mg RC 7% 55% 0% 55% 0% 1% 0% 0% 70% 8% 0% 1%

High Mg RC 98% 41% 0% 41% 1% 1% 0% 0% 0% 62% 1% 1%

Extrusion RC 99% 21% 77% 21% 62% 17% 8% 0% 6% 0% 62% 17%

Casting RC 81% 10% 66% 10% 2% 73% 0% 0% 0% 0% 2% 73%

CED (PJ) 2.90E+04 2.81E+04 2.68E+04 2.54E+04
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Table 4.8: 2050 recycling rate (RR) and recycled content (RC) of six major aluminum alloys and
scraps with 1% Fe contamination

Contamination scenario 1: 1% Fe

Scrap

mixing

scenario 1:

all

automotive

scraps

mixed

Scrap mixing

scenario 2:

automotive

scraps

separated by

wrought and

cast

Scrap mixing

scenario 3:

automotive scraps

separated by sheet

(ABS), extrusion and

cast

Scrap mixing scenario 4: all automotive

scraps separated by alloys

Recycling

technol-

ogy

scenarios

Scenario

outputs

Scrap

stream 1:

ABS

+extrusion

+casting

Scrap

stream

1: ABS

+ extru-

sion

Scrap

stream

2:

Cast-

ing

Scrap

stream

1:

ABS

Scrap

stream

2:

Extrus.

Scrap

stream

3:

Cast-

ing

Scrap

stream

1:

Low

Cu

Scrap

stream

2:

High

Cu

Scrap

stream

3:

Low

Mg

Scrap

stream

4:

High

Mg

Scrap

stream

5: Ex-

trus.

Scrap

stream

6:

Cast-

ing

BAU

recycling

RR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Low Cu RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

High Cu RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Low Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

High Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Extrusion RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Casting RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

CED (PJ) 9.60E+04 9.60E+04 9.60E+04 9.60E+04

Deploy

Hoopes

scrap

refining

technol-

ogy

RR 95% 95% 98% 95% 98% 98% 98% 98% 98% 98% 98% 98%

Low Cu RC 98% 98% 0% 98% 0% 0% 71% 27% 0% 0% 0% 0%

High Cu RC 52% 52% 0% 52% 0% 0% 0% 30% 22% 0% 0% 0%

Low Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

High Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Extrusion RC 96% 96% 0% 96% 0% 0% 0% 0% 16% 80% 0% 0%

Casting RC 90% 17% 74% 17% 11% 74% 0% 0% 6% 0% 11% 74%

CED (PJ) 4.76E+04 4.76E+04 4.76E+04 4.80E+04

Deploy

LIBS

scrap sep-

aration

technol-

ogy

RR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Low Cu RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

High Cu RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Low Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

High Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Extrusion RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Casting RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

CED (PJ) 9.60E+04 9.60E+04 9.60E+04 9.60E+04

Deploy

LIBS and

Hoopes

scrap

technolo-

gies

RR 96% 96% 98% 96% 98% 98% 98% 98% 98% 98% 98% 98%

Low Cu RC 98% 98% 0% 98% 0% 0% 71% 27% 0% 0% 0% 0%

High Cu RC 52% 52% 0% 52% 17% 0% 0% 30% 5% 0% 17% 0%

Low Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

High Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Extrusion RC 96% 96% 0% 96% 16% 0% 0% 0% 0% 80% 16% 0%

Casting RC 90% 17% 74% 17% 0% 74% 0% 0% 17% 0% 0% 74%

CED (PJ) 4.76E+04 4.76E+04 4.76E+04 4.76E+04
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Table 4.9: 2050 recycling rate (RR) and recycled content (RC) of six major aluminum alloys and
scraps with 1% Cu contamination

Contamination scenario 2: 1% Cu

Scrap

mixing

scenario 1:

all

automotive

scraps

mixed

Scrap mixing

scenario 2:

automotive

scraps

separated by

wrought and

cast

Scrap mixing

scenario 3:

automotive scraps

separated by sheet

(ABS), extrusion and

cast

Scrap mixing scenario 4: all automotive

scraps separated by alloys

Recycling

technol-

ogy

scenarios

Scenario

outputs

Scrap

stream 1:

ABS

+extrusion

+casting

Scrap

stream

1: ABS

+ extru-

sion

Scrap

stream

2:

Cast-

ing

Scrap

stream

1:

ABS

Scrap

stream

2:

Extrus.

Scrap

stream

3:

Cast-

ing

Scrap

stream

1:

Low

Cu

Scrap

stream

2:

High

Cu

Scrap

stream

3:

Low

Mg

Scrap

stream

4:

High

Mg

Scrap

stream

5: Ex-

trus.

Scrap

stream

6:

Cast-

ing

BAU

recycling

RR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Low Cu RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

High Cu RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Low Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

High Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Extrusion RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Casting RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

CED (PJ) 9.60E+04 9.60E+04 9.60E+04 9.60E+04

Deploy

Hoopes

scrap

refining

technol-

ogy

RR 95% 95% 98% 95% 98% 98% 98% 98% 98% 98% 98% 98%

Low Cu RC 98% 98% 0% 98% 0% 0% 71% 27% 0% 0% 0% 0%

High Cu RC 52% 52% 0% 52% 0% 0% 0% 30% 0% 22% 0% 0%

Low Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

High Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Extrusion RC 96% 96% 0% 96% 0% 89% 0% 0% 0% 7% 0% 89%

Casting RC 90% 17% 74% 17% 11% 60% 0% 0% 19% 0% 11% 60%

CED (PJ) 4.76E+04 4.76E+04 4.76E+04 4.76E+04

Deploy

LIBS

scrap sep-

aration

technol-

ogy

RR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Low Cu RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

High Cu RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Low Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

High Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Extrusion RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Casting RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

CED (PJ) 9.60E+04 9.60E+04 9.60E+04 9.60E+04

Deploy

LIBS and

Hoopes

scrap

technolo-

gies

RR 96% 96% 98% 96% 98% 98% 98% 98% 98% 98% 98% 98%

Low Cu RC 98% 98% 0% 98% 0% 0% 71% 27% 0% 0% 0% 0%

High Cu RC 52% 52% 0% 52% 17% 0% 0% 30% 5% 0% 17% 0%

Low Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

High Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Extrusion RC 96% 96% 0% 96% 16% 0% 0% 0% 0% 80% 16% 0%

Casting RC 90% 17% 74% 17% 0% 74% 0% 0% 17% 0% 0% 74%

CED (PJ) 4.76E+04 4.76E+04 4.76E+04 4.76E+04
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Table 4.10: 2050 recycling rate (RR) and recycled content (RC) of six major aluminum alloys and
scraps with 1% Fe and 1% Cu contamination

Contamination scenario 3: 1% Fe and 1% Cu

Scrap

mixing

scenario 1:

All

automotive

scraps

mixed

Scrap mixing

scenario 2:

Automotive

scraps

separated by

wrought and

cast

Scrap mixing

scenario 3:

Automotive scraps

separated by sheet

(ABS), extrusion and

cast

Scrap mixing scenario 4: All automotive

scraps separated by alloys

Recycling

technol-

ogy

scenarios

Scenario

outputs

Scrap

stream 1:

ABS

+extrusion

+casting

Scrap

stream

1: ABS

+ extru-

sion

Scrap

stream

2:

Cast-

ing

Scrap

stream

1:

ABS

Scrap

stream

2:

Extrus.

Scrap

stream

3:

Cast-

ing

Scrap

stream

1:

Low

Cu

Scrap

stream

2:

High

Cu

Scrap

stream

3:

Low

Mg

Scrap

stream

4:

High

Mg

Scrap

stream

5: Ex-

trus.

Scrap

stream

6:

Cast-

ing

BAU

recycling

RR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Low Cu RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

High Cu RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Low Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

High Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Extrusion RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Casting RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

CED (PJ) 9.60E+04 9.60E+04 9.60E+04 9.60E+04

Deploy

Hoopes

scrap

refining

technol-

ogy

RR 95% 95% 98% 95% 98% 98% 98% 98% 98% 98% 98% 98%

Low Cu RC 98% 98% 0% 98% 0% 0% 71% 27% 0% 0% 0% 0%

High Cu RC 52% 52% 0% 52% 0% 0% 0% 30% 0% 22% 0% 0%

Low Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

High Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Extrusion RC 96% 96% 0% 96% 0% 89% 0% 0% 0% 7% 0% 89%

Casting RC 90% 17% 74% 17% 11% 60% 0% 0% 19% 0% 11% 60%

CED (PJ) 4.76E+04 4.76E+04 4.76E+04 4.80E+04

Deploy

LIBS

scrap sep-

aration

technol-

ogy

RR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Low Cu RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

High Cu RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Low Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

High Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Extrusion RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Casting RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

CED (PJ) 9.60E+04 9.60E+04 9.60E+04 9.60E+04

Deploy

LIBS and

Hoopes

scrap

technolo-

gies

RR 96% 96% 98% 96% 98% 98% 98% 98% 98% 98% 98% 98%

Low Cu RC 98% 98% 0% 98% 0% 0% 71% 27% 0% 0% 0% 0%

High Cu RC 52% 52% 0% 52% 17% 0% 0% 30% 5% 0% 17% 0%

Low Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

High Mg RC 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Extrusion RC 96% 96% 0% 96% 16% 0% 0% 0% 0% 80% 16% 0%

Casting RC 90% 17% 74% 17% 0% 74% 0% 0% 17% 0% 0% 74%

CED (PJ) 4.76E+04 4.76E+04 4.76E+04 4.76E+04
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In the business-as-usual (BAU) base case technology scenario (only dilution is available), the
recycling rate of ABS +extrusion+cast scrap drops to 0% when a 50% furnace constraint is applied
(without furnace constraint the recycling rate would be 40% within the current EOL aluminum
recycling rate range). This low BAU recycling rate is because of the high Mg (1.2-1.7 wt.%) and
low Si (0.4-0.8 wt.%) content in the ABS and extrusion scrap, which is very different from the
casting alloy (0.2-0.5 wt.% Mg and 6.5-7.5 wt.% Si) that usually serves as the recycling sink for
high impurity scraps. When all scraps are mixed together, the mixed scrap cannot be easily diluted
to meet the chemical composition scrap of any of the ABS, extrusion, or casting alloys. However, if
the scrap is separated by wrought and cast (unbolting the vehicle body from the frame), recycling
rates increase and all scraps could be absorbed by high Cu alloy and casting alloy production. If the
scrap is contaminated with 1% Fe or 1% Cu, even if all sheet scraps are separated by alloy, only
primary production could meet the new alloy demand (recycling rate of 0%).

In the recycling technology scenario when LIBS is available and there is no contamination in
scraps, scraps are separated into individual alloys through the LIBS process and recycled. In the case
of scrap contamination, no scrap can be recycled regardless of whether they are individual aluminum
alloys or mixed scraps because the modeled LIBS process will not remove the contaminated scraps
(e.g., steel rivets that are firmly connected to aluminum sheets). If the contamination can be split
from attached aluminum parts or shredded into small enough chunks during the disassembly and
shredding process, it is possible for the LIBS process to separate the contaminated scraps from
the aluminum scrap streams. Removing contaminated scraps may cause higher losses during the
LIBS process (depending on the purity of input scraps) but greatly increase the recycling rates
(recycling rate will increase from 0% in the original contamination scenarios to 93-94% assuming
only the contaminants are lost during the separation). However, more energy may be needed for
disassembling, shredding, and repeated LIBS separation in order to remove the contaminants from
the aluminum scrap streams.

In the recycling technology scenario when the Hoopes process is available, all scraps can be
recycled because the Hoopes process turns all scraps into very high purity aluminum (Section 4.3.1).
However, the energy required to recycle the same amount of scraps using the Hoopes process is
much higher than the energy required using the LIBS process although the same recycling rate
(100%) is achieved. This is because the Hoopes process is an electrolytic process that is much more
energy-intensive than the LIBS process.

In the recycling technology scenario when both the LIBS and the Hoopes processes are available,
the scraps can all be recycled with lower energy consumption when only one of the LIBS or the
Hoopes process is available. This is because the LIBS or the Hoopes process is selected by the
optimization model as needed to not only maximize recycling rate but also minimize alloying
element losses. Alloying elements such as copper and magnesium are energy-intensive to produce.

113



Minimizing alloying element losses reduces alloying element demand and saves the production
energy.

4.3.2.3 Section Conclusion, Limitations and Future Work

From the case study, we found that without emerging aluminum separation and refining tech-
nologies, the future (2050) EOL U.S. aluminum ABS recycling rate for the four aluminum intensive
vehicles will be far less (0% recycling rate if vehicles are not disassembled by alloy groups and
only dilution is available) from desired (90%). The current practice where U.S. aluminum sheet
scrap is largely downcycled or exported instead of closed-loop recycled offers partial validation
of this preliminary analysis. The two investigated scrap separation and refining technologies can
resolve the compositional mismatch problem between scrap and alloy product in most cases with
significant energy savings compared to primary production. If the study is extended to recycling of
all U.S. vehicles in addition to the four vehicles, a new dynamic flow analysis is needed to study
the alloy demand and scrap generation associated with these vehicles. Moving from just aluminum
intensive vehicles to all vehicles will likely lead to more diversities in the chemical composition of
new alloy demand and vehicle scraps. Serious chemical composition mismatch problems may be
observed due to the diverse composition which will make recycling of EOL automotive aluminum
even more challenging.

For future research, we will scale up the analysis to incorporate more emerging technologies in
the optimization and evaluate their relative performance in improving EOL aluminum recycling
rates. EOL scraps in addition to the automotive scraps from the four Ford vehicles will be considered
in future analysis. The LIBS process will be scaled up to not only separate the EOL scraps by alloys
but also decontaminate the tramp elements in the scraps.
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Chapter 5

Conclusion and Future Work

This thesis has investigated opportunities for the U.S. transport and metals industries to reduce
emissions, focusing on the decarbonization of U.S. light-duty vehicle (LDV) transport as well as
the steel and aluminum industries. This chapter summarizes the contributions of this thesis (Section
5.1) and outlines potential further work (Section 5.2).

5.1 Contributions of this Thesis

The motivation for this thesis was to investigate how the emissions of the U.S. transport and
industry sectors could be reduced to meet the Intergovernmental Panel on Climate Change (IPCC)’s
emission target. Given the wide scope of this topic, three areas of focus are identified in Chapter 1
(LDVs, steel industry, and aluminum industry, which are the leading contributors to U.S. transport
and industry sector emissions).

Chapter 2 presents a comprehensive hybrid dynamic material flow analysis (DMFA) and life cycle
assessment (LCA) model that analyzes the system-level production, use, and disposal emissions
associated with the U.S. LDV fleet. This hybrid model overcomes the limitation of typical single-
vehicle level LCA studies by incorporating the fleet effect of increasing vehicle demand and the
temporal effect of emissions. The analysis shows that decarbonizing U.S. transport will lead to a
significant shift towards increased industry emissions. This increase in industry emissions is caused
by (1) the increased need to make renewable energy technologies and, (2) an increase in material
production and manufacturing as new vehicles are built to replace combustion engine vehicles that
are being retired early. Therefore, electrification of the fleet alone is not enough, and other vehicle
technology and demand strategies (e.g., early retirement of internal combustion engine vehicles and
decarbonization of the electricity) should be pursued concurrently with vehicle electrification to
help meet the IPCC’s target.

Chapter 3 presents the data reconciliation method for material flow analysis (MFA) studies
that streamline data collection and evaluation, network definition and updating, and presentation
of the results using a multi-dimensional matrix cataloging system. This model can help MFA
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practitioners to quickly produce their own MFA network. The model has already been used to
help Yale researchers update the U.S. steel flow network (Reck and Althaf, 2021) and has also
been used to produce the first alloy-shape-application MFA for the aluminum extrusion industry
by Oberhausen et al. (2021). Within this thesis, the MFA results generated by the model for the
U.S. steel sector show that there are opportunities to decrease new steel demand by reducing the
quantity of new scraps generated by industry and increasing end-of-life (EOL) recycling. The
largest new scrap reduction opportunity exists in fabrication scraps from manufacturing sheet metal
into automobile parts. Currently, 46% of U.S. steel scraps are lost/landfill/hibernating which is a
potential opportunity for improving EOL recycling. However, there are challenges for U.S. EOL
steel recycling due to changing steel demand (e.g., reinforcement bar demand from U.S. construction
sector is likely to shrink in the future) and scrap contamination (e.g., copper in steel). Reinforcement
bar has served as the reservoir for highly impure copper contaminated steel scraps. Decreasing
reinforcement bar demand and increasing copper contamination may cause technical barriers to
increasing EOL steel recycling in the U.S.

Chapter 4 shows that the chemical compositional mismatch between the available scrap stream
and the new alloys demanded by the industry will ultimately prohibit the U.S. EOL aluminum
recycling rate from reaching 90%, which is needed for the aluminum industry to meet the 2 oC
target. New opportunities and challenges from the rising automotive aluminum body sheet (ABS)
market require manufacturers and recyclers to think ahead about how to recycle increasing ABS
scraps. Emerging aluminum separation and refining technologies are reviewed and evaluated to
show their potentials in solving the compositional mismatch problem and increase recycling. The
developed linear programming model provides future decision makers a useful tool to quantitatively
evaluate the impact of scrap collection, compositional mismatch, and emerging scrap separation
and refining technologies to increasing the recycling rate using aluminum DMFA as input.

5.2 Future Work

Several opportunities for further research have been identified from the work in this thesis. These
are outlined in the sub-sections below.

5.2.1 Updating the GREET Life Cycle Analysis Data for Transport Research

From the review on publications of vehicle LCA studies presented in Section 1.2.1 and Section
2.1, it is found that most U.S. centered vehicle LCA studies directly or indirectly use the life
cycle inventory and impact data from the GREET model, which is developed and maintained by
the Argonne National Lab. The GREET model provides detailed life cycle inventory data on the
material, production, use, and disposal of vehicles and the environmental impacts associated with
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the vehicles. However, in GREET’s vehicle material and production model, the effect of material
efficiency is unclear. In the GREET model, a loss factor (Equation 5.1) is defined as the ratio
between the material embodied in the product plus recycled scraps to the material input and is
estimated for most production and fabrication processes (Dai et al., 2017). Despite recognizing scrap
generation in common metal fabrication processes, the default loss factors are set to 1, meaning
no losses for most processes and components. The GREET model authors argue that the scrap
generated in these processes is well sorted and fully recycled within the same facility and therefore,
there is no problem with using a loss factor of 1. However, even if the scraps can be fully recycled,
we believe the no-loss assumption will only be true if the recycling is perfect, meaning no material
or energy losses.

Loss factor =
Material embeded in product+Recycled scraps

Material input
(5.1)

However, most fabrication scraps cannot be directly reused as input material in reality and
there are unavoidable energy consumption and material losses during recycling. Fabrication and
machining scraps are usually mixed alloy scraps sometimes covered in cutting fluid and coolant,
preventing them from being easily recycled. Most fabrication scraps are sent to external recyclers,
who clean and remelt the scraps to cast them into new billets for fabrication processes or directly
into casting products. Without a clear understanding of the material efficiency, the estimated vehicle
life cycle impact may not accurately reflect the real-world impact. Therefore, one direction of future
transport research could be updating the process material efficiency data for the GREET model. In a
preliminary analysis, we assign a 25% yield loss to all steel and aluminum fabrication processes in
the GREET model (changing the loss factors to 1.3), which is reasonable (and conservative) given
expected material utilization in processes such as stamping, extrusion, casting, and machining.
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Figure 5.1: vehicle production GHG emissions before and after updating the steel and aluminum
fabrication yield

Figure 5.1 shows the material consumption in a passenger car before and after the yield loss
update using the avoided burden approach and the recycled content approach. The avoided burden
approach (also called substitution approach) awards the benefit of recycled scraps to the product
but give it no credit for recycled content at the start of life (Ashby, 2013). The recycled content
approach allocate the full credit for recycled content to the product at the start of life while giving
no credit for recycling the scraps (Ashby, 2013). Equation 5.2 and 5.3 describes how to calculate
the environmental impact of a product with mass m using the two approaches.

(Impacttotal)avoided burden = m(rIrc + (1− r)(Im + Id)) (5.2)

(Impacttotal)recycled content = m(RIrc + (1−R)Im + (1− r)Id) (5.3)

Where R is the recycled content of product material input and its value for the five key materials
in vehicle production is acquired from the GREET model. r is the fraction of scraps that will be
recycled and is assumed to be 25%. Irc, Im, and Id are the emission factors of recycling, primary
production and disposing of the vehicle materials. Figure 5.2 shows the definitions of all the
variables in the product system.
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Figure 5.2: The material flows during product life, adapted from Ashby (2013) and Hammond and
Jones (2011)

The results in Figure 5.1 show that without correctly accounting for the yield loss during the
material production and fabrication process, an LCA can greatly underestimate the production
phase emissions by around 24-37%. LCAs are often used by industry and researchers to inform
the material selection and estimate the life cycle environmental burdens of vehicles. Inaccuracy in
LCA studies could greatly hinder effective decision making for the automotive industry’s climate
mitigation strategies. Thus, updating the material efficiency definitions in the GREET model would
be a valuable direction for future research.

5.2.2 Data Reconciliation for MFA Analysis: Uncertainties and New Methods

Data scarcity and inconsistency are major hurdles to producing high-quality MFA maps, thus
data reconciliation methods are needed. Reconciling the inconsistent and missing data using the
nonlinear least-squares method introduced in Chapter 3 produces an internal consistent MFA network
(i.e. reconciled MFA variable values) based on the structural and mass conservation constraints.
Depending on the data availability, some of the MFA variable values may have multiple sources of
data records, while others may lack data and are calculated based on the constraints. Understanding
the level of conflict in the data records will guide future data collection and improvement processes.
One potential way of demonstrating this level of data conflict in the reconciled MFA network is to
compare the residual value calculated for each MFA variable in the nonlinear least-squares method.
The residual for each MFA variable is defined as ri,j = (xi − x̂i,j)/x̂i,j which is the normalized
difference between MFA variable xi and data record x̂i,j . Figure 5.3 is an illustration of the weighted
residual values of optimized MFA variables in the 2014 steel Sankey diagram. Weighted residual
close to 1 means more conflicting data records.

Reconciling the inconsistent and missing MFA data can be computation heavy. Even the data
reconciliation method proposed in Chapter 3 of the thesis requires hours of computational time
when few new data sources are added and cannot quantitatively compute the uncertainties. To
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improve the updatability of a MFA network, a formal Bayesian inference approach could be a
potential solution.

Bayesian inference is based on the Bayes’ rule that predicts the posterior density p (θ|D)

(distribution of interested variables) based on prior density p (θ), likelihood function p (D|θ)and
evidence p (D). The advantage of using Bayesian inference is to be able to quantify uncertainty and
optimize the collection of new MFA data records (Atkinson et al., 2007; Chaloner and Verdinelli,
1995).

P (θ|D) =
P (D|θ)P (θ)

P (D)
(5.4)

Unlike nonlinear least-squares optimization, which intrinsically assumes that the data follows
normal distribution, the Bayesian inference allows the use of any probability distribution to represent
data record uncertainties. Bayesian inference can also be used to quantify not only data uncertainty
but also structural uncertainty in the MFA models: Bayesian model selection and model averaging
could be used to select among candidate model structures and calculate MFA parameter (flow) values
based on the uncertainty calculation. Model structure uncertainty in MFA refers to the uncertainty
pertaining to the existence of flows between nodes in the network structure. For example, in the
steel flow network shown in Chapter 3, we deemed it unlikely that a flow exists linking the basic
oxygen furnace (BOF) to the rod and bar mill. The MFA results, however, would look very different
if this assumption were false: if steel from the BOF (emissions-intensive primary production) is
actually used in the rod and bar mill, then increased material efficiency in the mill (or downstream)
will lead to greater emissions savings than if only supplied with recycled steel.

A challenge in the use of Bayesian inference is the construction of priors and probability distri-
butions for the evidence when data records are rarely presented with any uncertainty information.
For lack of better information, Gaussian uncertainty ranges (e.g., ±10%) have been assumed in
previous work( e.g., by Lupton and Allwood, 2017); however, priors could be defined using expert
elicitation (Laner, et al., 2014) or historical MFAs. The data noise could be modeled as a random
variable, which is also learned through the Bayesian inference process.

5.2.3 Design for Recycling of Aluminum Autobody Sheet

Due to the vehicle lightweighting trend, the embodied energy and emissions of vehicles increases
as energy-intensive materials such as aluminum auto body sheet (ABS) are used to replace mild steel.
This presents an opportunity for recyclers to shift towards high-value recycling into wrought alloys
and for carmakers to increase the EOL recycled content of their sheet (on average, currently ≈0% and
≈14% for U.S. aluminum and steel ABSs respectively derived from the GREET model (Argonne,
2020) and DMFA in Chapter 3 and 4), reducing their material costs and energy burden. However,
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currently, the aluminum and steel sheets are not effectively recycled in the U.S. – often shredded
together as a whole vehicle and only separated by ferrous and non-ferrous scraps. Shredded and
contaminated EOL metal (e.g., mixed aluminum alloys with steel rivets and mixed steel alloys with
embedded copper wiring) is often exported, downcycled to castings, or recycled as reinforcement
bar.

Figure 5.4: Coordinating between vehicle design, vehicle manufacturing, and vehicle recycling is
needed to increase recycling

Previous design for recycling research has often consisted of guidelines/check-lists (Bras, 1997)
that, while useful for relative design assessment, prevents a quantitative understanding of vehicle
design changes, trade-offs, and optimal system design. The optimization framework introduced in
chapter 4 could be extended to accommodate the coupled effects (see Figure 5.4) of sheet metal
manufacturing processing decisions (which will determine the sheet metal composition constraints
and final sheet properties), the vehicle design decisions (which will determine the upstream sheet
metal property specification as well as the downstream ability to separate the sheet metal from
sources of contamination such as rivets and other alloys), and the recycling processing decisions
(which will determine the ability to separate the different materials at vehicle EOL for a given
vehicle design). This cross life cycle optimization approach could reveal new low-cost, optimal
methods for increasing automotive sheet metal recycling rates and recycled contents.
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Appendix A

Reducing greenhouse gas emissions from U.S. light-duty transport in line with
the 2 degrees Celsius target

This document contains information useful to understanding the themes, calculations, and
numbers introduced in the main manuscript. This document is 50 pages long and contains 15 tables
and 25 figures.

To determine the contribution of U.S. LDVs (produced and imported for domestic consumption,
not including exported vehicles) to the global emissions, we estimate the 2015 U.S. LDVs production,
use, and disposal emissions compared to the global emissions. According to the Emissions Database
for Global Atmospheric Research1, the global anthropogenic GHG emissions excluding land-use,
land-use change, and forestry (LULUCF) reaches around 49 Gt CO2 eq. in 2015. Among all the
emission sectors, transport accounts for 27% of the emissions.

Figure A.1: Global GHG emissions by economic sectors in 2015

According to U.S. Environmental Protection Agency (EPA)2’s report, the U.S. emitted 6676
million metric tons (Mt) CO2 eq. of GHGs in 2015 excluding LULUCF emissions. Figure A.1
below shows the 2015 U.S. GHG emissions by economic sectors. Among all the economic sectors,
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the transportation sector accounts for around 28% of the U.S. GHG emissions. According to the
EPA (2020)2, the largest sources of transportation greenhouse gas emissions in 2018 were passenger
cars (41.2 percent); light-duty trucks, which include sport utility vehicles, pickup trucks, and
minivans (17.4 percent); freight trucks (23.2 percent); commercial aircraft (6.9 percent); pipelines
(2.6 percent); other aircraft (2.4 percent); rail (2.3 percent); and ships and boats (2.2 percent). These
figures include direct CO2, CH4, and N2O emissions from vehicle use phase: fossil fuel combustion
used in transportation, indirect emissions from electricity use and emissions from non-energy use
(i.e., lubricants) used in transportation, as well as HFC emissions from mobile air conditioners and
refrigerated transport allocated to these vehicle types. Around 97% of the transport CO2 emissions
are from fuel combustion2. EPA (2020)2 accounted for the GHG emissions in the transportation
sector due to combustion and electricity and show that around 99.7% of transport sector emissions
are from fossil fuel combustion and only 0.3% are from electricity generation from various sources.

Figure A.2: U.S. GHG emissions by economic sectors in 2015

Since the EPA’s transportation sector emissions only include emissions from vehicle use phase
fuel combustion and electricity generation (1083.9 Mt CO2 eq.), we estimated the fuel production
from fuel uses, and vehicle production and disposal emissions from vehicle production and disposal
data. According to GREET (2020)3, for every kg CO2 eq. emitted from burning gasoline, an
additional 16% are emitted from fuel production. Therefore, 182 Mt CO2 eq. are emitted in 2015
due to fuel production for U.S. LDV use of which more than 94% are domestic produced in the
U.S.4. According to EPA (2018), 9,676,333 passenger cars (73% are imported5) and 7,101,536
light trucks (43% are imported 5) are produced for U.S. consumption in 2015. Production of one
passenger car and light truck accounts for 6 t of CO2 eq. emissions and 8 t of CO2 eq. respectively3.
Therefore, the total vehicle production emissions are around 125.5 Mt CO2 eq. According to Bureau
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of Transportation Statistics6, 11,047,000 motor vehicles are scrapped in 2014 of which 54% are
LDVs (and we assume that the 2015 scrappage are similar). For each vehicle scrapped, 0.2 t of
CO2 eq. are emitted during disassembly. Therefore, 2.2 Mt CO2 eq. are emitted from U.S. LDVs
disposal in 2015. In total, 1394 Mt CO2 eq. are emitted in 2015 attributable to the U.S. LDVs.
Compared to global GHG, the U.S. LDV sector accounts for 1.39 Gt/49 Gt = 2.84% of the global
GHG emissions in 2015.

Figure A.3: Global GHG emissions (left), U.S. transport GHG emissions (middle) and U.S. transport
GHG emissions splitting domestic and import(right) in 2015

A.1 Calculating cumulative emissions budget and global mean temperature rises.

In order to determine the cumulative emissions reduction budget in line with IPCC’s 2oC
target and U.S. LDV sector’s contribution to the global mean temperature rises, we apply the
concept of global warming potentials (GWP) factors and global temperature change Potential (GTP).
Section S1.1 summarizes the rationales of GWP and GTP and the parameter values used in this
analysis. Section S1.2 summarizes how we define the emissions reduction budget based on IPCC
recommendation. Section 1.3 estimate the remaining temperature rise budget corresponding to
IPCC.

A.1.1 Summary of radiative forcing, GWP, and GTP concept

Imbalance of the incoming energy to earth from sunlight and outgoing energy loss from the earth
causes the climate change. This energy imbalance and its impact to the Earth’s climate is measured
by forcings from both externally and by human activities such as solar irradiance, landscape change
and emissions of anthropogenic greenhouse gasses and aerosols, etc7. The impact of the forcing
agents is amplified by the climate system and the process is called climate feedback.

In order to understand the long-term changes in climate, the global mean surface temperature
is used as the primary index. The contribution to global mean surface temperature changes of
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different agents are quantified using the “radiative forcing” concept. Traditional definition of the
radiative forcing is as the instantaneous change in energy flux at the tropopause resulting from

a change in a component external to the climate system7. However, in current climate change
studies, the “adjusted radiative forcing” is used. It focuses on the energy imbalance in the Earth
and troposphere system and is most relevant to surface temperature change7. The radiative forcing
concept conceptualizes the Earth’s climate as a closed system with a detectable metric of change:
global mean surface temperature7. Equation S1 – 3 shows the examples of calculating the forcing
RF (t) for carbon dioxide [CO2], nitrous oxide [CH4] and methane [N2O] respectively as a function
of time, t, and in units of W m–2.

RFCO2 (t) = CCO2 ln ln

[
CO2 (t)

CO2 (t0)

]
(A.1)

RFCH4 (t) = CCH4

(√
M −

√
M0

)
− (f (M,N0)− f (M0, N0)) (A.2)

RFN2O (t) = CN2O

(√
N −

√
N0

)
− (f (M0, N)− f (M0, N0)) (A.3)

Where CX is a constant (in units of W m–2) derived for the simple climate model, CO2 (t) (in
units of ppm) is the atmospheric concentration of CO2 for year t and CO2 (t0) is the atmospheric
concentration of CO2for year t0. For methane and nitrous oxide, M is CH4 in ppb, N is N2O in
ppb and the subscript 0 denotes the unperturbed molar fraction for the species being evaluated.
However, note that for the CH4 forcing N0 should refer to present-day N2O, and for the N2O forcing
M0 should refer to present-day CH4

8. Among all the radiative forcings, well-mixed greenhouse
gases (GHG: CO2, N2O, CH4 and chlorofluorocarbons [CFCs]) lead to the largest positive forcing
since 1750 according to IPCC7.

In order to quantitatively compare the radiative consequences of emissions of different gases,
the GWP concept is developed based on the radiative forcing model. GWP is defined as the time-
integrated RF due to a pulse emission of a given component, relative to a pulse emission of an equal
mass of CO2. The equation for calculating GWP of a gas species X is expressed as equation 48.

GWP (X) =
∫ timehorizon
0 RFX(t)dt∫ timehorizon

0 RFCO2
(t)dt

Where RF (t) is the time decay profile for the gas following its release into the atmosphere.
Scaling the radiative impact of other forcings by that of CO2 makes it easier to compare forcings
quantitatively to each other, but this approach has been criticized because it depends on how well
the radiative impact of CO2 is understood and the time horizon over which the GWP is calculated
(note about 100 year). A direct interpretation is that the GWP is an index of the total energy added
to the climate system by a component in question relative to that added by CO2. However, the GWP
does not lead to equivalence with temperature or other climate variables 9. Thus, the name ‘Global
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Warming Potential’ may be somewhat misleading.
Another metric, the GTP, is developed by Shine et al. (2005) to quantify the impact of an

emission pulse relative to that of CO2 to the global mean surface temperature10. To calculate
the global mean temperature change, the absolute GTP (AGTP) concept is adopted by Joos et al.
(2013)11. Figure A.4 shows the temperature response due to 1-kg pulse emissions of GHG with a
range of lifetimes.

Figure A.4: Figure A.4 Temperature response due to 1-kg pulse emissions of greenhouse gases
with a range of lifetimes (given in parentheses). Calculated with a temperature impulse response
function taken from Boucher and Reddy (2008) which has a climate sensitivity of 1.06 K

Equation 5 shows the calculation of the global mean temperature change due to any given
emission scenario using a convolution of the emission scenarios and AGTPi

12.
∆T (t) =

∑
i

∫ t

0
Ei (s)AGTPi (t− s) ds

Comparing to GWP, GTP is an end-point metric that is based on temperature change for a
selected year, t, and is sensitive to the time when emission happens. The concept of GTP is used
in this study to more accurately reflect the impact of direct emissions during all life stages of a
product.

Although there are a number of GHGs that are emitted from human activities, in general, CO2,
CH4, and N2O are regarded as the major GHGs8,13-14 which are the focus of this analysis. To
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calculate the annual and cumulative GHG emissions from the three GHGs, we use the GWP100
factor conversion. The global mean temperature rises are estimated from annual emissions of each
gasses and the AGTP profiles using Equation S5. Table A.1 shows the corresponding GWP100
factor and temperature responses of the three gasses used in this analysis8,15.

Table A.1: GWP and AGTP of CO2, CH4, and N2O

Common name GWP 100 according

to IPCC (2014)8

AGTP (Absolute Global Temperature change Potential)

Carbon dioxide (CO2) 1

Methane (CH4) 28

Nitrous oxide (N2O) 265

A.1.2 U.S. LDVs emissions budget in line with the 2oC target

The 2014 IPCC AR5 Synthesis show the changes in GHG needed by 2050 (and 2100) relative to
2010 emissions to limit global warming at different levels (IPCC, 2014: Table A.PM.18). To limit
global warming likely below 2oC above pre-industrial temperatures, the GHG concentration needed
to be within 430-480 ppm CO2eq. in 2100 (the RCP2.6 scenario) which corresponds to annual
GHG emissions reduction by 41-72% by 2050 from 2010 level. Without carbon capture and storage,
IPCC recommends a 60-70% reduction of transport emissions by 2050 from 2010 level (IPCC,
2014: Figure A.PM.78). Later in the 2018 IPCC report (Global Warming of 1.5 oC16), it states that
for limiting global warming to below 2◦C CO2 emissions are projected to decline by about 25% by

2030 in most pathways (10–30% interquartile range) and reach net zero around 2070 (2065–2080

interquartile range). Non-CO2 emissions in pathways that limit global warming to 1.5◦C show deep
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reductions that are similar to those in pathways limiting warming to 2◦C. Figure A.PM.116 also
indicates that annual emissions need to decrease linearly to achieve the emission reduction target.

In this analysis, we define the emissions reduction budget based on the IPCC recommendation to
achieve a 70% of U.S. LDVs emissions by 2050 from the 2010 level. To estimate the quantitative
emissions budget, the 2010 emissions information is needed. Using the same calculation process as
in Section S1, the 2010 GHG emissions attributable to the U.S. LDV sector is estimated as 1.41
Gt CO2 eq. including vehicle production, use and disposal. The 2010-2050 cumulative emissions
budget is therefore calculated as the sum of the linearly extrapolated emissions from 2010 to 70%
reduced by 2050 (0.42 Gt CO2 eq.). The emissions that have already taken place between 2010 and
2020 (14.4 Gt CO2 eq.) are deducted from the sum. The final 2021-2050 cumulative emission
budget for the U.S. LDV sector to achieve a 70% reduction by 2050 is around 23.1 Gt CO2 eq. Figure
A.5 shows the 2010-2050 cumulative emissions budget (grey area) and annual emissions budgets.

Figure A.5: Emission budget to achieve 70% reduction by 2050 from 2010 level in line with the
2oC target

A.1.3 Remaining temperature budget

The IPCC (2014)8 recommends that global mean surface temperature rises remain below 2oC
by the end of the century to avoid the worst consequences. From the most recent IPCC report
(2018)16, at least 1.13 oC of global warming will be reached by 2020. The remaining 2021-2050
global temperature budget is therefore 0.87 oC. The 2021-2050 U.S. temperature budget is 1.66E-3
oC calculated from the annual emissions assumed in the cumulative emission budget (S2.1) using
Equation S5.
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Figure A.6: Global mean surface temperature rises according to IPCC (2018)

A.2 U.S. light-duty vehicle dynamic material flow analysis (DMFA)

Dynamic material flow analysis (DMFA) is a method to quantify the stocks and flows of materials
in a defined temporal and economic or geographic boundaries. In this work, we use DMFA to
estimate the vehicle production, stock and EOL flows, which are later combined with vehicle life
cycle inventory and life cycle impact analysis to estimate the vehicle material flows and GHG
emissions.

A.2.1 Estimating historical vehicle fleet size and age distributions

A flow driven DMFA is firstly conducted to estimate historical LDVs fleet size and age distri-
butions up to year 2018 based on EPA (2020) automotive trends report17. Table A.2 shows the
historical LDVs production (including domestically produced vehicles, and all vehicles produced
outside the U.S. and imported for U.S. consumption) and the ratio of production by vehicle size
class according to EPA (2020)17. Ratio of production by vehicle size class is assumed constant as
2018 data for year 2019-2050. The car SUV and truck SUV are grouped into the SUV category.
Minivan/Van and pickup are grouped into the light truck category.
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Table A.2: Historical U.S. LDV production (EPA, 2020)

U.S. LDV

production

(in 1,000

units)

Car (Sedan/

Wagon)

SUV1 (Car

SUV)

SUV2

(Truck

SUV)

Light truck

1 (Minivan/

Van)

Light truck

2 (Pickup)

1975 10224 80.6% 0.1% 1.7% 4.5% 13.1%

1976 12334 78.8% 0.1% 1.9% 4.1% 15.1%

1977 14123 80.0% 0.1% 1.9% 3.6% 14.3%

1978 14448 77.3% 0.1% 2.5% 4.3% 15.7%

1979 13882 77.8% 0.1% 2.8% 3.5% 15.9%

1980 11306 83.5% 0.0% 1.6% 2.1% 12.7%

1981 10554 82.7% 0.0% 1.3% 2.3% 13.6%

1982 9732 80.3% 0.1% 1.5% 3.2% 14.8%

1983 10302 77.7% 0.3% 2.5% 3.7% 15.8%

1984 14020 76.1% 0.4% 4.1% 4.8% 14.6%

1985 14460 74.6% 0.6% 4.5% 5.9% 14.4%

1986 15365 71.7% 0.4% 4.6% 6.8% 16.5%

1987 14865 72.2% 0.6% 5.2% 7.5% 14.4%

1988 15295 70.2% 0.7% 5.6% 7.4% 16.1%

1989 14453 69.3% 0.7% 5.7% 8.8% 15.4%

1990 12615 69.8% 0.5% 5.1% 10.0% 14.5%

1991 12573 67.8% 1.8% 6.9% 8.2% 15.3%

1992 12172 66.6% 2.0% 6.2% 10.0% 15.1%

1993 13211 64.0% 3.6% 6.3% 10.9% 15.2%

1994 14125 59.6% 2.3% 9.1% 10.0% 18.9%

1995 15145 62.0% 1.5% 10.5% 11.0% 15.0%

1996 13144 60.0% 2.2% 12.2% 10.7% 14.9%

1997 14458 57.6% 2.5% 14.5% 8.8% 16.7%

1998 14456 55.1% 3.1% 14.7% 10.3% 16.7%

1999 15215 55.1% 3.2% 15.4% 9.6% 16.7%

2000 16571 55.1% 3.7% 15.2% 10.2% 15.8%

2001 15605 53.9% 4.8% 17.3% 7.9% 16.1%

2002 16115 51.5% 3.7% 22.3% 7.7% 14.8%

2003 15773 50.2% 3.6% 22.6% 7.8% 15.7%
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2004 15709 48.0% 4.1% 25.9% 6.1% 15.9%

2005 15892 50.5% 5.1% 20.6% 9.3% 14.5%

2006 15104 52.9% 5.0% 19.9% 7.7% 14.5%

2007 15276 52.9% 6.0% 21.7% 5.5% 13.8%

2008 13898 52.7% 6.6% 22.1% 5.7% 12.9%

2009 9316 60.5% 6.5% 18.4% 4.0% 10.6%

2010 11116 54.5% 8.2% 20.7% 5.0% 11.5%

2011 12018 47.8% 10.0% 25.5% 4.3% 12.3%

2012 13449 55.0% 9.4% 20.6% 4.9% 10.1%

2013 15198 54.1% 10.0% 21.8% 3.8% 10.4%

2014 15512 49.2% 10.1% 23.9% 4.3% 12.4%

2015 16739 47.2% 10.2% 28.1% 3.9% 10.7%

2016 16278 43.8% 11.5% 29.1% 3.9% 11.7%

2017 17016 41.0% 11.5% 31.8% 3.6% 12.1%

2018 16259 36.7% 11.3% 35.1% 3.1% 13.9%

2019-2050 36.7% 11.3% 35.1% 3.1% 13.9%

Figure A.7 shows the historical vehicle production by powertrains (assuming the same for
cars, SUVs and light trucks) according to EPA (2020)17. In this analysis, 10 vehicle powertrains
are considered including gasoline ICEVs (which can be retrofitted to use bioethanol gasoline18),
100-mile BEVs, 200-mile BEVs, 300-mile BEVs, 10-mile all-electric range gasoline plug-in hybrid
electric vehicles (PHEVs), 40-mile all-electric gasoline PHEVs, hybrid electric vehicles (HEVs),
FCVs, compressed natural gas vehicles (CNGVs) and diesel ICEVs. Until 2018, more than 97%
of U.S. LDVs sold are gasoline ICEVs. HEVs, BEVs, PHEVs and fuel flex vehicles that run on
ethanol-gasoline blend (combined into gasoline ICEVs due to similar production emissions) are
among the most popular vehicle powertrains in the remaining 3% of the sales recently.
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Figure A.7: Historical vehicle ratio of sales by powertrains

Equations S6 shows how the fleet size and age composition, Fleetsizet,a , is estimated, where t

is the year between 1975 and 2018 and a is the age of vehicle in the fleet.
Fleetsizet,a = Prodt−a × (1− Ft,a)

Ft,a is the cumulative distribution function of the vehicle lifespans which is based on Liao
et al. (2021)’s analysis of historical and future U.S. car and light truck lifespan distributions
(survivability)19. Without additional data availability, we assume that the SUV lifespan distribution
is the average of cars and light trucks. Table A.3 lists the historical vehicle lifespan distribution
(1975-2018) as well as future lifespan following a Gamma distribution used in this analysis.

Table A.3: LDV lifespan distribution parameters

Year
Cars SUV Light truck
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1975 12.2 6.1 2 14.245 5.75 2.5 16.29 5.4 3

1976 12.43 6.2 2 14.41 5.85 2.5 16.39 5.5 3

1977 12.65 6.3 2 14.57 5.9 2.5 16.49 5.5 3

1978 12.86 6.4 2 14.725 5.95 2.5 16.59 5.5 3

1979 13.06 6.5 2 14.87 6.05 2.5 16.68 5.6 3

1980 13.25 5.8 2.3 15.005 5.7 2.65 16.76 5.6 3

1981 13.43 5.8 2.3 15.14 5.7 2.65 16.85 5.6 3
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1982 13.6 5.9 2.3 15.265 5.75 2.65 16.93 5.6 3

1983 13.77 6 2.3 15.385 5.85 2.65 17 5.7 3

1984 13.92 6.1 2.3 15.5 5.9 2.65 17.08 5.7 3

1985 14.07 6.1 2.3 15.61 5.9 2.65 17.15 5.7 3

1986 14.22 6.2 2.3 15.72 5.95 2.65 17.22 5.7 3

1987 14.36 6.2 2.3 15.82 6 2.65 17.28 5.8 3

1988 14.49 8.1 1.8 15.92 6.95 2.4 17.35 5.8 3

1989 14.62 8.1 1.8 16.015 6.95 2.4 17.41 5.8 3

1990 14.74 8.2 1.8 16.105 7 2.4 17.47 5.8 3

1991 14.86 8.3 1.8 16.195 7.05 2.4 17.53 5.8 3

1992 14.97 8.3 1.8 16.275 7.1 2.4 17.58 5.9 3

1993 15.08 8.4 1.8 16.36 7.15 2.4 17.64 5.9 3

1994 15.19 8.4 1.8 16.44 7.15 2.4 17.69 5.9 3

1995 15.29 8.5 1.8 16.515 7.2 2.4 17.74 5.9 3

1996 15.39 8.6 1.8 16.59 7.25 2.4 17.79 5.9 3

1997 15.48 8.6 1.8 16.66 7.25 2.4 17.84 5.9 3

1998 15.58 8.7 1.8 16.73 7.35 2.4 17.88 6 3

1999 15.66 8.7 1.8 16.795 7.35 2.4 17.93 6 3

2000 15.75 8.8 1.8 16.86 7.4 2.4 17.97 6 3

2001 15.83 8.8 1.8 16.925 7.4 2.4 18.02 6 3

2002 15.91 8.8 1.8 16.985 7.4 2.4 18.06 6 3

2003 15.99 8.9 1.8 17.045 7.45 2.4 18.1 6 3

2004 16.07 8.9 1.8 17.105 7.45 2.4 18.14 6 3

2005 16.14 9 1.8 17.155 7.55 2.4 18.17 6.1 3

2006 16.21 9 1.8 17.21 7.55 2.4 18.21 6.1 3

2007 16.28 9 1.8 17.265 7.55 2.4 18.25 6.1 3

2008 16.35 9.1 1.8 17.315 7.6 2.4 18.28 6.1 3

2009 16.42 9.1 1.8 17.37 7.6 2.4 18.32 6.1 3

2010 16.48 9.2 1.8 17.415 7.65 2.4 18.35 6.1 3

2011 16.54 9.2 1.8 17.46 7.65 2.4 18.38 6.1 3

2012 16.6 9.2 1.8 17.51 7.65 2.4 18.42 6.1 3

2013 16.66 9.3 1.8 17.555 7.75 2.4 18.45 6.2 3

2014 16.72 9.3 1.8 17.6 7.75 2.4 18.48 6.2 3

2015 16.77 9.3 1.8 17.64 7.75 2.4 18.51 6.2 3
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2016 16.83 9.4 1.8 17.685 7.8 2.4 18.54 6.2 3

2017 16.88 9.4 1.8 17.72 7.8 2.4 18.56 6.2 3

2018 16.93 9.4 1.8 17.76 7.8 2.4 18.59 6.2 3

2019 16.98 9.4 1.8 17.8 7.8 2.4 18.62 6.2 3

2020 17.03 9.5 1.8 17.84 7.85 2.4 18.65 6.2 3

2021 17.08 9.5 1.8 17.875 7.85 2.4 18.67 6.2 3

2022 17.13 9.5 1.8 17.915 7.85 2.4 18.7 6.2 3

2023 17.17 9.5 1.8 17.945 7.85 2.4 18.72 6.2 3

2024 17.22 9.6 1.8 17.985 7.95 2.4 18.75 6.3 3

2025 17.26 9.6 1.8 18.015 7.95 2.4 18.77 6.3 3

2026 17.3 9.6 1.8 18.045 7.95 2.4 18.79 6.3 3

2027 17.34 9.6 1.8 18.08 7.95 2.4 18.82 6.3 3

2028 17.38 9.7 1.8 18.11 8 2.4 18.84 6.3 3

2029 17.42 9.7 1.8 18.14 8 2.4 18.86 6.3 3

2030 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

2031 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

2032 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

2033 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

2034 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

2035 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

2036 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

2037 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

2038 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

2039 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

2040 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

2041 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

2042 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

2043 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

2044 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

2045 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

2046 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

2047 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

2048 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

2049 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3
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2050 17.46 9.7 1.8 18.17 8 2.4 18.88 6.3 3

Figure A.8 shows the estimated fleet size and age distribution between 1975 and 2018 using the
above-described method assuming 1974 fleet size starts from 0. The resulting fleet size in 2018 is
around 252 million units which is consistent with EIA (2019)20.

Figure A.8: Estimated historical vehicle fleet age distribution.

A.2.2 Estimating future LDV production, fleet size and disposal

From 2019 and onwards, the future vehicle fleet size, production for U.S. sales and scrappage
are estimated using a stock-driven DMFA method from aggregate LDV vehicle travel demand and
annual km traveled per vehicle (Equation 4-6 in the main manuscript).

We reference EIA’s (2020)21 estimation of future aggregate LDV vehicle travel demand from
2019-2050 which aligns well with the FHWA (2018)’s predicted future LDV transport demand
prediction22.
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Figure A.9: Future aggregate vehicle travel demand

The annual km traveled per vehicle of age a years is assumed to be a function of the km traveled
at age 1 year (Figure A.10). Ratios of annual km traveled per vehicle of age a years with respect
to age 1 year are derived from Table E1.5-2 in the Interim Joint Technical Assessment Report for
CAFE standard by EPA and NHTSA (2016)23.

Figure A.10: Ratio of annual km traveled per vehicle with respect to vehicle age a.

The vehicle lifespan distribution is modeled when predicting future vehicle production (base
case, early ICEV retirement at 20 years, and early ICEV retirement at 10 years) and scrappage
(Equation 4 and 5 in the main manuscript). The base case vehicle lifespan is from Liao et al. (2021)
shown in Table A.319. In the early retirement simulations, the same lifespan distributions from the
base case are assumed for all vehicles except for ICEVs that reach early retirement age.

Figure A.11 shows the resulting future vehicle sales prediction. Note that in the early retirement
cases starting in 2023, after every 10 or 20 years, there is a jump in the annual vehicle production
which is due to additional vehicles produced to maintain the fleet size in the corresponding vehicle
travel demand case.
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Figure A.11: Estimated future vehicle production for U.S. sales.

In the demand substitution case, which is built on the base case LDV vehicle travel demand, we
consider the shift towards public and physical transportation that could potentially reduce both the
aggregate and the per-vehicle travel demand. A maximum vehicle travel demand reduction of 50%
of U.S. urban LDV transport (accounting for 70% of total U.S. LDV travel) is deemed possible in
Replogle et al. (2014)’s analysis24. This is achieved in their study through a combined increase
in public transportation, walking, and cycling. A similar level of 30% LDV travel reduction has
been assumed in Wang et al. (2020)’s analysis of California delivered through smart growth urban
planning25. Therefore, in the demand reduction case, we assume from 2023 to 2050, 0% to 30%,
and linearly increasing between, LDV travel is replaced (45% by public transportation, 35% by
cycling and 20% by walking) using a constant occupancy rate of 1.6326. The breakdown of the
replacement between public transport, cycling and walking is informed by Buehler and Pucher’s
(2011) analysis of the German and the UK transportation system so that the resulting U.S. travel
breakdown becomes similar to Germany and UK by 205027. The 2050 U.S. per-vehicle miles
travels will then reduce to 8,557 vehicle-miles/year which is still higher than Germany, France
and Canada (7,715 miles/year in Germany, 8,480 miles/year in France and 7,289 miles/year in
Canada28) due to higher current U.S. per-person miles travel. The demand reduction case doubles
the public transportation demand by 2050 from the 2020 level while the target per capita 2050
public transportation demand is still 20% lower than average public transportation demand in OECD
European countries in 201024. For each mile of LDV vehicle travel demand replaced, there are
potential increases in dietary emissions and public transportation emissions.

To investigate the potential increase in the dietary emissions due to increased walking and cycling
in the travel demand substitution case, we compare the average daily calorie intake with the dietary
energy intake recommended by the United States Department of Agriculture (USDA)29. According
to Alexandrou et al. (2013), the U.S. average energy input for a typical American diet for the
year 2004 is 3,679 kcal/capita/day which is well over the average value of 2,100 kcal/capita/day
recommended by United States Department of Agriculture (USDA)29. The additional energy intake
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could be used to support 57 km of cycling (115 kJ/km according to Higgins, 2005) or 31 km of
walking (215 kJ/km according to Higgins30) per day per capita. Based on the 2019 U.S. population
of 3.28E8, cycling or walking using the excess food energy could replace 89% or 48% of 2019
LDV travel demand. This is well over the required increase in cycling (11%) and walking (6%) in
the vehicle travel demand substitution case. Therefore, we decided to not add additional dietary
emissions to the cumulative emission calculation in the vehicle travel demand substitution case.
Due to lack of information, we also do not include the potential infrastructure and urban planning
emissions changes due to increased public transport and personal exercise.

The public transportation life cycle emissions (kg CO2 eq./km) data are taken from Logan
et al. (2020)31, Replogle et al. (2014)24, Chester and Cano (2016)32and Chan et al. (2013)33

which is around 25% of LDV life cycle emissions. This 25% of LDV travel emissions by public
transportation include vehicle cycle (material extraction and vehicle production) as well as emissions
from vehicle operation which is consistent with reviews of multiple studies of public transit
system24,31-33. Although we did not include the new infrastructure construction and operation
emissions in this analysis, Chester and Cano (2016) showed in their study that the infrastructure
construction and operation emissions accounts for less than 20% of the life cycle emissions32. The
demand substitution case assumes no changes in vehicle sales or fleet size, rather, only a reduction
in the LDV per-vehicle travel demand.

To determine the sales of vehicles of each powertrain, we apply the sales share of alternative fuel
vehicles parameter to the estimated future production in each year. Seven sales shares of alternative
fuel vehicles parameters are considered. A base case equals the EIA (2020) prediction that sales
of alternative fueled vehicles will increase from 6% in 2020 to 16% of new LDV sales by 205021.
The EIA (2020) prediction is selected because it reflects the current trends of U.S. vehicle sales
compared to recent sales data (its 6% sales of alternative fuel vehicles align with Argonne’s monthly
sales data that the share of HEV in LDV sales is 3.16%, and the share of PHEVs and BEVs together
is 1.91% of total LDV sales in August 2020)21. All other cases simulate a constant increase in the
sales share of a single powertrain from the 2020 value. Four cases simulate a 100% sales share by
2050 for HEVs, PHEV40s (already proven and popular technologies), biofuel fuel flex vehicles
(a 100% biofuel share is deemed feasible by McCollum and Yang34), and BEV300s (BEV300
2050) respectively. Figure A.12 and S13 shows the seven sales share of alternative fuel vehicles
parameters of car and light trucks. It is assumed that the sales share of alternative fuel vehicles
parameter of SUVs takes the average of car and light truck.
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Figure A.12: Base case sales share of alternative fuel vehicles
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Figure A.18: Vehicle sales share of alternative fuel vehicles

A.2.3 Recycling rate

Two recycling scenarios are considered in this study for 13 vehicle materials and vehicle batteries.
The first recycling scenario (base case) assumes that the current EOL closed-loop recycling rates
(RR) according to Keoleian et al. (2012)35’s study of vehicle materials life cycle are continued to
2050 and we estimate the recycled contents for each material through annual scrap availability and
material demand derived from dynamic material analysis shown in Table A.4. The second recycling
scenario (high) assumes that EOL closed-loop RRs increase linearly from current values (third
column in Table A.4) to 90% (unless otherwise specified in Tale S4).
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Table A.4: 2020 Recycled content and EOL closed loop recycling rates

2020 Recycled

Content

2020 EOL recy-

cling rate

2050 EOL recy-

cling rate – base

case constant as

2020

2050 EOL recy-

cling rate – 90%

recycling rate by

2050

Steel 26% 30% 30% 90%

Stainless steel 0% 0% 0% 90%

HSS/AHSS 26% 30% 30% 90%

Cast iron 100% 100% 100% 100%

Wrought Aluminum 11% 12% 12% 90%

Cast Aluminum 85% 95% 95% 95%

Copper/Brass 0% 0% 0% 90%

Zinc 0% 0% 0% 0%

Magnesium 52% 58% 58% 90%

Glass 0% 0% 0% 0%

Average Plastic 0% 0% 0% 0%

Rubber 0% 0% 0% 0%

Carbon Fiber-Reinforced Plastic for General

Use

0% 0% 0% 90%

Lead-Acid (ICEV) 35% 90% 90% 90%

Lead-Acid (other) 35% 90% 90% 90%

Ni-MH 0% 0% 0% 0%

Li-ion (BEV100) 0% 0% 0% 90%

Li-ion (BEV200) 0% 0% 0% 90%

Li-ion (BEV300) 0% 0% 0% 90%

Li-ion (PHEV10) 0% 0% 0% 90%

A.3 Vehicle LCA

According to the international standard for life cycle assessment (ISO 14040:200636), LCA
addresses the environmental impacts throughout a product’s life cycle, e.g. use of resources and
the environmental consequences of releases. As one of the most popular environmental analysis
tools, it has been widely used by researchers across the world for light-duty vehicle impact analysis.
According to our review, many of the vehicle LCAs looking at U.S. light-duty vehicle sectors are
based on the greenhouse gases, regulated emissions, and energy use in transportation (GREET)
model developed by the Argonne national lab35,37-44. The GREET model simulates the energy and
emissions associated with the production, use and end-of-life of both fuel (fuel cycle) and vehicle
(vehicle cycle). In this study, we use the GREET model as the starting point for modeling the
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current life cycle impact of all vehicles of the three sizes and ten powertrains. The scope of LCA for
each vehicle model covers its production including raw material production and manufacturing; use,
e.g., fuel supply (well-to-pump) and combustion (pump-to-well), electricity charging for BEV; and
end-of-life treatment. The functional unit is the lifetime of one vehicle. The environmental benefits
of using recycled materials are modeled using the recycled content method based on the recycling
rates defined in Section S3.3.

Figure A.19: System boundary of the product-level LCA study

Section S4.1 discusses how the vehicle technology scenarios are used to estimate vehicle
production energy. Section S4.2 discusses how vehicle technology scenarios are used to estimate
the use phase energy. Section S4.3 discusses vehicle disposal energy and emissions factors used to
convert vehicle production, use and disposal energy to emissions impact.

A.3.1 Vehicle production impact

Vehicle production emissions are dominated by vehicle design and material choices. The GREET
model37 provides a detailed bill of materials and emission factors for materials used in vehicle
production. For ICEVs, the vehicle structure and powertrain dominate the vehicle production.
However, for electric vehicles, battery production may have comparable impact compared to the
vehicle structure. Therefore, we separately consider the vehicle production impact from structure
(S4.1.1) and battery (S4.1.2).

A.3.1.1 vehicle structure

For each vehicle model, the current vehicle material composition is obtained from the GREET
model. Various studies have investigated the theoretical potential of vehicle lightweighting with
material substitutions. For example, DOE (2015)45 summarized in the Quadrennial Technology
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Review that a whole vehicle weight reduction opportunities of 17%, 28%, or 36% respectively if
advanced high-strength steel (AHSS), aluminum, or CFRP materials were applied to the greatest
extent possible. Kim et al., (2010) estimated 6-19% vehicle lightweighting is achievable using
HSS, and 6-23% lightweighting is achievable using aluminum46. Therefore, we define three vehicle
lightweighting scenarios to achieve 10% lightweighting by 2050 (baseline scenario using high-
strength steel (HSS)), 20% using aluminum, and 30% using carbon-fiber-reinforced plastic (CFRP)
respectively. The 10% reduction level using HSS based on the average range of Kim et al., (2010)46,
Kelly et al.(2015)47, and Milovanoff et al. (2019)48. Similarly, the 20% reduction levels using
aluminum are based on the average of Kim et al., (2010)46, Kelly et al.(2015)47, and Milovanoff et
al. (2019)48. The maximum level of 30% lightweighting using CFRP was based on the average of
DOE (2015)45 and Kelly et al.(2015)47. The baseline vehicle lightweight scenario is assumed to
achieve 10% lightweighting by 2050 from 2010 by replacing 50% mild steel with high-strength
steel (HSS) using a substitution factor of 0.67 combining analysis by Kim et al., (2010)46, Kelly et
al.(2015)47, and Milovanoff et al. (2019)48. The moderate vehicle lightweight scenario achieves
20% lightweighting by replacing 80% mild steel with wrought aluminum using a substitution factor
of 0.55 derived from Kim et al., (2010)46, Kelly et al.(2015)47, and Milovanoff et al. (2019)48. The
high vehicle lightweight scenario achieves 30% lightweighting by replacing 80% mild steel and all
aluminum with carbon-fiber-reinforced plastic (CFRP) with a substitution factor of 0.5 according to
DOE (2015)45 and Kelly et al.(2015)47. In all the mass reduction levels, a stepwise adoption function
is assumed, i.e., 50% of the mass reduction occurs in 2020-2030, 33% of the mass reduction occurs
in 2030-2040 and the rest occurs in 2040-2050 to account for the increasing difficulty of mass
reduction as vehicle lightweight design approaching the potential limit. The vehicle composition
between 2020 and 2050 are therefore calculated as linear extrapolation between current composition
and end point composition following the assumed stepwise adoption function. Figure A.15-17 show
vehicle material composition in the baseline, moderate and high lightweight scenarios.

In addition to vehicle lightweighting, there are other trends in vehicle design that may affect
vehicle production impacts. Examples include the addition of safety and comfort accessory features
and vehicle horsepower increase. However, comparing the impact of material substitution, their
impacts are likely to be dominated in the operation phase while the impact in the vehicle production
phase is negligible. Therefore, we only considered their impacts on the vehicle operation phase.
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Figure A.21: passenger car material composition
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Figure A.23: SUV material composition
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Figure A.25: Light truck material composition

A.3.1.2 Batteries

Three types of batteries are commonly used in modern LDVs: Lead-Acid batteries for vehicle
starter and accessory features, Ni-MH batteries for most HEVs and FCVs and Li-ion batteries for
electric vehicles. The GREET model provided a detailed battery LCA analysis for all three types
of batteries which is referenced in this analysis. For Li-ion batteries, various types of cathodes
are available. Currently, the lithium nickel manganese cobalt oxide-based Li-ion battery (60% Ni,
20%Mn, 20% Co: NMC622) is widely used in many BEV and PHEV models while NMC 811
are projected to taking over the market in the future48,50. According to the GREET model, the
environmental impact associated with a Li-ion battery is mainly from the energy and emission-
intensive materials and battery assembly phases. Among all the components of the battery assembly,

147



the battery (electrode, separator, cell container), electrode paste, and battery management system
together contributes to more than 50% of the battery-related GHG emissions. Energy demands for
co-precipitation and calcination are the major contributor to the total energy use and GHG emissions
of the cathode powder production, whereas the production of upstream materials, especially those
containing cobalt and nickel, dominates the rest of the impact categories. In order to reduce the
energy and emissions associated with the Li-ion batteries, Dunn et al. (2015)51 pointed out that
recycling of the cathode material is a potential approach since it can greatly reduce the use of a
solvent in cathode material production and process heat requirements. To recycle EV batteries,
disassembly of the battery packs from the vehicle, and recovery of the battery materials are the
main challenges. The battery disassembly process requires high-voltage training and insulated
tools to prevent electrocution of operators or short-circuiting of the batteries which can be cost
and environmental-inefficient. Current traction Li-ion batteries usually contain multiple precious
materials, e.g., cobalt, nickel, manganese, in a complex layered structure which makes direct
separation either expensive, energy-intensive or infeasible. Pyrometallurgical processes to recover
metal materials, e.g., cobalt, copper, nickel, and iron, cannot recover lithium or aluminum and need
follow-up leaching and purification steps. Both battery disassembly and material recovery processes
may lead to chemical hazards due to flammable electrolyte, toxic and carcinogenic electrolyte
additives, and the potentially toxic or carcinogenic electrode materials51,52.

In this analysis, we assumed the major improvement of emission and energy consumption for
battery manufacturing comes from reduced battery weight due to energy density increases and the
recycling of the battery packs. The system level energy density of the Li-ion battery is assumed
to increase from 150 Wh/kg in 2020 to 235 Wh/kg by 2025. This is based on review of current
automotive Li-ion batteries status and predictions on future battery status in various studies49,50,53-56.
as a goal for commercialization batteries set by USABC. Ambrose et al. (2020)53 assumed an
average battery density of 138 Wh/kg in 2018 with an improvement of 6–8% per year according
to US DRIVE (2013). By 2020, the battery density should reach at least 150 Wh/k. As for future
battery specific energy, Ambrose et al. (2020)53 assumed an energy density of 208 Wh/kg by 2025.
Schmuch et al. (2019)49 and Gallagher et al. (2019)56 both mentioned that a 235 Wh/kg is widely
acknowledged as a target value in order to allow mass adoption of long ranged electric vehicles.
USABS (2020)54 set the 235 Wh/kg system level energy density as the goal in 2020’s request for
proposal information. Ding et al. (2019)50 suggested that switching to the NMC 811 chemistry
could achieve the the 235 Wh/kg system level energy density while further increase would require
switching to other battery chemistry or structure, e.g., Li-S, Li-air, or solid-state batteries, etc.
However, there is limited information about their commercialization progress or environmental
impact for laboratory scale technology like Li-S, Li-air or solid-state batteries . To avoid the high
uncertainty associated with future battery chemistry and structure, we assume all EV batteries share
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a constant battery energy density and specific power from 2025 and onward. The energy density of
lead-acid batteries for ICEVs and nickel metal hydride (NiMH) traction batteries (for HEVs and
FCVs) are assumed constant accroding to Ding et al. (2019)50 and Xu et a.(2017)57. Table A.5
summarizes the current and 2025 vehicle battery configurations.
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Table A.5: 2020 vehicle battery configurations summary

Battery pack capacity (kWh)

passenger car SUV light truck

Ni-MH (HEV/FCV) 41 58 58

Li-Ion (BEV100) 24 29 34

Li-Ion (BEV200) 48 58 67

Li-Ion (BEV300) 72 86 101

Li-Ion (PHEV10) 4 5 6

Li-Ion (PHEV40) 16 19 22

Battery power (kW)

passenger car SUV light truck

Ni-MH (HEV/FCV) 32 45 53

Li-Ion (BEV100) 347 416 499

Li-Ion (BEV200) 347 416 499

Li-Ion (BEV300) 347 416 499

Li-Ion (PHEV10) 81 98 117

Li-Ion (PHEV40) 81 98 117

2020 battery mass (kg)

passenger car SUV light truck

Lead-Acid (ICEV) 17 24 28

Lead-Acid (other) 10 16 16

Ni-MH (HEV/FCV) 40 57 66

Li-Ion (BEV100) 173 208 250

Li-Ion (BEV200) 347 416 499

Li-Ion (BEV300) 520 624 749

Li-Ion (PHEV10) 54 65 78

Li-Ion (PHEV40) 217 260 312

2025 battery mass (kg)

passenger car SUV light truck

Lead-Acid (ICEV) 17 24 28

Lead-Acid (other) 10 16 16

Ni-MH (HEV/FCV) 40 57 66

Li-Ion (BEV100) 111 133 159

Li-Ion (BEV200) 221 266 319

Li-Ion (BEV300) 332 398 478

Li-Ion (PHEV10) 18 22 27

Li-Ion (PHEV40) 74 89 106
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Two levels of battery recycling, assuming we can achieve 0%, or 90% close-loop EOL recycling
rates by 2050, are defined as in Section S3.2. A 0% EOL recycling rate is the continuation of the
current vehicle Li-ion recycling situation where only experimental or laboratory scale recycling
facilities are available. In order to estimate the corresponding environmental impact changes due
to battery recycling, we reference the GREET 2020 battery recycling sub-model. It consists of
the energy and emission-related to four battery material recycling approaches that retrieve cathode
materials. Among the four approaches, direct physical separation has the highest potential in
retrieving critical elements, e.g., lithium, cobalt, nickel, etc. and minimize the environmental
impacts, therefore, it is chosen as the candidate approach in all the recycling scenarios which can
reduces 30% of Li-ion production emissions/kg. The recycling of NiHM batteries is not considered
in this study as Silvestri et al. (2020)58 showed that the NiHM recycling processes can increase the
total GHG emissions by up to 20% despite decreases in cumulative energy demand.

A.3.2 Use phase impact

In this analysis, we consider three fuel economy improvement scenarios which correspond
to around 1.5%/year, 4%/year, and 5%/year fuel economy improvements from 2020 to 2050 by
physical-based fuel economy estimation considering technology readiness. Historically, the U.S.
average new LDV fleet fuel economy has been required to improve at around 4-5%/year according
to the NHTSA’s CAFE standard. However, the recent SAFE rule has relaxed the requirement to
1.5%/year from 2020 level for the 2021-2026 model years. The future fuel economy improvements
are assumed to be driven by different levels of design improvements and technology adoptions.
Table A.6 below summarizes the levels of (1) vehicle light-weighting effort, (2) engine, motor and
transmission efficiency, (3) drag and friction improvement, (4) auxiliary power, and functions in the
three fuel economy scenarios.

Various simulation tools have been developed for the PTW analysis including ADVISOR,
AVL CRUISE, IGNITE by Ricardo Software, GT-Power, FASTSim, etc. The first three vehi-
cles/powertrain simulation tools offer capabilities to calculate energy flows in a conventional vehicle
and alternative-fueled vehicles considering both powertrain and auxiliary components while the
GT-Power focused on engine simulation and related fuel economy impact65 Researchers have imple-
mented these vehicle simulation tools to investigate the relationship between vehicle curb weight,
powertrain configuration, auxiliary components, and the fuel economy. For example, Cheah (2010)66

indicated that the relationship between fuel consumption and the curb weight of the vehicle is
approximately linear based on ADVISOR simulations. On average across all vehicle models, every
100 kg weight reduction will achieve a reduction of 0.53 L/100 km in fuel consumption. The Joint
Research Centre of the European (JEC) published WTW reports based on AVL CRUISE simulations
and predicted the potential improvement in auxiliaries, weight reduction, vehicle aerodynamics, and
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Table A.6: Fuel economy scenarios and associated technical parameters

Vehicle technology scenario changes from 2020 to 2050
Reference

Base case Fuel Economy
Improvement

Moderate Fuel Economy
Improvement

High Fuel Economy
Improvement

Vehicle and battery light-
weighting

-10% -20% -30% 45- 48, 53

Powertrain (engine, trans-
mission or motor) effi-
ciency

ICEV: +30%
BEV: +20%
PHEV: +28%
HEV: +33%
FCV: +7%

CNGV: +30%
Diesel: +30%

ICEV: +45%
BEV: +33%
PHEV: +42%
HEV: +49%
FCV: +20%

CNGV: +45%
Diesel: +45%

ICEV: +60%
BEV: +44%
PHEV: +56%
HEV: +65%
FCV: +32%

CNGV: +60%
Diesel: +60%

49, 60- 64

Wheel tire coefficient of
friction

+9% +21% +35% 64

Aerodynamics drag +9% +21% +35% 64
Accessory power 0% -30% -40% 64

rolling resistance as well as the impact to fuel economies for EU vehicles65). FASTSim is the latest
simulation tool developed by NREL for simplified vehicle simulation based on technology attributes.
It provides default vehicle attributes data for all vehicle models considered in this study currently
and allows users to adjust technology attributes based on predicted technology changes. Therefore,
we chose the FASTSim simulator for estimating fuel economy improvement. The vehicle attributes
data derived from Table A.5 above for each vehicle model are imported to the FASTSim simulator.

Table A.8: Summary of pathway vehicle life cycle parameters, vehicle technology scenario and
electricity emissions scenarios (continued)

HEV

base case 0.70 0.4 0.32 600 0.637 0.364 0.41 600

moderate 0.70 0.4 0.32 600 0.553 0.316 0.46 420

high 0.70 0.4 0.32 600 0.455 0.26 0.50 360

FCV

base case 0.70 0.4 0.28 600 0.637 0.364 0.37 600

moderate 0.70 0.4 0.28 600 0.553 0.316 0.41 420

high 0.70 0.4 0.28 600 0.455 0.26 0.46 360

CNGV

base case 0.70 0.4 0.19 600 0.637 0.364 0.25 600

moderate 0.70 0.4 0.19 600 0.553 0.316 0.28 420

high 0.70 0.4 0.19 600 0.455 0.26 0.31 360

Diesel

ICEV

base case 0.70 0.4 0.25 600 0.637 0.364 0.30 600

moderate 0.70 0.4 0.25 600 0.553 0.316 0.33 420

high 0.70 0.4 0.25 600 0.455 0.26 0.36 360

The vehicle attributes data are inputted into FASTSim simulator (Fig. S11). For other vehicle
attributes that FASTSim requires while we predict that will not have major impact in future fuel
economies, the default values are kept.

152



Table A.7: vehicle technical parameters in 2020 and 2050

wheel tire
coefficient
of friction

Cd (drag
coefficient)

Powertrain
efficiency

auxiliary
power

wheel tire
coefficient
of friction

Cd (drag
coefficient)

Powertrain
efficiency

auxiliary
power

Value in 2020 Value in 2050

Gasoline
ICEV

base case 0.70 0.4 0.19 600 0.637 0.364 0.25 600
moderate 0.70 0.4 0.19 600 0.553 0.316 0.28 420

high 0.70 0.4 0.19 600 0.455 0.26 0.31 360

BEV100
base case 0.70 0.4 0.60 600 0.637 0.364 0.73 600
moderate 0.70 0.4 0.60 600 0.553 0.316 0.80 420

high 0.70 0.4 0.60 600 0.455 0.26 0.86 360

BEV200
base case 0.70 0.4 0.60 600 0.637 0.364 0.73 600
moderate 0.70 0.4 0.60 600 0.553 0.316 0.80 420

high 0.70 0.4 0.60 600 0.455 0.26 0.86 360

BEV300
base case 0.70 0.4 0.60 600 0.637 0.364 0.73 600
moderate 0.70 0.4 0.60 600 0.553 0.316 0.80 420

high 0.70 0.4 0.60 600 0.455 0.26 0.86 360

PHEV10
base case 0.70 0.4 0.30 600 0.637 0.364 0.39 600
moderate 0.70 0.4 0.30 600 0.553 0.316 0.44 420

high 0.70 0.4 0.30 600 0.455 0.26 0.48 360

PHEV40
base case 0.70 0.4 0.30 600 0.637 0.364 0.39 600
moderate 0.70 0.4 0.30 600 0.553 0.316 0.44 420

high 0.70 0.4 0.30 600 0.455 0.26 0.48 360

Figure A.26: FASTSim UI
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We read the adjusted fuel economy predicted in FASTSim and Fig. S12 shows the predicted
vehicle fuel economies in the three scenarios for each vehicle model (passenger car and light truck,
separately mainly due to weight difference).
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Figure A.36: fuel economy improvement estimations of passenger car, SUVs and light trucks by
powertrains

We compared the FASTSim vehicle simulation method with our own physical-based model
(Equations S7 and S8) for verification.

Ethrust energy/mile =

∫ xftp75 test

0
(µmg +ma+ 1

2
ρv2CdAf )

xftp75 test

(A.4)

FE =
ηengine Efuel/gallon

Ethrust energy/mile + Eauxiliary

(A.5)

Where Ethrustenergy/mile is the average energy that is needed for the engine to provide enough
thrust force to move the vehicle under the required driving condition in the FTP75 test (EPA required
combined city and highway test procedures).µis the friction between the vehicle tire and the ground.
m is the vehicle mass. Cd is the drag coefficient of the vehicle. Af is the frontal area of the vehicle.
a, v, x are the acceleration, velocity, and distance traveled by the vehicle calculated from the FTP75
test cycle? In addition for the engine to provide enough thrust energy, it also needs to supply the
auxiliary energy that is needed by the air conditioning system, the electric power required by the
on-board battery to drive other accessory functions, e.g. speakers, lights, displays, etc. FE is
the fuel economy of the vehicle model. ηengine is the engine efficiency that is changing over time
based on the scenario technology assumptions. Efuel/gallon is the energy contained in one gallon of
fuel. A 70% reduction factor is applied to the fuel economy values from EIA (2020) to account for
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Table A.10: Fuel emissions intensities

Emissions intensity (g/gallon eq.)
CO2 CH4 N2O

Gasoline 9,570.0 12.1 0.3
Natural gas 4,978.4 121.6 1.1
Hydrogen 7,066.7 0.1 0.0

Diesel 9,595.5 17.2 0.2
Bioethanol corn starch 5,948.6 13.4 6.3

Bioethanol cellulosic switchgrass 2,230.7 5.0 2.4

the difference between laboratory test results and on-road efficiencies. For 2020 light trucks and
passenger cars, the estimated fuel economy between FASTSim and the simplified physical models
are small.

Table A.9: comparison between FASTSim and Physical based model fuel economy prediction

ICEV

LT - 2020 Passenger car - 2020

70% EIA in AEO (2020) FE (mpg) 22.19 30.03

Physical based model FE (mpg) 23.25 29.93

FASTSim FE (mpg) 21.91 28.01

Diff between Physical based model & FASTSim(%) 5.8% 6.4%

A.3.3 Emissions factors

The emissions factors of fuel sources are needed to determine materials emissions intensity and
convert vehicle production, use and disposal energy to emissions impact. The following sections
describe the data sources of fuel and electricity emissions intensity and materials emissions factors.
For the vehicle disposal phase, we account for the energy needed to disassemble the vehicle, i.e.,
1.1 MJ/kg of vehicle mass for disassembly.

A.3.3.1 Electricity and fuel emissions intensities

We reference the GREET model for fuel sources emissions intensities including motor gasoline,
hydrogen, natural gas, and diesel for vehicle use phase. The emissions intensity of bioethanol
are from EPA (2011)67. The emission intensity of gasoline, natural gas, hydrogen and diesel are
assumed constant over the length of the study. Bioethanol emission intensity will change as the
production approach transitions from corn starch to cellulosic switchgrass.

Currently, the U.S. electricity grid GHG intensity is around 421 g CO2eq/kWh of which around
17% of electricity is generated from renewable sources20. Various U.S. electric companies, e.g.,
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Table A.11: Electricity emissions intensity changes

2020 2035 2050
Grid carbon value –base case 30% reduction of grid

GHG intensity by 2050 (gCO2e/kWh)
421 320 294

Grid carbon value – 50% reduction of grid GHG
intensity by 2050 (gCO2e/kWh)

421 319 211

Grid carbon value – 80% reduction of grid GHG
intensity by 2050 (gCO2e/kWh)

421 258 84

Pacific Gas and Electric, Duke Energy, etc., have proposed a low carbon grid plan to reduce the
grid GHG emissions by 2050. Various studies have shown that 80-100% of renewable grids are
feasible68-70. In this analysis, three levels of electricity GHG intensity scenarios are assumed which
corresponds to base case 30% reduction (derived from EIA Annual Energy Outlook Table 821), 50%
reduction, and 80% reduction of the grid intensity. In the 50% reduction, and 80% reduction case, a
linear decrease in electricity grid carbon intensity from 2020 to 2050 is assumed. The GHG impact
of average U.S. produced electricity under the three decarbonization scenarios is presented in Table
A.4.

A.3.3.2 Material emissions factors

Based on the vehicle composition, we estimate the vehicle structure production emissions by
multiplying the material weight with emission factors of each type of the materials according to
GREET37 and Ashby71. We use a recycled content method to account for recycling rate changes in
the production emissions. The change of recycled contents are described in Section 3.2 above.

EFaverage = (1−RC)× EFprimary +RC × EFsecondary (A.6)

For each vehicle, three composition scenarios are defined assuming they change linearly from
2020 compositions to 2050 compositions which depend on the base case, moderate and high
vehicle lightweighting scenarios. We reference the GREET model’s energy intensity (mmBTU/kg
material product used in a vehicle) and vehicle assembly (mmBTU/vehicle vehicle assembled) for
all primary vehicle materials. The GREET model’s information on electricity vs. non-electricity
energy consumption allows us to split energy intensity by electrical and non-electrical components
for electricity decarbonization analysis discussed later. The energy intensity of secondary vehicle
materials (including recycled Li-ion battery production) are derived from GREET37 and Ashby71

and are also categorized by electrical and non-electrical components. Table A.5 and S6 shows the
emissions factor of vehicle materials, assembly and batteries.
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Table A.12: Primary material emission factor related to electricity

Primary- electricity

CH4 (gram/vehicle) N2O(gram/vehicle) CO2(gram /vehicle) Electricity (kWh/vehicle)

Steel 0.64 0.01 381.95 6

Stainless steel 1.00 0.01 602.16 3

Cast iron 0.11 0.00 63.21 3

Wrought Aluminum 1.95 0.02 1270.60 18

Cast Aluminum 2.11 0.02 1376.42 21

Copper/Brass 1.07 0.01 647.39 6

Zinc 1.74 0.02 1043.88 6

Magnesium 5.63 0.05 3378.34 32

Glass 0.25 0.00 146.88 3

Average Plastic 0.54 0.01 324.05 12

Rubber 0.27 0.00 160.89 6

Carbon Fiber-Reinforced

Plastic for General Use

3.32 0.03 1990.55 38

Carbon Fiber-Reinforced

Plastic for High Pressure

Vessels

6.51 0.06 3910.36 64

Glass Fiber-Reinforced

Plastic

1.11 0.01 663.44 12

Nickel 5.63 0.06 3623.39 32

PFSA (Nafion117 Sheet) 0.53 0.01 316.23 3

Carbon Paper 26.93 0.25 16169.42 261

PTFE 0.54 0.01 326.01 15

Carbon & PFSA

Suspension (Nafion Dry

Polymer)

0.52 0.01 309.28 3

Platinum 60.91 0.66 41626.03 144

Silicon 109.73 1.03 65942.10 457

Carbon 2.19 0.03 1482.26 12

Others 0.00 0.00 0.00 0

assembly emissions per lb 0.26 0.00 154.70 0

assembly energy per

vehicle (kWh/vehicle)

0.00 0.00 0.00 3246
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Table A.13: Primary material emission factor not related to electricity

Primary- non-electricity

CH4 (gram/vehicle) N2O(gram/vehicle) CO2(gram /vehicle) Electricity (kWh/vehicle)

Steel 1.33 0.01 904.37 -

Stainless steel 0.31 0.00 152.30 -

Cast iron 1.81 0.01 331.13 -

Wrought Aluminum 2.67 0.03 1903.61 -

Cast Aluminum 3.07 0.04 2151.51 -

Copper/Brass 1.00 0.01 588.58 -

Zinc 0.15 0.00 85.75 -

Magnesium 7.56 0.11 4125.90 -

Glass 1.02 0.01 579.19 -

Average Plastic 7.77 0.11 1039.36 -

Rubber 2.42 0.04 1472.49 -

Carbon Fiber-Reinforced

Plastic for General Use

13.87 0.18 5877.39 -

Carbon Fiber-Reinforced

Plastic for High Pressure

Vessels

21.62 0.30 10181.25 -

Glass Fiber-Reinforced

Plastic

3.62 0.04 1259.96 -

Nickel 6.52 0.23 2837.85 -

PFSA (Nafion117 Sheet) 0.55 0.01 237.51 -

Carbon Paper 82.96 1.17 40353.62 -

PTFE 4.84 0.08 3066.34 -

Carbon & PFSA

Suspension (Nafion Dry

Polymer)

0.54 0.01 232.08 -

Platinum 7.69 0.04 5370.69 -

Silicon 37.89 0.73 18430.87 -

Carbon 2.13 0.01 558.74 -

Others 0.00 0.00 0.00 -

assembly emissions per lb 0.35 0.01 151.05 -

assembly energy per

vehicle (kWh/vehicle)

- - - -
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Table A.14: Secondary material emission factor related to electricity

Secondary- electricity

CH4 (gram/vehicle) N2O(gram/vehicle) CO2(gram /vehicle) Electricity (kWh/vehicle)

Steel 0.71 0.01 425.60 3

Stainless steel 1.00 0.01 602.16 3

Cast iron 0.01 0.00 3.16 0

Wrought Aluminum 0.31 0.00 191.97 3

Cast Aluminum 0.30 0.00 187.78 3

Copper/Brass 0.27 0.00 161.85 0

Zinc 0.29 0.00 173.98 0

Magnesium 0.00 0.00 0.00 0

Glass - no recycling 0.25 0.00 146.88 3

Average Plastic (assume

ABS)

0.02 0.00 10.80 0

Carbon Fiber-Reinforced

Plastic for General Use

1.99 0.02 1194.33 23

Table A.15: Secondary material emission factor not related to electricity

Secondary-non- electricity

CH4 (gram/vehicle) N2O(gram/vehicle) CO2(gram /vehicle) Electricity (kWh/vehicle)

Steel 0.26 0.00 123.57 -

Stainless steel 0.31 0.00 152.30 -

Cast iron 0.09 0.00 16.56 -

Wrought Aluminum 0.96 0.01 476.89 -

Cast Aluminum 1.19 0.02 579.29 -

Copper/Brass 0.25 0.00 147.14 -

Zinc 0.02 0.00 14.29 -

Magnesium 0.50 0.01 212.59 -

Glass - no recycling 1.02 0.01 579.19 -

Average Plastic (assume

ABS)

0.26 0.00 34.65 -

Carbon Fiber-Reinforced

Plastic for General Use

8.32 0.11 3526.44 -
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Table A.16: Battery emission factor separated by non-electricity and electricity related based on
current electricity intensity.

Primary- non-electricity

CH4 (gram/kg battery) N2O (gram/kg battery) CO2 (gram/kg battery) electricity (kWh/kg battery)

Lead-Acid 5.60E+00 2.10E-02 1.10E+03 -

Ni-MH 7.30E+00 1.10E-01 3.10E+03 -

Li-ion (NMC622) 1.20E+01 1.40E-01 6.30E+03 -

Li-ion (NMC811) 1.28E+01 1.50E-01 6.74E+03 -

Secondary-non- electricity

CH4 (gram/kg battery) N2O (gram/kg battery) CO2 (gram/kg battery) electricity (kWh/kg battery)

Lead-Acid 3.10E+00 1.40E-02 6.20E+02 -

Li-ion (NMC622) 7.80E+00 9.10E-02 4.20E+03 -

Li-ion (NMC811) 8.35E+00 9.74E-02 4.49E+03 -

Primary- electricity

CH4 (gram/kg battery) N2O (gram/kg battery) CO2 (gram/kg battery) electricity (kWh/kg battery)

Lead-Acid 3.70E+00 0.00E+00 7.40E+02 0.00E+00

Ni-MH 4.80E+00 7.60E-02 2.00E+03 8.90E+00

Li-ion (NMC622) 9.40E+00 1.10E-01 5.10E+03 2.30E+01

Li-ion (NMC811) 1.01E+01 1.18E-01 5.46E+03 2.46E+01

Secondary- electricity

CH4 (gram/kg battery) N2O (gram/kg battery) CO2 (gram/kg battery) electricity (kWh/kg battery)

Lead-Acid 3.10E+00 1.40E-02 6.20E+02 4.20E+00

Li-ion (NMC622) 3.30E+00 3.90E-02 1.80E+03 8.50E+00

Li-ion (NMC811) 3.53E+00 4.17E-02 1.93E+03 9.10E+00

A.3.4 Life cycle emissions of vehicle

Combining above vehicle material composition, production, use and disposal energy data with
material and fuel emissions factors, we can estimate the life cycle emissions of all vehicles at each
year of its life cycle. Figure A.37-39 shows the per-vehicle life cycle emissions of all powertrains.

162



Figure A.37: Life cycle GHG emissions for passenger car simulated using base case vehicle
lifespans and electricity GHG intensities that are constant throughout the life cycle. The hatched
area represents the emissions that could theoretically be reduced if the recycled contents of all
vehicle materials increase to 90%.s
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Figure A.38: Life cycle GHG emissions for SUV simulated using base case vehicle lifespans and
electricity GHG intensities that are constant throughout the life cycle. The hatched area represents
the emissions that could theoretically be reduced if the recycled contents of all vehicle materials
increase to 90%.
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Figure A.39: Life cycle GHG emissions for light truck simulated using base case vehicle lifespans
and electricity GHG intensities that are constant throughout the life cycle. The hatched area
represents the emissions that could theoretically be reduced if the recycled contents of all vehicle
materials increase to 90%.

A.4 Simulation results

This section summarizes the detailed emissions results in the simulated pathways.

A.4.1 Pathway summary

In this analysis, we simulated 1512 future pathways. Table A.13 summarizes all the vehicle
technology scenarios and electricity emissions scenarios in the simulative pathways.
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Table A.17: Summary of vehicle life cycle parameters, vehicle technology scenarios and electricity
emissions scenarios in the stimulated pathways

Vehicle life cycle parameters Vehicle technology

scenario

Electricity emissions

scenarios

Vehicle travel

demand

Sales ratio of vehicle

powertrains

Vehicle lifespans Recycling rates Fuel economy Electricity emissions

intensities

Level 1 Base case

(+0.7%/year)

Base case (EIA,

2020 deployment)

Base case (Liao et

al., 2021)

Base case constant

EOL RR

Base case Base case 30% Eis

reduction

Level 2 Low growth

(+0.1%/year)

Flex fuel biofuel

vehicles 100% by

2050

ICEVs retire at age

20 and older

High (Increase

linearly from current

EOL RR to 90% by

2050)

Moderate 50% EIs reduction

Level 3 High growth

(+1%/year)

PHEV40s 100% by

2050

ICEVs retire at age

10 and older

- High 80% EIs reduction

Level 4 - HEVs 100% by 2050 - - - -

Level 5 - BEV300s 100% by

2050

- - - -

Level 6 - BEV300s 100% by

2040

- - - -

Level 7 - BEV300s 100% by

2030

- - - -

A.4.2 Additional results: cumulative emissions and temperature wedge plot

Figure A.40 shows the annual emissions results in the BAU pathway, moderate and high fuel
economy pathways (the rest of the parameters and scenario assumptions are the same as the BAU
pathway).
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Figure A.40: (Left) Annual U.S. LDV emissions for the BAU pathway. (Middle) Annual U.S. LDV
emissions for the moderate (fuel economy improvement) vehicle technology scenario (all other
scenarios and parameter value being base case). (Right) Annual U.S. LDV emissions for the high
(fuel economy improvement) vehicle technology scenario (all other scenarios and parameter values
being base case)

Figure A.41 shows the lower bound, base case and upper bound emissions pathways in Figure
2.1. Table A.14 summarizes the life cycle parameters, vehicle technology scenarios and electricity
emissions scenarios correspond to the low, base case and upper bound emission pathways.
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Figure A.41: The lower bound, base case and upper bound set of scenarios shown in Figure 1 of the
main manuscript.

Table A.15 shows the cumulative emissions breakdown by gas species and vehicle size class in
the above emission pathways.
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Table A.18: Summary of pathway vehicle life cycle parameters, vehicle technology scenario and
electricity emissions scenarios

Vehicle life cycle parameters Vehicle technology

scenario

Electricity

emissions

scenarios

Dominant vehi-

cle powertrains

Vehicle travel de-

mand

Sales ratio of vehi-

cle powertrains

Vehicle lifespans Recycling rates Fuel economy Electricity emis-

sions intensities

Base case

Lower bound Low growth

(+0.1%/year)

Base case (EIA,

2020 deployment)

ICEVs retire at age

10 and older

High (Increase lin-

early from current

EOL RR to 90% by

2050)

Moderate 80% EIs reduc-

tion

Base case Base case

(+0.7%/year)

Base case (EIA,

2020 deployment)

Base case (Liao et

al., 2021)

Base case constant

EOL RR

Base case Base case

Upper bound High growth

(+1%/year)

Base case (EIA,

2020 deployment)

Base case (Liao et

al., 2021)

Base case constant

EOL RR

High Base case

BEV2030

Lower bound Low growth

(+0.1%/year)

BEV300s 100% by

2030

ICEVs retire at age

10 and older

High (Increase lin-

early from current

EOL RR to 90% by

2050)

Moderate 80% EIs reduc-

tion

Base case Base case

(+0.7%/year)

BEV300s 100% by

2030

Base case (Liao et

al., 2021)

Base case constant

EOL RR

Base case Base case

Upper bound High growth

(+1%/year)

BEV300s 100% by

2030

Base case (Liao et

al., 2021)

Base case constant

EOL RR

High Base case

BEV2040

Lower bound Low growth

(+0.1%/year)

BEV300s 100% by

2040

ICEVs retire at age

10 and older

High (Increase lin-

early from current

EOL RR to 90% by

2050)

Moderate 80% EIs reduc-

tion

Base case Base case

(+0.7%/year)

BEV300s 100% by

2040

Base case (Liao et

al., 2021)

Base case constant

EOL RR

Base case Base case

Upper bound High growth

(+1%/year)

BEV300s 100% by

2040

Base case (Liao et

al., 2021)

High (Increase lin-

early from current

EOL RR to 90% by

2050)

High Base case

BEV2050

Lower bound Low growth

(+0.1%/year)

BEV300s 100% by

2050

ICEVs retire at age

10 and older

High (Increase lin-

early from current

EOL RR to 90% by

2050)

Moderate 80% EIs reduc-

tion

Base case Base case

(+0.7%/year)

BEV300s 100% by

2050

Base case (Liao et

al., 2021)

Base case constant

EOL RR

Base case Base case

Upper bound High growth

(+1%/year)

BEV300s 100% by

2050

Base case (Liao et

al., 2021)

Base case constant

EOL RR

High Base case
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Table A.19: Summary of pathway vehicle life cycle parameters, vehicle technology scenario and
electricity emissions scenarios (continued

PHEV

Lower bound Low growth

(+0.1%/year)

PHEV40s 100% by

2050

ICEVs retire at age

10 and older

High (Increase lin-

early from current

EOL RR to 90% by

2050)

Moderate 80% EIs reduc-

tion

Base case Base case

(+0.7%/year)

PHEV40s 100% by

2050

Base case (Liao et

al., 2021)

Base case constant

EOL RR

Base case Base case

Upper bound High growth

(+1%/year)

PHEV40s 100% by

2050

Base case (Liao et

al., 2021)

Base case constant

EOL RR

High Base case

HEV

Lower bound Low growth

(+0.1%/year)

HEVs 100% by

2050

ICEVs retire at age

10 and older

High (Increase lin-

early from current

EOL RR to 90% by

2050)

Moderate 80% EIs reduc-

tion

Base case Base case

(+0.7%/year)

HEVs 100% by

2050

Base case (Liao et

al., 2021)

Base case constant

EOL RR

Base case Base case

Upper bound High growth

(+1%/year)

HEVs 100% by

2050

Base case (Liao et

al., 2021)

Base case constant

EOL RR

High Base case

Biofuel

Lower bound Low growth

(+0.1%/year)

Flex fuel biofuel

vehicles 100% by

2050

ICEVs retire at age

10 and older

High (Increase lin-

early from current

EOL RR to 90% by

2050)

Moderate 80% EIs reduc-

tion

Base case Base case

(+0.7%/year)

Flex fuel biofuel

vehicles 100% by

2050

Base case (Liao et

al., 2021)

Base case constant

EOL RR

Base case Base case

Upper bound High growth

(+1%/year)

Flex fuel biofuel

vehicles 100% by

2050

Base case (Liao et

al., 2021)

Base case constant

EOL RR

High Base case
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Table A.20: Cumulative emissions equivalent breakdown

Cumulative emissions equivalent breakdown

CO2 CH4 N2O Total Passenger car SUV Light truck Total

BAU 93.8% 5.5% 0.7% 100.0% 33% 46% 20% 100.0%

BEV2050 94.0% 5.3% 0.7% 100.0% 33% 46% 20% 100.0%

BEV2040 94.1% 5.3% 0.7% 100.0% 33% 46% 20% 100.0%

BEV2030 94.1% 5.3% 0.6% 100.0% 33% 46% 20% 100.0%

Biofuel2050 90.9% 5.3% 3.8% 100.0% 33% 46% 20% 100.0%

HEV2050 93.8% 5.5% 0.7% 100.0% 33% 46% 20% 100.0%

PHEV2050 93.9% 5.4% 0.7% 100.0% 33% 46% 20% 100.0%

Figure A.42 shows the global mean temperature rises corresponding to the U.S. LDVs.
Figure A.43 below shows the raw data for the cumulative emissions and temperature rises used

to construct Figure 4 in the main manuscript.

Figure A.43: Cumulative emissions and temperature rises corresponds to Figure 4 in the main
manuscript.

Figure A.44 shows the separate impact of vehicle structural material recycling and battery
recycling on 2021-2050 cumulative production emissions in the pathways that have BEV300
reach 100% of sales by 2030 and base case, moderate or high fuel economy improvements (that
corresponds to 10%, 20% or 30% lightweighting by 2050).

171



(a) The horizontal position of a node on a flag corresponds to the Electricity emissions scenario and the
vertical position of the node corresponds to the Sales share of alternative fuel vehicles.

(b) Global temperature attributable to U.S. LDVs.

Figure A.42: Global temperature rises for varying vehicle life cycle parameters, vehicle technology
scenarios. and electricity emissions scenarios. The higher dashed horizontal lines refer to BAU
temperature rises. BC-RR: base case recycling rates. 90% RR: 90% recycling rates. The numbered
arrows correspond to the cumulative emissions wedge plot shown in Figure 4.
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Figure A.44: Cumulative production emissions before and after recycling
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Appendix B

Mapping the annual flow of steel in the United States

This document contains information useful to understanding the themes, calculations, and
numbers introduced in the main manuscript. This document is 116 pages long and contains 24
tables and 14 figures. All data refers to U.S. steel flows in 2014 unless otherwise stated. The final
2014 U.S. steel flows.(xlsx file) and reconciliation Matlab code (.m file) can be downloaded from:
http : //remade.engin.umich.edu/tempduringreview.htm

B.1 Data Reconciliation

In section 2.4 of the main paper, we introduced a nonlinear least squares optimization method
to reconcile collected steel flow data and to produce a mass balanced network. This B1 section
will review existing formal reconciliation methods, present the flexible and updateable cataloguing
method used in this analysis, describe the optimization setup, generation of the initial values used in
the optimization, reconciled results, and analysis of corresponding residuals.

B.1.1 Review of formal reconciliation methods for material flows

Data scarcity and inconsistency are major hurdles in conducting MFAs. Although data records
from various sources (e.g., government reports, academic and grey papers, etc.) are often collected
in order to model all the processes and products in a material flow network, information could
still be missing for one or more variables in the network. In addition, due to the abundance of
data sources, the collected data records often contradict each other, e.g., violating conservation
of mass 1,2. Several data reconciliation methods have been applied to adjust the collected data
records and achieve consistency in the material flow network. These include nonlinear least squares
optimization 3–6, Bayesian updating 1,2,7,8 and physical input-output tables 9–12. A brief review of
each method is presented below.
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B.1.1.1 Least squares optimization method

Least squares optimization is one of the earliest and most used methods in data reconciliation for
MFAs and other resource flow studies 13 due to its simplicity and ease of use. In the least squares
optimization method, the reconciliation is achieved by minimizing the objective function which
is the sum of squared residuals between measured data records and the final MFA variables 3 .
Ploeg (1988) implemented the general nonlinear least squares method to recover uncollected data in
his multisectoral econometric model 14. The popularity of the nonlinear least squares method is
highlighted by Narasimhan and Jordache (1999) in their data reconciliation book 15 and by Brunner
and Rechberger (2017) in their MFA handbook 16. Other applications of least squares optimization
in data reconciliation can be found in many MFA studies 17–19 including the MFA software named
substance flow analysis, STAN 3,20. However, a major limitation of the least squares optimization
method as commonly applied is that instead of reconciling multiple collected data records for the
same variable, these multiple data records are transformed into a mean and a standard deviation
which leads to loss in the resolution of collected information. Another limitation of the least
squares optimization as commonly applied is due to the linearization of nonlinear constraints, e.g.,
transforming yield ratio constraint to mass balance of input to product and scraps 19–21. This is
common because the linearization reduces the computational complexity. However, it may also lead
to imprecise solutions.

Recently, Kopec et al. (2016) proposed a weighted nonlinear least squares method that allows
nonlinear constraints and reconciliation of multiple data records per variable 6. The weight of each
residual is determined by the quality of the corresponding data record in a 1-100 scale 6. Kopec
et al. (2016) demonstrate their method by conducting a case study which re-examines Cullen et
al. (2012)’s global steel flows. They present high level results and the improved objective function
in order to demonstrate the utility of the proposed method. However, they show neither detailed
guidelines about how this reconciliation method could be implemented nor results of the actual
reconciled MFA network. In addition, their quality measuring system is not clearly defined which
makes it difficult to be reused in other studies and likely leads to inconsistent data weighting.

B.1.1.2 Bayesian inference

Bayesian inference is another data reconciliation method that adjusts the variable estimates based
on a priori constraints 22. It is a probabilistic method that allows the use of arbitrary probability
distributions to represent data record uncertainties 1,7,22–24. According to Wang and Romagnoli
(2003), historical data forms the prior knowledge (prior distribution) of the MFA variables and
the result of Bayesian inference is updated when a new measurement data comes in 22. However,
as indicated in Lupton and Allwood (2017)’s study, it is not always possible to understand the
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probability distribution of an MFA variable in the case of lacking information 23. In their global steel
flow case study, they have to assume Gaussian or uniform Dirichlet distributions for the majority
of the data records 23. An alternative to the probabilistic method is the fuzzy-set method in which
a fuzzy interval, instead of a probability distribution, is used to express the variable uncertainty
13. Without a systematic framework of assigning uncertainty distributions (or fuzzy intervals in
the fuzzy set method) to each data record, the Bayesian inference results could be biased due to
improper distribution choices. In addition, Bayesian inference can be computational expensive, e.g.,
the supporting information of Lupton and Allwood (2017) suggest that a 24 variable case study took
30 minutes on a 2 GHz Intel i5 laptop.

B.1.1.3 Input-output table

Input-output tables (IOT) were first developed by Leontief (1936) in order to study the economic
interactions between different sectors of an economy 9,25. As such, the IOT entries are in monetary
units, e.g., United State dollars 26 and the method is well-known in balancing economic and social
flows 6,27. Recently, the IOT has been applied in MFA studies due to its ease of application 9–12.
These types of IOTs are called physical input output tables (PIOTs) 9. The basic constraint in
the PIOTs is that the total input should satisfy final demand which is a simplified form of mass
conservation 12. A common PIOT table consists the flows from all the processes and products to
subsequent processes 9,10 similar to the left portion of the matrix catalogue example shown in Figure
1 of the main article. However, due to the simplified mass conservation setup, the PIOTs cannot
incorporate nonlinear constraints e.g., yield ratio or other nonlinear variable related constraints
which are abundant in this article’s steel flow study.

B.1.2 A flexible and updatable cataloguing method (this analysis)

The cataloguing method used in this article’s analysis is summarized in Figure 1 of the main
article. The matrix shown in Figure 1 is a base template that is repeated many times in the code used
to define the reconciliation and run the optimization. The different copies of the matrix are used to
define different parameters of the steel flow (e.g., the existence or not of a flow between two nodes
or the upper bound on a flow) and to enter the data records. Figure B.1 shows the multi-dimensional
matrices used to define the flow and catalogue the data records. Alongside the schematic in Figure
B.1, are definitions and examples.

Figure B.2 shows the set of tasks a practitioner must perform in order to use the cataloguing
system to perform a formally reconciled MFA.
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Figure B.2: A flow chart showing the tasks a practitioner must follow in order to produce a material
map using the cataloguing structure shown in Figure B.1

B.1.3 Nonlinear least squares optimization method

As shown in equation 1 of the manuscript, xi was used to represent different MFA variables. Be-
cause empirical data sources refer to a range of MFA variables, as summarized in Table B.1, different
elements within the xi vector represent flow (αk.l), node (βk), yield ratio (γk.l) or unconventional
data (δm).
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Table B.1: Type of MFA Variables

Sub -
categories

of xi

Variable Type Symbol Examples from collected data

Flow and scrap: steel content (prod-
uct or scrap) flows from node k to
node l.

αk.l,product,

andαk.l,scrap

Pig iron flows out from blast furnace
(node k) to export (node l): USGS
iron and steel yearbook shows 7 kt.
USGS iron and steel scrap shows 6.77
kt. and WorldSteel shows 52 kt.

Node: sum of all flows into a node
m or total product out from node k

(excluding scraps and loss in case of
output node).

βk,inandβk,out Pig iron produced out from blast fur-
nace (node k). USGS iron and steel
yearbook shows 29400 kt and World-
Steel shows 29374 kt.

Yield ratio: percentage of product
output to material input associated
with the flow from node k to node l

or the ratio of node output to node
input.

γk

orγk.l

Yield ratio of direct reduction process
is around 99.3% (Cullen, 2013) or
yield ratio of using cold rolled sheet
(node k) to produce car panels (node
l) is 60% (Cullen, 2013).

Unconventional: data referring to
one or more of the above variables
such as data on the sum of a subset
of flows or ratios between subsets
of flows.

δm Sum of all welded and seamless pipes
and tubes is 4718 kt (WorldSteel).

The objective function is shown below along with the mass conservation constraints defined
using the sub-categorical variables.

Objective function:
minimize:

I∑
i

∑Ji
j Φi,j · (ri,j)2

Ji
(B.1)

Where ri,j =
xi−x̂i,j

x̂i,j
is the residual between MFA variable and data value.

Subject to: mass conservation
For each node k: ∑

l

αk.l =
∑
m

αm,k = βk,in = βk,out +
∑

scrap+loss

αk.l (B.2)

This constraint ensures that all materials flowing into a node (steel making or forming process)
equal the sum of product, loss and scrap, e.g. sum of iron ore (iron content within iron ore), direct
reduction iron and steel scraps going to blast furnace equals the amount of pig iron produced in
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blast furnace plus the loss associated with the process. The mass conservation constraint establishes
the link between node variables and flow variables, so the overall flow network is maintained.

For each node k :
γk =

βk,out

βk,in

(B.3)

Which constrains the overall yield ratio of a steelmaking or forming process. For processes that
use the same input material but exhibit different yield ratios depending on the product made, e.g.
forming using cold rolled sheet to produce car panels versus forming using cold rolled sheet to
produce domestic kitchen appliance panels, a specific yield ratio is defined for each of the process
outputs, as shown below.

For each flow k to l:
γk.l =

αk.l,product

αk.l,product + αk.l,scrap

(B.4)

These flow specific yield ratio constraints only apply to the intermediate products to end-use
products section of the network from line 24 to line 35 and lines 37 and 38 of the matrix catalog as
shown in Figure B.4 in B3.1.

For each unconventional variable:

δm =
∑
some

αk.l (B.5)

or
δm =

∑
some αk.l∑
some αk.l

(B.6)

The form of the unconventional constraints vary from one to another and the equations above
only demonstrate two examples. An explanation of each unconventional data point can be found in
the data list in B3.2.

Lastly:

0 ≤ γk.l ≤ 1 (B.7)

xi = {αk.l, βk, γk.l, δm} ≥ 0∀i (B.8)

lbi ≤ xi ≤ ubiforsomei (B.9)

These additional boundary constraints are used to narrow the solution space to speed up the
optimization and they also incorporate existing empirical estimations of some MFA variable, e.g.
yield ratio of any process is always between 0 and 1.
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B.1.4 Initial values used in the formal reconciliation optimization

An important input to the data reconciliation algorithm is the set of initial values used for all
MFA variables including flow, node, yield ratio, etc. As we are performing a nonlinear optimization,
wildly inaccurate initial values will likely result in the optimization starting in a ‘well of attraction’
far from the global minimum; therefore, the subsequent local minimum found by the optimization
will likely be far (in terms of objective function and the values of the flow variables) from the truly
best solution. In order to leverage all known data records, the initial values used in this analysis
were, where available, the weighted mean of the recorded data. The weight for each data record is
equal to the weight recorded in Table B.23. For example, the value in the initial guess for the flow
of hot rolled sheet into infrastructure is given by equation B1:

Flow24,40 =HR sheet to infrastructure

=
(0.25× 6123) + (0.417× 616) + (0.333× 385)

0.25 + 0.417 + 0.333

=1916kt

(B.10)

Where no recorded data could be found, an initial MFA variable can typically be calculated using
simple mass balance. For example, there is no recorded data to use as an initial value for the flow
of ingots, billets, blooms, and slabs into the primary mill (flow coordinate: 36,18) but is instead
calculated to be 10,431 kt by knowing that it must equal the total flow into ingots, billets, blooms,

and slabs from domestic ingot casting (1,110 kt) and imports (9,610 kt) minus the flow of ingots,

billets, blooms, and slabs to export (289 kt). Data records do exist for these three other flows.
The only wider assumption needed in order to generate a set of initial values is that the size of

the relative flows from the primary mill to the hot strip mill, plate mill, bar/rod mill, and section mill
in 2014 was equal to the relative size of all steel flows passing through these four types of mill. For
example, according to the initial set of values there is a total of 97,677 kt of steel passing through
the four forming mills, of which 60% passed through the hot strip mill; therefore, it was assumed
that 60% of the output from the primary mill flowed into the hot strip mill, and so on for the other
types of forming mill.

This initial set is not a feasible solution (violating mass balance); thus, the initial constraint
violation recorded by MATLAB is equal to 10,900 kt. The initial set of values used in this study is
shown in Table B.2 (see https://pubs.acs.org/doi/abs/10.1021/acs.est.9b0
1016.
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B.1.5 Derivation of an informally reconciled steel map

An informally reconciled U.S. 2014 steel map was derived and is available for download at
http : //remade.engin.umich.edu/tempduringreview.htm. This manual, informally reconciled
steel map was not needed in order to derive the final steel map shown in Figure 2 of the main article.
However, it was derived in order to compare the final steel map variables derived using the informal
and formal techniques (see Figure B.4).

The informal reconciliation stated by gathering intermediate product information from the USGS
Iron and Steel Minerals Yearbook 28 in the following categories: tin mill products, galvanized
products, hot rolled sheet and strip, cold rolled sheet and strip, pipe and tube, rod and bar products,
rebar, light sections, heavy sections, rail, steel castings and iron castings. There are several reasons
for using intermediate goods as the starting point: the USGS reports detailed production, import, and
export data for these products; intermediate products represent the finest resolution of the overall
steel life-cycle; and intermediate product data can be extrapolated backward to the production phase
and forward through end-use.

The USGS data for intermediate products is then filled into the corresponding section of the
catalog matrix (section from 24,39 to 35,47 and 37,39 to 38,47) and used to derive upstream and
downstream values together with other data, specifically import, export, and yield values. For
example, USGS 28 reports that around 20640 kt of hot rolled sheet and strips are produced in the
U.S. which is set as the value for variable x(14,24,1).

Using the intermediate product data and yield data for specific processes, upstream continuous
casting, liquid steel production, scrap and loss data can be extrapolated. Where needed, data points
regarding each specific upstream step can be used to inform the extrapolation. For example, the
amount of continuous cast slab produced can be back-calculated using the total of the intermediate
products created from slab and the yield ratios for the processes that transform slab to those products.
However, liquid steel to CC slab is provided by both the BOF and EAF and the proportion of one or
the other is not known. To achieve a good estimate that satisfies mass conservation, the USGS data
point for BOF steel produced (≈33 Mt) is allocated to CC Slab and the balance is met using EAF
steel. In this way, the initial values for BOF steel to CC Slab will match the USGS recorded data 28

and the initial values for EAF steel to CC Slab will only vary slightly from the USGS recorded 28. A
similar method is employed to adjust the iron ore, DRI, and scrap inputs to match what is required
by mass balance. Iron ore and DRI data, including corresponding import and export values from
USGS, are used directly in the initial value set. Since the scrap flow data from multiple sources are
conflicting with each other and the USGS provides a minimum scrap consumption as 58Mt 28, we
adjusted the scrap flow into each furnace to satisfy mass conservation constraints.

To create the downstream section of the set of initial values, the flows of intermediate products
to end-use goods sectors are estimated based on methods used in the existing literature; e.g., Cullen
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et al. (2013). The Supplementary Information from Cullen’s work outlines a detailed approach for
estimating flows from intermediate products to end-use goods. To create the set of initial values (as
well as a set of data for use in the reconciliation), this method was followed with changes made to
adapt it to the U.S. manufacturing sector in 2014.

B.1.6 Optimization results

MATLAB’s fmincon solver with interior-point algorithm is used to conduct the optimization
(Byrd et al., 1999; Matlab, 2013). It took 450 iterations for the objective function to converge
(Figure B.3: 30 hours using an Intel(R) CoreTM i7-6600U CPU, 2.81 GHz, with 16 GB of RAM).
The optimization reduced the objective function by 20% from 18.5 at the initial set of values to
14.7. A smaller objective value indicates that the solution is a better fit to the available data than the
manually derived initial set of values. A list of optimization results for all MFA variables and their
corresponding weighted residuals are shown in Table B.2 next to the initial set of values. Table B.3,
Table B.4 and Table B.5 summarize the number of variables, number of constraints and number of
data records by categories respectively.

Table B.2: Summary of Variables

Type of variables Quantity
Flow between nodes

(excluding scrap & loss)
181

Flows to scrap node 78
Flows to loss node 11

Yield ratio 83
Node variable 78

Unconventional variable 33
Total non-zero existing 464

Existing zero variables (e.g.,
flows direct from BF to

cars)

10755

Total 11219
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Table B.3: Summary of Constraints

Type of constraint Quantity
Mass conservation 133

Yield ratio 165
Unconventional

variable
33

Boundary constraints 184
Constraining
non-existing

flow/scrap/loss to zeros

8799

Total 9314

Table B.4: Summary of Data Sources

Type of data Quantity
Flow 156
Scrap 0
Loss 0

Yield ratio 78
Node variable 17

Unconventional variable 42
Total 293

Figure B.3 shows the evolution of the objective function value and maximum constraint violation
versus the number of iterations in the optimization solving process. Both objective function value
and maximum constraint violation change minimally after 450 iterations which is the sign of
convergence.
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Figure B.3: Objective function value and maximum constraint violation versus the number of
iterations

Figure B.4 shows the five greatest differences between the final formally reconciled steel map and,
on the left hand side, the manual, informally reconciled map derived as described in Section B1.5
and, on the right hand side, the initial set of MFA variable values used in the formal reconciliation.
As shown in Figure B.4, the choice of MFA reconciliation technique has a significant effect on the
final MFA variables.

Figure B.4: Greatest differences between the informally (manually) reconciled steel map, the initial
values used in the formal reconciliation, and the final formal reconciliation map shown in Figure 2
of the main article
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B.1.7 Residual analysis

The weighted residuals for each MFA variable are shown in Table B.6. Note that for those MFA
variables that have no empirical data record, the corresponding residuals are zero and not included
in the objective value computation. For MFA variables that have multiple possible values from
different data sources, the weighted residual is the weighted sum of normalized residuals according
to each data source. We identify the maximum normalized but non-weighted residual for both the
set of initial values and the reconciled result as shown in Table B.6.

Table B.5: Summary of residuals

Value Initial set of values Optimization result Optimization residual to USGS data

Objective function 18.54 14.76 3.87

Objective function
without confidence

value

64.29 38.46 4.23

Maximum
non-weighted
residual value

6.59 (x38,43,1 iron
casting to machinery)

2.66(x38,43,1 iron
casting to machinery)

0.93 (x3,6,1 direct reduction to
electric arc furnace)

Figure B.5 shows the contribution of different sizes of residual values to the objective function.
The largest difference between the initial set of values and the optimization result is that the
optimization process reduces the quantity and size of large residuals, shifting to a greater number of
small residuals to reduce the overall objective value. For example, the flow from iron casting to
machinery equaled 434 Mt in the informally reconciled map (weighted normalized residual: 3.11),
and 267 Mt in the formally reconciled map (weighted normalized residual: 0.99).

The ability for the optimization algorithm to simultaneously modify variable values while achiev-
ing mass balance constraints would have been very hard to achieve by manual data reconciliation
alone.
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Figure B.5: Size of residuals in initial variable set, final optimized variable set, and informally
(manually) reconciled variable set

B.2 Flow estimate sources and derivations

This B2 section describes the source, and where necessary the derivation, of the empirical data
records on the U.S. 2014 steel mass flow used in the reconciliation described in section B1. A
summary of all the data records (and sources) used is provided in Table B.23, in Section B3.2.

B.2.1 Summary of steelmaking and fabrication process yields

The data records for steelmaking process yields used in the reconciliation are shown in the table
below.

200



Table B.6: Steelmaking and fabrication process yields

Steelmaking Process Coordinate
(Table
B.23)

Yield
Ratio

Blast Furnace [2.54] 0.993

All
Steel-

making
Process
Yields

derived
from
WSA

(2009)

Direct Reduction 3.54 0.993

Basic Oxygen Furnace 5.54 0.871

Electric Arc Furnace 6.54 0.889

Cupola Furnace 7.54 0.871

CC Slab 8.54 0.965

CC Billet 9.54 0.975

CC Bloom 10.54 0.955

Ingot Casting 11.54 0.98

Steel Product Casting 12.54 0.522

Foundry Iron Casting 13.54 0.66

Hot Strip Mill 14.54 0.96

Plate Mill 15.54 0.9

Rod/Bar Mill 16.54 0.94

Section Mill 17.54 0.9

Primary Mill 18.54 0.925

Cold Rolling Mill 19.54 0.951

Tube Welding Plant 20.54 0.935

Seamless Tube Plant 21.54 0.922

Galvanizing Plant 22.54 0.975

Tin Mill 23.54 0.935

Additionally, a report prepared for AISI by Energetics, Inc. (2003) reports a range of yield ratios
for the BOF of 0.91-0.93 and EAF of 0.92-0.94. The upper limit of these ratios (0.93 for the BOF
and 0.94 for the EAF) is used a maximum value for each furnace type’s yield in the reconciliation.
The EAF value of 0.94 is also used as the maximum yield for the CF.

B.2.2 Liquid steel to continuously cast semi-finished goods

Liquid steel produced in the BOF and EAF is cast into semi-finished products, of which there
are four types: ingot, billet, bloom, and slab. These four categories are distinguished by the general
shape and size they’re cast in and the types of products they are used to produce. Three of the
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four (billet, bloom, and slab) are produced using a continuous casting process and fed directly into
further rolling and shaping processes. USGS (2016a) records that 98.5% of U.S. steel production
was continuously cast in 2014.

A bottom-up estimate was used to estimate the proportions of each continuously cast product.
Slab is rolled and shaped into flat products, such as sheet and plate. Billet is formed into rod and bar
products, such as hot rolled bar and wire rod. Bloom is formed into section products, such as heavy
sections and rail. USGS and Worldsteel 28,33 both report steel intermediate product production by
specific product (e.g., “hot rolled sheet” or “reinforcing bar”) which can then be categorized by the
type of semi-finished products used to produce them. Table B.8 shows this categorization and the
overall quantities and percent of the total for each category.

Table B.7: Categorization of intermediate products by continuous cast product (USGS, 2016a)

Semi-
Finished
Product

Intermediate Products Quantity
(kt)

Quantity
(%)

Slab Plate, welded pipe and tube, tin mill products, hot-rolled
sheet and strip, cold-rolled sheet and strip, galvanized or
coated sheet and strip,

61394 69.8%

Billet Wire rod, hot-rolled bars, reinforcing bar, cold finished bar,
seamless tube, wire, light sections

19822 22.5%

Bloom Heavy sections, rail 6748 7.7%

The categorizations from Table B.8 are used to determine the structure of the flow network, which
in turn will dictate the proportions of slab, billet, and bloom in the final reconciled result. Rather
than constrain the proportion with unconventional data to be a certain percentage (for example,
using the percentages from Table B.8 as unconventional data), the proportion is determined by the
downstream flows from each continuously cast product through mass balance constraints.

For example, in both Figure B.4 and Table B.23, the only outputs from CC Bloom are [10.10]:
Internal recycling, [10.17]: CC Bloom to Section Mill, and [10.51]: Loss. The Section Mill then has
outputs to [17.34]: Section Mill to Heavy Sections, [17.35]: Section Mill to Rail and [17.50]: Scrap.
Therefore, the reconciled results for [17.34] and [17.35] (heavy sections and rail, respectively), the
reconciled yields for the section mill and CC Bloom, and mass balance principles can be used to
back-calculate the amount of liquid steel input necessary to support that amount of production. The
same can be said of liquid steel entering CC Slab and CC Billet, which are likewise determined by
mass balance with the intermediate product outputs according to the categories in Table B.8.

Liquid steel includes all production in BOF, EAF and cupola furnace (CF), so the liquid steel
allocation must also include which type of furnace is supplying each semi-finished product. Flat
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products are the most sensitive to defects due to contamination from tramp elements in recycled
steel, so all primary (BOF) steel is assumed to be used for production of slab to maintain the highest
possible purity in flat intermediate products 34. However, BOF production is not enough to fill the
demand for flat products as reported by USGS (2016a), so a flow from the EAF to CC Slab is added
to the network to supply the balance. Allocation for billet and bloom demand is supplied exclusively
by the EAF. Raw steel production in the CF is only around 0.1% of total raw steel production and
decreasing each year 35. The small amount of liquid steel from the CF is sent to ingot casting and
the balance of ingot casting demand is met with EAF steel. The network structure is therefore as
follows: BOF and EAF to CC Slab; EAF to CC Billet; EAF to CC Bloom; and EAF and CF to
Ingot casting. The amounts of liquid steel from each furnace type to each semi-finished product can
then be determined by mass balance principles and liquid steel production data by furnace type.

The USGS intermediate product data includes one other product which is not included in the
continuous cast categories in Table B.8: ingots, blooms, billets, and slab. It is a small percentage of
the overall domestic production (1110 kt of 89100 kt, or 1.2% according to USGS (2016a)), but it is
a significant fraction of imported steel (9610 kt of 40200 kt, or 24%). Ingots, blooms, billets, and
slab are not truly intermediate products but are instead semi-finished goods similar to CC products.
Therefore, they are precursors to the production of true intermediate products and must be routed
accordingly in the network. The U.S. Census Bureau (2015) reports that of the 9610 kt imported
into the U.S., 9559 kt is billet, bloom, or slab and is thus destined for rolling mills along with
domestic semi-finished products. Data records for the reconciliation include the net value of ingot,
billet, bloom and slab (1110 kt of production minus 289 kt of export plus 9610 kt of import: 10431
kt, according USGS (2016a)).

No data has been found which divides the net value into individual CC products, so some
assumption must be made regarding the proportion of each CC product. It is assumed that the all net
imports of ingot, billet, bloom and slab are destined for the primary mill where they are prepared
for rolling in subsequent mills. The output of the primary mill is then allocated to the hot strip mill,
plate mill, rod/bar mill, and section mill. The proportion of intermediate products downstream of
each rolling mill determines the proportion of steel from the primary mill destined for that mill. The
following describes which intermediate products are downstream of each rolling mill:

• Hot Strip Mill: Welded pipe and tube, tin mill products, hot-rolled sheet and strip, cold-rolled
sheet and strip, galvanized or coated sheet and strip

• Plate Mill: Plate

• Rod/Bar Mill: Wire rod, hot-rolled bars, reinforcing bar, cold finished bar, seamless tube,
wire, light sections
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• Section Mill: Heavy sections, rail

Mass balance principles are combined with this network structure and the relevant production and
yield data to determine the amount of primary mill output destined for each rolling mill. Again, the
structure of the reconciliation model automatically determines the proportions based only upon the
network structure and mass balance without the addition of unconventional data.

For example, in Figure B.4 and Table B.23, ingots, billets, blooms and slab has two inputs:
[11.36] Ingot casting to Ingots, billets, blooms, and slabs and [48.36] Import to Ingots, billets,

blooms, and slabs. Each of these values is reconciled from existing data. Ingots, billets, blooms
and slab also has two outputs: [36.18] Ingots, billets, blooms and slab to Primary mill and [36.49]
Ingots, billets, blooms and slab to Export, and the export value is reconciled from existing data.
The net value is destined for the Primary mill, where it is divided among [18.14] Primary mill to

Hot strip mill, [18.15] Primary mill to Plate Mill, [18.16] Primary Mill to Rod/Bar mill and [18.17]
Primary Mill to Section Mill. Plates represent approximately 11% of overall intermediate product
production (according to data from USGS) so 11% of primary mill output is destined for the section
mill. The proportion will vary according to the reconciled downstream results.

B.2.3 WSA vs USGS intermediate product data

Table B.9 (https://pubs.acs.org/doi/abs/10.1021/acs.est.9b01016)
shows the available data from the USGS and the World Steel Association for production of interme-
diate products in 2014 28,33. An important conclusion can be drawn from this comparison. The sum
of USGS intermediate products equals the total reported “production of hot rolled products” from
the WSA, indicating that the two data sources have good agreement, which is further supported by
the almost perfect agreement for data points from similar product categories. What little variance
does occur can be attributed to rounding errors. This consistency can be interpreted two ways: either
the data from both reporting agencies is independently gathered and near perfectly accurate, or these
two reports are generated based on a common set of underlying data. The second interpretation is
more likely, and when the references from each reporting agency are compared it is evident that
these two reports relied heavily on American Iron and Steel Institute (AISI) data for these specific
values. Unfortunately, this common set of data is not publicly available. The USGS data is more
complete and is therefore used exclusively for intermediate product values in the reconciliation.
This is done to prevent “double counting” of the same data source.

B.2.4 Intermediate Products to End-Use Goods

AISI reports the following in their 2015 Profile of the U.S. steel industry 37:
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Table B.8: AISI Profile steel intermediate use by end-use sector

PercentageValue (Mt)

Total apparent steel demand 100% 120
Construction 40% 48

Automotive 26% 31.2

Machinery and equipment 10% 12

Energy 10% 12

Appliances 4% 4.8

Container 4% 4.8

National Defense and Homeland
Security

3% 3.6

Other 3% 3.6

This percentage breakdown refers to the total steel inputs to domestic manufacturing in each
end-use sector prior to fabrication losses. Only the percentages in the above table are used as
unconventional data in the reconciliation (see Table B.23, coordinates [39-47.55]) since the mass
value of 120 Mt of intermediate products is subject to reconciliation. Total steel inputs to domestic
manufacturing for each end-use sector can be calculated by summing all “flow” data points into
that end-use sector except for imports as well as all “scrap” data points associated with that sector.
For example, the sum of coordinates [24-38.43.1] and coordinates [24-38.43.2] gives the total
intermediate steel destined for manufacturing in the Machinery and Equipment end-use sector.

B.2.5 Intermediate Products to End-Use Goods based on Cullen et al. (2012)

Determining the flows from intermediate products to end-use goods at a higher resolution than
described by AISI (2015a) requires extensive use of bottom-up and top-down estimates, which are
considered unconventional data

No data sources have been found which give explicit numerical values of flows from intermediate
products to end-use goods, such as “Cold Rolled Sheet to Cars.” Determining these flows at a
higher resolution than just the AISI overall breakdown therefore requires top-down and bottom-up
estimates derived from industry production data and steel product percentage breakdowns from
literature (e.g., steel intermediate product use in construction is based on bottom-up percentage
estimates of steel use from Moynihan et al. (2012) and Cooper et al. (2012)). As an example, the
flow of galvanized sheet into cars for 2014 is not a discrete value found in available data, but must
instead be estimated based on bottom-up estimates of steel use in the automotive sector.

The data reconciliation allows for extensive use of unconventional data such that in theory it
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would be possible to simply use the percentage breakdowns from the literature as unconventional
data to determine intermediate product flows; however, doing so would come at significant compu-
tational cost and may lead to problems achieving convergence. Therefore, rather than using the raw
percentages from the literature, a combination of top-down and bottom-up estimates are performed
based on what data is available for each sector. The resulting numbers from these estimates are then
used as data points in the reconciliation with appropriate weighting.

Cullen et al. (2012) outline a useful method of estimating flows from intermediate products to
end use goods for their global map of steel production. The methodology is described in detail in the
supplementary information for that paper and is a useful starting point for our estimates. Cullen’s
methodology is followed to determine a set of inputs to the reconciliation, with the following
differences:

• The AISI profile intermediate to end-use goods breakdown for the U.S. is used as stated
above in Table B.10: Construction 40%; Automotive 26%; Machinery and equipment 10%;
Energy 10%; Container 4%; Appliances 4%; National Defense and Homeland Security 3%;
and Other 3%.

• Automotive is divided into Cars 24% and Trucks 2% based on OICA statistics and average
steel mass per vehicle is derived from U.S. specific sources (detailed further in section B2.6.2).

• The AISI profile doesn’t include a section specifically for other transport and the U.S. does
not produce ships other than for military applications, so the “ships and other” allocation is
applied to Defense and Homeland Security.

• Energy includes oil and gas applications and the USGS (USGS Iron and Steel) details
production of line pipe and oil country goods (a subset of pipe and tubing). Therefore, 8245
kt of pipe and tubing is allocated to Energy. The remainder of steel allocated to energy is
done according to Cullen et al.’s breakdown for Electrical Equipment.

Some adjustment is necessary to balance the flows, as the percentage of each type of intermediate
product is not the same for the U.S. in 2014 as for the world in 2008.The resulting intermediate to
end-use goods matrix is shown in Fig S6. Figure B.6a shows the intermediate product to end-use
goods matrix as outlined by Cullen with the intermediate products from USGS and Figure B.6b
shows the resulting matrix when intermediate products are combined to match the network used in
this work. For each cell in the matrix, three numbers are given. The top right is the amount of the
specified intermediate product destined for the end-use category. The bottom left is the fabrication
yield as described by Cullen. The bottom right is the product of the other two and is the total amount
of that intermediate product in the finished goods. Figure B.6b also includes the relevant coordinate
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Figure B.6: Intermediate products to end-use goods based on Cullen

number in the top left. Three values are recorded in Table B.23 for each coordinate. [XX.XX.1] is
the actual flow and matches the bottom right value from Figure B.6b. [XX.XX.2] is the scrap flow
and is equal to the top right minus the bottom right numbers from Figure B.6b. Finally, [XX.XX.3]
is the yield and is recorded in Figure B.6b. in the bottom left of each cell.

As an example of how these numbers were derived, consider the case of Mechanical Tubing
to Cars. In the methodology from the Cullen SI, cells A2 to A20 are taken directly from data for
intermediate products. USGS net intermediate product data 28 is directly used in this work. This
allows for following the Cullen methodology more closely, but means that the intermediate products
numbers in column A of Figure B.3a. do not appear in Table B.23 due to the different intermediate
product categories. The net value of mechanical tubing in the US in 2014 as reported by the USGS
is 1.209 Mt. Cells B1-K1 are top-down estimates of intermediate product use in each end-use sector,
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derived using AISI (2015a) percentages and a bottom-up estimate to determine the breakdown of
car production vs. truck production (B2.6.2). Therefore, an estimated 27.348 Mt of intermediate
products were used in the production of cars in 2014. Cullen then outlines the derivations of column
D, with 5% of steel in cars (the end-use good) coming from seamless tube. An assumption is made
that seamless tube is equivalent to mechanical tubing and yield is considered, giving an estimate
of 0.966 Mt of mechanical tubing flowing to car manufacturing and 0.918 Mt making it into the
final product. Adjustments are made across the matrix as needed to balance the flows (similar to
how Cullen et al. balanced the global version) resulting in Figure B.3a. Product categories are then
condensed to achieve Figure B.3b. which is used as data in the reconciliation.

According to the weighting criteria set forth in Table 1 of the main text, the weighting for each
of these values is 0.25 (single case study, lone data point, scaled from global numbers).

B.2.6 Other estimates for intermediate products

The values set forth in Figure B.6 are a valid starting point for the intermediate to end-use
goods allocation, but more U.S. specific data is available. Unlike the manually balanced flows from
the Cullen method, the data reconciliation accounts for mass balance so we can simply convert
unconventional data to mass values and apply them as conventional data points in the reconciliation
without concern for unbalanced flows. The following subsections describe the process used to
estimate flows into various end-use sectors.

B.2.6.1 Buildings and Infrastructure

The AISI profile 37 notes that of the 120 million tons of steel intermediate products consumed in
the U.S. 40% is used to make construction products. The top-down value for steel use in the U.S.
construction sector is therefore 48 million tons of intermediate products (Table B.9). This value
is the flow of imported and domestic steel intermediate products into the construction sector not
including the scrap generated during fabrication. To avoid double counting of data sources, only the
40% figure from AISI is used as a data point in the reconciliation under coordinate [39.55] (Table
B.23).

Construction can be further subdivided into buildings (office buildings, schools, residential
construction, etc) and infrastructure (bridges, water and sewage, dams, etc). The U.S. Census
Bureau reported annualized and seasonally adjusted construction spending in Dec 2014 as $689
billion on buildings and $293 billion on infrastructure 41. The 2014 spending values are used as
a proxy for the amount of steel destined for each construction category, resulting in a 70/30 spilt
between buildings and infrastructure, respectively. Cullen et al (2012) calculated a 60/40 split for
buildings and infrastructure in their world steel flow for the year 2008. When compared against
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the world value, the value derived from Census Bureau data appears consistent. Both the Census
Bureau and Cullen breakdown between buildings and infrastructure are used as unconventional data
in the reconciliation, recorded under coordinate [39.55] for buildings and [40.55] for infrastructure
in Table B.23.

Moynihan et al. (2012) estimate steel intermediate product use in buildings and infrastructure
for the U.K in 2006. That breakdown is shown in Table B.11.

Table B.9: Breakdown of intermediate products in construction applications from Moynihan et al.
(2012)

Intermediate
Product

To Buildings
(kt)

To Infrastructure
(kt)

Buildings
%

Infrastructure
%

Sections 1600 100 37% 7%
Rebar 800 700 19% 47%
Sheet 1400 100 33% 7%
Rail 0 200 0% 13%

Tubes 500 400 12% 27%
Total 4300 1500

The overall breakdown between buildings and infrastructure for the U.K. in 2006 is 75/25, which
further supports the 70/30 figure derived for the U.S.

Cooper et al. (2012) report an estimated steel use in the global construction sector for 2008. The
overall split between buildings and infrastructure is 67/33, which agrees well with other studies
and the value arrived at using U.S. Census Bureau data. The breakdown by intermediate product is
shown in Table B.12.

Table B.10: Breakdown of intermediate products in construction applications from Cooper et al.
(2012)

Intermediate
Product

To Buildings
(Mt)

To Infrastructure
(Mt)

Buildings
(%)

Infrastructure
(%)

Structural Steel 61 20 17% 11%
Connections 6 2 2% 1%

Rebar 110 98 30% 56%
Sheet 152 6 42% 3%
Rails 0 10 0% 6%

Drawn Wire 8 7 2% 4%
Tube 27 32 7% 18%
Total 364 175
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When these product breakdowns are applied to steel use in the U.S. in 2014, the results are as
seen in Table B.13.

Table B.11: Intermediate product use in U.S. construction according to product breakdowns from
Moynihan et al. (2012) and Cooper et al. (2012)

Moynihan et al. Cooper et al.
Intermediate

Product
To Buildings

(Mt)
To Infrastructure

(Mt)
To Buildings

(Mt)
To Infrastructure

(Mt)
Structural Steel 13.4 0.8 5.4 1.8

Connections - - 0.5 0.2
Rebar 6.7 5.6 9.7 8.9
Sheet 11.7 0.8 13.4 0.5
Rails 0.0 1.6 0.0 0.9

Drawn Wire - - 0.7 0.6
Tube 4.2 3.2 2.4 2.9
Total 36 12 32.16 15.84

These values are used as data points within the data reconciliation and reported in Table B.23.
For example, 4.2 Mt (4200 kt) of tube is recorded under coordinate [28.39.1] as “Pipe and Tubing
to Buildings.” To align the intermediate product categories from Moynihan et al. and Cooper et al.
with those used in this work, the following adjustments were also made:

• “Structural steel” was divided between light shaped bar and heavy sections in the same
proportion as values previously found in section B2.5: Buildings 26% light, 74% heavy;
Infrastructure 24% light, 76% heavy (e.g. 800 kt of “structural steel” to infrastructure from
Table B.13 is divided between coordinates [33.40.1] Light shaped bars to infrastructure: 192
kt and [34.40.1] Heavy Sections to Infrastructure: 608 kt).

• “Connections” are assumed to be made of plate

• Sheet is similarly divided between HR sheet and galvanized sheet in the same proportion
as values from section B2.5: Buildings 84% HR, 16% galvanized; Infrastructure 77% HR,
23% Galvanized (e.g. 13400 kt of “sheet” to buildings from Table B.13 is divided between
coordinates [24.39.1] HR sheet to buildings: 11256 kt and [26.39.1] Galvanized to buildings:
2144 kt)
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B.2.6.2 Automobiles

The AISI profile 37 notes that of the 120 million tons of steel apparent intermediate product
demand in the U.S. 26% goes to automotive applications. This includes both cars and trucks.
The top-down total for steel use in the U.S. automotive manufacturing sector is therefore 31.2
million tons of intermediate products. This value is the flow of imported and domestic steel
intermediate products into the automotive manufacturing sector plus the scrap generation associated
with producing automobiles as reported by AISI and is the starting point in top-down estimates of
intermediate product usage in the automotive sector.

The bottom-up estimate starts with automotive production statistics. OICA (2016a, 2016b,
2016c) reports annual production statistics of automobiles by country and the following categories:

• Passenger cars are motor vehicles with at least four wheels, used for the transport of
passengers, and comprising no more than eight seats in addition to the driver’s seat.

• Light commercial vehicles are motor vehicles with at least four wheels, used for the carriage
of goods. Mass given in tons is used as a limit between light commercial vehicles and heavy
trucks. This limit depends on national and professional definitions and varies between 3.5
and 7 tons.

• Heavy trucks are vehicles intended for the carriage of goods. Maximum authorized mass is
over the limit (ranging from 3.5 to 7 tons) of light commercial vehicles. They include tractor
vehicles designed for towing semi-trailers.

• Buses and coaches are used for the transport of passengers, comprising more than eight seats
in addition to the driver’s seat, and having a maximum mass over the limit (ranging from 3.5
to 7 tons) of light commercial vehicles.

• Light vehicles include passenger cars and light commercial vehicles.

• Commercial vehicles include light commercial vehicles, heavy trucks, coaches and buses.

According to EPA statistics 45, the average mass for U.S. passenger cars in 2014 was 1614
kg. Light commercial vehicles from the same year had an average mass of 2173 kg. Data from
AutoSteel 46 indicates the average mass of a heavy truck is 6333 kg. 60% of the mass of a passenger
car is steel (Dai et al., 2016). Table B.14 is the result if that same percentage is applied to all other
vehicle categories and their respective production and average mass. The automotive sector can then
be separated into “cars” (including passenger cars and light commercial vehicles) and trucks (heavy
commercial vehicles) using the relative amounts of steel estimated to be going to each category.
Using this estimation, 92.4% of steel intermediate products bound for the automotive sector is
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used in the production of cars and 7.6% in the production of trucks. These percentages are used as
unconventional data records in the reconciliation.

Table B.12: U.S. Production of Vehicles 2014

Vehicle Type Avg. Mass
(kg)

U.S. Production
(2014)

Total Vehicle
Mass (kt)

Total Steel
Mass (kt)

Passenger Cars 1614 4253098 6866 4119
Light Commercial Vehicles 2173 7118288 15466 9280

Heavy Commercial
Vehicles

5600 29313 1620 972

Buses and Coaches - - - -
Total 11660699 14371

Autosteel 46 also reports estimated values of steel to new U.S. light-duty automobiles by interme-
diate product. These estimations are for how much steel is in the final, finished vehicle, which is
lower than the actual steel used in fabricating the vehicle due to manufacturing scrap. To account for
manufacturing scrap and convert the steel in the finished product to the input of intermediate steel to
manufacturing, the values from Autosteel are divided by approximate yields for each intermediate
product. These yields are based on yields used by Cullen et al. (2012) and are specific to each
product and its use in the automotive sector.

Table B.15 shows the results if the Autosteel breakdown is applied to the bottom-up estimate
using OICA and EPA data and the results if the breakdown is applied to the top-down estimate using
AISI data. Calculating the bottom-up values is straightforward: simply multiply the bottom-up
estimate of total steel in cars (both passenger cars and light commercial vehicles such as SUV’s and
pickup trucks) by the percentage in Table B.15. For example, the mass of wire rod contained in
finished cars in 2014 is (4119+9280)∗(3.4%) = 458 kt.

Calculating the top-down values involves one more step to account for the manufacturing losses
since the Autosteel breakdown is for finished cars and not all intermediate products have the same
fabrication yield when used in automotive applications. This requires solving an equation of the
form

α1x

y1
+

α2x

y2
+ . . .+

αnx

yn
= T (B.11)

Where αn is the percentage from the Autosteel breakdown for a given intermediate product, y1 is
the corresponding yield from Cullen, x is the total steel embedded in finished cars, and T is the total
steel destined for car production as determined by the top-down estimate. Once x is calculated, each
intermediate product flow can be determined by multiplying x by the corresponding percentage
from the Autosteel breakdown.
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Table B.13: Intermediate products embedded in vehicles in 2014

% of total steel Bottom Up Top Down Fab Yields Coord
Wire rod 3.4% 458 682 0.9 31.41.1
Plates 0.6% 80 119 0.7 29.41.1
Bar 14.7% 1976 2944 0.8 32.41.1
Light Shaped Bars 0.7% 96 143 0.8 33.41.1
Rebar 0.0% 0 0
Tube and Pipe 6.4% 861 1283 0.95 28.41.1
Tin mill sheets 0.1% 15 23 0.6 27.41.1
HR Sheet and Strip 17.9% 2402 3578 0.6 24.41.1
CR Sheet and Strip 16.4% 2194 3270 0.6 25.41.1
Galv Sheet and Strip 27.6% 3697 5508 0.6 26.41.1
Iron castings 12.1% 1620 2414 1 38.41.1
Total 13399 19964

The totals from the bottom up estimate do not agree well with the top down estimate of 28.8 Mt
of steel. However, because the data is to be reconciled, these estimates are used as data points and
the reconciliation will address the inconsistencies based on the weighting given to each set of data
points.

B.2.6.3 Machinery

Daehn et al. (2017) describes the breakdown for steel in machinery as follows:
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Table B.14: Composition of machinery and equipment steel mass by intermediate product as
described by Daehn et al. (2017)

Intermediate Product Percentage in
Final goods

Rail 0.6%
Wire Rod 4.5%
HR Bar 20.5%

Plate 17.0%
HRC 17.0%
CRC 10.8%

Electrical Sheet 4.5%
Welded Tube 11.4%

Seamless Tube 2.3%
Cast Iron 8.5%
Cast Steel 2.8%

Total 100%

These are post-fabrication (post-yield) values for global machinery end-use. By applying the
same equation used to determine top-down estimates for intermediate products in cars, we have the
estimates of steel used in machinery manufacturing shown in Table B.17. The “post-fab” estimates
are used as data points in the reconciliation.

Table B.15: Bottom-up estimates of intermediate products used in machinery and equipment
manufacturing

Yield Pre-Fab Post-Fab Coord
Rail 0.95 59 56 35.43.1
Wire 0.8 526 421 31.43.1
Bar 0.8 2397 1917 32.43.1
Plate 0.8 1987 1590 29.43.1
HRC 0.8 1987 1590 24.43.1
CRC 0.6 2385 1431 25.43.1
Pipe & Tubing 0.8 1602 1281 28.43.1
Iron Castings 1 795 795 38.43.1
Steel Castings 1 262 262 37.43.1
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B.2.6.4 Appliances

AISI (2015) reports that production of domestic appliances made up 4% of the 120 Mt total
steel intermediate product use in 2014, resulting in a top-down estimate of 4.8 Mt being used in
appliance manufacturing (including fabrication scrap).

Appliance design magazine 49 reports shipments of all major domestic appliances in the United
States. AISI gives estimates of the mass of steel in specific types of appliances on their website 50

which are combined with the production data to estimate the amount of steel in finished appliances
in 2014. This can be seen in Table B.18.

Table B.16: Total steel mass of appliances sold in the U.S. in 2014

Category Quantity Sold
2014

Avg steel mass
(kg)

Total steel mass
(kg)

Electric Cooking 5130600 48.4 248545068
Gas Cooking 3060900 67.8 207427092

Microwave Ovens 9882700 13.1 129102259
Clothes Washers 8681600 40.5 351852037
Electric Dryers 5484800 48.5 266201387

Gas Dryers 1273600 45.5 58000602
Kitchen sink disposals 7128600 3.6 25867829

Dishwashers 6961200 12.3 85727407
Compactors 35100 45.9 1612011

Refrigerators and
freezers

11698900 52.5 614231053

Room AC Units and
Dehumidifiers

8143000 16.1 131492255

Total 67,481,000 2120059000

By applying the overall fabrication yield for appliances from Cullen et al. 40 we arrive at a total
steel flow of 2.65 Mt into appliances (including manf. scrap), which is significantly lower than
the top-down estimate. Since no further breakdown is available allocating specific intermediate
products, this value is used as a lower bound for the amount of steel flowing to appliances.
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B.2.7 Indirect trade

Iron intensity of imports

(
kg

USD

)
=0.04 + (0.25× iron content as mass%)

− (0.09× fab.index)

− (0.05× energy conversion index)

(B.12)

Data on the indirect import and export of steel goods is provided by the U.N. Comtrade Database
51. As performed by Wang et al. (2007), in this analysis we consider the trade of 29 product
categories. The Comtrade data shows the value of each category in terms of U.S. dollars (USD). In
2014, for 19 of the import categories and 18 of the export categories, the quantity (in kilograms) of
the import and export category is also reported. First, a conversion factor from product mass to steel
mass was applied using data from page S8 of the supporting information from Wang et al.’s (2007)
paper, “Forging the anthropogenic iron cycle” 52. Wang et al. provide steel content statistics for all
29 product categories used in this analysis. Subsequently, the mass of imported and exported steel
can be readily calculated for the 19 import categories and 18 export categories in which product
mass flow data is available. The mass flows of the remaining categories is calculated using the
regression (empirical) equations shown in equation B2 and B3, which were derived in Cooper et al.
(2019).

Iron intensity of exports

(
kg

USD

)
=− 0.03 + (0.35× iron content as mass%)

− (0.065× fab.index)

− (0.065× energy conversioni ndex)

(B.13)

The estimated indirect steel flows (both imports and exports) are shown in Table B.22. The “Part
or Final Product” categories in Table B.22 are color-coded according to end-use category as follows:
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Table B.17: End-use categories for part and final product entries from Table B.22

Cars

1 Passenger motor cars, other than buses
3 Bodies and Parts motor vehicles excl. motorcycles

12 Internal combustion engines, not for aircraft
25 Rubber tires and tubes for vehicles and aircraft

Trucks

7 Lorries and trucks, including ambulances, etc
14 Trailers and other vehicles not motorized and parts
27 Road tractors for tractor trailer combinations

Machinery and Equipment

2 Machinery and appliances non electrical parts
6 Machines for special industries

11 Nuts, bolts, screws, rivets, washers of iron/steel
19 Metalworking machinery
20 Office machines
22 Agricultural machinery and implements
24 Tools for use in the hand or machinery
26 Textile and leather machinery
29 Nails, tacks, staples, spikes, etc of iron and steel

Energy
5 Other electrical machinery and apparatus
9 Electrical power machinery and switchgear

21 Telecommunications apparatus
Domestic Appliances 10 Domestic electrical Equipment

Containers
4 Manufactures of metal

18 Casks, drums, etc

Other/Defense

8 Ships and boats
13 Wire products excl electric and fencing grills
15 Scientific, medical, and optical instruments
16 Metal furniture
17 Rail and tram cars, not mechanically propelled
23 Perambulators, toys, games, and sporting goods
28 Domestic utensils of iron or steel

The total indirect import into each end-use sector is calculated by summing the steel values in
each category in Table B.22. The totals are reported in Table B.23 under coordinates [48.41-47].
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Table B.18: Degree of fabrication & assembly (high=1; low=0)

Fabrication
& Assembly
Index (0-1)

Justification Products

0.00 Products that come straight
out of metal forming equip-
ment ready to be shipped to
the customer

Nuts, bolts, screws, rivets, washers of iron/steel; Nails,
tacks, staples, spikes, etc. of iron or steel

0.25 Products that require minimal,
low skill labor to fabricate
and/or assemble before ship-
ping to the customer

Manufactures of metal; Casks, drums, etc.; Domestic
Utensils of iron or steel; Perambulators, toys, games, and
sporting goods; Tools for use in the hand or in machines

0.50 Products that require moder-
ate, medium skill labor to fab-
ricate and/or assemble before
shipping to the customer

Metal furniture; Rubber tires and tubes for vehicles and
aircraft; Office Machines; Telecommunications appara-
tus

0.75 Products that require fabrica-
tion of many components for
a sub-assembly

Bodies and Parts motor vehicles excl. Motorcycles; In-
ternal combustion engines, not for aircraft; Trailers and
other vehicles not motorized and parts; Wire products
excl. electric and fencing grills; Rail and tram cars, not
mechanically propelled

1.00 Products that require exten-
sive, potentially high skill la-
bor, fabrication of hundreds
of components

Passenger motor cars, other than buses; Lorries and
trucks, including ambulances, etc.; Domestic Electri-
cal Equipment; Agricultural machinery and implements;
Road tractors for tractor trailer combinations; Machin-
ery and appliances non electrical parts; Other electrical
machinery and apparatus; Machines for special indus-
tries; Ships and boats; Electric power machinery and
switchgear; Scientific, medical, and optical instruments;
Metalworking machinery; Textile and leather machinery
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Table B.19: Presence of energy transformation system (no=0; yes=1)

Energy
Conversion
Index (0-1)

Justification Products

0.00 Products that contain no en-
ergy transformation system

Manufactures of metal; Nuts, bolts, screws, rivets,
washers of iron/steel; Trailers and other vehicles not
motorized and parts; Metal furniture; Casks, drums,
etc.; Rubber tires and tubes for vehicles and aircraft;
Domestic Utensils of iron or steel; Nails, tacks, staples,
spikes, etc. of iron or steel; Wire products excl. electric
and fencing grills; Rail and tram cars, not mechanically
propelled; Perambulators, toys, games, and sporting
goods; Tools for use in the hand or in machines

0.50 Machines that contain low cost
energy conversion systems

Machinery and appliances non electrical parts; Office
Machines; Telecommunications apparatus

1.00 Machines that contain multiple
energy conversion systems or
whose main purpose in energy
conversion

Passenger motor cars, other than buses; Bodies and
Parts motor vehicles excl. Motorcycles; Lorries and
trucks, including ambulances, etc.; Domestic Electrical
Equipment; Internal combustion engines, not for air-
craft; Agricultural machinery and implements; Road
tractors for tractor trailer combinations; Other elec-
trical machinery and apparatus; Machines for special
industries; Ships and boats; Electric power machinery
and switchgear; Scientific, medical, and optical instru-
ments; Metalworking machinery; Textile and leather
machinery
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Figure B.7: U.S. imports and exports of 29 product categories in 2014

B.3 MFA structure and data cataloging methodology

The flow of steel through the U.S. is modeled as a network of nodes connected by flows of
material. Each node is representative of a physical process or product, so the structure of the network
is driven by the process of making and fabricating steel.

The network is represented by a matrix of nodes and flows. The matrix is constructed by
identifying all nodes needed for the network (in this case 51). The nodes are the rows and (when
transposed) the columns of the matrix (See Figure B.7). Every cell in the matrix can then be
interpreted as a flow from the row node to the column node. Each node is labeled with a number to
simplify labeling to a two-number coordinate of the form [Origin Node].[Destination Node]. For
example, a flow from node 2 (blast furnace) into node 5 (basic oxygen furnace) is labeled [2.5] and
is recorded in the matrix in the corresponding cell. Using this method, every possible flow can be
identified and labeled so data can be cataloged accordingly.

Nodes include all processes (e.g. basic oxygen furnace, hot rolling, tin mill, etc) used in mak-
ing intermediate steel. Rather than representing each fabrication process as a node and showing
intermediate products flowing through fabrication, we have chosen to assign a node to each interme-
diate product. This makes the resulting Sankey diagram more readable and allows for quantifying
production scrap based on intermediate product and process. In some cases, data is available for a
specific node and is either total material into that node or the total output (of usable product) from
that node. Two columns have been added to accommodate recording this type of data, an input
column (52) and an output column (53). For example, if a data source lists the total amount of liquid
steel coming out of the EAF, that data point would be listed under [6.53] as an output from the node.
If the input were known, it would be listed under [6.52]. An important difference between these
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two columns is that the input column includes all steel or iron inputs to the node, while the output
column only accounts for the actual product of the node (without including scrap or loss).

B.3.1 Full matrix

The full matrix is shown in Figure B.7 with each cell labelled using the cataloguing two-
coordinate system.

Figure B.8: Network of nodes and flows represented in matrix form

Figure B.9: Network of nodes and flows represented in matrix form

B.3.2 Matrix node and flow data with weighting

Table B.23 (https://pubs.acs.org/doi/abs/10.1021/acs.est.9b01016)
presents the complete list of all the data records used in the least squares optimization method used
to reconcile all pertinent available data (as described in B1).

Reference used in Table B.23.

1. USGS. (2016). Iron and Steel Scrap. Minerals Yearbook.
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B.4 U.S. in-use stocks and scrap flows

The figures below were generated from the results of Cooper et al. (2019).

Figure B.10: Historical and future U.S. steel scrap arising aggregated over the end-use sectors

Figure B.11: Absolute steel stocks in the construction sector
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Figure B.12: Absolute steel stocks in the transport sector

Figure B.13: Absolute steel stocks in the machinery sector
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Figure B.14: Absolute steel stocks in the metal goods (products) sector

B.5 Displacement of steel product imports with domestically recycled material

Table B.24 shows the various steel product import quantities in the final steel map. The green
color indicates that the copper tolerance of the product is greater than or equal to 0.2wt.%Cu. The
blue color indicate that the copper tolerance is less than 0.2wt.%Cu. The copper tolerance allocations
are informed by the supporting information of Daehn et al. (2017). Of the 29.5 Mt of steel
intermediate product imports, approximately 8.4 Mt have a copper tolerance equal to or greater than
0.2wt.%Cu.
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Table B.20: The quantity and copper tolerance of steel product imports in 2014. Blue: tolerance ≤
0.2wt.%Cu; Green: tolerance ≥ 0.2wt.%Cu

Steel Intermediate Product Import quantity (kt)
HR Sheet and strip 3383

CR Sheet and strip 2493

Galvanized 3262

Tin mill products 712

Pipe and tubing 9361

Plates 3134

Reinforcing bar 1175

Wire and wire rods 2051

Bar 1912

Light Shaped bars 166

Heavy sections 940

Rail 397

Steel Castings 160

Iron Castings 302

B.6 Construction Consumption versus Prosperity

One method of assigning responsibility for the materials used by a country is the “material
footprint.” This measure accounts for the materials used to make the products that a country
consumes (connecting to where they were made). The material footprint of nations is split into four
components by Wiedmann et al. (2015): biomass, metal ores, construction, and fossil fuels. For
2008, the annual material footprint for different countries is shown in Figures B13 and B14. The
area of a data point in the graph is proportional to the population of the country. The graphs have
been constructed by the authors of this article using data from Wiedmann et al. (2015). As can be
seen in the graphs, as prosperity (GDP per cap PPP) increases, the absolute demand for construction
materials plateaus while overall demand continues to rise.
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Figure B.15: Absolute material footprint versus prosperity for different countries in 2008

Figure B.16: Relative material footprint versus prosperity for different countries in 2008
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Appendix C

The coming wave of aluminum sheet scrap from vehicle recycling in the U.S.

C.1 Vehicle longevity study

This section summarizes the methods for estimating the vehicle survival rate and lifespan
distributions.

C.1.1 Vehicle survival rate

A survival rate curve shows the fraction of vehicles produced for model year, t0, that will still
be in the vehicle fleet at age, a, in year t, where t = t0 + a + 1 (NTHSA, 2006). The equation for
calculating historical vehicle survival rate at a given age is as below:

Survival rate (a, t) =
Fleet size (a, t)

V ehicle production volume (t0 = t− a− 1)
(C.1)

We approximate the vehicle survival rates of new aluminum intensive vehicles with the survival
rates of corresponding steel versions in the past. To calculate the historical survival rates of the four
types of vehicles, we use the vehicle registration data from IHS Markit (2019) which records the
fleet age distribution by model years between 1975 – 2017 for F-150, 1966 – 2017 for Super Duty,
1998 – 2017 for Expedition and Navigator. IHS changed the registration data collection procedure
in 2009 and again in 2010 (NHTSA and EPA, 2018). To avoid the inclusion of incompatible
registration data from IHS after 2008, we focused on the fleet age distribution and fleet size data
between 2000 and 2008. This gives the fleet size information of 1975 – 2008 model year F-150
between age 1 and age 34, 1966 – 2008 model year Super Duty between age 1 and age 43, 1999 –
2008 model year Expedition and Navigator between age 1 and age 11.

For 1966-1994 model year F-150 and F-50s, the U.S. production volume by model year is
available from (Gunnell, 2003). For 1999-2008 model year Navigator and Expedition, the vehicle
production volume is approximated as the vehicle fleet size at age a = 0 due to lack of initial
production data. This approximation assumes that all the vehicles of model year t0, are sold by t0 +

1. Since the first generation of Navigator and Expedition only started in 1998 and 1997 respectively,
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there is a lack of information of survival rate beyond 11 years of vehicle life using registration data
between 2000 and 2008. However, a similar type of vehicle, the Ford Explorer started production
in 1991. Its registration data is available and is used to approximate the vehicle survival rates of
Navigator and Expedition between 12 and 18 years old. To append the survival rate data of the
Explorer to that of the Navigator and Expedition, we combine their survival rates using equation C2
(derived from equation C1) which calculates the survival rate of a vehicle at age a in year t with the
survival rate at age a -1 in year t -1 and fleet size data in both years.

Survival rate (a, t) = Survival rate (a− 1, t− 1) ∗ vehicle fleet size (a, t)

vehicle fleet size (a− 1, t− 1)
(C.2)

The calculated historical survival rates from registration data (1) ignores the impact of delayed
vehicle sales and dual registration in states (the national level registration data is the aggregate of
state level registration data and a vehicle could be registered in more than one state due to legislation
requirements and interstate mitigation), and (2) are only available for a short period of vehicle ages
for each model year of the four types of vehicle. To extrapolate the vehicle survival rate model that
show the survival rates of a vehicle at all ages and minimizes the impact of delayed sales and dual
registration, we first group the calculated vehicle survival rates by vehicle generation and then fit the
NHTSA (2006) survival rate model (equation C3) to the grouped survival rates using least-squares
regression with a vehicle totaling loss constraint. The optimization is conducted using Matlab’s
fmincon function with interior point algorithm. We use the NHTSA (2006) model parameter as
the initial guess for the optimization. The step tolerance, constraint tolerance and optimization
tolerance are 1E-10, 1E-6, 1E-6 respectively.

Survivalrate (a, g) = 1− exp(− exp (c1 + (c2 × a))) (C.3)

Where a is the age of vehicles from model generation, g, and c1 and c2 are fitted constants
that define the shape of the survival rate curve. The vehicle generation in this study refer to the
consecutive years of types of vehicle without a major redesign. Within each vehicle generation, it
is assumed that the survival rate of vehicles are relatively consistent (Bento, Roth, and Zuo, 2013;
Greene and Chen, 1981; Walker, 1968).
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Table C.1: Vehicle generation by model years

Generation (g) F-150 F-Series Expedition Navigator

Generation 1 N/A N/A 1997-2002 1998-2002

Generation 2 N/A N/A 2003-2006 2003-2006

Generation 3 N/A N/A 2007-2017 2007-2017

Generation 5 N/A N/A N/A N/A

Generation 6 1973-1979 1973-1979 N/A N/A

Generation 7 1980-1986 1980-1986 N/A N/A

Generation 8 1987-1991 1987-1991 N/A N/A

Generation 9 1992-1997 1992-1997 N/A N/A

Vehicle totaling is a term used by insurance companies when a vehicle needs to be scrapped after
a collision because it is not economically feasible to repair it. For vehicles, less than ten years old,
the survival rate is largely determined by the totaling rate (Figure C1).
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Figure C.1: Share of overall claim count by vehicle age (CCC, 2015)

Hartwig and Weisbart (2016) report the likelihood of vehicles being involved in a collision which
results in an insurance claim being made. CCC (2015) report the percentage of insurance claims
for vehicles of different ages that are flagged as a “total loss”. The totaling data from Hartwig and
Weisbart (2016) and CCC (2015) are combined to calculate the vehicle survival rate just based on
the avoidance of totaling the vehicle (Figure C2)(CCC, 2015; Hartwig and Weisbart, 2016). The
mean of the calculated vehicle survival rate based on the avoidance of totaling the vehicle is used as
a constraint for the nonlinear least square fitting. It ensures that during the first 9 years the survival
rate is within +-5% of the calculated mean vehicle survival rate based on the avoidance of totaling
the vehicle.

A weakness of using vehicle total loss related survival rate as the constraint is that some of
the vehicles claimed “total loss” could be rebuilt and re-registered. In the U.S., a vehicle that is
declared total loss or write-offs due to severe damage (by collision, impact, fire, or flood) or theft
and dismantling must be assigned a classification, which is called “branded” (Sawyer-Beaulieu
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and Tam, 2006). Each state in the U.S. has different brand system that distinguish between normal
vehicles and salvage/rebuilt vehicles in the vehicle title and the branding system may further split
vehicles into rebuild, flooded, hail, salvage, junk and other types according to vehicle conditions
(Keathley et al., 2019). According to the study of Keathley et al. (2019), the state of Kentucky
issues around 84,368 (in 2014) to 110,449 (2018) salvage and rebuilt titles comparing to 1,890,079
vehicles registered in 2010. However, they also noted that the salvage titles can be retitled as
rebuilt titles and it is difficult to ascertain the true number of titles issued (Keathley et al., 2019).
Importantly, in order for rebuilt vehicles to be legally operated on road, they must be registered
again following the same procedure as normal vehicle. Thus, the survivability of rebuilt vehicles
will be captured by vehicle registration data once they are re-registered. The consideration of both
vehicle totaling loss and registration data dampen the uncertainties in survival rate model due to the
salvage/rebuilt route.

Figure C.2: Vehicle survival rates based on the avoidance of vehicle totaling loss

The calculated survival rates by generation are shown as colored dots in Figure C3 and the solid
lines show the fitted survival rate models by vehicle generation.
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Figure C.3: Vehicle survival rates by generations (starting with 6th generation for F-150 and Super
Duty and 1st generation for Expedition and Navigator)

The survival rate from NHTSA (2006) is chosen according to statistical test of registration data
which showed a linear relationship between survival rate and 1 – EXP[ –EXP(A + B × Age)]
(NHTSA, 2006). Based on the fitted model, we first calculate the corresponding vehicle lifespan
distribution (the probability mass function) using equation C5 and then use the vehicle lifespan
distribution to calculate the mean vehicle lifespan of each vehicle generation using equation C6.

pmf (a) = survivalrate (a− 1)− survivalrate(a) (C.4)

meanvehiclelifespan =
amax=40∑

a=1

pmf (a) ∗ a (C.5)

Here we assume the maximum possible vehicle life, amax will be 40 years. The results of the
calculated mean vehicle lifespan are shown in Table C2.
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Table C.2: Mean vehicle lifespan by vehicle generation (starting with 6th generation for F-150 and
Super Duty and 1st generation for Expedition and Navigator)

Generation (g) F-150 Super Duty Expedition Navigator

Generation 1 N/A N/A 17.23 (baseline) 17.32 (baseline)

Generation 2 N/A N/A 16.94 16.64

Generation 3 N/A N/A 15.71 15.63

Generation 5 N/A N/A N/A N/A

Generation 6 17.39 18.07 N/A N/A

Generation 7 17.92 18.33 N/A N/A

Generation 8 18.18 20.68 N/A N/A

Generation 9 19.02 (baseline) 21.00 (baseline) N/A N/A

The baseline scenario is selected such that it has the largest mean vehicle lifespan across all
vehicle generations which coincident with the most recent vehicle generation for F-150 and Super
Duty (F-50s). The pessimistic scenario is defined as the minimum possible survival rate across
all vehicle ages which corresponds to the minimum possible mean vehicle lifespan. To obtain the
survival rate parameters for the pessimistic scenario, we fit the survival rate model to the minimum
possible mean vehicle lifespan data again (see Table C4 for parameter values of c1 and c2). Using
the vehicle life constraint in Eqn. C7, we define the optimistic scenario by assuming the same
amount of improvement in mean vehicle lifespan is made in the optimistic scenario comparing to
baseline scenario comparing to that from the pessimistic scenario to the baseline scenario.

mean vehicle lifespanoptimistic

mean vehicle lifespanbase

=
mean vehicle lifespanbase

mean vehicle lifespanpessimistic

(C.6)

To obtain the survival rate parameters for the optimistic scenario, we run the optimization
algorithm using baseline generation survival rates as input data with the vehicle totaling and mean
vehicle lifespan (fourth column of Table C3) constraints.

Table C.3: Mean vehicle lifespan by scenarios

Baseline Pessimistic Optimistic

F-150 19.02 16.71 21.58

Super Duty 21.00 17.73 24.77

Expedition 17.23 15.71 18.71

Navigator 17.32 15.63 19.01

Table C4 and Figure C4 shows the parameters and the corresponding derived survival rates
scenarios.
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Table C.4: Parameters of survival rate models by scenarios

Navigator Expedition Super Duty F-150
c1 c2 c1 c2 c1 c2 c1 c2

baseline 2.27 -0.16 2.43 -0.17 1.96 -0.12 1.93 -0.13
pessimistic 2.37 -0.18 2.37 -0.18 1.95 -0.14 2.01 -0.15
optimistic 2.24 -0.14 2.40 -0.15 1.96 -0.09 1.92 -0.11

Figure C.4: Vehicle survival rates by scenarios

C.1.2 Vehicle lifespan model

To prepare for the dynamic material flow analysis (DMFA) calculation, we calculate the lifespan
probability distribution according to the survival rate in the three scenarios using equation C5 shown
in section 1.1. The resulted lifespan probability distributions for the four types of vehicles are shown
in Figure C5 (same as Figure 2 in the main manuscript).
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Figure C.5: Lifespan distributions for (a) F-150, (b) Super Duty trucks, (c) expedition, and (d)
navigator

C.2 Dynamic material flow analysis (DMFA)

Material flow analysis (MFA) is a method to quantify the stocks and flows of metals in a defined
temporal and economic or geographic boundaries. It can be dynamic, which assesses the stocks
and flows of material in a system over time, or static, which is a snapshot of the system usually
for a single year (McMillan et al., 2010). A flow driven dynamic material flow analysis (DMFA)
predicts future stocks and scraps using demand as exogenous data while a stock driven DMFA
predicts how new demand and scrap changes to meet the required service or product level. Flow
driven DMFA has been applied by various researchers to forecast future material stock and scraps.
For example, Hashimoto et al. (2007, 2009) and Fishman et al., (2014) used flow driven DMFA to
forecast national level construction material flows. A stock driven DMFA methods, e.g., logistic
curves, are most appropriate when predicting material production or product sales as a proxy of the
total service to a society. For example, predicting the total light duty vehicles sales or U.S. steel
demand (Cooper et al., 2020) would be appropriate using the stock-based model. Modaresi and
Muller (2012) and Lovik et a. (2014) also used the stock-based model to study global automotive
aluminum flows. However, for the study of individual product, e.g., F-150., a stock driven DMFA is
likely to be not appropriate because there is a lack of data for understanding the saturation stock
level; in this case, we are far from the inflection point. Therefore, we decided to use the flow driven
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DMFA to calculate future vehicle stock and scraps based on EIA’s predicted vehicle sales growth
rates under its reference, low economic growth and high economic growth scenarios. The following
section presents the data and methods for the DMFA analysis.

C.2.1 Historical and prospective annual sales

According to the results of the Annual Energy Outlook (2019) presented by the U.S. Energy
Information Administration, U.S. light duty vehicle sales are projected to grow linearly at around
0.8%, -0.1% and 1% in the expected, low, and high economic growth scenarios respectively (EIA,
2019). Figure C6 presents the historical and prospective annual sales of the sum of the four types of
vehicle according to EIA’s prediction.

Figure C.6: Historical and predicted future annual sales of the four types of vehicle

C.2.2 Vehicle and alloy scrap and stock

To estimate the amount of vehicle leaving registration (scrapped) each year and the amount of
vehicles on-road as stock, we conducted a flow-driven DMFA. Given the historical and predicted
annual vehicle sales, we can estimate the scrap and stock of vehicles in each year using equation 8
and 9 below:

Scrap (t) =
amax∑
a=1

(Sales(t− a) ∗ pdf(a)) (C.7)

Stock (t) = Stock (t− 1) + Sales (t)− Scrap(t) (C.8)

To translate from vehicle sales, scrap and stock to the corresponding volumes, scrap and stocks
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of the autobody aluminum sheet alloys in the four types of vehicles, we combine this vehicle DMFA
results with the alloy weight in each vehicle model data (Table 1 in the main manuscript). Since
the F-Series and the Expedition/Navigator each have various models, we use an average weight of
metal per vehicle, estimated from a historical model distribution for each vehicle. For example,
around 522,837 aluminum intensive Ford F-150 were sold in the U.S. in 2015 and, on average, each
contained around 92.6 kg low Cu autobody sheet aluminum alloys, so that the total amount of low
Cu alloy put on the road is 48,414 metric ton. Similarly, we calculate the amount of other autobody
sheet alloys added to the stock (on-road) and scrapped each year between 2015 and 2050. Detail
results are shown in Section C4.

C.3 Markov chain vehicle destination study

This section summarizes the Markov chain study including used vehicle export and derivation of
the transitional probabilities.

C.3.1 Used vehicle export

To estimate the probability for a used vehicle to be exported out of the U.S. at different ages,
we collect the used vehicle export information form CarExportAmerica.com in 2019. The website
listed all the used vehicles to be exported in real time. As the time of the data collection (Sep. 21st,
2019), there were 63,266 entries of vehicle data listed, of which 7,696 were Ford vehicles and 334
were Lincoln vehicles (Car Export America, 2019). Table C5 shows the share of the four types
of vehicle in all used vehicles to be exported calculated as the number of types of vehicle to be
exported divided by the total listed number of vehicles. This ratio is assumed to approximate the
share of the four types of vehicle (F-150, Super Duty trucks, Expedition and Navigator) exported
each year.
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Table C.5: Number of the four types of vehicle and (column 1) share of the four types of vehicle in
all used vehicles to be exported (column 2) and age distribution (column 3-5)

Number of ve-
hicles to be ex-
ported 2019

Share of types
of vehicle in all
used vehicles to
be exported

Share of vehicle
exported at age
1-10

Share of vehicle
exported at age
11-30

Share of vehicle
exported at age
30+

F-150 633 1.0% 90% 6% 3%

Super Duty 759 1.2% 48% 40% 11%

Expedition 127 0.2% 92% 8% 0%

Navigator 63 0.1% 94% 6% 0%

Other 62001 98.0% N/A N/A N/A

Total 63266 100% 100% 100% 100%

For each vehicle listed on the CarExportAmerica.com, the vehicle age information is included.
Therefore, in addition to the overall share of the four types of vehicle exported among all used
vehicles, we also estimate the approximate age distribution of exported vehicles as shown in Table
C5 (column 3-5).

The International Trade Administration publishes an annual used vehicle export statistics in the
U.S. between 2014 and 2018 (U.S. International Trade Commission, 2019). Combining this data
with the estimated share of the four types of vehicle to be exported among all used vehicles, we
estimate the annual export of the four vehicles between 2014 and 2018 using equation 10.

exportbyvehicle = exporttotal ∗ shareofvehicleintotal (C.9)

The results of the estimated annual export of the four types of vehicle are shown in Table C6
below.

Table C.6: Annual used vehicle export estimation between 2014 and 2018

Annual export estimates by vehicle model

2014 2015 2016 2017 2018

F-150 7330 5721 5623 6453 7936

Super Duty 8590 6704 6590 7563 9301

Expedition 1494 1166 1146 1315 1617

Navigator 700 547 537 617 758

Based on vehicle registration and survival rate model, we estimated the annual used vehicle
deregistered for the four types of vehicle by age groups and compare that with the vehicle export
estimation in Table C6 to derive the ratio of vehicle that are exported to the all the vehicles that are
deregistered from the U.S. registration system.
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Table C.7: Mean vehicle deregistered by age groups and share of vehicle exported comparing to
overall deregistration

average vehicle deregistered by age groups share of vehicle exported comparing to over-
all deregistration

F-150 Super Duty Expedition Navigator F-150 Super
Duty

Expedition Navigator

age 1-10 108226 67874 4365 1686 0.04 0.03 0.29 0.24

age11-30 648065 227909 19052 5960 0.00 0.03 0.02 0.02

age 30+ 57019 12992 0 0 0.00 0.01 0.00 0.00

C.3.2 Transitional probability estimation

Combining the results of Table C7, export vehicle age distribution in Figure C7 and the survival
rate model in Figure C4, we estimated the transition probability of vehicles that ended up into the
scrap, vintage and export states defined in Figure C8 below.

Figure C.7: Definition of the stage in the Markov chain study

The probability of a vehicle to stay in the fleet is obtained from the survival rate model estimation
(b and e). To differentiate the probability of vehicle been scrapped or exported at early ages of a
vehicle, the estimated amount of vehicle exported are compared to the estimated amount of vehicle
deregistered (Table C7). The derived ratio times the probability of a vehicle deregistered from
the fleet gives the probability of a vehicle been exported during each life stage (probabilities c, f

and i). The probability of vehicles scrapped in the U.S. at an early age is derived from the share
of remaining deregistered vehicles (a and d). For vehicle older than 30 years, an absolute 1% of
all vehicles are assumed to enter the vintage state. Comparing it with the predicted percentage
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of vehicle deregistered after 30 years, we estimated the probability of vehicles ¿ 30 years been
“hibernated” as vintage vehicles (h). The difference between 1 and I + h gives the probability of
vehicles ¿ 30 years scrapped in the U.S (g).

C.4 Analysis results

Section 4.1-4.3 summarizes the DMFA results of vehicle and alloys between 2015 and 2050 in
the baseline, pessimistic and optimistic vehicle survival scenarios.

C.4.1 Baseline vehicle survival scenario

Figure C9, Figure C10 and Figure C11 show the DMFA results under baseline survival rate
scenario with reference, low and high sales growth rate prediction respectively.
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Figure C.8: Annual sales, stock level and de-registered from fleet according to types of vehicle (left)
and alloy families (right) under baseline survival rate and reference sales growth rate
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Figure C.9: Annual sales, stock level and de-registered from fleet according to types of vehicle (left)
and alloy families (right) under baseline survival rate and low sales growth rate
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Figure C.10: Annual sales, stock level and de-registered from fleet according to types of vehicle
(left) and alloy families (right) under baseline survival rate and high sales growth rate

C.4.2 Pessimistic vehicle survival scenario

Figure C12, Figure C13 and Figure C14 show the DMFA results under pessimistic survival rate
scenario with reference, low and high sales growth rate prediction respectively.

248



Figure C.11: Annual sales, stock level and de-registered from fleet according to types of vehicle
(left) and alloy families (right) under pessimistic survival rate and reference sales growth rate
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Figure C.12: Annual sales, stock level and de-registered from fleet according to types of vehicle
(left) and alloy families (right) under pessimistic survival rate and low sales growth rate
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Figure C.13: Annual sales, stock level and de-registered from fleet according to types of vehicle
(left) and alloy families (right) under pessimistic survival rate and high sales growth rate

C.4.3 Optimistic vehicle survival scenario

Figure C15, Figure C16 and Figure C17 show the DMFA results under optimistic survival rate
scenario with reference, low and high sales growth rate prediction respectively.
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Figure C.14: Annual sales, stock level and de-registered from fleet according to types of vehicle
(left) and alloy families (right) under optimistic survival rate and reference sales growth rate

252



Figure C.15: Annual sales, stock level and de-registered from fleet according to types of vehicle
(left) and alloy families (right) under optimistic survival rate and low sales growth rate

C.5 Autobody sheet scrap compositional analysis

The results of the scrap composition analysis between 2020 and 2050 in the baseline, pessimistic
and optimistic vehicle survival scenarios are presented in the supporting information (https:
//www.sciencedirect.com/science/article/pii/S0921344920305255).
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Combining the vehicle alloy composition data (Table 2 in the main manuscript) with the scrap
prediction from DMFA (Section C4), we estimate the chemical composition of scraps under three
scenarios: all alloy scraps mixed, Cu alloys mixed, and Mg alloys mixed.

C.6 Diagram for profit opportunity for recycling aluminum

Figure C18 shows the price profiles for primary aluminum versus post-consumer aluminum
scrap grades, Twitch and Taint.

Figure C.16: Price profiles for primary aluminum versus post-consumer aluminum scrap grades.
Graph constructed from London Metals Exchange data (LME, 2020), Taylor(2013), and Schlesinger
(2014).
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Appendix D

Recycling technology catalog

This recycling technology catalogue contains descriptions of three separation technologies (e.g.,
color sorting and etching) and eight refining technologies (e.g., electro-refining for magnesium
removal). Separation technologies help to distinguish between different aluminum types (e.g.,
wrought vs cast), alloy families (e.g., 1xxx vs 5xxx), and individual alloys e.g., 6061 vs 6063).
During a separation process, the scrap remains in a (semi-) solid state and the output must be fed
through a refining technology to produce a liquid metal. The baseline refining technology modeled
in this work is an industry standard reverberatory furnace in which natural gas is burned to melt
the scrap charge. The homogenized composition of the scrap charge is adjusted by adding virgin
metals. In addition to the reverberatory furnace, seven nascent refining technologies are modeled.
All these nascent refining technologies purify the aluminum scrap charge in the (semi-) liquid state.
For each technology, the catalogue quantifies its separation or refining potential, process yield ratio,
cost, emission, and current industry use. Detailed literature reviews have been conducted to produce
the catalogue and semi-structured interviews with industry experts (e.g., The Aluminum Recyclers
Council) are used as validation. This catalogue is needed to help understand how these technologies
could be incorporated into a reverse material supply chain.

Information about the recycling technology catalog is published at: https://docs.googl
e.com/spreadsheets/d/e/2PACX-1vSO4e5WQCzJxxBalFrgleQa6wE2EjiD YWP

GmfGGt95DuLsO RjWS UWlp0Y0dJlA/pubhtml
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