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ABSTRACT

In this dissertation, we discuss work done to explore the parameter space of

geometric engineering with M-theory on manifolds of G2 holonomy. The local geometry

of the G2 manifold is related to the Yukawa coupling constants observed in the standard

model via moduli vacuum expectation values. Using stochastic gradient descent, we

find a point in an expansive parameter space of moduli consistent with measured

values of Yukawa couplings. Additionally, work was done to explore the cosmological

viability of dark matter axions with large and small decay constants fa. By permitting

a Hubble induced mass term to modify the Higgs scalar potential in the early universe,

we show that early universe dark matter axion dynamics can reproduce the observed

dark matter abundance ΩDMh
2 = 0.12 with a decay constant smaller or larger than

the typical fa ' 1012 GeV required by the usual misalignment mechanism.

viii



CHAPTER I

Introduction

This dissertation covers two important phenomenological aspects of String Theory,

primarily within the framework of M-Theory compactified on a manifold of G2

holonomy. In the first part we discuss work done to calculate the Yukawa couplings of

Standard Model Fermions (up, down, and electron families) as well as the Yukawa

and Majorana couplings of the neutrinos within the context of M-Theory with a

compactification manifold of G2 holonomy. In the second part we discuss a theoretical

method for setting initial misalignment angle for an axion or axion like particle (ALP)

to the minimum or maximum of its potential.

The importance of studying M-Theory lies in the fact that it is a UV complete

theory which may resolve many long standing mysteries of modern physics. In order

to better understand how M-Theory solves these problems we will discuss the status of

modern physics and how the current body of work on M-Theory resolves the issues in

the remainder of the Chapter I. In Chapter II we will detail our work done to calculate

Yukawa coupling terms in M-Theory. In Chapter III and Chapter IV we will discuss

the Dynamical Axion Misalignment Production (DAMP) mechanism which gives us

a method for setting the misaligment angle for an ALP to 0 or π, as is preferred or

required in various phenomenological models. Finally, in Chapter V we discuss the

implications of the work done for both M-Theory and future studies.
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1.1 The Standard Model

The Standard Model of Particle Physics is a triumph of modern physics and has

accurately described most microscopic phenomena up to the TeV scale, and was

completed with the discovery of the Higgs Boson in 2012 [1]. There are various

principles and experimental results which have led us to believe that the SM is not

the full picture. The goal of this section is to review the quantum field theory that

is the Standard Model (SM) and to mention shortcomings of the SM along the way.

We begin with a discussion of the symmetries exhibited by the standard model, then

explicitly discuss the terms in the SM Lagrangian.

Field SU(3)QCD SU(2)L U(1)Y Spin

Ga
µ 8 1 0 1

W a
µ 1 3 0 1

Bµ 1 1 0 1

Qi =

(
u

d

)
L

,

(
c

s

)
L

,

(
t

b

)
L

3 2 1/6 1/2

uiR = (uR, cR, tR) 3̄ 1 −2/3 1/2

diR = (dR, sR, bR) 3̄ 1 1/3 1/2

Li =

(
νe

e

)
L

,

(
νµ

µ

)
L

,

(
ντ

τ

)
L

1 2 −1/2 1/2

eiR = (eR, µR, τR) 1 1 1 1/2

Φ =

(
φ+

φ0

)
1 2 1/2 0

Table 1.1: The Standard Model particle content, not including quark and lepton family
generations along with their GSM and Spin representations.

The symmetry group of the Standard Model (SM) consists of the gauge symmetry

group GSM = U(1)Y × SU(2)L × SU(3)QCD and the Poincaré group SO+(3, 1). A

requirement for a valid SM interaction is that it should be invariant under symmetry

group transformations, i.e. individual terms should be composed of fields whose tensor
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product is a singlet under all group transformations. We will divide the standard

model into three sectors to highlight particular problems of interest within those

sectors.

1.1.1 The QCD Sector

The QCD sector contains the kinetic terms for the fundamental particles charged

under SU(3)QCD, which reads

LQCD =
∑
ψ,ψ̄

iψ̄ /Dψ − 1

4
Ga
µνG

µν
a . (1.1)

Where we sum over fields ψ(ψ̄) in the (anti-)fundamental representation, 3(3̄). A

topological term which violates CP but respects SU(3)c is allowed, written as

LQCD′ ⊃ − θ̄g2
3

32π2
G̃a
µνG

µν
a , (1.2)

with QCD vacuum angle θ̄. This vacuum angle θ̄ = θ−arg (detM) gets a contribution

θ from the topology of vacuum gauge field configurations and arg (detM) from the

chiral anomaly [139, 90]. In principle this angle can be anywhere on the interval

[0, 2π), and measurements of the neutron electric dipole moment place a limit on the

value at |θ̄| < 3× 10−10 [126]. This gives rise to a problem known as the Strong CP

Problem [57, 139].

1.1.2 The Electroweak Sector

The Electroweak sector contains the kinetic terms for fields charged under SU(2)L×

U(1)Y, which reduces to U(1)EM when the SU(2)L × U(1)Y symmetry is broken by

the Higgs mechanism. Above the Electroweak Symmetry Breaking (EWSB) scale

3



vEW ∼ 175 GeV the electroweak Lagrangian reads

LEW =
∑
ψ,ψ̄

iψ̄ /Dψ − 1

4
W a
µνW

µν
a −

1

4
BµνB

µν + | (DµΦ) |2 + µ2Φ†Φ− λ
(
Φ†Φ

)2
, (1.3)

where we have summed over all fields ψ charged under SU(2)L and/or U(1)Y . The

Higgs scalar potential V (Φ) = −µ2|Φ|2 + λ|Φ|4 induces EWSB when the Higgs field

acquires a vacuum expectation value (vev) 〈0|Φ|0〉 = v√
2

with v = µ√
λ
. Once the

Higgs vev is non-vanishing, we rewrite the electroweak Lagrangian in terms of mass

eigenstates of the now massive gauge bosons and the massless photon from the residual

U(1)EM,

LEW’ =
∑
ψ,ψ̄

iψ̄ /Dψ − 1

4
FµνF

µν − 1

4
ZµνZ

µν +
1

2
m2
ZZ

µZµ

− 1

4
W±
µνW

±µν +
1

2
m2
WW

±
µ W

±µ + | (∂µh) |2 − V (h).

(1.4)

The Higgs mechanism is a boon to the standard model as it explains how the electroweak

symmetry is broken, yet the measured Higgs mass is mH = 125.10± 0.14 GeV [143]

which is incredibly small compared to the SM quantum corrections it receives from

coupling to other fields. At the one loop level, the corrections from SM fermions to

the Higgs mass are of order

∆µ2 =
∑
f

−3|Yf |2

8π
Λ2 + . . . , (1.5)

where Yf are the SM Yukawa couplings for each massive fermion f and Λ is an

ultraviolet (UV) cutoff scale, which can be as large as Mpl ' 1019GeV. In the extreme

case of Λ = Mpl, the mass squared corrections are more than 30 orders of magnitude

larger than the observed mass, presenting a fine-tuning problem called the Hierarchy

Problem. One solution, arguable the most simple, is to extend the SM to include

supersymmetry which will be discussed in Sec. 1.2.

4



1.1.3 The Yukawa Sector

When the electroweak symmetry is broken by the Higgs mechanism, the vev of

the Higgs also gives mass to the quarks and leptons in the SM. The Yukawa sector

Lagrangian in the SM is

Lyukawa = Yij
u Q̄

iΦ̃ujR + Yij
d Q̄

iΦdjR + Yij
e L̄

iΦejR. (1.6)

We note that the couplings Yu, Yd, and Ye are 3 × 3 matrices of couplings, and

uR, dR, eR, Q, and L are corresponding vectors in the fermion families space with

equivalent quantum numbers. The SM families consist of the up-type quarks, t, c,

and u, the down type quarks, b, s, and d, and the electron-type leptons τ , µ, and

e. The observation of three generations in each quark and lepton family, without an

understanding of their origin, is known as the Family Problem. A common solution

to the family problem is to add a global or gauge SU(3) symmetry and place each

family in a triplet representation of the symmetry, but without a natural explanation

for the hierarchical symmetry breaking (e.g. mt > mc > mu) the problem is not

actually resolved. In this dissertation, we will present an exciting and novel solution

to the Family Problem and simultaneously present a first principles calculation

of the Yukawa couplings themselves. This solution involves using string moduli to

systematically break an E8 symmetry down to the standard model gauge group, and

along the way we find we can calculate the Yukawa couplings directly and give reason

to the existence of three distinct families of particles.

Now that we have an idea of some problems we wish to solve, namely the Strong

CP problem, the Heirarchy problem, and the Family problem, we will continue

the with a brief overview of Supersymmetry.

5



1.2 Supersymmetry

The importance of studying supersymmetry cannot be overstated. The string

theories which are compatible with phenomenological observations of our universe are

all superstring theories, and their 4D effective theories include N = 1 supersymmetry.

Supersymmetry (SUSY) is a symmetry between half integer spin fields, fermions,

and integer spin fields, bosons. A supersymmetry transformation will transform a

fermion into a boson and vice-versa. The generators of the supersymmetry algebra

are anticommuting spinors [112],

{Qα, Q
†
α̇} = −2σµαα̇Pµ. (1.7)

Fields which are related to one another by a SUSY transformation form a representation

called a supermultiplet. For supersymmetric extensions of the standard model, two

types are important:

• Chiral Supermultiplets contains spin 0 bosons paired to spin 1/2 fermions.

• Vector Supermultiplets contain spin 1/2 fermions paired to spin 1 bosons.

The bosonic fields and fermionic fields which reside in a representation of the super-

symmetry are said to be superpartners. A symmetry between fermions and bosons

could be a boon to the standard model, as it is a straightforward way to solve the

Heirarchy problem introduced in Sec. 1.1.2, since bosons and fermions contribute to

mass corrections with opposite signs. If there exists an superpartner for each field

in the SM that couples to the Higgs field, there would be a systematic cancellation

of the large mass corrections from each field. Physicists have developed a minimal

extension to the standard model which includes SUSY; it is called the Minimal

Supsersymmetric Standard Model (MSSM).

The SUSY generators Qα and Q†α̇ commute with gauge transformations, implying

6



Field SU(3)QCD SU(2)L U(1)Y Spin

g̃aµ 8 1 0 1/2

W̃ a
µ 1 3 0 1/2

B̃µ 1 1 0 1/2

Q̃i =

(
ũ

d̃

)
L

,

(
c̃
s̃

)
L

,

(
t̃

b̃

)
L

3 2 1/6 0

ũiR =
(
ũR, c̃R, t̃R

)
3̄ 1 −2/3 0

d̃iR =
(
d̃R, s̃R, b̃R

)
3̄ 1 1/3 0

L̃i =

(
ν̃e
ẽ

)
L

,

(
ν̃µ
µ̃

)
L

,

(
ν̃τ
τ̃

)
L

1 2 −1/2 0

ẽiR = (ẽR, µ̃R, τ̃R) 1 1 −1/2 0

Φ̃u =

(
φ̃+
u

φ̃0
u

)
1 2 1/2 1/2

Φ̃d =

(
φ̃0
d

φ̃−d

)
1 2 −1/2 1/2

Φu =

(
φ+
u

φ0
u

)
1 2 1/2 0

Φd =

(
φ0
d

φ−d

)
1 2 −1/2 0

Table 1.2: The MSSM superpartners to the SM fields in Table. 1.2, their GSM repre-
sentations and spins. We also include the new pair of Higgs doublets Φu

and Φd which replace the Φ in Eq. 1.1

that fields in the same supermultiplet should have the same representation under GSM.

In Table we show the MSSM superpartner for each SM field. We note that the MSSM

requires a pair of Higgs doublets instead of one Higgs doublet1.

Since supersymmetry is a global symmetry, one can show that the operators which

1The chiral anomaly vanishes if the trace over all charges in a given gauge group is zero; this
works out for the standard model but the MSSM extension requires an additional Higgs doublet
to cancel the anomaly. Additionally, the superfield formulation restricts the superpotential to be
holomorphic in the grassmanian coordinates θ, and no such iσ2Φ term is allowed.
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generate SUSY transformations commute with space-time translations,

[Q,P µ] = 0
[
Q†, P µ

]
= 0 (1.8)

Moreover, the SUSY generators commute with −P 2, implying that superpartners

share mass eigenvalues. Since superpartners have not been observed, this implies

that SUSY must be broken at some scale. We can parametrize our ignorance of

SUSY breaking by writing the soft SUSY breaking Lagrangian which explicitly breaks

supersymmetry

LMSSM
soft =− 1

2

(
M1B̃B̃ +M2W̃

aW̃a +M3G̃
aG̃a + c.c.

)
−
(
Aiju ũ

i
RΦuQ̃

j
L + Aijd d̃

i
RΦdQ̃

j
L + Aije ẽ

i
RΦdL̃

j
L + c.c.

)
−
(
Q̃†Lm

2
Q̃
Q̃L + L̃†Lm

2
L̃
L̃L + ũ†Rm

2
ũũR + d̃†Rm

2
d̃
d̃R + ẽ†Rm

2
ẽẽR

)
.

−m2
Φu

Φ∗uΦu −m2
Φd

Φ∗dΦd − (bΦuΦd + c.c.) (1.9)

While the SUSY preserving part of the MSSM Lagrangian introduces no new pa-

rameters, in Eq. 1.9 we have introduced many new parameters to account for SUSY

breaking. Experimental limits have been placed on these parameters, but thus far

no indications of supersymmetric processes have been observed by modern experi-

ments [38]. Some would argue that introducing 105 new parametetrs in the form of

LMSSM
soft is not a great solution to the fine-tuning Heirarchy problem, but this is not

the only purpose of supersymmetry. Indeed, one of the largest problems with the

field theory description of fundamental physics is failure to include gravitation due to

non-renormalizability [140]. Few solutions for this problem exist, but one of the most

promising is to work within the framework of string theory. In the next section, we

will discuss using strings to formulate a UV completion of the standard model.

8



1.3 Cosmology and Particle Physics

Apart from observations made in high energy collisions, the study of high energy

physics is also informed by cosmological observations. The reason for this is that

we can extrapolate the evolution of the universe back in time to a singularity event

called the Big Bang and moments after the big bang the universe was extremely

hot. This implies that physical states with characteristic energies of up to MPl were

accessible, therefore the evolution of the universe after the Big Bang was governed

by fundamental interactions. By considering various cosmological observations, we

can set up the framework for modern cosmology and introduce puzzles which can be

solved with extensions/UV completions of the SM.

The first observation we consider is measurements of the redshift of extra-galactic

objects, first done in [155] with dozens more catalogues done in recent years. These

catalogues show that there is a systematic tendency for the light emitted by objects

in any direction of the sky to be redshifted, implying that all objects are moving away

from us. The isotropic redshift along with Poincaré invariance together imply that

each point in space is moving away from all other points in space i.e. we live in an

expanding universe. In an expanding universe, the cosmological redshift z is defined

as

z ≡ λobs

λemit

− 1 (1.10)

where λobs is the wavelength of the observed light and λemit is the wavelength of the

light when it was emitted.

Another critical cosmological observation is the measurement of the Cosmic Mi-

crowave Background (CMB). The CMB is a map of the light from the early universe,

which can be traced back to the surface of last scattering. The surface of last scat-

tering is a space-time event related to recombination, the cosmological era when the

universe was cool enough (due to expansion) to allow charge-neutral bound states to

9



form. Recombination marks the time at which the universe became transparent to

radiation, around z = 1100. The CMB is therefore a measurement of the distribution

of radiation in the early universe. The CMB has a thermal black body spectrum

corresponding to a temperature of 2.72548 ± 0.00057 K, hence anisotropies in the

CMB are smaller than one part in 104 [67]. If we look at two points in the sky with

large angular separation, measurements of the CMB imply that these points were in

thermal equilibrium, yet they are apparently causually disconnected, implying a high

degree of fine tuning in the initial conditions of the universe. This fine tuning problem

is called the Horizon Problem. The most favored solution to the Horizon Problem

is to invoke Inflation - a period of rapid expansion in the early universe. Inflation

seems to imply a time-dependent scale factor for the metric of space-time, as we will

see momentarily in Eq. 1.11.

By considering the conclusions of the observations just introduced, we can write

a space-time metric which takes into account both the isotropy/homogeneity of the

universe and the expansion of the universe. Much of modern cosmology is built upon

the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric,

ds2 = c2dt2 − a(t)dΣ2 (1.11)

where a(t) is the scale factor and dΣ is the metric over three spatial dimensions with

uniform curvature (elliptical, Euclidian, or hyperbolic). In particular,

dΣ2 =
dr2

1− kr2
+ dr2dΩ2, (1.12)

where dΩ2 = dθ2 + sin2(θ) dφ2. In Eq. 1.12, k parametrizes the curvature with k < 0

giving hyperbolic space (negative curvature), k = 0 Euclidian space, and k > 0

elliptical space (positive curvature). The metric in Eq. 1.11 is a solution to Einstein’s

field equations under the assumptions of an isotropic, homogeneous, and expanding

10



universe. To understand the dynamics that come from a time dependent scale factor,

we use this metric in the Einstein field equations,

Rµν +Rgµν ≡ Gµν = 8πGNTµν + Λgµν , (1.13)

where Gµν is the Einstein tensor, Tµν is the stress-energy tensor, and Λ is the cosmo-

logical constant. If we extend our assumption of an isotropic an homogeneous universe

to the stress-energy tensor, we find that the stress-energy tensor can be characterized

by a perfect fluid with time-dependent energy density ρ(t) and pressure p(t), giving

Tµν = diag(ρ,−p,−p,−p) [107]. We can relate the energy density to the pressure via

the equation of state ρ = wp, and using conservation of stress-energy, one can show

ρ ∝ a−3(1+w) [107]. For radiation, w = 1/3 and for matter w = 0, implying ρR ∝ a−4

and ρM ∝ a−3. With expressions for the metric and the stress-energy tensor, solve the

Einstein field equations and write the Friedmann Equations. The 0-0 component of

the Einstein tensor gives

ȧ2

a2
+
k

a2
=

8πGN

3
ρ, (1.14)

and the i-i components give

2
ä

a
+
ȧ2

a2
+
k

a2
= −8πGNp. (1.15)

It is standard to define the Hubble Parameter,

H =
ȧ

a
, (1.16)

and rewrite Eq. 1.14 as

k

H2a2
=

8πGN

3H2
ρ−1 = Ω−1https : //www.overleaf.com/project/60b50b9b7085e982abd93b7e

(1.17)
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where we have defined Ω as the ratio of density ρ to critical density ρC = 3H2

8πGN
.

Measurements indicate that Ω = 1 to 0.2% precision, implying k = 0, i.e. the universe

is approximately flat2. The CMB has also allowed us to measure the proportion of the

total energy density that is in matter, radiation, and vacuum energy. Recent results

from the Planck collaboration indicate that dark energy dominates the energy density

with ΩΛ = 0.626±0.020, while matter contributes Ωm = 0.314±0.020 [16]. Interestingly,

many experiments have shown evidence of Dark Matter, a substance which has

the gravitational properties of matter, but does not interact via the electromagnetic

force3. According to the Planck collaboration, the matter energy density ratio is

split into baryons and cold dark matter Ωm = Ωb + Ωc, with roughly 15.5% of the

matter attributed to baryons, and the other 84.5% to dark matter. Apart from the

CMB, evidence in favor of particle dark matter comes from sources such as galaxy

cluster mass measurements [156], galaxy rotation curves [132], velocity dispersion

measurements [65], galaxy cluster x-ray emission measurements [18], gravitational

lensing measurements [115, 130], the Bullet cluster [48], and much more.

In this section, we came to the conclusion that to a first approximation, the universe

is isotropic, homogeneous, flat, and expanding. These conclusions are primarily driven

by measurements of the CMB anisotropy. We also introduced the concept of dark

matter, whose physical nature is one of the largest open problems in physics today.

1.4 Axions and the Misalignment Mechanism

In the Standard Model, a dimensionless charge conjugation and parity (CP)

violating parameter θ is constrained to be less than O(10−10) by the experimental

2This is another cosmological fine-tuning problem called the Flatness Problem, since a flat
universe is metastable and even slight departures from Ω = 1 or ρC 6= ρ are amplified by the expansion
of the universe. A precision of one part in 102 means that the universe was flat to within one part in
1060 during the Planck Era [16, 86, 77]

3Although we have not detected interactions with dark matter via the electromagnetic force, it
is not entirely ruled out. Models with so-called milli-charged dark matter where (e.g. via kinetic
mixing) dark matter has a highly suppressed coupling to the photon are not entirely ruled out. [66]
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limit on the neutron electric dipole moment [53, 26]. However, there is no theoretical

reason in the Standard Model why θ has to be exceedingly small. This fine-tuning

problem is known as the strong CP problem [139]. An elegant solution was proposed

in Refs. [124, 123], where θ is promoted to a field that dynamically relaxes to a

CP-conserving minimum. This field, called the axion, can be understood as the

pseudo Nambu-Goldstone boson arising from the spontaneous breaking of the global

U(1) Peccei-Quinn (PQ) symmetry [149, 150]. The axion a dynamically relaxes

θ̄ = θ − 〈a/fa〉 to a vanishing value consistent with experiments. A model with a

weak scale decay constant fa was initially proposed [149, 150] but immediately ruled

out by laboratory searches. Today, supernovae gives the strongest lower bound giving

fa & 108 GeV [62, 128, 145, 113, 129]. Since the axion is very light and stable on

cosmological time scales, one can imagine a scenario where its relic abundance accounts

for the observed dark matter (DM) abundance ΩDMh
2 = 0.12.A thermal axion relic

abundance is too hot and scarce to be consistent with cold DM. Two non-thermal

production mechanisms are commonly considered.

The relic abundance from the misalignment mechanism [127, 2, 56], namely coherent

oscillations due to an initial axion field value a = θmisfa give an energy density ρa via

the equations of motion,

θ̈a + 3Hθ̇a = −m2
a sin θa (1.18)

ρa =
1

2

(
m2
a a

2 + ȧ2
)

(1.19)

where θa ≡ a/fa parametrizes the axion field value a and H is the Hubble expansion

rate. In the conventional setup where ma is assumed to be negligible compared to the

Hubble parameter during inflation, the axion field value is practically frozen due to a
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large Hubble friction term in Eq. (1.18) with the solution approximated by

θ0 ' θie
−Nem2

a/3H
2
I for ma � HI , (1.20)

with θ0 (θi) the angle at the end (onset) of inflation, unless the number of e-folding is

exceedingly large Ne ∼ (HI/ma)
2 as pointed out by Refs. [55, 74, 142]. As a result

of inflation, the misalignment angle takes a random but uniform value θmis in the

observable universe. Around the QCD phase transition, the axion acquires a mass

from the QCD non-perturbative effects and starts to oscillate, when 3H ' ma, from

amis = θmisfa towards the minimum today. Without fine-tuning, θmis is expected to be

order unity. The coherent oscillations of axions contribute to the cold dark matter

abundance

Ωah
2 = 0.12〈θ2

misF(θmis)〉
(

fa
5× 1011GeV

)7/6

, (1.21)

where F(θmis) ' 1 for θmis � π and, for θmis & 0.9π, is analytically approximated by

[109]

F(θmis) '
16
√

2

π3

[
ln

(
1

1− θmis/π

)]7/6

. (1.22)

The exponents in Eqs. (1.21) and (1.22) assume the topological susceptibility of

QCD given by the dilute instanton gas approximation (see the lattice results in

Refs. [125, 34, 40, 33, 73]) but our results are insensitive to this uncertainty. With the

natural assumption of O(1) initial misalignment, fa = 1011 − 1012 GeV is compatible

with the observed DM abundance. If the PQ symmetry is broken after inflation

and the domain wall number is unity, the abundance of axions emitted from the

string-domain wall network is [54, 98, 104]

Ωstring,DWh
2 ' 0.04− 0.3

(
fa

1011 GeV

)7/6

. (1.23)

The decay constant fa ∼ 1011 GeV reproduces the DM abundance.
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As ongoing axion experiments are about to reach sensitivity required to probe

small decay constants of 108 GeV < fa < 1012 GeV [148, 21, 19, 133, 42, 23, 70, 136,

22, 29, 58], exploring the theoretical landscape pertaining to small fa is important.

Some studies have been successful in allowing small fa in a natural setting, such as

parametric resonance from a PQ symmetry breaking field [51] and decays of quasi-

stable domain walls [87, 88, 98, 81]. The misalignment mechanism can reproduce the

observed DM abundance for fa � 1012 GeV if θmis is taken sufficiently close to π

[144, 109, 137, 25, 147], where the anharmonicity factor F(θmis) becomes important.

It is also theoretically interesting to consider a decay constant above the grand uni-

fication scale MGUT ' 2×1016 GeV, which is a typical prediction of string theory [138].

It is also motivated from the field theory point of view in the supersymmetric Standard

Model. The breaking of the PQ symmetry may be of the same origin as the breaking

of grand unification [151, 117, 78]. Actually, in four dimensional grand unified theories,

if the µ term of the Higgs doublets is controlled by the PQ symmetry, as is the case

with the DFSZ model [57, 154], the symmetry breaking scale must be around the

unification scale [72, 153, 80]. Many experimental efforts have since been devoted

to this mass range of axions [39, 92, 120]. Nevertheless, ultralight QCD axions are

subject to overproduction of dark matter from the misalignment mechanism.
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CHAPTER II

Yukawa Couplings in the String Landscape

In this chapter we will describe the work done to explore the string landscape

of M-theory on manifolds of G2 Holonomy. We will begin by introducing the M-

theory framework in Section 2.1. In Section 2.2 we discuss unification of the standard

model with a gauged E8 symmetry. Finally, in Section 2.3 we discuss work done to

relate E8 symmetry breaking parameters to the moduli fields which arise in geometric

engineering, as well as the computational methods used to find numerical values

consistent with our universe.

2.1 M-theory and Manifolds of G2 Holonomy

String theory began as an attempt to describe strong interactions [146], and it was

later realized that one could describe graviton interactions within this framework [134],

paving the way for a quantum theory of gravity with bosonic string theory. Bosonic

string theory, however, failed as a phenomenological model because it predicted a

critical dimension of 26, tachyonic states, and only contained bosonic states without a

method for introducing fermionic states. A resolution to these problems came later

with in the form of superstring theory [75]. Adding supersymmetric string states

ameliorated the problem by removing tachyonic states, introducing fermionic states,

yet demands a critical dimension to D = 10. M-theory with a critical dimension
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D = 11 was introduced [152], and has shown increasing promise as a fundamental UV

complete theory [5, 15, 11, 7, 8, 14, 6, 9, 12, 10, 13, 4, 3, 3, 93, 95, 94, 63].

We are interested in string theory constructions whose effective action below the

string scale Mstring is D = 4 with N = 1 supersymmetry. To achieve such a theory, we

factorize the background geometry of spacetime to M4 ×X7 where M4 is Minkowski

space and X7 is a compact space. Each point in M4 ×X7 is locally 11d with a set of

11d spinor supercharges. For a supersymmetry to be preserved upon compactification,

the corresponding supercharge must be well defined globally on M4 ×X7. Since X7

is curved, parallel transport of a spinor about a closed loop will, in general, impose

a non-trivial transformation. To preserve supersymmetry, we must find a manifold

whose spin connection permits a Killing spinor ξ where

∇mξ(x
m) = 0. (2.1)

with covariant derivative on X7, ∇m. This requirement is directly related to the

holonomy group of a manifold, which is the set of all transformations of ξ under

parallel transport. For a seven dimensional manifold, the only manifolds that leave

one supersymmetry unbroken are those of G2 holonomy.

A seven dimensional manifold with these properties is given by the fibration of

̂C2/ΓADE over a base space M3. The space ΓADE is an asymptotically local Euclidian

(ALE) manifold with a singularity at the origin. The structure of the singularity is

rich in that it permits an effective theory with non-Abelian ADE gauged symmetries.

The type of singularity for a given subgroup ΓADE can be found by resolving the

singularity at the origin via the process of so-called ‘blowing up’.

Resolving a singularity amounts to expanding the fixed point into a projective

space P1(C). After the first blowing-up, we may still find singularities in the projective

space P1, and to correctly classify the singularity we repeat the blowing-up process
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Figure 2.1: An A3 type singularity being fully resolved will have a configuration of
three Riemann spheres P1(C) which intersect according to A3 Dynkin
diagram.

until there are no more singularities to resolve. The result is a set of intersecting

sub-manifolds P1, with the intersection pattern corresponding to the Dynkin diagram

of the symmetry group.

Figure 2.1 gives a pictorial illustration of a singularity of type A3. Each of the

consequent P1 can be called a two-cycle. So, a singularity of type A3 is one that,

when completely resolved, has a configuration of A3. Similarly, a singularity of a

certain Dynkin diagram has the blown-up configuration of that diagram. The explicit

diagrams with the associated group are in Figure 2.2.

We have seen that the 2-cycles P1 directly relate to the smoothing of singularities.

We can use the volume of the 2-cycles to parametrize the resolution. Such a method

of smoothly parametrizing the blowing-up is called deformation.

For each 2-cycle, we use a harmonic one-form φ on M3, which can be thought of as

a metric-invariant 3-vector field on M3, to parametrize the size of the 2-cycle. Alterna-

tively, Katz et al [36, 97] use the coefficients in the Cartan subalgebra as the parameters.

Consistently, there is a one-to-one bijection between the two parametrizations given
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Figure 2.2: Dynkin diagram and associated groups.

by Table 2.1. Following the existing literature, we denote Ĝ(f1, f2, f3, . . . , fn) as the

family of Ĉ2/ΓG parametrized by the coordinates fi in Cartan subalgebra where n is

the rank of G and use Table 2.1 to compute the “volume” one-form φ when needed 1.

The construction of M theory compactified on a circle is dual to type IIA string

theory. Specifically, when a M2 brane wraps around one of the basis two cycles of the

resolved E8 singularity in our model, it is dual to a string wrapping around a circle in

type IIA. When the moduli in our theory go to infinity, it is equivalent to the volume

of the two cycles going to infinity. This is dual to the infinite radius limit of a circle

in type IIA [119].

2.2 E8 Unification

Our goal is to describe all the particles by resolving one single ADE singularity. E8

is the only simple Lie group that does the job. E8 and its breaking have been studied

by several authors [111, 47, 35, 122, 59, 41, 71, 64, 121]. Unification under an E8 gauge

symmetry is an attractive solution because it can account for all observed particles

1More details on root system and deformation are in [96].
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Positive Roots of En Volume of Corresponding Two-Cycle
ei − ej>i fi − fj>i

−e0 + ei + ej + ek fi + fj + fk
n ≥ 6 −2e0 + Σ6

j=1ej Σ6
j=1fj

n=8 −3e0 + ei + Σ8
j=1ej fi + Σ8

j=1fj

Table 2.1: Positive roots of En and the associated one-forms (sometimes called “area”
in literature) controlling the sizes of 2-cycles on the ALE fiber.

and families. For example, one symmetry breaking path is E8 → SU(3)×E6 in which

case the adjoint field of E8 breaks into the adjoint of E6, 27, and frundamental of

SU(3) 3, giving three copies of the 27, one for each family. The 27 of E6 has enough

matter content to account for all quarks, leptons, bosons we currently observe in

addition an extra Higgs (as required by the MSSM), a right handed sterile neutrino,

and other exotic particles.

Let Ê8(f1, ..., f8) be the resolution of a E8 singularity parametrized by deformation

moduli fi’s which are one-forms on M3. The simple roots are associated with the

volumes of the blown-up 2-cycles by Table 2.1 [36].

Each simple root, or equivalently each knot on the Dynkin diagram, will initially

represent a vanishing cycle at the singularity. To break a group to a smaller group,

we will “cut” a knot on their diagram so that we get the diagram of the smaller

group. Each “cutting” is performed by blowing up the cycle (which was initially

vanishing) associated with the knot. We recall that each cycle in the above Dynkin

diagram gives rise to a boson whose mass is proportional to the volume of the cycle.

Therefore, a vanishing cycle in the above Dynkin diagram will result in a massless

boson. The goal is to keep the SM gauge bosons massless (zero volume cycles) while

the other bosons are massive (non-zero volumn cycles). We will follow the breaking

path2 of [35]. Figure 2.3 summarizes the above steps. In the figure, we start with an

E8 singularity which corresponds to Ê8(0, 0, 0, 0, 0, 0, 0, 0), then turn on the volumes

2Different paths to the same subgroup will lead to the same physics. This is because if there is
a diffeomorphism between X1 and X2 so that their hyper-Kähler structures agree, then they are
isometric.
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Figure 2.3: Breaking of E8 by resolving singularity

of the cycles associated with the crossed knots by giving non-zero values for one-form

fi’s. There are five volumes needed to be turned on, so we parameterize fi’s by five

non-zero one-forms a, b, c, d and Y (note that Y here is the one-form associated with

hypercharge U(1)Y , not the hypercharge itself). They are simply parameters that are

linearly combined in a specific way so that the volumes of the cycles vanish or blow

up appropriately by Table 2.1. Then the final manifold is parameterized as in [36]

21



Ê8(a+ b+ c+ d+
2

3
Y, a− b+ c+ d+

2

3
Y,

−c− d− 7

3
Y,−c− d− 7

3
Y,−c− d+

8

3
Y, (2.2)

−c− d+
8

3
Y,−c+ 3d− 4

3
Y, 2c− 2d− 4

3
Y ).

We can check each step of Fig. 2.3 by setting all a, b, c, d, and Y in Eq. 2.2 to zero,

then turn them on accordingly to each step, and compute the volumes using Table 2.1.

In the following, we can check the volumes of the cycles corresponding to the simple

roots in the final step



e1 − e2 2b

e2 − e3 a− b+ 2c+ 2d+ 3Y

e3 − e4 0

e4 − e5 −5Y

e5 − e6 0

e6 − e7 −4d+ 4Y

e7 − e8 −3c+ 5d

−e0 + e6 + e7 + e8 0



(2.3)

This is exactly the configuration of Fig. 2.3. Note that one can use any different set of

one-forms as long as they fulfill the desired configuration and sufficiently parameterize

the independent non-vanishing cycles. Ultimately, whatever constrain we make, to

avoid an unwanted shrunk cycle which will lead to an extra massless boson, we have

to make non-zero volumes in the above table remain non-zero. To achieve this, we set

the constraints on our parametrization as tabulated in Table 2.2.
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Constraint Root Broken Subgroup
b 6= 0 e1 − e2 U b

1

a− b+ 2c+ 2d+ 3Y 6= 0 e2 − e3 Ua
1

Y 6= 0 e4 − e5 UY
1

Y 6= d e6 − e7 Ud
1

c 6= 5
3
d e7 − e8 U c

1

Table 2.2: Constraints required to preserve GSM and break the other E8 subgroup
symmetries.

2.2.1 Fermion Representations

Given a gauge group H for the theory, the corresponding cycles on the fiber are

shrunk everywhere along the base manifold M3. Those cycles correspond to the simple

roots of H. A matter representation happens at the points where additional cycles

associated with positive roots (see Table 2.1) vanish. By letting the positive roots

vanish one by one, we can find all the resulting representations. We will do a few

examples showing how to calculate the representation.

First, we consider e2 − e3 cycle. Using the above table, we conclude that the

associated volume is f2− f3 = a− b+ 2c+ 2d+ 3Y . Now, we consider the curve where

this particular cycle vanishes: a− b+ 2c+ 2d+ 3Y = 0. In order to know what repre-

sentation emerges at this curve, we consider what kind of weight diagram is generated

from e2− e3 and the roots from the gauge group (corresponding to the globally shrunk

cycles) e3 − e4 (corresponding to SU(2)), and e5 − e6 and −e0 + e6 + e7 + e8 (corre-

sponding to SU(3)). In more details, we will try to find what are the positive roots we

can get from e2− e3 by adding or subtracting e3− e4 , e5− e6, and −e0 + e6 + e7 + e8.

From above, we see that there are two positive roots corresponding to SU(2), so the

particle will behave like 222 of SU(2). Only one positive root for SU(3) case, so it is a

singlet for SU(3). Thus, this is a (222,111) of SU(2) × SU(3) (corresponding to Hu
2 as

in the Table 2.3). Notice that above calculation implies that e2 − e4 yields the same

particle.
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SU3 SU2 Ua
1 U b

1 U c
1 Ud

1 UY
1

Q1 3 2 1 1 −1 −1 1
Q2 3 2 1 −1 −1 −1 1
Q3 3 2 −2 0 −1 −1 1
uc1 3̄ 1 1 1 −1 −1 −4
uc2 3̄ 1 1 −1 −1 −1 −4
uc3 3̄ 1 −2 0 −1 −1 −4
dc1 3̄ 1 1 1 −1 3 2
dc2 3̄ 1 1 −1 −1 3 2
dc3 3̄ 1 −2 0 −1 3 2
L1 1 2 1 1 −1 3 −3
L2 1 2 1 −1 −1 3 −3
L3 1 2 −2 0 −1 3 −3
Hu

1 1̄ 2 1 1 2 2 3
Hu

2 1̄ 2 1 −1 2 2 3
Hu

3 1̄ 2 −2 0 2 2 3
Hd

1 1̄ 2 1 1 2 −2 −3
Hd

2 1̄ 2 1 −1 2 −2 −3
Hd

3 1̄ 2 −2 0 2 −2 −3
ec1 1 1 1 1 −1 −1 6
ec2 1 1 1 −1 −1 −1 6
ec3 1 1 −2 0 −1 −1 6

Table 2.3: Relevant particles from three families of E6.

A complete discussion of this process is present in the literature [36] and the

charges for relevant particles in this paper is presented in Table 2.3. The location of

the singularity associated with a particle is a linear combination of moduli weighted

by the charges. For instance, the location of Q1 is the curve that satisfies

a+ b− c− d+ Y = 0 (2.4)

2.3 Yukawa Couplings from Three-Cycle Volumes

In the superpotential, a cubic term ABC is allowed at tree level if the product

transforms as a singlet under the gauge group. In particular, that implies the sum of

charges for each of the U(1)’s is zero. If such a term happens, each of the particles
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A,B, and C will live on a different conical singularity which corresponds to different

points tA, tB, and tC on the base W which are solutions of equations derived from Table

2.3 (similar to 2.4). The idea of this section is that the Yukawa coupling coefficient of

this term is proportional to the exponential of the volume of the three-cycle wrapping

around the three singularities

Yukawa coupling = nABC
e−V ol(ΣABC)

ΛABC

(2.5)

where ΣABC is the three-cycle wrapping around the singularities, nABC is the sign of

the term which depends subtly on the orientation of the three cycle[37] 3, ΛABC is a

scale factor which is approximately the volume of G2 manifold. We will temporarily

ignore both of nABC and ΛABC in our analysis in this section.

We are interested in the limit where gravity decouples. The G2 manifold here is

treated as large enough to make the calculation manageable. Then, we can focus on a

local patch of M3 which is approximately R3. The volume of the three-cycle in the

linearization has been formulated by [36]. However, a more complete analysis shows

the requirement of the harmonic condition and relative rotations of the fields. By BPS

equations [37], locally for each moduli φ ( φ = a, b, c, d, and Y . These are the fi’s in

the previous sections), there is a harmonic function hφ on M3 base so that φ = dhφ

[37]. For simplicity, we think of φ as a three vector, and φ = ∇hφ. The harmonic

condition requires that ∆hφ = 0, which implies

∂iφ
i = 0. (2.6)

This requires

φ = Ht+ v, (2.7)

3Details of how to determine nABC is in [37] and Appendix F of [68]
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where H is a real traceless symmetric 3x3 matrix, v is a real three vector, t is a local

real parametrization of the 3d base. Then, hφ will have the form

1

2
tTHt+ vT t+ c (2.8)

where c is a constant term.

The location of a particle, say X, is a zero tX of a linear combination φX of a, b, c, d,

and Y with by the charges from table 2.3. From previous discussion, tX is the critical

point of a harmonic function hφX . Assume the critical points are isolated. This is the

same as assuming HX is invertible. The critical point of hφX or the zero point of φX is

tX = −H−1
X vX . (2.9)

Then, if the ABC term is allowed, i.e, hφA + hφB + hφC = 0, the volume for the

three-cycle wrapping the three critical points tA, tB and tC is 4

V ol(ΣABC) = hφA(tA) + hφB(tB) + hφC (tC)

=
1

2
(−vTAH−1

A vA − vTBH−1
B vB (2.10)

+ (vA + vB)T (HA +HB)−1(vA + vB)).

Notice that the constant c in equation (2.8) plays no role here due to cancellation, so

in practice, we will simply drop it. In section 2.4.3, explicit computation for a Yukawa

coupling is shown for a quark term.

4[37] gives formulation for the general case, which has been applied to this linear case.
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2.4 Quark Terms

2.4.1 General Quark Terms

Recall that the quarks get mass when the Higgses receive VEVs. For example,

λijHu
kQiuj → 〈Hu

k 〉λijQk
i u

k
j . (2.11)

Ellis et al [63] showed that tan β ≈ 7, from electroweak symmetry breaking, so we

know both up and down VEVs in the two-Higgs-doublets model. We will discuss later

how to adapt these into the six Higgs doublets in this paper. Quark terms that satisfy

vanishing sum of charges are

Q1u
c
2H

u
3 +Q2u

c
1H

u
3 +Q1d

c
2H

u
3 +Q2u

c
1H

u
3 +

Q2u
c
3H

u
1 +Q3u

c
2H

u
1 +Q2d

c
3H

u
1 +Q3u

c
2H

u
1 + (2.12)

Q3u
c
1H

u
2 +Q1u

c
3H

u
2 +Q3d

c
1H

u
2 +Q1u

c
3H

u
2 .

Note that there is no diagonal term in this general setting. Also, some couplings

between the Higgs and the quarks which could have been possible in SM are forbidden

here due to the extra U(1)’s. Nonetheless, those terms can still be generated by

Giudice-Masiero mechanism after the breaking of supergravity [43, 3]. However, we

will leave this mechanism to future study in the context of M-theory with E8 orbifold.

In the following sections, we will focus on the simplest constraints on the moduli to

make the theory physical.

The relevant terms for leptons are

L1e
c
2H

d
3 + L2e

c
3H

d
1 + L3e

c
1H

d
2 + (2.13)

L1ν
c
2H

u
3 + L2ν

c
3H

u
1 + L3ν

c
1H

ν
2 . (2.14)
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Notice that we only have Dirac mass terms here. Majorana terms may require quartic

level, extra particles getting a VEV, or extra constraints on the moduli, so we will not

discuss such terms in this paper.

2.4.2 Diagonal Terms and Setting a = 0

Equation 2.12 shows that there is no diagonal term for the quark matrices. This

appears to be a problem because with the top quark mass much larger than those of

up and charm quarks, the trace of the mass matrix must be non-zero. This problem

is generic in our method of constructing three families from E8 singularity. The

same issue was discussed in the F-theory context in [30]. The reason for this is the

conservation of charge in a and b. Hence, this directly relates to the separation of

families because a and b break the adjoint of E8 into three 27′s in E6. So, particles in

the same family must have the same charge in a and b, making it impossible for them

to form a singlet cubic term within the same family in generic setting. One way to

remedy this is to introduce a self intersecting curve for the up-type when Y = 0 [30],

using the fact that in grand unified theories u and Q both stay on the same curve

of 10 of SU(5). However, this method cannot be applied for down-type as d does

not stay on the same curve as Q. Moreover, self-intersecting requires higher order

then linearization which we will not pursue here. Alternatively, Bourjaily et al [36]

also discuss the contribution of quartic terms. This will require giving large VEVs for

extra particles, creating more parameters which we will not consider at this time.

In this paper, we can consider some constraint on a and b leading to possible non-zero

diagonal terms. This in essence sets a relation for a and b charges. We still keep in

mind the condition of non-vanishing volumes in (2.3) as we do not wish to unnecessarily

enhance the gauge symmetry. The simplest constraint we can make is a = 0. Although

it is intriguing to study other constraints, we will ignore them in this paper. This

constraint will restrict the gauge group to SU(3)× SU(2)×U(1)Y ×U(1)b ×U(1)c ×
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U(1)d. In term of geometry, this breaking of U(1)a is equivalent to restricting the

basis 2-cycles in a linear relation, reducing the number of independent 2-cycles and

hence number of U(1)’s.

2.4.3 Quark Mass Matrices

After setting a = 0 together with the localization, the up-type quark mass matrix

can be computed. We will show one example of the computation here for Mu
12u1u

c
2. It

comes from the term

λu123Q1u
c
2H

u
3 . (2.15)

When the Higgs gets VEV at low scale, the term becomes

λu123〈Hu
3 〉u1u

c
2, (2.16)

where Mu
12 = λu123〈Hu

3 〉. Then, all that is left is to compute λu123. At high scale, λu123

can be calculated from (2.10) and Table 2.3. In the linearization language

HQ1 = Hb −Hd +HY (2.17)

vQ1 = vb − vd + vY (2.18)

Hu2 = −Hb −Hd − 4HY (2.19)

vu2 = −vb − vd − 4vY (2.20)
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then (2.10) gives

V ol{ΣQ1uc2H
u
3
} = (2.21)

1

2

(
(vb − vd + vY )T (Hb −Hd +HY )−1(vb − vd + vY )+

(−vb − vd − 4vY )T (−Hb −Hd − 4HY )−1(−vb − vd − 4vY )+ (2.22)

(2vd + 3vY )T (+2Hd + 3HY )−1(2vd + 3vY )
)

Thus, (2.5) , ignoring the overall scaling, gives

λu123 = nu12 exp
{

− 1

2
|(vb − vd + vY )T (Hb −Hd +HY )−1(vb − vd + vY )+

(−vb − vd − 4vY )T (−Hb −Hd − 4HY )−1(−vb − vd − 4vY )+

(2vd + 3vY )T (+2Hd + 3HY )−1(2vd + 3vY )|
}

(2.23)

Then, we have to run these Yukawa couplings down to the SM scale to compute the

mass. Note that for the diagonal term Q3u
c
3H

c
3, obtained from setting a = 0, can be

computed by the above method.

2.4.4 Six Higgs VEVs

In the six Higgs doublets model without extra U(1)’s, one can choose a basis for

up-type and down-type Higgses so that only one pair of Higgses gets a VEV without

loss of generality. Here, due to different charges for the Higgses from the extra U(1)’s

(see Table 2.3), we cannot make such a choice of basis.

We will try to translate from the two VEVs of SM Higgses to the six VEVs in our

theory. By standard QFT, we can relate this by looking at the mass of W boson in
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the SM and identify

〈HSM
u 〉2 =

∑
i

〈H i
u〉2, (2.24)

〈HSM
d 〉2 =

∑
i

〈H i
d〉2. (2.25)

So, we can use spherical parametrization to write

〈H1
u/d〉 = 〈HSM

u/d 〉 cosφu/d sin θu/d,

〈H2
u/d〉 = 〈HSM

u/d 〉 sinφu/d sin θu/d, (2.26)

〈H3
u/d〉 = 〈HSM

u/d 〉 cos θu/d.

Such Higgs VEVs can lead to flavor changing neutral currents (FCNC). We keep the

mixing angles small and assume no problems with FCNC, which implies θ � 1.

Note that the Yukawa couplings in M-theory belong to the high energy scale. We

will attempt to use the already existent list of high scale Yukawa coupling running from

SM experimental Yukawas in Table 1 of [24] 5 and find a solution for our parameters.

We assume the effect of the extra U(1)’s from our theory in the renormalization group

equations (RGEs) is not significant, and the Yukawas have approximately the same

magnitudes as in [24].

In order to compare with physical Yukawa couplings, we need to take into account

a few modifications. First, as mentioned in [30], we need an scaling factor to normalize

the wave function. For cubic Yukawa, it is roughly proportional to V
− 1

2
G2

where VG2

is the volume of G2 manifold and still a parameter in our theory (as local model

cannot determine the global volume). The scaling factor for all the cubic Yukawas is

a parameter in this local model.

5The GUT group is slightly different, but we assume the magnitude of the couplings are approxi-
mately the same. See also [131].
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2.4.5 Higgs VEVs

One the other hand, recall that the Higgses only get VEVs at low scale. Therefore,

precisely speaking, we can only consider the VEVs of the six Higgses after we run

our M-theory Yukawa couplings down to low scale. Unfortunately, at high scale, we

only have a set of algebraic expressions for M-theory Yukawas, making the running

down to low scale complicated. Moreover, we cannot directly fit our Yukawas with the

existing data of high scale running from SM Yukawas because they all assume a two

Higgses model. Therefore, to remedy this problem, we will use a heuristic treatment

assuming that the angular factors, in equations (2.26), are regarded as part of the low

scale Yukawa couplings and do not change much while running to high scale. Then,

the effective VEVs at low scale are just the two VEVs from the SM, and the Yukawa

couplings at high scale used to fit with Table 1 of [24] then are

Y = f(φ, θ)λ (2.27)

where λ is a Yukawa computed from section 2.4.3 and f(φ, θ) is one of the angular

functions associated with the Higgs fields from equations (2.26.)

2.5 Yukawa matrix for gauge group SU(3)× SU(2)× U(1)Y ×

U(1)b × U(1)c × U(1)d

First, we need to fix all extra degrees of freedom. Translation allows setting vd = 0.

We also have three degrees of rotation and one degree of scaling to make vb = (1, 0, 0).

Second, we will try to consider the scattering around special cases of Hb and Hd.

Notice from the list in (2.3) that by setting all parameters to zero except b, we see

that volumes of root e1 − e2 and e2 − e3 are controlled by b. They are responsible

for breaking the adjoint of E8 into three 27’s of E6 (see Figure 2.3), hence are also
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responsible for separating the three SM families.

On the other hand, d controls e2 − e3, e6 − e7, and e7 − e8. The blown-up two-

cycle of e2 − e3 breaks the adjoint of E8 into two 27’s of E6, which transform as the

fundamental and singlet of SU(2) respectively, i.e, (27,2)⊕ (27,1). Thus d seperates

one family (the top quark family) from the other two in the adjoint of E8. The

latter still has an SU(2) family symmetry (which is broken when we turn b on ).

Additionally, e6 − e7 corresponds to breaking the 27’s of E6 into the presentations of

SO(10), separating the Higgses from quarks and leptons. Finally, e7 − e8 splits the

16’s of SO(10) into the 10 and 5̄ of SU(5). Thus, d also separates the up-type quarks

(up, charm, top) from the down-type quarks (down, strange, bottom), i.e. an isospin

breaking effect.

2.6 Computational Setup

To estimate moduli parameters Φ compatible with accepted Yukawa coupling

measurements Ŷ we performed a stochastic gradient descent to minimize the cost

function,

C(Y (Φ)) =
9∑
i=1

(
Ŷi − Yi(Φ)

)2

σŶ ,i
(2.28)

where Y (Φ)i are the predicted fermion Yukawa couplings for a set of input moduli Φ.

The index i runs over all quark and electron-type lepton flavors and the quantities Ŷi

and σŶ ,i represent the measured value and corresponding uncertainty for the ith fermion

flavor, respectively. The work done in [131] gives estimates for Yukawa couplings at

the GUT scale (and their uncertainties) by running measurements tabulated in the

Particle Data Group review [157] to a unification scale based on SUSY parameters.

The values used in this study are show in Table 2.4.

Custom code was written in python to accept parameters Φ and return predic-

tions for the Yukawa couplings Yi based on the calculations of Yukawa matrices in
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Fermion Flavor Ŷi σŶi
Top 0.48 ±0.02

Charm 0.0012 ±0.001
Up 3.2× 10−6 ±8× 10−7

Bottom 0.051 ±0.002
Strange 9.7× 10−4 ±1.1× 10−4

Down 4.9× 10−5 ±9× 10−6

Tau 0.070 ±0.003
Muon 0.0041 ±0.0002

Electron 2.0× 10−5 ±1× 10−6

Table 2.4: GUT scale Yukawa couplings from [131].

Section. 2.4.3.

2.7 Numerical Evaluation

To test the compatibility of this model with the Standard Model, we perform

a regression on the free parameters by a least squares approach. Our calculations

of Yukawa couplings are compared to experimentally measured weak scale Yukawa

couplings which have been run up to the GUT scale 6. The theoretical uncertainty in

the calculation dominates over the experimental uncertainties and we only consider

theoretical uncertainty when minimizing the sum of the residuals.

Using previous arguments, we set the base parameters corresponding to a = 0 to

zero, vd to zero, and vb to (1, 0, 0). With three 3× 3 traceless symmetric matrices Hφ

and two 3−vectors, we have 18 free parameters from the base space. We have four

additional parameters from the Higgs VEVs, satisfying 〈
(
H2

1 +H2
2 +H2

3

)1/2〉 = 〈HMSSM〉.

Although we have more free parameters than constraints from the data, the non-

linearity in calculating the Yukawas restricts the solutions. A list of numerical solutions

is in Appendix. Exploration of the parameter space shows a large scarcity in the

number of viable solutions. Many months of computation time were required to

find the one viable solution presented in this dissertation. This difficulty lies in

6See also [131].
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Figure 2.4: A set of sample solutions found numerically. The three symbols indicate
three different solutions, and the line indicates the measured value for
each Yukawa coupling.

35



the smoothness of the parameter space. The highly non-linear relation between the

parameters and Yukawa couplings lead to many local minima of varying sizes. Without

being able to estimate the size of the local minima troughs, we could not easily find

a fixed value for the gradient step size to avoid getting stuck in large-width minima

while being sensitive to small-width minima.

A set of samples from numerical evaluation is shown in Fig. 2.4. We have observed

some general trends among the numerical solutions. Most importantly, there exists a

hierarchy of Yukawas within each family which come from the breaking of the flavor

and family symmetries. There is a large top quark Yukawa coupling. Finally, it

appears that the hierarchy solution only happens when θ is small, an observation that

is expected from the aforementioned no-neutral-current condition.
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CHAPTER III

Axions Dynamically Driven to the Hilltop

3.1 Introduction

As ongoing axion experiments are about to reach sensitivity required to probe

small decay constants of 108 GeV < fa < 1012 GeV [148, 21, 19, 133, 42, 23, 70, 136,

22, 29, 58], exploring the theoretical landscape pertaining to small fa is important.

Some studies have been successful in allowing small fa in a natural setting, such as

parametric resonance from a PQ symmetry breaking field [51] and decays of quasi-

stable domain walls [87, 88, 98, 81]. The misalignment mechanism can reproduce the

observed DM abundance for fa � 1012 GeV if θmis is taken sufficiently close to π

[144, 109, 137, 25, 147], where the anharmonicity factor F(θmis) becomes important.

In this study, we propose a scenario which dynamically predicts θmis ' π and

thus small fa in the context of axion DM from the misalignment mechanism. It is

commonly assumed that no misalignment angles are special in the early universe,

and θmis ' π requires a fine-tuned initial condition. This is not the case given two

conditions are met: 1) the axion field dynamically relaxes to the minimum of the

potential in the early universe and 2) the model possesses a non-trivial prediction

between the minima of the axion potential in the early and today’s epochs. We refer

to the axion relaxation with the fulfillment of these requirements as Dynamical Axion

Misalignment Production (DAMP). We study DAMP by the dynamics of the Higgs
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fields during inflation. The mechanism follows from suspending the assumption that

axion’s late-time dynamics is agnostic to inflationary dynamics. To be concrete, we

study the Minimal Supersymmetric Standard Model (MSSM). The Higgs fields Hu and

Hd in general couple to the inflaton potential energy via higher dimensional operators,

which lead to so-called Hubble induced masses. The Higgs fields can acquire a large

field value in the early universe by virtue of the Hubble induced mass. This large field

value gives large quark masses, which enhance the confinement scale to Λ′QCD during

inflation. Since ma is proportional to Λ′QCD, this raises the axion mass to allow for

earlier relaxation to the minimum. Note that we need to assume the Higgs fields are

not charged under PQ symmetry; otherwise, the decay constant will be as high as

the Higgs VEV and suppress the axion mass. For context, early studies [60, 27, 46]

have made use of moduli fields to raise the QCD confinement scale ΛQCD → Λ′QCD

during inflation. This avoids fine-tuning problems that arise under the assumption of

an O(1) initial misalignment with large values fa > 1012 GeV. Later studies [91, 45]

used Higgs fields as the moduli fields and refined the scope of the mechanism to

reduce isocurvature perturbations for models with large inflation scales, which comes

at the cost of an inability to suppress the axion abundance. This loss of abundance

predictability is because no assumptions are made about the evolution of the axion

minimum through inflation. In the MSSM for example, we have [46]

θeff = θQCD + arg(detλuλd) + 3 arg(mg̃) + 3 arg(Bµ), (3.1)

where λu, λd are the Yukawa coupling matrices, mg̃ denotes the gluino mass, and Bµ

is the soft breaking mass for Higgs scalars. Although a large Λ′QCD can help fulfill the

first DAMP criterion, we should also explain how a Hubble induced mass fits in with

Eq (3.1) to fulfill the second criterion.

The Kähler potential can give rise to a Hubble induced Bµ term. If the argument
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of the term is different from the vacuum Bµ term by π and dominates, a shift of π

relative to the vacuum value is induced in the axion potential.1 The difference of π in

the arguments can be understood by the (approximate) CP symmetry of the theory,

such that the Bµ terms are real and the difference of π is simply the opposite signs

of the terms. An approximate CP symmetry is also invoked in Ref. [27], where a

relaxation to θmis ' 0 is considered. Note that the shift of π in the axion potential

occurs only if the number of generations is odd.

A large ma allows the axion field to relax to the bottom of the potential during

inflation, and a π shifted axion potential means this minimum coincides with today’s

hilltop. Without additional particles beyond the MSSM, Λ′QCD and consequently ma

cannot be arbitrarily large; we find ma . 10 TeV. Thus, in the minimal scenario, we

consider TeV scales for Hubble during inflation HI to allow for the relaxation of the

axion misalignment during inflation. We also explore non-minimal models where ma

and thus HI can be larger. Relaxing the axion arbitrarily close to today’s hilltop

may cause overproduction of axion DM, but we find that the running of Yukawa

terms in the Standard Model (SM) gives a sufficient CP phase change O(10−16) to

avoid the scenario [61, 102]. An exciting implication of this mechanism is that fa

is fixed to roughly 3 × 109 GeV by the observed DM abundance and CP-violating

phase renormalization in the theory. We impose CP symmetry in the Higgs and

inflaton sectors. Additional CP violation (CPV) of up to O(10−4) only induces O(1)

changes in the prediction of fa. In summary, by the inflationary dynamics of the

Higgs fields as well as the (approximate) CP symmetry, we can fulfill both criteria of a

DAMP scenario; in particular in this paper we explore the case where the inflationary

minimum is shifted by π from today’s minimum, which is referred to as DAMPπ.

We now elaborate on the approximate CP symmetry. Although the O(1) amount

of CPV measured in the SM must be generated in the theory, a small CPV in the

1The case where the arguments are the same is explored in [49] and discussed in IV.
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extended sectors can be a consequence of the suppressed couplings with the source of

CP violation. Such hierarchical couplings can result from the protection of additional

symmetries or the geometric separation in the extra dimensions. Additionally, any

quantum corrections that attempt to transfer O(1) CPV from the SM to the extended

sectors are automatically small. The reason is that the CP phase of the Yukawa

couplings only becomes physical when all three generations are involved, suggesting that

the interactions are suppressed by small Yukawa couplings, mixing among generations,

and higher loop factors.2 With this CP structure, the implications for the extended

sectors are as follows. The (approximate) CP symmetry treats the CP-odd and

CP-even moduli differently in such a way that the moduli affecting the axion minimum

can be stabilized at the CP-conserving points. The smallness of the CP phases is also

guaranteed in the masses of any additional colored particles that we introduce in the

non-minimal models. Crucially, a CP symmetry only ensures all relevant parameters

are real but does not forbid the change of signs throughout the evolution; this is

exactly what can give rise to a shift of π in the axion potential.

In Sec. 3.2 we show how a Hubble induced mass for the Higgs in the early universe

can induce an axion mass enhancement and a phase shift of π in the axion potential,

fulfilling the DAMPπ criteria. In Sec. 3.3 we discuss both a set of minimal models with

the cosmology fully evaluated, and extended models with a larger viable parameter

space and a simplified discussion of the post-inflationary cosmology.

3.2 Dynamical Axion Misalignment Production at the Hill-

top

We would like to show that allowing Hu and Hd to acquire large VEVs during

inflation can lead to a DAMPπ scenario. To guide the reader, we first restate the

2Even though the CP symmetry is a solution to the strong CP problem alternative to the axion,
the O(1) CPV in the Yukawa sector may unacceptably modify the θ term. For models that avoid
such consequences, refer to Refs. [116, 28, 31, 85]
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conditions under which the DAMP model is applicable: 1) the axion field dynamically

relaxes to the minimum of the potential in the early universe and 2) the model

possesses a non-trivial prediction between the minima of the axion potential in the

early and today’s epochs. Throughout our discussion of DAMPπ models, we have in

mind a minimal model as a proof of principle and extended models to further explore

viable parameter space. Generically, we can include inflaton-Higgs dynamics with the

effective operators suppressed by the cutoff scale M in the Kähler potential

∆K =
|X|2

M2

(
|Hu|2 + |Hd|2 −

(
HuHd + c.c.

)
− |Hu|2|Hd|2

M2
− |Hu|4

M2
− |Hd|4

M2

)
, (3.2)

where X is the chiral field whose F -term provides the inflaton potential energy.

We omit O(1) coupling constants here and hereafter. For illustration purposes, we

only show lower dimensional operators relevant for the following discussion. Higher

dimensional operators do not change the discussion.

During inflation, the inflaton F -term gives the Higgs fields Hubble induced terms,

∆V = cH2
I

(
−|Hu|2 − |Hd|2 +

(
HuHd + c.c.

)
+
|Hu|2|Hd|2

M2
+
|Hu|4

M2
+
|Hd|4

M2

)
,

(3.3)

where c = (MPl/M)2 and HI is the Hubble scale during inflation. We assume that

the Hubble induced mass terms are negative. They push the Higgs fields in the D-flat

direction |Hu| = |Hd| up to the cutoff scale M , and as we will see in the following

sections the large Higgs VEVs realize DAMPπ.
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3.2.1 Axion Mass During Inflation

Together with the effective terms from the Kähler potential in Eq. (4.5), the MSSM

Higgs potential reads

VHiggs =
(
|µ|2 +m2

Hu
− cH2

I

)
|Hu|2 +

(
|µ|2 +m2

Hd
− cH2

I

)
|Hd|2 −

(
Bµ− cH2

I

)
(HuHd + c.c.)

+
g2 + g′2

8

(
|Hu|2 − |Hd|2

)2
+
g2

2
|HuH

∗
d |

2 +
cH2

I

M2

(
|Hu|2|Hd|2 + |Hu|4 + |Hd|4

)
.

(3.4)

We assume that the Higgs sector is nearly CP symmetric, which is anyway required

from the limits on the electric dipole moment for TeV scale supersymmetry. See

Refs. [20] and [44] for the latest measurement and its implication to supersymmetric

theories, respectively. We also assume a CP symmetry in the inflaton-Higgs coupling.

The Higgs fields break SU(2)L × U(1)Y → U(1)EM by both the early universe VEV

and today’s VEV. Parameterizing the Higgs field space in terms of a radial mode

φ ≡ |Hu| = |Hd| along the D-flat direction and an angular mode ξ = arg (HuHd),

which is the relative phase of the Higgs fields, allows us to write

V ' (m2
SUSY − cH2

I )φ2 − (Bµ− cH2
I ) cos(ξ)φ2 +

cH2
I

M2
φ4, (3.5)

where we have taken mHu ∼ mHd
∼ µ ∼ mSUSY. The phases of HuHd are chosen

so that ξ = 0 in the vacuum today. The radial mode, for
√
cHI & mSUSY, acquires

a large VEV of order φi ∼ M . This is clearly seen from minimizing the potential.

Assuming that the sign of the Hubble induced Bµ term is opposite to the vacuum

one as shown in Eq. (3.5), the phase initially obtains a value during inflation of ξ = π,

while today’s value is ξ = 0. We discuss the implication of the phase shift in the next

subsection and focus this subsection on the large radial direction.3

3In the extended model discussed below, the sign flip of the Bµ is not necessary. The Hubble
induced Bµ term is not necessary as long as the vacuum one is larger than H2

I .
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The large VEV φi gives quarks very large masses during inflation. In the MSSM,

the 1-loop renormalization group equation (RGE) is

µr
d

dµr

8π2

g2
= 3N − F, (3.6)

where µr is the renormalization scale, N = 3 is the gauge group index, and F is the

number of active fermions in the theory. Solving the RGE from the TeV scale up to

the scale φi, and from the scale down while pretending that all quarks are above the

scale where the gauge coupling diverges, we obtain the fiducial dynamical scale

Λfid = 107 GeV

(
φi

1016 GeV

)2/3(
tanβ

1

)1/3

. (3.7)

This is the physical dynamic scale Λ′QCD if all quarks (including the KSVZ quarks

[103, 135]) are above the scale. If some quarks are below the scale, the physical

dynamical scale Λ′QCD is given by

Λfid = Λ′QCD ×
∏

mq<Λ′
QCD

(
mq

Λ′QCD

)1/9

. (3.8)

The axion mass vanishes when the gluino is massless since strong dynamics gives the

mass dominantly to the R-axion. The axion mass is hence given by

ma '
1

4π

m
1/2
g̃ Λ

3/2
fid

fa
, (3.9)

where we assume that the gluino mass is below the physical dynamical scale and that

the large Higgs VEV does not break the PQ symmetry. We include the factor of 4π

expected from the naive dimensional analysis [110, 69, 108, 52]. Here mg̃ is the RGE

invariant one, mg̃,phys/g
2. The holomorphy of the gauge coupling guarantees that

we may use the fiducial dynamical scale to evaluate the axion mass. Physically, the
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suppression of the fiducial dynamical scale in comparison with the physical dynamical

scale takes into account the suppression of the axion mass by light quarks. For the

minimal setup where the dynamical scale is raised solely by large Higgs VEVs as in

Eq. (4.9),

ma ' 30 GeV
( mg̃

TeV

)1/2
(

Λfid

107 GeV

)3/2(
3× 109 GeV

fa

)
. (3.10)

We may raise the dynamical scale further by introducing additional particles. One

possibility is to introduce a moduli field whose field value controls the gauge coupling

[60, 27, 46, 91, 45, 89], and assume that the moduli field value during inflation raises

the gauge coupling constant. Another possibility is to introduce additional SU(3)c

charged fields and assume that their masses are large during inflation as considered in

Ref. [91]. A field whose field value controls the masses of the additional particles can

be regarded as a moduli field. For NΨ pairs of SU(3)c fundamental chiral fields with

a mass MΨ and MΨ,I in the vacuum and during inflation respectively, the dynamical

scale is given by

Λfid = 107 GeV

(
MΨ,I

MΨ

)NΨ/9
(

φi
1016 GeV

)2/3(
tanβ

1

)1/3

. (3.11)

To achieve the second requirement of the DAMP scenario, CPV phases in MΨ,I and

MΨ should be absent. Instead of flipping the sign of the Bµ tern, we may flip the sign

of the masses of Ψ to achieve DAMPπ. We will see later in Sec. 3.3 that this dynamical

scale cannot be arbitrarily large because of the backreaction of strong dynamics to

the Higgs as well as the PQ sector.

Combining Eqs. (3.9) and (3.11) we find that for appropriate values of HI , the

early universe axion mass is large enough for relaxation of the axion field to its

minimum. Since the largeness of the dynamical scale Λ′QCD depends on the VEV of

φ, the decay of the inflaton and proceeding relaxation of φ to today’s VEV means
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that the post-inflationary cosmology is non-trivial. Prior to exploring this complex

cosmology, however, we turn our attention to the relative π phase shift of the axion

potential.

3.2.2 Shifted Axion Potential

Another consequence of a large Higgs VEV during inflation from the Kähler

potential in Eq. (4.5) is that the relative phase between the Higgs fields is shifted by

π as can be seen explicitly in Eq. (3.5). The shift of ξ also shifts the minimum of

the axion potential: Eq. (3.1) shows a direct connection between the Bµ term and

the axion misalignment angle minimum θeff. Once the inflaton decays or its energy

is redshifted and the Hubble induced terms become subdominant, minimization of

the potential is achieved for ξ = 0. In the extended model discussed in the previous

section, the sign flip of the masses of extra quarks Ψ can achieve a similar situation.

The phase shift of the axion potential is not exactly π because of the O(1)

renormalization of Yukawa couplings. Since the CPV from Yukawa couplings manifests

as O(10−16) shifts in the axion potential [61, 102], running these couplings from the

early large Higgs VEVs to the electroweak scale necessarily induces an O(10−16) shift

in the axion potential. We may also add small CPV to the Bµ terms to induce further

shift. Even if the shift is as large as O(10−4), the prediction of fa changes only by an

O(1) factor.

To summarize, a Kähler potential such as the one in Eq. (4.5) gives Higgs fields

Hubble induced masses, and the D-flat potential in Eq. (3.5) is minimized at a large

Higgs VEV with an opposite phase from today. The π shifted Higgs phase ξ along

with the Yukawa coupling renormalization induce a shift in the axion potential by

π −O(10−16). This sets the scene for a DAMPπ scenario where the DM abundance

is given by Eq. (1.21) and the value of fa can be predicted using the anharmonicity

factor Eq. (1.22).
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3.3 Cosmological Evolution

In Sec. 3.2 we demonstrated that, in the early universe, both a large axion mass

and a phase shift of π are possible due to a large Higgs VEV with an opposite phase

from today. The remaining question is whether there exists a viable cosmology with a

consistent evolution between the two periods without spoiling predictions. We first

explore the inflationary and post-inflationary constraints in the minimal model, and

then later comment on the broader parameter space allowed by extended models.

3.3.1 Minimal Models

The first consistency check we should perform is to ensure the axion mass is larger

than Hubble friction during inflation. As extensively noted, for a given cutoff scale M ,

the large Higgs VEV φi 'M determines Λ′QCD and the axion mass during inflation is

enhanced. The suppression of the angle by early relaxation can be approximated by

Eq. (1.20). As a benchmark point, we require the suppression factor to be θ0/θi = 10−4

or smaller during the number of e-foldings of 60. This gives an upper bound on the

value of HI , which is shown in the blue regions of Fig. 3.1 with the left (right) panel

for M = MGUT ≡ 2× 1016 GeV (MPl) respectively. The blue contours are also shown

for θ0/θi = 10−16. The orange regions reflect a lower bound on the value of HI from

requiring cH2
I > max(m2

SUSY, Bµ) necessary for obtaining a large Higgs VEV and the

phase shift, respectively.

One needs to carefully consider the evolution of the axion potential after inflation

ends. There must be a transition of the value of ξ from the inflationary minimum

toward today’s minimum. This transition necessarily induces the transition of the

minimum from π to 0 in the axion potential. If this transition occurs at a time when

the enhanced axion mass is still comparable to or larger than Hubble, the misalignment

angle could relax to a value very different from π. To understand this constraint, we

turn to the post-inflationary evolution of the Higgs fields.

46



10-1 1 10 102 103 104 105 106 107 108 109101010111012

10

102

103

TR (GeV)

H
I
(G
eV

)

M = MGUT

D
ilu
tio
n
oc
cu
rs
as
T
R
<
T
os
c

In
su
ffi
ci
en
t ρ

I
to
re
he
at

Insufficient early relaxation

ma ≪ HI↑ θ0 > 10
-4θi

↓ θ0 < 10
-16θi

A
xi
on
re
al
ig
nm
en
t

if
ϕ
re
la
xe
s
w
he
n
cH

2
≤
m
S
U
S
Y

2
Axion realignment

if ϕ relaxes when H≤HI

Small Higgs VEV cHI
2 < mSUSY

2

10-1 1 10 102 103 104 105 106 107 108 109101010111012

103

104

105

TR (GeV)

H
I
(G
eV

)

M = MPl

D
ilu
tio
n
oc
cu
rs
as
T
R
<
T
os
c

In
su
ffi
ci
en
t ρ

I
to
re
he
at

Insufficient early relaxation

ma ≪ HI
↑ θ0 > 10

-4θi

↓ θ0 < 10
-16θi

Small Higgs VEV cHI
2 < mSUSY

2

Axion realignment

if ϕ relaxes when H ≤ HI

A
xi
on
re
al
ig
nm
en
t

if
ϕ
re
la
xe
s
w
he
n
cH

2
≤
m
S
U
S
Y

2

Figure 3.1: Parameter space for the inflationary Hubble scale HI and reheat tempera-
ture TR given fa = 3× 109 GeV, mg̃ = mSUSY = TeV, Bµ = m2

SUSY/ tan β,
tan β = 50, Ne = 60, and φi = M . The left (right) panel is for the cutoff
scale M = MGUT (MPl) respectively.

The Hubble induced mass terms which stabilize φ at a large VEV are tied to

the inflaton energy density. If the sign of the Hubble induced terms remains the

same after inflation, φ continues to be trapped around M . This means the radial

and angular directions of the Higgs fields do not oscillate until the Hubble induced

terms become subdominant to the MSSM soft terms of the corresponding mode as

the inflaton energy density redshifts and/or decays.

A second possibility for this evolution is that the sign of the Hubble induced mass

flips after inflation (except for the HuHd term.) This may occur in two-field inflation

models. For example, with K = (−cZ |Z|2 +cZ̄ |Z̄|2)|φ|2 with cZ > cZ̄ and W = mZZZ̄,

we assume that the scalar component of Z acquires a large field value and drives

inflation. It is Z̄ whose F -term, F 2
Z̄

= m2
Zφ

2
Z , is non-zero. During inflation, the kinetic

energy of φZ is much smaller than its potential energy, i.e. |∂µZ|2 � F 2
Z̄

, and thus the

Hubble induced mass for φ is negative. As inflation ends, Z ′s potential and kinetic

energies become comparable but, since cZ > cZ̄ , the sign of the Hubble induced mass
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for the Higgs radial mode flips to positive. Consequently, φ is no longer trapped at

a large VEV but oscillates towards the origin immediately after inflation. The early

onset of radial oscillations helps because a longer period of redshifting in φ suppresses

Λ′QCD, which leads to the desired post-inflationary suppression of the axion mass.

It is only necessary to track the ratio ma/H between the onset of angular oscillations

at cH2 = Bµ and thermalization of the Higgs fields. During this period, the Higgs

phase ξ can evolve and with it comes the shift in the axion potential. If the axion mass

is subdominant to Hubble friction, however, the axion field is overdamped and remains

agnostic to this evolution. When the Higgs is finally thermalized, its energy density is

depleted and the field is quickly set to the minimum today, removing the axion mass

enhancement. As a result, to preserve the prediction of the axion misalignment angle,

ma/H needs to stay under unity during this period.

Thermalization of the Higgs is mediated by scattering with gluons via a loop-

suppressed operator [32, 114]

Γh =
B

16π2

T 2

φ
, (3.12)

with B ' 10−2 and φ identified as the oscillation amplitude. Interestingly, due to

the scaling properties during a matter-dominated era, the Higgs scattering generates

a radiation energy density that is constant in time, whose contribution to thermal

bath’s temperature is

Th =

(
30

π2g∗(Th)

B

16π2

)1/2(m2
φφi

HI

)1/2

, (3.13)

with φi as the field value of the Higgs at the end of inflation. This radiation persists

throughout the evolution until the Higgs fields are thermalized at H ' Γh. This

radiation is important because in some cases it can dominate over the radiation

produced from the inflaton decay and cause a period of a constant temperature in

the cosmological evolution. This has the effect of maintaining the finite temperature
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suppression to the axion mass

ma(T ) =
1

4π

m
1/2
g̃ Λ

3/2
fid

fa

(
Λ′QCD

T

)n
, (3.14)

where n = 3 (n = 0) for T > ΛQCD (T < ΛQCD). The temperature dependence is

determined by the contribution from the gauge multiplets, while the contribution from

chiral multiplets vanishes because of the cancellation between the RGE contribution

and the fermion mass suppression. In the extended models, Λ
′
QCD may be different

from the estimate in Eq. (3.8) because of the backreaction from strong QCD dynamics.

We note that the value of ma evolves after inflation not only due to this temperature

suppression, but also its explicit dependence on Λfid ∝ φ2/3, which evolves as the Higgs

oscillation amplitude redshifts until the Higgs fields thermalize and settle into today’s

vacuum. “Including the decrease in Λ
′
QCD from the redshift in φ ∝ H

1
1+w , with the

equation of state of the total energy density w, the axion mass scales like ma|MD ∝

H
3+2n

3 /T n during the early matter-dominated era (w = 0) and ma|RD ∝ H
3+2n

4 /T n

during the radiation-dominated era (w = 1/3) after reheating.” These considerations

of the Higgs oscillations and axion mass suppression are taken into account when

determining the post-inflationary constraint in the regions shaded in dark gray (light

gray enclosed by the dashed contour) in Fig. 3.1 assuming that the radial direction

starts oscillation at
√
cH ' mSUSY (right after inflation) respectively. This constraint

is milder in the left panel because M = MGUT starts out with a smaller axion mass

during inflation than M = MPl so ma/H is more likely to be less than unity during

the transition period. In fact, these gray regions disappear for M . 1016 GeV opening

up regions of low TR even though the blue constraint becomes stronger.

Another requirement of DAMPπ comes from avoiding PQ symmetry restoration.

In a thermal environment, the PQ breaking field saxion P acquires a thermal mass

y2T 2P 2 because of the Yukawa coupling yPQQ̄ with the PQ quarks Q, Q̄. This
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thermal mass can be relevant at large temperatures and stabilize P at a vanishing

value to restore PQ symmetry. This can be easily prevented if the symmetry breaking

is enforced by the following superpotential,

∆WP = λS
(
PP̄ − f 2

a

)
. (3.15)

The F -term of S stabilizes P and P̄ in the moduli space PP̄ = f 2
a to break PQ.

The coupling constant λ may be as large as 4π in strongly coupled models [79, 82].

To ensure that PQ is not thermally restored after inflation where the maximum

temperature achieved during reheating is Tmax ' (HIMPlT
2
R)1/4,4 the thermal mass

must be less than λfa < 4πfa at this time, giving an upper bound on the Yukawa

coupling

y . 1.5

(
mP,P̄

fa

)(
fa

3× 109 GeV

)(
TeV

HI

)1/4(
1010 GeV

TR

)1/2

, (3.16)

which can be easily satisfied with y . O(1) in the allowed parameter space of Fig. 3.1.

The constraint is stronger if the mass of the PQ symmetry breaking field is only as

large as mSUSY, but we do not pursue this issue further.

A runaway potential for P is generated by strong dynamics viaWeff ' (1/4π)2 Λ3
fid (P/fa)

1/3,

which introduces an effective saxion mass of order (1/4π)2 Λ3
fid/f

2
a . Keeping in mind the

dependence of Λfid on both the cutoff scale M and tan β from Eq. (3.11), we find this

effective saxion mass for the parameters in Fig. 3.1 to be of order 102 GeV (106 GeV)

for M = MGUT (MPl) respectively. For values of HI in the allowed parameter space, a

Hubble induced mass for P is not always large enough to stabilize P . For simplicity,

we stabilize P by superpotential terms W = mPPY +mP̄ P̄ Ȳ . The F -terms of Y and

Ȳ give large masses mP ∼ mP̄ to P and P̄ . These masses can be as large as 4πfa

4The actual maximal temperature is smaller after taking into account the efficiency of the
thermalization [83].
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without destroying the moduli space PP̄ = f 2
a and are large enough to stabilize P

against the runaway potential. The quarks Q and Q̄ have a large mass yP , which

allows us to neglect the effects of their Hubble induced masses in the minimal models.

We will see in Sec. 3.3.2 that larger values of Λ′QCD and HI will modify the dynamics

of these fields.

Finally, the purple regions in Fig. 3.1 are excluded by energy conservation which

restricts the reheat temperature TR to a maximum value dictated by the energy in

the inflaton, ρI 'M2
PlH

2
I & T 4

R. In the red regions, the axion starts to oscillate from

the hilltop towards today’s minimum during a matter-dominated era by the inflaton,

in which case reheating produces entropy, dilutes the axion abundance, and spoils the

prediction of a small fa. Even though the minimal model has proven to provide a

viable cosmology for DAMPπ, we explore extended models in the following subsection

to further broaden the parameter space.

3.3.2 Extended Models

The most stringent constraint in the minimal model is a relatively low upper bound

on HI due to difficulties in enhancing the axion mass during inflation. As shown in

Eq. (3.11), we can enhance Λ′QCD, and consequently ma, by introducing additional

matter content. As we raise the value of Λ′QCD, the values of fields in the PQ sector

may be shifted from the one in the vacuum and impact the evaluation of the axion

mass. The field value of the Higgs may be also affected.

We consider a simple model where a PQ symmetry breaking field P couples to

KSVZ quarks QQ̄ by a Yukawa coupling y [103, 135]. We need to reliably evaluate

the VEVs of both P and QQ̄, as both are PQ charged and the decay constant during

inflation fI is given by the larger of P and (QQ̄)1/2. The superpotential of P and QQ̄

is

W =
1

(4π)3

Λ̃4(
QQ̄
)1/2

+ yPQQ̄, (3.17)
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where the first term is the non-perturbative Affleck-Dine-Seiberg superpotential [17].

The scale Λ̃ is related with Λfid via

Λ̃ = Λfid

(
Λfid

yfa

)1/8

. (3.18)

The relation can be obtained by comparing the effective superpotential after integrating

out QQ̄ from Eq. (3.17) and the effective potential

Weff '
1

(4π)2 Λ3
fid

(
P

fa

)1/3

, (3.19)

where the effect of a P field value different from fa is included. Note that the potential

of P from strong dynamics exhibits a runway behavior, ∂Weff/∂P ∝ P−2/3. For this

reason, we introduce a higher dimensional term |P |6/M2 to further stabilize P at a

large field value which can come from a superpotential term (χ/M)P 3, where χ is a

chiral field. We also consider the Hubble induced mass of P and QQ̄. Explicitly we

take

∆V ' cH2
I |Q|2 + cH2

I |Q̄|2 − cH2
I |P |2 +

|P |6

M2
. (3.20)

We stress that these terms are used in our analysis but they are not the only possible

extensions to DAMPπ. The sign of the Hubble induced mass of Q and Q̄ is taken

to be positive to ensure that Q is not destabilized by the Hubble induced mass. We

study a negative Hubble induced mass for P for the following reason. We find that

Q > P and hence fI is dominated by Q for this choice of the signs. If the Hubble

induced mass of P is positive instead, the field value of P becomes smaller and makes

the field value of Q larger because of the smaller mass of Q. This increases fI while

decreasing the dynamical scale and suppressing the axion mass.

As the Hubble induced mass of Q breaks the supersymmetry of the QCD sector,

the axion mass may non-trivially depends on the parameters. When yP is larger than
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Q, QQ̄ can be integrated out at the mass threshold yP and the effective potential is

given by Eq. (3.19). The axion mass is given by

ma '
1

4π

m
1/2
g̃ Λ

3/2
fid

fI

(
P

fa

)1/6

. (3.21)

If Q is larger than yP , the theory below the mass threshold Q is a supersymmetric,

pure SU(2) gauge theory with a dynamical scale Λ̃(Λ̃/Q)1/3. The axion mass is then

given by

ma '
1

4π

m
1/2
g̃ Λ̃3/2

fI

(
Λ̃

4πQ

)1/2

=
1

4π

m
1/2
g̃ Λ

3/2
fid

fI

(
Λ3

fid

16π2yfaQ2

)1/4

. (3.22)

Note that the two formulae agree with each other when the field value of Q is

determined by the F -term condition of QQ̄ from the superpotential in Eq. (3.17).

Strong dynamics also affects the Higgs. The effective superpotential of φ is given

by

W ' Λ3
eff

16π2

(
φ

M

)2

, Λ3
eff =


Λ3

fid

(
P
fa

)1/3

yP > Q

Λ3
fid

(
Λ3

fid

16π2yfaQ2

)1/2

yP < Q.

(3.23)

This gives the Higgs a mass ' Λ3
eff/(16π2M2), which should be smaller than

√
cHI .

By computing and comparing the axion mass to HI , we put an upper bound on

the allowed values of HI such that DAMPπ’s first criterion is fulfilled during inflation,

which is shown in Fig. 4.1. In deriving the blue-shaded region, we integrate out

QQ̄, obtain the scalar potential of P from the effective potential Eq. (3.19), add

the potential of P in Eq. (3.20), determine the field value of P during inflation, and

compute the axion mass. This corresponds to the case where Q is actually determined

by the F -term condition ∂W/∂Q = 0. The gray contours show the constraint using

the full potential described above. As y becomes larger the constraints approach to the
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Figure 3.2: Parameter space for the inflationary Hubble scale HI and the fiducial
confinement scale Λfid defined in Eq. (3.8) given fa = 3× 109 GeV, mg̃ =
mSUSY = TeV, and φi = M . The left (right) panel is for the cutoff scale
M = MGUT (MPl) respectively.

blue-shaded region. An additional constraint shown in the red regions arises because

strong dynamics drives the Higgs to the origin.

In computing the field values of P and Q, we treat Q as a canonically normalized

field. This is a good approximation if yP or Q is above the dynamical scale. We find

that in the allowed parameter space, either yP or Q is no smaller than one order of

magnitude below the dynamical scale so we expect the approximation gives a good

order of magnitude estimate.

We now discuss the post-inflationary evolution and constraints similar to Sec. 3.3.1.

Although this study is comprehensive in evaluating the inflationary constraints, the

thermal masses for P and Q dramatically complicate PQ dynamics during and after

reheating. Nonetheless, we are able to identify a large allowed parameter space in

the HI , TR plane in the following way. There exists a wide region where the Higgs

fields thermalize before the Higgs angular mode ξ begins to oscillate so that Λ′QCD

is quickly set to today’s value ΛQCD before ξ has a chance to evolve and shift the
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axion potential. Physically, this means that the axion potential turns off before the

location of its minimum shifts. Therefore, the prediction of the misalignment angle

is automatically preserved without the need to track the post-inflationary evolution

of P and QQ̄. This is the case when the Higgs scattering rate in Eq. (3.12) equals

the Hubble rate before cH2 drops below Bµ. This region is described by an allowed

window of TR for a given HI

TR & 108 GeV

(
M

MGUT

)3/2(
Bµ

TeV

)3/4(
φi

MGUT

)(
105 GeV

HI

)
, (3.24)

TR . 6× 1011 GeV

(
MGUT

M

)3/2(
TeV

Bµ

)3/4(
HI

105 GeV

)2(
MGUT

φi

)2

, (3.25)

where the two distinct formulae come from thermalization during the matter- and

radiation-dominated epochs respectively. This window becomes wider as HI increases

so as long as

HI > 6 TeV

(
M

MGUT

)(
Bµ

TeV

)1/2(
φi

MGUT

)
(3.26)

a consistent range of TR exists. The upper bound on HI ultimately enters from the

inflationary constraint shown in the blue regions of Fig. 4.1.

We now comment on one plausible extension to further open up the parameter

space with higher HI . The gluino mass affects the axion mass as in Eq. (3.9) and is

assumed to stay invariant between inflation and today. If mg̃ is also larger during

inflation, the axion mass and the upper bound on HI can be raised by as much as

(Λfid/mg̃)
1/2, making high scale inflation easily compatible with DAMPπ.

With respect to PQ restoration in the extended models, we can assume the same

PQ breaking mechanism as in Sec. 3.3.1 so the constraint in Eq. (3.16) applies equally

here.

While the post-inflationary constraints are not fully evaluated, these extended

models have been shown capable of fulfilling the criteria of DAMPπ while extending

the allowed parameter space to much higher HI than in Sec. 3.3.1.
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CHAPTER IV

Axions Dynamically Driven to the Origin

In this paper, we investigate a mechanism we dub Dynamical Axion Misalignment

Production (DAMP), which exhibits the following two features 1) the axion field

dynamically relaxes to the minimum of the potential in the early universe and 2) the

model possesses a non-trivial prediction between the minima of the axion potential

in the early and today’s epochs. If the minima are approximately aligned, a small

misalignment angle can dynamically arise without any fine-tuning, a scenario we refer

to as DAMP0. This damping effect automatically occurs when the assumption of

ma � HI is relaxed because the axion starts to oscillate during inflation and the

amplitude is exponentially redshifted. We consider the case where the large axion

mass originates from a large QCD scale during inflation. Such a scenario has been

considered in Refs. [60, 27, 46], but not all constraints, such as the effects from a

large QCD scale on Higgs and other scalars, are fully evaluated. Hence, the examples

presented in these studies may or may not be fully compatible with cosmological

bounds.

As a proof of principle, we demonstrate that DAMP0 can be realized in an extended

Minimal Supersymmetric Standard Model (MSSM). The axion mass increases with

the QCD confinement scale ΛQCD. By virtue of a negative Hubble induced mass via

the coupling with the inflaton, the Higgs can be driven towards a large field value
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along the D-flat direction. The quark masses enhanced by a large Higgs vacuum

expectation value (VEV) in turn cause strong dynamics to confine at a higher scale

Λ′QCD via the renormalization group (RG) running, thereby enhancing ma. If only

MSSM quark masses are raised, the resultant dynamical scale is not large enough to

fulfill the first criterion of DAMP0, which urges us to consider an extended MSSM.

Earlier studies in Refs. [60, 27] use generic moduli fields to directly raise the QCD

scale in an attempt to achieve DAMP0 but do not carefully examine if the axion mass

can be raised in a consistent way. Ref. [46] investigates the consistency and concludes

that the axion mass cannot be raised above the Hubble scale during inflation. We will

clarify why our setup evades their claim. Later studies in Refs. [91, 45] introduce an

extra SU(3)c charged particle and raise their masses by the large Higgs VEV. The

purpose of the papers is to suppress the isocurvature perturbations and no attempts

are made in fulfilling the second criterion for DAMP0 to make predictions about the

DM abundance.

The second criteria of DAMP0 can be satisfied by an (approximate) CP symmetry

of the theory ensuring that the minimum of the axion potential is nearly the same

during inflation and in the vacuum [27]. For example, the field values of any moduli

which change the QCD θ term should remain unchanged. This can be understood by

a CP symmetry which differentiates CP-odd moduli from CP-even moduli, and by

assuming that the CP-odd moduli are always fixed at the enhanced symmetry points.

Also, in the extended MSSM we introduce extra SU(3)c charged particles whose masses

are large during inflation. The phase of the masses should be nearly aligned with that

in the vacuum, which can be ensured by an approximate CP symmetry. We must

introduceO(1) CP violation in the Yukawa couplings of the MSSM. We assume that the

coupling among the source of CP violation, the moduli fields, and the extended sector

is small, which may be understood by some symmetry or a geometrical separation in

extra dimensions. Even if the CP phase is O(1) in the Yukawa couplings, perturbative
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quantum corrections to the moduli and the extended sectors are expected to be small,

as the CP phase of the Yukawa couplings is physical only if three generations are

simultaneously involved, suppressing the possible quantum corrections by multi-loop

factors, the small Yukawa couplings, and generation mixings.1

A truly vanishing misalignment angle will imply the absence or a different origin

of axion dark matter. Both of these are interesting possibilities, especially if DAMP0

is applied to the fine-tuning problem in string axions. In this paper, we focus on QCD

axion dark matter from the misalignment mechanism with MGUT . fa . MPl, and

thus a finite 10−4 . θmis . 10−3 is necessary. This implies that axion’s minimum

during inflation should nearly but not precisely coincide with today’s value. One

possibility is that the desirable amount of the CP-violating phase exists. Another

possibility is with HI ' ma so that inflation ends exactly at the time when θmis is

relaxed to the desired value. We limit our consideration to the former and assume an

approximate CP symmetry in the Higgs, inflaton, and extended sectors.2 Interestingly,

the CP violation in the MSSM around the TeV scale is currently constrained to

O(10−3) by the electron dipole moment [20, 44] and might be detected in future

experiments if CP violation of O(10−4–10−3) exists in the Higgs sector.

In Sec. 4.1, we review the misalignment mechanism for axion dark matter. In

Sec. 4.2, we illustrate in detail how the understanding of the misalignment angle can

be dramatically different when the dynamics of the Higgs during inflation is taken

into account. We summarize and discuss the conditions and implications of DAMP0.

1One may wonder that solving the strong CP problem by the CP symmetry without resorting
to the QCD axion is more minimal. In fact, it is not easy to solve the strong CP problem while
generating O(1) complex phases in the Yukawa couplings, as the complex phases readily correct the
θ term. See Refs. [116, 28, 31, 85] for models which work under several assumptions.

2Suppressing the CP-violating phase is not sufficient in ensuring θmis � 1 because the parameters
setting the axion minimum can be real but change signs during and after inflation, introducing a
phase shift of arg(−1) = π in the potential. Equivalently, the axion minimum is converted to the
hilltop, i.e. θmis ' π. We explore this possibility called DAMPπ in a separate publication [50].
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4.1 Misalignment Mechanism

Since DAMP0 operates at times well before the weak scale, it simply sets the

initial condition for the standard misalignment mechanism [127, 2, 56], which we will

review in this section. When the temperature drops to near the QCD scale, the axion

acquires a periodic potential energy through the color anomalies, with a mass given by

ma(T ≥ ΛQCD) = 6 eV

(
106 GeV

fa

)(
ΛQCD

T

)n
, (4.1)

where n = 4 for the SM is obtained by the dilute instanton gas approximation (see

the lattice simulations in Refs. [125, 34, 40, 33, 73], whose results indicate that n

ranges from 3.0 to 3.7 depending on the temperature). The equation of motion and

the energy density read

θ̈a + 3Hθ̇a = −m2
aθa, (4.2)

ρa =
1

2

(
m2
a ϕ

2 + ϕ̇2
)
, (4.3)

where the axion field value ϕ is interchangeable with the angle θa ≡ ϕ/fa. Initially

overdamped by the Hubble friction term in Eq. (4.2), the axion mass increases

through the QCD phase transition and the axion starts to oscillate coherently when

ma ' 3H. After the onset of oscillations, the axion behaves as cold dark matter with

the abundance given in Eq. (??). Assuming the axion reproduces the observed DM

abundance, a small θmis leads to the prediction of large fa

fa ' 2× 1016 GeV

(
2× 10−3

θmis

) 2n+4
n+3

, (4.4)

where n = 0 is understood for fa & 1017 GeV as the axion mass reaches the zero-

temperature value before the oscillation starts. In what follows, we illustrate on how
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a small θmis can naturally arise from dynamics via DAMP0, as opposed to fine-tuning

the initial condition.

4.2 Early Relaxation during Inflation

The axion field is generically assumed to be a constant during inflation as a result

of the Hubble friction term in Eq. (4.2) because one presumes that the axion mass is

no larger than today’s value. Nonetheless, this assumption holds only when the effects

responsible for the axion mass remain invariant throughout the cosmological evolution.

If the axion mass is larger than the Hubble parameter during inflation HI , the axion

begins its coherent oscillations, whose amplitude is damped exponentially. The axion

mass may initially be enhanced by a smaller decay constant, a larger QCD scale, or a

different origin of the axion mass. A smaller decay constant can occur when the PQ

breaking dynamics evolves with time, whereas the axion may also receive extra mass

contributions, e.g. a large QCD confinement scale [60, 27, 46, 91, 45, 89], explicit PQ

breaking [84, 100, 141, 101], and magnetic monopoles [99, 118].

We study the scenario where the QCD scale is enhanced by the inflationary

dynamics of the Higgs or other moduli fields. QCD confines at the scale where strong

dynamics becomes non-perturbative from the RG running. The number of active

quark flavors affects the RG running and, in particular, ΛQCD increases with the quark

masses. Consequently, the quark masses that are raised during inflation, e.g. by the

Higgs VEV, increase the QCD scale and hence the axion mass. Other generic moduli

fields can also directly affect the gauge coupling constant [60, 27, 46, 89] and thus the

QCD scale as well. We first discuss the minimal setup of the MSSM and a large Higgs

VEV before introducing additional particles.

The Higgs evolution during inflation crucially depends on its coupling with other

fields. If a negative mass term is generated by the VEVs of other scalars and dominates

over the Hubble scale, the Higgs field is driven to a large value where higher dimensional
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operators become important in stabilizing the Higgs. The MSSM provides a well-

motivated framework for this realization. To be concrete, we assume the following

Kähler potential

∆K =
|X|2

M2

(
|Hu|2 + |Hd|2 +

(
HuHd + c.c.

)
− |Hu|2|Hd|2

M2
− |Hu|4

M2
− |Hd|4

M2

)
, (4.5)

where X is the chiral field whose F -term provides an inflaton energy and M is

the cutoff scale of the theory. Here and hereafter we assume a universal cutoff

and drop O(1) coefficients. Through Eq. (4.5), the energy density of the inflaton

ρX = FXF
∗
X ' H2

IM
2
Pl generates the Hubble induced mass as well as the higher

dimensional operators in the Higgs potential

∆V = cH2
I

(
−|Hu|2 − |Hd|2 −

(
HuHd + c.c.

)
+
|Hu|2|Hd|2

M2
+
|Hu|4

M2
+
|Hd|4

M2

)
,

(4.6)

where c = M2
Pl/M

2. These additional Hubble induced terms in Eq. (4.6) affect both

the radial and angular directions of the Higgs fields. The negative Hubble induced

mass, −cH2
I (|Hu|2 +|Hd|2), drives the Higgs along the D-flat direction |Hu| = |Hd| ≡ φ

towards large VEVs of order M , which are stabilized by the positive quartic terms.

This enhances the axion mass via a larger dynamical scale from heavier quarks. We

note that the Higgs energy density is comparable to that of the inflaton and makes

an O(1) change to the vacuum energy. Since the Higgs field value remains constant

and the Higgs energy density follows that of the inflaton, this only changes the overall

energy scale of the inflation and does not interfere with inflation dynamics. Conversely,

if the sign of cH2
I (|Hu|2 + |Hd|2) is positive instead, the conventional cosmology results

because the Higgs VEVs remain small. Finally, the term −cH2
I

(
HuHd + c.c.

)
fixes the

relative phase of Hu and Hd.
3 This term is not necessary if the vacuum Bµ term is

3Ref. [46] does not introduce this term and relies on the vacuum Bµ term to fix the phase.
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already larger than H2
I . We assume an approximate CP symmetry so that this Higgs

phase is nearly aligned with today’s value,4 satisfying the second criterion of DAMP0.

Here
√
cHI is assumed to be larger than the supersymmetry (SUSY) soft breaking

scale mSUSY and hence we need

HI & 10 GeV
(mSUSY

TeV

)( M

MGUT

)
, (4.7)

where MGUT = 2× 1016 GeV. We may relax this condition if the µ term as well as

the soft SUSY breaking terms are small at large field values of the Higgs or during

inflation. The soft terms are actually smaller in gauge mediation since the large Higgs

field value breaks the gauge symmetry.

The large Higgs VEV gives quarks very large masses during inflation. In the

MSSM, the 1-loop renormalization group equation (RGE) is

µr
d

dµr

8π2

g2
= 3N − F, (4.8)

where µr is the renormalization scale, N is the gauge group index, and F is the number

of active fermions in the theory. In the MSSM with a large Higgs VEV φi, assuming

the gauge couplings are held fixed at the GUT scale, and pretending that all quarks

(including possible KSVZ quarks [103, 135]) are heavier than the dynamical scale, we

find that the fiducial dynamical scale is raised to

Λfid = 107 GeV

(
φi

1016 GeV

)2/3(
tanβ

1

)1/3

. (4.9)

They hence restrict their attention to the case where HI < mSUSY. Furthermore, they assume that
M ∼MPl, and thus the Higgs does not take a large field value during inflation. The axion mass is
suppressed in their setup and DAMP0 cannot be realized.

4We assume the sign of cH2
I

(
HuHd + c.c.

)
, if required to fix the relative phase, is the same as

Bµ
(
HuHd + c.c.

)
from soft supersymmetry breaking in the present universe. Rather, if the signs

are opposite, the Higgs phase shifts by π, placing the axion at the hilltop instead. We consider this
interesting possibility in Ref. [50].

62



The fiducial dynamical scale coincides with the physical dynamical scale Λ′QCD if all

quarks are actually heavier than Λfid. Otherwise, they are related as

Λfid ≡ Λ′QCD

∏
mq<Λ′

QCD

(
mq

Λ′QCD

)1/9

. (4.10)

When the physical dynamical scale is raised beyond the gluino mass mg̃, the axion

mass is suppressed by mg̃ as

ma '
1

4π

m
1/2
g̃ Λ

3/2
fid

fa
' 10 keV

( mg̃

TeV

)1/2
(

Λfid

107 GeV

)3/2(
1016 GeV

fa

)
, (4.11)

where we include the factor of 4π expected from the naive dimensional analysis [110,

69, 108, 52]. The mass mg̃ refers to the RG invariant quantity, mg̃,phys/g
2. This

suppression can be understood by the R symmetry in the limit of a vanishing gluino

mass, where only a linear combination of an R-axion and the QCD axion, which is

dominantly the R axion, obtains a mass from the color anomaly. The axion mass is

given by Λfid rather than the physical dynamical scale. This can be understood by

computing the axion mass in the parameter space where Λfid = Λ′QCD, and extending

it to the case with Λfid < Λ′QCD by holomorphy of the gauge coupling. The MSSM

with a large Higgs VEV alone is insufficient in raising the axion mass above the scale

of HI required in Eq. (4.7) to drive the Higgs towards the D-flat direction. Even if we

avoid the bound in Eq. (4.7) by small mSUSY in the early universe, the Hubble scale

during inflation must be below the MeV scale, which may require fine-tuning in the

inflation model parameters.

One can further enhance Λfid by introducing additional particles. One possibility

involves a moduli field whose VEV controls and increases the gauge coupling constant

[60, 27, 46, 89] during inflation. To satisfy the second criterion of DAMP0, the coupling

between the moduli field and GG̃ should be suppressed. The field value of the CP-odd
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part of the moduli field should remain the same during inflation and in the vacuum.

Another possibility is to extend the MSSM by NΨ additional fermion pairs in the

5 + 5̄ representation of SU(5) as discussed in Ref. [91]

Λfid ' 107 GeV

(
φi

1016 GeV

)2/3(
MΨ,I

MΨ

)NΨ/9

, (4.12)

where MΨ and MΨ,I are the vacuum mass and the enhanced mass during inflation,

respectively. We can enhance the mass of Ψ by the large VEVs of some fields,

which can be identified with the moduli field discussed above. The minimal example

is a coupling with the Higgs, W ∼ HuHdΨΨ̄/M . For instance, with NΨ = 4,

MΨ = mg̃ = TeV, MΨ,I = φi = MGUT, the dynamical scale is Λfid ' 1013 GeV; the

axion mass ma ' 104 GeV(1016 GeV/fa) sets an upper bound on HI since efficient

early relaxation to the minimum demands ma > HI . This is now consistent with

Eq. (4.7). To satisfy the second requirement of DAMP0, CP-violating phases of MΨ

and MΨ,I should be absent.

Even if the dynamical scale is raised by the dynamics of fields other than the Higgs,

the large Higgs field value during inflation is still crucial. If the Higgs field value is

small, the axion mass is suppressed by the small MSSM quark masses as shown in

Ref. [46].

We stress that the results of DAMP0 are independent of the specific mechanism

that raises the QCD scale during inflation. Nonetheless, there are some consistency

conditions to be satisfied. The suppression by light quark masses in Eq. (4.10) implies

that, even when both Λ′QCD and φi are saturated to the cutoff scale M , the Standard

Model quark Yukawa couplings yq set an absolute maximum of Λfid

Λmax
fid = M

∏
q∈SM

y1/9
q ' 10−2M. (4.13)

Moreover, strong dynamics generates the following effective superpotential for the
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Higgs,

W ' 1

16π2

(
Λfid|φi=M

)3
(
φ

M

)2

(4.14)

and gives a mass to φ from the F -term potential

mφ '

(
Λfid|φi=M

)3

16π2M2
, (4.15)

which can dominate and prevent the Higgs from acquiring a large VEV. We require

that this should be smaller than
√
cHI . Similarly, the scalar superpartner of the axion,

the saxion, also receives a mass ms ' Λ3
fid/(f

2
a16π2). If the saxion mass other than

this contribution is also only as large as
√
cHI , we obtain a stronger constraint when

fa < M . The constraint is however absent if the saxion is more strongly stabilized.

The constraint on the inflationary Hubble scale HI for a given fiducial dynamical

scale Λfid is shown in Fig. 4.1. The blue region reflects the conventional cosmology

without DAMP0 for various values of fa because the axion mass during inflation is

less than HI and the axion field is overdamped by Hubble friction. The gray region

is theoretically inaccessible since Λfid exceeds the maximum in Eq. (4.13). The red

region also cannot achieve DAMP0 because strong dynamics generates a Higgs mass in

Eq. (4.15) that dominates the Hubble induced mass and drives the Higgs toward the

origin. In the orange region, the Hubble induced mass is subdominant to the SUSY

scale in the MSSM and becomes irrelevant for mSUSY = TeV, precluding DAMP0.

Lastly, below the dashed line for each labeled value of fa, the saxion mass given by

strong dynamics exceeds
√
cHI , and extra stabilization of the saxion is needed. For

example, for a chiral multiplet S which non-linearly realizes the PQ symmetry by

S → S + iC, we may add a superpotential [82]

W = mSfaZe
−S/fa +mSfaZ̄e

S/fa , (4.16)
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Figure 4.1: Parameter space for the inflationary Hubble scale HI and the fiducial
confinement scale Λfid defined in Eq. (4.10) given mg̃ = mSUSY = TeV, and
φi = M . The left (right) panel is for the cutoff scale M = MGUT (MPl)
respectively.

where Z and Z̄ are PQ charged chiral fields. This gives the saxion a mass as large as

mS. Since the F terms of Z and Z̄ break the supersymmetry, the mass is bounded

from above,

mS . m3/2
MPl

fa
' 106 GeV

1016 GeV

fa

m3/2

104 GeV
, (4.17)

where m3/2 is the gravitino mass. The mass can be large enough for a realistic range

of the gravitino mass.

In Fig. 4.1, we assume for minimality that the gluino mass during inflation is the

same as the vacuum value that we take as mg̃ = TeV. This assumption can be relaxed

as well to raise the axion mass further and broaden the allowed parameter space. If

mg̃ is larger during inflation, the upper bound on HI can be raised by a factor as large

as (Λfid/mg̃)
1/2 = 105 (Λfid/1013 GeV)1/2(TeV/mg̃)

1/2 according to Eq. (4.11). This

factor is significant and DAMP0 becomes compatible with high scale inflation.
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CHAPTER V

Conclusion

5.1 Yukawa Couplings

In Chapter II, we use the geometric gauge breaking mechanism in M theory

compactified on singular G2 manifold to help understand quark and charged lepton

masses. We start with the adjoint representation of a single E8 that contains exactly

three related families of quarks and leptons. Then, we break E8 to the Standard

Model via deformations and geometric engineering, following the technique of Katz

and Morrison [97]. We explicitly computed Yukawa couplings in a local model and

shows their fitting with experimental results.

With this approach, we hope to understand the origin of flavors and three families,

and the values of quark and lepton masses. We are partially successful. We can see

three families and the hierarchy of quark and lepton masses emerge. We can see the

isospin breaking that makes the SU(2) doublets such as top and bottom, up and

down, electron and electron neutrino which all have different masses and the hierarchy

of family masses. The amounts are controlled by deformation parameters that are

effectively moduli. We can calculate the values of the deformation moduli that lead to

the hierarchy and realistic values for the masses. Ideally, we would be able to predict

the values at which the deformation moduli are stabilized, and predict the masses,

but we are not yet able to do so. In principal, the moduli have to satisfy stabilization
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constraints, neutrino sector, global G2 structure, and so on. So, future study on these

constraints applying to our quark and lepton context may make the theory predictive.

We are able to get some important mass values. We work with high scale Yukawa

couplings. The top quark has a Yukawa coupling of order one. The up quark can be less

than the down quark. More precisely, mup +me . mdown (ignoring an electromagnetic

contribution), so that protons will be stable rather than neutrons, allowing hydrogen

atoms. We can derive the conditions in the underlying theory for this inequality, or

for the top Yukawa to be of order unity, but we cannot yet show they must uniquely

hold. Three families and a hierarchy of masses do arise generically. The theory might

not have allowed these results, so we view obtaining them in a UV complete theory

as significant progress. We don’t at this stage have much control over what masses

are associated with the three extra U(1)’s, but none should be massless. Then the

spectrum should contain four new Z’ states. They are well motivated. In future work

it may be possible to constrain their masses. Lastly, we also leave the study of the

remaining particles resulted from E8 breaking for future study.

5.2 Dynamical Axion Misalignment Production

In Chapter III and Chapter IV we discuss the fact that the misalignment mechanism

can source axion dark matter in the early universe with a decay constant fa ' O(1012)

GeV. For fa � 1012 GeV as is of interest to many experimental searches, the observed

DM abundance can be obtained if the misalignment angle θmis is taken sufficiently

close to π, where the anharmonic effect becomes important. In particular, when the

axion is very close to the hilltop of the potential, the onset of oscillations is delayed so

the axion abundance is less redshifted and thus more enhanced. As demonstrated in

Eq. (1.22), fa ' 1010 GeV corresponds to δθ ≡ π− θmis ' O(10−3), while fa ' 4× 109

GeV already requires δθ ' O(10−9). Such a small δθ has generically been understood

as fine-tuning of the initial condition. In this paper, we offer an explanation to this
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small δθ using axion dynamics in the early universe.

We point out that a class of models violates the canonical assumption that the

axion field is overdamped by Hubble friction and takes a random value during inflation.

Instead, there exist numerous possibilities wherein the axion is large compared to

Hubble during inflation and thus relaxes to the minimum of the potential. We refer to

this mechanism as Dynamical Axion Misalignment Production (DAMP). Additionally,

if the model possesses an approximate CP symmetry, then the axion potential may

receive a phase shift of π because the nearly real parameters for setting the axion

minimum can flip the sign between inflation and the QCD phase transition. This shift

converts the potential minimum into a maximum and explains why the axion is very

close to the hilltop—a mechanism we dub DAMPπ.

We explicitly construct models for DAMPπ, where the higher dimensional coupling

between the Higgs in the MSSM and the inflaton gives rise to a large axion mass and

the phase shift of the axion potential. Specifically, a negative Hubble induced mass

drives the Higgs to a large field value that enhances the quark masses, which in turn

raise the QCD scale. The axion is larger than usual due to stronger QCD dynamics.

Lastly, a Hubble induced Bµ term that carries an opposite sign from that of the MSSM

necessarily induces a shift in the axion potential by π. Together, renormalization from

the SM Yukawa couplings and any additional CP violating phases in the model can

provide the desired finite phase shift between O(10−16–10−3). This example works

only if the number of generations is odd.

Strikingly, due to the anharmonic effects of the axion potential, the prediction of fa

from the DM abundance has an extraordinarily mild logarithmic dependence on δθ � 1.

Therefore, DAMPπ makes a rather sharp prediction of 3× 109 GeV . fa . 1010 GeV.

Other phenomenological features of DAMPπ are as follows. Due to early relaxation,

the fluctuation of the axion field is exponentially damped and hence dark matter

isocurvature perturbations are suppressed. The upper bound on HI from isocurvature
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perturbations does not apply.

The impact of this anharmonicity on the structure formation has been investigated

in the literature. Refs. [144, 137] study this numerically and show that isocurvature

perturbation modes whose wavelengths are larger than the horizon size are enhanced

by anharmonic effects. Refs. [106, 105] numerically study the anharmonicity effects

on the growth of structures arising from the large fluctuations in an inhomogeneous

background, i.e. in the context of post-inflationary PQ symmetry breaking. Finally,

Ref. [76] has shown that in a quasi-homogeneous region, parametric resonance can be

important for amplifying fluctuations, and this effect is monotonically enhanced for

larger misalignment angles. While the anharmonicity effect may stimulate structure

formation, the aforementioned works are not directly applicable to this model as the

isocurvature perturbations are suppressed and the PQ symmetry is already broken

during inflation.

The axions from the misalignment mechanism are necessarily cold—a feature to

distinguish from other non-thermal production mechanisms. It is also potentially

interesting to study the imprints of maximal CP violation on the QCD phase transition

as well as Big Bang nucleosynthesis.

Similarly, a large decay constant is not only within the reach of the projected

experimental sensitivity for ultralight axions but well-motivated from the theoretical

standpoints. Specifically, fa ' 1016 GeV can be associated with grand unification,

whereas string theory predicts fa ' 1016-17 GeV. The QCD axion with such a large fa

faces serious challenges in cosmology, including overproduction of axion dark matter

from the misalignment mechanism. It is widely regarded that the misalignment angle

θmis can be fine-tuned to avoid this issue. Even in this case, however, isocurvature

perturbations are in conflict with high scale inflation.

In this dissertation, we have identified a class of models where the misalignment

angle is set to a small value due to axion dynamics instead of mere fine-tuning. The
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conventional assumption of the axion field during inflation is such that Hubble friction

dominates over the axion mass and the field value remains constant. Nevertheless,

there are various scenarios where the axion mass can be much larger so that the axion

is relaxed to the minimum in the early universe. We refer to such damping mechanism

as Dynamical Axion Misalignment Production (DAMP). Furthermore, if the model

possesses an approximate CP symmetry, the minima in the early universe can nearly

align with that of today, leading to θmis ' 0, which we call DAMP0. This early

relaxation to a minimum close to today’s value resolves both the axion overproduction

and isocurvature difficulties.

We realize the DAMP0 scenario using supersymmetric models where the coupling

between the Higgs and the inflaton results in a large axion mass during inflation.

In particular, the inflaton energy density can induce a negative mass term for the

Higgs, resulting in large Higgs VEVs in the D-flat direction. The quark masses that

become larger due to the Higgs VEVs modify the RG running of the strong coupling

constant and bring about a much larger QCD confinement scale. The axion mass is

then enhanced by the high QCD scale, fulfilling the criteria for DAMP0 in a consistent

cosmology. We can also raise the QCD scale by means of generic moduli fields. The

large Higgs field value is still crucial since otherwise the axion mass is suppressed by

the small MSSM quark masses. In summary, the axion misalignment near the bottom

of the potential can result from early dynamics and hence a small θmis can be regarded

as a prediction of the model rather than fine-tuning.
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