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Abstract 

 

Among youth, there has been a parallel increase in the prevalence of obesity and 

cardiometabolic abnormalities, including central obesity, glucose intolerance, elevated blood 

pressure, and dyslipidemia. This cluster of cardiometabolic abnormalities is a risk factor for the 

incidence of cardiovascular disease (CVD), cardiovascular-related mortality, all-cause mortality, 

and other chronic conditions in adulthood. While CVD manifests in middle-late adulthood, the 

atherosclerotic process and impaired cardiometabolic regulation start in childhood and track into 

adulthood. Therefore, primary interventions aiming to control cardiometabolic abnormalities are 

worth implementing at a young age.  

The recommended first line management protocol for cardiometabolic abnormalities in 

youth focuses on behavioral modifications of obesity. In fact, particular lifestyle behaviors (i.e., 

diet and sedentary and physical activity) are options for the prevention and management. 

Nevertheless, there is little evidence that addresses their effects during periods of rapid growth 

and maturation using a repeated measures, longitudinal study design. Such limitations may 

hinder our understanding of the precise preventive mechanisms of lifestyle behaviors, needed for 

tailoring cardiometabolic recommendations for youth. The current project will contribute much-

needed evidence by longitudinally examine the dietary and sedentary patterns among Mexican 

adolescents in relation to cardiometabolic health. 

The aforementioned lifestyle factors and genetic susceptibility are not enough to explain 

the increased prevalence in cardiometabolic abnormalities across populations. In fact, DNAm 

has been associated with the underlying pathology of CVD. DNA methylation (DNAm) refers to 
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the covalent link between the fifth carbon in a cytosine nucleotide and a methyl group (CH3). 

However, there is a scarcity of population-based studies among youth, highlighting the need for 

evidence regarding the associations between DNAm and cardiometabolic health during this 

sensitive life period. The current study will address these gaps in knowledge.  

 The three aims of this work used data from a pre-existing birth cohort called, Early Life 

Exposure in Mexico to ENvironmental Toxicants (ELEMENT), where Mexican children and 

adolescents aged 8 – 21 years were included in the analysis.        

Aim 1 investigated the repeated longitudinal associations between diet quality scores, 

measured using the Dietary Approaches to Stop Hypertension (DASH), Alternate Mediterranean 

Diet Score (aMedDiet), and Children’s Dietary Inflammatory Index (C-DIITM) scores and 

cardiometabolic risk factors. Higher DASH scores were associated with better insulin 

homeostasis. The aMedDiet and C-DII scores were associated with serum triglycerides. The 

positive association with C-DII and an inverse association with aMedDiet score confirmed a 

protective effect of these dietary patterns on serum triglycerides.  

Aim 2 examined the repeated longitudinal associations between sedentary activity 

patterns and cardiometabolic risk factors. Results suggested screen time was positively 

associated with blood pressure, and other sedentary time (i.e., doing homework/reading, and 

commuting) was positively associated with serum glucose. Using isotemporal substitution 

paradigm, we observed substituting sedentary time with moderate-vigorous physical activity was 

inversely associated with waist circumference and serum triglycerides. Furthermore, substituting 

an uninterrupted five minutes of sedentary time, a sedentary bout, or even one minute of 

sedentary bout with light activity was inversely associated with serum insulin. 
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Aim 3 studied the associations between DNAm at Long Interspersed Nuclear Element–1 

(LINE-1), H19, 11β-Hydroxysteroid Dehydrogenase type-2 (11β-HSD-2), and Peroxisome 

Proliferator-Activated Receptor alpha (PPAR-α) and cardiometabolic risk factors. DNAm was 

measured at multiple CpG sites per genomic region. DNAm at LINE-1 was inversely associated 

with repeated measures of serum glucose at site 1, and positively with high-density lipoprotein 

cholesterol at site 3. 11β-HSD-2 DNAm at CpG site 4 was positively associated with repeated 

measures of serum glucose.  

This dissertation showed that higher diet quality, lower sedentary time, and replacing 

sedentary activity with higher intensities were associated with a better cardiometabolic profile 

among Mexican youth. In addition, we detected few associations between DNAm on the selected 

four genomic regions and cardiometabolic profile. 



 1 

Chapter 1 Introduction 

 

Cardiometabolic Health: 

Cardiometabolic risk factors are central obesity, dyslipidemia (i.e., elevated serum 

triglycerides and/or reduced serum high-density lipoprotein cholesterol), glucose intolerance 

(i.e., elevated fasting blood glucose, oral glucose tolerance test, or hemoglobin A1C), and 

elevated blood pressure 1,2. This cluster of abnormalities in turn constitutes a risk factor for the 

incidence of cardiovascular disease (CVD), cardiovascular-related mortality, all-cause mortality 

3,4, and other chronic conditions 5,6 in adulthood. The manifestations of CVD events occur in 

middle and late adulthood; however, the atherosclerotic process starts in childhood 7-12 and tracks 

into adulthood 13-17.   

 The recommended first line management protocol for cardiometabolic abnormalities in 

children and adolescents lies on behavioral modifications 18,19.  In fact, the size of the protective 

effect is greater when the behavioral modifications entails modifying more than one lifestyle 

behavior compared to targeting only one behavior 19. Intervening at an early stage is a necessity 

for effective primary interventions; however, this step should be preceded with identifying the 

behavioral determinants of cardiometabolic risk factors in youth for targeted intervention 15,20.  

Identifying early determinants of impaired cardiometabolic health is of special interest to 

Mexican children and adolescents due to their disproportionate burden of metabolic disorders. 

Hispanic youth have higher prevalence of childhood obesity and impaired cardiometabolic health 

compared to their non-Hispanic white counterparts 21. Furthermore, Mexican youth showed signs 

of insulin resistance even in the absence of overweight or obesity 22. This tendency might be 
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explained in light of the documented difference in their body composition. Hispanic youth had 

higher body fat compared to non-Hispanic White peers 23,24. Despite this disproportionate burden 

among populations of Hispanic origin, few longitudinal studies have examined the early 

determinants of impaired cardiometabolic health on Mexican youth.   

Dietary Patterns/Quality:   

Diet is a well-established risk factor for cardiometabolic abnormalities 25. Diet patterns 

have been suggested over the traditional single-nutrient approach, to assess the relationship 

between diet and health outcomes 26. A diet pattern indicator is a summary score used to evaluate 

a subject’s diet and categorize their intake based on the degree of adherence to the eating 

recommendations used to construct the score 26,27. There are three categories of the diet pattern 

indicators based on the components included; they are 1) food/food group based indicators, 2) 

nutrient-based indicators, and 3) food and nutrient indicators 27. Multiple factors advocate for 

that shift in the analytical approach. To mention a few, collinearity between some nutrients may 

obscure the independent assessment of a given nutrient while keeping other highly correlated 

nutrients constant. Additionally, the effect size might be very small or undetectable for single 

nutrient or dietary factor relative to the effect of multiple factors 28. Lastly, this multi-

dimensional approach allows for detecting the collective impact of multiple nutrients and for 

delivering practical and holistic dietary messages 26, consistent with the public health 

recommendations. 

Evidence relating diet patterns to cardiometabolic health highlights three dietary scores 

relevant to pediatric populations, which are Dietary Approaches to Stop Hypertension (DASH) 

and the alternate Mediterranean Diet (aMedDiet), and Children’s Dietary Inflammatory Index 

(C-DIITM). Both DASH and Mediterranean diet have been considered to provide the “most 
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evidence for CVD prevention”29 relevant to other eating patterns. The DASH diet is an eating 

pattern for reducing blood pressure based on research findings sponsored by the U.S National 

Institutes of Health 30. The plan is characterized by 1) reduced intake of cholesterol, saturated fat, 

total fat, lean red meat, sweets, added sugars, and sugar-containing beverages and 2) increased 

intake of fruits, vegetables, and fat-free or low-fat milk and milk products, whole grain products, 

fish, poultry, and nuts. Therefore, it is rich in potassium, magnesium, and calcium, as well as 

protein and fiber, and lower in sodium30. Secondly, the Mediterranean diet is an eating pattern 

traditionally consumed among or people living in the countries surrounded by the Mediterranean 

Sea 31. This eating pattern is characterized by 1) the high consumption of fruits, vegetables, 

whole grains, nuts and seeds, and the use of olive oil as a predominant source of fat, 2) the low –

moderate consumption of animal products (i.e., dairy products, red meats, fish and poultry),  and 

3) the moderate consumption of wine 31. It has been shown that this dietary plan was inversely 

associated with obesity, cardiometabolic risk clustering 32, and cardiovascular health 33. Although 

the aMedDiet and DASH scores were originally developed for use in adult populations 34,35, their 

scoring systems uses population-specific cut-offs for the food consumption, that allows for these 

scores to be used in pediatric populations 20,36. The third approach of assessing diet quality was 

C-DII, which is a tool to assess the inflammatory potential of the diet and has been associated 

with multiple inflammatory markers in adolescents 37,38 and adults 39-43. Use of the C-DII in 

cardiometabolic health is well justified in light of the established link between inflammation and 

cardiometabolic abnormalities 44-47.  

Despite wide recognition of the role of diet in the development of cardiometabolic 

abnormalities, evidence is inconsistent about how adherence to each of these diet quality scores 

associates with cardiometabolic risk in pediatric populations 12,20,48-52. This inconsistency 
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underscores the need for prospective cohort studies that investigate the relationship between 

adherence to diet patterns and the cardiometabolic cluster in youth 24,31,48,52,53. Moreover, there is 

a dearth of knowledge for the association among children and adolescents using longitudinal 

dietary assessment to track the change in diet pattern over time. Most published longitudinal 

studies limited their analysis to baseline diet assessment in predicting the future occurrence of 

cardiometabolic risk factors 49,50. This work planned to address this research gap assessing the 

longitudinal associations between repeated measures of diet quality scores, DASH, aMedDiet, 

and C-DII, with repeated measures of cardiometabolic risk factors, among healthy children and 

adolescents.  

Physical Activity and Sedentary Behavior Patterns:  

Both sedentary behavior and physical inactivity are considered modifiable risk factors for 

CVD 54, and promoting physical activity and reducing the sedentary behavior across all ages is a 

strategy for preventing CVD 54. Sedentary behavior and physical inactivity are not identical 

concepts 55, and meeting the physical activity recommendations is not a guarantee of not being 

sedentary 56. Sedentary behavior is defined as “any waking behavior characterized by an energy 

expenditure ≤1.5 metabolic equivalents (METs), while in a sitting, reclining or lying posture” 57. 

On the other hand, physical inactivity is defined as “insufficient physical activity level to meet 

present physical activity recommendations” 57.  

A few considerations complicate the examination of physical activity in children and 

adolescents. “Activity is accumulated in bouts” 58; a bout is defined as “[a] period of 

uninterrupted time” performing a specific activity 57. A bout has three “quantitative dimensions,” 

which are frequency, duration, and intensity; they collectively describe the activity patterns over 

a specific period 57-59. Research has shown that bouts enrich our understanding of the activity 
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pattern beyond what total volume of activity may convey 60. Children have distinct patterns in 

engaging and accumulating physical activity; their patterns are characterized by highly active 

and interrupted patterns 61. Therefore, the assessment of total time spent in physical activity or 

sedentary behavior will not capture how sporadic patterns are associated with cardiometabolic 

health 58. This fact underscores the need to examine activity patterns to refine current 

recommendations for combating diseases 58. Although previous reports have examined the bouts 

in relation to cardiometabolic risk factors, a systematic review showed inconsistent evidence, and 

noted the lack of longitudinal studies among youth 58. 

A longitudinal study design can also account for the documented decline in physical 

activity and increase in sedentary behavior during development and maturation. Dumith et al. 

quantified the reduction in physical activity among children and adolescents aged 10 -19 years 

from longitudinal studies and found that on average, the percentage of change in physical 

activity per year was -7.0 (95% CI: -8.8 to - 5.2) 62. In addition to the decline in physical activity, 

the prevalence of sedentary behavior increases with age in children aged 6 – 11 years 63. Using a 

longitudinal design, which acknowledges the change in activity patterns via repeated measures of 

activity level, is necessary to provide evidence about the effect of physical activity on health 

outcomes among youth. 

Moreover, there is a need for ethnic-specific recommendations of physical activity to 

ameliorate cardiometabolic risk factors among youth. Previously, it was demonstrated that 

despite the similar total levels of physical activity and sedentary time among adolescents from 

different ethnic backgrounds, Hispanic Americans have fewer minutes of moderate and vigorous 

activity relative to European Americans 24. The difference in the activity patterns might be a 

reason for the inconsistent associations between physical activity and cardiometabolic risk 
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factors across races/ethnicities. Bremer et al. showed that physical activity was favorably 

associated with insulin homeostasis, waist circumference, high density-lipoprotein cholesterol 

(HDL-C) and low density-lipoprotein cholesterol (LDL-C) among non-Hispanic White 

adolescents, but the number of favorable associations were less among Mexican American 

counterparts 64. Another study conducted among multiethnic children aged 7 to 12 years, showed 

that total sedentary time was associated with higher serum glucose among Hispanic American 

children, but not among African Americans nor European Americans 24. The importance of 

understating the contribution of activity patterns on cardiometabolic risk factors is of special 

interest to Hispanic children and adolescents, who showed signs of insulin resistance despite the 

lack of manifestations for either overweight or obesity 22 because of their higher body fat 

compared to non-Hispanic White peers 23,24. 

The available evidence relating sedentary behavior, in particular TV watching, among 

children and adolescents with cardiometabolic risk is inconsistent, and this body of work has 

been described as providing “very low” evidence due to the “serious risk of bias and serious 

inconsistency” between studies 65. Similarly, a summary of the prospective studies showed null 

evidence between sedentary time and cardiometabolic health 66, and other researchers claimed 

the available evidence as “unconvincing” 67. The method of assessing sedentary behavior might 

be a reason for the inconsistent findings 68. The accelerometer is an excellent tool to overcome 

the limitations of the self-reported questionnaires 68. However, it has failed in distinguishing 

between posture settings (standing vs setting or lying down) 68, and in assessing the context of 

sedentary behavior (i.e., passive vs active screen time) 68. Thus, this could be a possible 

justification for the conflicting findings between sedentary behavior assessed using self-reported 

questionnaires asking for the screen time and the objective measure of the sedentary behavior 
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using accelerometer data with regard to the CVD risk factors in children 68. This leads to the 

endorsement of assessing the sedentary behavior using two methods whenever it is possible as 

they measure two dimensions of the same construct 68.  

This work aimed to overcome the aforementioned limitations in examining the 

relationships between activity level and cardiometabolic health in youth. Using a repeated 

measure longitudinal design, the associations between repeated measures of sedentary behavior 

patterns and cardiometabolic risk factors were investigated among Mexican children and 

adolescents.  

DNA Methylation:  

Lifestyle factors – including diet, lack of physical activity, sedentary lifestyle – and 

genetic susceptibility are generally considered predisposing factors for cardiometabolic 

abnormalities 69. However, they are not enough to explain the increase in prevalence of these 

abnormalities across populations 69. Another plausible mechanism explaining the etiology of 

cardiometabolic abnormalities and CVD is thought to be through epigenetic modifications 70-76. 

Epigenetics is defined as "the study of mitotically heritable regulators of gene expression that do 

not change the DNA sequence” 77. Unlike genetics, epigenetic modifications are dynamic and 

reversible 70,78 and can respond to the environment. The major types of epigenetic modifications 

include DNA methylation (DNAm), histone modification, and non-coding RNA. DNAm is the 

most commonly studied approach in epidemiology, and it has been associated with health 

outcomes. DNAm refers to the presence of a covalent link between carbon number 5 in the 

cytosine nucleotide and a methyl group (CH3)
79,80. In vertebrate, the methylation typically occurs 

at CpG sites, meaning adjacent cytosine and guanine nucleotides linked by a phosphate bond 81. 

The process of methylating DNA requires the presence of a methyl donor,  S-Adenosyl 
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methionine (SAM), and an enzyme called DNA methyltransferase (DNMT), that transfers the 

methyl group from SAM to the cytosine nucleotide  resulting in the formation of 5-

Methylcytosine (5mC) 79. In mammals, there are three different DNMTs, which are DNMT1, 

which is involved in maintenance DNAm during replication, and DMNT3a, and DNMT3b, 

whose roles are mainly in the De novo DNAm during embryogenesis 82,83.  

One of the main functions for DNAm is its role in regulating gene expression. The impact 

of DNAm on gene expression is locus-specific. DNAm at promotor regions and gene bodies are 

typically associated with suppression and activation of gene expression, respectively 79.  Other 

critical functions of DNAm at CpG sites are 1) maintaining the genome stability by controlling 

the expression of the transposable elements, 2) involvement in genomic imprinting and X-linked 

activation 79.  

Ample research has examined early life epigenetic programming, where DNAm was 

measured during early development, in relation to obesity and CVD risk later in life 84. 

Epigenetic research often focuses on early development since DNA undergoes a broad 

demethylation wave followed by a re-methylation wave during early embryogenesis making this 

an important developmental time period for long term programming 81. However, DNAm is a 

dynamic process as it involves in determining cell identity and the cell's response to an 

environmental stimuli 78, and the impact of lifestyle factors such as diet, smoking, physical 

activity, and others on DNAm have been widely recognized 85-87. Previous work suggests that 

adolescence, in particular, is also a susceptible period when environmental stimuli can impact 

DNAm patterns 88,89, with implications for health outcomes 70,78. Moreover, adolescence is 

associated with changes in body composition and hormonal milieu 90,  considered the hallmark 

for cardiometabolic abnormalities 18. Despite the rapid growth in research aimed at developing 
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epigenetic biomarkers for CVD’s diagnosis, prognosis, and individualized treatment regimens 

72,73,91, there are few studies of this relationship among children and adolescents.  

DNAm quantification methods are classified based on the following 1) Global DNAm , 

2) Gene/locus-specific methylation, and 3) Epigenome-wide methylation78. Each method has its 

pros and cons. A brief explanation focuses on the first two types, as they are the analytical 

methods used in the current project. The global DNAm method measures the percentage of total 

5mC levels in the entire genomic sample 78 in relation to total cytosine contents 92. The genomic 

sample could be either a specific sequence of the genome or multiple regions of the repetitive 

elements, such as long interspersed nuclear elements (LINE-1). A limitation of this method is the 

lack of information on methylation patterns at specific genes/loci 78. The second method, 

gene/locus-specific methylation, involves quantifying the percentage of methylation at specific 

genes or at CpG sites within the genes 78,92. Through this method, information about the 

association between lifestyle factors and epigenetic regulation of specific genes can be inferred.  

However, in gene/locus-specific methylation , the specificity DNAm is a concern for many 

epidemiological studies, because methylation is variable across cells and tissue 78.  

For this dissertation work, DNAm was quantified at LINE-1 as a proxy measure for 

global DNAm 78, and at three genes previously associated with cardiometabolic-related outcomes 

(H19 93-96, 11β -hydroxysteroid dehydrogenase type 2 (11β-HSD-2) 97-101,  and peroxisome 

proliferator-activated receptor alpha (PPAR-α) 102-106). 

LINE-1 is the only autonomous, active non-LTR (long-terminal repeat) retrotransposon 

in humans 107, and it is commonly used as a proxy measure of global DNAm 78 since it makes up 

15% - 17% of the human genome 107,108. Active expression of LINE-1 (i.e., decreased LINE-1 

methylation) is associated with genomic instability and CVD, independent from well-established 
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CVD risk factors in adults 109. DNAm at the LINE-1 region has been associated with 

cardiometabolic risk factors in adults 106,110-112, but few studies have been conducted in children 

and adolescents 113,114. Perng et al. found that quartiles of LINE-1 DNAm were inversely 

associated with a change in waist circumference z-score among Colombian boys aged 5 -12 

years old after 2.5 years of follow-up 113. Dunstan et al. reported null cross-sectional associations 

between salivary DNAm at LINE-1 and adiposity outcomes (body mass index (BMI) z score, 

waist circumference z score, and percent body fat in 431 adolescents, predominantly Caucasians, 

aged 10 - 15 years 114.   

H19 is a gene for a long non-coding RNA—it does not code for protein and is an 

imprinted gene, where the maternally allele of the gene is expressed, while the paternally allele is 

imprinted or silenced. Genomic imprinting is an epigenetic phenomenon, and is defined as 

“monoallelic expression of a gene or chromosomal region depending on the parental origin of 

inheritance” 115. H19 has a role in regulating cell formation and proliferation, weight, 

adipogenesis, oxidative metabolism and brown adipose tissue thermogenesis 93,94. A study of 

adult rats showed that subcutaneous and visceral adipose tissue H19 expression were associated 

inversely with BMI, but positively with a marker for brown adipose tissue thermogenesis, 

Uncoupling Protein 1 (Ucp1) 94. Few human studies examined the DNAm at H19 in children in 

relation to adiposity 95,96. A previous study in the ELEMENT population showed that DNAm at 

H19 was positively associated with higher subcutaneous fat, but not with central obesity or BMI 

z score, among girls only 95.  Huang et al. reported a similar positive association with H19 

DNAm and subcutaneous fat in Australian adolescents 96. There are no other studies, that we are 

aware of, examining DNAm at H19 in relation to other cardiometabolic risk factors.  
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11β-HSD-2 converts cortisol to an inactive metabolite called cortisone, and abnormalities 

in this gene have been associated with hypertension 97. The gene is located on chromosome 16 

q22116. 11β-HSD2 enzyme protects the activation of mineralocorticoid receptors by intracellular 

cortisol 117. Previous studies showed that DNAm at 11β-HSD-2 at the promotor region was 

associated with suppressing the gene expression 116,118, and impaired 11β-HSD-2 enzyme activity 

leads to elevation in the urinary cortisol: cortisone metabolites ratio 97. DNAm at 11β-HSD-2 at 

the promoter region was positively associated with blood pressure in adults 97,98, and, lower 11β-

HSD-2 enzyme activity was associated with higher blood pressure in children 99. Drake et al. 

found a positive correlation between 11β-HSD2 methylation in blood and weight, waist 

circumference, and BMI, in Scottish adults 98.  In fact, previous research has shown the 

enzymatic activity of 11β-HSD-2 is associated with age 119, dietary intake, obesity 100, insulin 

sensitivity 100,  type 2 diabetes 101, and physical activity 120, and is regulated by other epigenetic 

mechanisms such as miRNA121.  

Peroxisome Proliferator-Activated Receptor alpha (PPAR-α) is one isoform of the PPAR 

family that additionally encompasses PPAR β/ PPAR δ, and PPAR γ 102,122, and it is located on 

chromosome 22 103. PPAR-α controls multiple lipid metabolism pathways, including fatty acid 

oxidation, triglycerides synthesis and breakdown, and bile acid metabolism and others 102,103. As 

another function for PPAR-α, it regulates oxidative stress and inflammatory response 102,122. 

Therefore, its contributions to dyslipidemia, diabetes, and obesity are biologically plausible 122.  

The use of fibrates,  PPAR-α agonist drugs, has been shown to significantly lower cardiovascular 

risk among high-risk adults 104. Few studies have assessed the relationship between DNAm at 

PPAR-α and cardiometabolic risk factors. DNAm at PPAR-α from visceral adipose samples 

analyzed among adults showed a positive correlation between DNAm and serum triglycerides 
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106. Moreover, rats fed a high fructose diet for two weeks showed a significant increase in hepatic 

DNAm at one CpG site in the promoter region of PPAR-α, lowered mRNA expression, high 

serum triglycerides, total cholesterol, and higher hepatic lipid accumulation 105.  Furthermore, by 

comparing the PPAR-α expression in human cell culture studies from subjects diagnosed with 

obesity and normal weight controls, the obese cell culture had lower compensatory increase in 

PPAR-α expression after oversupply the cell culture with lipids 123.  

We quantified global DNAm and the DNAm at three genes previously associated with 

cardiometabolic-related outcomes (H19, 11β-HSD-2, and PPAR-α) to shed light on the role of 

DNAm in cardiometabolic risk in youth. The associations between DNAm at LINE-1, H19, and 

11β-HSD-2 and repeated measures for cardiometabolic risk factors were investigated. For PPAR-

α, we assessed the cross-sectional associations between DNAm and cardiometabolic health. We 

hope our findings will contribute to the body of evidence in relation to cardiometabolic health 

and support investigating the role of epigenetics during adolescence, as one environmentally 

sensitive period of growth and development.    

The three aims of this project were conducted using the pre-existing data from the Early 

Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) birth cohort in Mexico 

City. Briefly, mother/child dyads from low- to moderate-income populations visiting prenatal 

clinics 124-126 were recruited for the project between 1997 -2004. The research team conducted 

multiple follow-up visits for the offspring, and collected information on physical growth, 

maturation, diet, physical activity, epigenetics, and clinical biomarkers for cardiometabolic 

health. The outcomes for each aim were lipid profiles, glucose, blood pressure, and 

anthropometry. The use of a well-characterized cohort allowed for adjusting for multiple 

confounders measured at childbirth.  Aim 1 investigated the repeated longitudinal associations 
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between diet quality scores, measured using the DASH, aMedDiet, and C-DII with 

cardiometabolic risk factors. Aim 2 examined the repeated longitudinal associations between 

patterns of sedentary activity and cardiometabolic risk factors. Lastly, Aim 3 studied the 

association between DNAm at LINE-1, H19, 11β-HSD-2, and PPAR-α with cardiometabolic risk 

factors.  
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Chapter 2 Diet Quality Scores and Cardiometabolic Risk Factors in Mexican Children and 

Adolescents: A Longitudinal Analysis    

 

Abstract:  

Background: There is limited evidence for the effect of diet on cardiometabolic health during 

the pubertal transition. We collected repeated measures of diet quality and cardiometabolic risk 

factors among Mexican youth. 

Method: This analysis included 574 offspring of the Early Life Exposure in Mexico to 

Environmental Toxicants (ELEMENT) birth cohort followed-up to three time points. Dietary 

Approaches to Stop Hypertension (DASH), alternate Mediterranean Diet (aMedDiet), and 

Children Dietary Inflammatory Index (C-DIITM) scores were constructed from food frequency 

questionnaires. Higher DASH and aMedDiet, and lower C-DII scores reflect a higher diet 

quality. Cardiometabolic risk factors were assessed including lipid profiles, glucose homeostasis, 

blood pressure, and waist circumference. Linear mixed models were used between quartiles of 

each diet score and cardiometabolic outcomes.  

Results: The fourth DASH quartile was inversely associated with log insulin (μIU/mL) [β= -

0.23, p= 0.0021] and log-Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) [β= 

-0.25, p= 0.0008] compared to the first quartile. Besides, DASH score was linearly associated 

with log-HOMA-IR [β= -0.02, p= 0.0045]. Serum log-triglycerides (mg/dL) was linearly 

associated with aMedDiet [β= -0.03, p= 0.0031] and C-DII scores [β= 0.03, p= 0.0027]. The 

highest C-DII quartile was associated with log-triglycerides (mg/dL) [β= 0.11, p=0.0037]. 
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Conclusion: Higher diet quality was associated with a better cardiometabolic profile among 

Mexican youth.  

Keywords: Cardiometabolic risk factors, diet quality, longitudinal analysis, population-based 

study, children and adolescent, Mexicans.  
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Introduction:  

The prevalence of childhood obesity is increasing worldwide. In the Latin America 

region, the prevalence increased from 1.6%, and 1.8% in 1975 to 10.4%, and 13.4% in 2016 for 

girls and boys aged 5-19 years, respectively 1. Childhood obesity is associated with increases in 

the risk and prevalence of cardiometabolic abnormalities 2-5. The cluster of cardiometabolic 

abnormalities is a risk factor for the incidence of cardiovascular disease (CVD), cardiovascular-

related mortality, all-cause mortality 6,7, and other chronic conditions in adulthood 8,9. Targeting 

childhood obesity is crucial for effective primary interventions of “adulthood cardiometabolic 

sequela” 5, and understanding the determinants of cardiometabolic risk factors in youth can 

inform the design of risk reduction and prevention programs 4,10.  

Diet is a well-established risk factor for cardiometabolic health 11. Diet patterns have 

been suggested over the traditional single-nutrient approach, to assess the relationship between 

diet and health outcomes 12. A diet pattern summary score can be used to evaluate a subject’s 

overall diet and categorize their intake based on the degree of adherence to the eating 

recommendations used to construct the score 12,13. This multi-dimensional approach allows for 

detecting collective impact of multiple nutrients and for delivering practical and holistic dietary 

messages 14,15, consisting with the public health recommendations.  

Evidence relating diet patterns to cardiometabolic health highlights three dietary scores 

relevant to pediatric populations. The Dietary Approaches to Stop Hypertension (DASH) and the 

alternate Mediterranean Diet (aMedDiet) are considered to have “the most evidence for CVD 

prevention 16” relevant to other eating patterns. The DASH is an eating pattern for reducing 

blood pressure based on research findings sponsored by the US National Institutes of Health 17.  

Secondly, the aMedDiet is an eating pattern for people living in the countries surrounded by the 
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Mediterranean Sea 18 with favorable associations with obesity, cardiometabolic risk clustering 19, 

and cardiovascular health 20. These two eating plans emphasize a higher consumption of fruits, 

vegetables, whole grain, and nuts 17,18. Moreover, the Dietary Inflammatory Index (DII®) is a 

tool to assess the inflammatory potential of the diet, and it has been associated with multiple 

inflammatory markers in adolescents 21,22 and adults 23-27. The use of the DII in cardiometabolic 

health is well justified in light of the established link between inflammation and cardiometabolic 

abnormalities 28-31. Contrasting the associations of these scores with cardiometabolic risk factors 

is of interest, to build up evidence needed to formulate precise public health messages to prevent 

or manage cardiometabolic abnormalities in youth. Moreover, comparing the associations across 

the three scores, none of which was developed originally for the Mexican population, will help to 

shed light on the role of eating habits, traditions, and cultural values in facilitating the adoption 

of these scores across different populations 32,33.   

Current evidence about adherence to each of these diet quality scores on cardiometabolic 

risk in pediatric populations is inconsistent across studies 10,34-39, underscoring the need for 

prospective cohort studies that investigate the relationship between diet quality and 

cardiometabolic risk factors 18,35,39-41. Thus, the aim of the study was to investigate the 

relationship between diet quality scores, DASH, aMedDiet, and Children Dietary Inflammatory 

Index (C-DIITM), and cardiometabolic risk factors using repeated-measures longitudinal study 

design, among healthy Mexican youth enrolled in the Early Life Exposure in Mexico to 

Environmental Toxicants (ELEMENT) birth cohorts. We hypothesized that a lower diet quality 

and more pro-inflammatory diets will be associated with impaired cardiometabolic profile, 

higher waist circumference, blood pressure, glucose homeostasis, and triglycerides (TG), but 

lower high-density lipoprotein cholesterol (HDL-C). 
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Methods:  

Study population:  

The analytic sample consists of children and adolescents from two of three cohorts 

comprising the ELEMENT project in Mexico City, Mexico 42-44. A detailed description of the 

ELEMENT project has been published before 44. In brief, during 1997 -2004, 1012 mother/child 

dyads were recruited from prenatal clinics, which serve low- to moderate-income populations 45. 

At childbirth, mothers reported sociodemographic information. A sub-sample of mothers 

enrolled at Cohort 3 participated in a randomized controlled trial (RCT) of daily calcium 

supplementation (1200 mg) during their pregnancies up to one year postpartum 43,44. Offspring 

were followed multiple time points in childhood to collect relevant data about growth, diet, and 

health outcomes.  

The current analysis included 574 children and adolescents who attended at least one of 

three follow-up visits in late childhood and adolescence, had at least one of eight 

cardiometabolic risk factors (waist circumference, systolic and diastolic blood pressure, fasting 

glucose, TG, HDL-C, insulin, and Homeostatic Model Assessment of Insulin Resistance 

(HOMA-IR)) and dietary information. At the 2011 follow-up visit, herein called Time 1, 250 

children aged between 8 -14 years were included 44. Time 2, a follow-up study conducted in 

2015, re-recruited 554 children aged 10 -18 years 44.  In the 2018 visit, called Time 3, 518 

adolescents aged 12 - 21 years completed the last follow-up visit. The sample sizes that were 

available for each diet quality score and the number of repeated measures for each score are 

presented in Figure 1. The National Institute of Public Health of Mexico and the University of 

Michigan institutional review boards approved the research protocol. The research team 
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collected written informed consent and assent from mothers upon their enrollment and from 

adolescents, respectively.   

Cardiometabolic Risk Factors:  

Anthropometric measures: Trained research staff collected duplicate measurements for 

body weight (kilograms) to the nearest 0.1 kg and height (centimeters) to the nearest 0.5 cm 

using in Time 1 a digital scale (BAME Model 420; Catálogo Médico/Tanita Co. Tokyo, Japan 

with height rod (model WB-3000m 38), and only for weight in Time 2 and 3 the body 

composition device Inbody (model 230, Gangnam-gu, Seoul 135-960 KOREA). For waist 

circumference (centimeters) duplicate measurements were also performed to the nearest 0.1 cm 

using a non-stretchable measuring tape (SECA (model 201, Hamburg, Germany 38)). The 

average of the two measurements was used for the analysis 46.  

Cardiometabolic biomarkers: Duplicate readings for systolic and diastolic blood 

pressure were recorded in seated position using a mercury sphygmomanometer (TXJ - 10 MD 

3000 model, Homecare, China), and the average of the two measurements was used for the 

analysis. Fasting blood samples were used to analyze serum glucose via automated 

chemiluminescence immunoassay (Immulite 1000; Siemens Medical Solutions) 46, and TG and 

HDL-C using a biochemical analyzer (Cobas Mira Plus; Roche Diagnostics) 46. Levels of insulin 

were quantified via enzyme-linked immunosorbent assay chemiluminescence method with 

IMMULITE® 1000, Erlangen, Germany equipment 38. A Homeostatic Model Assessment of 

Insulin Resistance (HOMA-IR) was calculated as [fasting plasma glucose (mmol/l)*fasting 

serum insulin (mU/l))/ 22.5] 47; higher values represents low insulin sensitivity/insulin resistance 

47. 

Diet quality scores:   
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Dietary intake was assessed using a semi-quantitative food frequency questionnaire 

(FFQ) adapted from the nationally representative 2006 Mexican National Health and Nutrition 

Survey 48. The FFQ contains 101 food items in 14 food groups: 1) Dairy Products; 2) Fruits; 3) 

Vegetables; 4) Homemade Fast Food; 5) Meat, Sausages, and Eggs; 6) Fish and Seafood; 7) 

Legumes; 8) Cereal and Starchy Vegetables; 9) Corn Products; 10) Beverages; 11) Snack, Sweet 

and Desserts; 12) Soups, Creams, and Pasta; 13) Miscellaneous, and 14) Tortillas. The FFQ 

queries usual intake over the previous week 38,48. The frequency of consumption fell into 8 

categories, ranging from never to 6 times a day 38. Mothers of children younger than 11 years of 

age attended the study visit and helped in the FFQ session to improve the accuracy and validity 

of children’s answers. FFQs were analyzed using a food composition software developed by the 

National Institute of Public Health, Mexico 49,50. The average daily intake was calculated by 

multiplying the nutrient content for each food item by its frequency of the reported consumption. 

Then, all intake values of all nutrients were summed to compute the daily consumption for each 

nutrient.  

The construction of the DASH and aMedDiet scores was completed after grouping FFQ 

food items according to their nutritional properties. DASH and aMedDiet scores were calculated 

similarly to the methods proposed by Fung, et al. (2008) 51 and Fung, et al. (2005) 52, 

respectively (Table 1 (Supplementary) and Table 2 (Supplementary)). The possible range of 

values is 8 – 40 for the DASH score and 0 – 8 for aMedDiet – down from 9 due to the exclusion 

of the alcohol group; higher values indicate higher adherence to the diet pattern (i.e., individuals 

consumed more food/groups that characterized the dietary pattern). To account for the age and 

sex effects on dietary intake, we grouped our sample into 20 strata based on two-year increments 

by sex using a previously published approach 10,53. 
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Collected FFQ data at each Time point, was used to calculated the validated C-DII that 

included 25 components 54 (Table 3 (Supplementary)). An inflammatory effect score was given 

to each C-DII sub-component according to their relationship with various inflammatory markers, 

which was based on past literature 23. To calculate the z-score for each component of the C-DII 

score, each child’s dietary information was mapped with a population-based food consumption 

database composed of means and standard deviations from children in approximately 14 nations, 

which are referred to as global means and standard deviations 54. The z-scores were calculated by 

subtracting the participants’ intake from the global means and dividing by the global standard 

deviation. The z-scores were standardized per 1000 calories to adjust for between-person 

variability in energy intake 55. The scores were converted into centered percentiles by doubling 

the value and then subtracting 1 to minimize the right-skewed distributions. The resulting 

percentiles were multiplied by their corresponding inflammatory effect score to obtain a 

component-specific C-DII value. Lastly, each child’s C-DII score was the sum of its component-

specific C-DII scores. The range of values for the C-DII in the current study was -4, +4, where 

positive values indicate, a pro‐inflammatory diet and negative values represent an anti‐

inflammatory diet 38.   

Covariates:   

Based on prior knowledge, potential confounders assessed for this research study were: 

1) baseline characteristics assessed at delivery, including sex, gestational age, mode of delivery, 

birth weight, duration of breastfeeding, and mothers’ age, marital status, parity, years of 

education, and enrollment in the calcium supplementation RCT during pregnancy, and 2) 

Follow-up characteristics for the children that were measured at each of the three time points. 
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The follow-up characteristics were child’s age, body mass index (BMI), total daily caloric intake, 

physical activity measured as metabolic equivalents, and puberty status.  

Mothers reported household and demographic information, including their age, marital 

status (married, or others – includes free union, single, separated, and divorced), parity status (0, 

1, ≥ 2), and years of education (<12 yrs., 12 yrs., or >12 yrs.), gestational age estimated by a 

registered nurse, mode of delivery (vaginal, or C-section childbirth), and enrollment in the 

calcium supplementation RCT (not enrolled or, enrolled). The newborns were followed until 5 

years of age, and information about self-reported breastfeeding duration was quantified across 

the visits 56.   

A physical activity questionnaire based on the Youth Activity Questionnaire (YAQ), and 

it was  validated relative to 24 hours physical activity recall among Mexican school-children 

aged 10 to 14 years in Mexico City 57. The questionnaire was used to calculate total metabolic 

equivalents. For each self-reported physical activity, the corresponding metabolic equivalent 58 

was multiplied by the activity intensity. The total metabolic equivalents per week were 

calculated by summing the metabolic equivalents for all activities. Tanner stages for sexual 

maturation were assessed by a trained pediatrician including female breast development, male 

genitalia and female and male pubic hair 59 with values ranging from 1 for pre-pubertal status till 

5 for fully mature status 60,61. In this study, pubertal onset was indicated by a value greater than 1 

for one or more Tanner stages 62. 

Statistical Analysis:  

The outcomes were 1) waist circumference (cm), 2) systolic and 3) diastolic blood 

pressure (mm Hg), 4) fasting glucose (mg/dL), 5) TG (mg/dL), 6) HDL-C (mg/dL), 7) insulin 

(μIU/mL), and 8) HOMA-IR. The residuals for TG, insulin, and HOMA-IR indicated skewness; 
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thus, log transformation was done. Demographic characteristics of the study participants were 

presented as mean (SD) for continuous variables and frequency (proportions) for categorical 

variables. We ran partial Spearman’s correlations between diet quality scores across each study 

visit adjusting for age, sex, and total caloric intake. Linear mixed effects models with a 

compound symmetry error structure were used to examine the repeatedly assessed relationship 

between diet quality scores and cardiometabolic risk factors. Residuals of the final models were 

checked for assessing the mixed effects assumptions. Dietary quality scores were calculated by 

categorizing the continuous exposures into quartiles to assess dose-response relationships and 

detect any non-linear associations. We assigned the median value for each quartile, and 

examined the linearity of trends across quartiles by modeling the quartiles as continuous 

exposure. Findings are presented as β (SE), and p-value. 

 The crude model included quartiles of each diet score, and fully adjusted models 

included covariates that were considered potential confounders. Potential confounders were 

selected based on prior knowledge of the cardiometabolic health literature and their association 

with the quartiles of each diet quality score. We had repeated measures for the following 

covariates: age, total daily caloric intake, physical activity measured via metabolic equivalents, 

and puberty onset. All models were adjusted for total caloric intake and age, and sex when 

models included boys and girls together. Also, we additionally adjusted waist circumference 

models for BMI to account for body size 63. We present our results from the overall sample and 

sex-stratified. To account for the multiple testing according to Bonferroni method, a p-value of < 

0.00625 (0.05/8 [number of outcomes]) was considered for a significant finding. SAS statistical 

software package, version 9.4, was used for analyses (SAS Corp, NC, USA). 

Results: 
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Figure 1 summarizes the study design, sample sizes that were available for each diet 

quality score and the number of repeated measures for each score. Table 4 shows the 

demographic characteristics of the children stratified by the study visit. The mean (SD) age of 

the sample was 10.32 (1.67), 14.50 (2.12), and 16.44 (2.14) years at Time1, 2, and 3, 

respectively. There was variability in the mean values of the cardiometabolic risk factors and diet 

quality scores across the follow-up visits. Time 1 had the highest values for the diet quality 

scores (i.e. higher DASH, and aMedDiet scores, and lower C-DII score (anti-inflammatory 

diet)); while Time 3 had the lowest diet quality scores (Table 4). The Spearman’s correlation 

coefficients [rs] between DASH and aMedDiet scores ranges from 0.39 – 0.45, for DASH and C-

DII scores ranges from rs= -0.53 – -0.57, and for C-DII and aMedDiet ranges from rs = -0.43 – -

0.47 across the three follow-up study visits; all correlations were significant (p-value <0.0001) 

(Table 5 (Supplementary)). 

Association between DASH diet scores and cardiometabolic risk factors:  

The distributions of potential confounding factors were examined across quartiles of the 

DASH diet score. DASH scores had medians of 19, 23, 26 and 29 in each quartile. The DASH 

quartiles were associated with several factors, including mothers’ characteristics (such as 

enrollment in the calcium intervention study, parity status, and years of education) and youths’ 

characteristics (such as pubertal onset and metabolic equivalents) (Table 6 (Supplementary)). In 

adjusted models, girls in the second DASH quartile had higher waist circumference (cm) [β= 

1.12, p= 0.0036] compared to those in the lowest DASH quartile. An inverse association was 

detected with log serum insulin among participants in the highest DASH quartile compared to 

the lowest DASH quartile [β= -0.23, p= 0.0021], corresponding to 23% reduction in serum 

insulin. Although the DASH score was linearly associated with HOMA-IR [β= -0.02, p= 
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0.0045], corresponding to 2.0% reduction for every unit increase in DASH score, the difference 

in HOMA-IR between the DASH quartiles was significant only between the highest vs. lowest 

quartile with 22.0% reduction [β= -0.25, p= 0.0008]. No association was found with other 

cardiometabolic risk factors in the overall sample or the sex-stratified analysis (Table 7).  

Association between aMedDiet score and cardiometabolic risk factors: 

The aMedDiet scores had medians of 2, 3, 5 and 6 in each quartile. The aMedDiet 

quartiles were associated with following confounding factors, including mothers’ characteristics 

(such as enrollment in the calcium intervention study, and mode of childbirth) and youths’ 

characteristics (such as pubertal onset and metabolic equivalents) (Table 8 (Supplementary)). In 

adjusted models, an inverse linear trend association was detected for log-serum TG [β= -0.03, p= 

0.0031]. This change represented a reduction by 3.0% in serum TG for every unit increase in 

aMedDiet score. No association was found with other cardiometabolic risk factors either in the 

overall sample or the sex-stratified analysis (Table 9).  

Association between C-DII score and cardiometabolic risk factors:   

The C-DII scores had medians of -1.809, -0.630, 0.367, and 1.627 in each quartile. The 

C-DII quartiles were associated with several confounding factors, including mothers’ 

characteristics (such as enrollment in the calcium intervention study, parity status, and years of 

education) and youth-related factors (such as pubertal onset and metabolic equivalents) (Table 10 

(Supplementary)). In adjusted models, the C-DII scores were positively associated with serum 

TG. These associations were captured in the linear trend of the log-serum TG scale [β= 0.03, p= 

0.0027], with an increase by 3.0% in serum TG for every unit increase in C-DII score. Moreover, 

a positive association was detected with log-serum TG among participants in the highest quartile 

[β= 0.11, p= 0.0037] compared to the lowest quartile, with a change by 11.0%. In sex stratified 
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analysis, the positive association for log-serum TG was detected with a linear trend [β= 0.04, p= 

0.0051] among boys, and the highest quartile [β= 0.16, p= 0.0028] differed from the lowest 

quartile among boys. No association was found with other cardiometabolic risk factors either in 

the overall sample or the sex-stratified analysis (Table 11).   

Discussion: 

In this longitudinal study, we examined the relationships between three diet quality 

scores and cardiometabolic risk factors among Mexican children and adolescents aged 8 – 21 

years across the three study visits. Our study showed that TG, out of the cardiometabolic risk 

factors, was associated with two diet quality scores; aMedDiet scores were negatively associated, 

while C-DII scores were positively associated. Both findings indicate higher dietary quality was 

associated with lower serum TG. Insulin and HOMA-IR were inversely associated with the 

DASH scores. As far as we know, our study is one of the few prospective studies with repeated 

measures of multiple dietary quality scores and cardiometabolic risk factors conducted among 

Mexican youth.  

Our findings showed that serum TG was linearly associated with the aMedDiet and the 

C-DII scores. The increase from a quartile to the next was associated with small effect sizes (i.e., 

2.75% for aMedDiet scores, and 3.20% for C-DII scores), and it might not be of clinical 

significance. However, a four-unit increase in diet quality, captured by the change from the first 

to the highest quartiles, was associated with 11% reduction, and 13% increase in serum TG for 

aMedDiet and C-DII scores, respectively. Our results indicating higher diet quality is associated 

with favorable control of serum TG was consistent with the established role of diet in managing 

hypertriglyceridemia 64-66. Beside, diet impacts serum TG via the consumed dietary fatty acid, 

and synthesized fatty acids from excess glucose via the de novo lipogenesis pathway 64. This 
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evidence collectively endorses controlling for serum TG as a potential primary intervention 

among youth to mitigate future dire cardiometabolic consequences given the evidence supporting 

the role of TG as an established risk factor for CVD among adults 67-70. 

We found an inverse association between DASH score and HOMA-IR and serum insulin. 

Our results are consistent with findings from a meta-analysis of RCTs among adults 71, as well as 

a randomized cross-over clinical trial of 6 weeks of DASH intervention conducted among 

adolescent girls 72.  The nutrients rich in DASH diet, which are potassium, magnesium, calcium, 

17 and folic acid 73, have potential roles in insulin and glucose homeostasis 74-76. The inverse 

associations with insulin sensitivity were of special interest for the Hispanic youth because 

insulin resistance can be identified in Mexican children without evidence of overweight or 

obesity 77. Insulin sensitivity is a driver for adipose tissue partitioning 78 and abnormal fat 

deposition may be a potential risk for the pathology of obesity 79. Regarding the association 

between DASH score and blood pressure, our null results are consistent with null associations 

reported in other studies 37,80.   

We identified few longitudinal studies conducted among Mexican youth with which to 

compare our results 38,81. In a sub-sample of young adults in the ELEMENT cohort (N=100, and 

mean age= 21.5 years), Betanzos-Robledo et al. examined the association between DII scores, as 

a cumulative exposure from the first year of life until 21 years of age, with few cardiometabolic 

risk factors, and only blood pressure was positively associated with DII scores 38. Moreover, 

Barragán-Vázquez et al. investigated the longitudinal association between C-DII scores and 

adiposity, assessed at 5, 7, and 11 years among Mexican children 81. They found no association 

with waist circumference, which was consistent with our conclusions. However, they showed 

that a one unit increase in the C-DII score was associated with a change of 0.41% in waist 
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circumference among girls 81. Future longitudinal studies are worth conducting to solidify the 

evidence by examining the role of diet and cardiometabolic health in youth from different 

analytical perspectives. For example, by assessing repeated longitudinal associations, the role of 

cumulative effect of diet across childhood might reveal additional information about the long-

term exposure 38, and the heterogeneity in diet quality among the study population can be 

investigated as well 81. 

We found a positive association between higher DASH score and waist circumference 

among girls. Waist circumference is an effective non-invasive tool for assessing truncal fat 

among children and adolescents 82. However, repeated measures of waist circumference in 

childhood have to interpret with caution. Waist circumference captures information about 

subcutaneous fat, muscle, intramuscular fat, visceral fat, and bone 83. The documented increase 

in waist circumference that parallels growth in children and adolescents 81,84,85 may not 

necessarily reflect a high-fat mass 84. Additionally, it should also be noted that waist 

circumference is also affected by genetic and environmental factors 85, which may highlight the 

possibility of residual confounding in our analysis. Lastly, our dietary assessment may not 

capture habitual intake, as the used FFQ assessed the consumption over the last week 86, and that 

could increase the measurement error in our analysis.  

Our sample had relatively lower diet quality and variability assessed by the three scores, 

which were consistent with other studies conducted on youth 87,88. A plausible explanation might 

be because neither DASH or aMedDiet scores was originally developed accommodating 

Mexican traditions and eating habits. Eating habits are influenced by culture 32, which is captured 

via methods of preparing foods, social norms about food consumption, the availability of certain 

foods, and other factors 33. This emphasizes the need to assess the cultural context when applying 
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diet quality scores across different populations 33. Previously, it was shown that identifying 

empirically-driven dietary patterns were not necessary capturing the overall dietary pattern; 

rather these patterns reflected the meal patterns within households among adolescents enrolled in 

the ELEMENT cohort (N=550) 89. In addition, the study found no evidence that suggest a 

distinction between “westernized” or “traditional” patterns, as they were simultaneously 

incorporated into eating patterns among adolescents 89. Consistent with this observation, a 

Brazilian study showed higher consumption of both protective and unhealthy DASH score 

components among adolescents in the highest tertiles of the DASH score 87. This evidence 

showed the importance of considering the cultural context when assessing diet quality among 

youth.  

Differences in the associations between each diet score and cardiometabolic risk factors 

can be justified with several reasons. We found moderate associations; others also have reported 

both moderate 90,91 and higher associations 92,93 among diet quality scores. Secondly, the 

differences in the analytical methods deriving each scores could be a reason for the moderate 

associations 92,94. Moreover, each score captures slightly distinct characteristics of the diet as 

each is composed of different foods and food groups and represents different dietary 

recommendations. We found that DASH score was associated with lower fat intake from all 

types. In contrast, aMedDiet and C-DII scores were positively associated with all types of fat, 

except for an inverse association for saturated fat and polyunsaturated fat, for aMedDiet and C-

DII scores, respectively (Data not shown). DASH eating plan is characterized by reducing the 

intake of fat, and red meat 17. On the other hand, aMedDiet and C-DII scores emphasize on fat 

quality, either by promoting food sources rich in  the intake of nuts and seeds, and olive oil use, 

and the low-moderate consumption of animal products 18, or considering monounsaturated fat, 
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and polyunsaturated fat, for their anti-inflammatory potential, and cholesterol, saturated fat, and 

total fat for pro-inflammatory properties 95, respectively.  

It should be kept in mind the few protective associations detected in the current study 

might have been with larger effect sizes if we had long duration of follow-up and large 

variabilities in diet quality and cardiometabolic risk factors. Children and adolescents are 

generally metabolically healthy 96,97 and dietary exposures might require long duration to 

manifest their impacts on clinical biomarkers of cardiometabolic health. Winpenny et al. 

assessed the role of three diet quality scores and cardiometabolic health in a sample from the UK 

aged 11 – 60 years, and noted the role of age in modifying the association.  In the overall sample, 

they found inverse associations between diet quality scores and standardized metabolic 

syndrome, and component z scores, except for positive association with HDL-C z score. 

However, stratified analysis showed null association among subjects aged 11- 18 years – except 

for a protective association between a diet quality score and HDL-C z score, but stronger 

associations among the group aged 36 – 60 years compared to the other age strata 98. Further 

studies with longer follow-up duration are worth conducting to examine the cardiometabolic 

abnormalities among youth as these associations may be pronounced in middle age.  

The current study has several strengths. The ELEMENT birth cohort is a well-

characterized cohort, and permits adjustment for multiple confounders at baseline. We examined 

the overall associations in addition to sex-stratified associations due to the plausible differences 

among boys and girls in their eating patterns and their cardiometabolic profile during pubertal 

transition. Moreover, most of the longitudinal studies conducted, limited their analysis to 

baseline diet assessment in predicting the future occurrence of cardiometabolic risk factors 36,37. 

Repeated assessment of dietary intake enhances our understanding of the short and long-term 
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effects of adhering to certain dietary patterns because children change their eating patterns 

during development.  

However, the current study has several limitations that should be considered when 

interpreting the findings. The aMedDiet and the DASH scores use “population-specific” cut-offs 

for the food consumption, and that allowed for these scores to be used in pediatric populations 

10,53 despite their original application in adults 51,52. Nevertheless, this may inflate type 2 error 

because of the reduction in diet variability in homogenous populations 99,100. Another concern is 

that our sample might have different scores if other cut-off values were used 33,94,101. To 

illustrate, the ratio between monounsaturated to saturated fatty acid component of aMedDiet was 

1.6, and 0.93 in studies conducted in Greece 102, and the UK 103, respectively. To circumvent the 

inherent limitation of population-based cut-offs, we used C-DII scores as a third approach to 

assess diet quality. The C-DII scores use a population based food consumption database from 

multiple countries as a reference to calculate z-scores 54,104. The standardization of reference 

values in C-DII score enhances cross-studies comparability, and reduces the inherited bias that 

might occur if using the study population as a reference.  

Moreover, dietary assessment in children and adolescents is subject to reporting errors 

due to limited skills in retrieving the information, estimating the portion size and other factors 

86,105. Diet quality patterns might not be a precise measure for overall healthy habits among 

adolescents 87,89 because they are not a comprehensive dietary assessment 106,107.  Also, the FFQs 

used in this study queried the intake in the previous week, which may not capture the habitual 

intake 86. However, we assessed diet at multiple time points to capture the change in 

consumption. Another limitation is that the FFQ used has not been formally validated, but has 

been used in the National Nutrition Survey of Mexico, which offers advantages of a culturally 
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relevant food list and comparable diet assessment 48. Lastly, the possibility of residual 

confounding could not be ruled out.    

In conclusion, in this study, we found a protective association for higher diet quality on 

selected cardiometabolic risk factors, e.g., TG and HOMA-IR among apparently healthy 

Mexican adolescents. Further studies are needed to validate the use of diet quality scores among 

children and adolescents and examine their reflection of the overall diet. Researchers have 

highlighted the importance of complementing diet assessment with measures that consider the 

culture of eating (such as watching media while eating, unhealthy snacks between meals, and 

others) 108. Further studies are warranted to expand on this approach and validate the 

Composition and Culture of Eating questionnaire 108 in other populations. Lastly, it has shown 

that healthy diet patterns could have null or modest effect on cardiometabolic health outcomes 

compared to larger effect sizes for unhealthy eating patterns 109. Thus, we endorse supplementing 

the diet quality assessment with indices for unhealthy eating behaviors, i.e., the consumption of 

processed foods. This eating behavior is of a great interest not only because it has been 

associated with impaired metabolic health 110, but also because Mexico had the highest annual 

retail sales per capita of ultra-processed food and drink products across Latin America 111,112, and 

the fourth rank worldwide 111.  
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Abbreviations: DASH= Dietary Approach to Stope Hypertension; aMedDiet= Alternate Mediterranean Diet; C-DII= Children Dietary 

Inflammatory Index; WC= waist circumference; SBP= systolic blood pressure; DBP= diastolic blood pressure; HOMA-IR= Homeostatic Model 

Assessment for Insulin Resistance; TG= triglycerides; HDL-C =high density lipoprotein cholesterol; G=Girls 

 

 

 

 

 

 

 

 

 

 

Outcomes  

 

  

Final Sample Size 

DASH diet score: 

o Total sample N= 574 (unique subjects)  

 1 measurement (n=59; G=31) 

 2 measurements (n=307;G=162) 

 3 measurements (n=208; G=107) 

 

aMedDiet score: 

o Total sample N= 570 (unique subjects) 

 1 measurement (n=58; G=30) 

 2 measurements (n=305; G=160) 

 3 measurements (n=207; G=107) 

 

C-DII score 

o Total sample N= 574 (unique subjects) 

 1 measurement (n=59; G=31) 

 2 measurements (n=307; G=162) 

 3 measurements (n=208; G=107) 

 WC 

 SBP 

 DBP  

 Serum glucose  

 Serum HDL-C 

 Serum TG  

 Serum insulin  

 HOMA-IR 

  

 

 

 

 

Exposures 

 

  

 DASH diet score  

 aMedDiet score  

 C-DII score  

 

 

 

 DASH diet score  

 aMedDiet score  

 C-DII score  

 

 

 

 DASH diet score  

 aMedDiet score  

 C-DII score  

 

 

 

Childbirth

Time 1 (2011)

8 - 14 yrs

n=250

Time 2 (2015)

10 - 18 yrs 

n=554

Time 3 (2018)

12 - 21 yrs 

n=518

 WC 

 SBP 

 DBP  

 Serum glucose  

 Serum HDL-C 

 Serum TG  

 Serum insulin  

 HOMA-IR 

 

 

 

 

 WC 

 SBP 

 DBP  

 Serum glucose  

 Serum HDL-C 

 Serum TG  

 Serum insulin 

 HOMA-IR 

   

 

 

 

 

Figure 2.1: Flowchart Summary of Analytical Samples of Early Life Exposures in Mexico to ENvironmental Toxicants 

(ELEMENT) Cohort:   
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Table 2.1 (Supplementary): Scoring Criteria for Dietary Approaches to Stop Hypertension 

(DASH) Score: 

No Food groups (gm/day) Foods included Scoring criteria 1 

1 Fruits  All fruits and fruit juices 

Q1 = 1 point; 

Q2 = 2 points;  

Q3 = 3 points; 

Q4 = 4 points; 

Q5 = 1 points 

2 Vegetables  All vegetables except potatoes and legumes 

3 Nuts and legumes  Nuts and peanut butter, dried beans, peas, tofu 

4 Whole grains  

Brown rice, whole wheat bread, cooked cereal, 

whole-grain cereal, other grains, popcorn, 

wheat germ, bran 

5 Low-fat dairy 2 Skim milk, yogurt, cottage cheese 

6 Sodium 3  Sum of sodium content of all foods in FFQ Q1 = 5 points;  

Q2 = 4 points;  

Q3 = 3 points;  

Q4 = 4 points;  

Q5 = 1 point 

7 Red and processed food  
Beef, pork, lamb, deli meats, organ meats, hot 

dogs, bacon 

8 Sweetened beverages 
Carbonated and noncarbonated sweetened 

beverages 

1: Sex- and age-specific quintiles.  

2: The FFQ did not distinguish between low fat and high fat dairy products, so we included all dairy products in one 

group  

3: Sodium intake was ranked without age or sex stratification.  
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Table 2.2 (Supplementary): Scoring Criteria for Alternate Mediterranean Diet (aMedDiet) 

Score: 

No Food groups (gm/day) Foods included Criteria for 1 point 

1 Fruits All fruit and juices 

Greater than sex- and 

age-specific median 

intake 

2 Vegetables All vegetables except potatoes 

3 Legumes Tofu, string beans, peas, beans 

4 Nuts Nuts, peanut butter 

5 Whole grains 

Whole-grain ready-to-eat cereals, cooked 

cereals, crackers, dark breads, brown rice, other 

grains, wheat germ, bran, popcorn 

6 Fish Fish and shrimp, breaded fish 

7 
Ratio of monounsaturated to 

saturated fat 
 

8 Red and processed food Hot dogs, deli meat, bacon, hamburger, beef 

Less than or equal to 

sex- and age-specific 

median intake 
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Table 2.3 (Supplementary): Availability of Children’s Dietary Inflammatory Index (C-DII) 

Sub-components used in the Current Study: 

No DII Sub-components Availability  

1 Alcohol (g)  

2 Vitamin B12 (mcg)  

3 Vitamin B6 (mg)  

4 Beta Carotene (mcg)  

5 Carbohydrate (g)  

6 Cholesterol (mg)  

7 Energy (kcal)  

8 Fat (g)  

9 Fiber (g)  

10 Folic Acid (mcg)  

11 Iron (mg)  

12 Magnesium (mg)  

13 Monounsaturated fatty acids (g)  

14 Niacin (mg)  

15 Protein (g)  

16 Polyunsaturated fatty acids (g)  

17 Riboflavin (mg)  

18 Saturated Fat (g)  

19 Selenium (mcg)  

20 Thiamin (mg)  

21 Vitamin A (RE)  

22 Vitamin C (mg)  

23 Vitamin D (mcg) X 

24 Vitamin E (mg)  

25 Zinc (mg)  
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Table 2.4: Descriptive Statistics of Mother and Child Characteristics of the Early Life Exposures 

in Mexico to ENvironmental Toxicants (ELEMENT) Analytical Sample: 

 
Time 1 

N= 250 

Time 2 

N= 554 

Time 3 

N= 518 

Maternal Characteristics (at time of child’s birth) 

Years of education, %  

< 12 years 123 (49.20)1 284 (51.26)2 265 (51.16) 2 

12 years 91 (36.40) 1 187 (33.75) 2 171 (33.01) 2 

> 12 years 35 (14.00) 1 78 (14.08) 2 77 (14.86) 2 

Age at childbirth, (years) 26.80 (5.63) 1 26.36 (5.40)3 26.38 (5.44)3 

Parity, %  

0 1 (0.40) 1 4 (0.72) 2 4 (0.77) 2 

1 92 (36.80) 1 205 (37.00) 2 190 (36.68) 2 

≥ 2 156 (62.40) 1 340 (61.37) 2 319 (61.58) 2 

Marital Status, %  

Married 178 (71.20) 1 390 (70.40) 4 363 (70.08) 4 

Others (includes free union, single, separated, or  divorced) 71 (28.40) 1 157 (28.34) 4 148 (28.57) 4 

Enrollment in calcium supplementation study, %  

Not enrolled 154 (61.60) 1 399 (72.02) 2 375 (72.39) 2 

Enrolled during pregnancy 95 (38.00) 1 150 (27.08) 2 138 (26.64) 2 

Child Characteristics (at birth) 

Girls, % 132 (52.80) 286 (51.62) 273 (52.70) 

Gestational age, (weeks) 38.85 (1.49)5 38.76 (1.61)6 38.75 (1.60)6 

Mode of delivery, %  

Vaginal delivery 144 (57.60)7 352 (63.54)8 329 (63.51)8 

C Section 103 (41.20)7 194 (35.02)8 181 (34.94)8 

Birth weight, (kg) 3.15 (0.45)9 3.15 (0.49) 4 3.15 (0.48) 4 

Breastfeeding duration, (months) 8.10 (5.88) 1 8.05 (6.07) 2 8.00 (5.98)2 

Child Characteristics (at follow-up visit) 

Age, (years) 10.32 (1.67) 14.50 (2.12) 16.43 (2.14) 

Body mass index, (kg/m2) 19.38 (3.60) 21.62 (4.15) 22.81 (4.46) 

Body mass Z score for age 0.84 (1.24) 0.50 (1.25)8 0.50 (1.25)10 

Pubertal onset, % 175 (70.00) 545 (98.38) 515 (99.42) 11 

Metabolic equivalents, (METs/week) 31.39 (19.82) 57.23 (39.01) 44.95 (35.18) 1 

Cardiometabolic risk factors 

Waist circumference, (cm) 70.75 (10.67) 79.56 (11.38) 85.53 (11.80) 1 

Systolic blood pressure, (mm Hg) 102.68 (10.20) 98.66 (9.92) 101.53 (9.83) 1 

Diastolic blood pressure, (mm Hg) 65.52 (7.32) 63.03 (6.86) 64.14 (7.20) 1 

Fasting glucose, (mg/dL) 87.02 (9.36) 77.81 (7.27) 12 90.22 (8.41) 13 

HDL-C, (mg/dL) 58.68 (11.94) 43.06 (8.60) 12 44.70 (9.03) 13 

TG, (mg/dL) 87.54(44.41) 103.97 (55.85) 12 105.52 (50.09) 13 

Insulin, (μIU/mL) 6.26 (11.03) 14 19.06 (11.84) 12 19.21 (12.62) 15 

HOMA-IR 1.59 (3.51) 14 3.69 (2.31) 12 4.32 (2.94) 15 

Diet quality scores 

DASH  diet score 24.84 (4.06) 24.23 (3.99) 24.00 (4.00) 
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aMedDiet score 4.26 (1.83) 3.81 (1.67) 3.77 (1.69) 

C-DII score -0.16 (1.35) -0.11 (1.43) -0.10 (1.46) 

Means (SD) or count (percentages) are presented for continuous or categorical variables, respectively  

Number of missing values 1.n=1; 2. n=5; 3.n=6; 4.n=7; 5.n=4; 6.n=9; 7.n=3; 8.n=9; 9.n=2; 10.n=65; 11.n=11; 12.n=154; 13.n= 

142; 14.n=174; 15.n=143  

Abbreviations: HDL-C =high density lipoprotein cholesterol; TG= triglycerides; HOMA-IR= Homeostatic Model Assessment of 

Insulin Resistance; DASH= Dietary Approach to Stope Hypertension; aMedDiet= Alternate Mediterranean Diet;C-DII= 

Children’s Dietary Inflammatory Index  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 54 

Table 2.5 (Supplementary): Spearman Correlations Coefficients between Diet Quality Scores:  

 aMedDiet score DII score 

1 

N=250 

DASH diet sore 0.44966 -0.57187 

aMedDiet score - -0.44865 

2 

N=554 

DASH diet score 0.38868 -0.52886 

aMedDiet score - -0.42776 

3 

N=518 

DASH diet score 0.44159 -0.56334 

aMedDiet score - -0.47128 

                                  All p-value <0.0001 
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Table 2.6 (Supplementary): Overall Associations between Potential Confounders and Dietary 

Approaches to Stop Hypertension (DASH) Score: 

 
DASH Diet Score 

Quartile 1 

Median= 19  

n=332 

Quartile 2 

Median= 23  

n=355 

Quartile 3 

Median=26 

n=351 

Quartile 4 

Median= 29 

n=284 

Maternal Characteristics (at time of child’s birth) 

Years of education, %  

< 12 years 54.24 47.71 53.43 49.47 

12 years  31.82 34.00 34.57 37.01 

 > 12 years 13.94 18.29 12.00 13.52 

Age at childbirth, (years) 26.40 26.68 26.34 26.38 

Parity, %   

0 0.61 0.86 0.57 0.71 

1 30.30 41.14 38.57 38.43 

≥ 2  69.09 58.00 60.86 60.85 

Marital Status, %    

Married 72.73 70.20 68.88 73.67 

Others (includes free union, single, 

separated, or  divorced) 
27.27 29.80 31.12 26.33 

Enrollment in calcium 

supplementation study, % 
 

Not enrolled  69.39 70.86 73.71 68.68 

Enrolled during pregnancy  30.61 29.14 26.29 31.32 

Child Characteristics (at birth) 

Girls, % 49.40 48.73 53.28 58.80 

Gestational age, (weeks) 38.78 38.84 38.72 38.74 

Mode of delivery, %  

Vaginal delivery 62.20 62.75 61.85 67.14 

C Section 37.80 37.25 38.15 32.86 

Birth weight, (kg) 3.17 3.12 3.12 3.19 

Breastfeeding duration, (months)  7.82 7.84 8.06 8.53 

Child Characteristics (at follow-up visit) 

Age, (years) 14.37 14.44 14.61 14.43 

Body mass index, (kg/m2) 21.77 21.40 21.74 21.77 

Body mass Z score for age  0.64 0.51 0.54 0.60 

Pubertal onset, %  85.71 86.53 87.07 84.75 

Metabolic equivalents, (METs/week) 44.41 47.55 48.19 50.37 

Total caloric intake, (kcal/day)  2365.55 2219.02 2308.09 2280.74 

Means or percentages are presented for continuous or categorical variables, respectively.  

Red color indicts the covariates included in the fully adjusted models for DASH diet score.  
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Table 2.7: Linear Mixed Regression Models for the Relationship between Quartile of Dietary Approaches to Stop Hypertension (DASH diet) Score with Cardiometabolic Risk Factors:   

DASH score 1 

Waist circumference (cm) 
Systolic blood pressure       

(mm Hg) 

Diastolic blood pressure       

(mm Hg) 
Log glucose (mg/dL) Log TG (mg/dL) log  HDL-C (mg/dL) Log insulin (μIU/mL) Log HOMA-IR 

All  
N= 574 

Boys 

N= 274 

Girls 

N= 300 

All  

N= 574 

Boys 

N= 274 

Girls 

N= 300 
All  

N= 574 

Boys 

N= 274 

Girls 

N= 300 

All  

N= 574 

Boys 

N= 274 

Girls 

N= 300 

All  

N= 574 

Boys 

N= 274 

Girls 

N= 300 

All  

N= 574 

Boys 

N= 274 

Girls 

N= 300 

All  

N= 574 

Boys 

N= 274 

Girls 

N= 300 

All  

N= 574 

Boys 

N= 274 

Girls 

N= 300 

Crude model 2  

Quartile 1 

Median= 

19 

 (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) 

Quartile  2 

Median= 

23 

β 
SE 

0.3290 

0.7379 

-1.7641 

0.9053 

2.6736 

1.1428 

-0.2851 

0.7010 

-1.1086 

1.0205 

0.5242 

0.9425 

0.1422 

0.5197 

-0.3087 

0.7595 

0.6257 

0.7036 

-0.01721 

0.01014 

-0.03203 

0.01391 

-0.00364 

0.01452 

-0.01155 

0.03466 

-0.00835 

0.04758 

-0.00631 

0.04972 

0.009501 

0.01885 

0.05156 

0.02721 

-0.03006 

0.02563 

-0.1001 

0.07586 

-0.1137 

0.1062 

-0.08177 

0.1075 

-0.1217 

0.07668 

-0.1546 

0.1071 

-0.08626 

0.1091 

P-

value 
0.6557 0.0520 0.0197 0.6843 0.2778 0.5783 0.7844 0.6846 0.3741 0.0899 0.0218 0.8021 0.7389 0.8607 0.8990 0.6143 0.0587 0.2415 0.1875 0.2850 0.4474 0.1129 0.1496 0.4295 

Quartile 3 

Median= 
26 

β 
SE 

0.09201 

0.7617 

-2.7801 

0.9663 

2.8635 

1.1434 

-0.6746 

0.7160 

-2.1720 

1.0700 

0.9136 

0.9372 

0.1368 

0.5285 

-0.8724 

0.7908 

1.2081 

0.6986 

-0.00466 

0.01005 

-0.01281 

0.01413 

0.002958 

0.01403 

-0.03880 

0.03537 

-0.08675 

0.04988 

0.005701 

0.04932 

0.02000 

0.01913 

0.05558 

0.02814 

-0.01575 

0.02551 

-0.02026 

0.07616 

-

0.04442 
0.1087 

-0.00571 

0.1060 

-0.02314 

0.07702 

-

0.06669 
0.1096 

0.01215 

0.1076 

P-

value 
0.9039 0.0042 0.0125 0.3463 0.0428 0.3300 0.7958 0.2704 0.0842 0.6429 0.3650 0.8330 0.2730 0.0827 0.9080 0.2963 0.0488 0.5374 0.7903 0.6830 0.9571 0.7639 0.5432 

0.9102 

 

Quartile 4 

Median= 

29 

β 
SE 

-0.9829 
0.8514 

-2.5003 
1.1382 

0.5892 
1.2309 

-0.4748 
0.7877 

-0.3090 
1.2243 

-

0.05971 

0.9996 

0.003925 
0.5772 

-0.6580 
0.8948 

0.8226 
0.7432 

-0.02157 
0.01058 

-0.02724 
0.01530 

-0.01239 
0.01442 

-0.09454 
0.03906 

-0.09441 
0.05781 

-0.09647 
0.05247 

0.02863 
0.02098 

0.07668 
0.03173 

-0.01502 
0.02721 

-0.1323 
0.08199 

-0.1339 
0.1223 

-0.1484 
0.1104 

-0.1602 
0.08306 

-0.1634 
0.1234 

-0.1683 
0.1125 

P-
value 

0.2485 0.0285 0.6323 0.5468 0.8008 0.9524 0.9946 0.4624 0.2687 0.0418 0.0758 0.3907 0.0157 0.1031 0.0666 0.1727 0.0160 0.5811 0.1071 0.2743 0.1798 0.0541 0.1865 
0.1353 

 

Linear 

β 
SE 

-0.08280 

0.08159 

-0.2866 

0.1078 

0.07905 

0.1193 

-0.05908 

0.07507 

-0.1037 

0.1157 

0.01289 

0.09584 

0.002651 

0.05492 

-
0.08367 

0.08410 

0.09677 

0.07117 

-0.00155 

0.001002 

-0.00197 

0.001446 

-0.00086 

0.001370 

-0.00898 

0.003738 

-0.01096 

0.005494 

-0.00792 

0.005047 

0.002905 

0.002001 

0.007333 

0.003001 

-0.00108 

0.002616 

-0.00913 

0.007728 

-
0.00990 

0.01134 

-0.01073 

0.01051 

-0.01100 

0.007835 

-
0.01242 

0.01146 

-0.01164 

0.01071 

P-

value 
0.3104 0.0081 0.5077 0.4314 0.3705 0.8930 0.9615 0.3202 0.1744 0.1220 0.1735 0.5314 0.0165 0.0466 0.1172 0.1470 0.0149 0.6786 0.2378 0.3833 0.3077 0.1608 0.2794 0.2777 

Adjusted model 3,4,5 

Quartile 1 

Median= 
19 

 (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) 

Quartile  2 

Median= 

23 

β 
SE 

0.5597 
0.2437 

0.1304 
0.2955 

1.1217 
0.3838 

-0.3081 
0.6901 

-0.8217 
1.0078 

0.4695 
0.9375 

0.1619 
0.5150 

-

0.08272 

0.7466 

0.6631 
0.7011 

-0.01725 
0.01002 

-0.02903 
0.01387 

-0.00373 
0.01445 

-0.00602 
0.03400 

0.005145 
0.04634 

0.006695 
0.04905 

0.009699 
0.01523 

0.03435 
0.02164 

-0.02150 
0.02095 

-0.1371 
0.06644 

-0.1550 
0.09863 

-0.09573 
0.08908 

-0.1519 
0.06687 

-0.1838 
0.09814 

-0.1006 
0.09108 

P-
value 

0.0219 0.6593 0.0036 0.6554 0.4153 0.6167 0.7532 0.9118 0.3446 0.0855 0.0369 0.7965 0.8594 0.9116 0.8915 0.5244 0.1131 0.3054 0.0393 0.1169 0.2832 0.0234 0.0618 0.2702 

Quartile 3 

Median= 

26 

β 
SE 

-0.03826 

0.2508 

-0.3449 

0.3157 

0.3845 

0.3829 

-0.5970 

0.7021 

-1.7154 

1.0591 

0.9465 

0.9297 

0.1527 

0.5214 

-0.4362 

0.7783 

1.2120 

0.6943 

-0.00373 

0.009942 

-0.01195 

0.01424 

0.004203 

0.01410 

-0.03738 

0.03464 

-0.06697 

0.04875 

0.01268 

0.04865 

0.02193 

0.01558 

0.03916 

0.02273 

-0.00074 

0.02095 

-0.08174 

0.06692 

-
0.06098 

0.1013 

-0.09701 

0.08859 

-0.08305 

0.06746 

-
0.07986 

0.1009 

-0.08291 

0.09067 

P-

value 
0.8788 0.2752 0.3156 0.3953 0.1059 0.3090 0.7697 0.5754 0.0814 0.7075 0.4017 0.7657 0.2809 0.1703 0.7945 0.1595 0.0855 0.9718 0.2223 0.5474 0.2741 0.2187 0.4293 0.3611 

Quartile 4 

Median= 
29 

β 
SE 

-0.01285 

0.2810 

-0.2079 

0.3714 

0.2549 

0.4103 

-0.1041 

0.7723 

0.1039 

1.2063 

0.1270 

0.9890 

0.1898 

0.5691 

-0.3482 

0.8719 

0.9246 

0.7363 

-0.01938 

0.01055 

-0.02584 

0.01543 

-0.01159 

0.01445 

-0.08453 

0.03829 

-0.07182 

0.05620 

-0.08762 

0.05156 

0.02736 

0.01731 

0.06742 

0.02609 

-0.00929 

0.02240 

-0.2266 

0.07349 

-0.2590 

0.1158 

-0.2044 

0.09330 

-0.2513 

0.07439 

-0.2957 

0.1162 

-0.2209 

0.09579 

P-

value 
0.9635 0.5759 0.5347 0.8928 0.9314 0.8979 0.7388 0.6898 0.2097 0.0666 0.0947 0.4231 0.0275 0.2020 0.0899 0.1143 0.0101 0.6784 0.0021 0.0259 0.0290 0.0008 0.0113 0.0216 

Linear 

β 
SE 

-0.01514 
0.02697 

-

0.03377 

0.03521 

0.00505

9 

0.03970 

-0.02551 
0.07354 

-

0.05500 

0.1141 

0.03115 
0.09481 

0.01784 
0.05409 

-

0.04429 

0.08207 

0.1043 
0.07051 

-0.00133 
0.001001 

-0.00190 
0.001464 

-0.00076 
0.001378 

-0.00824 
0.003663 

-0.00860 
0.005352 

-0.00727 
0.004964 

0.002874 
0.001656 

0.006240 
0.002479 

-0.00027 
0.002159 

-0.01836 
0.006949 

-

0.01913 

0.01078 

-0.01846 
0.008907 

-0.02004 
0.007044 

-

0.02221 

0.01083 

 

-0.01923 

0.009156 

P-
value 

0.5746 0.3380 0.8987 0.7288 0.6301 0.7426 0.7415 0.5896 0.1395 0.1837 0.1942 0.5839 0.0247 0.1087 0.1438 0.0830 0.0122 0.8992 0.0084 0.0768 0.0388 0.0045 0.0410 0.0362 

1: median values of DASH score at each quartile 

2: model includes DASH score quartiles as fixed effects and compound symmetry matrix structure to model the covariance structure of the repeated measurements for each outcome      

3: models additionally adjusted for the following fixed effects mother’s enrollment in the calcium intervention study, parity status, years of education at childbirth, child age, pubertal onset, metabolic equivalents, and calories  

4: sex is an additional fixed effect in the adjusted models for the overall sample  

5: BMI is an additional fixed effect in the waist circumference model
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Table 2.8 (Supplementary): Overall Associations between Potential Confounders and Alternate Mediterranean Diet (aMedDiet) 

Score:   

 
aMedDiet score 

Quartile  1 

Median= 2  

n=298 

Quartile 2 

Median= 3  

n=269 

Quartile 3 

Median=5 

n=522 

Quartile 4 

Median= 6 

n=233 

Maternal Characteristics (at time of child’s birth) 

Years of education, %  

< 12 years 48.82 52.63 50.00 55.65 

12 years  36.36 32.33 35.14 31.74 

 > 12 years 14.81 15.04 14.86 12.61 

Age at childbirth, (years) 26.13 26.85 26.48 26.34 

Parity, %   

0 0.00 1.50 0.39 1.30 

1 43.10 33.83 36.10 35.65 

≥ 2  56.90 64.66 63.51 63.04 

Marital Status, %    

Married 70.95 70.19 71.57 72.05 

Others (includes free union, single, separated, or  

divorced) 
29.05 29.81 28.43 27.95 

Enrollment in calcium supplementation study, %  

Not enrolled  70.37 71.43 72.97 65.65 

Enrolled during pregnancy  29.63 28.57 27.03 34.35 

Child Characteristics (at birth) 

Girls, % 52.68 52.79 50.38 55.36 

Gestational age, (weeks) 38.83 38.91 38.68 38.74 

Mode of delivery, %  

Vaginal delivery 56.23 65.41 64.01 68.58 

C Section 43.77 34.59 35.99 31.42 

Birth weight, (kg) 3.15 3.21 3.12 3.14 

Breastfeeding duration, (months)  7.61 8.17 7.80 9.00 

Child Characteristics (at follow-up visit) 

Age, (years) 14.48 14.58 14.61 13.99 

Body mass index, (kg/m2) 22.00 21.67 21.71 21.11 

Body mass Z score for age  0.65 0.58 0.54 0.51 

Pubertal onset, %  87.03 87.12 88.05 79.31 

Metabolic equivalents, (METs/week) 44.69 47.02 49.05 48.37 

Total caloric intake, (kcal/day)  1834.11 2049.71 2400.28 2918.90 

Means or percentages are presented for continuous or categorical variables, respectively.  

Red color indicts the covariates included in the fully adjusted models for aMedDiet score.  
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Table 2.9: Linear Mixed Regression Models for the Relationship between Quartile of Alternate Mediterranean Diet (aMedDiet) Score with Cardiometabolic Risk Factors: 

aMedDiet score 1  

Waist circumference (cm) 
Systolic blood pressure       

(mm Hg) 

Diastolic blood pressure           

(mm Hg) 
Log glucose (mg/dL) Log TG (mg/dL) log  HDL-C (mg/dL) Log insulin (μIU/mL) Log HOMA-IR 

All 

N= 570 

Boys 

N= 273 

Girls 

N= 297 

All  

N= 570 

Boys 

N= 273 

Girls 

N= 297 
All  

N= 570 

Boys 

N= 273 

Girls 

N= 297 

All  

N= 570 

Boys 

N= 273 

Girls 

N= 297 

All 

N= 570 

Boys 

N= 273 

Girls 

N= 297 

All 

N= 570 

Boys 

N= 273 

Girls 

N= 297 

All 

N= 570 

Boys 

N= 273 

Girls 

N= 297 

All 

N= 570 

Boys 

N= 273 

Girls 

N= 297 

Crude model 2 

Quartile 1 

Median = 

2 

 (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) 

Quartile 2 

Median = 

3 

β 
SE 

-
0.00397 

0.7844 

0.7594 

0.9800 

-0.9840 

1.2059 

0.4164 

0.7559 

1.3783 

1.1285 

-0.5512 

0.9909 

-0.08385 

0.5620 

-0.05524 

0.8456 

-0.07809 

0.7386 

-0.00518 

0.01138 

-0.00354 

0.01614 

-0.00745 

0.01572 

0.004121 

0.03755 

0.008136 

0.05186 

-0.00694 

0.05352 

-0.01521 

0.02024 

0.003428 

0.03015 

-0.03848 

0.02689 

-0.00645 

0.08416 

0.1204 

0.1207 

-0.1224 

0.1160 

-0.01854 

0.08514 

0.1047 

0.1217 

-0.1314 

0.1181 

P-

value 
0.9960 0.4388 0.4149 0.5818 0.2225 0.5783 0.8814 0.9479 0.9158 0.6492 0.8266 0.6357 0.9126 0.8754 0.8969 0.4527 0.9095 0.1531 0.9389 0.3189 0.2919 0.8277 0.3900 0.2668 

Quartile 3 

Median = 
5 

β 
SE 

-0.2745 

0.7210 

0.02010 

0.9054 

-0.6808 

1.1045 

0.2544 

0.6813 

2.1387 

1.0115 

-1.7062 

0.8957 

-0.2516 

0.5025 

0.4121 

0.7494 

-0.9031 

0.6661 

-0.01286 

0.009678 

-0.01415 

0.01374 

-0.01357 

0.01335 

-0.05454 

0.03380 

-0.04724 

0.04667 

-0.06745 

0.04807 

-0.01042 

0.01806 

0.01679 

0.02651 

-0.03923 

0.02436 

-0.01953 

0.07260 

0.07325 

0.1042 

-0.1016 

0.09973 

-0.03485 

0.07356 

0.05275 

0.1052 

-0.1128 

0.1018 

P-

value 
0.7035 0.9823 0.5379 0.7089 0.0349 0.0572 0.6167 0.5826 0.1756 0.1843 0.3034 0.3099 0.1070 0.3121 0.1612 0.5642 0.5269 0.1079 0.7879 0.4827 0.3091 0.6357 0.6165 0.2685 

Quartile 4 

Median = 

6 

β 
SE 

-2.2631 
0.9080 

-1.6717 
1.1817 

-3.0287 
1.3487 

0.1265 
0.8487 

0.4668 
1.2956 

-0.2324 
1.0866 

0.1132 
0.6229 

-0.5120 
0.9521 

0.7676 
0.8072 

-0.00407 
0.01145 

-0.01868 
0.01659 

0.006951 
0.01551 

-0.1098 
0.04148 

-0.1004 
0.05936 

-0.1269 
0.05713 

0.07574 
0.02206 

0.08852 
0.03312 

0.05865 
0.02903 

-0.2324 
0.08983 

-0.03947 
0.1333 

-0.4040 
0.1199 

-0.2375 
0.09109 

-0.07271 
0.1346 

-0.3854 
0.1226 

P-
value 

0.0128 0.1578 0.0251 0.8815 0.7187 0.8307 0.8558 0.5910 0.3420 0.7223 0.2610 0.6543 0.0082 0.0915 0.0268 0.0006 0.0078 0.0439 0.0099 0.7673 0.0008 0.0093 0.5895 0.0018 

Linear 

β 
SE 

-0.3730 

0.1952 

-0.2823 

0.2557 

-0.4632 

0.2881 

0.02046 

0.1813 

0.3241 

0.2771 

-0.2624 

0.2326 

-0.01863 

0.1329 

0.008106 

0.2023 

-0.02874 

0.1732 

-0.00214 

0.002451 

-0.00481 

0.003520 

-0.00024 

0.003348 

-0.02610 

0.008975 

-0.02317 

0.01287 

-0.03016 

0.01233 

0.01139 

0.004809 

0.01536 

0.007151 

0.007683 

0.006382 

-0.03660 

0.01891 

-0.00433 

0.02759 

-0.06626 

0.02565 

-0.03876 

0.01917 

-0.01101 

0.02788 

-0.06427 

0.02619 

P-

value 
0.0563 0.2700 0.1085 0.9101 0.2426 0.2597 0.8885 0.9681 0.8682 0.3836 0.1723 0.9417 0.0037 0.0724 0.0148 0.0180 0.0322 0.2292 0.0532 0.8754 0.0102 0.0436 0.6932 0.0145 

Adjusted model 3,4,5 

Quartile 1 

Median = 

2 

 (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) 

Quartile 2 

Median = 

3 

β 
SE 

-0.1420 
0.2601 

0.03933 
0.3208 

-0.3250 
0.4021 

0.5688 
0.7468 

1.4686 
1.1171 

-0.3590 
0.9875 

-0.1003 
0.5602 

0.02544 
0.8347 

-0.06161 
0.7391 

-0.00288 
0.01119 

-0.00199 
0.01599 

-0.00305 
0.01555 

-0.00303 
0.03688 

-0.00109 
0.05089 

-0.02578 
0.05269 

-0.00733 
0.01643 

0.02287 
0.02385 

-0.03676 
0.02212 

0.01505 
0.07354 

0.1104 
0.1112 

-0.08190 
0.09746 

0.002362 
0.07401 

0.08538 
0.1102 

-0.08758 
0.09979 

P-

value 
0.5853 0.9025 0.4194 0.4464 0.1892 0.7163 0.8580 0.9757 0.9336 0.7972 0.9009 0.8446 0.9346 0.9830 0.6249 0.6556 0.3382 0.0973 0.8379 0.3214 0.4012 0.9745 0.4391 0.3806 

Quartile 3 

Median = 

5 

β 
SE 

-0.3911 

0.2458 

-0.4860 

0.3045 

-0.3533 

0.3778 

0.4032 

0.6911 

2.3156 

1.0287 

-1.4274 

0.9170 

-0.3545 

0.5140 

0.4406 

0.7576 

-0.8536 

0.6845 

-0.00804 

0.009857 

-0.00869 

0.01416 

-0.00641 

0.01358 

-0.06943 

0.03411 

-0.06048 

0.04709 

-0.08546 

0.04831 

-0.00428 

0.01529 

0.03426 

0.02200 

-0.04444 

0.02067 

-0.00806 

0.06635 

0.02150 

0.1003 

-0.03184 

0.08694 

-0.01460 

0.06712 

0.001387 

0.1002 

-0.03219 

0.08932 

P-

value 
0.1118 0.1111 0.3501 0.5598 0.0248 0.1201 0.4905 0.5610 0.2128 0.4152 0.5396 0.6373 0.0421 0.1998 0.0775 0.7794 0.1201 0.0321 0.9034 0.8303 0.7143 0.8278 0.9890 0.7187 

Quartile 4 

Median = 
6 

β 
SE 

0.1843 

0.3214 

-0.2824 

0.4054 

0.4886 

0.4887 

0.4832 

0.8972 

1.1195 

1.3507 

0.04273 

1.1819 

0.01543 

0.6632 

-0.07551 

0.9867 

0.7504 

0.8815 

0.005378 

0.01236 

-0.01142 

0.01784 

0.02016 

0.01707 

-0.1112 

0.04372 

-0.08739 

0.06131 

-0.1442 

0.06138 

0.03456 

0.01965 

0.06864 

0.02857 

-0.00140 

0.02636 

-0.1271 

0.08661 

-0.08917 

0.1332 

-0.1504 

0.1124 

-0.1148 

0.08776 

-0.1210 

0.1334 

-0.1066 

0.1156 

P-
value 

0.5665 0.4864 0.3179 0.5903 0.4075 0.9712 0.9814 0.9390 0.3949 0.6636 0.5224 0.2382 0.0111 0.1548 0.0192 0.0790 0.0167 0.9577 0.1427 0.5035 0.1817 0.1913 0.3649 0.3570 

Linear 

β 
SE 

-

0.03617 

0.06905 

-0.1337 

0.08779 

0.03707 

0.1043 

0.08198 

0.1912 

0.4483 

0.2894 

-0.2245 

0.2515 

-0.05365 

0.1413 

0.07090 

0.2097 

-0.05280 

0.1879 

-0.00034 

0.002645 

-0.00297 

0.003810 

0.002002 

0.003657 

-0.02788 

0.009408 

-0.02286 

0.01329 

-0.03310 

0.01312 

0.004778 

0.004243 

0.01342 

0.006196 

-0.00406 

0.005685 

-0.01990 

0.01830 

-0.01840 

0.02795 

-0.01786 

0.02386 

-0.01819 

0.01855 

-0.02371 

0.02807 

-0.01133 

0.02452 

P-

value 
0.6006 0.1283 0.7225 0.6681 0.1219 0.3725 0.7042 0.7354 0.7788 0.8972 0.4361 0.5844 0.0031 0.0861 0.0120 0.2605 0.0309 0.4757 0.2773 0.5107 0.4546 0.3272 0.3988 0.6443 

1: median values of aMedDiet score at each quartile 

2: model includes aMedDiet score quartiles as fixed effects and compound symmetry matrix structure to model the covariance structure of the repeated measurements for each outcome      

3: models additionally adjusted for the following fixed effects mother’s enrollment in the calcium intervention study, parity status, mode of childbirth, child age, pubertal onset, metabolic equivalents, and calories  

4: sex is an additional fixed effect in the adjusted models for the overall sample  

5: BMI is an additional fixed effect in the waist circumference models  
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Table 2.10 (Supplementary): Overall Associations between Potential Confounders and Children’s Dietary Inflammatory Index (C-

DII) Score:   

 
C-DII score 

Quartile  1 

Median= -1.809 

n=330 

Quartile 2 

Median= -0.630 

n=331 

Quartile  3 

Median= 0.367 

n=331 

Quartile  4 

Median=  1.627 

n=330 

Maternal Characteristics (at time of child’s birth) 

Years of education, %  

< 12 years 47.06 47.11 55.45 55.32 

12 years  35.29 36.17 31.21 34.35 

 > 12 years 17.65 16.72 13.33 10.33 

Age at childbirth, (years) 26.74 26.64 26.09 26.35 

Parity, %   

0 0.93 0.30 0.61 0.91 

1 38.70 38.91 39.09 31.91 

≥ 2  60.37 60.79 60.30 67.17 

Marital Status, %    

Married 72.05 71.87 69.91 71.12 

Others (includes free union, single, separated, or  

divorced) 
27.95 28.13 30.09 28.88 

Enrollment in calcium supplementation study, %  

Not enrolled  71.83 65.35 71.21 74.77 

Enrolled during pregnancy  28.17 34.65 28.79 25.23 

Child Characteristics (at birth) 

Girls, % 57.88 51.36 49.55 50.30 

Gestational age, (weeks) 38.76 38.79 38.75 38.80 

Mode of delivery, %  

Vaginal delivery 65.20  61.35  64.13  62.61  

C Section  34.80   38.65   35.87   37.39  

Birth weight, (kg) 3.14 3.14 3.12 3.19 

Breastfeeding duration, (months)  7.92 7.48 8.59 8.17 

Child Characteristics (at follow-up visit) 

Age, (years) 14.54 14.05 14.44 14.84 

Body mass index, (kg/m2) 22.25 21.17 21.63 21.60 

Body mass Z score for age 0.73 0.50 0.54 0.51 

Pubertal onset, %  84.80 85.67 85.37 88.54 

Metabolic equivalents, (METs/week)  51.61 48.21 45.84 44.49 

Total caloric intake, (kcal/day)  2162.51 2315.62 2384.56 2307.86 

Means or percentages are presented for continuous or categorical variables, respectively.  

Red color indicts the covariates included in the fully adjusted models forC-DII score.  
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 Table 2.11: Linear Mixed Regression Models for the Relationship between Quartile of Children’s Dietary Inflammatory Index (C-DII) with Cardiometabolic Risk Factors:   

C-DII score 1  

Waist circumference (cm) 
Systolic blood pressure       

(mm Hg) 

Diastolic blood pressure       

(mm Hg) 
Log glucose (mg/dL) Log TG (mg/dL) log  HDL-C (mg/dL) Log insulin (μIU/mL) Log HOMA-IR 

All  
N= 574 

Boys 

N= 274 

Girls 

N= 300 

All  

N= 574 

Boys 

N= 274 

Girls 

N= 300 
All  

N= 574 

Boys 

N= 274 

Girls 

N= 300 

All  

N= 574 

Boys 

N= 274 

Girls 

N= 300 

All  

N= 574 

Boys 

N= 274 

Girls 

N= 300 

All  

N= 574 

Boys 

N= 274 

Girls 

N= 300 

All  

N= 574 

Boys 

N= 274 

Girls 

N= 300 

All  

N= 574 

Boys 

N= 274 

Girls 

N= 300 

Crude model 2 

Quartile 1 

Median = 

-1.809 

 (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) 

Quartile 2 

Median = 

-0.630 

β 
SE 

-1.7767 

0.7480 

-1.5876 

0.9488 

-1.6627 

1.1287 

-0.8237 

0.7132 

-0.8569 

1.0841 

-1.0464 

0.9262 

-0.8375 

0.5289 

-1.2088 

0.8073 

-0.5412 

0.6915 

0.008648 

0.01016 

0.01467 

0.01453 

0.003467 

0.01392 

0.04094 

0.03449 

0.08152 

0.04795 

0.01564 

0.04866 

0.02078 

0.01881 

0.01736 

0.02810 

0.02682 

0.02502 

-0.04829 

0.07708 

-0.03451 

0.1137 

-0.05160 

0.1041 

-0.04128 

0.07801 

-0.02215 

0.1146 

-0.05077 

0.1060 

P-

value 
0.0177 0.0950 0.1413 0.2484 0.4296 0.2590 0.1136 0.1349 0.4341 0.3949 0.3132 0.8035 0.2356 0.0899 0.7480 0.2695 0.5370 0.2843 0.5312 0.7616 0.6202 0.5969 0.8469 0.6321 

Quartile 3 

Median = 
0.367 

β 
SE 

-0.7154 

0.7746 

0.9719 

0.9874 

-2.3282 

1.1678 

-0.01267 

0.7302 

0.8179 

1.1069 

-1.0997 

0.9509 

-0.3229 

0.5389 

0.00606

8 
0.8185 

-0.7512 

0.7087 

0.01869 

0.01022 

0.03326 

0.01447 

0.002780 

0.01418 

0.07652 

0.03565 

0.09498 

0.04894 

0.07509 

0.05097 

0.003954 

0.01935 

-0.00060 

0.02839 

0.01082 

0.02632 

0.02633 

0.07764 

0.05897 

0.1117 

0.01183 

0.1077 

0.04014 

0.07861 

0.08463 

0.1127 

0.009923  

0.1097 

P-

value 
0.3559 0.3255 0.0467 0.9862 0.4603 0.2479 0.5492 0.9941 0.2895 0.0678 0.0219 0.8446 0.0321 0.0899 0.1414 0.8381 0.9832 0.6813 0.7346 0.5979 0.9126 0.6097 0.4532 0.9280 

Quartile 3 

Median = 

1.627 

β 
SE 

-0.4730 
0.8139 

0.5592 
1.0580 

-1.3017 
1.2065 

0.3410 
0.7557 

1.0353 
1.1543 

-0.5672 
0.9737 

-0.1045 
0.5543 

0.06080 
0.8452 

-0.3924 
0.7246 

0.008168 
0.01039 

0.01963 
0.01500 

-0.00252 
0.01413 

0.1172 
0.03781 

0.1706 
0.05359 

0.07392 
0.05228 

0.005732 
0.02038 

0.009810 
0.03038 

0.007625 
0.02709 

-0.06520 
0.07842 

-0.1412 
0.1145 

0.02099 
0.1068 

-0.05938 
0.07950 

-0.1222 
0.1157 

0.01296 
0.1090 

P-
value 

0.5613 0.5974 0.2811 0.6519 0.3701 0.5604 0.8505 0.9427 0.5883 0.4322 0.1912 0.8585 0.0020 0.0016 0.1580 0.7786 0.7469 0.7784 0.4060 0.2183 0.8443 0.4553 0.2916 0.9054 

Linear 

β 
SE 

-0.02710 

0.2294 

0.3636 

0.3003 

-0.4014 

0.3386 

0.1637 

0.2122 

0.4279 

0.3244 

-0.1571 

0.2728 

0.01930 

0.1556 

0.1336 

0.2373 

-0.1228 

0.2030 

0.003014 

0.002901 

0.006732 

0.004178 

-0.00070 

0.003949 

0.03424 

0.01062 

0.04648 

0.01506 

0.02450 

0.01469 

0.000128 

0.005722 

0.000998 

0.008499 

0.000844 

0.007622 

-0.01163 

0.02195 

-0.03093 

0.03203 

0.01011 

0.02992 

-0.00955 

0.02226 

-0.02485 

0.03237 

0.007784 

0.03055 

P-

value 
0.9060 0.2266 0.2363 0.4406 0.1876 0.5650 0.9013 0.5736 0.5452 0.2991 0.1079 0.8594 0.0013 0.0022 0.0959 0.9822 0.9066 0.9119 0.5964 0.3348 0.7356 0.6681 0.4431 0.7990 

Adjusted model 3,4,5 

Quartile 1 

Median = 

-1.809 

 (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) (Ref) 

Quartile 2 

Median = 

-0.630 

β 
SE 

-0.1622 
0.2481 

-0.4641 
0.3073 

0.1158 
0.3783 

-0.9515 
0.7032 

-0.9685 
1.0724 

-0.9390 
0.9205 

-0.8455 
0.5245 

-1.2116 
0.7953 

-0.4926 
0.6885 

0.009419 
0.01003 

0.01684 
0.01441 

0.006022 
0.01382 

0.04627 
0.03392 

0.09234 
0.04686 

0.002851 
0.04794 

0.01068 
0.01518 

-0.00189 
0.02216 

0.02140 
0.02040 

-0.05002 
0.06788 

-0.00704 
0.1058 

-0.09846 
0.08748 

-0.04387 
0.06849 

0.00781
5 0.1052 

-0.09504 
0.08982 

P-

value 
0.5133 0.1317 0.7597 0.1763 0.3669 0.3081 0.1072 0.1282 0.4746 0.3481 0.2431 0.6633 0.1729 0.0495 0.9526 0.4819 0.9321 0.2948 0.4614 0.9470 0.2610 0.5220 0.9408 0.2906 

Quartile 3 

Median = 
0.367 

β 
SE 

-0.05138 

0.2572 

0.1094 

0.3210 

-0.2653 

0.3921 

-0.4100 

0.7205 

0.3755 

1.0970 

-1.2512 

0.9455 

-0.5400 

0.5348 

-0.2713 

0.8052 

-0.8539 

0.7058 

0.01666 

0.01014 

0.03328 

0.01437 

0.002557 

0.01416 

0.07787 

0.03508 

0.08906 

0.04783 

0.06151 

0.05028 

-0.00699 

0.01576 

-0.00828 

0.02259 

-0.00006 

0.02169 

0.02622 

0.06887 

0.07926 

0.1042 

-0.04227 

0.09117 

0.03146 

0.06957 

0.1008 

0.1038 

-0.04884 

0.09372 

P-

value 
0.8417 0.7333 0.4990 0.5694 0.7322 0.1862 0.3128 0.7363 0.2268 0.1008 0.0210 0.8568 0.0267 0.0633 0.2217 0.6573 0.7142 0.9978 0.7035 0.4474 0.6432 0.6512 0.3319 0.6025 

Quartile 3 

Median = 
1.627 

β 
SE 

-0.06379 

0.2710 

0.2387 

0.3430 

-0.3789 

0.4077 

-0.1990 

0.7460 

0.4404 

1.1387 

-0.9106 

0.9770 

-0.4396 

0.5500 

-0.3937 

0.8245 

-0.6105 

0.7282 

0.005773 

0.01036 

0.01965 

0.01495 

-0.00551 

0.01437 

0.1083 

0.03724 

0.1568 

0.05225 

0.05402 

0.05202 

0.008566 

0.01682 

0.007604 

0.02460 

0.01520 

0.02257 

-0.06494 

0.07076 

-0.09318 

0.1084 

-0.04209 

0.09288 

-0.06121 

0.07177 

-0.06606 

0.1087 

-0.05399 

0.09568 

P-
value 

0.8139 0.4868 0.3531 0.7897 0.6990 0.3517 0.4243 0.6332 0.4021 0.5777 0.1894 0.7015 0.0037 0.0028 0.2995 0.6107 0.7574 0.5011 0.3590 0.3905 0.6507 0.3939 0.5436 0.5729 

Linear 

β 
SE 

-0.00700 
0.07627 

0.1167 

0.0974

7 

-0.1327 
0.1143 

-0.00199 
0.2097 

0.2405 
0.3203 

-0.2696 
0.2738 

-0.08756 
0.1545 

-

0.01362 

0.2313 

-0.1931 
0.2041 

0.002124 
0.002898 

0.006508 
0.004173 

-0.00170 
0.004026 

0.03150 
0.01046 

0.04137 
0.01471 

0.01913 
0.01462 

0.000836 
0.004735 

0.001550 
0.006911 

0.002360 
0.006364 

-0.01141 
0.01987 

-0.01867 
0.03034 

-0.00738 
0.02610 

-0.01048 
0.02016 

-0.01090 
0.03045 

-0.01127 
0.02688 

P-

value 
0.9269 0.2319 0.2461 0.9924 0.4531 0.3253 0.5711 0.9531 0.3444 0.4638 0.1196 0.6732 0.0027 0.0051 0.1912 0.8600 0.8227 0.7110 0.5659 0.5387 0.7774 0.6033 0.7204 0.6751 

1: median values of C-DII score at each quartile 

2: model includes C-DII score quartiles as fixed effects and compound symmetry matrix structure to model the covariance structure of the repeated measurements for each outcome      

3: models additionally adjusted for the following fixed effects mother’s enrollment in the calcium intervention study, mother’s years of education at childbirth, child age, pubertal onset, metabolic equivalents, and calories 

4: sex is an additional fixed effect in the adjusted models for the overall sample  

5: BMI is an additional fixed effect in the waist circumference models
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Chapter 3 Sedentary Patterns and Cardiometabolic Risk Factors in Mexican Children and 

Adolescents: A Longitudinal Analysis 

 

Abstract:   

Background: Sedentary behavior is a modifiable risk factor for cardiometabolic health; 

however, the assessment of total sedentary time may not capture youth’s highly active and 

interrupted activity patterns. Because of limited knowledge among Hispanic youth, who have a 

disproportionate burden of metabolic diseases, this study examined the longitudinal association 

between sedentary activity patterns and cardiometabolic risk factors among Mexican youth.  

Design: 570 subjects in the Early Life Exposure in Mexico to ENvironmental Toxicants 

(ELEMENT) birth cohort, who were followed up to three time points during adolescence, were 

included. Bout duration, and frequency and percentages of waking time spent in specific-

intensities of activity, were quantified using ActiGraph GT3X+ wrist accelerometers. Self-

reported questionnaires were used to query usual duration of different sedentary behaviors. 

Outcomes were lipid profile, markers for glucose homeostasis, anthropometry, and blood 

pressure. Linear mixed models and an isotemporal substitution approach were used, adjusting for 

potential confounders. 

Results: Each hour of self-reported screen-based time was positively associated with diastolic 

blood pressure (mm Hg) [β= 0.30, p <0.01], and an hour of other sedentary time was associated 

with log serum glucose (mg/dL) [β= 0.01, p <0.01]. Replacing 1% of sedentary time with 

moderate to vigorous physical activity (MVPA) was associated with lower waist circumference 
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(cm) [β= -0.27, p <0.01] and log serum triglycerides (mg/dL) [β=-0.02, p<0.01]. Substituting one 

uninterrupted sedentary bout with light activity was associated with lower insulin (μIU/mL) [β= -

0.06, p <0.01].  

Conclusion: Sedentary time was associated with cardiometabolic risk factors in a context-

specific manner and replacing sedentary time with higher intensities improved some 

cardiometabolic markers.  

Key words: physical activity; sedentary behavior; screen time, bouts, cardiovascular health; 

metabolic health; adolescent health. 
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Introduction:   

Sedentary behavior and physical inactivity, which is “an insufficient physical activity 

level to meet present physical activity recommendations” 1,  are independent modifiable factors 

for CVD risk factors 2. Thus, promoting physical activity and reducing sedentary behavior across 

the lifespan are strategies for preventing CVD 2.  That is consistent with the cardiometabolic 

abnormalities management protocol among children and adolescents 3. Children have distinct 

patterns in engaging and accumulating physical activity; their patterns are characterized for being 

highly active and interrupted 4. Therefore, the assessment of total time spent in physical activity 

or sedentary behavior will not capture how sporadic patterns are associated with cardiometabolic 

health 5. Therefore, there is a need to examine the activity patterns to refine current 

recommendations for combating diseases 5.  

One way to approach this need is to examine the forms of activity accumulation via the 

assessment of activity bouts 5, which is defined as uninterrupted time performing an intensity-

specific activity. Bout assessment enriches our understanding of the activity pattern beyond what 

total minutes of activity convey 6. Previous studies have examined the associations between 

bouts of activity and cardiometabolic health in children and adolescents. Nevertheless, 

inconsistent evidence was reported among youth, due to limited studies holistically assessing the 

entire spectrum of intensity levels, and cardiometabolic risk factors other than adiposity. In 

addition, there is a need for longitudinal studies to examine causal relationships 5. Longitudinal 

designs can also address the age effect on the activity patterns, due to a decline in physical 

activity level and an increase in sedentary behavior during development and maturation 7,8.    

Previously, it was demonstrated that despite similar total levels of physical activity and 

sedentary time among adolescents from different ethnic backgrounds, Hispanic Americans have 
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fewer minutes of moderate and vigorous activity relative to European Americans 9. The 

difference in the activity patterns might be a reason for the inconsistent associations between 

physical activity and cardiometabolic risk factors across races/ethnicities. Bremer et al. showed 

physical activity was favorably associated with insulin homeostasis, waist circumference, 

triglycerides (TG), high density-lipoprotein cholesterol (HDL-C) and low density-lipoprotein 

cholesterol (LDL-C) among non-Hispanic White adolescents, but only with insulin homeostasis, 

TG, and HDL-C among Mexican American counterparts 10. Additionally, among Hispanic 

American children, total sedentary time was associated with higher serum glucose, but not 

among African Americans nor European Americans 9. The importance of understating the 

contribution of activity patterns on cardiometabolic risk factors is of special interest to Hispanic 

children and adolescents; they showed sign of insulin resistance despite the presence of 

overweight or obesity 11 because of their higher body fat compared to non-Hispanic White peers 

9,12.  

Therefore, the aim of the study was to assess the longitudinal associations between 

repeated measures of sedentary activity patterns with cardiometabolic risk factors, among 

children and adolescents in a Mexico City birth cohort study.   

Methods:  

Study population:  

The study population was composed of children and adolescents enrolled at the 

ELEMENT project in Mexico City, Mexico 13,14. A description of the ELEMENT birth cohorts 

has been published elsewhere 15. Briefly, 1012 mother/child dyads from low- to moderate-

income populations visiting prenatal clinics 16 were recruited for the project between 1997 -2004. 

At childbirth, mothers completed self-reported sociodemographic questionnaires. A subset of 
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670 mothers participated in a randomized controlled trial (RCT) of daily calcium 

supplementation (1200 mg) during their pregnancies until 1-year postpartum 14,15. The research 

team conducted multiple follow-up visits for the offspring, and collected information on physical 

growth, maturation, diet, physical activity, and clinical biomarkers of cardiometabolic health.  

The 2011 follow-up visit, herein called Time 1 was composed of 250 children aged 

between 8 -14 years 15. Time 2 is a 2015 follow-up visit, and 554 children in the middle of 

pubertal transition-aged 10 -18 years were recruited 15. Five hundred and eighteen adolescents 

aged 12 - 21 years completed the last follow-up visit, which was conducted in 2018, herein 

called Time 3. During Time 1 until Time 3, self-reported physical activity questionnaire 

assessment was collected while the objective physical activity assessment, using accelerometer, 

was completed at Time 2, and 3 only.  The current sample size was 570 children and adolescents 

who attended at least one of the follow-up three visits and have information of sedentary 

behavior patterns and any cardiometabolic risk factors (waist circumference, systolic and 

diastolic blood pressure, fasting glucose, TG, HDL-C, insulin, and Homeostatic Model 

Assessment of Insulin Resistance (HOMA-IR)). Figure 1 illustrates the number of repeated 

measures and the final sample size for each form of sedentary behavior assessment. The National 

Institute of Public Health of Mexico and the University of Michigan institutional review boards 

approved the research protocols followed in the ELEMENT’s project.  Upon the subjects’ 

enrollments in the project, the research team collected written informed consent and assent from 

mothers and adolescents, respectively.   

Cardiometabolic Risk Factors:  

Anthropometric measures: Trained research staff collected duplicate measurements for 

body weight (kilograms) to the nearest 0.1 kg and height (centimeters) to the nearest 0.5 cm 
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using a digital scale (BAME Model 420; Catálogo Médico/ Tanita Co. Tokyo, Japan with height 

rod (model WB-3000m) 17, and waist circumference (centimeters) to the nearest 0.1 cm using a 

non-stretchable measuring tape (SECA (model 201, Hamburg, Germany)) 17. The average of the 

two measurements was used for the analysis 18. 

Cardiometabolic biomarkers: Duplicated readings for systolic and diastolic blood 

pressure were recorded in seated position using a mercury sphygmomanometer (TXJ - 10 MD 

3000 model, Homecare, China), and the average of the two measurements was used for the 

analysis. Blood samples after fasting for  ≥8 hours were used to analyze serum glucose via 

automated chemiluminescence immunoassay (Immulite 1000; Siemens Medical Solutions) 18, 

and TG and HDL-C using a biochemical analyzer (Cobas Mira Plus; Roche Diagnostics) 18. 

Levels of insulin were quantified via enzyme-linked immunosorbent assay chemiluminescence 

method with IMMULITE® 1000, Erlangen, Germany equipment 17. A Homeostatic Model 

Assessment of Insulin Resistance (HOMA-IR) was calculated as [fasting plasma glucose 

(mmol/L)*fasting serum insulin (mIU/mL))/ 22.5] 19; higher values represent lower insulin 

sensitivity/insulin resistance 19.  

Physical activity assessment:    

At each of the three follow-up visits, questionnaires modified from the Youth Activity 

Questionnaire (YAQ) and validated relative to 24 hours physical activity recall among Mexican 

school-children aged 10 to 14 years in Mexico City 20, were administered by research staff. The 

questionnaire queried usual frequency of sedentary and select moderate-to-vigorous activities in 

the previous month. The questionnaires included four types of sedentary activities:  1)  hours 

spent watching TV, 2)  hours spent watching movies or videos on video cassette recorder (VCR) 

or digital versatile disc (DVD), 3)  hours spent doing homework or reading, and 4) hours spent in 
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commuting (i.e., riding a bus or car). The answers for each type of sedentary activity were 

categorical responses. Total metabolic equivalents per week were calculated by summing the 

metabolic equivalents (METs) for all physical activities in the questionnaire. METs for each 

activity were calculated by multiplying the corresponding METs based on Ainsworth’s et al., 

compendium 21 by activity intensity. 

The self-reported sedentary activity exposures used in this analysis were (1) total 

sedentary time per day derived by adding up the number of hours spent in all four types of 

sedentary activities, (2) screen-based sedentary time per day calculated by combining the number 

of hours spent watching TV or movies, and (3) other sedentary time per day was calculated by 

adding up the number of hours spent doing homework or reading and commuting.  

During the last two follow-up visits, an objective physical activity assessment was 

obtained using the ActiGraph GT3X+ (ActiGraph LLC, Pensacola, FL). The water-resistant 

device 22 was worn on the non-dominant wrist throughout the day for seven consecutive days 

(entire 24-hour period), and a wristband was used to secure the ActiGraph snugly on the wrist. 

Children and adolescents who had at least three weekdays and one weekend day 23,24 were 

included in the analysis. A day with less than 10 hours of accelerometer data was counted as an 

invalid day and removed from the analysis 16. The collected data were processed with ActiLife 

program (ActiGraph LLC. 2009, Version 6.13.3). Pruned dynamic programming separated the 

waking time from the sleeping time 25. Actigraphy data were summarized into 5-second epochs, 

and Chandler's Vector Magnitude cutoffs were used to classify the daily waking time into the 

following three categories of physical activity intensities: (1) sedentary, (2) light, (3) moderate 

and vigorous physical activity (MVPA) 26. Out of all available days per subject, the average total 

minutes per day of physical activities were calculated and then used to calculate the objective 
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physical activity exposures. A bout was defined as 5 minutes of uninterrupted time performing a 

specific activity. Within a bout, we allowed for up to 30-second of change in the physical activity 

intensity before terminating the bout.  

The objective physical activity exposures were: 

 The percentage of sedentary activity per day (100*total minutes of sedentary 

activity per day / total minutes of waking time spent).   

 The percentage of light activity per day (100*total minutes of light activity per 

day / total minutes of waking time spent).   

 The percentage of MVPA per day (100*total minutes of MVPA per day / total 

minutes of waking time spent).   

 Bouts frequency (bouts/day) as the sum of all bouts that occurred per day for each 

of the physical activity intensity  

  Bouts duration (minutes/day) as the sum of bouts minutes occurred performing 

bouts throughout the day for each of the physical activity intensity  

Potential confounders:  

Based on prior knowledge, potential confounders included: 1) maternal and childbirth 

characteristics measured at baseline, e.g., sex, gestational age, mode of delivery, parity, mother’s 

age, marital status, years of education, and enrollment in the calcium supplementation study, as 

well as duration of breastfeeding, and 2) follow-up characteristics for the children, measured at 

each of the three visits, e.g., child’s age, body mass index (BMI), total daily caloric intake, and 

pubertal onset.  

After childbirth, mothers reported household and demographic information, including 

their ages, marital status (married, or others – includes free union, single, separated, and 
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divorced), parity status (≤ 1, ≥ 2), and years of education (continuous), gestational age 

(continuous) estimated by a registered nurse, and mode of delivery (vaginal, or C-section 

childbirth), enrollment at the RCT for calcium supplementation (not enrolled or, enrolled). The 

newborns were followed until 5 years of age, and information about self-reported breastfeeding 

duration (continuous) was quantified across the visits 27.   

Total caloric intake was calculated from a semi-quantitative food frequency questionnaire 

(FFQ) administered at each study visit 28-30. Sexual maturation was coded based on trained 

pediatrician assessment for the breast, pubic hair, and girls genitalia 31 to assess Tanner stage 

(i.e., the range of values were 1 for pre-pubertal status up to 5 for fully mature status) 32,33. In our 

analysis, we coded the pubertal onset as follow a value greater than 1 for the Tanner Stage for 

pubic hair or genital development for boys and pubic hair or breast development girls, 

respectively 34.  

Statistical Analysis:  

Exposure variables included daily total sedentary time, screen-based sedentary time, and 

other sedentary time. Objective assessments included the percentage of waking time spent in 

specific-intensities of physical activity, bout duration, and bout frequency of specific-intensities 

of physical activity.  Outcome measures were 1) waist circumference (cm), 2) systolic and 3) 

diastolic blood pressure (mm Hg), 4) fasting glucose (mg/dL), 5) TG (mg/dL), 6) HDL-C 

(mg/dL), 7) insulin (μIU/mL), and 8) HOMA-IR. The HDL-C, TG, insulin, and HOMA-IR 

variables were log-transformed to minimize skewedness of their distributions. Mean (standard 

deviation) and frequency (proportions) were presented for the study population's continuous and 

categorical demographic characteristics, respectively.  
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We examined the relationship between sedentary time and physical activity patterns with 

the study outcome using linear mixed models with compound symmetry error structure for 

repeatedly assessed data within each participant. Residuals of the final models were checked for 

assessing the mixed effects assumptions. Findings are presented as β (standard errors [SE]) and 

p-value. 

For each exposure, the crude model included only a continuous variable of the exposure. 

Some of the pre-specified set of confounders that were based on prior knowledge were included 

in the fully adjusted models if they were confounders to our study population based on their 

association with the outcomes. Age, sex, pubertal status, and METs for subjective exposures 

total time of physical activity for objective exposures were included in the adjusted models even 

if they did not associate with the exposures.  Also, we additionally adjusted waist circumference 

models for BMI to account for body size 35. 

We used substitution models for objective sedentary behavior exposures 36,37.  We 

included the percentage of waking time spent in physical activity (total) and the corresponding 

variables for light physical activity and MVPA. The beta coefficient of percentage of light 

activity in these models would be interpreted as the change in outcome for substituting a 

percentage of sedentary activity with a percentage of light activity while keeping the activity 

level constant. The same interpretation is applied for substituting a percentage of MVPA for a 

percentage of sedentary activity. For bout analysis, we included the continuous variable of 

sedentary activity with the corresponding continuous value for either light or MVPA in the same 

model. Beta coefficients of replacing the sedentary activity with light activity were calculated by 

taking the difference in the point estimates of light and sedentary activities. We followed the 

same approach for MVPA bout models. A corrected p-value of < 0.00625 (0.05/8 [number of 
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outcomes]) was considered a statistically significant association to account for the multiple 

testing according to the Bonferroni method. SAS statistical software package, version 9.4, was 

used for analyses (SAS Corp, NC, USA). 

Results:  

Figure 1 illustrates the study design and sample sizes used for subjective and objective 

assessments. The final sample size for self-reported sedentary time was 570 subjects, with three 

repeated measurements at the maximum per subject. For objective sedentary and physical 

activity assessment, 533 subjects were included with two repeated measurements per subject at 

the maximum (Figure 1). Table 1 shows the demographic characteristics of the study population 

by the time point. The mean (SD) age of the sample was 10.32 (1.67) years, 14.50 (2.12) years 

and, 16.43 (2.14) years at Time 1, 2, and 3, respectively. Among cardiometabolic risk factors, the 

mean values for waist circumference, triglycerides, insulin, and HOMA-IR rose across the three 

visits.  Self-reported sedentary time was relatively stable across the three visits, while the 

objective assessment using accelerometer showed increases in sedentary activity and decreases 

in MVPA activity in Time 2 relevant to values reported at Time 1 (Table 1). 

Association between self-reported sedentary time and cardiometabolic risk factors:  

The distributions of potential confounders were examined across quartiles of self-

reported total sedentary time (i.e., daily hours) (Table 2 (Supplementary)).  Mothers’ enrollment 

in the calcium intervention study, parity, and mode of childbirth showed notable differences 

across the quartiles, and thus they were included in the fully adjusted models.  In adjusted 

models, 1 hour of screen-based sedentary time was positively associated with diastolic blood 

pressure [β= 0.3044 (mm Hg), p= 0.0038], and one hour spent in other sedentary activities (i.e., 
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doing homework or reading and commuting) was associated with log-serum glucose [β= 

0.01049, p= 0.0015] (i.e., 1% of change) (Table 3).  

Associations for substituting percentages of sedentary time with physical activity on 

cardiometabolic risk factors:  

Quartiles of the percentage of MVPA showed slightly different distributions for mothers’ 

enrollment in the calcium intervention study, parity, mode of childbirth, sex, and pubertal status 

(Table 4 (Supplementary)). In adjusted models, substituting 1% of individual’s daily sedentary 

time (median = 6 minutes) with an equal percentage of MVPA (median = 0.7 minutes) was 

associated with a reduction in waist circumference by 0.2707 cm (p < 0.0001), and log-serum TG 

[β= -0.02106, p= 0.0036] (i.e., 2% of change). Replacing 10% of individual sedentary time 

(median = 61 minutes) with same percentage of MVPA (median= 7 minutes) resulted in a 

proportionally greater effect size for waist circumference (cm) [β =-2.7066], and log-serum TG 

[β= -0.2106] (i.e., 19% of change) (Table 5).  

Associations for substituting bouts of sedentary time with physical activity on 

cardiometabolic risk factors:  

Among the covariates, tertiles of MVPA bouts frequency (Table 6 (Supplementary)) and 

bout duration (Table 7 (Supplementary)) were associated with mothers’ enrollment in the 

calcium intervention study, parity, sex and pubertal status. Replacing one sedentary bout – a bout 

was defined as 5 minutes of uninterrupted time performing a specific intensity of activity– with 

an equal quantity of light activity was inversely associated with log-serum insulin [β= -0.05847, 

p= 0.0055] (i.e., 6% of change). Moreover, substituting 1 minute of spent in sedentary bouts with 

an equal quantity of light activity was inversely associated with log-serum insulin [β= -0.00868, 

p= 0.0041] (i.e., 0.9% of change) (Table 8). 
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Discussion: 

The current study is one of the few prospective studies with repeated measures of both 

objective and self-reported sedentary patterns conducted among Mexican youth aged 8 – 21 

years. Although we found null associations between total self-reported sedentary time and 

cardiometabolic risk factors, partitioning sedentary time by its context revealed that screen-time 

was positively associated with diastolic blood pressure, and other sedentary time (i.e., doing 

homework or reading and commuting) was positively associated with serum glucose. For an 

objective assessment of sedentary time, substituting the percentage of sedentary time with 

MVPA was associated with decrease in waist circumference and serum TG. Replacing sedentary 

bouts by light activity was associated with a reduction in serum insulin. 

Our null association between total sedentary time and cardiometabolic risk factors were 

consistent with previous studies 6,38-40, but contradicted other studies that found positive 

associations 9,38,41. It is worth noting that multiple systematic reviews and meta-analysis of 

observational studies, including prospective and cross-sectional study designs, have found 

limited or lack of evidence of an association between sedentary time and cardiometabolic health 

among youth 42-45. Furthermore, evidence from a randomized cross-over study conducted among 

healthy youth supported the lack of any detrimental effects on cardiometabolic health after eight 

hours of uninterrupted sedentary activity 46. Children and adolescents are metabolically healthy 

47,48 and a short exposure might not show noticeable impact compared to cumulative exposure 

over decades among middle-aged adult populations 48. Despite the limited evidence for sedentary 

time among youth, several national public health authorities have incorporated the reduction of 

sedentary time in their physical activity guidelines 49,50 as sedentary behavior is a modifiable risk 

factor for cardiovascular health across the lifespan 2.  
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We found a positive association between diastolic blood pressure and screen time. In fact, 

our  effect size was similar to one reported among adolescents aged 11–13 years in the US in a 

predominantly Hispanic population 39 . Other studies have detected detrimental associations 

between screen time and other cardiometabolic risk factors such as waist circumference, lipid 

profile, fat mass, and BMI 39,51,52 . Our positive association with blood pressure is justified in 

light of the prior evidence showing TV watching is associated with higher caloric consumption 

53-55, impaired diet quality 53,56, and shorter sleep duration 57, each of which are plausible 

contributor for impaired cardiometabolic health . Nevertheless, three reviews concluded that 

there was little evidence from observational studies regarding the association between screen 

time and cardiometabolic health, including blood pressure, in youth 58-60 and flagged 

heterogeneity concerns across studies 58,59.  

A positive association between other sedentary time (i.e., doing homework or reading and 

commuting) and serum glucose was detected in our study. Previous experimental studies showed 

an increase in the mean ad libitum energy intake after cognitive-based sedentary tasks (i.e., 

reading and writing or computerized test-battery) relative to the control group (i.e., sitting in a 

comfortable chair) 61,62. Similarly, an adult study revealed an increase in caloric consumption 

before major work deadlines 63. Moreover, higher mean cortisol and larger variability in serum 

glucose and insulin while performing cognitive-based sedentary tasks have been reported 62. This 

evidence suggests that cognitive-based sedentary time might contribute to positive energy 

balance and weight gain in the long-term 55,61,62; future studies are warranted to expand the 

assessment of the sedentary behavior beyond the screen-time among youth. 

Our substitution models showed inverse associations on waist circumference (β=- 0.27 

cm) and serum TG (β=-0.81 mg/dL) when replacing sedentary time with MVPA. Similarly, other 
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studies have shown favorable associations for replacing sedentary time with MVPA on 

cardiometabolic health among youth 44,64. However, our effect sizes were smaller than other 

studies 44,64. The duration of replacement should be considered when comparing studies. We 

assessed replacing 1% of sedentary time (median 6 minutes) compared to 10 minutes 64 and 60 

minutes 44. We showed that a higher effect size resulted from higher percentages of replacement; 

however, it is noteworthy that even a small increase in MVPA resulted in a favorable impact.  In 

short, our results were consistent with the recommendations to replace sedentary time with 

activity at higher intensities to improve cardiometabolic health related outcomes among youth 

42,60,65. 

 We found that replacing a sedentary bout with light activity was associated with a 

reduction in serum insulin. Studies have found inconsistent results 6,38,47,66-68, with limited 

evidence from several reviews and meta-analysis 5,42,45,60. Some methodological related factors in 

defining bouts could be a source for the heterogeneity as there is no consensus on defining the 

duration of a bout 6,42,57,67, and standardizing the exposure assessment would increase the 

robustness of the extracted evidence from studies 5,42,45,64. Moreover, the differences in total 

minutes of activity and the partitioning into different intensities is important to consider when 

comparing studies. For example, our sample had higher minutes of sedentary activity 44,47,64, 

lower minutes of light activity 44,64, but higher minutes of MVPA 41,44,47,64. Lastly, other studies 

showed that overweight and obesity have been associated with larger effect sizes for the 

association between sedentary and physical activity on cardiometabolic health 39,66, and body fat 

percentages partially explained the association  69. Thus, future studies are needed to examine if 

body composition modulates the association between activity and health outcomes. 
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Our study has several strengths. The use of a well-characterized cohort allowed for 

adjusting for multiple confounders at childbirth. Additionally, multiple limitations of the 

previous works were addressed through our longitudinal design with repeated measures. Using 

the repeated measures of activity acknowledges the change in activity patterns during growth and 

maturation 7,8. Different analytic perspectives were used; we examined the association of self-

reported sedentary time, and substituting sedentary behavior pattern with higher intensity in 

relation to cardiometabolic risk factors. We also examined the 24-hours of  activity for 7 

consecutive days, as subjects wore the accelerometer continuously, as facilitated by the use of a 

water resistant device 25.  

The study has several limitations, however. The sedentary time calculated from self-

reported activity questionnaires has not been validated against an objective measure. We tried to 

address the change in activity pattern across the weekend and weekday for school-age youth 70, 

by including subjects who had at least four valid days out of the 7 days, one of which had to be a 

weekend day. However, some researchers have claimed that four days may not fully represent 

variability in movement behaviors in youth70, and could be a source of random error 71. 

Moreover, to address the youth’s highly active and interrupted activity patterns 4, we 

summarized Actigraphy data into 5 second epochs 26 to reduce the measurement error and the 

miss-classification associated with using higher epoch length. However, there is no consensus 

about the epoch length used to summarize the accelerometer data; and that is a concerning point 

as previous research showed the association between bouts of activity and metabolic health was 

influenced by the epoch length 6. 

Despite the common use of accelerometers as a feasible objective assessment tool for 

activity in epidemiological studies 72-74, it is not a gold standard for assessing sedentary behavior 



 77 

47. Accelerometers don’t distinguish between posture settings 4,67,74,75, which could misclassify 

light activity (i.e., static standing) as sedentary time 67, and they fail to capture the context of 

sedentary behavior because they provide a crude summary of total time of activity over the day 

39,74,76. Not all sedentary-context are equal in their impacts on health due to their differences in 

caloric and food consumption 53-56,61,77, energy expenditure and biological homeostasis 62,77 and 

other differences 57,78,79. Lastly, we could not rule out the possibility of residual confounding in 

our analysis due to the use of crude assessment of some covariates or unknown confounding, 

such as family history of chronic diseases.  

In conclusion, we reported detrimental impacts of screen-time and other sedentary time 

(i.e., doing homework or reading and commuting), and protective associations of replacing 

sedentary time by higher intensities on a few cardiometabolic risk factors among Mexican youth. 

Further studies are needed to consolidate the evidence around assessing sedentary and physical 

activity patterns using accelerometers. Currently, there is no consensus about the best approach 

to summarize accelerometer data, epoch length, and defining bouts, and that is needed to 

enhance the comparability of research findings across studies, and reduce measurement errors, 

and activity’s misclassifications (i.e., misclassifying a duration of activity at different intensities) 

6,39,42,57,67. For the sedentary time assessment, validation studies are needed to examine the use of 

objective assessment tools, that can capture the context of the sedentary behavior. Furthermore, 

future studies are warranted to examine the context of sedentary behavior in relation to health 

outcomes to facilitate the incorporation of context-specific sedentary behavior recommendations 

among youth. 
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Abbreviations: PA= physical activity; WC= waist circumference; SBP= systolic blood pressure; DBP= diastolic blood pressure; HDL-C =high 

density lipoprotein cholesterol; TG=TG; HOMA-IR= homeostatic model assessment for insulin resistance 
1 the sample size for serum glucose, HDL-C, and TG is 432, and for serum insulin and HOMA-IR is 407  
2 the sample size for serum glucose, HDL-C, TG, insulin and HOMA-IR is 390  
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Figure 3.1: Flowchart Summary of Analytical Samples of Early Life Exposures in Mexico to ENvironmental Toxicants (ELEMENT) 

Cohort:   
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Table 3.1: Descriptive Statistics of Mother and Child Characteristics of the Early Life Exposures in Mexico to ENvironmental 

Toxicants (ELEMENT) Analytical Sample:   

 
Time 1 

N= 250 

Time 2 

N= 554 

Time 3 

N= 518 

Maternal Characteristics (at time of child’s birth) 

Years of education, (years) 11.00 (2.79) 10.93 (2.91) 2 10.98 (2.91) 2 

Age at childbirth, (years) 26.80 (5.63) 1 26.36 (5.40)3 26.38 (5.44)3 

Parity (≥ 2), % 156 (62.40) 1 340 (61.37) 2 319 (61.58) 2 

Marital Status (married), % 178 (71.20) 1 390 (70.40) 4 363 (70.08) 4 

Enrolled in calcium supplement study, % 95 (38.00) 1 150 (27.08) 2 138 (26.64) 2 

Child Characteristics (at birth) 

Girls, % 132 (52.80) 286 (51.62) 273 (52.70) 

Gestational age, (weeks) 38.85 (1.49)5 38.76 (1.61)6 38.75 (1.60)6 

Mode of delivery (vaginal delivery), % 144 (57.60)7 352 (63.54)8 329 (63.51)8 

Breastfeeding duration, (months) 8.10 (5.88) 1 8.05 (6.07) 2 8.00 (5.98)2 

Child Characteristics (at follow-up visit) 

Age, (years) 10.32 (1.67) 14.50 (2.12) 16.43 (2.14) 

Body mass index, (kg/m2) 19.38 (3.60) 21.62 (4.15) 22.81 (4.46) 

Body mass Z score for age 0.84 (1.24) 0.50 (1.25)8 0.50 (1.25)  

Pubertal onset, % 104 (41.60) 509 (91.88) 518 (100.00)  

Total caloric intake, (kcal/day) 2627.32 (837.77) 2299.06 (922.41) 2124.47 (835.68) 

Child Cardiometabolic risk factors 

Waist circumference, (cm) 70.75 (10.67) 79.56 (11.38) 85.53 (11.80) 1 

Systolic blood pressure, (mm Hg) 102.68 (10.20) 98.66 (9.92) 101.53 (9.83) 1 

Diastolic blood pressure, (mm Hg) 65.52 (7.32) 63.03 (6.86) 64.14 (7.20) 1 

Fasting glucose, (mg/dL) 87.02 (9.36) 77.81 (7.27) 9 90.22 (8.41)10 

HDL-C, (mg/dL) 58.68 (11.94) 43.06 (8.60)9 44.70 (9.03)10 

TG, (mg/dL) 87.54(44.41) 103.97 (55.85)9 105.52 (50.09)10 

Insulin, (μIU/mL) 6.26 (11.03)11 19.06 (11.84)9 19.21 (12.62)12 

HOMA-IR 1.59 (3.51)11 3.69 (2.31)9 4.32 (2.94)12 

Self-reported sedentary time and physical activity  

Total sedentary time, (hours/day)  5.48 (1.91) 5.88 (2.26) 5.37 (2.11)1 
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Metabolic equivalents, (METs/week) 31.39 (19.82) 57.23 (39.01) 44.95 (35.18) 1 

Objective assessment for sedentary and physical activity patterns  

Total time of physical activity, (minutes/day) N/A 915.15 (56.74) 13 924.06 (67.57)14 

Time of minutes of sedentary activity, (minutes/day)  N/A 599.91 (73.42) 13 630.78 (630.78)14 

% of sedentary activity N/A 65.54 (6.74) 13 68.24 (6.71)14 

Number of sedentary bouts, (bout/day) N/A 36.72 (9.83)13 40.48 (9.44)14 

Duration of sedentary bouts, (minutes/day) N/A 322.70 (104.69)13 374.85 (109.80)14 

Time of minutes of light activity, (minutes/day) N/A 236.76 (41.37) 13 226.19 (47.26)14 

% of light activity N/A 25.87 (4.33)13 24.47 (4.65)14 

Number of light bouts, (bout/day) N/A 0.62 (0.83)13 0.85 (1.01)14 

Duration of light bouts, (minutes/day) N/A 3.89 (5.53)13 5.53 (7.03)14 

Time of minutes of MVPA activity, (minutes/day) N/A 78.48 (28.50) 13 67.08 (25.23)14 

% of MVPA activity N/A 8.59 (3.13)13 7.29 (2.71)14 

Number of MVPA bouts, (bout/day) N/A 0.19 (0.53)13 0.13 (0.31)14 

Duration of MVPA bouts (minutes/day) N/A 1.26 (3.60)13 0.88 (2.30)14 

Means (SD) or count (percentages) are presented for continuous or categorical variables, respectively.  

Number of missing values 1.n=1, 2. n=5, 3. n=6, 4.n=7, 5.n=4, 6.n=9, 7.n=3, 8.n=9, 9.n=154, 10= 142, 11. n=174, 12. n=143, 13.n=36, 14.n=83 

Abbreviations: High density lipoprotein cholesterol: HDL-C, TG: TG, Homeostatic Model Assessment of Insulin Resistance: HOMA-IR, METs: metabolic equivalents, 

MVPA: moderate and vigorous physical activity   
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Table 3.2 (Supplementary): Overall Associations between Potential Confounders and Total Sedentary Time: 

 

Total Sedentary Time 

Quartile 1 

Median= 3.25  

n=328 

Quartile 2 

Median= 4.63  

n=331 

Quartile 3 

Median=6.00 

n=331 

Quartile 4 

Median= 8.00 

n=331 

Maternal Characteristics (at time of child’s birth) 

Years of education, (years) 10.73 10.95 11.06 11.13 

Age at childbirth, (years)  26.76 26.63 26.20 26.25 

Parity (≥ 2), (%)  65.55 64.35 60.42 56.19 

Marital Status (married), (%) 69.21 73.11 68.58 71.00 

Enrolled in calcium supplement study, (%) 28.96 32.63 28.40 25.98 

Child Characteristics (at birth) 

Girls, (%) 49.70 49.55 54.08 55.59 

Gestational age, (weeks) 38.92 38.78 38.75 38.66 

Mode of delivery (vaginal delivery), (%) 64.63 65.26 60.73 58.91 

Breastfeeding duration, (months) 7.63 8.32 8.15 8.07 

Child Characteristics (at follow-up visit) 

Age, (years) 14.50 14.37 14.25 14.74 

Body mass index, (kg/m2) 21.58 21.66 21.49 21.90 

Pubertal onset, (%) 85.98 83.69 84.89 87.61 

Total caloric intake, (kcal/day) 2194.93 2272.28 2322.66 2377.76 

Metabolic equivalents, (METs/week) 45.92 46.23 47.33 50.65 

Means or percentages are presented for continuous or categorical variables, respectively 

Red color indicts the covariates included in the fully adjusted models for total sedentary time, screen-based sedentary time, and other sedentary time.  
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Table 3.3: Linear Mixed Regression Models for the Relationship between Sedentary Time and Cardiometabolic Risk Factors: 

 

Waist circumference (cm) 

N= 570, # obs= 1291 

Systolic blood pressure (mm Hg) 

N= 570, # obs= 1290 

Diastolic blood pressure (mm Hg) 

N= 570, # obs= 1290 

Log glucose (mg/dL) 

N= 432, # obs = 1008 

All sedentary 

time 

Screen-based 

sedentary time 

Other sedentary 

time 
All sedentary time 

Screen-based 

sedentary time 

Other sedentary 

time 
All sedentary time 

Screen-based 

sedentary time 

Other sedentary 

time 

All sedentary 

time 

Screen-based 

sedentary time 

Other sedentary 

time 

Crude models 1 

Β 
(SE) 

-0.1372 (0.1283) -0.8739 (0.1495) 
1.5799 

(0.2283) 
0.03736 (0.1207) 0.1320 (0.1429) 

-0.1905 

(0.2212) 
0.1534 (0.08891) 

0.2848 

(0.1050) 
-0.1669 (0.1634) 

-0.00059 

(0.001751) 

-0.00440 

(0.002084) 

0.008415 

(0.003210) 

P-

value 
0.2852 <0.0001 <0.0001 0.7570 0.3560 0.3894 0.0848 0.0068 0.3071 0.7377 0.0352 0.0089 

Adjusted models 2,3 

β 
(SE) 

-0.05715 

(0.04269) 

-0.1031 

(0.05157) 

0.04846 

(0.08128) 
0.08744 (0.1189) 0.1725 (0.1421) 

-0.1219 

(0.2273) 
0.1638 (0.08821) 

0.3044 

(0.1048) 
-0.1855 (0.1688) 

-0.00021 

(0.001729) 

-0.00444 

(0.002070) 

0.01049 

(0.003293) 

P-

value 
0.1810 0.0457 0.5511 0.4624 0.2252 0.5918 0.0636 0.0038 0.2719 0.9015 0.0323 0.0015 

 

Log TG (mg/dL) 

N= 432, # obs = 1008 

log  HDL-C (mg/dL) 

N= 432, # obs = 1008 

Log insulin (μIU/mL) 

N= 407 , # obs= 837 

Log HOMA-IR 

N= 407 , # obs= 837 

All sedentary 

time 

Screen-based 

sedentary time 

Other sedentary 

time 
All sedentary time 

Screen-based 

sedentary time 

Other sedentary 

time 
All sedentary time 

Screen-based 

sedentary time 

Other sedentary 

time 

All sedentary 

time 

Screen-based 

sedentary time 

Other sedentary 

time 

Crude models 1 

Β 
(SE) 

-0.00190 

(0.006112) 

-0.00375 

(0.007302) 

0.002368 

(0.01100) 

-0.00309 

(0.003296) 

0.01026 

(0.003919) 

-0.03357 

(0.005837) 
0.01062 (0.01306) 

-0.01815 

(0.01566) 

0.07654 

(0.02359) 

0.009777 

(0.01323) 

-0.02378 

(0.01586) 

0.08649 

(0.02385) 

P-

value 
0.7564 0.6078 0.8296 0.3484 0.0090 <0.0001 0.4167 0.2469 0.0012 0.4602 0.1342 0.0003 

Adjusted models 2 

β 
(SE) 

-0.00191 

(0.006001) 

0.004518 

(0.007304) 

-0.01776 

(0.01135) 

-0.00179 

(0.002683) 

-0.00045 

(0.003277) 

-0.00535 

(0.005076) 

0.007004 

(0.01157) 

0.006264 

(0.01402) 

0.009590 

(0.02149) 

0.007336 

(0.01168) 

0.002668 

(0.01418) 

0.01917 

(0.02169) 

P-

value 
0.7502 0.5364 0.1182 0.5038 0.8912 0.2918 0.5450 0.6552 0.6555 0.5301 0.8508 0.3771 

1 Models includes either all sedentary time, screen-based sedentary time, or other sedentary time as a fixed effect and compound symmetry error matrix structure 
2 Models additionally adjusted for the following fixed effects: mother’s enrollment in the calcium intervention study, parity status, mode of childbirth at childbirth, child age, sex, metabolic equivalents, and pubertal onset.  
3 Waist circumference models were additionally adjusted for body mass index  
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Table 3.4 (Supplementary): Overall Associations between Potential Confounders and Percentage of Moderate to Vigorous Physical 

Activity (MVPA): 

 

% of MVPA 

Quartile 1 

Median= 4.77 

n=238 

Quartile 2 

Median= 6.81 

n=238 

Quartile 3 

Median= 8.62 

n=238 

Quartile 4 

Median= 11.52 

n=238 

Maternal Characteristics (at time of child’s birth) 

Years of education, (years) 11.18 11.05 10.96 10.71 

Age at childbirth, (years)  26.76 26.47 26.72 25.62 

Parity (≥ 2), (%) 64.71 57.98 59.41 61.34 

Marital Status (married), (%) 73.95 72.69 66.95 67.65 

Enrolled in calcium supplement study, (%) 22.69 27.73 29.29 31.09 

Child Characteristics (at birth) 

Girls, (%) 44.12 48.74 59.83 57.98 

Gestational age, (weeks) 38.72 38.76 38.76 38.83 

Mode of delivery (vaginal delivery), (%) 66.39 64.29 59.83 58.82 

Breastfeeding duration, (months) 8.76 8.20 8.17 7.23 

Child Characteristics (at follow-up visit) 

Age, (years) 16.22 15.47 15.18 14.37 

Body mass index, (kg/m2) 22.36 21.91 22.42 21.92 

Pubertal onset, (%) 97.48 97.90 97.90 91.18 

Total caloric intake, (kcal/day) 2181.56 2217.18 2164.57 2345.59 

Total minutes of activity, (minutes/day) 925.28 917.24 922.96 911.38 

Means or percentages are presented for continuous or categorical variables, respectively 

Red color indicts the covariates included in the fully adjusted substituting models for percentage of sedentary activity.  
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Table 3.5: Linear Mixed Regression Models for the Relationship between Percentages of Physical Activities and Cardiometabolic Risk Factors:   

1 Models includes percentage of light and percentage of MVPA as fixed effects and compound symmetry error matrix structure.   
2 Models additionally adjusted for the following fixed effects: mother’s enrollment in the calcium intervention study, mode of childbirth, parity status, child’s age, sex, total time of physical activity, and pubertal onset 
3 Waist circumference models were additionally adjusted for body mass index  

 
WC (cm) 

N= 530,  # Obs = 926 

SBP (mm Hg) 

N= 530, # Obs = 925 

DBP (mm Hg) 

N= 530, # Obs = 925 

Log glucose (mg/dL) 

N= 388, # Obs = 679 

Log TG (mg/dL) 

N= 388, # Obs = 679 

log  HDL-C (mg/dL) 

N= 388, # Obs = 679 

Log insulin (μIU/mL) 

N= 388, # Obs = 679 

Log HOMA-IR 

N= 388, # Obs = 679 

Crude models 1 

1 % of 

daily 

sedentary 

time  

Sedentary 

Median (interquartile range [IQR]) minutes= 6 (1) 
Ref. 

Light 

Median (IQR) minutes=2 (1) 

β (SE) 

P-value 

0.2526 (0.08578) 

0.0033 

0.08478 (0.08846) 

0.3381 

-0.1441 (0.06489) 

0.0266 

-0.00004 (0.001301) 

0.9753 

0.000881 (0.004764) 

0.8533 

-0.00448 (0.001944) 

0.0216 

0.007166 (0.005429) 

0.1873 

0.004759 (0.005832) 

0.4148 

MVPA 

Median (IQR) minutes =0.70 (0.37) 

β (SE) 

P-value 

-1.0842 (0.1323) 

<0.0001 

-0.4941 (0.1363) 

0.0003 

-0.09894 (0.09992) 

0.3224 

-0.00412 (0.001892) 

0.0300 

-0.02057 (0.006950) 

0.0032 

0.002022 (0.002839) 

0.4766 

-0.01530 (0.007923) 

0.0540 

-0.02337 (0.008507) 

0.0062 

Adjusted  models 2,3 

1 %  of 

daily 

sedentary 

time 

Sedentary 

Median (IQR) minutes = 6 (1) 
Ref. 

Light 

Median (IQR) minutes =2 (1) 

β (SE) 

P-value 

0.05021 (0.03550) 

0.1676 

0.1359 (0.08456) 

0.1085 

-0.1085 (0.06275) 

0.0841 

0.000644 (0.001333) 

0.6295 

0.000117 (0.004835) 

0.9808 

-0.00392 (0.001959) 

0.0458 

0.003950 (0.005454) 

0.4692 

0.003774 (0.005870) 

0.5205 

MVPA 

Median (IQR) minutes =0.70 (0.37) 

β (SE) 

P-value 

-0.2707 (0.05718) 

<0.0001 

-0.1729 (0.1353) 

0.2016 

0.08365 (0.09984) 

0.4023 

-0.00167 (0.001952) 

0.3937 

-0.02106 (0.007214) 

0.0036 

0.003905 (0.002947) 

0.1856 

-0.01746 (0.008151) 

0.0325 

-0.01836 (0.008761) 

0.0364 

5 %  of 

daily 

sedentary 

time 

Sedentary 

Median (IQR) minutes = 31 (5) 
Ref. 

Light 

Median (IQR) minutes =12 (3) 
β (SE) 0.2511 (0.1775) 0.6793 (0.4228) -0.5425 (0.3137) 0.003218 (0.006667) 0.000583 (0.02417) -0.01960 (0.009796) 0.01975 (0.02727) 0.01887 (0.02935) 

MVPA 

Median (IQR) minutes =3.51 (1.85) 
β (SE) -1.3533 (0.2859) -0.8647 (0.6767) 0.4183 (0.4992) -0.00833 (0.009760) -0.1053 (0.03607) 0.01952 (0.01473) -0.08730 (0.04075) -0.09182 (0.04380) 

10 %  of 

daily 

sedentary 

time 

Sedentary 

Median (IQR) minutes = 61 (10) 
Ref. 

Light 

Median (IQR) minutes = 23 (6) 
β (SE) 0.5021 (0.3550) 1.3587 (0.8456) -1.0850 (0.6275) 0.006436 (0.01333) 0.001165 (0.04835) -0.03920 (0.01959) 0.03950 (0.05454) 0.03774 (0.05870) 

MVPA 

Median (IQR) minutes =7.01 (3.71) 
β (SE) -2.7066 (0.5718) -1.7294 (1.3534) 0.8365 (0.9984) -0.01666 (0.01952) -0.2106 (0.07214) 0.03905 (0.02947) -0.1746 (0.08151) -0.1836 (0.08761) 
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Table 3.6 (Supplementary): Overall Associations between Potential Confounders and Bout Frequency for Moderate to Vigorous 

Physical Activity (MVPA): 

 

Bout frequency of MVPA 

Tertile 1 

Median= 0 

n=663 

Tertile 2 

Median= 0.17 

n=178 

Tertile 3 

Median= 0.71 

n=112 

Maternal Characteristics (at time of child’s birth) 

Years of education, (years) 10.91 10.92 11.48 

Age at childbirth, (years)  26.49 25.94 26.55 

Parity (≥ 2), (%)  61.54   61.80   55.36  

Marital Status (married), (%) 70.44  69.10  71.43  

Enrolled in calcium supplement study, (%)  28.21   23.60   31.25  

Child Characteristics (at birth) 

Girls, (%) 54.75 53.37 39.29 

Gestational age, (weeks) 38.76 38.63 39.01 

Mode of delivery (vaginal delivery), (%) 62.44  60.67  64.29  

Breastfeeding duration, (months) 8.35 7.19 7.97 

Age, (years) 15.43 15.20 14.74 

Child Characteristics (at follow-up visit) 

Body mass index, (kg/m2) 22.37 22.19 20.83 

Pubertal onset, (%) 96.53 93.82 92.86 

Total caloric intake, (kcal/day) 2201.69 2306.27 2252.19 

Total minutes of activity, (minutes/day) 918.42 917.56 926.56 

Means or percentages are presented for continuous or categorical variables, respectively 

Red color indicts the covariates included in the fully adjusted substituting models for sedentary bout frequency.  
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Table 3.7 (Supplementary): Overall Associations between Potential Confounders and Bout Duration for Moderate to Vigorous 

Physical Activity (MVPA): 

 

Bout duration  of MVPA 

Tertile 1 

Median= 0 

n=663 

Tertile 2 

Median= 1.00 

n=149 

Tertile 3 

Median= 4.03 

n=141 

Maternal Characteristics (at time of child’s birth) 

Years of education, (years) 10.91 10.93 11.36 

Age at childbirth, (years)  26.49 25.99 26.38 

Parity (≥ 2), (%)  61.54   64.43   53.90  

Marital Status (married), (%) 70.44  68.46  71.63  

Enrolled in calcium supplement study, (%) 28.21  23.49   29.79  

Child Characteristics (at birth) 

Girls, (%) 54.75 56.38 39.01 

Gestational age, (weeks) 38.76 38.62 38.94 

Mode of delivery (vaginal delivery), (%) 62.44  59.73  64.54  

Breastfeeding duration, (months) 8.35 7.05 7.98 

Age, (years) 15.43 15.23 14.80 

Child Characteristics (at follow-up visit) 

Body mass index, (kg/m2) 22.37 22.36 20.93 

Pubertal onset, (%) 96.53 94.63 92.20 

Total caloric intake, (kcal/day) 2201.69 2255.38 2317.09 

Total minutes of activity, (minutes/day) 918.42 918.44 923.78 

Means or percentages are presented for continuous or categorical variables, respectively 

Red color indicts the covariates included in the fully adjusted substituting models for sedentary bout duration.  
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Table 3.6: Linear Mixed Regression Models for the Relationship between Bout Durations and Frequencies with Cardiometabolic Risk Factors:   

 

WC (cm) 

N= 533 

# Obs = 932 

SBP (mm Hg) 

N= 533 

# Obs = 931 

DBP (mm Hg) 

N= 533 

# Obs = 931 

Log glucose (mg/dL) 

N= 390 

# Obs = 683 

Log TG (mg/dL) 

N= 390 

# Obs = 683 

log  HDL-C (mg/dL) 

N= 390 

# Obs = 683 

Log insulin (μIU/mL) 

N= 390 

# Obs = 683 

Log HOMA-IR 

N= 390 

# Obs = 683 

Bout duration 

of light 

activity 

Crude 

model1 

β (SE) 0.06778 (0.04667) 0.1674 (0.04827) 0.02252 (0.03587) 0.002086 (0.000730) 
-0.00473 

(0.002608) 
0.000769 (0.001041) -0.01078 (0.002911) -0.00780 (0.003174) 

P-value 0.1469 0.0005 0.5303 0.0044 0.0702 0.4604 0.0002 0.0142 

Adjusted 

model2 

β (SE) 
-0.01385 

(0.01992) 
0.04997 (0.04856) -0.04407 (0.03653) 0.001188 (0.000772) 

-0.00347 

(0.002717) 
0.001316 (0.001075) -0.00868 (0.003016) -0.00748 (0.003266) 

P-value 0.4870 0.3038 0.2281 0.1245 0.2025 0.2214 0.0041 0.0224 

Bout duration 

of MVPA 

activity 

Crude 

model3 

β (SE) -0.2943 (0.08881) -0.1378 (0.09502) -0.08750 (0.07070) -0.00061 (0.001355) 
-0.00966 

(0.004681) 
0.001272 (0.001874) -0.01070 (0.005290) -0.01254 (0.005711) 

P-value 0.0010 0.1473 0.2162 0.6548 0.0394 0.4977 0.0436 0.0285 

Adjusted 

model4 

β (SE) 
-0.07251 

(0.03712) 
-0.1246 (0.09133) -0.07165 (0.06911) -0.00046 (0.001343) 

-0.00787 

(0.004695) 
0.002188 (0.001869) -0.00846 (0.005263) -0.00891 (0.005677) 

P-value 0.0512 0.1728 0.3001 0.7337 0.0941 0.2420 0.1083 0.1168 

Bout 

frequency of 

light activity 

Crude 

model5 

β (SE) 0.4983 (0.3249) 1.1808 (0.3331) 0.1677 (0.2475) 0.01453 (0.005091) -0.03476 (0.01810) 0.006116 (0.007286) -0.07497 (0.02023) -0.05413 (0.02206) 

P-value 0.1256 0.0004 0.4983 0.0045 0.0553 0.4016 0.0002 0.0144 

Adjusted 

model6 

β (SE) -0.1096 (0.1370) 0.3549 (0.3339) -0.3162 (0.2511) 0.007432 (0.005377) -0.02484 (0.01884) 0.008066 (0.007511) -0.05847 (0.02096) -0.05147 (0.02270) 

P-value 0.4240 0.2881 0.2083 0.1673 0.1879 0.2834 0.0055 0.0237 

Bout 

frequency of 

MVPA activity 

Crude 

model7 

β (SE) -2.1226 (0.6238) -0.9965 (0.6658) -0.5794 (0.4955) -0.00310 (0.009371) -0.07169 (0.03266) 0.01262 0.01325 -0.06038 0.03705 -0.07362 (0.03995) 

P-value 0.0007 0.1348 0.2426 0.7405 0.0285 0.3412 0.1037 0.0658 

Adjusted 

model8 

β (SE) -0.5410 (0.2585) -0.8765 (0.6383) -0.4441 (0.4838) -0.00340 (0.009315) -0.05840 (0.03278) 0.02026 0.01318 -0.04285 0.03686 -0.04669 (0.03975) 

P-value 0.0368 0.1701 0.3589 0.7149 0.0753 0.1248 0.2455 0.2406 

1 Model one includes bout duration spent in sedentary and light physical activity as fixed effect and compound symmetry error matrix structure   
2 Model one additionally adjusted for the following fixed effects: mother’s enrollment in the calcium intervention study, parity status, child’s age, sex, total time of physical activity, and pubertal onset  
3 Model two includes bout duration spent in sedentary and MVPA physical activity as fixed effect and compound symmetry error matrix structure   
4 Model two additionally adjusted for the following fixed effects: mother’s enrollment in the calcium intervention study, parity status, child’s age, sex, total time of physical activity, and pubertal onset 
5 Model three includes bout frequency spent in sedentary and light physical activity as fixed effect and compound symmetry error matrix structure   
6 Model three additionally adjusted for the following fixed effects: mother’s enrollment in the calcium intervention study, parity status, child’s age, sex, total time of physical activity, and pubertal onset  
7 Model four includes bout frequency spent in sedentary and MVPA physical activity as fixed effect and compound symmetry error matrix structure  
8 Model four additionally adjusted for the following fixed effects: mother’s enrollment in the calcium intervention study, parity status, child’s age, sex, total time of physical activity, and pubertal onset 

Waist circumference models were additionally adjusted for body mass index  
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Chapter 4 DNA Methylation and Cardiometabolic Risk Factors in Mexican Children and 

Adolescents   

 

Abstract:  

Background: DNA methylation (DNAm) has been associated with cardiometabolic 

abnormalities. However, this relationship has rarely been assessed in youth.  

Methods: This analysis included 402 healthy children of the Early Life Exposure in Mexico to 

Environmental Toxicants (ELEMENT) birth cohort who participated in follow-up visits in late 

childhood/adolescence (referred to as Time 1 and Time 2). DNAm was quantified in blood 

leukocytes at long interspersed nuclear elements (LINE-1), H19, and 11β-hydroxysteroid 

dehydrogenase type 2 (11β-HSD-2). At Time 2, DNAm at peroxisome proliferator-activated 

receptor alpha (PPAR-α) was measured. At each time point, cardiometabolic risk factors were 

assessed including lipid profiles, glucose, blood pressure, and anthropometry.  

Results: Time 1 DNAm at two LINE-1 loci was associated with repeat measures of log glucose 

(β=-0.029, p-value=0.0006 and β=0.027, p-value=0.0160, respectively), but with log high-

density lipoprotein cholesterol at another LINE-1 CpG site (β=0.063, p-value =0.0072). 11β-

HSD-2 DNAm at site 1 associated with systolic (β= -1.753, p=0.0360) and diastolic blood 

pressure (β= -1.147, p=0.0336), and at site 4 with log glucose (β= -0.017, p =0.0033). DNAm at 

PPAR-α site 2 was cross-sectionally associated with waist circumference (β= -1.681, p=0.0097).  

Conclusion: Blood leukocyte DNAm was associated with cardiometabolic risk factors among 

youth in a locus-specific manner.  
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Key words: epigenetics; cardiovascular health; metabolic health; population-based study; 

adolescent health. 
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Introduction:  

Metabolic syndrome (MetS) is a cluster of physiological conditions, which are central 

obesity, dyslipidemia, glucose intolerance, and elevated blood pressure 1,2. MetS is considered a 

risk factor for cardiovascular disease incidence (CVD), cardiovascular-related mortality, all-

cause mortality 3,4, and other chronic diseases 5,6, and rising prevalence of MetS may be a driver 

of the CVD and type-2 diabetes epidemics 7. Even though CVD outcomes are manifested in 

middle and late adulthood, cardiometabolic risk factors may become evident during childhood 8-

13, and track into adulthood 14-16. Obesity has been associated with increases in the risk and 

prevalence of cardiometabolic abnormalities among youth 16-18. In fact, obesity is rising 

worldwide among children aged 5-19 years. In Latin America and the Caribbean region, 

prevalence rose over a 40-year period from 1.6%, and 1.8%  in 1975 to 10.4%, and 13.4% in 

2016 for girls and boys, respectively 19. As intervening at an early stage is a necessity for 

effective primary interventions, identifying the determinants of cardiometabolic risk factors in 

youth is a prior fundamental step for risk reduction and prevention 16,20.  

Lifestyle factors – including diet, lack of physical activity, sedentary lifestyle – and 

genetic susceptibility are considered predisposing factors for cardiometabolic abnormalities. 

However, they are not enough to explain the increase in MetS prevalence across populations. 

Another plausible risk factor for and a possible mechanism explaining the etiology of 

cardiometabolic abnormalities and CVD is thought to be through epigenetic modifications 21-27, 

defined as mitotically heritable regulators of gene expression that do not change the DNA 

sequence 28. Unlike genetics, epigenetic modifications are dynamic and reversible 21,29 and can 

respond to the environment. DNA methylation (DNAm) is a commonly studied epigenetic 

modification, and it refers to the covalent link between the fifth carbon in a cytosine nucleotide 
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and a methyl group (CH3) 
30,31. The impact of DNAm on gene expression is locus-specific; 

DNAm at promotor regions and gene bodies are typically associated with suppression and 

activation of gene expression, respectively 30.   

DNAm has been associated with the underlying pathology of CVD 21-27, which led to a 

rapid growth in research testing epigenetics as a potential biomarker for CVD’s diagnosis, 

prognosis, and individualized treatment regimens 23,24,32. However, there is a scarcity of 

population-based studies among children and adolescents focusing on epigenetics and 

cardiometabolic outcomes, highlighting the need to study this important life course period. The 

current study will address the gap in knowledge by examining the association of DNAm with 

repeated measures of cardiometabolic risk factors among Mexican children and adolescents aged 

8 – 18 years. Specifically, we quantified CpG site-specific DNAm at repetitive elements (long 

interspersed nuclear element-1, (LINE-1)), and three genes previously associated with 

cardiometabolic-related outcomes (H19 33-36, 11β -hydroxysteroid dehydrogenase type 2 (11β-

HSD-2) 37-41, and peroxisome proliferator-activated receptor alpha (PPAR-α) 42-46 in blood 

leukocyte samples. In a sub-sample, we quantified gene expression of PPAR-α and assessed the 

correlation between expression and DNAm. Based on functions of the genes and results from 

other related studies, we hypothesized that hyper-methylation at 11β-HSD-2 and PPAR-α, and 

hypo-methylation at LINE-1 and H19 would associate with impaired cardiometabolic risk 

factors.  

Methods:  

Study population:  

The analytical sample consisted of subjects who participated in two of three sequentially-

enrolled birth cohorts comprising the Early Life Exposure in Mexico to Environmental Toxicants 
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(ELEMENT) project in Mexico City, Mexico. A comprehensive description for the ELEMENT 

project, and the eligibility and exclusion criteria is available elsewhere 47. Briefly, the 

ELEMENT project included mother-child dyads recruited from maternity hospitals representing 

women from low- to moderate-income populations from 1997 to 2005 48. Mothers recruited for 

one of the birth cohorts, were enrolled in randomized control trial (RCT) that examined the role 

of daily calcium supplementation during pregnancy (1200 mg/day) in mitigating the effect of 

lead exposure on the offsprings’ neurobehavioral and physical developmental outcomes 47. 

Offspring were followed at multiple time points in childhood and through adolescence as well. 

We utilized data from two follow-up visits in late childhood/adolescence. The first follow-up 

visit, herein called Time 1, included children aged between 8 -15 years 47. A second follow up 

visit, Time 2, recruited children in the middle of the pubertal transition (ages 10 -18 years). Most 

children completed both Time 1 and 2 visits 47. The National Institute of Public Health of 

Mexico and the University of Michigan institutional review boards approved the research 

protocols. Written informed consents were collected from mothers upon their enrollments and 

assent from adolescents, respectively.   

Laboratory measurements and outcomes: 

DNA methylation analysis:  

The current study limits its focus to four genomic regions, which previously have been 

associated with cardiometabolic risk factors. Long Interspersed Nuclear Element-1 (LINE-1) 

repetitive elements comprises 15% - 17% of the human genome 49,50, and DNAm of these 

elements is used commonly as a proxy measure for global DNAm 29. DNAm at LINE-1 was 

found to be associated with CVD independent from well-established CVD risk factors in adults 

51. The other three regions selected were H19, 11β-HSD-2, and PPAR-α genes. H19 is an 
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imprinted gene located on chromosome 11 36, and it has been associated with weight regulation 

and adipogenesis 34. 11β-HSD-2 coverts cortisol to an inactive metabolite called cortisone, and 

abnormalities in this gene have been associated with hypertension 37. Lastly, PPAR-α was 

considered because it controls multiple lipid metabolism pathways, including fatty acid 

oxidation, triglyceride synthesis and breakdown, and bile acid metabolism 43; therefore, its 

contributions in dyslipidemia, diabetes, and obesity are biologically plausible 52.  

Whole blood samples were collected via venipuncture into tubes containing 

ethylenediaminetetraacetic acid (EDTA) preservative (Paxgene and BD Vacutainer) by trained 

staff following standard protocols. High-molecular-weight DNA was extracted from blood 

leukocytes with the PAXgene Blood DNA kit (PreAnalytix, Switzerland) or the Flexigene kit 

(Qiagen). The extracted DNA samples were treated with sodium bisulfite using Epitect (Qiagen, 

Valencia, CA) or EZ DNA Methylation kits (Zymo Research, Irvine, CA) following the standard 

methods previously published 53. The purpose of bisulfite treatment was to convert the 

unmethylated cytosines to uracil and preserve the methylated cytosines. The bisulfite-treated 

DNA samples were amplified using HotStarTaq Master Mix (Qiagen) and primers designed to 

amplify each region of interest. Pyrosequencing was performed using either PyroMark Q96 MD 

(Qiagen) or PyroMark Q96 ID (Qiagen). Pyro Q-CpG Software calculated the percent 

methylation and performed internal quality control checks.  At Time 1, DNAm was quantified 

for H19 (4 CpG sites in the imprinting control region), for LINE-1 (4 CpG sites in a conserved 

region), and for 11β-HSD-2 (5 CpG sites in the promoter region), and at Time 2 for PPAR-α (2 

CpG sites in the promoter region) following the protocols published previously 54-56. Information 

of these genomic regions and the primer sequences is presented in Table 1 (Supplementary) 48.  

More than 10% of all samples and controls of human DNA with known percentages of DNAm 
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(0%, 25%, 50%, 75%, and 100%) were run in duplicate and included in each pyrosequencing 

batch (96-well plate). The average of duplicate samples was used when applicable 57. DNAm 

data from LINE-1, 11β-HSD-2, and H19 suggested a batch effect, and the methylation 

percentages were standardized to adjust for the batch effects as described previously 57.  We then 

standardized DNAm values for each region to have mean 0 standard deviation 1 based on the 

sample’s mean and standard deviation values, and these z-scores used in statistical analysis.  

A small sample of the participants enrolled at Time 2 (n=65) provided blood leukocyte 

samples for RNA isolation, and those with the best quality and quantity of RNA were selected 

for next-generation sequencing of RNA (‘RNA-Seq’). PPAR-α gene expression data from the 

RNA-seq was used to assess the relationship between DNAm and gene expression for PPAR-α.  

The protocol followed to quantify the gene expression via RNA-seq was described previously 58.  

Cardiometabolic risk factors  

Anthropometric measures: Duplicate measurements were collected by trained research 

staff in body weight to nearest 0.1 kilogram using a digital scale (BAME Model 420; Catálogo 

Médico), and InBody 230 (InBody Co.), height to the nearest 0.5 centimeter, and waist 

circumference to the nearest 0.1 centimeters using a non-stretchable measuring tape (SECA 201; 

SECA). The average of the two measurements was used for the analysis 59.  

Blood pressure:  Duplicate readings of systolic and diastolic blood pressure were 

recorded in seated position using a mercury sphygmomanometer (TXJ - 10 MD 3000 model, 

Homecare, China), and the average of the two measurements was used for the analysis.     

Metabolic biomarkers: Fasting blood samples were used to analyze serum glucose via 

automated chemiluminescence immunoassay (Immulite 1000; Siemens Medical Solutions) 59, 
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and triglycerides and high density lipoprotein cholesterol using a biochemical analyzer (Cobas 

Mira Plus; Roche Diagnostics) 59.  

Potential confounders:    

Based on prior knowledge on cardiovascular and metabolic health, potential confounders 

assessed for this research were classified as 1) maternal and child characteristics around the time 

of birth (sex, birth weight, gestational age, mode of delivery, duration of breastfeeding, and 

mothers' age, marital status, parity, years of education, and enrollment in the calcium 

supplementation study during pregnancy) and 2) follow-up characteristics for the children, that 

were measured at each time point, e.g., child’s age, total caloric intake, physical activity 

measured as metabolic equivalent, and pubertal onset.  

After childbirth, mothers reported household and demographic information, including 

their ages, marital status (married compared to any other status), parity status (0, 1, ≥ 2), and 

years of education (<12 yrs, 12 yrs, or >12 yrs), gestational age estimated by a registered nurse, 

and mode of delivery (vaginal, or C-section childbirth). The newborns were followed until 5 

years of age, and information about self-reported breastfeeding duration was quantified 60. Since 

cohort 3 was a RCT for daily calcium supplementation (1200 mg/day) during the first trimester 

of pregnancy until 1-year postpartum and cohort 2 participants were not part of a trial, we 

created a binary indicator for mothers who received the calcium treatment (yes/no) with all 

mothers from cohort 2 falling into the ‘no’ category 47,61.  

During each of two follow-up visits, total caloric intake was quantified using semi-

quantitative food frequency questionnaire (FFQ), that captured the intake over the previous week 

62. The FFQ was adapted from the Mexican National Health and Nutrition Survey 62, and FFQs 

were analyzed using a food composition software developed by the National Institute of Public 
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Health, Mexico 63,64. A physical activity questionnaire was developed based on the Youth 

Activity Questionnaire (YAQ) and validated relative to 24 hours physical activity recall among 

Mexican school-children aged 10 to 14 years in Mexico City 65. For each self-reported physical 

activity, the corresponding metabolic equivalent was multiplied by the activity intensity 66. The 

total metabolic equivalent per week was calculated by summing the metabolic equivalent for all 

activities. Puberty was assessed through Tanner staging for breast, pubic hair, and girls genitalia 

by trained physicians 67. Tanner stages range from 1 (pre-puberty) till 5 (full maturation) 68,69. 

Pubertal onset was classified as follows: a value greater than 1 for the Tanner Stage for pubic 

hair or genital development for boys and pubic hair or breast development girls, respectively 70.  

Statistical analysis:  

Outcomes were cardiometabolic risk factors: systolic blood pressure, diastolic blood 

pressure, waist circumference, high-density lipoprotein cholesterol, and triglycerides.  

Demographic characteristics of the study participants were presented as mean (SD) and counts 

(proportions) for continuous and categorical variables, respectively. To assess potential 

confounders, associations were examined between quartile of averaged DNAm across all sites in 

the region and potential confounders at childbirth and follow-up characteristics using either 

analysis of variance or Kruskal-Wallis H tests for continuous variables that were normally and 

non-normally distributed, respectively, and a chi-squared test for categorical variables. We aimed 

to have parsimonious models; thus, covariates that were statistically associated with the DNAm 

(p < 0.05), were included in the final models. All final models included age and sex. In LINE-1 

models, we also adjusted for breastfeeding duration. In 11β-HSD-2 models, we included 

metabolic equivalent per week, total caloric intake, and maternal enrollment in a calcium 
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supplementation trial during pregnancy. For H19 and PPAR-α, only age and sex were adjusted 

for. 

DNAm data was quantified at multiple loci (CpG sites) located within the same genomic 

region. For each gene, all sites were included together as repeated measures of the same 

predictor in models of each outcome 71,72. Additionally, we ran models where DNAm was 

averaged across sites within a genomic region; however, the site-specific models are of main 

interest in this work because our crude analysis showed variability in the direction and 

magnitude of the association between the sites and outcomes. To examine the relationship 

between DNAm at Time 1 at 11β-HSD-2, H19, and LINE-1 and each longitudinally assessed 

cardiovascular risk factor outcome, separate linear mixed models with compound symmetry 

covariance structure were used with each outcome to model the covariance structure of the 

repeated measurements at Time 1 and 2. We used linear regression to assess the cross-sectional 

association between DNAm at PPAR-α and the outcomes because this gene was only measured 

at Time 2. Collinearity was assessed in the linear regression models using variance inflation 

factors. We conducted sensitivity analyses. We additionally adjusted for the pubertal onset at 

Time 1 for 11β-HSD-2, H19 and LINE-1 and at Time 2 for PPAR-α when it crudely associated 

with DNAm; given that puberty has been associated with DNAm at some genes 73.  We also ran 

the analysis after one excluding outlier value in DNAm percentage for H19. SAS statistical 

software package, version 9.4, was used for analyses (SAS Corp, NC, USA), and a p-value < 

0.05, was considered a statistically significant association. We also discuss results in terms of 

significance following correction for multiple testing of six outcomes (p<0.008 or 0.05/6).  

Results:  
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The final sample sizes for LINE-1, H19, and 11β-HSD-2 were 242, 245, and 228 

subjects, respectively, with DNAm at Time 1 and outcomes at Time 1 and/or 2. For PPAR-α, 345 

subjects had DNAm and outcomes at Time 2 (Figure 1). Table 2 shows the demographic 

characteristics of the 402 children by the time point. At Time 1, the mean (SD) age of the sample 

was 10.34 (1.67) years and 53.25% were girls. At Time 2, the mean age was 14.08 (2.03) years 

and 51.32 % were girls. Among cardiometabolic risk factors, only waist circumference and 

serum triglycerides values were higher at Time 2 than Time 1.   

Associations between DNAm at LINE-1 and repeated measures of cardiometabolic risk 

factors:  

Quartiles of DNAm percentages were associated crudely with age, sex, pubertal onset, 

and breastfeeding duration (Table 3 (Supplementary)). DNAm was higher in boys compared to 

girls at LINE-1. In adjusted models, LINE-1 methylation levels were associated with log serum 

fasting glucose inversely at site 1 [β= -0.029, p=0.0006], and positively at site 2 [β= 0.027, p 

=0.0160]. In addition, a positive association was detected between DNAm at site 3 and log serum 

high-density lipoprotein cholesterol [β= 0.063, p=0.0072] (Table 4). The inverse associations 

between DNAm at site 1 with fasting glucose, and the positive association between DNAm at 

site 3 with fasting high-density lipoprotein cholesterol are the only statistically significant 

associations after adjusting for multiple testing (p-value <0.008).  Sensitivity analyses (i.e., 

additionally adjusting for pubertal onset) did not attenuate the detected associations (Table 5 

(Supplementary)). 

Associations between DNAm at 11β-HSD-2 and repeated measures of cardiometabolic risk 

factors:  
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Quartiles of DNAm were associated crudely with age, metabolic equivalents, pubertal 

onset, total caloric intake, and mothers’ enrollment at the calcium intervention during pregnancy 

(Table 6 (Supplementary)). 11β-HSD-2 methylation prospectively associated inversely with 

systolic (mmHg) [β= -1.753, p =0.0360] and diastolic blood pressure (mmHg [β= -1.147, p 

=0.0336]. Moreover, DNAm at site 4 showed an inverse association with log serum fasting 

glucose [β= -0.017, p =0.0033] (Table 7). The inverse association between DNAm at site 4 and 

fasting glucose was the only statistically significant relationship after correcting for multiple 

testing (p-value <0.008). In sensitivity analysis (i.e., additionally adjusting for pubertal onset), all 

associations maintained similar magnitude and significance (Table 8 (Supplementary)). 

Associations between DNAm at H19 and repeated measures of cardiometabolic risk 

factors:  

Among the covariates, quartiles of DNAm were associated crudely with pubertal onset 

only (Table 9 (Supplementary)).In adjusted models, none of the CpG sites were associated with 

any of the cardiometabolic risk factors (Table 10 (Supplementary)).Additionally, adjusting for 

pubertal onset as a sensitivity analysis (Table 11 (Supplementary)) or removing an outlier value 

(Table 12 (Supplementary)) did not change the conclusion.  

Association between DNAm at PPAR-α and cardiometabolic risk factors:  

At Time 2, tertiles of DNAm were crudely associated with age and pubertal onset (Table 

13 (Supplementary)). In a cross-sectional analysis, DNAm at PPAR-α at site 2 was inversely 

associated with waist circumference (cm) [β= -1.681, p =0.0097] (Table 14). The sensitivity 

analysis showed the same result (cm) [β= -1.697, p =0.0091] (Table 51  (Supplementary)). This 

association was not statistically significant at the adjusted p-value (p-value <0.008).  
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Regarding the correlation between DNAm and gene expression for PPAR-α, RNA-seq 

data was available for 65 subjects at the same time point. Weak non-significant positive 

correlations were identified between mRNA and DNAm (site 1: Spearman's correlation [rs] = 

0.14, (p-value = 0.26); site 2: rs =0.10, (p-value = 0.42); Average of the two sites rs =0.12, (p-

value = 0.33)). 

Discussion:  

In this study, the relationships between DNAm at LINE-1, H19, 11β-HSD-2, and PPAR-α 

with cardiometabolic risk factors were investigated among Mexican children enrolled in a well-

characterized birth cohort from Mexico City. Out of the measured cardiometabolic components, 

blood pressure, fasting glucose, high-density lipoprotein cholesterol, and waist circumference, 

were associated with DNAm of at least one gene region each.  

Epigenetic modification is a plausible underlying mechanism in the etiology of obesity, 

cardiometabolic abnormalities, and CVD 21-27.  However, there is limited study of this 

relationship among children and adolescents, where the identification and assessment of  

potential causative factors for adverse cardiometabolic health outcomes is critical in order to 

design evidence based prevention and intervention strategies 74. Ample research has examined 

early life epigenetic programming, where DNAm was measured during early development, in 

relation to obesity and CVD risk later in life 75; DNA undergoes waves of demethylation and re-

methylation during early embryogenesis making this an important developmental time period for 

long term programming 76. While not as drastic, adolescence is also a susceptible period when 

environmental stimuli can impact DNAm patterns 73,77, with implications for health outcomes 

21,29. Moreover, adolescence is characterized by changes in body composition and hormonal 

milieu 78, which is considered the hallmark for the cardiometabolic abnormalities 79.  
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Our findings indicated an inverse prospective relationship between DNAm at LINE-1 and 

serum glucose. Each one standard deviation increase in the LINE-1 methylation at sites 1 and 3, 

was associated with a 3.0% decrease of fasting glucose, and a 6.0% increase of high-density 

lipoprotein cholesterol, respectively. It is worth nothing that the detected changes might not be of 

a clinical significance because of the small effect size. Having said that, our results are in 

agreement with findings from adult studies 46,80-82.  Using peripheral blood samples, Martin-

Nunez et al. showed that baseline DNAm at LINE-1 was inversely associated with carbohydrate 

metabolism after one year of follow-up among middle-aged adults 80. An analysis using target 

tissue (i.e., visceral adipose tissue) for DNAm assessment also reported an inverse association 

between DNAm at LINE-1 and fasting glucose 46,81. Moreover, our finding is in line with other 

studies that have shown LINE-1 hypomethylation is associated with genomic instability and 

CVD 51,82-84. To the best of our knowledge, there were few studies conducted on children 

assessing the relationship between LINE-1 DNAm and adiposity outcomes 85,86. Perng et al. 

found that quartiles of LINE-1 DNAm was inversely associated with a change in waist 

circumference Z-score among Colombian boys aged 5 -12 years old after 2.5 years of follow-up 

85. Dunstan et al. reported null cross-sectional associations between salivary LINE-1 DNAm and 

adiposity outcomes (BMI z score, waist circumference z score, and percent body fat in 431 

adolescents, predominantly Caucasians, aged 10 - 15 years) 86. However, comparing our findings 

with the previous youth studies should be done with caution due to the miss-match in the study 

endpoints, age of the sample, source of DNA, and other factors.  

We found that 11β-HSD-2 methylation was inversely associated with blood pressure, and 

fasting glucose. These associations had small effect sizes as a one-SD unit of DNAm change was 

associated with a 2 mmHg change in blood pressure, and a decrease of 2% in fasting glucose. 
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However, our findings fit in with the available body of evidence. 11β-HSD-2 enzyme converts 

cortisol to an inactive metabolite called cortisone 87,88. Previous studies showed that DNAm at 

11β-HSD-2 at the promotor region was associated with suppressing the gene expression 89,90, and 

impaired 11β-HSD-2 enzyme activity, evident elevation in the urinary cortisol: cortisone 

metabolites ratio 37. DNAm at 11β-HSD-2 at the promoter region was positively associated with 

blood pressure in adults 37,38. Additionally, lower 11β-HSD-2 enzyme activity was associated 

with higher blood pressure in children 39. However, our inverse association between DNAm at 

the promotor region of 11β-HSD-2 and blood pressure was reported earlier by Drake et al. 38. 

The regulation of gene expression is complex and can vary by region of the gene and by type of 

regulator (i.e. DNAm versus other mechanisms). Previous research has shown the enzymatic 

activity of 11β-HSD-2 is associated with age 91 , dietary intake, and physical activity 92, and is 

regulated by other epigenetic mechanisms including miRNA93. Future studies examining the role 

of DNAm at 11β-HSD-2 should be supplemented with analysis of mRNA expression and 

measurement of its enzymatic activity. 

Adult studies found that 11β-HSD-2 activity was associated positively with obesity 40 and 

inversely with insulin sensitivity 40. A previous study found higher 11β-HSD-2 activity among 

adults diagnosed with type 2 diabetes diagnosis than controls, despite the lack of difference in 

mRNA expression 41. Future studies examining the role of DNAm at 11β-HSD-2 with other 

cardiometabolic risk factors – in addition to what is already known about blood pressure, are worth 

conducting to build upon past research in adults and our findings in adolescence.  

In the present study using repeated measures of outcomes, DNAm at H19 was not 

associated with any of the cardiometabolic risk factors for the site-specific models.  H19 is a 

long non-coding RNA and is a maternally expressed imprinted gene. H19 has a role in regulating 
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cell formation and proliferation, weight, adipogenesis, oxidative metabolism and brown adipose 

tissue thermogenesis 33,34. H19 transgenic mice which had overexpression of H19, were less 

susceptible to the adverse cardiometabolic effects of high fat diet  such as insulin insensitivity34. 

We previously reported an association between DNAm at H19 with higher subcutaneous fat, but 

not with central obesity or BMI z score among girls, but not boys, from the ELEMENT cohort 

35.  Huang et al. reported a similar positive association with H19 DNAm and subcutaneous fat in 

Australian adolescents 36. Age and sex may be important modifiers in the relationship between 

H19 DNAm and these outcomes.  

We found that higher PPAR-α methylation at CpG site 2 in the promotor region, was 

inversely associated with waist circumference. Each one standard deviation increase in the 

PPAR-α methylation was associated with approximately 2 cm smaller waist circumference, a 

magnitude of potential clinical significance.  In general, DNAm at gene promoter regions is 

associated with gene repression 30; however, our analysis showed weak positive correlations 

between DNAm at the CpG sites assessed and gene expression. Thus, the reported inverse 

association is in agreement with the biological function known for PPAR-α. PPAR-α enhances 

the oxidation of fatty acid, breakdown of triglyceride-rich particles, and high density lipoprotein 

cholesterol synthesis, removing excess cholesterol from the liver, and reducing the accumulation 

of triglycerides 42,43. The use of fibrates, a PPAR-α agonist drug, has shown to significantly 

lower cardiovascular risk among high-risk subjects 44.  PPAR-α also regulates oxidative stress 

and inflammatory response 42. Few studies assessed the relationship between DNAm at PPAR-α 

and cardiometabolic risk factors. DNAm at PPAR-α from visceral adipose samples analyzed 

among adults showed a positive correlation between DNAm and serum triglycerides 46. 

Moreover, rats fed a high fructose diet for two weeks showed a significant increase in hepatic 
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DNAm at one CpG site in the promoter region of PPAR-α, lowered mRNA expression, high 

serum triglycerides, total cholesterol, and higher hepatic lipid accumulation 45.  Other possible 

physiological conditions could regulate PPAR-α expression such as stress, insulin, leptin, 

adiponectin, growth hormones 43, which could confound our findings.  

The present study has multiple strengths, including the prospective assessment of the 

association between DNAm at three of the genes and two repeat measures of cardiometabolic 

risk factors during a sensitive period of growth, development, and maturation. We used a robust 

statistical model to account for the longitudinal data structure, and conducted a site-specific 

analysis for examining the association between the epigenetic modifications and cardiometabolic 

risk factors. As noted earlier, the association between DNAm and outcome might be site-

specific81. Averaging all sites within a region, a common analytical practice in epigenetic studies, 

might hinder the ability to detect site-specific associations between DNAm and outcomes. Our 

data come from a well-characterized birth cohort, ELEMENT, which allowed for assessing 

multiple confounders, including mother’s sociodemographic and reproductive characteristics. In 

regard to the study limitations, we measured DNAm in blood, which is not the target tissue for 

cardiometabolic related outcomes. However, it has been shown in epigenome-wide studies that 

DNAm in blood correlates with DNAm in adipose tissue 94-96, and skeletal muscle 97 in many 

genes. Additionally, this work aims to inform the development of potential biomarkers for  

cardiometabolic risk among children and adolescents; thus an accessible tissue such as blood is 

necessary to use for this purpose 98. Lastly, the use of bisulfite treatment to measure DNAm does 

not distinguish between cytosine methylation (5mC) and cytosine hydroxymethylation (5hmC) 

99, and 5hmC has its own distinct impact on gene regulation which is not captured by our 

method.    
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In conclusion, we observed site-specific associations between DNAm at LINE-1, 11β-

HSD-2, and PPAR-α with cardiometabolic risk factors in a sample of Mexican children. Future 

studies are needed to replicate and expand on the association between DNAm and 

cardiometabolic health in adolescents. Such findings if validated and replicated in other cohorts 

could open the door for the use of blood DNAm biomarkers to predict risk and develop targeted 

interventions among youth. Moreover, since our study only focused on 4 genomic regions, we 

recommend future studies employ epigenome-wide approaches and assess gene expression to 

identify all important genes for these outcomes in children.  
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Table 4.1 (Supplementary): Primer Sequences and Details of CpG Sites Assessed: 

 

 

 

 

 

Notes:  

a. Loci are based off genome build GRCh38/hg38  

b. All reverse primers for pyrosequencing are 5'biotinylated.   

c. A consensus sequence found in all LINE-1s (located throughout the genome) is amplified and sequenced here. The specific sequence is as follows: 5'-

CTCGTGGTGCGCCGTTTCTTAAGCCG 

Long interspersed nuclear elements (LINE-1); 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD-2); Peroxisome proliferator-activated receptor alpha (PPAR-α).  

 

 

 

 

 

 

 

Gene or Element 

Name 

# of CpG 

Sites 

Assessed 

Loci of CpG Sites a 

Primer Sequences 
Locus of Amplified 

Region Forward Reverse b Sequencing 

LINE-1 4 Various c 
TTGAGTTAGGTGTGG

GATATAGTT 

CAAAAAATCAAAAAAT

TCCCTTTCC 

AGGTGTGGAT

ATAGT 
Various3 

H19 4 

chr11: 2003031, 

2003029, 2003027, 

and 2003024 

TTTGTTGATTTTATTA

AGGGAG 

CTATAAATAAACCCCA

ACCAAAC 

GTGTGGAATT

AGAAGT 

chr11: 2002966-

2003111 

PPAR-α 2 
chr22: 46149160 and 

46149179 
GGAGGTTTTTATGAG

GATGTAGTT  

ACACATATTAACCAAC

AATAACTATCAT 
GGATGTGGTT

GTTTG 

chr22: 46149046-

46149244 

11β-HSD-2 5 

chr16: 67430541, 

67430543, 

67430562, 

67430564, and 

67430580 

TTAAGTTTTGGAAGG

AAAGGGAAAGA 

ACATCCCCATACCCTT

TACTAATC 

AGTTTTTGTTT

TAGGTAGG 

chr16: 67430512-

67430745  
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The associations between DNAm at LINE-1, H19, and 11β-HSD-2, and repeated measures of cardiometabolic risk factors were examined. For 

PPAR-α, the cross-sectional associations were investigated.   

The sample size for LINE-1 (N=242); 43 observations had information at Time 1 only, and 199 observations had information at the two time 

points.   

The sample size for H19 (N=245); 44 observations had information at Time 1 only, and 201 had information at the two time points.   

The sample size for 11β-HSD-2 (N=228), 43 observations had information at Time 1 only, and 185 had information at the two time points.   

The sample size for PPAR-α (N=345), they were all at Time 2 only.   

Long interspersed nuclear elements (LINE-1); 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD-2); Peroxisome proliferator-activated receptor 

alpha (PPAR-α).  

  

Birth

Time 1

8-15 yrs

N=246 

Time 2 

10-18 yrs 

N=380 

Predictors 

 DNAm at LINE-1 (N=242) 

 DNAm at H19 (N=245) 

 DNAm at 11β-HSD-2 (N=228) 

 

 

 

Predictor 

DNAm at PPAR-α (N=345) 

 

 

  

Outcomes  

 Waist circumference  

 Systolic blood pressure  

 Diastolic blood pressure  

 Glucose  

 High-density lipoprotein  cholesterol 

 Triglycerides  

 

 

 

 

Outcomes  
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 Diastolic blood pressure  
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 High-density lipoprotein  cholesterol 

 Triglycerides  

 

 

 

 

Figure 4.1: Summary of Main Predictors and Outcomes for this Study and Number of Participants with the Data from the Early Life 

Exposures in Mexico to ENvironmental Toxicants (ELEMENT) Cohort:   
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Table 4.2: Descriptive Statistics of Mother and Child Characteristics of the Early Life Exposures 

in Mexico to ENvironmental Toxicants (ELEMENT) Analytical Sample:   

 Time 1 

N= 246 

Time 2 

N= 380 

Maternal Characteristics (at time of child’s birth ) 

Years of education, %  

                          < 12 years 121 (49.19)1 196 (51.58)2 

12 years  90 (36.59) 1 131 (34.47)2 

                          > 12 years 34 (13.82)1 52 (13.68)2 

Age at childbirth, (years) 26.86 (5.64)1 26.47 (5.46) 2 

Parity, %   

                          0 1 (0.41)1 4 (1.05)2 

                          1 89 (36.18)1 140 (36.84)2 

                          ≥ 2  155 (63.01)1 235 (61.84)2 

Marital Status, %    

Married 175 (71.14)1 274 (72.11) 2 

Others (includes free union, single, separated, or divorced) 70 (28.46) 1 105 (27.63) 2 

Enrollment in calcium supplementation study, %  

                         Not enrolled  152 (61.79)1 257 (67.63)2 

                         Enrolled during pregnancy  93 (37.80)1 122 (32.11)2 

Child Characteristics (at birth) 

Girls, % 131 (53.25) 195 (51.32) 

Gestational age, (weeks) 38.85 (1.49)3 38.79 (1.61)4 

Mode of delivery, %  

                          Vaginal delivery 140 (56.91)5 220 (57.89) 6 

                          C Section 103 (41.87)5 158 (41.58) 6 

Birth weight, (kg) 3.15 (0.45)7 3.15 (0.48)6 

Breastfeeding duration, (weeks)  8.15 (5.91)1 8.09 (6.07)2 

Child Characteristics (at follow-up visit) 

Age, (years) 10.34 (1.67) 14.08 (2.03) 

Body mass index Z score for age  0.85 (1.24) 0.53 (1.26)6 

Metabolic equivalent (minutes/week) 31.38 (19.97) 60.63 (38.76) 

Total caloric intake, (kcal/day)  2636.32 (839.83) 2371.62 (936.82) 

Pubertal onset, %   

                          No 143 (58.13) 25 (6.58)8 

                          Yes 103 (41.87) 348 (91.58)8 

Outcomes (cardiometabolic risk factors) 

Waist circumference, (cm) 70.81 (10.71) 79.14 (11.42) 

Systolic blood pressure, (mm Hg) 102.74 (10.24) 97.23 (9.62) 

Diastolic blood pressure, (mm Hg) 65.58 (7.31) 62.24 (6.71) 

Fasting glucose, (mg/dL) 86.98 (9.38) 77.48 (7.05) 9 

High density lipoprotein cholesterol, (mg/dL) 58.76 (11.92) 42.95 (8.87) 9 

Triglycerides, (mg/dL)  87.89 (44.40) 105.81 (57.47) 9 

Predictors (DNAm values) 

LINE-1 DNAm, % (averaged across 4 CpG sites)  78.49 (2.31)5 N/A 

H19 DNAm, % (averaged across 4  CpG sites) 58.31)5.16(1 N/A 

11β-HSD-2 DNAm, % (averaged across 5  CpG sites)a -0.85 (1.34) N/A 
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 1.n=245 , 2. n= 379, 3. n= 242, 4.n=377, 5.243, 6.n=378, 7.n=244, 8.n=373, 9. n= 342, 10.n=358.  

DNAm=DNA methylation  

Means (SD) or count (percentages) are presented for continuous or categorical variables, respectively. 

a. Negative values appear for 11β-HSD-2 because values are standardized to controls included on each plate to 

reduce the impact of pyrosequencing batch effects (for Time 1).   

Long interspersed nuclear elements (LINE-1); 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD-2); Peroxisome 

proliferator-activated receptor alpha (PPAR-α).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PPAR- α  DNAm, % (averaged across 2  CpG sites) N/A 10.62 (2.09)10 
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Table 4.3 (Supplementary): Average DNAm at LINE-1 and Confounders Selection: 

 Average DNA methylation z score at LINE-1 

Q 1  

N= 143 

Q 2  

N= 143 

Q 3  

N=144 

Q 4  

N=143 
P-value 

Maternal Characteristics (at time of child’s birth) 

Years of education, %  

                          < 12 years 53.15 52.45 45.83 51.05 

0.3035                           12 years  27.66 34.97 38.89 37.76 

                          > 12 years 18.44 12.59 15.28 11.19 

Age at childbirth, (years) 26.79 27.01 26.28 26.26 0.5697 

Parity, %   

                          0 0.00 0.70 2.08 0.70 

0.4233 1 33.33 35.66 37.50 41.26 

≥ 2 66.67 63.64 60.42 58.04 

Marital Status, %    

Married 68.79 69.93 72.92 74.83 
0.6601 

Others (includes free union, single, separated, or divorced) 31.21 30.07 27.08 25.17 

Enrollment in calcium supplementation study, %  

                          Not enrolled  60.99 64.34 69.44 64.34 
0.5154 

Enrolled during pregnancy  39.01 35.66 30.56 35.66 

Child Characteristics (at birth) 

Girls, % 58.04 56.64 50.69 38.46 0.0034* 

Gestational age, (weeks) 38.72 38.64 38.87 38.93 0.2243 

Mode of delivery, %  

                          Vaginal delivery 53.90 56.64 53.85 65.25 
0.1696 

                          C Section 46.10 43.36 46.15 34.75 

Birth weight, (kg) 3.14 3.14 3.17 3.16 0.8982 

Breastfeeding duration, (weeks)  6.82 7.78 9.38 7.99 0.0018* 

Child Characteristics (at follow-up visit) 

Age, (years) 12.14 12.83 12.21 12.54 0.1317 

Body mass  Z score for age  0.64 0.79 0.67 0.51 0.3063 

Metabolic equivalents, (METs/ week) 49.49 49.92 47.33 49.06 0.8888 

Pubertal onset, %  62.41 80.99 72.03 69.72 0.0068* 

Total caloric intake, (kcal/day) 2452.21 2441.99 2545.91 2509.13 0.7121 

        Means or percentages are presented for continuous or categorical variables, respectively. 

        Long interspersed nuclear elements (LINE-1) 

        *P-value < 0.05 
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Table 4.4: Associations between DNAm at LINE-1 and Repeated Measures of Cardiometabolic Risk Factors using Mixed Models 

(N=242):   

 

LINE-1 site 1 LINE-1 site 2 LINE-1 site 3 LINE-1 site 4 Average of All sites 

Estimate (SE) P-value Estimate (SE) P-value Estimate (SE) P-value Estimate (SE) P-value  
Estimate 

(SE) 
P-value 

Waist circumference (cm) (number of observation used =441) 

Model 1 -0.5960 (1.0435)  0.5684 1.1418 (1.4217 ) 0.4227 -0.4783 (1.1510)  0.6781 0.2997 (0.9013)  0.7398 Model 3 
0.3366 

(0.6796)  
0.6208 

Model 2 0.5615 (1.0072) 0.5777 0.9837 (1.3686) 0.4730 -1.7757 (1.1106) 0.1111 0.3214 (0.8710) 0.7124 Model 4 
0.07382 

(0.6786) 
0.9135 

Systolic blood pressure (mm Hg)  (number of observation used =441) 

Model 1 -0.4560 (0.8541)  0.5939 -0.1855 (1.1698) 0.8741 0.1632 (0.9435)  0.8628 0.9703 (0.7361)  0.1887 Model 3 
0.2637 

(0.5575)  
0.6366 

Model 2 -0.9634 (0.8928) 0.2817 -0.00023 (1.2181) 0.9999 0.4640 (0.9898) 0.6397 0.8922 (0.7676) 0.2464 Model 4 
0.1597 

(0.6019) 
0.7911 

Diastolic blood pressure (mm Hg) (number of observation used =441) 

Model 1 -0.5185 (0.5769)  0.3697 0.1316 (0.7927)  0.8682 0.2271 (0.6379)  0.7221 0.3619 (0.4966)  0.4669 Model 3 
-0.1096 

(0.3767)  
0.7713 

Model 2 -0.6759 (0.5947) 0.2570 -0.04549 (0.8136) 0.9555 0.3404 (0.6613) 0.6072 0.3674 (0.5094) 0.4716 Model 4 
-0.09573 

(0.4009) 
0.8115 

Log transformed fasting glucose (mg/dL) (number of observation used = 438) 

Model 1 
-0.01570 

(0.007838)  
0.0463* 0.02427 (0.01086)  0.0263* -0.00357 (0.008708)  0.6825 

-0.00361 

(0.006726)  
0.5917 Model 3 

0.003541 

(0.005172)  
0.4943 

Model 2 
-0.02864 

(0.008211) 
0.0006* 0.02729 (0.01124) 0.0160* 0.01135 (0.009149) 0.2162 

-0.00142 

(0.007028) 
0.8402 Model 4 

0.009024 

(0.005689) 
0.1141 

Log transformed high density lipoprotein cholesterol (mg/dL) (number of observation used = 438) 

Model 1 
0.02078 

(0.01893)  
0.2733 -0.02664 (0.02610)  0.3083 0.01023 (0.02099)  0.6265 

-0.01677 

(0.01627)  
0.3039 Model 3 

-0.00961 

(0.01244)  
0.4404 

Model 2 
-0.01466 

(0.02111) 
0.4881 -0.02801 (0.02873) 0.3306 0.06331 (0.02334) 0.0072*† 

-0.00571 

(0.01822) 
0.7543 Model 4 

0.01239 

(0.01431) 
0.3878 

Log transformed triglycerides (mg/dL) (number of observation used = 438) 

Model 1 
-0.05170 

(0.04055)  
0.2035 -0.03424 (0.05541)  0.5372 0.05445 (0.04481)  0.2255 -0.00392 (0.03498)  0.9109 Model 3 

-0.03059 

(0.02656)  
0.2506 

Model 2 
-0.02698 

(0.03945) 
0.4947 -0.04343 (0.05383) 0.4205 0.05072 (0.04378) 0.2477 0.009633 (0.03392) 0.7766 Model 4 

-0.01358 

(0.02666) 
0.6109 
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 Long interspersed nuclear elements (LINE-1) 

 Model 1: includes LINE-1 z scores at site 1, 2, 3, and 4 as fixed effects, and compound symmetry matrix structure to model the covariance structure of the repeated 

measurements for each outcome   

 Model 2: model 1 additionally adjusted for the following fixed effects:  age, sex, and duration of breastfeeding  

 Model 3: includes average LINE-1 z score at site 1, 2, 3, and 4 as fixed effect, and compound symmetry matrix structure to model the covariance structure of the repeated 

measurements for each outcome   

 Model 4: model 3 additionally adjusted for the following fixed effects:  age, sex, and duration of breastfeeding  

*P-value < 0.05; † P-value < 0.008 
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Table 4.5 (Supplementary): Associations between DNAm at LINE- 1 and Repeated Measures of  Cardiometabolic Risk Factors 

using Mixed Models Adjusting for Pubertal Onset (N=242): 

 

LINE-1 site 1 LINE-1 site 2 LINE-1 site 3 LINE-1 site 4 Average of All sites 

Estimate (SE) P-value Estimate (SE) P-value Estimate (SE) P-value Estimate (SE) P-value  
Estimate 

(SE) 
P-value 

Waist circumference (cm) (number of observation used =441) 

Model 1 -0.5960 (1.0435)  0.5684 1.1418 (1.4217 ) 0.4227 -0.4783 (1.1510)  0.6781 0.2997 (0.9013)  0.7398 Model 3 
0.3366 

(0.6796)  
0.6208 

Model 2 0.6325 (1.0098) 0.5317  1.0269 (1.3678)  0.4535  -1.9266 (1.1252)  0.0881  0.3154 (0.8699)  0.7172  Model 4 
0.05462 

(0.6795)  
0.9360 

Systolic blood pressure (mm Hg)  (number of observation used =441) 

Model 1 -0.4560 (0.8541)  0.5939 -0.1855 (1.1698) 0.8741 0.1632 (0.9435)  0.8628 0.9703 (0.7361)  0.1887 Model 3 
0.2637 

(0.5575)  
0.6366 

Model 2 -0.6264 (0.8602)  0.4672 0.2907 (1.1720)  0.8043 -0.3020 (0.9613)  0.7537 0.8606 (0.7375)  0.2444 Model 4 
0.03881 

(0.5785)  
0.9466 

Diastolic blood pressure (mm Hg)  (number of observation used =441) 

Model 1 -0.5185 (0.5769)  0.3697 0.1316 (0.7927)  0.8682 0.2271 (0.6379)  0.7221 0.3619 (0.4966)  0.4669 Model 3 
-0.1096 

(0.3767)  
0.7713 

Model 2 -0.4927 (0.5769)  0.3940 0.1524 (0.7887)  0.8469 -0.09831 (0.6458)  0.8791 0.3551 (0.4932)  0.4723 Model 4 
-0.1387 

(0.3881)  
0.7212 

Log transformed fasting glucose (mg/dL) (number of observation used = 438) 

Model 1 
-0.01570 

(0.007838)  
0.0463* 0.02427 (0.01086)  0.0263* -0.00357 (0.008708)  0.6825 

-0.00361 

(0.006726)  
0.5917 Model 3 

0.003541 

(0.005172)  
0.4943 

Model 2 
-0.02747 

(0.008217)  
0.0010*† 0.02862 (0.01124)  0.0115* 0.008495 (0.009213)  0.3575 

-0.00145 

(0.007023)  
0.8362 Model 4 

0.008756 

(0.005687)  
0.1250 

Log transformed high density lipoprotein cholesterol (mg/dL) (number of observation used = 438) 

Model 1 
0.02078 

(0.01893)  
0.2733 -0.02664 (0.02610)  0.3083 0.01023 (0.02099)  0.6265 

-0.01677 

(0.01627)  
0.3039 Model 3 

-0.00961 

(0.01244)  
0.4404 

Model 2 
-0.00710 

(0.02059)  
0.7305 -0.02295 (0.02796)  0.4127 0.04707 (0.02299)  0.0417* 

-0.00636 

(0.01771)  
0.7197 Model 4 

0.008877 

(0.01388)  
0.5230 

Log transformed triglycerides (mg/dL) (number of observation used = 438) 

Model 1 
-0.05170 

(0.04055)  
0.2035 -0.03424 (0.05541)  0.5372 0.05445 (0.04481)  0.2255 

-0.00392 

(0.03498)  
0.9109 Model 3 

-0.03059 

(0.02656)  
0.2506 

Model 2 
-0.02828 

(0.03955)  
0.4752 -0.04454 (0.05388)  0.4093 0.05366 (0.04424)  0.2263 

0.009718 

(0.03392)  
0.7747 Model 4 

-0.01339 

(0.02668)  
0.6161 
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 Long interspersed nuclear elements (LINE-1) 

 Model 1: includes LINE-1 z score at site 1, 2, 3, and 4 as fixed effects, and compound symmetry matrix structure to model the covariance structure of the repeated 

measurements for each outcome   

 Model 2: model 1 additionally adjusted for the following fixed effects:  age, sex, duration of breastfeeding, and pubertal onset  

 Model 3: includes average LINE-1 z score at site 1, 2, 3, and 4 as fixed effect, and compound symmetry matrix structure to model the covariance structure of the repeated 

measurements for each outcome   

 Model 2: model 3 additionally adjusted for the following fixed effects:  age, sex, duration of breastfeeding, and pubertal onset 

*P-value < 0.05; † P-value < 0.008 
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Table 4.6 (Supplementary): Average DNAm at 11β-HSD-2 and Confounders Selection: 

 Average DNA methylation z score at 11β-HSD-2 

Q 1  

N= 134 

Q 2  

N= 135 

Q 3  

N=134 

Q 4  

N=134 
P-value 

Maternal Characteristics (at time of child’s birth) 

Years of education, %  

                          < 12 years 53.73 54.07 49.25 49.25 

0.2002                           12 years  32.09 37.04 38.06 34.33 

                          > 12 years 14.18 8.89 11.19 16.42 

Age at childbirth, (years) 26.72 26.54 26.52 26.86 0.9538 

Parity, %   

0 0.00 2.22 0.00 1.49 

0.2014 1         33.58 35.56 37.31 39.55 

≥ 2 66.42 62.22 61.19 58.96 

Marital Status, %    

Married 66.42 73.33 69.40 78.36 
0.1313 

Others (includes free union, single, separated, or divorced) 33.58 26.67 29.10 21.64 

Enrollment in calcium supplementation study, %  

                         Not enrolled  56.72 77.78 62.69 64.18 
0.0064* 

Enrolled during pregnancy  43.28 22.22 35.82 35.82 

Child Characteristics (at birth) 

Girls, % 55.97 51.11 52.99 48.51 0.8091 

Gestational age, (weeks) 38.80 38.73 38.92 38.74 0.7167 

Mode of delivery, %  

                          Vaginal delivery 56.72 54.81 62.69 55.22 
0.4120 

                          C Section 42.54 45.19 35.07 44.03 

Birth weight, (kg) 3.10 3.11 3.18 3.22 0.1277 

Breastfeeding duration, (weeks)  8.20 7.48 8.55 8.31 0.3030 

Child Characteristics (at follow-up visit) 

Age, (years) 11.38 13.69 12.89 11.64 <0.0001* 

Body mass  Z score for age  0.69 0.61 0.59 0.69 0.7855 

Metabolic equivalents, (METs/week) 42.02 54.03 54.61 38.45 0.0005* 

Pubertal onset, %  56.72 85.93 78.36 54.48 <0.0001* 

Total caloric intake, (kcal/day) 2634.96 2440.82 2396.67 2522.42 0.0265* 

                  Means or percentages are presented for continuous or categorical variables, respectively. 

  11β-hydroxysteroid dehydrogenase type 2 (11β-HSD-2) 

  *P-value < 0.05 
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Table 4.7: Associations between DNAm at 11β-HSD-2 and Repeated Measures of Cardiometabolic Risk Factors using Mixed Models 

(N=228): 

 

11β-HSD-2 site 1 11β-HSD-2 site 2 11β-HSD-2 site 3 11β-HSD-2 site 4 11β-HSD-2 site 5 Average of all sites 

Estimate 

(SE) 
P-value Estimate (SE) P-value Estimate (SE) P-value Estimate (SE) P-value Estimate (SE) P-value  

Estimate 

(SE) 
P-value 

Waist circumference (cm) (number of observation used =413) 

Model 1 
-0.3085 

(1.0403)  
0.7671 -0.1795 (0.7979)  0.8223 

0.1743 

(0.9688)  
0.8574 0.4602 (0.7678)  0.5496 0.2848 (0.7244)  0.6946 Model 3 

0.1115 

(0.6867)  
0.8712 

Model 2 
-1.1409 

(0.9965) 
0.2535 0.1966 (0.7703) 0.7988 

0.6050 

(0.9244) 
0.5135 0.4888 (0.7320) 0.5050 -0.1429 (0.6916) 0.8365 Model 4 

-0.3122 

(0.6598) 
0.6366 

Systolic blood pressure (mm Hg)  (number of observation used =413) 

Model 1 
-1.5839 

(0.8347)  
0.0590 -0.7899 (0.6400)  0.2184 

1.2452 

(0.7780)  
0.1109 0.3529 (0.6179)  0.5685 -0.4642 (0.5801)  0.4245 Model 3 

-0.6991 

(0.5581)  
0.2116 

Model 2 
-1.7532 

(0.8309) 
0.0360* -0.4561 (0.6411) 0.4776 

1.2370 

(0.7702) 
0.1098 0.5984 (0.6121) 0.3294 -0.1707 (0.5751) 0.7669 Model 4 

-0.4597 

(0.5573) 
0.4105 

Diastolic blood pressure (mm Hg) (number of observation used =413) 

Model 1 
-0.9272 

(0.5538)  
0.0955 -0.8573 (0.4245)  0.0446* 

0.3562 

(0.5165)  
0.4911 0.4559 (0.4108)  0.2683 

-0.01583 

(0.3845)  
0.9672 Model 3 

-0.5909 

(0.3725)  
0.1142 

Model 2 
-1.1472 

(0.5364) 
0.0336* -0.6452 (0.4133) 0.1200 

0.4374 

(0.4972) 
0.3800 0.6087 (0.3960) 0.1257 

0.08813 

(0.3705) 
0.8122 Model 4 

-0.5068 

(0.3631) 
0.1644 

Log transformed fasting glucose (mg/dL) (number of observation used =410) 

Model 1 
-0.00084 

(0.007539)  
0.9118 

0.002076 

(0.005797)  
0.7206 

0.006432 

(0.007029)  
0.3612 

-0.01860 

(0.005607)  
0.0011*† 

0.002604 

(0.005242)  
0.6198 Model 3 

0.006014 

(0.005094)  
0.2392 

Model 2 
0.008404 

(0.007906) 
0.2891 

-0.00140 

(0.006109) 
0.8192 

0.000587 

(0.007321) 
0.9362 

-0.01733 

(0.005830) 
0.0033*† 

0.008617 

(0.005479) 
0.1173 Model 4 

0.01106 

(0.005340) 
0.0396* 

Log transformed high density lipoprotein cholesterol (mg/dL) (number of observation used =410) 

Model 1 
0.004448 

(0.01863)  
0.8115 

-0.00790 

(0.01432)  
0.5820 

-0.01054 

(0.01736)  
0.5445 

-0.01287 

(0.01383)  
0.3528 

0.007295 

(0.01297)  
0.5743 Model 3 

-0.00234 

(0.01222)  
0.8485 

Model 2 
0.02602 

(0.01970) 
0.1879 

-0.02181 

(0.01523) 
0.1535 

-0.02503 

(0.01825) 
0.1717 

-0.01469 

(0.01448) 
0.3115 

0.02421 

(0.01367) 
0.0781 Model 4 

0.009358 

(0.01317) 
0.4782 

Log transformed triglycerides (mg/dL) (number of observation used =410) 

Model 1 
0.02273 

(0.04134)  
0.5829 

0.03775 

(0.03175)  
0.2358 

0.006459 

(0.03849)  
0.8669 

0.01930 

(0.03054)  
0.5281 

-0.01121 

(0.02881)  
0.6975 Model 3 

0.02331 

(0.02737)  
0.3954 

Model 2 
0.009899 

(0.04004) 
0.8050 

0.03468 

(0.03095) 
0.2637 

0.01336 

(0.03709) 
0.7191 

0.02312 

(0.02947) 
0.4336 

-0.01934 

(0.02777) 
0.4869 Model 4 

0.01315 

(0.02639) 
0.6189 
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 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD-2)  

 Model 1: the model includes 11β-HSD-2 z scores for sites 1, 2, 3, 4, and 5 as fixed effects and compound symmetry matrix structure to model the covariance structure of the 

repeated measurements for each outcome    

 Model 2: model 1 additionally adjusted for the following fixed effects:  age, sex, metabolic equivalents, total caloric intake, and maternal enrollment in calcium supplementation 

study   

 Model 3: the model includes average 11β-HSD-2 z score for sites 1, 2, 3, 4, and 5 as fixed effect and compound symmetry matrix structure to model the covariance structure of 

the repeated measurements for each outcome   

 Model 4: model 3 additionally adjusted for the following fixed effects:  age, sex, metabolic equivalents, total caloric intake, and maternal enrollment in calcium supplementation 

study 

*P-value < 0.05; † P-value < 0.008 
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Table 4.8 (Supplementary): Associations between DNAm at 11β-HSD-2 and Repeated Measures of Cardiometabolic Risk Factors 

using Mixed Models Adjusting for Pubertal Onset (N=228):   

 

11β-HSD-2 site 1 11β-HSD-2 site 2 11β-HSD-2 site 3 11β-HSD-2 site 4 11β-HSD-2 site 5 Average of all sites 

Estimate 

(SE) 
P-value Estimate (SE) P-value Estimate (SE) P-value Estimate (SE) P-value Estimate (SE) P-value  

Estimate 

(SE) 
P-value 

Waist circumference (cm) (number of observation used =413) 

Model 1 
-0.3085 

(1.0403)  
0.7671 -0.1795 (0.7979)  0.8223 

0.1743 

(0.9688)  
0.8574 0.4602 (0.7678)  0.5496 0.2848 (0.7244)  0.6946 Model 3 

0.1115 

(0.6867)  
0.8712 

Model 2 
-1.1569 

(0.9972)  
0.2472 0.2025 (0.7702)  0.7929 

0.6391 

(0.9291)  
0.4923 0.4385 (0.7454)  0.5569 -0.1585 (0.6928) 0.8192 Model 4 

-0.3101 

(0.6594)  
0.6386 

Systolic blood pressure (mm Hg) (number of observation used =413) 

Model 1 
-1.5839 

(0.8347)  
0.0590 -0.7899 (0.6400)  0.2184 

1.2452 

(0.7780)  
0.1109 0.3529 (0.6179)  0.5685 -0.4642 (0.5801)  0.4245 Model 3 

-0.6991 

(0.5581)  
0.2116 

Model 2 
-1.8682 

(0.8201)  
0.0237* -0.4356 (0.6324)  0.4916 

1.5518 

(0.7646)  
0.0436* 0.1210 (0.6181)  0.8450 -0.3009 (0.5684)  0.5971 Model 4 

-0.4251 

(0.5470)  
0.4380 

Diastolic blood pressure (mm Hg) (number of observation used =413) 

Model 1 
-0.9272 

(0.5538)  
0.0955 -0.8573 (0.4245)  0.0446* 

0.3562 

(0.5165)  
0.4911 0.4559 (0.4108)  0.2683 

-0.01583 

(0.3845)  
0.9672 Model 3 

-0.5909 

(0.3725)  
0.1142 

Model 2 
-1.2107 

(0.5318)  
0.0238* -0.6472 (0.4095)  0.1154 

0.6383 

(0.4964)  
0.1998 0.2989 (0.4033)  0.4594 

0.01191 

(0.3679)  
0.9742 Model 4 

-0.4740 

(0.3569)  
0.1856 

Log transformed fasting glucose (mg/dL) (number of observation used =410) 

Model 1 
-0.00084 

(0.007539)  
0.9118 

0.002076 

(0.005797)  
0.7206 

0.006432 

(0.007029)  
0.3612 

-0.01860 

(0.005607)  
0.0011*† 

0.002604 

(0.005242)  
0.6198 Model 3 

0.006014 

(0.005094)  
0.2392 

Model 2 
0.007630 

(0.007860)  
0.3328 

-0.00149 

(0.006069)  
0.8063 

0.003090 

(0.007327)  
0.6736 

-0.02129 

(0.005954)  
0.0004*† 

0.007724 

(0.005453)  
0.1581 Model 4 

0.01135 

(0.005349)  
0.0351* 

Log transformed high density lipoprotein cholesterol (mg/dL) (number of observation used =410) 

Model 1 
0.004448 

(0.01863)  
0.8115 

-0.00790 

(0.01432)  
0.5820 

-0.01054 

(0.01736)  
0.5445 

-0.01287 

(0.01383)  
0.3528 

0.007295 

(0.01297)  
0.5743 Model 3 

-0.00234 

(0.01222)  
0.8485 

Model 2 
0.02284 

(0.01931)  
0.2381 

-0.02102 

(0.01492)  
0.1602 

-0.01731 

(0.01798)  
0.3368 

-0.02643 

(0.01448)  
0.0694 

0.02091 

(0.01341)  
0.1205 Model 4 

0.009940 

(0.01293)  
0.4430 

Log transformed triglycerides (mg/dL) (number of observation used =410) 

Model 1 
0.02273 

(0.04134)  
0.5829 

0.03775 

(0.03175)  
0.2358 

0.006459 

(0.03849)  
0.8669 

0.01930 

(0.03054)  
0.5281 

-0.01121 

(0.02881)  
0.6975 Model 3 

0.02331 

(0.02737)  
0.3954 

Model 2 
0.01078 

(0.04006)  
0.7881 

0.03456 

(0.03094)  
0.2652 

0.01098 

(0.03732)  
0.7689 

0.02680 

(0.03016)  
0.3752 

-0.01839 

(0.02782)  
0.5093 Model 4 

0.01289 

(0.02639)  
0.6257 
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 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD-2) 

 Model 1: the model includes 11β-HSD-2 z scores for sites 1, 2, 3, 4, and 5 as fixed effects and compound symmetry matrix structure to model the covariance structure of the 

repeated measurements for each outcome   

 Model 2: model 1 additionally adjusted for the following fixed effects: age, sex, metabolic equivalents, total caloric intake, mother enrollment in calcium supplementation study, 

and  pubertal onset 

 Model 3: the model includes average 11β-HSD-2 z score for sites 1, 2, 3, 4, and 5 as fixed effect and compound symmetry matrix structure to model the covariance structure of 

the repeated measurements for each outcome   

 Model 4: model 3 additionally adjusted for the following fixed effects: age, sex, metabolic equivalents, total caloric intake, mother enrollment in calcium supplementation study, 

and pubertal onset 

*P-value < 0.05; † P-value < 0.008 
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Table 4.9 (Supplementary): Average DNAm at H19 and Confounders Selection: 

       Means or percentages are presented for continuous or categorical variables, respectively 

        *P-value < 0.05  
 

 Average DNA methylation z score  at H19 

Q 1  

N= 147 

Q 2  

N= 148 

Q 3  

N=148 

Q 4  

N=148 
P-value 

Maternal Characteristics (at time of child’s birth) 

Years of education, %  

                          < 12 years 46.26 49.32 54.73 48.65 

0.2168                           12 years  35.37 34.46 37.84 37.84 

                          > 12 years 17.69 15.54 7.43 13.51 

Age at childbirth, (years) 26.63 26.57 26.76 26.38 0.9462 

Parity, %   

                          0 0.68 1.35 0.00 1.35 

0.4834 1 44.22 35.81 30.41 35.81 

≥ 2 54.42 62.16 69.59 62.84 

Marital Status, %    

Married 74.15 75.00 71.62 66.89 
0.6709 

Others (includes free union, single, separated, or divorced) 25.17 24.32 28.38 33.11 

Enrollment in calcium supplementation study, %  

 Not enrolled  65.99 63.51 66.89 65.54 
0.9517 

 Enrolled during pregnancy  33.33 35.81 33.11 34.46 

Child Characteristics (at birth) 

Girls, % 54.42 53.38 48.65 51.35 0.8746 

Gestational age, (weeks) 38.79 38.78 38.73 38.93 0.6611 

Mode of delivery, %  

                          Vaginal delivery 53.06 58.11 60.14 56.76 
0.7641 

                          C Section 45.58 40.54 39.86 42.57 

Birth weight, (kg) 3.16 3.18 3.11 3.18 0.5626 

Breastfeeding duration, (weeks)  8.25 8.16 7.83 8.42 0.9021 

Child Characteristics (at follow-up visit) 

Age, (years) 12.52 12.30 12.96 12.40 0.1925 

Body mass  Z score for age  0.83 0.61 0.48 0.60 0.0865 

Metabolic equivalent, (METs/week) 50.38 44.31 49.84 48.10 0.5308 

Pubertal onset , %  70.07 70.95 79.05 64.19 0.0021* 

Total caloric intake, (kcal/day) 2468.28 2420.31 2423.70 2666.31 0.0506 
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Table 4.10 (Supplementary): Associations between DNAm at H19 DNAm and Repeated Measures of Cardiometabolic Risk Factors 

using Mixed Models (N=245): 

 

H19 site 1 H19 site 2 H19 site 3 H19 site 4 Average of all sites 

Estimate 

(SE) 
P-value Estimate (SE) P-value Estimate (SE) P-value Estimate (SE) P-value  

Estimate 

(SE) 
P-value 

Waist circumference (cm) (number of observation used =446) 

Model 1 
-2.0199 

(2.3712)  
0.3951 

0.4201 

(0.9290)  
0.6515 

-0.1023 

(1.0516)  
0.9226 

1.7246 

(2.3175)  
0.4575 Model 3 

-0.1567 

(0.6716) 
0.8157 

Model 2 
-0.4958 

(2.2859) 
0.8285 

0.07485 

(0.9050) 
0.9342 

-0.01468 

(1.0179) 
0.9885 

1.0578 

(2.2350) 
0.6364 Model 4 

0.5336 

(0.6513) 
0.4135 

Systolic blood pressure (mm Hg) (number of observation used =446) 

Model 1 
2.9254 

(1.9347)  
0.1318 

0.5769 

(0.7460)  
0.4402 

-0.3888 

(0.8519)  
0.6485 

-2.0551 

(1.8928)  
0.2786 Model 3 

0.8583 

(0.5457)  
0.1171 

Model 2 
2.1289 

(2.0092) 
0.2905 

0.6308 

(0.7785) 
0.4188 

-0.3848 

(0.8852) 
0.6643 

-1.4683 

(1.9667) 
0.4561 Model 4 

0.6896 

(0.5713) 
0.2287 

Diastolic blood pressure (mm Hg) (number of observation used =446) 

Model 1 
1.9218 

(1.3080)  
0.1430 

0.07059 

(0.5004)  
0.8880 

-0.1770 

(0.5740)  
0.7580 

-1.1655 

(1.2803)  
0.3635 Model 3 

0.6313 

(0.3673)  
0.0870 

Model 2 
1.7656 

(1.3295) 
0.1855 

0.07927 

(0.5086) 
0.8763 

-0.1730 

(0.5822) 
0.7667 

-1.0460 

(1.3026) 
0.4228 Model 4 

0.5994 

(0.3773) 
0.1136 

Log transformed fasting glucose (mg/dL) (number of observation used =443) 

Model 1 
-0.00046 

(0.01808)  
0.9796 

0.002770 

(0.006771)  
0.6829 

0.004283 

(0.007883)  
0.5875 

-0.00728 

(0.01773)  
0.6816 Model 3 

-0.00270 

(0.005061)  
0.5948 

Model 2 
-0.01426 

(0.01900) 
0.4536 

0.006626 

(0.007262) 
0.3627 

0.001784 

(0.008333) 
0.8307 

-0.00365 

(0.01861) 
0.8448 Model 4 

-0.01179 

(0.005433) 
0.0311* 

Log transformed high density lipoprotein cholesterol (mg/dL) (number of observation used =443) 

Model 1 
0.08297 

(0.04325)  
0.0562 

-0.00522 

(0.01640)  
0.7507 

-0.00854 

(0.01895)  
0.6527 

-0.09188 

(0.04237)  
0.0311* Model 3 

-0.01575 

(0.01221)  
0.1984 

Model 2 
0.04381 

(0.04758) 
0.3582 

0.009569 

(0.01869) 
0.6091 

-0.01912 

(0.02112) 
0.3663 

-0.08270 

(0.04654) 
0.0769 Model 4 

-0.04359 

(0.01364) 
0.0016*† 

Log transformed triglycerides (mg/dL) (number of observation used =443) 

Model 1 
-0.09145 

(0.09240)  
0.3233 

0.03856 

(0.03589)  
0.2838 

-0.02407 

(0.04087)  
0.5566 

0.1266 

(0.09037)  
0.1626 Model 3 

0.03357 

(0.02621)  
0.2015 

Model 2 
-0.04746 

(0.08976) 
0.5975 

0.03792 

(0.03481) 
0.2772 

-0.02790 

(0.03962) 
0.4820 

0.09088 

(0.08786) 
0.3020 Model 4 

0.03886 

(0.02560) 
0.1303 
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 Model 1: the model includes H19 z scores for site 1, 2, 3, and 4 as fixed effects, and compound symmetry matrix structure to model the covariance structure of the repeated 

measurements for each outcome   

 Model 2:  model 1 additionally adjusted for the following fixed effects: age and sex 

 Model 3: the model includes average H19 z score for site 1, 2, 3, and 4 as fixed effects, and compound symmetry matrix structure to model the covariance structure of the 

repeated measurements for each outcome   

 Model 4:  model 3 additionally adjusted for the following fixed effects: age and sex 

*P-value < 0.05; † P-value < 0.008 
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Table 4.11 (Supplementary): Associations between DNAm at H19 DNAm and Repeated Measures of Cardiometabolic Risk Factors 

using Mixed Models Adjusting for Pubertal Onset (N=245): 

 

H19 site 1 H19 site 2 H19 site 3 H19 site 4 Average of all sites 

Estimate 

(SE) 
P-value Estimate (SE) P-value Estimate (SE) P-value Estimate (SE) P-value  

Estimate 

(SE) 
P-value 

Waist circumference (cm) (number of observation used =446) 

Model 1 
-2.0199 

(2.3712)  
0.3951 

0.4201 

(0.9290)  
0.6515 

-0.1023 

(1.0516)  
0.9226 

1.7246 

(2.3175)  
0.4575 Model 3 

-0.1567 

(0.6716) 
0.8157 

Model 2 
-0.4601 

(2.2842)  
0.8405 

0.1017 

(0.9050)  
0.9106 

0.02333 

(1.0184)  
0.9817 

1.0305 

(2.2331)  
0.6449 Model 4 

0.5850 

(0.6548) 
0.3726 

Systolic blood pressure (mm Hg) (number of observation used =446) 

Model 1 
2.9254 

(1.9347)  
0.1318 

0.5769 

(0.7460)  
0.4402 

-0.3888 

(0.8519)  
0.6485 

-2.0551 

(1.8928)  
0.2786 Model 3 

0.8583 

(0.5457)  
0.1171 

Model 2 
2.2231 

(1.9256)  
0.2495 

0.8875 

(0.7469)  
0.2360 

-0.1066 

(0.8494)  
0.9003 

-1.6144 

(1.8851)  
0.3926 Model 4 

0.9724 

(0.5503)  
0.0785 

Diastolic blood pressure (mm Hg) (number of observation used =446) 

Model 1 
1.9218 

(1.3080)  
0.1430 

0.07059 

(0.5004)  
0.8880 

-0.1770 

(0.5740)  
0.7580 

-1.1655 

(1.2803)  
0.3635 Model 3 

0.6313 

(0.3673)  
0.0870 

Model 2 
1.7623 

(1.2916)  
0.1737 

0.2580 

(0.4953)  
0.6030 

-0.01024 

(0.5665)  
0.9856 

-1.1167 

(1.2655)  
0.3784 Model 4 

0.7436 

(0.3670)  
0.0439* 

Log transformed fasting glucose (mg/dL) (number of observation used =443) 

Model 1 
-0.00046 

(0.01808)  
0.9796 

0.002770 

(0.006771)  
0.6829 

0.004283 

(0.007883)  
0.5875 

-0.00728 

(0.01773)  
0.6816 Model 3 

-0.00270 

(0.005061)  
0.5948 

Model 2 
-0.01454 

(0.01894)  
0.4434 

0.008114 

(0.007262)  
0.2652 

0.003016 

(0.008321)  
0.7174 

-0.00410 

(0.01855)  
0.8254 Model 4 

-0.01093 

(0.005447)  
0.0460* 

Log transformed high density lipoprotein cholesterol (mg/dL) (number of observation used =443) 

Model 1 
0.08297 

(0.04325)  
0.0562 

-0.00522 

(0.01640)  
0.7507 

-0.00854 

(0.01895)  
0.6527 

-0.09188 

(0.04237)  
0.0311* Model 3 

-0.01575 

(0.01221)  
0.1984 

Model 2 
0.04758 

(0.04618)  
0.3039 

0.01380 

(0.01815)  
0.4478 

-0.01387 

(0.02052)  
0.4996 

-0.08614 

(0.04517)  
0.0577 Model 4 

-0.03746 

(0.01334)  
0.0054*† 

Log transformed triglycerides (mg/dL) (number of observation used =443) 

Model 1 
-0.09145 

(0.09240)  
0.3233 

0.03856 

(0.03589)  
0.2838 

-0.02407 

(0.04087)  
0.5566 

0.1266 

(0.09037)  
0.1626 Model 3 

0.03357 

(0.02621)  
0.2015 

Model 2 
-0.04758 

(0.08978)  
0.5966 

0.03750 

(0.03488)  
0.2834 

-0.02833 

(0.03968)  
0.4760 

0.09109 

(0.08788)  
0.3010 Model 4 

0.03848 

(0.02570)  
0.1356 



 

135 

 

 Model 1: the model includes H19 z scores for site 1, 2, 3, and 4 as fixed effects, and compound symmetry matrix structure to model the covariance structure of the repeated 

measurements for each outcome   

 Model 2:  model 1 additional adjusted for the following fixed effects: age, sex, and pubertal onset 

 Model 3: the model includes average H19 z score for site 1, 2, 3, and 4 as fixed effect, and compound symmetry matrix structure to model the covariance structure of the 

repeated measurements for each outcome   

 Model 4:  model 3 additional adjusted for the following fixed effects: age, sex, and pubertal onset 

*P-value < 0.05; † P-value < 0.008 
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Table 4.12 (Supplementary): Associations between DNAm at H19 DNAm and Repeated Measures of Cardiometabolic Risk Factors 

using Mixed Models after Removing Outlier DNAm Value (N=244):   

 

H19 site 1 H19 site 2 H19 site 3 H19 site 4 Average of all sites 

Estimate (SE) P-value Estimate (SE) P-value Estimate (SE) P-value 
Estimate 

(SE) 
P-value  

Estimate 

(SE) 

P-

value 

Waist circumference (cm) (number of observation used =444) 

Model 1 
-1.9711 

(2.3738) 
0.4072 1.7287 (1.9031)  0.3646 -0.9859 (1.5380)  0.5221 

1.8050 

(2.3215)  
0.4376 Model 3 

-0.1645 

(0.6804) 
0.8091 

Model 2 
-0.4707 

(2.2913) 
0.8374 0.5902 (1.8478)  0.7497 -0.3633 (1.4905)  0.8076 

1.0906 

(2.2422)  
0.6271 Model 4 

0.5617 

(0.6605) 
0.3959 

Systolic blood pressure (mm Hg) (number of observation used =444) 

Model 1 2.9096 (1.9392) 0.1348 0.1319 (1.5394) 0.9318 -0.08892 (1.2463) 0.9432 
-2.0820 

(1.8985) 
0.2739 Model 3 

0.8114 

(0.5527) 
0.1434 

Model 2 2.1309 2.0126 0.2909 0.5685 (1.6014) 0.7230 -0.3428 (1.2944) 0.7914 
-1.4729 

(1.9721) 
0.4559 Model 4 

0.6441 

(0.5793) 
0.2675 

Diastolic blood pressure (mm Hg) (number of observation used =444) 

Model 1 1.9019 (1.3105) 0.1480 -0.5299 (1.0351) 0.6092 0.2280 (0.8388) 0.7860 
-1.2025 

(1.2836) 
0.3498 Model 3 

0.6256 

(0.3723) 
0.0942 

Model 2 1.7543 (1.3311) 0.1889 -0.4459 (1.0506) 0.6717 0.1809 (0.8503) 0.8317 
-1.0820 

(1.3054) 
0.4081 Model 4 

0.5953 

(0.3831) 
0.1217 

Log transformed fasting glucose (mg/dL) (number of observation used =441) 

Model 1 
-0.00042 

(0.01812) 
0.9813 

0.004047 

(0.01413) 
0.7749 

0.003419 

(0.01151) 
0.7667 

-0.00720 

(0.01778) 
0.6859 Model 3 

-0.00312 

(0.005130) 
0.5435 

Model 2 
-0.01405 

(0.01903) 
0.4610 

0.01456 

(0.01502) 
0.3333 

-0.00357 

(0.01217) 
0.7696 

-0.00310 

(0.01866) 
0.8684 Model 4 

-0.01271 

(0.005509) 

0.0220

* 

Log transformed high density lipoprotein cholesterol (mg/dL) (number of observation used =441) 

Model 1 
0.08260 

(0.04335) 
0.0579 

-0.01677 

(0.03406) 
0.6229 -0.00074 (0.02769) 0.9788 

-0.09260 

(0.04249) 
0.0303* Model 3 

-0.01587 

(0.01238) 
0.2010 

Model 2 
0.04405 

(0.04770) 
0.3568 

0.01789 

(0.03828) 
0.6407 

-0.02474 

(0.03092) 
0.4245 

-0.08213 

(0.04670) 
0.0799 Model 4 

-0.04540 

(0.01382) 

0.0012

*† 

Log transformed triglycerides (mg/dL) (number of observation used =441) 

Model 1 
-0.08894 

(0.09237) 
0.3365 0.1086 (0.07369) 0.1420 

-0.07136 

(0.05967) 
0.2329 

0.1309 

(0.09040) 
0.1488 Model 3 

0.03282 

(0.02656) 
0.2177 

Model 2 
-0.04632 

(0.08982) 
0.6066 

0.08574 

(0.07154) 
0.2319 

-0.06016 

(0.05788) 
0.2997 

0.09421 

(0.08801) 
0.2854 Model 4 

0.03746 

(0.02597) 
0.1505 
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 Model 1: the model includes H19 z scores for site 1, 2, 3, and 4 as fixed effects, and compound symmetry matrix structure to model the covariance structure of the repeated 

measurements for each outcome   

 Model 2:  model 1 additionally adjusted for the following fixed effects: age and sex 

 Model 3: the model includes average H19 z score for site 1, 2, 3, and 4 as fixed effect, and compound symmetry matrix structure to model the covariance structure of the 

repeated measurements for each outcome   

 Model 4:  model 3 additionally adjusted for the following fixed effects: age and sex 

*P-value < 0.05; † P-value < 0.008 
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Table 4.13 (Supplementary): Average DNAm at PPAR- α and Confounders Selection: 

          Means or percentages are presented for continuous or categorical variables, respectively. 

          Peroxisome proliferator-activated receptor alpha (PPAR-α) 

         *P-value < 0.05  
 

 Average DNA methylation z score  at PPAR-α 

 Q 1 

N= 119 

Q 2 

N= 120 

Q 3 

N=119 
P-value 

Maternal Characteristics (at time of child’s birth) 

Years of education, %  

                          < 12 years 43.70 56.67 53.78 

0.5221                           12 years  40.34 33.33 31.09 

> 12 years 15.97 9.17 15.13 

Age at childbirth, (years) 27.14 26.26 25.98 0.2051 

Parity, %   

0 3.36 0.00 0.00 

0.0758 1 40.34 35.83 36.97 

≥ 2 56.30 63.33 63.03 

Marital Status, %    

Married 80.67 70.83 66.39 
0.2163 

Others (includes free union, single, separated, or divorced) 19.33 28.33 33.61 

Enrollment in calcium supplementation study, %  

Not enrolled  73.95 68.33 63.03 
0.2068 

Enrolled during pregnancy  26.05 30.83 36.97 

Child Characteristics (at birth) 

Girls, % 45.38 52.50 57.14 0.3336 

Gestational age, (weeks) 38.85 38.85 38.66 0.4964 

Mode of delivery, %  

                          Vaginal delivery 54.62 54.17 67.23 
0.3513 

C Section 44.54 45.00 32.77 

Birth weight, (kg) 3.15 3.13 3.17 0.8723 

Breastfeeding duration, (weeks)  8.50 8.39 7.47 0.1503 

Child Characteristics (at follow-up visit) 

Age, (years) 14.55 14.10 13.69 0.0084* 

Body mass  Z score for age  0.57 0.57 0.45 0.6289 

Metabolic equivalents, (METs/ week) 60.67 61.66 59.47 0.7728 

Pubertal onset , %  92.44 93.33 90.76 <0.0001* 

Total caloric intake, (kcal/day) 2401.42 2412.75 2266.42 0.7909 
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Table 4.14: Cross-sectional Associations between DNAm at PPAR- α and Cardiometabolic Risk Factors using Linear Regression 

(N=345):     

 
PPAR- α site 1 PPAR- α site 2 Average PPAR- α 

Estimate (SE) P-value Estimate (SE) P-value  Estimate (SE) P-value 

Waist circumference (cm)  (N= 345) 

Model 1 0.71915 (0.71474) 0.3150 -1.70941 (0.65445) 0.0094* Model 3 -1.25724 (0.72517) 0.0839 

Model 2 0.99917 (0.70529) 0.1575 -1.68127 (0.64618) 0.0097* Model 4 -1.00482 (0.71708) 0.1620 

Systolic blood pressure (mm Hg) (N= 345) 

Model 1 0.58582 (0.60305) 0.3320 -1.02922 (0.55218) 0.0632  Model 3 -0.63619 (0.61069) 0.2983 

Model 2 0.49623 (0.57982) 0.3927 -0.66490 (0.53123) 0.2116 Model 4 -0.31745 (0.58645) 0.5886 

Diastolic blood pressure (mm Hg)  (N= 345) 

Model 1 0.58530 (0.42242) 0.1668 -0.57466 (0.38679) 0.1383 Model 3 -0.15115 (0.42804) 0.7242 

Model 2 0.58072 (0.40724) 0.1548 -0.34026 (0.37311) 0.3624 Model 4 0.09596 (0.41231) 0.8161 

Log transformed fasting glucose (mg/dL) (N=310) 

Model 1 0.00598 (0.00614) 0.3305 0.00016627 (0.00600) 0.9779 Model 3 0.00519 (0.00653) 0.4274 

Model 2 0.00282 (0.00609) 0.6443 0.00159 (0.00596) 0.7900 Model 4 0.00401 (0.00646) 0.5355 

Log transformed high density lipoprotein cholesterol (mg/dL) (N= 310) 

Model 1 -0.00813  (0.01303) 0.5329 0.01206 (0.01273) 0.3445 Model 3 0.00566 (0.01386) 0.6830 

Model 2 -0.00419 (0.01309) 0.7490 0.00857 (0.01280) 0.5035 Model 4 0.00535 (0.01388) 0.7001 

Log transformed triglycerides (mg/dL) (N= 310) 

Model 1 0.01232 (0.03058) 0.6873 0.00118 (0.02989) 0.9684 Model 3 0.01155 (0.03249) 0.7225 

Model 2 0.02086 (0.03057) 0.4956 -0.01116 (0.02989) 0.7092 Model 4 0.00596 (0.03242) 0.8543 

 Peroxisome proliferator-activated receptor alpha (PPAR-α) 

 Model 1: the model includes PPAR- α z scores for site 1 and 2  

 Model 2:  model 1 additionally adjusted for age, and sex 

 Model 3: the model includes average PPAR- α z score for site 1 and 2 

 Model 4:  model 3 additionally adjusted for age and sex 

*P-value < 0.05; † P-value < 0.008  
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Table 4.15 (Supplementary): Cross-sectional Associations between DNAm at PPAR- α and Cardiometabolic Risk Factors using 

Linear Regression Adjusting for Pubertal Onset (N=345):   

 
PPAR- α site 1 PPAR- α site 2 Average PPAR- α 

Estimate (SE) P-value Estimate (SE) P-value  Estimate (SE) P-value 

Waist circumference (cm) (N= 345) 

Model 1 0.71915 (0.71474) 0.3150 -1.70941 (0.65445) 0.0094* Model 3 -1.25724 (0.72517) 0.0839 

Model 2 1.01860 (0.70558) 0.1498 -1.69669 (0.64638) 0.0091* Model 4 -1.00584 (0.71725) 0.1617 

Systolic blood pressure (mm Hg)  (N= 345) 

Model 1 0.58582 (0.60305) 0.3320 -1.02922 (0.55218) 0.0632 Model 3 -0.63619 (0.61069) 0.2983 

Model 2 0.51018 (0.58026) 0.3799 -0.67598 (0.53158) 0.2044 Model 4 -0.31821 (0.58672) 0.5879 

Diastolic blood pressure (mm Hg) (N= 345) 

Model 1 0.58530 (0.42242) 0.1668 -0.57466 (0.38679) 0.1383 Model 3 -0.15115 (0.42804) 0.7242 

Model 2 0.59773 (0.40664) 0.1425 -0.35377 (0.37253) 0.3430 Model 4 0.09503 (0.41164) 0.8176 

Log transformed fasting glucose (mg/dL) (N=310) 

Model 1 0.00598 (0.00614) 0.3305 0.00016627 (0.00600) 0.9779 Model 3 0.00519 (0.00653) 0.4274 

Model 2 0.00302 (0.00609) 0.6204 0.00131 (0.00595) 0.8258 Model 4 0.00389 (0.00645) 0.5469 

Log transformed high density lipoprotein cholesterol (mg/dL) (N= 310) 

Model 1 -0.00813 (0.01303) 0.5329 0.01206 (0.01273) 0.3445 Model 3 0.00566 (0.01386) 0.6830 

Model 2 -0.00391 (0.01310) 0.7655 0.00819 (0.01281) 0.5234 Model 4 0.00518 (0.01388) 0.7092 

Log transformed triglycerides (mg/dL) (N= 310) 

Model 1 0.01232 (0.03058) 0.6873 0.00118 (0.02989) 0.9684 Model 3 0.01155 (0.03249) 0.7225 

Model 2 0.02104 (0.03063) 0.4927 -0.01140 (0.02996) 0.7038 Model 4 0.00586 (0.03247) 0.8568 

 Peroxisome proliferator-activated receptor alpha (PPAR-α). 

 Model 1: the model includes PPAR- α z scores for site 1 and 2 as fixed effects   

 Model 2:  additional adjusted for the following fixed effects:  age, sex, and pubertal onset.  

 Model 3: the model includes average PPAR- α z score for site 1 and 2 

 Model 4:  model 3 additionally adjusted for age, sex, and pubertal onset 

*P-value < 0.05; † P-value < 0.008 
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Chapter 5 Conclusion   

 

Summary of Main findings:  

The overall aim for this dissertation work was to examine the determinants of 

cardiometabolic risk factors among free-living Mexican children and adolescents during their 

pubertal transition. More specifically, the associations between cardiometabolic risk factors and 

diet quality, which was measured with the Dietary Approaches to Stop Hypertension (DASH), 

Alternate Mediterranean Diet (aMedDiet), and Children’s Dietary Inflammatory Index (C-DIITM) 

scores, were investigated using a repeated measures-longitudinal study design with up to three 

measurements per subject. Moreover, we analyzed the relationship between sedentary patterns – 

including sedentary time, and replacing sedentary time with different intensities of physical 

activity – on cardiometabolic risk factors using a repeated measures-longitudinal study design. 

Total sedentary time, and the context of sedentary time, were assessed with a subjective tool (i.e., 

physical activity questionnaires), and sedentary time and bout, which reflects a pattern of activity 

accumulation, were assessed using an objective tool (i.e., ActiGraph GT3X+ wrist 

accelerometers). Lastly, we examined the association between cardiometabolic heath and DNA 

methylation (DNAm), quantified in blood leukocytes, at long interspersed nuclear elements 

(LINE-1), H19, 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD-2), and peroxisome 

proliferator-activated receptor alpha (PPAR-α). DNAm at LINE-1, H19, and 11β-HSD-2 were 

analyzed prospectively using a repeated measures longitudinal design of the cardiometabolic risk 

factors, and DNAm at PPAR-α was appraised using a cross-sectional study design. The three 
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aims of this project were executed using the pre-existing data of children and adolescents who 

participated in the Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) 

birth cohort Mexico City, Mexico 1-3.  

In chapter 2, associations between diet quality and cardiometabolic risk factors were 

identified among healthy youth aged between 8 – 21 years. Participants in the fourth quartile of 

DASH score had lower insulin, and Homeostatic Model Assessment of Insulin Resistance 

(HOMA-IR) compared to the lowest quartile (i.e., reference group). An additional linear trend 

association was detected between HOMA-IR and DASH score. Serum triglycerides was 

associated with aMedDiet and C-DII scores. An inverse linear trend association was detected 

with aMedDiet score, and a positive linear trend association was found with C-DII scores. In 

addition, participants in the fourth quartile of the C-DII scores had higher serum triglycerides 

relative to the reference group.  

Our inverse associations between insulin homeostasis and DASH score are consistent 

with findings from meta-analysis of randomized control trials (RCTs) among adults 4 and a 

randomized cross-over clinical trial DASH intervention conducted among adolescent girls 5. The 

DASH diet is characterized by: 1) reducing the intake of cholesterol, saturated fat, total fat, lean 

red meat, sweets, added sugars, and sugar-containing beverages; and 2) increasing the intake of 

fruits, vegetables, and fat-free or low-fat milk and milk products, whole grains, fish, poultry, and 

nuts 6. Therefore, DASH diet is rich in protein, fiber, potassium, magnesium, calcium 6, and folic 

acid 7 and low in sodium 6 and fat. Some of these nutrients have potential roles in insulin and 

glucose homeostasis 8-10. The identified inverse associations are important for Mexican youth 

because insulin resistance can be identified in Mexican children without evidence of overweight 

or obesity 11. Moreover, insulin sensitivity has been considered the driver for the adipose tissue 
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partitioning 12 . This is very crucial as abnormal fat deposition may be a potential risk for the 

pathology of obesity 13. Tailoring nutritional recommendations to tackle insulin resistance would 

be a feasible strategy to endorse even for healthy youth.   

The detected associations between aMedDiet and C-DII scores with serum triglycerides 

are biologically plausible as higher aMedDiet scores and lower C-DII scores reflect higher diet 

quality. Our findings support the established role of diet as a cornerstone of hypertriglyceridemia 

management 14-16. Furthermore, serum triglycerides are influenced by diet in two ways. The first 

one is the direct source from the consumed dietary fatty acids, and the second one is the  indirect 

pool from the synthesized fatty acids from glucose via the de novo lipogenesis pathway 14. 

Regarding the connection between serum triglycerides and cardiovascular disease (CVD), the 

available evidence from adults’ studies showed that serum triglycerides is an established risk 

factor 17-20. Therefore, controlling serum triglycerides via dietary strategies might be an effective 

first line approach in youth to prevent consequences of impaired cardiometabolic health.   

It is worth noting that the differences in associations detected between each diet score and 

cardiometabolic risk factors are plausible given the moderate associations between them. A 

potential explaining factor for moderate associations lies in the analytical differences followed to 

construct each score 21,22. In addition, the differences between scores stems from the fact that 

each score captures slightly distinct dietary recommendations, and is composed of different 

foods, food groups, and nutrients. We found that DASH score is associated with lower intake 

from all types of fat. In contrast, aMedDiet and C-DII scores were positively associated with all 

types of fat, except for an inverse association with saturated fat and polyunsaturated fat, for 

aMedDiet and C-DII scores, respectively. The DASH eating plan restricts the intake from fat, 

and red meat 6. On the other hand, aMedDiet and C-DII scores emphasize fat quality. The 
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aMedDiet recommendations promote the consumption of nuts and seeds, and olive oil use, and 

lower the intake from animal products 23. For C-DII, the monounsaturated fat and 

polyunsaturated fat have anti-inflammatory potential, but cholesterol, saturated fat, and total fat 

are considered pro-inflammatory nutrients 24  

 In chapter 3, we detected adverse associations of sedentary time in a context-specific 

manner, and protective associations of replacing sedentary time with light or moderate to 

vigorous physical activity on cardiometabolic risk factors. Additional one hour of screen-based 

sedentary time was associated with higher diastolic blood pressure, and of other sedentary time 

(i.e., doing homework or reading and commuting) was associated with higher serum glucose. 

Moreover, replacing 1% of sedentary time with moderate to vigorous physical activity was 

inversely associated with waist circumference and serum triglycerides. Substituting an 

uninterrupted five minutes of sedentary bout or one minute of a sedentary bout with light activity 

was inversely associated with serum insulin levels. 

The detected effect size for the positive association between diastolic blood pressure and 

screen time was similar to one reported previously among adolescents aged 11–13 years 25. 

Unfavorable associations between screen time and other cardiometabolic risk factors such as 

waist circumference, lipid profile, fat mass, and BMI also have been reported 25-27 . It is worth 

noting that these unfavorable associations reported earlier are consistent with the augmented 

evidence of association between TV watching and higher caloric consumption 28-30, lower diet 

quality 28,31, and disturbed sleep duration 32, each of which are a plausible contributor to impaired 

cardiometabolic health. Despite this biological plausibility, evidence from observational studies 

examining the association between screen time and cardiometabolic health in youth, did not 

support the adverse association 33-35 and flagged concerns about heterogeneity 33,34.  
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We found a positive association between other sedentary time (i.e., doing homework or 

reading and commuting) and serum glucose. The association between cognitive or knowledge 

based sedentary behaviors and metabolic health has been examined before among adults 36-38. 

Two experimental studies showed that higher mean ad libitum energy intake after cognitive-

related tasks (i.e., reading and writing or computer-based automated test-battery) relative to the 

control sedentary condition (i.e., sitting in a comfortable chair) 36,37. Another study also reported 

an increase in caloric consumption while working on major work deadlines 38. Regarding 

metabolic homeostasis, performing sedentary cognitive tasks have been associated with higher 

mean cortisol level and larger variability in serum glucose and insulin concentrations compared 

to a relaxed sedentary setting 37. Therefore, it is plausible to consider cognitive-based sedentary 

time as a potential driver for positive energy balance and weight gain in the long-term 30,36,37. 

Future studies are warranted to expand the assessment of the sedentary behavior beyond that 

screen-based sedentary time among youth.  

Our substitution models showed inverse associations between replacing sedentary time 

with moderate to vigorous physical activity on waist circumference and serum triglycerides, and 

these associations were consistent with the previous studies 39,40. We assessed replacing 1% of 

sedentary time (median of 6 minutes) compared to 10 minutes 40 and 60 minutes 39, which 

justified our lower effect sizes compared to the other studies 39,40. In fact, we showed that higher 

effect sizes resulted when higher percentages of sedentary time were replaced (i.e., 5% of change 

[median of 31 minutes] and 10% of change [median of 61 minutes). Despite that, our study 

showed that a small and feasible increase in moderate to vigorous physical activity to replace 

sedentary time resulted in a favorable cardiometabolic impact. Our conclusion was consistent 

with the recommendations for replacing sedentary time with higher intensities of physical 
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activity to promote cardiometabolic benefits among youth  35,41, and the conclusion drawn from a 

meta-analysis of observational studies used isotemporal substitution to examine replacing 

sedentary behavior with higher intensities of physical activity 42. 

We assessed the activity pattern via bouts of accumulating activity. We found that 

replacing a sedentary bout with light activity was associated with a reduction in serum insulin. In 

the current research on activity bouts among youth, studies have found inconsistent results for 

investigating the relationship with cardiometabolic risk factors 43-48. Moreover, there is limited 

evidence distilled from several reviews and meta-analysis reviews 35,41,49,50. Some 

methodological related factors in defining bouts could be a source of heterogeneity as there is no 

consensus on defining the duration of a bout 32,41,46,48.  Standardizing the exposure assessment 

would increase the robustness of pooled evidence extracted from multiple studies 40, and reduce 

the heterogeneity concerns raised in the reviews which assessed bouts of activity 41,49,50.  

  In chapter 4, we found evidence supporting the gene-specific and site-specific 

associations between DNAm and cardiometabolic risk factors. We showed that DNAm at LINE-

1 loci was inversely associated with repeated measures of serum glucose at site 1, but positively 

related to serum glucose and high-density lipoprotein cholesterol at site 2 and 3, respectively. 

DNAm at 11β-HSD-2 was inversely associated with repeated measures of systolic and diastolic 

blood pressure at site 1 and with serum glucose at site 4. An inverse cross-sectional association 

was detected between DNAm at PPAR-α at site 2 with waist circumference.  

Findings from Chapter 4 emphasize the importance of DNAm as a potential mechanism 

of the cardiometabolic health among youth. Firstly, our inverse prospective relationship between 

DNAm at LINE-1 and glucose are in agreement with findings from adult studies 51-54. 

Additionally, other studies have shown LINE-1 hypomethylation was associated with genomic 
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instability and CVD 54-57. Few epidemiological studies have been conducted on children to 

investigate the relationship between global DNAm, measured by DNAm at LINE-1, and 

adiposity outcomes 58,59. An inverse linear association between quartiles of DNAm and a change 

in waist circumference z-score was found among Colombian boys aged 5 -12 years old after 2.5 

years of follow-up 58. A null cross-sectional finding was reported between salivary DNAm at 

LINE-1 and adiposity outcomes – BMI z-score, waist circumference z-score, and percent body 

fat – in 431 adolescents aged 10 - 15 years 59. ` 

We also found that higher DNAm at 11β-HSD-2 was inversely associated with blood 

pressure and fasting glucose. The biological function for 11β-HSD-2 enzyme is to convert 

cortisol to an inactive metabolite called cortisone 60,61. Our findings disagree with other studies 

that showed DNAm at the promotor region for 11β-HSD-2 was associated with lower gene 

expression 62,63, impaired 11β-HSD-2 enzyme activity 64, and higher blood pressure in adults 

64,65, and that impaired enzymatic activity was positively associated with blood pressure in 

children 66. However, others have shown the possibility for identifying inverse association 

between DNAm at the promotor region of 1β-HSD-2 and blood pressure 65. Reflecting on the 

association identified with glucose, research conducted on adults has shown that 11β-HSD-2 

activity was positively associated with obesity 67 and inversely with insulin sensitivity 67. 

Moreover, a previous study found that higher 11β-HSD-2 activity among adults diagnosed with 

type 2 diabetes diagnosis than controls, despite the lack of difference in mRNA expression 68. 

This inconsistency in findings across studies shed light on the complexity of the regulation of 

genes, and how the control can vary by region of the gene, type of regulator (i.e. DNAm versus 

miRNA69), and other physiological and behavioral factors such as age 70 , dietary intake, and 

physical activity 71.  



 

 148 

We found that each one standard deviation increase in the DNAm at the promotor region 

of PPAR-α at site 2 was associated with approximately 2 cm smaller waist circumference. 

Previous evidence showed that DNAm at promoter regions of genes is associated with gene 

repression 72. However, our PPAR-α expression data (N=65), showed weak non-significant 

positive correlations between DNAm at the two CpG sites located in the promotor regions and 

PPAR-α expression. The inverse association with waist circumference was in agreement with 

PPAR-α biological functions, which are enhancing fatty acid oxidation, breaking down 

triglyceride-rich particles, removing excess cholesterol from the liver, and regulating oxidative 

stress and inflammatory response 73,74. We identified two studies investigating the DNAm at 

PPAR-α and cardiometabolic risk factors. The first one showed that DNAm at PPAR-α – 

quantified from visceral adipose samples – was positively correlated with serum triglycerides 

among adults 52. The second experiment revealed that feeding rats a high fructose diet for two 

weeks resulted in significant increase in hepatic DNAm at the promoter region of PPAR-α, 

decrease in mRNA expression of PPAR-α, and increase in serum triglycerides, total cholesterol, 

and hepatic lipid accumulation 75.  Other possible physiological conditions could regulate PPAR-

α expression such as stress, insulin, leptin, adiponectin, growth hormones 74, and we 

acknowledge that these factors could confound our findings.  

Strengths and limitations:  

Several strengths are worth highlighting in this dissertation. First, our data came from a 

well-characterized birth cohort, ELEMENT, which allowed us adjusting for multiple 

confounders at childbirth. Another unique strength was that we assessed the cardiometabolic risk 

factors at multiple time points during pubertal transition. We acknowledged that the majority of 

evidence for cardiometabolic health and lifestyle factors comes from studies on Mexican 
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American and Hispanic American youth. Findings from previous studies can not necessarily be 

generalized to the Mexican youth due to the regional and cultural context and available resources 

and assets. Therefore, our reliance on youth who were residents in Mexico City made our study 

unique, and our conclusions would be generalizable to other Mexican youth from urban areas.  

In chapter 2 and 3, we had repeated measures for exposures, which were diet quality 

scores, and sedentary and physical activity patterns, respectively. This unique strength of the 

longitudinal study design allowed us to capture changes in lifestyle behaviors during a critical 

period of development and growth. In chapter 2, we assessed the diet quality using three 

different measures, each of which represents a specific set of dietary recommendations. The 

simultaneous multiple appraisal of the same construct, diet quality, allowed us to derive a precise 

conclusion regarding the relationship between dietary recommendations and cardiometabolic risk 

factors. For chapter 3, we examined not only the independent associations between daily total 

and context-specific sedentary time with cardiometabolic risk factors, but also we investigated 

the impact of replacing sedentary time and sedentary bouts, a pattern for accumulating activity, 

with cardiometabolic health. Furthermore, we also examined the 24-hours of activity for 7 

consecutive days, as subjects wore the accelerometer continuously, as facilitated by the use of a 

water resistant device 76.  

One of the main strengths in chapter 4 was the prospective assessment of the association 

between DNAm at LINE-1, H19, and 11β-HSD-2 and repeated measures of cardiometabolic risk 

factors during a sensitive period of growth, development, and maturation. We conducted a site-

specific analysis for examining the association between the epigenetic modifications and 

cardiometabolic risk factors because it was noted earlier, the association between DNAm and 

outcome might be site-specific 53.  
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Nevertheless, this dissertation has several limitations that should be discussed. Primarily, 

the original aim for the ELEMENT project was understand the impact of environmental 

toxicants, more precisely lead, on health outcomes. Despite the later expansion of the project aim 

to include cardiometabolic health, some important information related to cardiometabolic health 

was missing. Examples of the missing covariates were family history of metabolic and 

cardiovascular diseases, and a thorough assessment of smoking status. Therefore, we 

acknowledge that residual confounding due to unmeasured or crudely measured covariates could 

still be present in our findings.  

In chapter 2, dietary assessment in children and adolescents was subject to potential 

reporting errors due to youth limited skills in retrieving information, estimating the portion size 

and other related factors 77,78. Furthermore, diet quality patterns might not be a precise measure 

for overall healthy habits among children and adolescents 79,80 as they are not a comprehensive 

assessment of all aspects of diet 81,82. In addition, our food frequency questionnaire (FFQ) did not 

capture habitual intake as it queried the intake in the previous week 78 , and has not been 

validated despite its use in the National Nutrition Survey of Mexico, a national representative 

survey 83. Lastly, the aMedDiet and the DASH scores use “population-specific” cut-offs for food 

consumption, and that may inflate type 2 error, reduce the variability in the intake among 

homogenous populations 84,85, and hinder the cross-study comparability. However, we also used 

C-DII scores, where population based food consumption database from multiple countries was 

used as a reference 86,87 , and that would enhance cross-studies comparability, and reduce the 

inherent bias that might occur for using the study population as a reference. 

In chapter 3, the sedentary time calculated from self-reported activity questionnaires has 

not been validated against objective methods. Despite the common use of accelerometer as a 



 

 151 

feasible objective assessment tool 88-90, it is not a gold standard for assessing sedentary behavior 

44 because of its failure in distinguishing between posture settings 46,90-92 and capturing the 

context of sedentary behavior 25,90,93. This is crucial information as different sedentary behaviors 

might not have an equal impact on health due to the differences in caloric and food consumption 

28-31,36,94, energy expenditure and biological homeostasis 37,94 and other differences 32,95,96 

associated with distinct forms of sedentary time. We addressed the change in activity between 

weekends and weekdays for school-age youth 97 by including subjects who had at least four valid 

days – one of which had to be a weekend day. Despite this attempt, some researchers claim that 

four days might not be a good representation of the variable movement behaviors among youth 

97. Thus, we acknowledge that imperfect representation could be a source of random error 98. We 

summarized accelerometer data into 5 second epoch length 99 to reduce the measurement error 

and the misclassification concern associated with using higher epoch length for assessing highly 

variable children’s movement behaviors 91. Nevertheless, there have been no consensus about the 

epoch length used to summarize the accelerometer data, and that is a concerning point as 

previous research showed the association between activity bout and metabolic health was 

influenced by the epoch length 48. 

In chapter 4 we measured DNAm in blood, which is not a target tissue for 

cardiometabolic related outcomes. Nonetheless, epigenome-wide studies have showed that 

DNAm in blood for multiple genes were correlated with DNAm in adipose tissue 100-102, and 

skeletal muscle 103, which are target tissues. Our work aimed to inform the development of 

potential biomarkers for cardiometabolic risk among children and adolescents, therefore, an 

accessible tissue such as blood is necessary to use for this purpose 104. Lastly, the use of bisulfite 

treatment to measure DNAm does not distinguish between cytosine methylation (5mC) and 
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cytosine hydroxymethylation (5hmC) 105, and 5hmC has its own distinct impact on gene 

regulation which is not captured by our method. Therefore, our DNAm values might be 

confounded by the hydroxymethylation because both 5hmC and 5mC were qualified as 5mC, 

DNAm, after the bisulfite treatment.   

Implications, recommendations and scope of future research: 

 The implications of the current dissertation are numerous. First and the most important, 

we shed light on determinants of cardiometabolic health (i.e., diet quality, sedentary and activity 

patterns, and DNAm) using a repeated measures longitudinal study design. Moreover, the use of 

a sample comprised of youth allowed us to provide insights on potential primary prevention 

strategies for cardiometabolic health. Besides, identifying the early determinants of 

cardiometabolic health is of special interest to Mexican youth due to their disproportionate 

burden of obesity and its related metabolic disorders. Hispanic youth have higher prevalence of 

childhood obesity and impaired cardiometabolic markers compared to their non-Hispanic White 

counterparts 106. To add more, healthy Mexican youth showed signs of insulin resistance 11, 

which could be explained by their body higher body fat compared to non-Hispanic White peers 

107,108. Despite this disproportionate burden among Mexican youth, few longitudinal studies have 

been conducted aiming to mitigate the dire consequences of impaired cardiometabolic health at 

young age. Moreover, our findings could provide insights to guide the design and evaluation of 

novel interventions to improve diet quality and reduce sedentary behavior patterns. These studies 

could help in solidifying the evidence regarding the role of lifestyle interventions on mitigate the 

burden of cardiometabolic abnormalities among Mexican youth.   

We suggest several recommendations for future studies on this topic. In this dissertation 

work, we used at the maximum three follow-up visits per subject whenever data was available. 
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However, there was age variability among participants at each visit. The age range was 8 – 14 

years, 10 – 18 years, and 12 – 21 years for study visit 1, 2, and 3, respectively. We encourage 

future studies to pay additional attention for the youth’s age by recruiting subjects at the same 

age to the extent this is feasible, and standardizing time between follow-up visits for all subjects 

to reduce influence of age on cardiometabolic health. Examples of these influences are the 

change during pubertal transition on lifestyle behaviors (i.e., smoking, alcohol composition, 

sedentary and activity level, and diet quality), and biological systems (i.e., body composition, 

and hormonal milieu). Besides, future studies should aim to conduct powered sex-stratified 

analysis as it might reveal critical information about sexual dimorphism in the early development 

of cardiometabolic diseases. Further studies with longer follow-up duration are worth conducting 

to examine the long-term association between the lifestyle determinants of cardiometabolic risk 

factors; the associations may be pronounced in middle adulthood to reflect the chronic and 

cumulative exposures.  

The scope for future research regarding chapter 2 is to validate the use of diet quality 

scores among children and adolescents and examine the extent to which they represent the 

overall diet. We endorse the importance of complementing diet assessment with culture of eating 

measures – such as watching media while eating, and unhealthy snacks between meals, and 

others 109 – and the social-cultural context of the food consumption. Furthermore, because 

Mexico has the highest annual retail sales per capita of ultra-processed food and drink products 

across Latin America 110,111, ranked fourth worldwide 110, we encourage futures studies to use a 

diet quality score that captures the consumption of processed foods. Lastly, to apprise the 

detected unexpected positive association between higher diet quality (i.e., DASH score) and 

waist circumference among girls, we recommend longitudinal studies supplement the waist 
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circumference measurement with a valid tool to quantify the abdominal fat such as Dual-energy 

X-ray absorptiometry (DEXA). By doing so, the longitudinal changes in abdominal fat mass will 

not be confounded with the parallel growth and maturation in the abdominal compartment – 

muscle mass and bone mass.    

Future directions for chapter 3 are validating the physical activity questionnaires to 

capture the duration and context of various sedentary behaviors among youth. Similarly, 

additional studies are needed to validate the use of accelerometers in assessing sedentary time 

and enhance its feature to capture body posture. In light of the claim questioning the 

representation of four assessment days of physical activity 97, we recommend evaluating the 

required number of days to get representative habitual physical activity patterns. Additional work 

has to be done to reach consensus about the proper epoch length for summarizing accelerometer 

data, cut-off points to define activity intensity, define bouts, and non-wear time to enhance the 

comparability of findings across studies, and reduce measurement errors 25,32,41,46,48.  

For chapter 4, we recommend future studies to validate the use of blood DNAm as a 

proxy for DNAm in the target tissue for cardiometabolic health, adipose tissue and skeletal 

mulches, among children and adolescents. The blood DNAm validation is a necessary step 

toward developing potential epigenetic biomarkers for cardiometabolic risk using blood samples 

104. Moreover, due to the wide recognition for cytosine hydroxymethylation (5hmC) as a distinct 

epigenetic modification than cytosine methylation (5mC) or DNAm, future studies should apply 

laboratory techniques that allow for distinguishing between 5hmC and 5mC in order to get pure 

assessment of DNAm. Besides, we recommend future studies to employ epigenome-wide 

approaches to identify all-important genes for cardiometabolic outcomes in youth. DNAm is not 

the only approach to modulate gene expression; in fact, gene expression could be influenced by 
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multiple factors – including other epigenetic modifications, physiological conditions, and others. 

Thus, we recommend future studies to supplement the assessment of DNAm with gene 

expression instead of gauging the gene expression using only DNAm data.  

Conclusions: 

This dissertation project showed evidence supporting the associations between higher diet 

quality, lower sedentary time, and replacing sedentary time with higher activity intensities and 

better cardiometabolic profile among healthy youth. In addition, we detected few associations 

between DNAm on the selected 4 genomic regions and cardiometabolic profiles. Despite the 

inclusion of healthy Mexican youth, we have identified associations with small effect sizes 

supporting the role of lifestyle modifications on metabolic health among the high-risk population 

for metabolic disorders. Therefore, advocating for a healthy lifestyle at an early age could result 

in a protective impact on cardiometabolic health, which might mitigate the dire CVD 

consequences that would manifest in adulthood.  
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