
Graph Summarization Meets Representation
Learning for Scalable Feature Summarization:

Methods and Applications

by

Di Jin

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2021

Doctoral Committee:

Morris Wellman Associate Professor Danai Koutra, Chair
Professor H. V. Jagadish
Professor Rada Mihalcea
Dr. Ryan A. Rossi, Adobe Research
Professor Lei Ying

Di Jin

dijin@umich.edu

ORCID iD: 0000-0001-8028-0556

©Di Jin 2021

ACKNOWLEDGEMENTS

First of all, I want to express my deep thankfulness to Prof. Danai Koutra, who has

enlightened my career and taught me step by step to be a researcher. Danai inspired my

interests in research when I was a newbie conducting projects under her advisory at CMU,

and later on she encouraged me to pursue my PhD. In the past 5 years, Danai has provided me

with comprehensive academic guidance that includes the flexibility to formulate new problems,

high-level direction when the project is stuck, hands-on suggestion on experimental design

and paper expression such as illustration and writing. Beyond research, she assisted to expand

my professional career by connecting me with researchers from different groups/industry,

which contributes to this thesis work. She was also mentally and financially supportive during

the hard time of the pandemic. I hope that I could be the kind of researcher and mentor to

others that Danai has been to me someday in the future.

I would like to thank the other members of my committee, H.V. Jagadish, Rada Mihalcea

and Lei Ying, for their insightful feedback at my proposal and leading up to my defense. I

am additionally grateful to Ryan Rossi for consistently mentoring me during my two great

summer internships at Adobe Research, which results in a long-term engagement with Adobe

and various joint works, some of which are part of this thesis.

Over the years, it has been such a privilege to work with my collaborators during

my internships, from whom I have gained a greater and more diverse vision of research.

Specifically, I am indebted to Ryan Rossi and Sungchul Kim at Adobe Research for patiently

guiding me in terms of conducting research projects, doing survey, writing papers, and filing

patents. Particularly, I have learned the spirit of persistence from our experience in working

on a project that went through 4 rejections and finally got accepted. I would like to thank

Bunyamin Sisman and Luna Dong at Amazon Research for mentoring me during another

ii

wonderful summer internship that gave me the chance to explore my expertise in handling

real-world research challenges, and for creating the opportunity to exchange ideas with people

from different backgrounds and collaboratively work on relevant topics. I could not have

made the next step of my professional career without your generous help. I am thankful

to Ying Shan for introducing me to the field of multi-modal fusion and for providing me

with all the support to formulate and solve the new research problem. I am also grateful to

other researchers and interns for the constructive discussion over the collaborative projects,

in particular Eunyee Koh at Adobe Research, John Boaz Lee at facebook, Christos Faloutsos,

Hao Wei and Jialong Han at Amazon Research, Yuan Yang at Georgia Tech, Zhongang Qi

and Yingmin Luo at Tencent, as well as Wei Lee and Lindsay Snider at Trove.

It has also been such a pleasure to work with my labmates of the GEMS Lab. I am

indebted to Mark Heimann, Fatemeh Vahedian, Tara Safavi, Yujun Yan, and Jiong Zhu for

the privilege of coauthoring with you—I have learned a lot from your expertise and I could

not have written this thesis without your talents and generous contribution. I am thankful

to Caleb Belth, Marlena Duda, Puja Trivedi and Alican Büyükçakır for kindly sharing your

thoughts on my work and paper: your suggestions have always inspired me to improve my

work. I am also thankful to the undergraduate and masters’ students I have been able to work

with, particularly Junchen (Mark) Jin, Ruowang Zhang, Ruiyu Li, Haoming Shen, Aristotelis

Leventidis, Junyue Wu, and Charles Wang: your impressive passion made our work viable

and taught me a lot.

Conducting research amid the environment of pandemic and political tension is challeng-

ing. As an international student, I am grateful to people from the CSE department, the

international office and Rackham for helping me solve all tough administrative issues. In

particularly, I am thankful to our department coordinators, Ashley Andreae and Karen Liska

for the patient support. I am also greatly thankful to my friends for the mental support to

pull me out of depression.

Finally, I want to thank my parents and brother for being there to support me not to give

up, and for enlightening me the true value of life. With your selfless love, I could embrace

the challenges in the future with endless courage.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . viii

LIST OF TABLES . xii

ABSTRACT . xv

CHAPTER

I. Introduction . 1

1.1 Research Goal . 3
1.2 Overview . 6

1.2.1 Latent Feature Summarization 6
1.2.2 Non-latent Feature Summarization 8

1.3 Contributions . 9

II. Preliminaries & Related Work . 11

2.1 Preliminaries . 11
2.1.1 Graphs . 11
2.1.2 Communities and Roles . 12
2.1.3 Node Embeddings . 13

2.2 Related Work . 15
2.2.1 Node embedding . 15
2.2.2 Graph Summarization . 16

Part I: Node Embedding via Latent Feature Summarization 19

III. Latent Structural Feature Summarization for Static Heterogeneous
Graphs . 20

3.1 Introduction . 20

iv

3.2 Latent Network Summarization . 22
3.3 Multi-Lens Framework . 23

3.3.1 Preliminaries . 24
3.3.2 Multi-level Structure Extraction 26
3.3.3 Heterogeneous Context . 28
3.3.4 Latent Summarization . 30
3.3.5 Generalization . 33
3.3.6 Complexity Analysis . 33

3.4 Experiments . 35
3.4.1 Experimental Setup . 35
3.4.2 Compression rate of Multi-Lens 37
3.4.3 Link Prediction in Heterogeneous Graphs 38
3.4.4 Inductive Anomaly Detection 39
3.4.5 Scalability of Multi-Lens 42

3.5 Conclusion . 42

IV. Latent Temporal Proximity Summarization for Temporal Graphs . 43

4.1 Introduction . 43
4.2 Related Work . 46
4.3 Preliminaries and Definitions . 47

4.3.1 Dynamic Heterogeneous Network Model 47
4.3.2 Temporal Random Walks 48

4.4 node2bits: Hash-based Emdedding Framework 48
4.4.1 Temporal Random Walk Sampling 49
4.4.2 Temporal Context based on Multi-dimensional Features . . 50
4.4.3 Feature-based Context Aggregation and Hashing 51
4.4.4 Complexity Analysis . 54

4.5 Experiments . 55
4.5.1 Experimental Setup . 55
4.5.2 Accuracy in Supervised User Stitching 58
4.5.3 Accuracy in Unsupervised User Stitching 61
4.5.4 Output Storage Efficiency 62
4.5.5 Scalability . 62

4.6 Conclusion . 63

V. Evaluating Temporal Summaries and Node Embedding 64

5.1 Introduction . 64
5.2 Related Work . 67
5.3 Data . 69
5.4 Preliminaries . 71
5.5 Framework . 71

5.5.1 Graph Time-Series Representations 71
5.5.2 Temporal Network Models 73

v

5.5.3 Temporal Embeddings . 77
5.6 Experiments . 79

5.6.1 Experimental Setup . 79
5.6.2 WTRG vs. TRG . 81
5.6.3 Fixed #edges (ε) vs. time-scale (τ) 82
5.6.4 Temporal Model Comparison 85
5.6.5 Dynamic Embeddings: Variants vs. State-of-the-art 86

5.7 Complete Experimental Results . 87
5.8 Conclusion . 89

Part II: Node Embedding via Non-latent Feature Importance
Summarization 90

VI. Domain-knowledge-guided Summarization of Graph Collections . . 91

6.1 Introduction . 91
6.2 Related Work . 94
6.3 Methodology: EAGLE . 95

6.3.1 Proposed Formulation . 97
6.3.2 Proposed Model for Feature Diversity 99
6.3.3 Proposed Model for Domain-Specificity 102
6.3.4 Algorithm . 103
6.3.5 Application-driven Constraints 104
6.3.6 Complexity . 107

6.4 Experiments . 108
6.4.1 Baselines . 109
6.4.2 Datasets . 109
6.4.3 Experimental setup . 109
6.4.4 Satisfaction of Desired Properties 110
6.4.5 Scalability . 112
6.4.6 Robustness to parameters 113
6.4.7 Case study: classification on brain graphs 114

6.5 Conclusion . 115

VII. Transfer Learning with Attention-based Summarization of Rela-
tional Data in Knowledge Integration 117

7.1 Introduction . 117
7.2 Related Work . 121
7.3 Preliminaries . 123

7.3.1 Problem Definition . 123
7.3.2 Terminology . 124

7.4 Proposed framework . 125
7.4.1 Formulation . 125

vi

7.4.2 Feature Representation . 126
7.4.3 Feature Attention Embedding 128
7.4.4 Domain Adaptation-based Variants 130
7.4.5 Parameter Complexity . 135

7.5 Experiments . 136
7.5.1 Experimental Setup . 136
7.5.2 Transfer Learning for MEL 141
7.5.3 Effectiveness of Adaptation 144
7.5.4 Attention Analysis . 146
7.5.5 Data Sources Analysis . 148
7.5.6 Effectiveness of Support Set 149
7.5.7 Model Justification . 151

7.6 Conclusion . 152

VIII. Conclusion . 154

8.1 Summary . 154
8.1.1 Latent Feature Summarization 155
8.1.2 Non-latent Feature Summarization 156
8.1.3 Histograms in Embedding 157

8.2 Future Directions . 158

BIBLIOGRAPHY . 161

vii

LIST OF FIGURES

Figure

1.1 The relation between feature summarization, node embedding and graph
summarization. 4

2.1 A toy graph and its 2-D embeddings visualized using TSNE. 14
3.1 Our proposed approach to Latent Network Summarization called Multi-

Lens produces a summary consisting of relational functions Fr and node-
independent matrices S of size K × C. Thus, while embedding methods
output N node embeddings of dimensionality K, latent summarization
methods produce an output that is independent of N and thus is graph-size
independent. Despite not storing the embeddings, Multi-Lens can derive
them on the fly. 21

3.2 Overview of Multi-Lens. Dashed boxes: intermediate results that do not
need to store; shaded boxes: outputs that need storing. The size of the latent
network summaries, J =

{
F ,S

}
, is independent of N,M 24

3.3 The composition of relational functions incorporates node degrees (column
vector x) in expanded subgraphs. 27

3.4 Example of creating histogram-based matrix representation H(0) with Z = 2
features in the base feature matrix F(0). A single object / edge type and no
edge directionality is assumed here for simplicity. 29

3.5 (a)-(b) Major event detection in real world datasets; (c) Runtime reported
on ER graphs with davg = 10. Multi-Lens scales similarly to node2vec with
less memory requirement while node2vec runs out of memory on the graph
with 107 nodes. 41

4.1 node2bits overview. node2bits encodes the temporal, heterogeneous in-
formation of each node into binary hashcodes for efficient user stitching.
. 45

4.2 node2bits workflow. Given a graph and its attribute matrix (optional),
node2bits (1) samples temporal random walks to obtain sequences that
respect time, derives contexts at different temporal distances (temporal
contexts of a and b are derived from the walk {b, a, b, c}, as well as the
feature matrix F; (2) creates temporal contexts based on multi-dimensional
features in F; and (3) aggregates them into feature-based histograms to
obtain sparse, binary, similarity-preserving embeddings via SimHash. . . . 49

viii

4.3 First 5 plots: output storage in MB for all the methods that completed
successfully in five datasets. node2bits is also shown to be scalable for large
graphs. 62

5.1 Graph properties (#edge and average degree) over two time-series repre-
sentation (fixed timespans vs. fixed edge count). Fixing the edge number
gives more stable temporal patterns while fixing the timespans shows higher
fluctuation. 70

5.2 Framework Overview. In the first component of the framework (Sec. 5.5.1),
we derive a time-series of graphs from the stream of timestamped edges using
either an application-specific time-scale τ (e.g., 1 day) or a fixed number
of edges ε for each graph in the time-series. Next, given the {τ, ε}-graph
time-series representation, we incorporate the temporal dependencies and
weights with a temporal network model from Sec. 5.5.2. Finally, we use
an arbitrary base embedding method to learn a time-series of embeddings
and then leverage a temporal fusion mechanism to obtain the final temporal
embeddings (Sec. 5.5.3). 72

5.3 A toy temporal graph (a) and its temporal reachability modeling TRG (b)
and WTRG (c). (b) An edge in the vanilla TRG represents a temporally-valid
walk. The red edges represents the length-2 walks {A,B,C} and {A,B,D} in
the original graph (c) WTRG extends TRG by assigning weights to indicate
the temporal closeness e.g., {A,B,C} has higher weights than {A,B,D} as
C is temporally closer to A than D (∆tAC < ∆tAD), which reflects stronger
temporal continuity. 75

5.4 Sensitivity analysis. Link prediction performance on τ - and ε-graph. The
τ -graphs are created based on different timescales, the ε-graphs are created
via equal division. mo.: month. wk.: week. 84

5.5 Predictive results of the dynamic embedding methods and our framework.
Our proposed framework approximates well to approaches specifically de-
signed for temporal graphs with comparable or even better performance (ML
= multilens, s2v = struc2vec). 86

6.1 Overview of EAGLE: Given an input graph g and a set of B baseline graphs
Gi that encode the domain knowledge, we seek to find a domain-specific,
feature-based summary of g that is diverse, concise, and interpretable. The
summary consists of univariate feature distributions (e.g., degree, PageRank). 92

6.2 The discrete and continuous PDFs with different bucket sizing, from left to
right, the bucket sizing is: 1

10
, 1

100
, 1

10000
times the range of values; “unique”

means the unique values in the PDF; “Scott” refers to the bucket sizing
computed by Scott’s rule. 100

6.3 Example: S = {2, 4, 5}, f = {0, 1, 0, 1, 1}, and degree as the newly added
feature (i.e., ε = 1). (a) The sum of the shaded areas in SF corresponds to
the first term. After adding the degree, i.e., S ′ = S ∪ {1}, the sum of the
blue rectangles correspond to the first term. (b) Blue rounded rectangles in
hd indicate hd(ε); The sum of its shaded cells gives the third term. 106

6.4 Convergence of two runs with MIQP. 108

ix

6.5 Effectiveness in terms of diversity and domain-specificity evaluated using
Pearson’s correlation coefficient (low values are better). EAGLE achieves
the best performance in every case. 111

6.6 Scalability of Eagle-Flex on two input graphs (citation and social). (a)
In both cases, Eagle-Flex scales quadratically in terms of the number of
features with similar behavior of MIQP (b) The runtime is independent of
the size of baseline graphs. 112

6.7 Robustness of EAGLE to the regularization parameters. Left y axis: per-
centage of identical selected features between λ and its default value. Right
y axis: total number of invariant distributions included in the summary. . . 113

7.1 Well-labeled data sources (e.g., blue tables) are generally outnumbered by
massive unlabeled data in real-world knowledge integration scenarios. Entity
linkage models trained only on well-labeled samples fail to handle new sources
with different contexts or formats (e.g., red tables). Our proposed framework,
AdaMEL automatically learns the attribute importance that adapts to the
massive unlabeled data from different sources during training, and then uses
it as the transferable knowledge to perform matching. 119

7.2 Overview. AdaMEL first embeds attributes for records from both the source
and target domain to derive the feature representations, and uses the feature
attention function to get the attention scores (importance) as the transferable
knowledge K. Then, depending on the availability of the labeled support set,
AdaMEL uses K and performs either the unsupervised or semi-supervised
manner of domain adaptation for MEL. 126

7.3 AdaMEL processes 1 attribute A as 2 relational features (i.e., sim(A) and
uni(A)). In this example, F = 4 features are generated from |A| = 2
attributes (i.e., “Title” and “Artist”). The empty word tokens are embedded
as the fixed normalized non-zero vector to form h (red dashed box). The
feature embedding x is obtained through non-linear affine transformation of
the token embedding h (Equation (7.4)). Each feature assumes to contribute
independently to predict the linkage. 128

7.4 AdaMEL-base architecture that updates f via labeled data inDS. AdaMEL-
base first computes the attention vector f(xi) for the i−th entity pair (dashed
line), and then compose it with the feature embeddings (solid line) as the
input to the neural network Θ. 130

7.5 AdaMEL-zero architecture that attempts to align the i-th entity pair f(xi)
in DS (solid box) with the averaged f(x′) (dashed box) in DT . x.j and x′.j
(j = 1, · · · , F) denote the j-th feature in general from DS and DT , respectively. 132

7.6 Monitor: the challenges of missing attribute values (C1) and new attributes
(C2) between DS and DT is shown with the percentages of entity pairs
without missing values per attribute (i.e., nonempty for both entities). For
most attributes, the majority of entity pairs have at least 1 entity with
missing values. 5 out of 13 attributes have non-missing entity pairs only in
the target domain (2 non-missing attributes are “page title” and “source”).
For the remaining 6 attributes, the percentage is also significantly different
between the source and target domain. 139

x

7.7 Monitor: the challenges of different attribute value distribution (C3) shown
with the representative attribute “prod_type”. The frequency distribution of
top 10 word tokens under this attribute is significantly different between the
source and target domain. 140

7.8 MEL performance (PRAUC) comparison between AdaMEL variants and
baselines. AdaMEL variants outperform baseline heterogeneous entity
matching methods in almost all cases. Particularly, AdaMEL-hyb performs
the best on all entity types and datasets. 142

7.9 Source and target domain feature attention vectors are better aligned with
high value of λ for both AdaMEL-few and AdaMEL-hyb (visualized with
TSNE, dim=2). 145

7.10 AdaMEL-zero and AdaMEL-hyb performance improve with increasing λ
from 0 to 0.98 (fitted with linear regression). The performance drops when
λ = 1 as no labeled data in DS is used. 146

7.11 AdaMEL-hyb performs more stably (0.9750 ∼ 0.9219 in PRAUC) as #data
sources increases in DT with less runtime. 149

7.12 Sensitivity analysis of the size of support set |SU | fitted with order-2 poly-
nomial regression on AdaMEL-few and AdaMEL-hyb. As more labeled
samples are included in SU , the model performance (PRAUC) increases
initially and then flattens out. 150

xi

LIST OF TABLES

Table

1.1 Comparison between graph summarization and node embedding. 3
1.2 Thesis Overview. 6
2.1 Summary of general symbols and notations throughout the thesis. 11
2.2 Qualitative comparison of the thesis works to existing embedding and sum-

marization methods. Does the method: handle heterogeneous/temporal
graphs; yield an output that is size-independent, but node-specific, and
representations that are independent of node proximity; support inductive
learning and scale well (i.e., subquatratic on the network size)? 16

3.1 Summary of symbols and notations. 23
3.2 Relational operators used in the experiment. 28
3.3 Statistics for the heterogeneous networks that we use in our experiments. . 36
3.4 Output storage space required for embedding methods relative to the Multi-

Lens summaries (given in MB). Multi-Lens requires 3− 2152× less output
storage space than embedding methods. 38

3.5 Link prediction: node embeddings derived by Multi-Lens (ML) outperforms
all baselines measured by every evaluation metric. Specifically, Multi-Lens
outperforms embedding baselines by 3.46% ∼ 34.34% in AUC and 3.71% ∼
31.33% in F1 on average. It outperforms even more over the aggregation-
based methods. The asterisk ∗ denotes statistically significant improvement
over the best baseline at p < 0.01 in a two-sided t-test. OOT = Out Of Time
(12 hours), OOM = Out Of Memory (16GB). 39

3.6 Anomalous Erdős-Rényi (ER) subgraphs (with n nodes and probability p)
detection precision on both synthetic and real-world graphs. 40

4.1 Summary of major symbols and their definitions. 47
4.2 Network statistics and properties for our six real-world datasets. ‘D’: directed;

‘W’: weighted; ‘H’: heterogeneous; ‘T’: temporal network. 55
4.3 Entity resolution results for static networks. Our method outperforms all

the baselines. | OOT = Out Of Time (6h); OOM = Out Of Memory (16GB).
The asterisk ∗ denotes statistically significant improvement over the best
baseline at p < 0.05 in a two-sided t-test. 59

xii

4.4 Entity resolution results for temporal networks: strong performance for
node2bits variants. | OOT = Out Of Time (6h); OOM = Out Of Memory
(16GB); ∗ denotes statistically significant improvement over the best baseline
at p < 0.05 in a two-sided t-test. 60

4.5 Unsupervised stitching performance between CN and node2bits. 62
4.6 Comparison between node2bits and baselines in terms of runtime (in seconds).

Note the runtime of dynamic node2bits (short-term) for the temporal networks
is shown in parentheses. 63

5.1 Qualitative comparison of existing embedding methods on temporal graphs.
The graph time-series representation used by the method (application time-
scale, or fixed number of edges), the type of temporal model used, and type
of embedding fusion used (if any). 68

5.2 Network statistics and properties. 69
5.3 Summary of notation. 71
5.4 Performance of WTRG over TRG on τ -graph time series. 82
5.5 Mean rank (and std.) of the temporal network models across all base

embedding methods and graphs based on AUC, ACC and F1, lower is better.
The top-3 temporal network models are based on the new ε-graph time-series
representation (fixed #edges). 84

5.6 Temporal model performance across the temporal graphs. Each (i, j) is the
of times temporal model Mj ∈M in graph Gi performed best comparing
to the other models across all base embedding methods f ∈ F and evaluation
criterion. We bold the temporal model that performs best overall for each
graph. 85

5.7 Complete experimental results on the first 2 datasets. The values are repre-
sented using percentage %. 88

6.1 Table of symbols. 97
6.2 Domains and graphs used in our experiments. 110
6.3 Classification on COBRE: AUC scores per method. 115
7.1 Summary of notation. 123
7.2 Data statistics and properties. 136
7.3 Train, support and test statistics in the experiments. 137
7.4 AdaMEL performance (PRAUC) on Monitor. All variants outperform the

baseline, AdaMEL-hyb performs the best (marked in bold) with at least
0.51% improvement over the second-best (∗). 144

7.5 AdaMEL performance (PRAUC) of multi-source entity linkage on the Music
data. The best score of each entity type is marked in bold. Out of AdaMEL
variants, AdaMEL-hyb performs the best with 0.64% ∼ 5.50% improvement
over the second-best variant (marked with ∗) in PRAUC. AdaMEL-hyb
outperforms the best-performing baselines (including AdaMEL-base) with
8.21% improvement on average. 144

7.6 AdaMEL learned importance of top-5 features for Monitor and Music-3K,
artist type. 147

xiii

7.7 Performance (PRAUC) comparison using the selected important features vs.
the other features and all features. Numbers in the parenthesis denote the
counts of features. 148

7.8 Ablation study: AdaMEL contrastive features on Music-3K, artist and
album type. AdaMEL-zero and -few perform similarly. 151

7.9 Entity linkage performance (F1) of DeepMatcher, AdaMEL-zero and -hyb
on the benchmark datasets, single domain scenario. AdaMEL-hyb performs
comparably as DeepMatcher. 152

xiv

ABSTRACT

Graphs are ubiquitous as they naturally capture interactions between entities, such as user

interaction in online social media, paper citations in bibliographic networks, and user-product

preferences in sales networks. Recently, graph representation learning has gained significant

popularity in both academia and industry thanks to its state-of-the-art performance in a

variety of downstream machine learning (ML) tasks, such as friend recommendations and

anomaly detection. Specifically, node representation learning (embedding) aims to find a

dense vector of rich latent features per entity that can be used in ML tasks. However, these

dense representations with fixed dimensions come with computational and storage challenges

for real-world graphs with many millions or billions of nodes, and the “black-box” nature of

the latent features impedes interpretability. On the other hand, graph summarization aims

to find a concise and interpretable representation of the original graph that describes its key

information, but it is often lossy and trades off space and performance in ML tasks.

In this thesis, we bridge the two lines of research, node embedding and graph summa-

rization: we introduce scalable methods for generating summaries of latent or non-latent

(original) node features that achieve the state-of-the-art performance on ML tasks while

requiring significantly reduced storage and supporting interpretability. Specifically, we intro-

duce a new problem, latent network summarization, which summarizes the graph structural

features in static networks as latent node embeddings for storage and query efficiency, and

extend this idea to incorporate temporal proximity in temporal summaries of continuous-time

dynamic networks. We also perform an extensive systematic study of temporal summaries

and show that they capture the graph structure and temporal dependency at least as well as

recently-proposed dynamic embedding approaches, while having significantly less complexity

xv

(i.e., no transitional or latent variables). Unlike methods that are based on complex models

as “black boxes”, our temporal summaries are easy-to-understand, which motivates their

usage for practitioners in predictive applications. Finally, we summarize the non-latent graph

features by modeling feature importance as the high-level knowledge through traditional and

deep learning models that can be used for graph analysis and transfer learning. Throughout

the thesis, we demonstrate the effectiveness, scalability and space efficiency of our methods

on industrial applications such as entity linkage, user stitching, professional role inference,

and temporal link prediction, and present insights that can inform further methodological

development and applications.

Funding Acknowledgements

The work in this dissertation was supported in part by the National Science Foundation

under Grant No. IIS 1743088, an Adobe Digital Experience research faculty award, an

Amazon Faculty Award, Trove AI, Army Young Investigator Award No. W911NF1810397, the

Advanced Machine Learning Collaborative Grant from Procter & Gamble, and the University

of Michigan. Any opinions, findings, and conclusions or recommendations expressed in this

material do not necessarily reflect the views of the NSF or other funding parties.

xvi

CHAPTER I

Introduction

Graphs, also known as networks, are defined as the collection of entities and their

interactions. As the natural representation for data whose underlying structure is non-

Euclidean (i.e., data that cannot be sensibly modeled in the n-dimensional Euclidean space

Rn), graphs have been widely used to model real-world complex systems. For example, online

social media (e.g., LinkedIn, Snapchat) comprise user profiles and their relationships such as

professional communication or friendships [JHS+19]; collections of bibliography such as DBLP

and ACM Digital Library. consist of authors and papers connected through citation and

collaboration relationships [LKF05]; connectomes consist of neural connections that reflect the

co-activities of different areas in the brain [SSTZ12]. Studying the dependencies/relationships

of entities as captured in graphs (rather than assuming i.i.d. data) is critical to user modeling,

personalization [EV03, DDGR07], or machine learning tasks such as clustering, classification,

and more [LSK15, AW10, XYFS07, FZX12, LHH+14, ZGY+16, His18]. General graph mining

techniques aim to extract and discover the key patterns in large real-world graph datasets,

such as finding patterns and correlations between entities to predict outcomes, or finding

anomalies to provide data cleaning and human interpretability [RLU14].

Real-world graph data is growing fast. For example, a study in 20191 shows that for the

Internet, there are 3.7 billion users with 7.5% growth rate. For social networks, there are

0.2 billion monthly active users from Facebook, and there are 1.4 million new user profiles

being created per minute. To handle such high volumes of data and understand the key

information, graph summarization approaches are normally adopted [LSDK18]. The goal of
1Statistics source: https://www.smartinsights.com/ecommerce/social-commerce/

1

https://www.smartinsights.com/ecommerce/social-commerce/

graph summarization is to extract the a summary graph or a set of structures or a compressed

data structure to concisely describe the given graph, and can be used for various data mining

and machine learning tasks. Most existing works in the field provide summaries by either

grouping “similar” nodes/edges or sampling specific nodes/edges to reduce graph complexity,

and often information loss is incurred. Therefore, graph summarization techniques usually

trade off storage and runtime with performance.

Recently, node representation learning (node embedding) has become a popular paradigm in

both academia and industry that often achieves the state-of-the-art performance in tasks such

as user modeling, personalization and link prediction [TQW+15a, CLX16, GL16, HYL17c,

GF18]. The main idea is to learn a mapping that encodes nodes into a low-dimensional latent

space RK , where K is a constant (e.g., often 128) that is significantly smaller than the input

graph size. The projected latent features are denoted as Euclidean vectors that measure

some notion of similarity between the nodes in the original graph, such as proximity in the

graph, or structural similarity (see Chapter II for more details), which facilitate a wide range

of machine learning tasks such as node classification and link prediction [RJK+19, JHJK21].

While node embedding has been widely studied and applied, this line of research has several

challenges due to the latent nature of the learned features, including:

• Storage inefficiency. The dense node-wise latent feature vectors (embeddings) in the

same fixed dimension is storage inefficient. Storing the node embeddings often requires

at least 10× more storage than the input sparse graph data.

• Query inefficiency. Since the node embeddings are vectors of real numbers, the

computational complexity of pairwise comparison is O(n2), which is very expensive

compared to binary vector comparisons.

• Interpretability. The node embeddings are hard to understand, as they map to latent,

automatically learned features, which are unknown functions of (more interpretable)

nodes and graph properties (e.g., node proximity, structural roles).

The high-level goal of this thesis is to bridge node embedding and graph summarization in

order to maintain the promising performance in machine learning tasks while addressing the

above challenges.

2

1.1 Research Goal

At the first glance, graph summarization and node embedding seem to be entirely different

tasks. Indeed, these two tasks study various perspectives of the graph data with different

purposes. For example, comparing with graph summarization that aims to provide the

graph-level understanding about the data, node embedding focuses on more fine-granularity

analysis by modeling the components of the graph, i.e., nodes and edges. Table 1.1 gives a

detailed comparison between graph summarization and node embedding with respect to five

dimensions.

Table 1.1: Comparison between graph summarization and node embedding.

Graph summarization Node embedding

Goal
Extract key information depending on
applications such as query answering,
compression, or data understanding

Preserve proximity or structural
information for computational machine
learning tasks

Output
Concise graph-level representation or a
set of graph structures e.g., supergraph
or simplified graph with flexible sizes

Node- or edge-level representation, i.e.,
node- or edge-wise vectors in fixed
dimension

Core
techniques Grouping, partitioning, simplification

Graph-based walks, matrix
factorization, low-dimensional
approximation

Applications
Efficient query answering, visualization,
data compression, community
detection, influence analysis

User modeling, entity linkage,
recommendation, personalization, link
prediction, clustering

However, from the high level, summarization and embedding are implicitly connected.

The extracted features of each line of research are mostly related and can be used interchange-

ably. For example, summarization considers the structures of graph egonets to produce the

representative patterns (such as graphlets or motifs), and such information has been widely

used for structural-based node embedding. Another example is that community detection

techniques in summarization often rely on walk-based approaches such as random walk to

detect the graph communities [PL05], and this technique lies in the heart of node embedding

based on graph proximity. As each line of research has its own advantages and disadvantages,

the research goal of this thesis is to bridge the two lines of research (graph summarization

and node representation learning) by deriving a compressed representation that excels in

ML tasks while addressing the above three challenges of latent node features through fea-

3

Figure 1.1: The relation between feature summarization, node embedding and graph summa-
rization.

ture summarization. Figure 1.1 depicts the relation between feature summarization, node

embedding and graph summarization.

Formally, we give the problem definition as follows.

Problem 1 (Feature summarization). Given a graph with or without node features, feature

summarization aims to derive a compressed representation of the original and/or structural

features such that it can perform well in ML tasks, while addressing the incurred challenges,

i.e., the storage inefficiency, query inefficiency and interpretability.

Our solution reconsiders the inner connection between graph summarization and node

embedding techniques despite the fact that their main goals or applications vary significantly.

The key of such connection is graph features, as they lie at the heart of both summarization

and machine learning tasks. Graph summarization mostly looks into the “non-latent” features2

as the basis to group nodes or edges, for example, PageRank or betweenness in the node

surrounding network substructure (k-hop neighborhoods). In contrast, node embedding

projects the graph structures (e.g., proximity or structural equivalence) or external information

from various sources (e.g., node-wise descriptive texts or other prior knowledge) onto the

enriched latent feature space, which results in superior performance in machine learning

tasks. To bridge these two tasks, our methods mainly consist of two parts: the feature

extraction phase where we characterize graph nodes with features that are used in both fields,

and the summarization phase where we derive the high-level knowledge as the summary

by compressing the features extracted in the previous phase. In this process, the derived
2In this thesis, we use the term “non-latent features” to describe the original features (such as textual

description) and graph structural features (such as degree and PageRank), and to distinguish from features
that are projected into the latent space.

4

summary naturally follows the transfer learning paradigm, which is an important application

of our methods.

A particular consideration of the work in this thesis is storage efficiency, which is important

for scaling to large datasets, query efficiency, and method inductiveness. The purpose of node

embedding is to represent nodes in the input graph G through vectors with dimension K.

While this representation reduces the input from N ×N adjacency matrix to N ×K, the

output forms a dense matrix comprising continuous real-values that could take more storage

than the input sparse graph. For example, by following the conventional setting of K = 128

for the dimensionality, a graph consisting of 2 million nodes requires roughly 1GB for its

embeddings, while the sparse graph file (adjacency matrix) takes only ∼ 90MB in storage3.

For real-world large graphs with billions of nodes, the requirement for storage would increase

significantly. Such high volume of storage is a burden to machine I/O operations that could

affect the computational performance of downstream tasks. Unfortunately, these issues are

rarely tackled by the existing work in representation learning. In summary, node embedding

is mostly adopted to generate the latent representation that describes the fine-grained graph

components, and thus is advantageous to machine learning tasks but disadvantageous in

terms of storage or interpretability. Graph summarization, on the other hand, is used to

extract the high-level interpretable key information of the original graph for compression

and query efficiency, but is often information-lossy, thus being disadvantageous in terms of

machine learning tasks.

Motivated by the needs of storage efficiency, query efficiency, and interpretability, this thesis

contributes a range of space- and time-efficient node embedding methods by summarizing the

latent and non-latent graph features. These methods aim to derive node embeddings that

require significantly reduced storage space with trivial performance trade-off, or with even

better performance in machine learning tasks. Additionally, our methods are designed on

various types of graph data, which include static homogeneous and heterogeneous graphs,

temporal graphs, and knowledge graphs.
3https://snap.stanford.edu/data/roadNet-CA.html

5

https://snap.stanford.edu/data/roadNet-CA.html

1.2 Overview

This thesis is organized as follows: the preliminary material is presented in Chapter II.

The representation learning via summarizing the latent features is given from Chapter III

to Chapter V, Chapter VI and Chapter VII describe summarizing the non-latent features.

Each part addresses node representation learning by incorporating one or more particular

properties from graph summarization, such as compression, query efficiency or interpertability,

and discusses the applications on real-world data. We summarize these parts in more detail

in Table 1.2.

Table 1.2: Thesis Overview.

Feature Graph Objective & chapter Challenges VenueType Type Addressed

Latent

Static
heterogeneous

Introduce latent network summariza-
tion that aims to learn a compact, la-
tent representation of the graph struc-
ture (Ch. III)

Storage inefficiency KDD’19
[JRK+19]

Temporal
heterogeneous

Extend summarizing graph structural
features to the temporal settings
(Ch. IV)

Query inefficiency
Pairwise comparison

PKDD’19
[JHRK19]

Establish a framework to systematically
study the temporal graph proximity and
dependency of temporal graphs (Ch. V)

Model interpretability WSDM’22
[JKRK22]

Non-
latent

Static
homogeneous

Analyze graph data by selecting di-
verse, concise and domain-specific fea-
tures (Ch. VI)

Model and result
interpretability

ICDM’17
[JK17]

Knowledge
graph

Learn feature importance of relational
data from multiple sources as the generic
transferable knowledge for entity linkage
(Ch. VII)

VLDB’22
[JSW+22]

1.2.1 Latent Feature Summarization

Motivated by the computational and storage challenges that dense embeddings pose,

Chapter III introduces the problem of latent network summarization that aims to learn a

compact, latent representation of the graph structure with dimensionality that is independent

of the input graph size (i.e., #nodes and #edges), while retaining the ability to derive node

representations on the fly. We propose the solution Multi-Lens, an inductive multi-level latent

6

network summarization approach that leverages a set of relational operators and relational

functions (compositions of operators) to capture the structure of egonets and higher-order

subgraphs, respectively. The structure is stored in low-rank, size-independent structural

feature matrices, which along with the relational functions comprise our latent network

summary. Multi-Lens is general and naturally supports both homogeneous and heterogeneous

graphs with or without directionality, weights, attributes or labels. As application areas, we

show the effectiveness of Multi-Lens in detecting anomalies and events in the Enron email

communication graph and Twitter co-mention graph. Exploiting graph structural features in

node-centric subgraphs produces the high-level knowledge to characterize individual nodes,

which can be further used to measure the similarity between nodes that are not connected or

far away in the graph. We refer the interested readers to our KDD 2019 paper that learns

structural embeddings for professional role inference in weighted and directed graphs [JHS+19].

Having established the feasibility of latent feature summarization that is based on graph

structural features, we extend the idea to handle temporal graph data since most real-world

graphs naturally evolve over time. In Chapter IV, we introduce a hashing-based technique to

summarize the latent graph features and the temporal proximity. We target the real-world task

of identity stitching that aims to identify and match various online references (e.g., sessions

over different devices and timespans) to the same user in real-world web services. Traditional

user stitching approaches, such as grouping or blocking, requires pairwise comparisons

between a massive number of user activities, thus posing both computational and storage

challenges. To solve the problem in an application-independent way, we describe a solution

called node2bits, an efficient framework that represents multi-dimensional features of node

contexts with binary hashcodes. node2bits takes a heterogeneous network-based approach in

which users interact with content (e.g., sessions, websites), and may have attributes (e.g.,

location). More importantly, node2bits leverages feature-based temporal walks to encapsulate

short- and long-term interactions between nodes in heterogeneous web networks, and adopts

SimHash to obtain compact binary representations and avoid the quadratic complexity for

similarity search. Thus, the output feature summary incorporates the temporal proximity

into the summaries, as well as the graph structural information, with significantly reduced

storage requirement.

7

While novel temporal embeddings have been widely studied especially in deep learning,

their “black-box” nature impedes people from fully understanding their effectiveness in mod-

eling the temporal patterns. In Chapter V, we aim to fill this gap by introducing a general

framework that summarizes the graph temporal proximity and dependency through inter-

pretable temporal network models that are built atop the graph time-series representations.

Our framework generalizes static node embeddings derived from the time-series representation

of stream data to the dynamic setting by modeling the temporal dependencies with classic

models, such as reachability graphs. We conduct a systematic study of seven base static

embedding methods and six temporal network models, and evaluate the model performance

via temporal link prediction. Out of the 42 methods that our framework subsumes, we find

that our proposed graph time-series representation, which fixes the numbers of edges in

snapshots, tends to perform the best. More importantly, we find that our framework can

generalize static node embeddings, achieving comparable or better performance than the

studied state-of-the-art dynamic embedding approaches, indicating that our interpretable

temporal summary framework could capture the graph structures and temporal dependency

at least as well as those recent dynamic approaches, but with less complexity.

1.2.2 Non-latent Feature Summarization

Chapter III-V develop new methods to summarize the latent features. However, the

non-latent graph features can be summarized as well in order to provide interpretability or

derive efficient node embeddings for various machine learning tasks.

Feature selection is a representative approach that simplifies a dataset by choosing features

that are relevant to a specific task, such as classification, prediction, and anomaly detection. In

Chapter VI, we introduce EAGLE (Exploratory Analysis of Graphs with domain knowLEdge),

a novel method that creates interpretable, feature-based, and domain-specific graph summaries

in a fully automatic way. That is, the same graph in different domains—e.g., social science

and neuroscience—will be described via different EAGLE summaries, which automatically

leverage the respective domain knowledge and expectations. We propose an optimization

formulation that seeks to find an interpretable summary with the most representative features

for the input graph so that it is: diverse, concise, domain-specific, and efficient.

8

Chapter VII follows the idea of summarizing features by modeling their importance and

extending the summaries to handle a more complicated task: transfer learning for multi-source

entity linkage. Multi-source entity linkage focuses on integrating knowledge from multiple

sources by linking the records that represent the same real world entity. The state-of-the-art

entity linkage pipelines mainly depend on supervised learning that requires abundant amounts

of training data. However, collecting well-labeled training data becomes expensive when

the data from many sources arrives incrementally over time. Moreover, the trained models

can easily overfit to specific data sources, and thus fail to generalize to new sources due to

significant differences in data and label distributions. To address these challenges, we present

AdaMEL, a deep transfer learning framework that learns generic high-level knowledge to

perform multi-source entity linkage. AdaMEL models the attribute importance that is used

to match entities through an attribute-level self-attention mechanism, and leverages the

massive unlabeled data from new data sources through domain adaptation to make it generic

and data-source agnostic. In addition, AdaMEL is capable of incorporating an additional set

of labeled data to more accurately integrate data sources with different attribute importance.

1.3 Contributions

This thesis contributes to the research fields of graph summarization and node embedding:

New problem and definition We introduce the new problem of scalable feature sum-

marization for graph representation learning. In Chapter III, we give the formal definition

of latent network summarization for structural features, which is the first such work in the

field. We extend this idea to summarize the structural features with temporal proximity

in Chapter IV. In Chapter V, we show that these works yield comparable and even better

performance with reduced computational complexity.

New embedding methods for various graph types We propose embedding ap-

proaches on graph data with various complexity, including static heterogeneous (Chapter III)

and homogeneous graphs (Chapter VI), temporal graphs (Chapter IV- V), and multi-relational

knowledge graphs (Chapter VII). We evaluate our work on various machine learning tasks

over different graph types, such as temporal link prediction, graph classification, and transfer

9

learning across data sources in order to demonstrate their effectiveness and generality across

complex multi-relational graphs.

Practical solutions to real-word problems My thesis works are motivated by real-

world tasks that occur in industry, and they are designed to handle various critical challenges

brought on by real-world data. For example, node2bits is motivated by user stitching

(Chapter IV), and AdaMEL is motivated by multi-source entity linkage (Chapter VII).

Both works address real-world data challenges, such as storage limitation and various data

distribution across data sources, which are rarely seen in public benchmark datasets but occur

often in real applications. Additionally, we identify best practices for modeling temporal

dependencies of snapshots in temporal graphs and provide our findings & ideas for future

research works as the reference (Chapter V).

Other Impact Our works on latent feature summarization (Chapter III and Chapter V)

were developed in conjunction with industry collaborators and applied by Adobe Research

to handle intustrial problems. We also have two pending patents. Moreover, our entity

linkage method AdaMEL (Chapter VII) was also accepted and presented in Amazon Machine

Learning Conference, an application-oriented conference for scientists and practitioners from

industry with acceptance rate ∼ 10%.

10

CHAPTER II

Preliminaries & Related Work

In this chapter, we first present preliminary definitions that are widely used in graph

analysis and node embedding. We also provide an overview of two important notions defined

on networks — communities and roles — as well as their connections to two categories of node

embedding approaches proximity-based and structure-based [RJK+19]. We summarize the

general symbols that are used throughout the thesis in Table 2.1, and describe the additional

symbols that are specific to each work in the corresponding chapters. Second, we summarize

the related work on graph representation learning and graph summarization.

Table 2.1: Summary of general symbols and notations throughout the thesis.

Symbol Definition

G = (V,E) network with |V | = N nodes and |E| = M edges
A adjacency matrix of G with row i Ai,: and column i A:,i

F size of feature space
λ regularization parameters

s(,), d(,) similarity and distance between two objects, resp.

2.1 Preliminaries

2.1.1 Graphs

The general definition of a graph is give as follows:

Definition 1 (Graph). A graph G(V,E) is a collection of |V | nodes (vertices) and |E| edges
(relations). The adjacency matrix associated with the graph G is conventionally denoted as A.

11

A heterogeneous network is defined as G = (V,E, θ, ξ) with node-set V , edge-set E, a

function θ : V → TV mapping nodes to their types, and a function ξ : E → TE mapping edges

to their types. Furthermore, we denote a continuous-time dynamic, heterogeneous

network as G = (V,Eτ , θ, ξ, τ), where Eτ represents the set of temporal edges between

vertices V and τ : E → R+ is a function that maps each edge to a corresponding timestamp.

In most cases, when graph homogeneity/heterogeneity is not specified, the continuous-time

dynamic graph (temporal graph for short) is denoted as follows:

Definition 2 (Temporal Graph). Let V be a set of vertices, and E ⊆ V × V ×R+ be the set

of temporal edges between vertices in V . Each edge (u, v, t) has a timestamp t ∈ R+.

When edges represent contacts—e.g.,a phone call or physical proximity—between two

entities at a specific point in time, we have an evolving network structure [BF03]. A temporal

walk in such a network represents a sequence of contacts that obeys time. That is, if each

edge represents a contact between two entities, then a path represents a feasible route for a

piece of information.

Definition 3 (Temporal Walks). A temporal walk from u to w in G = (V,E) is a sequence

of edges e1, . . . , ek such that e1 =(u1, u2, t1), . . . , ek=(uk, uk+1, tk) where tj < tj+1 for all j = 1

to k. We say that u is temporally connected to w if there exists such a temporal walk.

This definition echoes the standard definition of a path, but adds the additional constraint

that paths must respect time, i.e., follow the directionality of time. Temporal walks are

inherently asymmetric because of the directionality of time. The notion of temporal walks

has been recently used in embedding methods [NLR+18].

2.1.2 Communities and Roles

In a graph, communities are sets of nodes with more connections inside the set than

outside based on proximity/closeness or density, whereas roles define sets of structurally

similar nodes that are more similar to nodes inside the set than outside. Communities and

roles are fundamentally different but important complementary notions. More formally, they

are defined as follows:

12

Definition 4 (Communities). Communities are dense, cohesive subsets of vertices C =

{C1, . . . , Ck}. A community Ci ⊆ V is “good" if the induced subgraph is dense (i.e., there are

many edges between the vertices in Ci) and there are relatively few edges from Ci to other

vertices C̄i = V \ Ci [Sch07].

Definition 5 (Roles). Roles define sets of nodes that are more structurally similar to nodes

inside the set than outside [RA15b]. The terms role and position are used synonymously.1

The term “structurally similar” refers to nodes that have similar structural properties,

e.g., the set of nodes might be hubs (star-centers) or bridge-nodes (gatekeepers) that connect

different communities.

2.1.3 Node Embeddings

In 2000s, node embedding was proposed for dimensionality reduction of non-relational data

so that the higher dimensional features are represented in low-dimensional manifolds [BN02,

TDSL00]. Many relevant works are based on the pairwise similarity between node features

and graph spectrum (i.e., eigenvalues of graph adjacency matrix or Laplacian matrix), both

of which are computationally expensive. On the other hand, state-of-the-art approaches take

the graph as input, and learn representations that encode the graph structural information.

Figure 2.1 illustrates a toy graph and its node embeddings.

One approach to encode the graph structure is to embed node proximity in the repre-

sentation [GL16, TQW+15b, PARS14]. Intuitively, a node is more likely to be similar to

its 1-hop neighbors than its 2-hop neighbors, or other distant nodes in the graph. As a

result, nodes that share common neighbors are embedded more closely. Figure 2.1a shows

an example. Node A is incidental to node B so their embeddings — based on proximity

— should be close. Similarly, the embedding of node C should also be close to B, but

since A is 2-hop away from C, the embedding of A is closer to B than C (as shown in
1An equivalent definition of role is in terms of a role assignment function r : V → R that maps nodes to

a set of roles R. The role assignment function r induces a partition C = {C1, . . . , Ck} of V by taking the
inverse-images as sets/classes of nodes that play/have the same role. Further, if ∼ is an equivalence relation
(binary relation on V that is reflexive, symmetric, and transitive), then the set of its equivalence classes is a
partition of V (and conversely). Hence, it is equivalent to think of a role as a set of nodes (node partition),
function (role assignment), or equivalence relation on V since these are different but equivalent mathematical
formulations for the concept of roles.

13

Figure 2.1b). There is another class of embedding approaches that is based on the local

graph structure [RSF17, DZHL18, HSSK18]. These approaches consider the functionality or

sturctural role of a node in terms of its connection to the neighbors. For example, the centers

of two star-like subgraphs are structurally similar to each other because they play the role of

“hubs” that bridges the other nodes. Embedding approaches of this type aim to preserve the

structural similarity between nodes. Figure 2.1c depicts exemplary node embeddings based

on structural similarity. It can be seen that the periphery nodes (A,C,E) are embedded

closer to each other, even though they are more distant in proximity. Proximity-based and

structure-based node embedding approaches are fundamentally different but effective in

different scenarios depending on specific application.

(a) A toy graph with 5 nodes
(b) Proximity-based node

embeddings
(c) Structure-based node

embeddings

Figure 2.1: A toy graph and its 2-D embeddings visualized using TSNE.

Many recent works in node embedding derive node features based on the same mech-

anisms that are used to derive communities (e.g., random walks, feature diffusion), or

roles (e.g., graphlets, feature-based matrix factorization). As a result, the latent feature

vectors or embeddings given as output from an embedding method can be thought of

as either community [HERPF10] or role membership vectors (assuming proper normaliza-

tion) [ABFX08, RGNH13, HGER+12]. Indeed, many works claim to preserve the notion of

communities [CZC+17], roles [RSF17, RAK+18], or even both [GL16]. In this light, recent

embedding methods can be seen as approaches for modeling communities or (feature-based)

roles [RA15b]. We refer the interested readers to our paper [RJK+19] that was accepted at

TKDD 2020 for more details.

14

2.2 Related Work

In this section, we review the literature from two research areas that are relevant to our

work: node embedding and graph summarization. We also qualitatively compare our works

to both embedding and summarization methods in Table 2.2. We provide additional related

works for the specific topic of node embedding on temporal graphs in Chapter V, and the

application for node embedding on entity linkage in Chapter VII.

2.2.1 Node embedding

Node embedding or representation learning has been an active area which aims to preserve

a notion of similarity over the graph in node representations [GF18, RZA18]. For instance,

[PARS14, TQW+15b, GL16, CLX16, DCS17] define node similarity in terms of proximity

(based on the adjacency or positive pointwise mutual information matrix) using random walks

(RW) or deep neural networks (DNN). Another class of approaches captures similar node be-

havioral patterns (roles) or structural similarity [RA15c, ARZ+18, HSSK18, RZA18, JHJK21].

For instance, struc2vec and xNetMF [RSF17, HSSK18] define similarity based on node de-

grees, while DeepGL [RZA18] learns deep inductive relational functions applied to graph

invariants such as degree and triangle counts. [LG14, QDM+18] investigate theoretical

connection between matrix factorization and the skip-gram architecture. Rolx [HGER+12]

extracts structural information from general network datasets and categorizes nodes through

non-negative matrix factorization as ‘main-stream’ or ‘bridge’. To handle heterogeneous

graphs, metapath2vec [DCS17] captures semantic and structural information by perform-

ing RW on predefined metapaths. role2vec [ARZ+18] proposes a framework for inductive

learning by defining attributed RW atop relational operators. There are also works based on

specific characteristics in heterogeneous graphs. For example, [GLT+16] proposes to embed

heterogeneous networks with hyperedges that represent interactions among involving objects

in events. Another work, AspEm represents underlying semantic facets as multiple “aspects”

and selects a subset to embed based on datasetwide statistics. There are also works seeking

to propagate node features through neural networks. For example, the propagation rule of

GCN [KW17] and the mean aggregators used in GraphSAGE [HYL17b].

15

Table 2.2: Qualitative comparison of the thesis works to existing embedding and summariza-
tion methods. Does the method: handle heterogeneous/temporal graphs; yield an output
that is size-independent, but node-specific, and representations that are independent of node
proximity; support inductive learning and scale well (i.e., subquatratic on the network size)?

Input Representations / Output Method

Hetero- Temp- Size Node Proxim.
geneity oral indep. specific indep. Scalable Induc.

Aggregation [BGLL08] 3 7 7 7 7 3 7
Cosum [ZGGS+16] 7 7 7 7 3 7 7
AspEm [SGZ+18] 3 7 7 3 7 3 7
metapath2vec [DCS17] 3 7 7 3 7 3 7
LINE [TQW+15b] 7 7 7 3 7 3 7
n2vec [GL16] 7 7 7 3 7 3 7
struc2vec [RSF17] 7 7 7 3 3 7 7
DNGR [CLX16] 7 7 7 3 7 7 7
GraphSAGE [HYL17b] 3 7 7 3 3 3 3
CTDNE [NLR+18] 7 3 7 3 3 3 7

EAGLE 7 7 3 7 3 3 7
Multi-Lens 3 7 3 3 3 3 3
node2bits 3 3 7 3 7 3 7

In the field of temporal network embedding, most approaches [ZGY+16, His18] ap-

proximate the dynamic network as discrete static snapshots overtime. CTDNE [NLR+18]

explores temporal proximity by learning temporally valid embeddings based on a corpus

of temporal random walks. Another related field is hashing-based embedding, for example,

node2hash [WWGW18] proposes to hash the pairwise node proximity derived from random

walk into low-dimensional hashcode as the embeddings. CCTN [LZS+19] embeds and clusters

nodes in a network that are not only well-connected but also share similar behavioral patterns

(e.g., similar patterns in the degree or other structural properties over time).

2.2.2 Graph Summarization

We give an overview of graph summarization methods, and refer the interested reader to

tutorials [LYL13, KBB17] and a comprehensive survey [LSDK18] for more details. Various

summarization approaches have been proposed depending on specific applications. Most

summarization works fall into 3 categories: (1) aggregation-based which group nodes [NRS08]

or edges [MA16]) into super-nodes/edges based on application-oriented criteria or existing

clustering algorithms; (2) abstraction-based [SMER06, LL09] which remove less informative

nodes or edges; and (3) compression-based [SKZ+15] which aim to minimize the number of

16

bits required to store the input graph.

Aggregation-based methods group nodes/edges into supernodes/superedges based on

application-oriented criteria or existing clustering algorithms. [RGM03] proposes the 2-

level representation for Web graphs to form supernodes/superedges based on the structural

information; [TZHH11] proposes to aggregate weighted graphs by maintaining edge weights

up to a certain number of hops; [NRS08] proposes to aggregate graphs through MDL

along with corrections to bound errors for recovery. [RGSB17, SWD16] leverage aggregated

representations to tackle fast query response while the latter work focuses specifically on

knowledge graphs. In addition to grouping nodes with similar structures, [BC08] proposes

the concept of virtual node to group edges in Web graphs, which supports scalable pattern

mining; [MA16] extends this idea to compresses the neighborhood around high-degree nodes

and proposes novel graph query processing operations over the compressed data to improve

query performance. SNAP/k-SNAP [THP08] proposes aggregating nodes in the graph by

allowing users to specify node attributes and relationships. It also allows users to control

(drill-down, roll-up) the sizes of the summaries. Zhang el al. [ZTP10] improves SNAP/k-

SNAP to address numerical attributes in graphs and introduces a novel interestingness

measure to evaluate the quality of a summary. Note that among existing works, few are

designed for heterogeneous graphs. CoSum [ZGGS+16] aggregates nodes with respect to both

label and structural similarity to aggregate nodes tackle the problem of entity resolution in

heterogeneous graphs. Motif [DS13] is a visualization tool that aggregates common network

structures or subnetworks and highlight the node types through unique shapes to address

heterogeneity. [CLF+09] proposes Summarize-Mine to create randomized summaries from

frequently occurring subgraphs in heterogeneous labeled graphs in an iterative manner. While

patterns are removed in this process, true patterns are unlikely to be missing from all rounds.

Abstraction-based methods remove less-informative nodes or edges based on given abstrac-

tion criteria. OntoVis [SMER06] supports both semantic abstraction by including only nodes

whose types are selected by the users and structural abstraction by removing less-essential

graph components, e.g., one-degree nodes and duplicate paths. It also support importance

filtering based on graph statistics such as node degree. Li et al. [LL09] propose constructing

the egocentric abstraction of social networks through edges. The unique k-step linear combi-

17

nations of relations in the egonet of a node are identified as features, which are adopted as

the summaries based on their frequency or rareness.

Compression-based methods represent the networks in a space-efficient way based on the

semantic and structural information of the graph. Kang et al. propose SlashBurn [LKF14],

a node reordering method that achieves compression-friendly by identifying the “hub” and

“spoke” structures in the graphs; VOG [KKVF15] leverages SlashBurn to extract egonetworks

and other disconnected components and constructs a graph vocabulary (i.e., cliques and

near-cliques, stars, etc.) to label them through MDL as the model selection criterion. Shah et

al. [SKZ+15] extend VOG in temporal graph analysis by identifying the temporal behaviors of

local static structures that collectively minimize the global description length of the dynamic

graph. Moreover, temporal behaviors (e.g., flickering, periodic, one-shot) are introduced to

augment the vocabulary of static graphs.

18

Part I: Node Embedding via Latent Fea-

ture Summarization

19

CHAPTER III

Latent Structural Feature Summarization for Static

Heterogeneous Graphs

This chapter is based on work that appeared at KDD 2019 [JRK+19].

3.1 Introduction

Our first work addresses the storage inefficiency challenge of node embeddings indicated

in Chapter I. Recent advances in representation learning for graphs have led to a variety

of proximity-based and structural embeddings that achieve superior performance in specific

downstream tasks, such as link prediction, node classification, and alignment [GF18, RZA18,

HSSK18]. At the same time though, the learned, K-dimensional node embeddings are dense

(with real values), and pose computational and storage challenges especially for massive

graphs. By following the conventional setting of K = 128 for the dimensionality, a graph of 1

billion nodes requires roughly 1TB for its embeddings. Moreover, this dense representation

often requires significantly more space to store than the original, sparse adjacency matrix of

a graph. For example, for the datasets that we consider in our empirical analysis, the learned

embeddings from existing representation learning techniques require 3 − 48× more space

than the original edge files.

To address these shortcomings, we introduce the problem of latent network summarization.

Informally, the goal is to find a low-dimensional representation in a latent space such that

it is independent of the graph size, i.e., the number of nodes and edges. Among other

tasks, the representation should support on-the-fly computation of specific node embeddings.

20

Figure 3.1: Our proposed approach to Latent Network Summarization called Multi-Lens pro-
duces a summary consisting of relational functions Fr and node-independent matrices S of size
K×C. Thus, while embedding methods output N node embeddings of dimensionality K, latent
summarization methods produce an output that is independent of N and thus is graph-size
independent. Despite not storing the embeddings, Multi-Lens can derive them on the fly.

Latent network summarization and network embedding are complementary learning tasks

with fundamentally different goals and outputs, as shown in Fig. 3.1. In particular, the goal

of network embedding is to derive N node embedding vectors of K dimensions each that

capture node proximity or equivalency. Thus, the output is a N ×K matrix that is dependent

on the size of the graph (number of nodes) [QDM+18, GF18]. This is in contrast to the

goal of latent network summarization, which is to learn a size-independent representation

of the graph. Latent network summarization also differs from traditional summarization

approaches that typically derive supergraphs (e.g., mapping nodes to supernodes) [LSDK18],

which target different applications and are unable to derive node embeddings.

To efficiently solve the latent network summarization problem, we propose Multi-Lens

(Multi-level Latent Network Summarization), an inductive framework that is based on graph

function compositions. In a nutshell, the method begins with a set of arbitrary graph features

(e.g., degree) and iteratively uses generally-defined relational operators over neighborhoods

to derive deeper function compositions that capture graph features at multiple levels (or

distances). Low-rank approximation is then used to derive the best-fit subspace vectors of

network features across levels. Thus, the latent summary given by Multi-Lens comprises

graph functions and latent vectors, both of which are independent of the graph size. Our

main contributions are summarized as follows:

• Novel Problem Formulation. We introduce and formulate the problem of latent

21

network summarization, which is complementary yet fundamentally different from network

embedding.

• Computational Framework. We propose Multi-Lens, which expresses a class of methods

for latent network summarization. Multi-Lens naturally supports inductive learning, on-

the-fly embedding computation for all or a subset of nodes.

• Time- and Space-efficiency. Multi-Lens is scalable with time complexity linear on the

number of edges, and space-efficient with size independent of the graph size. Besides, it is

parallelizable as the node computations are independent of each other.

• Empirical analysis on real datasets. We apply Multi-Lens to event detection and

link prediction over real-world heterogeneous graphs and show that it is 3.5%-34.3% more

accurate than state-of-the-art embedding methods while requiring 80-2152× less output

storage space for datasets with millions of edges.

Next we formally introduce the latent network summarization problem and then describe

our proposed framework.

3.2 Latent Network Summarization

Intuitively, the problem of latent network summarization aims to learn a compressed

representation that captures the main structural information of the network and depends

only on the complexity of the network instead of its size. More formally:

Definition 6 (Latent Network Summarization). Given an arbitrary graph G = (V,E) with

|V | = N nodes and |E| = M edges, the goal of latent network summarization is to map the

graph G to a low-dimensional K × C representation J that summarizes the structure of G,

where K,C � N,M are independent of the graph size. The output latent representations

should be usable in data mining tasks, and sufficient to derive all or a subset of node embeddings

on the fly for learning tasks (e.g., link prediction, classification).

Compared to the network embedding problem, latent network summarization differs in

that it aims to derive a size-independent representation of the graph. This can be achieved

22

Table 3.1: Summary of symbols and notations.

Symbol Definition

A adjacency matrix of G with row i Ai,: and column i A:,i

TV , TE sets of object types and edge types, respectively
Ni,N t

i non-typed / types (1-hop) neighborhood or egonet of node i
`, L index for level & total number of levels (i.e., max order of a rel. fns)
B ={bi} set of initial feature vectors in length N
Fr ={F (1)

r , . . . ,F (L)
r }, ordered set of relational functions across levels

Fb = {fbi}, set of base graph functions (special relational functions)
Φ = {φi}, set of relational operators

F(0) N × |B| base feature matrix derived by the base graph functions Fb
F(`) N ×

(
|B| · |Φ|`

)
generated feature matrix for level `

K(`), K dimensionality of embeddings at level-` and the final dimensionality
H(`) N × |F (`)

r | histogram-based representation of feature matrix F(`)

S(`) low-rank latent graph summary at level `

in the form of supergraphs [LSDK18] (in the original graph space) or aggregated clusters

trivially, but the compressed latent network summary in Definition 6 also needs to be able

to derive the node embeddings, which is not the goal of traditional graph summarization

methods.

In general, based on our definition, a latent network summarization approach should

satisfy the following key properties: (P1) generality to handle arbitrary network with multiple

node types, relationship types, edge weights, directionality, unipartite or k-partite structure,

etc. (P2) high compression rate, (P3) natural support of inductive learning, and (P4) ability

to on-the-fly derive node embeddings used in follow-up tasks.

3.3 Multi-Lens Framework

To efficiently address the problem of latent network summarization introduced in Sec-

tion 3.2, we propose Multi-Lens, which expresses a class of latent network summarization

methods that satisfies all desired properties (P1-P4). The summary J given by Multi-Lens

contains (i) necessary operators for aggregating node-wise structural features automatically

and (ii) subspace vectors on which to derive the embeddings. We give the overview in

Figure 3.2. And in addition to symbols listed in Table 2.1, here we list the main symbols and

notations used particularly in this work in Table 3.1.

At a high level, Multi-Lens leverages generally-defined relational operators to capture

23

structural information from node neighborhoods in arbitrary types of networks. It recursively

applies these operators over node neighborhoods to produce both linear and non-linear

functions that characterize each node at different distances (§ 3.3.2). To efficiently derive the

contextual space vectors, Multi-Lens first generates histogram-based heterogeneous contexts

for nodes (§ 3.3.3), and then obtains the summary via low-dimensional approximation (§ 3.3.4).

Before discussing each step and its rationale, we first present some preliminaries that serve

as building blocks for Multi-Lens.

Figure 3.2: Overview of Multi-Lens. Dashed boxes: intermediate results that do not need to
store; shaded boxes: outputs that need storing. The size of the latent network summaries,
J =

{
F ,S

}
, is independent of N,M .

3.3.1 Preliminaries

Recall that our proposed problem definition (§ 3.2) applies to any arbitrary graph (P1).

As a general class, we refer to heterogeneous (information) networks or typed networks. We

assume that the network is directed and weighted with unweighted and undirected graphs

as special cases. For simplicity, we will refer to a graph as G(V,E). Within heterogeneous

networks, the typed neighborhood or egonet1 Nt of a node is defined as follows:

Definition 7 (Typed neighborhood N t). Given an arbitrary node i in graph G = (V,E),

the typed t neighborhood N t
i is the set of nodes with type t that are reachable by following

directed edges e ∈ E originating from i with 1-hop distance and i itself.
1In this work we use neighborhood and egonet interchangeably.

24

The neighborhood of node i, Ni, is a superset of the typed neighborhood N t
i , and includes

nodes in the neighborhood of i regardless of their types. Higher-order neighborhoods are

defined similarly, but more computationally expensive to explore. For example, the k-hop

neighborhood denotes the set of nodes reachable following directed edges e ∈ E originating

from node i within k-hop distance.

The goal of latent network summarization is to find a size-independent representation that

captures the structure of the network and its underlying nodes in the latent space. Capturing

the structure depends on the semantics of the network (e.g., weighted, directed), and thus

different ways are needed for different input networks types. To generalize to arbitrary

networks, we leverage relational operators and functions [RZA18].

Definition 8 (Relational operator). A relational operator φ(x,R) ∈ Φ is defined as a

basic function (e.g., sum) that operates on a feature vector x associated with a set of related

elements R and returns a single value.

For example, let x be an N × 1 vector and R the neighborhood Ni of node i. For φ being

the sum, φ(x,R) would return the count of neighbors reachable from node i (unweighted out

degree).

Definition 9 (Relational function). A relational function f ∈ F is defined as a

composition of relational operators f =
(
φ1 ◦ · · · ◦ φh−1 ◦ φh

)
(x,R) applied to feature values

in x associated with the set of related nodes R. We say that f is order-h iff the feature vector

x is applied to h relational operators.

Together, relational operators and relational functions comprise the building blocks of

our proposed method, Multi-Lens. Iterative computations over the graph or a subgraph

(e.g., node neighborhood) generalize for inductive/across-network transfer learning tasks.

Moreover, relational functions are general and can be used to derive commonly-used graph

statistics. As an example, the out-degree of a specific node is derived by applying order-1

relational functions on the adjacency matrix over its the egonet, i.e., out-deg(i) =
∑

(Ai:,N)

regardless of object types.

25

3.3.2 Multi-level Structure Extraction

We now start describing our proposed method, Multi-Lens. The first step is to extract

multi-level strcuture around the nodes. To this end, as we show in Figure 3.2, Multi-Lens

first generates a set of simple node-level features to form the base feature matrix F(0) via the

so-called base graph functions Fb. It then composes new functions by iteratively applying a

set of relational operators Φ over the neighborhood to generate new features. Operations in

both Fb and Φ are generally defined to satisfy (P1).

3.3.2.1 Base Graph Functions

As a special relational function, each base graph function fb ∈ Fb consists of relational
operators that perform on an initial N × 1 feature vector b ∈ B. The vector b could be

given as the row/column of the adjacency matrix corresponding to node i, or some other

derived vector related to the node (e.g., its distance or influence to every node in the graph).

Following [RZA18], the simplest case is fb =
∑

, which captures simple base features such as

in/out/total degrees. We denote applying the same base function to the egonets of all the

nodes in graph G as follows:

fb〈b,N〉 = [fb(b,N1), fb(b,N2), . . . , fb(b,NN)]T ,b ∈ B (3.1)

which forms an N × 1 vector. For example, fb =
∑〈Ai:,N〉 enumerates the out-degree of all

nodes in G. By applying fb on each initial feature b, e.g., 1N×1 or row/column of adjacency

matrix A, we obtain the N ×B base matrix F(0):

F(0) = [fb〈b1,N〉, fb〈b2,N〉, . . . , fb〈bB,N〉],b1···B ∈ B (3.2)

which aggregates all structural features of the nodes within N . The specific choice of

initial vectors b is not very important as the composed relational functions (§ 3.3.2.2)

extensively incorporate both linear and nonlinear structural information automatically. We

empirically justify Multi-Lens on the link prediction task over different choices of B to show

26

its insensitivity.

3.3.2.2 Relational Function Compositions

To derive complex & non-linear node features automatically, Multi-Lens iteratively applies

operators φ ∈ Φ (e.g., mean, variance, sum, max, min, l2-distance) to lower-order functions,

resulting in function compositions. ` such compositions of functions over a node’s egonet

Ni captures higher-order structural features associated with the `−hop neighborhoods. For

example, assuming x is the vector consisting of node-wise degrees, the max operator captures

the maximum degree in the neighborhood N of a node. The application of the max operator

to all the nodes forms a new feature vector max〈x,N〉 where each entry records the maximum

degree in the corresponding neighborhood. Fig. 3.3 shows that the maximum degree of node

{2, 3, 4} is aggregated for node 3 in max〈x,N〉 By iteratively applying max to max〈x,N〉
in the same way, the maximum value from broader neighborhood N is aggregated, which is

equivalent to finding the maximum degree in the 2-hop neighborhood. Fig. 3.3b depicts this

process for node 3.

(a) 1- and 2-hop neighborhood of
node 3

(b) max ◦max〈x,N〉 captures the max
degree in 2-hop neighborhood

Figure 3.3: The composition of relational functions incorporates node degrees (column vector
x) in expanded subgraphs.

Formally, at level ` ∈ {1, . . . , L}, a new function is composed as:

f (`) = φ ◦ f (`−1),∀φ ∈ Φ (3.3)

where L < diam(G) or the diameter of G, and f (0) = fb(§ 3.3.2.1). We formally define some

operators φ ∈ Φ in Table 3.2.

Applying f (`) to F(0) generates order-` structural features of the graph as F(`). In practice,

Multi-Lens recursively generates F(`) from F(`−1) by applying a total of |Φ| operators. The
particular order in which relational operators are applied records how a function is generated.

27

Table 3.2: Relational operators used in the experiment.

φ Definition φ Definition

max/min max /mini∈S xi variance 1
|S|
∑

i∈S x2
i − (1

|S|
∑

i∈S xi)
2

sum
∑

i∈S xi l1-distance
∑

j∈S |xi − xj |
mean 1

|S|
∑

i∈S xi l2-distance
∑

j∈S(xi − xj)2

Multi-Lens then collects the composed relational functions per level into Fr as a part of the

latent summary.

In terms of space, Equation (3.3) indicates the dimension of Fr grows exponentially with

|Φ|, i.e., |F (`)
r | = |B||Φ|(`), which is also the number of columns in F(`). However, the max level

L is bounded with the diameter of G, that is L ≤ diam(G)− 1 because functions with orders

higher than that will capture the same repeated structural information. Therefore, the size of

Fr is also bounded with L. Although the number of relational functions grows exponentially,

real-world graphs are extremely dense with small diameters diam(G) ∝ log logN [CH03]. In

our experiments in § 3.4, |Fr| ≈ 1000 for |B| = 3 base functions, |Φ| = 7 operators, and L = 2

levels.

3.3.3 Heterogeneous Context

So far we have discussed how to obtain the base structural feature matrix F(0) and the multi-

level structural feature representations F(`) by recursively employing the relational functions.

Note that directly deriving the structural embeddings based on these representations would

lead to low performance due to skewness in the extracted structural features. Here we discuss

an intermediate transformation of the generated matrices that helps capture rich contextual

patterns in the neighborhoods of each node, and eventually leads to a powerful summary.

3.3.3.1 Handling skewness

For simplicity, we first discuss the case of a homogeneous network G with a single node

and edge type, and undirected edges. To handle the skewness in the higher-order structural

features (§ 3.3.2) and more effectively capture the structural identity of each node within its

context (i.e., non-typed neighborhood), we opt for an intuitive approach: for each node i

and each base/higher-order feature j, we create a histogram hij with c bins for the nodes in

28

Figure 3.4: Example of creating histogram-based matrix representation H(0) with Z = 2 features
in the base feature matrix F(0). A single object / edge type and no edge directionality is
assumed here for simplicity.

its neighborhood Ni. Variants of this approach are used to capture node context in existing

representation learning methods, such as struc2vec [RSF17] and xNetMF [HSSK18]. In our

setting, the structural identity of node i is given as the concatenation of all its feature-specific

histograms.

hi =
[
hi1 hi2 · · · hiZ

]
, (3.4)

where Z = |B| +∑L
`=1 |B| · |Φ|` is the total number of histograms, or the number of base

and higher-order features. Each histogram is in logarithmic scale to better describe the

power-law-like distribution in graph features and has a total of c bins. By stacking all

the nodes’ structural identities vertically, we obtain a rich histogram-based context matrix

H =
[
h1; h2; · · · ; hN

]
as shown in Fig. 3.4.

3.3.3.2 Handling object/edge types and directionality

The histogram-based representation that we described above can be readily extended

to handle any arbitrary network G with multiple object types, edge types and directed

edges (P1). The idea is to capture the structural identity of each node i within its different

contexts:

• N t
i or N τ

i : the neighborhood that contains only nodes of type t ∈ TV or edges of type

τ ∈ TE, and

• N+
i or N−i : the neighborhood with only outgoing or incoming edges for node i.

For example, to handle different object types, we create a context matrix Ht
o by restricting

29

the histograms on neighbors of type t, N t
i . These per-type matrices can be stacked into

a tensor H, with each slice corresponding to a node-level histogram, Ht
o of object type,

t. Alternatively, the tensor can be matricized by frontal slices. By further restricting the

neighborhoods to contain specific edge types and/or directionality in a similar manner, we

can obtain the histogram-based representations Ht
e and Ht

d, respectively.

By imposing all of the restrictions at once, we can also obtain context matrix H that

accounts for all types of heterogeneity.

3.3.4 Latent Summarization

The previous two subsections can be seen as a general framework for automatically

extracting, linear and non-linear, higher-order structural features that constitute the nodes’

contexts at multiple levels `. Unlike embedding methods that generate graph-size dependent

node representations, we seek to derive a compressed latent representation of G (P2) that

supports on-the-fly generation of node embeddings and (inductive) downstream tasks (P3,P4).

Although graph summarization methods [LSDK18] are relevant as they represent an input

graph with a summary or supergraph, it is infeasible to generate latent node representations

due to the incurred information loss. Thus, such methods, which have different end goals, do

not satisfy (P4).

3.3.4.1 Multi-level Summarization

Multi-Lens explores node similarity based on the assumption that similar nodes should

have similar structural context over neighborhoods of different hops. Given the histogram-

based context matrix H(`) that captures the heterogeneity of feature values associated with

the `−order egonets in G (§ 3.3.2.2), Multi-Lens obtains the level-` summarized representation

S(`) via factorization H(`) = Y(`)S(`), where Y(`) is the dense node embedding matrix that

we do not store. Then, the latent summary J consists of the set of relational functions Fr
(§ 3.3.2), and the multi-level summarized representations S = {S(1), . . . ,S(`)}. Though any

30

technique can be used (e.g., NMF), we give the factors based on SVD for illustration:

level-` node embeddings (not stored): Y(`) = U(`)
√

Σ(`) (3.5)

level-` summarized representation: S(`) =
√

Σ(`)V(`)T (3.6)

where Σ(`) are the singular values of H(`), and U(`)T , V(`)T are its left and right singular

vectors, respectively.

Intuitively, S(`) contains the best-fit K(`)-dimensional subspace vectors for node context

H(`) in the neighborhood at order-`. The summary representations across different orders

form the hierarchical summarization of G that contains both local and global structural

information, and the derived embedding matrix Y(`) also preserves node similarity at multiple

levels. There is no need to store any of the intermediate matrices F(`) and H(`), nor the node

embeddings Y(`). The former two matrices can be derived on the fly given the composed

relational functions Fr. Then, the latter can be efficiently estimated using the obtained

sparse H(`) matrix and the stored summarized matrix S(`) through SVD (§ 3.3.6 gives more

details). Moreover, since the elements of the summary S, i.e., the relational functions Fr
and the factorized matrices, are independent of the nodes or edges of the input graph, both

require trivial storage and achieve compression efficiency (P2). We provide the pseudo-code

of Multi-Lens in Algorithm III.1.

We note that the relational functions Fr are a key enabling factor of our summarization

approach. Without them, other embedding methods cannot benefit from our proposed

summarized representations S, nor reconstruct the node context and embeddings.

3.3.4.2 Inductive Summaries (P3)

The higher-order features derived from the set of relational functions Fr are structural,

and thus generalize across graphs [HGER+12, HSSK18, ARZ+18] and are independent of

node IDs. As such, the factorized matrices in S learned on G can be transferred to another

graph G′ to learn the node embeddings Y(`) of a new, previously unseen graph G′ as:

Y′
(`)

= H′
(`)

(S(`))† (3.7)

31

Algorithm III.1 Multi-Lens

Input: (un)directed heterogeneous graph G, a set of relational operators Φ; layer-wise embedding
dimensionality K(`), for K =

∑L
`=1K

(`) dimensions in total; number of bins c for the histogram
representation
Output: Summary J =

{
F ,S

}
1: Fr ← fb . Base graph functions: Eq. (3.1)
2: Initialize F(0) . Base feature matrix Eq. (3.2)
3: for ` = 1,. . . ,L do . multi-level summarization
4: for i = 1,. . . ,|Φ| do . relational operators
5: parallel for j = 1,. . . ,BR`−1 do . Columns in F(l)

6: f = φi ◦ f (`−1)
j . Compose func. in F (`−1)

r

7: F(`) = F(`) ∪ φi〈F(`−1)
:,j ,N〉 . Feature concatenation

8: Derive heterogeneous context H(`) . § 3.3.3
9: S(`) =

√
Σ(`)V(`)T . SVD: H(`) = U(`)Σ(`)V(`)T

10: Fr ← Fr ∪ f , S ← S ∪ S(`)

where S(`) ∈ S is learned on G, † denotes the pseudo-inverse, and H′
(`) is obtained via

applying Fr to G′. The pseudo-inverse, (S(`))† can be computed efficiently through SVD as

long as the rank of S(`) is limited (e.g., empirically setting K(`) ≤ 128) [Bra06].

Equation (3.7) requires the same dimensionality K(`) = K ′(`) and the same number of

bins of histogram context matrices c = c′ at each level `. The embeddings learned inductively

reflect the node-wise structural difference between graphs, G and G′, which can be used

in applications of graph mining and time-evolving analysis. We present an application of

temporal event detection in § 3.4.4.

3.3.4.3 On-the-fly embedding derivation (P4)

Given the summarized matrix S(`) at level `, the embeddings of specific nodes that are

previously seen or unseen can be derived efficiently. Multi-Lens first applies Fr to derive their

heterogeneous context H
(l)
sub based on the graph structure, and then obtains the embeddings

via Eq. (3.7). We concatenate Y(`) given as output at each level to form the final node

embeddings [TQW+15b]. Given that the dimension of embeddings is K(`) at level `, the final

embedding dimension is K =
∑L

`=1K
(`).

32

3.3.5 Generalization

Here we discuss the generalizations of our proposed approach to labeled and attributed

graphs. It is straightforward to see that homogeneous, bipartite, signed, and labeled graphs

are all special cases of heterogeneous graphs with |TV | = |TE| = 1 types, |TV | = 2 and |TE| = 1

types, |TV | = 1 and |TE| = 2 types, and |TV | = #(node labels) and |TE| = #(edge labels)

types, respectively. Therefore, our approach naturally generalizes to all of these graphs.

Other special cases include k-partite and attributed graphs.

Multi-Lens also supports attributed graphs that have multiple attributes per node or edge

(instead of a single label): Given an initial set of attributes organized in an attribute matrix

Fa, we can concatenate Fa with the base attribute matrix and apply our approach as before.

Alternatively, we can transform the graph into a labeled one by applying a labeling function

χ : x → y that maps every node’s attribute vector x to a label y [ARZ+18]. Besides, our

proposed method is easy to parallelize as the relational functions are applied to the subgraphs

of each node independently, and the feature values are computed independently.

3.3.6 Complexity Analysis

3.3.6.1 Computational Complexity.

Multi-Lens is linear to the number of nodes N and edges M . Per level, it derives the

histogram-based context matrix H(`) and performs a rank-K(`) approximation.

Lemma 3.3.1. The computational complexity of Multi-Lens is:

O((c|Fr||TV ||TE|+K2)N +M)

Proof. The computational complexity of Multi-Lens includes deriving (a) distribution-based

matrix representation H and (b) its low-rank approximation.

The computational unit of Multi-Lens is the relational operation performed over the

egonet of a specific node. Searching the neighbors for all node i ∈ V has complexity O(N+M)

through BFS. The complexity of step (a) is linear to |Fr|, as indicated in § 3.3.3, this number

is |B||Φ|` · 2|TV ||TE|c.

33

Based on the sparsity of H, Multi-Lens performs SVD efficiently through fast Monte-Carlo

Algorithm by extracting the most significant K singular values [FKV04] with computational

complexity O(K2N). Therefore step (b) can be accomplished in O((K(`))2N) by extracting

the most significant K(`) singular values at level `. Furthermore, deriving all K singular values

has O(K2N) complexity as
∑L

`=1(K
(`))2 ≤ (

∑L
`=1K

(`))2 = K2. The overall computational

complexity is thus O(N |Fr||TE||TV |c + K2N + M). Note that both |Φ| and L are small

constants in our proposed method (e.g., |Φ| = 7 and L ≤ 2). Multi-Lens scales linearly with

the number of nodes and edges (N +M) in G.

As indicated in § 3.3.2, the number of features in H(`) across L layers is equivalent to the

number of composed relational functions |Fr|. Since |Fr| is bounded with L and L < diam(G),

the term (c|Fr||TV ||TE|+K2) forms a constant related to graph heterogeneity and structure.

3.3.6.2 Space Complexity.

The runtime and output compression space complexity of Multi-Lens is given in Lemma 3.3.2.

In the runtime at level `, Multi-Lens leverages F(`−1) to derive F(`) and H(`), which comprise

two terms in the runtime space complexity.

Lemma 3.3.2. The Multi-Lens space complexity during runtime is O((c|Fr||TV ||TE| +

|Fr|)N). The space needed for the output of Multi-Lens is O(cK|Fr||TV ||TE|+ |Fr|).

Proof. In the runtime at level `, Multi-Lens stores F(`−1) to dervie F(`) and H(`), which take

O(N |Fr|) and O(c|Fr||TV ||TE|N) space, respectively. SVD can be performed with p � N

sampled rows. For the output, storing the set of ordered compositions of relational functions

in the summary requires space complexity O(|Fr|). For the set of matrices S, we store S(`)

across all L levels. As shown in the time complexity analysis, the number of binned features

(columns) in H over all levels is 2|Fr||TV ||TE|c, which includes incorporating |TV | object types
with both in-/out- directionality and all edge types. The size of the output summarization

matrices is thus O(K|Fr||TV ||TE|c), which is related to the graph heterogeneity and structure

and independent of the network size N,M .

The output of Multi-Lens that needs to be stored (i.e., set of relational functions Fr and
summary matrices in S) is independent of N,M . Compared with output embeddings with

34

complexity O(NK) given by existing methods, Multi-Lens satisfies the crucial property we

desire (P2) from latent summarization (Def. 6).

3.4 Experiments

In our evaluation we aim to answer four research questions:

Q1 How much space do the Multi-Lens summaries save (P2)?

Q2 How does Multi-Lens perform in machine learning tasks, such as link prediction in

heterogeneous graphs (P1)?

Q3 How well does it perform in inductive tasks (P3)?

Q4 Does Multi-Lens scale well with the network size?

We have discussed on-the-fly embedding derivation (P4) in § 3.3.4.3.

3.4.1 Experimental Setup

3.4.1.1 Data

In accordance with (P1), we use a variety of real-world heterogeneous network data from

Network Repository [RA15a]. We present their statistics in Table 3.3.

• Facebook [GL16] is a homogeneous network that represents friendship relation between

users.

• Yahoo! Messenger Logs [RZA18] is a heterogeneous network of Yahoo! messenger

communication patterns, where edges indicate message exchanges. The users are

associated with the locations from which they have sent messages.

• DBpedia2 is an unweighted, heterogeneous subgraph from DBpedia project consisting

of 4 types of entities and 3 types of relations: user-occupation, user-work ID, work

ID-genre.
2http://networkrepository.com/

35

http://networkrepository.com/

• Digg2 is a heterogeneous network that records the voting behaviors of users to stories

they like. Node types include users and stories. Each edge represents one vote or a

friendship.

• Bibsonomy2 is a k-partite network that represents the behaviors of users assigning

tags to publications.

Table 3.3: Statistics for the heterogeneous networks that we use in our experiments.

Data #Nodes #Edges #Node Types Graph Type
facebook 4 039 88 234 1 unweighted
yahoo-msg 100 058 1 057 050 2 weighted
dbpedia 495 936 921 710 4 unweighted
digg 283 183 4 742 055 2 unweighted
bibsonomy 977 914 3 754 828 3 weighted

3.4.1.2 Baselines

We compare Multi-Lens with baselines commonly used in graph summarization, ma-

trix factorization and representation learning over networks, namely, they are: (1) Node

aggregation or NA for short [ZGGS+16, BGLL08], (2) Spectral embedding or SE [TL11],

(3) LINE [TQW+15b], (4) DeepWalk or DW [PARS14], (5) Node2vec or n2vec [GL16],

(6) struc2vec or s2vec [RSF17], (7) DNGR [CLX16], (8) GraRep or GR [CLX15a], (9) Meta-

path2vec or m2vec [DCS17], and (10) AspEm [SGZ+18], (11) Graph2Gauss or G2G [BG17].

To run baselines that do not explicitly support heterogeneous graphs, we align nodes of the

input graph according to their object types and re-order the IDs to form the homogeneous

representation. In node aggregation, CoSum [ZGGS+16] ran out of memory due to the

computation of pairwise node similarity. We use Louvain [BGLL08] as an alternative that

scales to large graphs and forms the basis of many node aggregation methods.

3.4.1.3 Configuration

We evaluate Multi-Lens with L = 1 and L = 2 to capture subgraph structural features

in 1-hop and 2-hop neighborhoods, respectively, against the optimal performance achieved

36

by the baselines. We derive in-/out- and total degrees to construct the N × 3 base feature

matrix F(0). Totally, we generate ≈ 1000 composed functions, each of which corresponds to a

column vector in F. For fairness, we do not employ parallelization and terminate processes

exceeding 1 day. The output dimensions of all node representations are set to be K = 128.

Additionally, we run all experiments on Mac OS platform with 2.5GHz Intel Core i7 and

16GB memory.

We configure the baselines as follows: we use 2nd-LINE to incorporate 2-order proximity

in the graph; we run node2vec with grid searching over p, q ∈ {0.25, 0.50, 1, 2, 4} as mentioned

in [GL16] and report the best. For GraRep, we set k = 2 to incorporate 2-step relational

information. For DNGR, we follow the paper to set the random surfing probability α =

0.98 and use a 3-layer neural network model where the hidden layer has 1024 nodes. For

Metapath2vec, we retain the same settings (number of walks = 1000, walk length = 100)

to generate walk paths and adopt a similar the meta-path “Type 1-Type 2-Type 1” as the

“A-P-A” schema as suggested in the paper. For Multi-Lens, although arbitrary relational

functions can be used, we use order-1 fb =
∑

as the base graph function for simplicity in our

experiments. To begin with, we derive in-/out- and total degrees to construct the N × 3 base

feature matrix F(0) denoted as
[
fb〈b1,N〉, fb〈b2,N〉, fb〈b3,N〉

]
where b1 = Ai:, b2 = A:i,

and b3 = (A + AT)i:, for i ∈ V . We set L = 2 to construct order-2 relational functions to

equivalently incorporate 2-order proximity as LINE does, but we do not limit other methods

to incorporate higher order proximity. All other settings are kept default. In table 3.2, we

list all relational operators used in the experiment.

3.4.2 Compression rate of Multi-Lens

The most important question for our latent summarization method (Q1) is about how

well it compresses large scale heterogeneous data (P2). To show Multi-Lens’s benefits over

existing embedding methods, we measure the storage space for the generated embeddings

by the baselines that ran successfully. In Table 3.4 we report the space required by the

Multi-Lens summaries in MB, and the space that the outputs of our baselines require

relative to the corresponding Multi-Lens summary. We observe that the latent summaries

generated by Multi-Lens take up very little space, well under 1MB each. The embeddings of

37

the representation learning baselines take up 80− 2152× more space than the Multi-Lens

summaries on the larger datasets. On Facebook, which is a small dataset with 4K nodes,

the summarization benefit is limited; the baseline methods need about 3− 12× more space.

In addition, the node-aggregation approach takes up to 12× storage space compared to our

latent summaries, since it generates an N × 1 vector that depends on graph size to map each

node to a supernode. This further demonstrates the advantage of our graph-size independent

latent summarization.

Table 3.4: Output storage space required for embedding methods relative to the Multi-Lens
summaries (given in MB). Multi-Lens requires 3 − 2152× less output storage space than em-
bedding methods.

Data SE LINE n2vec DW m2vec AspEm G2G ML
(MB)

facebook 8.13x 8.48x 12.79x 12.84x 3.82x 8.50x 9.17x 0.58
yahoo 187.1x 180.0x 242.2x 231.0x 79.8x 197.4x 195.8x 0.62
dbpedia 710.0x 714.2x 996.4x 996.2x - 749.2x 743.6x 0.81

digg 608.2x 612.8x 848.9x 830.3x 259.9x 641.7x 635.2x 0.54

bibson. 1512.1x 1523.0x 2152.5x 2152.5x - 1595.8x - 0.75

3.4.3 Link Prediction in Heterogeneous Graphs

For Q2, we investigate the performance of Multi-Lens in link prediction task over het-

erogeneous graphs (P1). We use logistic regression with regularization strength = 1.0 and

stopping criteria= 10−4. An edge eij is represented by the concatenating the embeddings of

its source and destination: emb(eij) = [emb(i), emb(j)] as used in [RZA18]. For each dataset

G(V,E), we create the subgraph G′(V,E ′) by keeping all the nodes but randomly removing

∼ 40% edges. We run all methods on G′ to get node embeddings and randomly select 10%|E|
edges as the training data. Out of the removed edges, 25% (10%|E|) are used as missing

links for testing. We also randomly create the same amount of “fake edges” for both training

and testing. Table 3.5 illustrates the prediction performance measured with AUC, ACC, and

F1 scores.

We observe that Multi-Lens outperforms the baselines measured by every evaluation metric.

Multi-Lens outperforms embedding baselines by 3.46% ∼ 34.34% in AUC and 3.71% ∼ 31.33%

38

Table 3.5: Link prediction: node embeddings derived by Multi-Lens (ML) outperforms all
baselines measured by every evaluation metric. Specifically, Multi-Lens outperforms embed-
ding baselines by 3.46% ∼ 34.34% in AUC and 3.71% ∼ 31.33% in F1 on average. It outperforms
even more over the aggregation-based methods. The asterisk ∗ denotes statistically significant
improvement over the best baseline at p < 0.01 in a two-sided t-test. OOT = Out Of Time (12
hours), OOM = Out Of Memory (16GB).

Data Metric NA SE LINE DW n2vec GR s2vec DNGR m2vec As-
pEm G2G ML(L1) ML(L2)

facebook
AUC 0.6213 0.6717 0.7948 0.7396 0.7428 0.8157 0.8155 0.7894 0.7495 0.5886 0.7968 0.8703 0.8709∗

ACC 0.5545 0.5995 0.7210 0.6460 0.6544 0.7368 0.7388 0.7062 0.7051 0.5628 0.7274 0.7920∗ 0.7904
F1 0.5544 0.5716 0.7210 0.6296 0.6478 0.7367 0.7387 0.7060 0.7041 0.5628 0.7273 0.7920∗ 0.7905

yahoo
AUC 0.7189 0.5375 0.6745 0.7715 0.7830 0.7535

OOT OOM
0.6708 0.5587 0.6988 0.8443 0.8446∗

ACC 0.2811 0.5224 0.6269 0.6927 0.7036 0.6825 0.6164 0.5379 0.6564 0.7587∗ 0.7587∗

F1 0.2343 0.5221 0.6265 0.6897 0.7016 0.6821 0.6145 0.5377 0.6562 0.7577∗ 0.7577∗

dbpedia
AUC 0.6002 0.5211 0.9632 0.8739 0.8774

OOM OOT OOM OOT
0.6364 0.7384 0.9820∗ 0.9809

ACC 0.3998 0.5399 0.9111 0.8436 0.8436 0.5869 0.6625 0.9186 0.9151
F1 0.2968 0.4539 0.9110 0.8402 0.8402 0.5860 0.6613 0.9186 0.9150

digg
AUC 0.7199 0.6625 0.9405 0.9664 0.9681

OOM OOT OOM
0.9552 0.5644 0.8978 0.9894∗ 0.9893

ACC 0.2801 0.6512 0.8709 0.9023 0.9049 0.8891 0.5459 0.8492 0.9596∗ 0.9590
F1 0.2660 0.6223 0.8709 0.9019 0.9046 0.8890 0.5459 0.8492 0.9595∗ 0.9590

bibson
AUC 0.7836 0.6694 0.9750 0.6172 0.6173

OOM OOT OOM OOT
0.6127

OOM
0.9909∗ 0.9909

ACC 0.2164 0.6532 0.9350 0.5814 0.5816 0.5790 0.9485∗ 0.9466
F1 0.2070 0.6064 0.9349 0.5781 0.5782 0.5772 0.9485∗ 0.9466

in F1 score. For runnable baselines designed for node embeddings in homogeneous graphs

(baseline 3 - 8), the experimental result is expected as Multi-Lens incorporates heterogeneous

contexts within 2-neighborhood in the node representation. It is worth noting that Multi-Lens

outperforms Metapath2vec and AspEm, both of which are designed for heterogeneous graphs.

One reason behind is the inappropriate meta-schema specified, as Metapath2vec and AspEm

require predefined meta-path / aspect(s) in the embedding. On the contrary, Multi-Lens does

not require extra input and captures graph heterogeneity automatically. We also observe the

time and runtime space efficiency of Multi-Lens when comparing with neural-network based

methods (DNGR, G2G), GraRep and struc2vec on large graphs. Although the use of relational

operators is similar to information propagation in neural-networks, Multi-Lens requires less

computational resource with promising results. Moreover, the Multi-Lens summaries for both

L = 1 and L = 2 levels achieve promising results, but generally we observe that there is a

slight drop in accuracy for higher levels. This indicates that node context at higher levels

may incorporate noisy, less-relevant higher-order structural features (§ 3.3.2.2).

3.4.4 Inductive Anomaly Detection

To answer Q3 about inductive learning, we first perform anomalous subgraph detection

on both synthetic and real-world graphs. We also showcase the application of Multi-Lens

39

summaries on real-world event detection, in an inductive setting (P3).

3.4.4.1 Anomalous Subgraph Detection

Following the literature [MBWB15], we first generate two “background” graphs, G1 and

G2. We then induce an anomalous subgraph into G2 by randomly selecting n nodes and

adding edges to form an anomalous ER subgraph with p and n shown in Table 3.6. We

leverage the summary learned from G1 to learn node embeddings in G2, we identify the top-n

nodes with the highest change in euclidean distance as anomalies, and report the precision in

Table 3.6. In the synthetic setting, we generate two Erdős-Rényi (ER) graphs, Gsyn
1 and Gsyn

2 ,

with 104 nodes and average degree 10 (pback = 10−3). In the real-graph setting, we construct

Greal
1 and Greal

2 using two consecutive daily graphs in the bibsonomy dataset.

Real Graph Synthetic Graph
p \ n 100 200 300 400 500 50 75 100

0.1 0.200 0.780 0.950 0.973 0.980 0.06 0.3333 0.81
0.3 0.870 0.960 0.990 0.995 0.996 1 1 1
0.5 0.920 0.990 0.993 1 1 1 1 1
0.7 0.940 0.990 1 1 1 1 1 1
0.9 0.980 1 1 1 1 1 1 1

Table 3.6: Anomalous Erdős-Rényi (ER) subgraphs (with n nodes and probability p) detection
precision on both synthetic and real-world graphs.

In the synthetic scenario, we observe that Multi-Lens gives promising results by successfully

detecting nodes with the most deviating embedding values, except when the size of injection

is small. In the case of very sparse ER injections (p = 0.1), the anomalies are not detectable

over the natural structural deviation between Gsyn
1 and Gsyn

2 . However, denser injections

(p ≥ 0.3) affect more significantly the background graph structure, which in turn leads to

notable change in the Multi-Lens embeddings for the affected subset of nodes. For real-world

graphs, we also observe that Multi-Lens successfully detects anomalous patterns when the

injection is relatively dense, even when the background graphs have complex structural

patterns. This demonstrates that Multi-Lens can effectively detect global changes in graph

structures.

40

(a) Twitter: Consecutive
embeddings change in Twitter
during 05/12/2014–07/31/2014.

(b) Enron: Consecutive
embeddings change in weekdays
during 01/01/2001–5/01/2002.

(c) Runtime (in sec) for
Multi-Lens vs. node2vec.

Figure 3.5: (a)-(b) Major event detection in real world datasets; (c) Runtime reported on ER
graphs with davg = 10. Multi-Lens scales similarly to node2vec with less memory requirement
while node2vec runs out of memory on the graph with 107 nodes.

3.4.4.2 Graph-based Event Detection

We further apply Multi-Lens to real-world graphs to detect events that appear unusual

or anomalous with respect to the global temporal behavior of the complex network. The

datasets we used are the Twitter3 and Enron4 graphs. Twitter has totally 308 499 nodes

and 2 601 834 edges lasting from 05/12/2014 to 07/31/2014, and Enron has totally 80848

nodes and 2 233 042 edges lasting from 01/01/2001 to 05/01/2002. Similar to the synthetic

scenario, we split the temporal graph into consecutive daily subgraphs and adopt the summary

learned from Gt−1 to get node embeddings of Gt. Intuitively, large distances between node

embeddings of consecutive daily graphs indicate abrupt changes of graph structures, which

may signal events.

Fig. 3.5a shows the change of Frobenius norm between keyword / hashtag embeddings in

consecutive instances of the daily Twitter co-mentioning activity. The two marked days are

3σ (stdev) units away from the median value [KVF13], which correspond to serious events:

(1) the Gaza-Israel conflict and (2) Ebola Virus Outbreak. Compared with other events in the

same time period, the detected ones are the most impactful in terms of the number of people

affected, and the attraction they drew as they are related to terrorism or domestic security.

Similarly for Enron, we detect several events based on the change of employee embeddings

in the Enron corpus from the daily message-exchange behavior. We highlight these events,

which correspond to notable ones in the company’s history, in Fig. 3.5b. Specifically, the
3http://odds.cs.stonybrook.edu/twittersecurity-dataset/
4http://odds.cs.stonybrook.edu/enroninc-dataset/

41

http://odds.cs.stonybrook.edu/twittersecurity-dataset/
http://odds.cs.stonybrook.edu/enroninc-dataset/

events detected include: (1) The quarterly conference call where Jeffrey Skilling, Enron’s

CEO, reports "outstanding" status of the company; (2) The infamous quarterly conference

call; (3) FERC institutes price caps across the western United States; (4) The California

energy crisis ends; (5) Skilling announces desire to resign to Kenneth Lay, founder of Enron;

(6) Baxter, former Enron vice chairman, commits suicide, and (7) Enron executives Andrew

Fastow and Michael Kopper invoke the Fifth Amendment before Congress.

3.4.5 Scalability of Multi-Lens

Finally, Q4 concerns the scalability of our approach. To that end, we generate Erdős-Rényi

graphs with average degree davg = 10, while varying the number of nodes from 102 to 107.

For reference, we compare it against one of the fastest and most scalable baselines, node2vec.

As shown in Fig. 3.5c, node2vec runs out of memory on the graph with 107 nodes, whereas

Multi-Lens scales almost as well as node2vec and to bigger graphs, while also using less space.

3.5 Conclusion

This work introduced the problem of latent network summarization and described a general

computational framework, Multi-Lens to learn such space-efficient latent node summaries

of the graph that are completely independent of the size of the network. The output (size)

of latent network summarization depends only on the complexity and heterogeneity of the

network, and captures its key structural behavior. Compared to embedding methods, the

latent summaries generated by our proposed method require 80-2152× less output storage

space for graphs with millions of edges, while achieving significant improvement in AUC and

F1 score for the link prediction task. Overall, the experiments demonstrated the effectiveness

of Multi-Lens for link prediction, anomaly and event detection, as well as its scalability and

space efficiency.

42

CHAPTER IV

Latent Temporal Proximity Summarization for Temporal

Graphs

This chapter is based on work that appeared at PKDD 2019 [JHRK19].

4.1 Introduction

In this chapter, we extend the idea of summarizing latent graph structural features to

handle the real-world temporal graphs. In most real-world graphs, multiple types of entities

interact with each other in a sequential manner, and the interactions evolve over time, thus

it is important to model both the graph heterogeneity and temporal proximity. To overcome

the challenge of expensive pairwise comparisons (Chapter I) incurred by the real numbers

in node embedding vectors, we introduce a hashing-based summarization technique that

generates binary node embeddings, which guarantee at least 32× less storage requirement

than real numbers given by conventional methods. This work is motivated by a practical

machine learning problem encountered in industry, user stitching, which models the user

temporal behaviors in the temporal graphs.

Personalization and recommendations increase user satisfaction by providing relevant

experiences and handling the online information overload in news, web search, entertainment,

and more. Accurately modeling user behavior and preferences over time are at the core of

personalization. However, tracking user activity online is challenging as users interact with

tens of internet-enabled devices from different locations daily, leading to fragmented user

43

profiles. Without unified profiles, the observed user data are sparse, non-representative of

the population, and insufficient for accurate predictions that drive business success.

The problem of identity or user stitching aims to identify and group together logged-in

and anonymous sessions that correspond to the same user despite taking place across different

channels, platforms, devices and browsers [SRSCS15]. This problem is a form of entity or

identity resolution [GM13, BG07], also known as entity linking, record linkage, and duplicate

detection [Chr12, KTR12, BG07]. Unlike entity resolution where textual information per

user (e.g., name, address) is available, identity stitching relies solely on user interactions

with online content and web metadata. Although cookies can help stitch several different

sessions of the same user, many users have multiple cookies (e.g., a cookie for each device or

web browser) [DGZ+12], and most cookies expire after a short time, and therefore cannot

help to stitch users over time. Similarly, IP addresses change across locations resulting in

fragmentation or even erroneous stitching between users who have the same IP address at

different times (e.g., airports). Meanwhile, fingerprinting approaches [Eck10] capture user

similarity based on device or browser configurations, not on behavioral patterns that remain

consistent across devices or browsers. On the other hand, exhaustive solutions for entity

resolution require quadratic number of comparisons between all pairs of entities, which is

computationally intractable for large-scale web services. This can be partially handled via

the heuristic of blocking [PSGP16], which groups similar entity descriptions into blocks, and

only compares entities within the same block.

To overcome these challenges and better tailor to the user stitching setup, our solution is

based on the idea that the same user accesses similar content across platforms and has similar

behavior over time. We model the user interactions with different content and platforms over

time in a dynamic heterogeneous network, where user stitching maps to the identification

of nodes that correspond to the same real-world entity. Motivated by the success of node

representation learning, we aim to find embeddings of time-evolving ‘user profiles’ over this

rich network of interactions. For large-scale graphs, however, the customary dense node

representations for each node can often impose a formidable memory requirement, on par

with that of the original (sparse) adjacency matrices [JRK+19]. Thus, to efficiently find

sparse binary representations and link entities based on similar activity while avoiding the

44

pairwise comparison of all user profiles, we solve the following problem:

Problem 1 (Temporal, Hash-based Node Embeddings). Given a graph G(V,E), the goal of

hash-based network embedding is to learn a function χ : V → {0, 1}d such that the derived

binary d-dimensional embeddings (1) preserve similarities in interactions in G, (2) are

space-efficient, and (3) accurately capture temporal information and the heterogeneity of the

underlying network.

Figure 4.1: node2bits overview. node2bits encodes the temporal, heterogeneous information
of each node into binary hashcodes for efficient user stitching.

We introduce a general framework called node2bits that captures temporally-valid inter-

actions between nodes in a network, and constructs the contexts based on topological features

and (optional) side information of entities involved in the interaction. These feature-based

contexts are then turned into histograms that incorporate node type information at different

temporal distances, and are mapped to binary hashcodes through SimHash [Cha02]. Thanks

to locality sensitive hashing [IM98], the hashcodes, which are time-, attribute- and structure-

aware, preserve the similarities in temporal interaction patterns in the network, and achieve

both space and computational efficiency for similarity search. Given these sparse, hash-based

embeddings of all entities, we then cast user stitching as a supervised binary classification

task or a hashing-based unsupervised task. As an example, in Fig. 4.1, devices B and C are

associated with identical IPs and similar online sales websites visited afterwards, thus they

are encoded similarly and could correspond to the same user.

Our contributions are:

• Embedding-based Formulation: Going beyond traditional blocking techniques, we

formulate the problem of user stitching as the problem of finding temporal, hash-based

45

embeddings in heterogeneous networks such that they maintain similarities between

user interactions over time.

• Space-efficient Embeddings: We propose node2bits, a practical, intuitive, and

fast framework that generates compact, binary embeddings suitable for user stitching.

Our method combines random walk-based sampling of contexts, their feature-based

histogram representations, and locality sensitive hashing to preserve the heterogeneous

equivalency of contexts over time.

• Extensive Empirical Analysis: Our experiments on real-world networks show that

node2bits outputs a space-efficient binary representation which uses between 63× and

339× less space than the baselines while achieving comparable or better performance

in user stitching tasks. Moreover, node2bits is scalable for large real-world temporal

and heterogeneous networks.

For reproducibility, the code is at https://github.com/GemsLab/node2bits.

4.2 Related Work

Entity Resolution (the general problem under which user stitching falls) has been widely

studied and applied in different domains such as databases and information retrieval [DN09,

GM13]. Traditional methods that are based on distances can be broadly categorized into

(1) pairwise-ER [CR02], which independently decide which pairs are same entity based on a

distance threshold, and (2) clustering [DGZ+12], which links nodes in the same cluster. How-

ever, these methods are computationally expensive and do not scale to large datasets. Other

techniques range from supervised classification [SRSCS15] to probabilistic soft logic [KKP+17]

or fingerprinting [Eck10] using side information (e.g., user-agent strings, other web browser

features, geo-location). These methods tend to be problem- or even data-specific. On the

contrary, our method is general by modeling the data with a heterogeneous, dynamic network

that uses both node features (optional) and graph structure.

Locality sensitivity hashing (LSH) was first introduced as a randomized hashing frame-

work for efficient approximate nearest neighbor search in high dimensional space [IM98]. It

46

https://github.com/GemsLab/node2bits

Table 4.1: Summary of major symbols and their definitions.

Symbol Definition

F N × |F| feature matrix including node attributes and derived features
fij , f(j) (i, j)th element of F and index of its jth feature, resp.

W set of random walks
(wL)L∈N,wL[u] sequence of nodes in a random walk of length L, and the index of node u,

resp.
L the maximum length of a random walk

∆t ‘temporal distance’ in W based on temporally ordered edge transitions
C∆t
u , C∆t

u |f context of node u at distance ∆t, and feature-based context, resp.
gi : C → {0, 1} ith LSH function that hashes a node context into a binary value

K∆t, K embedding dimension at distance ∆t, and output dimension K =∑MAX
∆t=1 K

∆t

h(S),h(S|·) unconditional and conditional b-bin histogram of values in enclosed set S,
resp.

Z N ×K output binary embeddings or hashcodes

specifies a family of hash functions, H, that maps similar items to the same bucket identified

through hash codes with higher probability than dissimilar items [RLU14]. LSH families for

different distances have been widely studied, such as SimHash for cosine distance [Cha02],

min-hash for Jaccard similarity [BGMZ97], and more. In our work, we leverage LSH to

construct similarity-preserving and space-efficient node representations for user stitching.

4.3 Preliminaries and Definitions

Before we introduce node2bits, we discuss two key concepts that our method is based on:

our dynamic heterogeneous network model, and temporal random walks. We give the main

symbols and their definitions used in this chapter in Table 4.1.

4.3.1 Dynamic Heterogeneous Network Model

As we mentioned above, we model the user interactions with content, websites, devices

etc. as a heterogeneous network, which is formally defined as:

Definition 10 (Heterogeneous Nework). A heterogeneous network G = (V,E, ψ, ξ) is

comprised of (i) a nodeset V and edgeset E, (ii) a mapping ψ : V → TV of nodes to their

types, and (iii) a mapping ξ : E → TE to edge types.

Many graph types are special cases of heterogeneous networks: (1) homogeneous graphs

have |TV | = |TE| = 1 type; (2) k-partite graphs consist of |TV | = k and |TE| = k − 1 types;

47

(3) signed networks have |TV | = 1 and |TE| = 2 types; and (4) labeled graphs have a single

label per node/edge.

Most real networks capture evolving processes (e.g., communication, browsing activity)

and thus change over time. Instead of approximating a dynamic network as a sequence of

lossy discrete static snapshots G1, . . . , GT , we model the temporal interactions in a lossless

fashion as a continuous-time dynamic network [NLR+18].

Definition 11 (Continuous-Time Dynamic Network). A continuous-time dynamic,

heterogeneous network G = (V,Eτ , ψ, ξ, τ) is a heterogeneous network with Eτ temporal edges

between vertices V , where τ : E → R+ is a function that maps each edge to a corresponding

timestamp.

4.3.2 Temporal Random Walks

A walk on a graph is a sequence of nodes where each pair of successive nodes are connected

by an edge. Popular network embedding methods generate walks using randomized procedures

[PARS14, GL16] to construct a corpus of node IDs or node context. In continuous-time

dynamic networks, a temporally valid walk is defined as a sequence of nodes connected

by edges with non-decreasing timestamps (e.g., representing the order that user-content

interactions occurred) and were first proposed and used for embeddings in [NLR+18].

Definition 12 (Temporal Walk). A temporal walk of length L from v1 to vL in graph G =

(V,E, ψ, ξ) is a sequence of vertices 〈v1, v2, · · · , vL〉 such that 〈vi, vi+1〉 ∈ Eτ for 1 ≤ i < L,

and the timestamps are in valid temporal order: τ(vi, vi+1) ≤ τ(vi+1, vi+2) for 1 ≤ i < (L− 1).

4.4 node2bits: Hash-based Emdedding Framework

Motivated by the task of user stitching, we aim to develop node2bits to compactly describe

each node/entity in the context of realistic interactions (Problem 1). Accordingly, node2bits

is required to: (R1) support heterogeneous networks where the nodes and edges can be of any

arbitrary type (e.g., a user, web page, IP, tag, spatial location); (R2) preserve the temporal

validity of the events and interactions in the data; (R3) scale in runtime to large networks

48

Figure 4.2: node2bits workflow. Given a graph and its attribute matrix (optional), node2bits
(1) samples temporal random walks to obtain sequences that respect time, derives contexts at
different temporal distances (temporal contexts of a and b are derived from the walk {b, a, b, c},
as well as the feature matrix F; (2) creates temporal contexts based on multi-dimensional
features in F; and (3) aggregates them into feature-based histograms to obtain sparse, binary,
similarity-preserving embeddings via SimHash.

with millions of nodes/edges; and (R4) scale in memory requirements with space-efficient

yet powerful binary embeddings that capture ID-independent similarities. Next we detail

the three main steps of node2bits: (§ 4.4.1) Sampling temporal random walks and defining

temporal contexts; (§ 4.4.2) Constructing temporal contexts based on multi-dimensional

features; (§ 4.4.3) Aggregating and hashing contexts into sparse embeddings. We give the

overview of node2bits in Figure 4.2 and Algorithm IV.1.

4.4.1 Temporal Random Walk Sampling

The first step of node2bits is to capture interactions in a node’s context, which is important

for the user stitching task: instead of simple interactions corresponding to pairwise edges, it

samples more complex interaction sequences via random walks. But unlike many existing

representation learning approaches [PARS14, GL16], our method samples realistic interactions

in the order that they happen via L-step temporal random walks (Definition 12 [NLR+18]),

thus satisfying requirement R2.

node2bits defines the temporal context C∆t
u of node u at temporal distance ∆t as the

collection of entities that are at ∆t-hops away from node u in the sampled random walks.

Formally:

C∆t
u = {v : |wL[v]−wL[u]| = ∆t, ∀wL ∈ W}, (4.1)

49

where wL[·] is the index of the corresponding node in the random walk (wL)L∈N. For example,

in Figure 4.2 (Step 1) the context of node a at temporal distance 2 is C∆t=2
a = {c} (highlighted

in red). Depending on the temporal context that we want to capture, ∆t can vary up to a

MAX distance. Intuitively, small values of temporal distance capture more direct interactions

and similarities between entities. In static graphs, ∆t simply corresponds to the distance

between nodes in the sampled sequences, without capturing any temporal information.

Temporal locality. The context that is defined above does not explicitly incorporate the

time elapsed between consecutively sampled interactions. However, when modeling temporal

user interactions, it is important to distinguish between short-term and long-term transitions.

Inspired by [NLR+18], node2bits accounts for the closeness or locality between consecutive

contexts (i.e., C∆t
u and C∆t+1

u) through different biased temporal walk policies. For example,

in the short-term policy, the transition probability from node u to v is given as the softmax

function:

P [v|u] =
exp (−τ(u, v)/d)∑

i∈Γτ (u) exp (−τ(u, i)/d)
(4.2)

where τ() maps an edge to its timestamp, d = maxe∈Eτ τ(e) − mine∈Eτ τ(e) is the total

duration of all timestamps, and Γτ (u) is the set of temporal neighbors reached from node u

through temporally valid edges. Similarly, in the long-term policy, the transition probability

from node u to v is given as in Equation (4.2) but with positive signs in the numerator and

denominator.

4.4.2 Temporal Context based on Multi-dimensional Features

The context in Equation (4.1) depends on the node identities (IDs). However, in a

multi-platform environment, a single entity may have multiple node IDs, thus contributing to

seemingly different contexts. To generate ID-independent contexts that are appropriate for

user stitching, we make the temporal contexts attribute- or feature-aware (R1), by building

on the assumption that corresponding or similar entities have similar features. Formally,

we assume that a network may have a set of input node attributes (e.g., IP address, device

type), as well as a set of derived topological features (e.g., degree, PageRank), all of which

are stored in a N ×|F| feature matrix F (Figure 4.2, Step 1). We then generalize our random

50

walks to not only respect time (R2) [NLR+18], but also capture this feature information

using the notion of attributed/feature-based walks proposed in [ARZ+18]:

Definition 13 (Feature-based Temporal Walk). A feature-based temporal walk of

length L from node v1 to vL in graph G is defined as a sequence of feature values corresponding

to the sequence of vertices in a valid temporal walk (Dfn. 12). For the jth feature f(j), the

corresponding feature-based temporal walk is

〈wL,f(j)
〉L∈N = 〈fv1,j, fv2,j, . . . , fvL,j〉, (4.3)

where fvi,j is the value of the jth feature for node vi, stored in matrix F.

Our definition is general as it allows walks to obey time while each node may have a d-

dimensional vector of input attribute values and/or derived structural features, which can be

discrete or real-valued [ARZ+18].

4.4.2.1 Temporally-valid, multi-dimensional feature contexts.

node2bits extends the previously generated temporal contexts to incorporate node features

and remove the dependency on node IDs. Following the definition of feature-based temporal

walks, given |F| features, our method generates |F|-dimensional contexts per node u and

temporal distance ∆t by replacing the node IDs in Equation (4.1) with their corresponding

feature values (Figure 4.2, Step 2). Formally, the temporally-valid, multi-dimensional feature

contexts are defined as:

C∆t
u |f(j) = {fv,j : ∀v ∈ C∆t

u } ∀ feature f(j) ∈ F , (4.4)

where fv,j is the value of the jth feature for node v.

4.4.3 Feature-based Context Aggregation and Hashing

The key insight in user stitching is that each user interacts with similarly ‘typed’ entities

through similar relations over time: for example, in online-sales logs, a user likely browses

similar types of goods in logged-in and anonymous sessions; and in online social networks,

51

accounts sharing near-identical interaction patterns, such as replies or shares, are potentially

from the same person. Based on this insight, node2bits augments the previously generated

temporal, multi-dimensional feature contexts with node types (and implicitly the correspond-

ing relations or edge types), which is a key property of heterogeneous networks (R1). It

subsequently aggregates them and derives similarity-preserving and space-efficient, binary

entity representations (R4) via locality sensitive hashing.

4.4.3.1 Context Aggregation.

Unlike existing works that aggregate contextual features into a single value such as mean

or maximum [HYL17b, RZA18], node2bits aggregates them into less lossy representations:

histograms tailored to heterogeneous networks by distinguishing between node types (R1).

Specifically, it models the transitional dependency across node and relation types by further

conditioning the derived contexts in Equation (4.4) on the node types pi ∈ TV (i.e., each

temporal context consists of the features of only one node type). We denote the temporal

contexts conditioned on both features and node types as C∆t
u |f, p. The final histogram

representation of node u at temporal distance ∆t consists of the concatenation of the

histograms over the conditional contexts at ∆t (Figure 4.2, Step 3):

h(C∆t
u) = [h(C∆t

u | f(1), p1),h(C∆t
u | f(2), p1), . . . ,h(C∆t

u | f(|F|), p|TV |)]. (4.5)

In this representation, the features are binned logarithmically to account for the often skewed

distributions of structural features (e.g.degree). We note that the histograms can be further

extended to edge types as shown in [JRK+19], for example by distinguishing pairs of nodes

that are connected by multiple types of edges.

4.4.3.2 Similarity-preserving Representations via Hashing.

Locality sensitive hashing (LSH) has been widely used for searching nearest neighbors in

large-scale data mining [RLU14]. In this work, we adopt SimHash [Cha02] to obtain similarity-

preserving and space-efficient representations (R4) for all the entities in the heterogeneous

network based on their aggregated time-, attribute-, and node type-aware contexts given by

52

Equation (4.5).

Given a node-specific histogram h(C∆t
u) ∈ Rd (with dimensionality d = |F||TV | · b, and b

being the number of logarithmic bins for the features), SimHash generates a K∆t-dimensional1

binary hashcode or sketch z∆t
u by projecting the histogram toK∆t random hyperplanes ri ∈ Rd

as follows:

gi(h(C∆t
u)) = sign

(
h(C∆t

u) · ri
)

(4.6)

In practice, the hyperplanes do not need to be chosen uniformly at random from a multivariate

normal distribution, but it suffices to choose them uniformly from {−1, 1}d. The important

property of locality sensitive hashing that guarantees that the similarities in the histogram

space (which captures the temporal interactions between entities in G) are maintained is

the following: for the SimHash family, the probability that a hash function agrees for two

different vectors is equal to their cosine similarity. More formally, for two nodes u and v:

P (gi(h(C∆t
u)) = gi(h(C∆t

v))) = 1−
cos−1 h(C∆t

u)·h(C∆t
v)

|h(C∆t
u)||h(C∆t

v)|

180
. (4.7)

In other words, the cosine similarity between nodes u and v in the context-space is projected

to the sketch-space and can be measured by the cardinality of matching between z∆t
u and

z∆t
v , where z∆t

• = [g1(h(C∆t
•)), g2(h(C∆t

•), . . . , gK∆t(h(C∆t
•)].

For each node u in G, the final binary representation is obtained by concatenating the

hashcodes for contexts at different temporal distances ∆t, resulting in a K-dimensional vector

(since K =
∑MAX

∆t=1 K
∆t):

zu = [z∆t=1
u z∆t=2

u . . . z∆t=MAX
u] (4.8)

where we replace the −1 bits with 0s to achieve a more space-efficient representation (R4).

An example is shown in the second half of Step 3 in Figure 4.2, where the blue shades denote

histograms and sketches for contexts in temporal distance ∆t = 1, and red shades correspond

to ∆t = 2. Thus, the K-dimensional representation for each node, zu ∈ {0, 1}K , captures the
1We assume that the length of each sketch at distance ∆t is given as K∆t = K

MAX .

53

Algorithm IV.1 node2bits Framework
Require: (un)directed heterogeneous graph G(V,E, ψ, ξ), # random walks R per edge, max walk length L, max temporal

distance MAX, embedding dimensionality K∆t at dist. ∆t

1 For each edge e, perform R temporal walks based on the short- or long-term policy (§ 4.4.1)
2 Obtain temporal contexts C∆t

u for each node u at temporal distances ∆t ≤ MAX via Eq. (4.1)
3 Construct feature matrix F with node attributes (if avail.) and topological features (§ 4.4.2)
4 Derive feature-based temporal contexts C∆t

u |f(j) by replacing v ∈ C∆t
u with the feature value fv,j , as shown in Eq. (4.4)

5 for each temporal distance ∆t = 1,. . . ,MAX and node u ∈ V do
6 Obtain u’s final histogram h(C∆t

u) over its contexts using Eq. (4.5)
7 Obtain a K∆t-dim, sparse, binary hashcode z∆t

u based on (modified) SimHash (§ 4.4.3)
8 Obtain the binary n2b embeddings zu of all nodes across temporal distances ∆t via Eq. (4.8)
9 Perform (un)supervised user stitching via binary classification or hashing (§ 4.5.1,4.5.3)

similarities between time-, feature- and node type-aware histograms across multiple temporal

distances ∆t. The similarity between two nodes’ histograms can be quickly estimated as the

proportion of common bits in their binary representations z•.

Given these representations, we can perform user stitching by casting the problem as

supervised binary classification or an unsupervised task based on the output of hashing

(Equation (4.8)), which we discuss in § 4.5.1. Putting everything together, we give the

pseudocode of node2bits in Algorithm IV.1. The runtime computational complexity of

node2bits is O(MRL + NK), which is linear to the number of edges when M � N as K

is relatively small (R3). The output space complexity is O(NK)-bit. node2bits requires

even less storage if the binary vectors are represented in the sparse format (see § 4.5.4 for

empirical results).

4.4.4 Complexity Analysis

Time Complexity. The runtime complexity of node2bits includes deriving (1) the set

of R temporal random walks of length up to L, which is O(MRL) in the worst case; (2) the

feature values of nodes in the walks from step (1); and (3) hashing the feature values of

nodes in the context through random projection, which is O(NK). Thus, the total runtime

complexity is O(MRL+NK), which is linear to the number of edges when M � N as K is

relatively small (R3).

Runtime Space Complexity. The space required in the runtime consists three parts: (1)

the set of temporal random walks (represented as vectors) per edge with complexity O(MRL),

(2) the histograms of feature contexts N |F||TV |, and (3) the set of randomly-generated

hyperplanes NK. Therefore, the total runtime space complexity is O(MRL+N(|F||TV |+K)).

54

Table 4.2: Network statistics and properties for our six real-world datasets. ‘D’: directed; ‘W’:
weighted; ‘H’: heterogeneous; ‘T’: temporal network.

Data Nodes Edges |TV | D W H T
citeseer 4460 2892 2 X X
yahoo 100,058 1,057,050 2 X X X
bitcoin 3,783 24,186 1 X X X
digg 283,183 6,473,708 2 X X
wiki 1,140,149 7,833,140 1 X X
comp-X 5,500,802 5,291,270 2 X X X X

Output Space Complexity. The output space complexity of node2bits is O(NK)-bit. The

space required to store binary vectors is guaranteed to be 32× less than vectors represented

with real-value floats (4 bytes) with the same dimension. In practice, node2bits requires even

less storage if the binary vectors are represented in the sparse format (see Section 4.5.4 for

empirical results).

4.5 Experiments

We perform extensive experiments on real-world heterogeneous networks to answer the

following questions: (Q1) Is node2bits effective in the user stitching task, and how does

it compare to traditional stitching and embedding methods? (§ 4.5.2-4.5.3) (Q2) Does

node2bits have low space requirements, and is it more space-efficient than the baselines?

(§ 4.5.4) (Q3) Is node2bits scalable? (§ 4.5.5)

4.5.1 Experimental Setup

We ran our analysis on Mac OS platform with 2.5GHz Intel Core i7, 16GB RAM.

4.5.1.1 Data

We use five real-world heterogeneous networks from the Network Repository [RA15a], as

well as a real, proprietary user stitching dataset, ‘Company X’ web logs. The latter data

form a temporal heterogeneous network consisting of web sessions of user devices and their

IP addresses. High degree nodes representing anomalous behavior (e.g., bots or public WiFi

hotspots) are filtered out. Our framework is also capable of modeling domain-specific features,

55

such as user-agent strings and geolocation [KKP+17], if this is available. Even without them,

however, it achieves strong performance. We give the statistics of all the networks in Table 4.2,

and additional details as follows.

• citeseer: CiteSeerX is an undirected, heterogeneous network that contains the bipartite

relations between authors and papers they contributed.

• yahoo: Yahoo! Messenger Logs is a heterogeneous network capturing message exchanges

between users at different locations (node attribute).

• bitcoin: soc-bitcoinA is a who-trusts-whom network on the Bitcoin Alpha platform.

The directed edges indicate user ratings.

• digg: This heterogeneous network consists of users voting stories that they like and

forming friendships with other users.

• wiki: wiki-talk is a temporal homogeneous network capturing Wikipedia users editing

each other’s Talk page over time.

• comp-X: A temporal heterogeneous network is derived from a company’s web logs and

consists of web sessions of users and their IPs. In the stitching task, we predict the

web session IDs that correspond to the same user.

4.5.1.2 Task Setup

With the exception of § 4.5.3, we cast the user stitching task as a binary classification

problem, where for each pair of nodes we aim to predict whether they correspond to the same

entity (i.e., we should stitch them). We use logistic regression with regularization strength

1.0 and stopping criterion 10−4.

For the real user stitching data, we use the held-out, ground-truth information to evaluate

our method. For the five real-world networks without known user pairs, we introduce user

replicas following a similar procedure to [BG07]: we sample 5% of the nodes with degrees

larger than average, introduce a replica u′ for each sampled node u, and distribute the original

edges between u and u′. Specifically, each edge remains connected to u with probability p1,

56

otherwise it connects to the replica node u′. Additionally, each edge that is incident to u has

probability p2 to also connect to u′. Unless otherwise specified, we use p1 = 0.6 and p2 = 0.3.

Given the positive replica pairs, we sample an equal number of negative pairs uniformly

at random and include these in the training and testing sets. Comp-X, the dataset with

ground-truth replicas, also has pre-defined approximately 50/50 training-testing splits that

we use. Afterwards, embeddings are derived for each node pair by concatenation: [z(u), z(u′)].

Using these node pair embeddings, we learn a logistic regression (LR) model and use it to

predict the node pairs that should be stitched in the held-out test set. These are the nodes

that correspond to the same entity. We measure the predictive performance of all the methods

in terms of AUC, accuracy and F1 score.

4.5.1.3 Baselines

We compare to various methods that target different graph types:

• Homogeneous graphs:

Static– (1) Spectral embedding or SE [vL07], (2) LINE [TQW+15b], (3) DeepWalk or

DW [PARS14], (4) node2vec or n2vec [GL16], (5) struc2vec or s2vec [RSF17], and (6)

DNGR [CLX16].

Temporal– (7) CTDNE [NLR+18].

• Heterogeneous graphs:

(8) Common neighbors (CN) [BG07], (9) metapath2vec or m2vec [DCS17], and (10)

AspEm [SGZ+18].

The baselines are configured to achieve the best performance, for K = 128-dimensional

embeddings, according to the respective papers. We configured all the baselines to achieve

the best performance according to the respective papers. For all the baselines that are based

on random walks (i.e., node2vec, struc2vec, DeepWalk, metapath2vec, CTDNE), we set

the number of walks to 20 and the maximum walk length to L = 20. For node2vec, we

perform grid search over p, q ∈ {0.25, 0.50, 1, 2, 4} as mentioned in [GL16] and report the

best performance. For metapath2vec, we adopt the recommended meta-path “Type 1-Type

57

2-Type 1” (e.g., type 1 = author; type 2 = publication). In DNGR, we set the random surfing

probability α = 0.98 and use a 3-layer neural network model where the hidden layer has

1024 nodes. We use 2nd-LINE to incorporate 2nd-order proximity in the graph. For all the

embedding methods, we set the embedding dimension to K = 128. Unlike those, CN outputs

clusters, each of which corresponds to one entity.

4.5.1.4 node2bits Setup & Variants

Similar to the baselines, node2bits performs R = 10 walks per edge, with length up to

L = 20, and we set the max temporal distance MAX = 3. On the largest dataset, Comp-X,

we use a maximum walk length L = 5 and temporal distance MAX = 2. While various node

attributes can be given as input to node2bits, for consistency we derive and use the total,

in-/out-degree of each node in F.

We experiment with different variants of node2bits (or n2b for short): (1) node2bits-0

applies to static networks; (2) node2bits-sh uses the short-term tactic in the random

walks (§ 4.4.1); (3) node2bits-ln uses the long-term tactic; and (4) node2bits-u targets

unsupervised user stitching, which most baselines cannot handle (except for CN). To explore

our method’s performance in unsupervised settings (§ 4.5.3), we directly ‘cluster’ the LSH-

based, binary node representations zu generated by node2bits-0. The idea is that nodes

that hash to the same ‘bucket’ likely map to the same entity and should be stitched. To map

entities to buckets we use the banding technique [RLU14]: per band—one per representation

z∆t at temporal distance ∆t—we apply AND-construction on the output of bit sampling,

and then OR-construction across the bands.

4.5.2 Accuracy in Supervised User Stitching

We start by evaluating the predictive performance of node2bits for supervised user

stitching on both static and temporal networks.

4.5.2.1 Static Networks

Here we evaluate the effectiveness of multi-dimensional feature contexts. Since static

networks lack temporal information, node2bits performs random walks similarly to existing

58

Table 4.3: Entity resolution results for static networks. Our method outperforms all the
baselines. | OOT = Out Of Time (6h); OOM = Out Of Memory (16GB). The asterisk ∗
denotes statistically significant improvement over the best baseline at p < 0.05 in a two-sided
t-test.

Metric CN SE LINE DW n2vec s2vec DNGR m2vec AspEm n2b-0

ci
te
se
er

AUC 0.9141 0.4846 0.5481 0.5614 0.6188 0.9344 0.5015 0.5546 0.5049 0.9480∗
ACC 0.9141 0.5045 0.5372 0.5579 0.6211 0.8936 0.4688 0.5357 0.5223 0.9196∗

Precision 1.0 0.5051 0.5361 0.5495 0.5983 0.8304 0.4667 0.5392 0.5217 0.8672
Recall 0.8482 0.4464 0.5532 0.6421 0.7368 0.9894 0.4375 0.4911 0.5357 0.9911
F1 0.9137 0.5028 0.5371 0.5547 0.6159 0.8926 0.4682 0.5348 0.5222 0.9192∗

ya
ho

o

AUC 0.6851 0.5378 0.8050 0.7640 0.7636

OOT OOM

0.8233 0.4938 0.8088
ACC 0.6851 0.4760 0.7771 0.7117 0.7233 0.7827 0.5018 0.8010

Precision 1.0 0.4497 0.7500 0.7063 0.7126 0.7126 0.5018 0.7481
Recall 0.3703 0.2143 0.8313 0.7249 0.7485 0.7485 0.5030 0.9076
F1 0.6505 0.4375 0.7764 0.7117 0.7231 0.7823 0.5018 0.7987

works to collect nodes in structural contexts. The main difference lies in representing diverse

feature histograms. We run node2bits against both homogeneous and heterogeneous baselines

as shown in Table 4.3, and observe that it performs the best in most evaluation metrics on

both graphs. node2bits outperforms existing random-walk based methods as expected: node

IDs in the contexts is distorted by the replicas generated, thus feature-based methods should

prevail. This is also validated by the results for struc2vec, which captures the equivalency of

structural feature sequences in embeddings. metapath2vec and LINE achieve promising result

on yahoo but not on citeseer, as the latter is an undirected bipartite graph, node distributions

of the 2-order contexts explored by LINE are highly correlated and indistinguishable for

stitching. On the contrary, CN (common-neighbors) yields promising result on citeseer but

not yahoo. This is likely due to the graph structure, which we explain in more detail in

Sec.4.5.3. We encountered out-of-memory errors for DNGR due to the algorithmic complexity

and out-of-time-limit for struc2vec.

Conclusion 1. On static graphs, node2bits achieves comparable performance in AUC, and

slightly better F1 score with 0.60%− 2.10% improvement over baselines in the stitching task.

4.5.2.2 Temporal Networks

Table 4.4 depicts the stitching performance of node2bits using both the short- and

long-term tactics against the same set of baselines used in static graphs as well as CTDNE, an

embedding framework designed for temporal graphs. We exclude metapath2vec, as metapaths

are not meaningful in homogeneous networks, and the method ran out of time for the

59

Table 4.4: Entity resolution results for temporal networks: strong performance for node2bits
variants. | OOT = Out Of Time (6h); OOM = Out Of Memory (16GB); ∗ denotes statistically
significant improvement over the best baseline at p < 0.05 in a two-sided t-test.

Metric CN SE LINE DW n2vec s2vec DNGR AspEm CTDNE n2b-0 n2b-sh n2b-ln

bi
tc
oi
n AUC 0.7474 0.5828 0.6071 0.6306 0.6462 0.8025 0.5909 0.5344 0.6987 0.7584 0.7609 0.7380

ACC 0.7174 0.5842 0.5842 0.6158 0.6158 0.7263 0.5526 0.5316 0.6000 0.7211 0.7268 0.6737
Precision 1.0 0.6250 0.5755 0.6146 0.6122 0.7263 0.5510 0.5326 0.6234 0.7100 0.7647 0.6667
Recall 0.4947 0.4211 0.6421 0.6211 0.6316 0.7263 0.5684 0.5158 0.5053 0.7474 0.6842 0.6947
F1 0.7001 0.5728 0.5828 0.6158 0.6157 0.7263 0.5525 0.5315 0.5964 0.7209 0.7271 0.6735

di
gg

AUC 0.6217 0.5171 0.7878 0.7398 0.7445

OOT OOM

0.5105 0.6967 0.8185∗ 0.7611 0.7587
ACC 0.6217 0.5152 0.7694 0.6971 0.7013 0.5088 0.5915 0.7982∗ 0.7418 0.7444

Precision 1.0 0.5564 0.7371 0.6763 0.6809 0.5087 0.6110 0.7453 0.7185 0.7171
Recall 0.2434 0.0516 0.8376 0.7562 0.7576 0.5138 0.5058 0.9060 0.7952 0.8071
F1 0.5585 0.3770 0.7683 0.6960 0.7003 0.5088 0.5884 0.7958∗ 0.7411 0.7433

w
ik
i

AUC 0.6997

OOT

0.7854

OOM OOM OOT OOM

0.5374 0.7707 0.8230 0.8259∗ 0.8214
ACC 0.6997 0.7132 0.5141 0.6488 0.7145 0.7510∗ 0.7103

Precision 1.0 0.7274 0.5011 0.7174 0.7972 0.8268∗ -
Recall 0.3994 0.6819 0.4993 0.4910 0.5753 0.6349 -
F1 0.6699 0.7129 0.5141 0.6398 0.7088 0.7476∗ 0.7067

co
m
p-
X AUC 0.5970

OOM

0.5000

OOM OOM OOT OOM

0.5213

OOM

0.8095∗ 0.7496 0.7525
ACC 0.5970 0.6757 0.5103 0.8414∗ 0.7959 0.7975

Precision - - - - - -
Recall - - - - - -
F1 0.5189 0.4032 0.5103 0.8154∗ 0.7581 0.7606

heterogeneous networks. We observe that node2bits-sh outperforms node2bits-ln in

most cases, which is reasonable because node2bits-ln derives shorter contexts constrained

by temporal-order. We also justify the effectiveness of temporal random walk by comparing it

with both node2bits-0 and static baselines where we only make use of the graph structures

without specifying edge timestamps. We observe that node2bits-0 is the best-performing

method for the digg dataset and Comp-X over the temporal variants of node2bits. The

reason behind this is that there is a tradeoff in constraining temporal walks to respect time:

we more accurately model realistic sequences of events at the cost of restricting the possible

context. On these particular temporal graphs, walks may already be limited in length by the

bipartite structure, so the latter cost becomes more appreciable. Nevertheless, both static

and dynamic versions of node2bits almost always outperform other baselines. In particular,

across all datasets, node2bits-sh still outperforms the temporal baseline, CTDNE in all

cases, which further demonstrates the effectiveness of multi-feature aggregation.

node2bits variants outperform the static methods in nearly all cases except the bitcoin

dataset where node2bits-sh achieves lower AUC than struc2vec but higher ACC and F1-

score. This is because node2bits loses some information when representing the node contexts

as binary vectors comparing with real-value representation. However, we consider this loss

mild as node2bits still outperforms all the other static baselines. In addition, struc2vec ran

out of time on the larger datasets while node2bits achieves promising performance efficiently

60

with 3.90%− 5.16% improvement in AUC and 3.58%− 4.87% improvement in F1 score than

the best baseline method. At the same time, our approach uses much less information than

the static methods, since the length of the temporal walks are typically shorter than random

walks that do not have to respect time.

Conclusion 2. Dynamic and static variants of node2bits outperform the other baselines by

up to 5.2% in AUC and 4.9% in F1 score. Between the two dynamic variants, the short-term

tactic performs better than the long-term one.

4.5.3 Accuracy in Unsupervised User Stitching

As mentioned in § 4.5.1, node2bits can naturally perform unsupervised user stitching

by leveraging the generated node representations as hashcodes. Only nodes mapped to the

same ‘buckets’ are candidates for stitching together. This process allows us to stitch entities

without involving quadratic comparisons between all pairs of nodes in the graph. Similarly,

CN outputs a set of nodes sharing a certain amount of neighbors as the candidates to be

stitched together. We evaluate the quality of hashing given by node2bits-u against CN,

and make use of the candidates to predict the testing set of node pairs given by following the

same setup in § 4.5.2 in an unsupervised scheme.

Based on the results in Table 4.5, we observe that node2bits-u outperforms CN on every

dataset other than citeseer. The reason is that in this “author contributes to paper” dataset,

author references appearing in the same set of papers have high probability to correspond

to the same researcher in reality. Therefore the assumption made by CN suits well this

scenario, whereas node2bits hashes nodes with similar features in the context instead of those

with similar neighbor identities (IDs). For datasets with less strict cross-type relationship,

node2bits achieves 2.81% − 15.12% improvement in accuracy ACC and 4.96% − 26.66%

improvement in F1 score (including digg, another bipartite graph with inner connected

components of the same node types).

Conclusion 3. The unsupervised variant of node2bits, node2bits-u, outperforms CN

on most graphs.

61

Table 4.5: Unsupervised stitching performance between CN and node2bits.

Metric citeseer yahoo bitcoin digg wiki
CN n2b-u CN n2b-u CN n2b-u CN n2b-u CN n2b-u

ACC 0.9141 0.8661 0.6851 0.7553 0.7474 0.7684 0.6217 0.7157 0.6997 0.7350
F1 0.9137 0.8660 0.6505 0.7518 0.7301 0.7663 0.5585 0.7074 0.6699 0.7349

Figure 4.3: First 5 plots: output storage in MB for all the methods that completed successfully
in five datasets. node2bits is also shown to be scalable for large graphs.

4.5.4 Output Storage Efficiency

Next we evaluate space efficiency of our proposed method over baselines that output node

embeddings. Instead of real-value matrices, the binary hashcodes generated by node2bits

can be stored in the sparse format so presumably it should take trivial storage. We visualize

the storage requirements in Figure 4.3.

Conclusion 4. Compared to the other methods, node2bits uses between 63× and 339×
less space (while always achieving comparable or better stitching performance as shown in

§ 4.5.2).

4.5.5 Scalability

To evaluate the scalability, we report the runtime of applying node2bits to obtain node

representations for the datasets shown in Table 4.2 versus their numbers of edges. We note

that node2bits-sh runs only on temporal networks, i.e., a subset of the datasets. We

also visualize the runtime of node2vec as reference, as it is designed for large graphs and is

62

implemented in the same language (Python). Based on the last subplot in Figure 4.3, we

observe that node2bits scales similarly as node2vec with less runtime space as node2vec ran

out of memory on the largest dataset (wiki). As shown in the proof, the worst-case time

complexity is linear in the edges. We give the exact runtimes in Table 4.6.

Table 4.6: Comparison between node2bits and baselines in terms of runtime (in seconds).
Note the runtime of dynamic node2bits (short-term) for the temporal networks is shown in
parentheses.

citeseer yahoo bitcoin digg wiki
SC 23.72 766.42 4.80 8091.09 1
LINE∗ 144.94 223.87 134.48 227.28 415.00
DW∗ 8.90 209.72 16.99 2115.86 -
n2v∗ 7.99 222.14 15.91 2751.91 -
CTDNE - - 13.25 2227.66 4217.19
s2vec∗ 325.38 - 897.2 - -
DNGR 128.63 - 97.09 - -
m2vec 125.98 - - - -
AspEm 0.62 4.70 0.71 15.318 386.24
CN 0.58 19.59 0.70 63.95 109.11

n2b 13.15 221.84 20.52
(39.97)

1507.95
(3062.13)

1537.24
(3997.85)

4.6 Conclusion

We have proposed a hash-based network representation learning framework for iden-

tity stitching called node2bits. It is both time- and attribute-aware, while also deriving

space-efficient sparse binary embeddings of nodes in large temporal heterogeneous networks.

node2bits uses the notion of feature-based temporal walks to capture the temporal and

feature-based information in the data. Feature-based temporal walks are a generalization of

walks that obey time while also incorporating features (as opposed to node IDs). Using these

walks, node2bits generates contexts/sequences of temporally valid feature values. Experi-

ments on real-world networks demonstrate the utility of node2bits as it outputs space-efficient

embeddings that use orders of magnitude less space compared to the baseline methods while

achieving better performance in user stitching. An important practical consideration in the

application of our work to user stitching is the balance of greater personalization with user

privacy.

63

CHAPTER V

Evaluating Temporal Summaries and Node Embedding

This chapter is based on work that will appear at WSDM 2022 [JKRK22].

5.1 Introduction

In Chapter IV, we proposed node2bits to summarize the structural features of temporal

heterogeneous graphs, and model the temporal proximity through temporal random walks.

Recently, temporal node embedding has attracted significant attention in both academia and

industry, so many novel approaches have been proposed where the temporal proximity is

generally modeled through complex but less-interpretable deep learning techniques, such as

RNN, LSTM. While these recent approaches have demonstrated effectiveness on machine

learning tasks, it is unclear if complex models are necessary. Motivated by this, in this

chapter, we perform a systematic study of temporal embedding models. We propose an

efficient framework that includes two different graph time-series representation and generalizes

the static node embeddings to the dynamic settings through interpretable network models.

We compare the performance with state-of-the-art temporal node embedding approaches

and show that our framework performs at least equally well on temporal link prediction

tasks. Such finding demonstrates the importance of model interpretability in designing node

embedding approaches.

Real-world networks that capture the interaction between entities are growing rapidly,

for example, the Internet [CO02], various online social networks (e.g., Facebook, Snapchat),

citation networks in academia [LKF05]. Specifically, when nodes and edges continuously

64

change over time with addition, deletion (e.g., a phone call, an email, or physical proximity

between two entities), we have a particular type of evolving network structure. Learning

an appropriate network representation (embedding) that accurately captures the tempo-

ral dynamics and temporal structural properties of these entities is important for many

downstream time-series forecasting/prediction tasks such as recommendation and entity

resolution. Most recent research efforts devoted in the field follow the common pipeline:

given a time-series of graphs, G = {G1, · · · , Gk, · · · , GT}, modeling the individual graph

structures (within-snapshot property) along with the temporal dependency (across-snapshot

relation), and deriving node embeddings that incorporate both perspectives. While these

works show advantage from various perspectives, the promising performance comes at the

cost of time and model complexity, such as introducing extra transition variables to reflect

the temporal dependency between snapshots [GKHL18], or latent weights on edges between

snapshots [SWG+20, PDC+20].

In this work, we propose a general framework that simplifies the above process and

can generalize any static embedding method to a more powerful and predictive dynamic

embedding method without introducing transitional variables. The framework consists of

three components: (C1) a graph time-series representation, (C2) a temporal network model

that appropriately models and weights the temporal dependencies in the graph time-series,

and (C3) a base embedding method to learn a time-series of embeddings along with a fusion

mechanism to derive the final temporal node embeddings. The framework is highly expressive

as any unique combination of C1-C3 gives rise to a new dynamic embedding method.

While previous works on dynamic modeling and embedding have focused on representing

the stream of timestamped edges [NLR+18] using a time-series of graphs based on a specific

time-scale τ (e.g., τ = 1 hour, or 1 month) [GKHL18, GCC19, SGR19, LKF05, ZYR+18,

SWG+20], we instead propose the notion of an ε-graph time-series that uses a fixed number

of edges for each graph in the time-series. Theoretically, by fixing the number of edges to be

ε in each graph, we ensure that every graph in the sequence has an equal probability of giving

rise to the same exact distribution of higher-order graphlets and other structural patterns1,
1This is in contrast to graphs with different amounts of edges. E.g., given two arbitrary graphs G1 =

(V1, E1) and G2 = (V2, E2) where |E1| � |E2|, then the counts of all k ∈ {3, 4, . . .}-node network motifs
(graphlets) in G2 are almost surely larger than G1.

65

and therefore, the new ε-graph time-series forces the models to avoid capturing simple trivial

differences due to edge counts, and instead, allow the models to capture actual structural

changes to the graphs over time.

We also introduce a number of important temporal models that can be leveraged over

any graph time-series representation of the edge stream. The first temporal model is based

on the notion of a temporal reachability graph (TRG). TRG is derived by transforming a

dynamic graph into a static graph where an edge from u to w indicates a temporal walk.

The second temporal model is called a weighted temporal summary graph (TSG). Notably, a

weighted temporal summary graph captures the temporal recurrence and recency of links by

appropriately weighting links with respect to a function f that assigns larger weights to links

that are more recent and recurrent whereas links that occur in the more distant past are

assigned lower weights. All temporal models can leverage either the new ε-graph or τ -graph

time-series representation.

This paper aims to provide a systematic exploration of the most useful graph time-series

representations and temporal network models (used to incorporate the temporal dependencies

into base embedding methods) in downstream temporal prediction tasks. To the best of our

knowledge, this is the first work of this kind. Our primary findings are: (1) node embeddings

derived from the ε-graphs outperforms the τ -graph time-series in the predictive task with

higher stableness, and (2) by composing the static node embedding approaches with classic

temporal models such as TRG or TSG, our proposed framework performs comparably or

even better than recent dynamic embedding approaches with less complexity. Based on these

findings, we hope that this work will benefit future research on developing and evaluating

better dynamic embedding methods, as well as practitioners who deploy temporal graph

embedding in various applications due to its simplicity and effectiveness in performance. Our

main contributions are as follows:

• General Framework. We describe a general framework for leveraging graph stream

data and classic temporal network models for prediction-based applications that can

generalize any static graph embedding method.

• Powerful Graph Time-series Representation. We introduce the notion of a ε-

66

graph time-series and show its superiority over the conventional way of discretizing the

edge stream based on the application time-scale (e.g., hour, day).

• Systematic Study. Our framework allows us to systematically study 42 dynamic

node embeddings by combining time-series representations, temporal network models,

and static methods. Strikingly, our empirical analysis on 8 real-world networks shows

that our framework achieves comparable or better predictive performance than existing

state-of-the-art, but more complex, dynamic node embedding methods.

5.2 Related Work

Snapshot-based approaches.

Most temporal embedding approaches break down the graph into graph-time series based

on the application time-scale (1 month, etc.) up to a certain point k, and then derive features

from them to make inference on graphs at k+ 1. One direction is to look into the most recent

snapshot, for instance, DANE [LDH+17] proposes to embed both nodes and the associated

attributes in the graph by minimizing the loss of reconstruction of the snapshot at a given

times point k: 1
2
Σi,jA

(k)
ij ||yi − yj||2, and update the embeddings for snapshot at k + 1 based

on the change of graph structure and node attributes. DynGEM [GKHL18] adopts the deep

auto-encoder to generate the nonlinear embeddings from the snapshot at k while addressing

stability. TIMERS [ZCP+18] models the relative changes in adjacency matrices between

snapshots and leverages incremental SVD to derive embeddings. A more popular direction

is to track back a certain number of snapshots from the time point k by deriving node

embeddings from each individual tracked snapshot and then merging them through specific

operation. Dyngraph2vec [GCC19] leverage totally l snapshots to predict the snapshot at k+1.

It leverages various deep architectures (i.e., auto-encoder, RNN) to derive latent features by

minimizing loss of reconstruction error: ||f(Ak−l+1, · · · ,Ak)−Ak+1||2F . tNodeEmbed [SGR19]

is an end-to-end framework based on node embeddings derived from individual snapshots

using static methods. The embeddings are merged by minimizing the loss of specific tasks

(i.e., link prediction and node classification) through LSTM. DySAT [SWG+20] leverages

67

Table 5.1: Qualitative comparison of existing embedding methods on temporal graphs. The
graph time-series representation used by the method (application time-scale, or fixed number
of edges), the type of temporal model used, and type of embedding fusion used (if any).

Representation Temporal Model

Time-scale (τ) #Edges (ε) Snapshot Weighting Emb. Fusion

DANE [LDH+17] 3 7 3 7 7
DynGem [GKHL18] 3 7 3 7 3
TIMERS [ZCP+18] 3 7 3 7 7
Dynagraph2vec [GCC19] 3 7 3 7 3
tNodeEmbed [SGR19] 3 7 3 3 3
EvolveGCN [PDC+20] 3 7 3 3 3
DySAT [SWG+20], DyHATR [XYJ+20] 3 7 3 7 3
our framework [SWG+20] 3 3 3 3 3

the notion of self-attention to compute node representations by jointly employing graph

structural property and temporal dynamics. Similarly, DyHATR [XYJ+20] proposes a the

hierarchical attention model to capture both the heterogeneity and temporal attention using

GRU/LSTM to model the temporal evolution. EvolveGCN [PDC+20] uses GCN to generate

node embeddings for the past snapshots, and learns the hidden parameters for the next using

GRU/LSTM. Unlike the above methods that jointly explore the graph structural changes

with the evolution of the #edges, our proposed ε-graph time series does not require the

specification of time-scales.

Sequential-interaction-based approaches.

There is another line of works that studies the sequential interaction between nodes

in the graph. CTDNE [NLR+18] is the first approach to learn embeddings directly from

the stream of timestamped edges at the finest temporal granularity. In that work, they

proposed the notion of temporal walks and used it for embeddings [NLR+18]. More recently,

node2bits [JHRK19] expanded on this idea by incorporating features in the temporal walks

and hashing them. Alternatively, some other work has modeled the node-specific temporal

dynamics as the point process where the probability of interaction is represented through

different intensity functions. HTNE [ZLL+18] proposes to model the node evolution through

the Hawkes process. JODIE[KZL19] models the sequential interaction in bipartite graphs

to predict the change of embedding trajectory over time instead of interaction probability.

CTDNE, HTNE and JODIE are designed to handle continuously sequential data, which is

not the scope of this paper.

68

5.3 Data

In this study we adopt a variety of real-world temporal networks from SNAP [LK14] and

NR [RA15a]. We provide the brief description of the datasets as follows.

Table 5.2: Network statistics and properties.

Data |V | |E| Type Timespan
enron 151 50,572 Unipartite 38 months
bitcoin 3,783 24,186 Unipartite 63 months
wiki-elec 7118 107,071 Unipartite 47 months
stackoverflow 24,818 506,550 Tripartite 79 months
fb-forum 899 33,720 Unipartite 24 weeks
reallity-call 6,809 52,050 Unipartite 16 weeks
wiki-edit 8,227 157,474 Bipartite 32 days
contacts-dublin 10,972 415,912 Unipartite 69 days

The detailed description of the experimental graph datasets is given as follows.

• enron2 records email exchanging between empolyees of Enron from May, 1999 to June,

2002.

• bitcoin3 is a who-trusts-whom network of people who trade using bitcoins from Nov,

2010 to Feb., 2017. We study the user connectivity by dropping the edge signs.

• wiki-elec2 contains the voting history based on the Wikipedia page edit history from

Mar., 2004 to Jan., 2008.

• stackoverflow3 is a temporal network consisting of three types of interactions on the

stack exchange web site Math Overflow: a user answers questions, a user comments on

questions, and a user comments on answers.

• wiki-edit4 is a public bipartite dataset containing one month of edits made by users

in the Wikipedia page.

• fb-forum2 is the Facebook-like Forum network that records users’ activity in the forum.

• contacts-dublin2 is a human contact network where nodes represent humans and

edges between them represent proximity (i.e., contacts in the physical world).
2http://networkrepository.com
3https://snap.stanford.edu/data/
4https://github.com/srijankr/jodie

69

http://networkrepository.com
https://snap.stanford.edu/data/
https://github.com/srijankr/jodie

• reality-call2 is a subgraph of the reality mining study. Nodes are participants and

edges are phone calls.

10 20 30 40 50 60
time

0

500

1000

1500

2000

2500

3000
|E

|
ia-contacts-dublin

G- (6 hours)
G-

Fixed timespan
Fixed edge count

10 20 30 40 50 60
time

0

0.5

1

1.5

av
er

ag
e

de
gr

ee

ia-contacts-dublin

G- (6 hours)
G-

Fixed timespan
Fixed edge count
Fixed timespan
Fixed edge count

5 10 15 20
time

0

2000

4000

6000

8000

|E
|

fb-forum

G- (1 week)
G-

Fixed timespan
Fixed edge count

5 10 15 20
time

0

2

4

6

8

10

12

av
er

ag
e

de
gr

ee

fb-forum

G- (1 week)
G-

Fixed timespan
Fixed edge count

Figure 5.1: Graph properties (#edge and average degree) over two time-series representation
(fixed timespans vs. fixed edge count). Fixing the edge number gives more stable temporal
patterns while fixing the timespans shows higher fluctuation.

We summarize the graph statistics and temporal timespans in Table 5.2, and analyze

the sequential graph statistics of three graphs over time. As the timespans vary from 32

days to 79 months, we adopt the time-scale following Table 5.2 to get the sequential graph

time-series. We visualize 2 graph statistics, the number of edges |V | and the average degree

on 3 datasets with different time-scales in Figure 5.1, which are contacts-dublin (day),

wiki-elec (month), and fb-forum (week). In the figure, we also visualize the same graph

statistics using a different time-series representation by fixing the number of edges in each

snapshot to |E|
T
, where T denotes the timespan following the corresponding time-scale. For

example, for wiki-elec, this number is 107 701
47

in each snapshot. From Figure 5.1, we compare

the temporal patterns of the two time-series and it can be seen following the fixed edge

count in each snapshot gives more stable temporal pattern using both graph statistics. We

discuss this new graph time-series in detail in Section 5.5.1. Besides, in this work, we focus

on exploring the impacts of graph structures and temporal dependency between snapshots to

70

Table 5.3: Summary of notation.

Symbol Definition

G = {Gk} a graph time-series with snapshots indexed by k.

Gk = (Vk, Ek) a directed and weighted temporal network from G with |Vk| nodes and |Ek|
temporal edges

Ak adjacency matrix for graph Gk in G.
GR = (V,ER) the weighted temporal reachability graph
NR

i the set of nodes that are temporally reachable from node i
τ/ε window size representing the timespan / number of edges
α the decay factor in the temporal summary graph model
θ the decay factor in the temporal embedding smoothing
f arbitrary base embedding method
Z |V | × d embedding matrix

the predictive tasks, thus we do not leverage node features such as geographic location or

content.

5.4 Preliminaries

We summarize symbols and notations specifically used in this chapter in Table 5.3.

5.5 Framework

The framework in this paper provides a fundamental basis for studying different temporal

network representations and the utility of these for generalizing existing static embedding

methods to temporal network data. The overview is shown in Figure 5.2. Firstly, given the

continuous stream of timestamped edges, we derive the time-series of graphs (Section 5.5.1).

Then, we use one of the temporal network models to incorporate the temporal dependencies

of the graph-based time-series (Section 5.5.2). Lastly, our framework generalizes existing

embedding methods and effectively enables the new dynamic variants of these methods to

learn more accurate and appropriate time-dependent embeddings. (Section 5.5.3).

5.5.1 Graph Time-Series Representations

We formally introduce two approaches for deriving a time-series of graphs from the stream

of timestamped edges. For clarity, we use k to index the snapshots in the time-series in this

section to avoid mixing with the timestamp t associated with an edge e.

71

Figure 5.2: Framework Overview. In the first component of the framework (Sec. 5.5.1), we
derive a time-series of graphs from the stream of timestamped edges using either an application-
specific time-scale τ (e.g., 1 day) or a fixed number of edges ε for each graph in the time-
series. Next, given the {τ, ε}-graph time-series representation, we incorporate the temporal
dependencies and weights with a temporal network model from Sec. 5.5.2. Finally, we use an
arbitrary base embedding method to learn a time-series of embeddings and then leverage a
temporal fusion mechanism to obtain the final temporal embeddings (Sec. 5.5.3).

5.5.1.1 τ-graph time-series

The τ -graph time-series representation is used by the vast majority of previous work [His16,

GCC19].

Definition 14 (τ -graph time-series). Given a temporal network G=(V, E) representing

a continuous edge stream with time-stamped edges E, we define a graph time-series Gτ =

{G1, . . . , Gk, . . .} such that G1 consists of all edges within the first time scale (period) s, G2

consists of all edges within the next time period s, and so on. Thus, each graph contains edges

within a specific period of time. More formally, let t0 denote the timestamp of the first edge

in the temporal network (stream of timestamped edges) and τ is the application time-scale

(e.g., 1 month), then

Ek =
{

(i, j, t) ∈ E | t0 + kτ > t ≥ t0 + (k − 1)τ
}

(5.1)

5.5.1.2 ε-graph time-series

While most work uses the previous approach for deriving the graph time-series, we

introduce a new alternative based on the idea of using a fixed number of edges. In particular,

we propose a new approach that derives a time-series of graphs Gε = {G1, . . . , Gk, . . .} such
that each Gk consists of ε edges (Definition 15) and therefore |Ek| = ε,∀k. More formally,

Definition 15 (ε-graph time-series). Given a temporal network G = (V,E) representing a

72

continuous edge stream E with timestamped edges and let ε denote a fixed number of temporal

edges in the stream (ordered by time), we define a graph time-series Gε = {G1, . . . , Gk, . . .}
such that |Ek| = ε, for all k = 1, 2, Hence, G1 = (E1, V) consists of the first ε edges

E1 = {e1, e2, . . . , eε} whereas G2 consists of the next ε edges E2 = {eε+1, . . . , e2ε}, and so on.

More formally, Ek is defined as follows:

Ek =
kε⋃

i=(k−1)ε+1

ei =
{
e(k−1)ε+1, . . . , ekε

}
(5.2)

Note in both cases E1 ∪ · · · ∪ Ek ∪ · · · = E. Since the proposed ε-graph time-series

controls for the number of edges over time, embedding methods can more appropriately

model and capture the actual change in the structural properties and subgraph patterns

over time, as opposed to just the frequency of edges that is captured by the τ -graph time-

series representation used in previous work. Another advantage of the ε-graph time-series

representation is that it preserves the sequential order of timestamped edges without suffering

from the structural instability of the graph due to the sometimes drastic difference in edge

counts from one time to the next. As observed in Fig. 5.1, while the ε-graph time-series

representation has a fixed number of edges over time, conventionally-used τ representation

can significantly deviate with large spikes even between consecutive graphs in the series.

If a graph time-series representation is unable to capture the simplest 1st-order subgraph

structures (edges), then by definition it cannot capture higher-order subgraph structures that

are built on such lower-order ones. Hence, the proposed ε-graph time-series representation

effectively models the structural changes between graphs whereas the τ -graph time-series

captures changes in edge frequencies for a fixed application-specific time-scale such as 1 day

or 1 hour.

5.5.2 Temporal Network Models

Now we introduce temporal network models that incorporate the temporal dependencies

into the graph time-series representations to learn more effective time-dependent embeddings.

73

5.5.2.1 Snapshot Graph (SG) Model

This model simply leverages the {τ, ε}-graph time-series representation directly without

encoding any additional temporal information into the representation. Hence, the temporal

information (edge timestamps) associated with the edges in any graph Gk ∈ G is effectively

ignored/discarded. For example, e1 and e2 are considered to occur simultaneously if they

fall into the same snapshot, even though e2 comes later than e1 in the actual time-series.

Therefore, this model incorporates the temporal dependencies at the level of the graph, i.e.,

we only know that edges in Gk−1 occurred before Gk.

5.5.2.2 Temporal Summary Graph (TSG) Model

The temporal summary graph model incorporates the temporal dependencies by deriving

a weighted summary graph from the graph-based time series G [RN12] where the more

recent edges are assigned larger weights than those in the distant past. More formally,

let A1,A2, ...,Ak, ...,AT be a time-series of adjacency matrices of the graph time-series

constructed using either Definition 14 or Definition 15. Furthermore, let Ak(i, j) denote the

(i, j) entry of Ak. We define the general weighted temporal summary graph (TSG) model

as S =
∑T

k=1 f(Ak, α), where f is a decay function for temporally weighting the edges

(nonzeros), α is the decay factor ranging in (0, 1), T is the total number of graphs in the

time-series, and S is the weighted temporal summary graph. In this work, we define f as an

exponential decay function [RN12], then we obtain

S =
∑T

k=1(1− α)T−kAk (5.3)

and the weight for an edge (i, j) is simply S(i, j) =
∑T

k=1(1− α)T−kAk(i, j). Alternatively,

instead of using all available graphs in the initial time-series, we can use only the L most

recent graphs. For example, suppose Gε = {Gk}Tk=1 = {G1, . . . , GT} is an ε-graph time-series

with T graphs. Instead of using all T graphs, we can leverage only the most recent L graphs,

hence,

Gε = {Gk}Tk=T−L+1 = {GT−L+1, . . . , GT} (5.4)

74

(a) A temporal graph (b) TRG (c) Weighed TRG

Figure 5.3: A toy temporal graph (a) and its temporal reachability modeling TRG (b) and
WTRG (c). (b) An edge in the vanilla TRG represents a temporally-valid walk. The red edges
represents the length-2 walks {A,B,C} and {A,B,D} in the original graph (c) WTRG extends
TRG by assigning weights to indicate the temporal closeness e.g., {A,B,C} has higher weights
than {A,B,D} as C is temporally closer to A than D (∆tAC < ∆tAD), which reflects stronger
temporal continuity.

The idea of leveraging only the most recent graphs in the time-series was first explored

in [RN12] and can be applied to any of the proposed temporal models in this section.

5.5.2.3 Temporal Reachability Graph (TRG) Model

The temporal reachability graph (TRG) is a graph derived from the timestamped edge

stream where a link is added between two nodes if they are temporally connected. More

formally, an edge (u, v) in the TRG model indicates the existence of a temporal walk from u

to v in the original graph. The formal definition is given as follows.

Definition 16 (Temporal Reachability Graph). Given an interval I ∈ R+, the temporal

reachability graph GR = (V,ER) is defined as a directed graph where the edge (u, v) ∈ ER
denotes the existence of a temporal walk leaving u and arriving v within that interval. We

denote the number of edges in I as ω (which could be defined based on {τ, ε}-graph time-series).

A TRG is a static unweighted graph where each edge indicates a temporally-valid walk

reaching from the source to the destination. However, it does not capture the strength

of reachability. For example in Fig. 5.3a, the walk {A,B,C} takes two timestamps while

{A,B,D} takes four. Intuitively D is harder to reach than C from node A due to less

temporal continuity. Vanilla TRG fails to capture such property since all the edges are equally

important (shown in 5.3b). This would potentially affect the proximity-based embedding

methods as they are based on the closeness of nodes in the graph. To overcome this drawback,

we propose an extension of TRG called Weighted TRG (WTRG) that encapsulates the

strength of reachability in the graph weights. We define the strength of reachability between

75

Algorithm V.1 Weighted Temporal Reachability Graph
1 procedure TemporalReach(G = (V,E))
2 Set ER = ∅, sort ET in reverse time order
3 while next edge (i, j, t) ∈ E do
4 for (k, tk) ∈ NR

j do
5 ER ← ER ∪ {(i, k)}
6 gi,k = gi,k + e−(tk−t)

7 NR
i ← NR

i ∪ {(k, tk)}
8 ER ← ER ∪ {(i, j)}
9 gi,j = gi,j + 1 . ∆ti,j = 0 as i, j are adjacent

10 NR
i ← NR

i ∪ {(j, t)}
11 return GR = (V,ER, g)

a pair of nodes (i, j) as a function of both the number of temporally-valid paths and the

timestamp difference. The weighting function is given as follows.

gi,j =
∑

w∈W e
−(∆ti,j |w) (5.5)

where w is a specific temporally-valid walk from i to j, and ∆ti,j denotes the temporal

delay reaching from i to j along that walk. We depict the process of deriving WTRG in

Algorithm V.1. The cornerstone of the algorithm is the temporally-reachable neighborhood

NR
i that records nodes that are reached by i and the latest timestamps associated with

temporal paths. We formally define NR
i as:

Definition 17 (Temporally reachable neighborhood). Given a node i, its temporally reachable

neighborhood NR
i is defined as the set of tuples {(j, tj)} where j is the node reachable from i

following a temporally-valid walk and tj is the timestamp of the edge reaching j in that walk.

Given an input temporal edge (i, j, t), Algorithm V.1 loops through reachable neighbors

in NR
i to add edges in ER and updates the weights based on Eq. (5.5) (line 5-8). It also adds

(i, j) to the WTRG as well as the immediate weight (line 9-11). Overall, the computational

complexity of the algorithm is O(|E|max d(NR)), where max d(NR) is the maximum degree

of a node in WTRG. While the derived WTRG can be dense with huge amounts of reachable

neighbors, we show that this number is bounded by ω, which is the size of the interval

associated with the WTRG (Section 5.5.2.4 of the supplementary material). Accordingly, the

computational complexity of the algorithm is denoted as O(|E|ω). We follow Algorithm V.2

76

to combine the embeddings over the graph time-series.

5.5.2.4 Computational Complexity of WTRG

In this section we detail the computational complexity in deriving WTRG by showing the

following property.

Property 1. The number of edges in GR is bounded by the number of temporally-valid walks

in G.

Based on Def. 16, an edge (u, v) ∈ ER indicates a temporally-valid walk reaching from

u to v in G. However, this edge could correspond to multiple unique temporal walks with

different intermediate nodes and associated timestamps, therefore, |ER| is no more than the

number of temporally-valid walks in G.

Let NR
i denote the temporally reachable nodes of i, ∆(GR) = max{d(NR

1), . . . , d(NR
n)} is

the maximum degree of a node in GR, and ω is the window size. Then

|NR
i | ≤ ∆(GR) ≤ ω (5.6)

According to Def. 16, a TRG is comprised by edges within the interval with size ω. These

edges comprise upto ω different temporal walks originating from a specific node i. Therefore,

based on Property 1, the number of edges originating from node i is bounded by the number

of temporally-valid walks, which is ω.

5.5.3 Temporal Embeddings

5.5.3.1 Base embedding methods

Given the graph time-series representation and temporal model (Section 5.5.1-5.5.2),

the proposed approach can leverage any existing static embedding method to derive time-

dependent node embeddings that capture the important temporal dependencies between

the nodes as well as the temporal structural (role-based) and proximity-based proper-

ties [RJK+19]. We use the proposed framework to generalize a wide variety of static base

77

Algorithm V.2 General Framework for Temporal Embeddings
Ensure: ε or τ for deriving the graph time-series representation, base embedding method f (e.g.,

GraphWave, role2vec)

1 Construct a graph time-series G = {G1, G2, . . . , GT } using a graph time-series representation
{τ, ε} from Section 5.5.1.

2 Initialize Z0 to all zeros
3 for each Gk ∈ G do . for k = 1, 2, . . .
4 Use Alg. V.1 to derive the temporal reachability graph for Gk
5 Compute node embedding matrix Zk using the base embedding method f with the temporal

reachability graph from Alg. V.1

6 Concatenate or aggregate (using sum, mean, etc.) the embedding matrix, e.g., Z̄k =
(1−θ)Z̄k−1 +θZk where Z̄k is the temporally weighted embedding using the above exponential
weighting kernel K(·) and 0 ≤ θ ≤ 1 is a hyperparameter controlling the importance of past
information relative to more recent (Section 5.5.3.2).

7 return Z̄k (temporally weighted embeddings using K and θ) or Z =
[

Z1 Z2 · · · ZT
]

(concatenated embeddings)

embedding methods including both community-based and role-based structural node embed-

ding methods [RJK+19]. Namely, they are: (1) LINE [TQW+15b], (2) Node2vec [GL16],

(3) Graph2Gaussian [BG17], (4) struc2vec [RSF17], (5) Role2vec [ARZ+18], (6) Graph-

wave [DZHL18], and (7) multilens [JRK+19]. We provide the detailed configuration of each

individual method in Section 5.6.1.3 for reproducibility of the experiments. Among these

static methods, approaches (1-3) are community/proximity-based and (4-6) are role-based.

Method (7) is a hybrid that is based on structural similarity of node-central subgraphs.

5.5.3.2 Temporal fusion

Given the time-series of node embeddings {Zk}Tk=1, we explore two temporal fusion

techniques.

Concatenation: Given a time-series of embeddings, one simple approach to obtain a final

embedding is to concatenate the embeddings as follows: Z =
[
Z1 · · ·ZT

]
. We could further

weight the embeddings based on temporal recency, i.e., under-weighting node embeddings

that occur in the distant past since they are not as important as the more recent ones for

prediction.

Temporally weighting: This technique aggregates (e.g., sum, mean) the embedding matrix,

e.g., Z̄k = (1− θ)Z̄k−1 + θZk where Z̄k is the temporally weighted embedding using the above

78

exponential weighting kernel K(·). 0 ≤ θ ≤ 1 is a hyperparameter controlling the importance

of past information relative to more recent.

5.6 Experiments

In this section, we systematically investigate the effectiveness of each component in

the framework, i.e., the different graph time-series representations (Section 5.6.3, temporal

network models (Section 5.6.4), and the new dynamic node embedding methods generalized

using the proposed framework (Section 5.6.5). More specifically, we aim to explore the

following research questions:

• Q1 How well does the widely-used τ -graph time-series representation perform comparing

with the proposed ε-graph time-series?

• Q2 How effective is the proposed WTRG model comparing with the vanilla TRG

model? What temporal models are most useful for incorporating temporal dependencies

into static embedding methods?

• Q3 Are the dynamic embedding methods generalized via the framework useful for

temporal prediction? How do they compare to the state-of-the-art dynamic methods?

5.6.1 Experimental Setup

5.6.1.1 Data

We learn node embeddings from the graph time-series starting from roughly 1
3
of the

timespans. For example, for the bitcoin dataset, we train the classifier based on node

embeddings derived from month 20 to month 25 out of 63 months, inclusive. This ensures that

there are sufficient edges for training. For all datasets, we perform training on the first 6 graphs

and predict links on the 7th graph. Depending on the time-scale shown in Table 5.2, they

represent 6 months (enron, bitcoin, wiki-elec and overflow), weeks (fb-forum and

reality-call), or days (wiki-edit and contact-dublin). We create evaluation examples

from the links in the 7th graph and an equal number of randomly sampled pairs of unconnected

nodes as negative samples [SWG+20].

79

5.6.1.2 Model configuration and variants

We consider the task of link prediction over time and systematically compare the perfor-

mance of different temporal network models and representations. Given a set of timestamped

edges up to timestamp T , i.e., G = {G1, · · ·GT}, the temporal link prediction task aims to

predict the future links that will form in GT+1. We first follow the conventional setup to

construct the τ -graph time-series Gτ = {G1, · · ·GT} for model training and GT+1 for testing,

where each snapshot Gk(k ∈ {1, 2, · · · , T}) represents edges that occur within a consistent

time scale shown in Table 5.2. Then we construct the ε-graph time-series representation

Gε. For fair comparison, we set ε = |ET+1| to ensure the trained models based on both ε-

and τ -based temporal networks are used to predict links in the same hold-out test set GT+1.

Thus, graphs in the ε-graph time-series Gε = {G1, . . . , GT} and GT+1 are also consistent with

respect to the ε representation, where |E1| = |E2| = · · · = |ET+1|.
For each {ε, τ}-graph time-series representation, we select a temporal network model from

{SG, TSG,WTRG} and a base embedding method using the framework. Therefore, we have

totally 6 dynamic variants: {SG-ε, TSG-ε, WTRG-ε, SG-τ , TSG-τ , WTRG-τ}. To train

the classifier, we applying these dynamic variants to derive node embeddings and feed them

to the logistic regression model for prediction with regularization strength 1.0 and stopping

criteria 10−4. Following [CLX15b], we concatenate the node embeddings zi and zj to obtain

an edge embedding zij =
[
zi zj

]
. For temporal fusion, we use the temporally weighting

technique from Section 5.5.3.2 with θ = 0.8 for dimensional consistency. The TSG decay

parameter α is set to 0.8 for computational fairness. For all experiments, we perform 3 runs

and report the average.

5.6.1.3 Base and dynamic embedding method configuration

We configured all the base methods to achieve the best performance according to the

respective papers. For all the static methods based on random walks (i.e., node2vec, struc2vec),

we perform 20 walks with the maximum walk length L = 20. For node2vec, we perform grid

search over p, q ∈ {0.25, 0.50, 1, 2, 4} as mentioned in [GL16] and report the best performance.

For LINE and Multi-Lens, we incorporate 2nd-order proximity in the graph. For role2vec,

80

we leverage the node degree as the feature for roles. For Graphwave, we perform the method

to automatically select the scaling parameter with exact heat kernel matrix calculation. We

set the final embedding with dimension K = 128 for evaluation, and leverages the weighted

summation fusion approach so that the embedding dimensions of individual graphs are fixed

to be the same.

For the state-of-the-art dynamic embedding methods, we follow the configuration given

by the paper/code repository. Specifically, for CTDNE, we set #walks= 10, the walking

length L = 20. For node2bits, we perform short-term temporal random-walk with scope to

be 3. The the #walks and the walking length are set to be the same as CTDNE. For DANE,

we leverage both the offline computation model to derive node embeddings based on the

first 6 graphs, and the online model to derive node embeddings for the 6th graph based on

the first 5. We set the intermediate embedding dimensions to be 100 for both models and

report the best performance. For TIMERS, we set the tolerance threshold value that is used

to restart the optimal SVD calculation to be 0.17 as provided in the code repository. For

DyAE/DyAERNN, we leverage the 2-layer auto-encoder/decoder with 400 and 200 units,

respectively. We set the regularization hyperparameter to be 10−6, bounding ratio for number

of units in consecutive layers to be 0.3 as suggested in the paper, and perform grid search in

the range of ±10% of the default value. In the learning stage, the sgd learning rate is set

to be 10−6 with minibatch size to be 100. Lastly, for DySAT, we leverage the base model

and perform grid search on the default hyperparameters in the range of ±10% of the default

values.

5.6.2 WTRG vs. TRG

We first study the effectiveness of WTRG model over the vanilla TRG model. As WTRG

incorporates the strength of reachability in edge weights, we consider embedding methods

that handles weighted graphs, namely, they are node2vec, struc2vec and multilens. We run

both methods on two datasets using both TRG and WTRG with τ -graph time series as

shown in Table 5.4.

The first observation from Table 5.4 is that structure-based embedding methods tend to

outperform node2vec, the proximity-based method. In addition, we observe that WTRG

81

Table 5.4: Performance of WTRG over TRG on τ-graph time series.

bitcoin wiki-elec
Method Metric TRG WTRG TRG WTRG

node2vec
AUC 0.9214 0.9239 0.7348 0.7344
ACC 0.8294 0.8412 0.6171 0.6144
F1 0.8285 0.8408 0.5909 0.5889

struc2vec
AUC 0.9274 0.9301 0.7840 0.7933
ACC 0.7959 0.8109 0.6583 0.6703
F1 0.7925 0.8081 0.6388 0.6534

multilens
AUC 0.9226 0.9389 0.8106 0.8143
ACC 0.8656 0.8793 0.7438 0.7539
F1 0.8655 0.8792 0.7385 0.7493

improves most embedding methods in link prediction, except for node2vec on wiki-elec

dataset. One possible reason is that the random walker in WTRG are more likely to visit

nodes that are close in time, and thus limiting the derived embeddings to incorporate distant

neighborhood information. We put this deep study of WTRG in the future work. Nevertheless,

for embedding methods that are based on structural information, WTRG outperforms TRG

by 0.8% in AUC ,1.3% in ACC, and 1.4% in F1 score on average. As we observe that the

WTRG model tends to outperform the vanilla TRG model, we use WTRG in the rest of the

experiments.

5.6.3 Fixed #edges (ε) vs. time-scale (τ)

In this section, we investigate the effectiveness of different graph time-series representations

(Q1). Due to the massive amount of experimental results, we first define 2 evaluation metrics

for this experiment. These newly proposed measurement are for readers to have a clear

overview of the comparison results across all components in the proposed framework across

all the datasets.

We first evaluate the general performance of each temporal model through the mean

ranking (and std) across all datasets and embedding methods in terms of the AUC, ACC and

F1 score. We leverage the following metrics to better interpret the results. Let yjk ∈ R|M|

denote the vector of AUC (or ACC, F1) scores of the temporal modelsM for an embedding

method fj ∈ F and graph dataset k. Further, let π(yjk,Mi) denote the rank of the temporal

model Mi ∈M for a given embedding method fj and graph dataset dk ∈ D. The mean rank

82

is computed as

MRi =
1

|D||F|
∑
dk∈D

∑
fj∈F

π(yjk,Mi) (5.7)

Therefore, smaller values of MR indicate better model performance. We report the results in

Table 5.5. In addition to the general performance, we also provide an intuitive ranking based

on the number of times each model performs the best following [RAEZ18]. This metric si

reflects the occurrence of temporal model Mi to be optimal:

si =
∑
dk∈D

∑
fj∈F

I
{
π(yjk,Mi) = 1

}
(5.8)

where I{π(yjk,Mi) = 1} returns 1 if π(yjk,Mi) = 1 and 0 otherwise. I{π(yjk,Mi) = 1}
indicates that the temporal model Mi performs best for the given graph dataset dk and base

embedding method fj. Thus, si denotes the total score of model Mi based on the number of

times temporal model Mi appeared first in the ranking across all base embedding methods

and graph datasets.

Performance. Based on the results shown in Table 5.5, our first observation is that the

top-3 temporal models are those that use the proposed ε-graph time-series representation.

These models perform comparably well in terms of AUC, ACC and F1 and are in general

better than τ -graph time-series representation used in previous work. This finding indicates

the general effectiveness of ε-graph time-series in representing the temporal network. We also

compute an overall score by summing over each si for all evaluation criterion (bottom row in

Table 5.6). We observe that the top models are ε-based, which demonstrate the effectiveness

of ε-graph time-series in capturing the graph structural changes over edge frequency changes

in prediction tasks.

Sensitivity Analysis. We also conduct a parameter sensitivity analysis on two datasets,

bitcoin and fb-forum, to evaluate the impact of different values of τ and ε on the overall

performance. For bitcoin, we train our model on temporal data spanning 6 months and

test on the 7th month. Forfb-forum, we train on 12 weeks and test on the 13rd week.

We create the τ -graph time series using different scales (e.g., months, weeks, days), and

generate the same number of ε-graphs with equal number of edges. Based on the result shown

83

Table 5.5: Mean rank (and std.) of the temporal network models across all base embedding
methods and graphs based on AUC, ACC and F1, lower is better. The top-3 temporal network
models are based on the new ε-graph time-series representation (fixed #edges).

Temporal Mean Rank (MR)
Model AUC ACC F1

WTRG-ε 2.30± 2.16 2.73± 1.95 2.66± 1.90
TSG-ε 2.43± 1.84 2.61± 2.19 2.70± 2.24
SG-ε 2.57± 1.64 2.66± 1.86 2.59± 1.88

WTRG-τ 2.80± 1.96 2.80± 1.98 2.86± 1.99
SG-τ 2.95± 1.91 2.84± 1.87 2.82± 1.83

TSG-τ 3.63± 1.75 3.46± 1.87 3.45± 1.80
SG 4.32± 1.88 3.89± 1.91 3.93± 1.94

in Figure 5.4, we observe that our model running on the ε-graph time series consistently

outperforms the τ -graph time series, while being more robust. This also indicates that in

practice, the ε-graph time series can be used as an alternative to create temporal graph

snapshots for various mining tasks, especially in preliminary graph analysis when the optimal

timescale is undetermined.

(a) Prediction performance on bitcoin (b) Prediction performance on fb-forum

Figure 5.4: Sensitivity analysis. Link prediction performance on τ- and ε-graph. The τ-graphs
are created based on different timescales, the ε-graphs are created via equal division. mo.:
month. wk.: week.

Conclusion 5. Overall, the proposed ε-graph time-series representation based on a fixed

number of edges outperforms the time-scale τ -graph time-series across different scales, while

being more robust.

84

5.6.4 Temporal Model Comparison

To answer Q2, we follow the formulation in Section 5.6.3 to quantitatively evaluate and

rank the temporal models according to their effectiveness in prediction. We show the complete

performance of temporal network models that perform the best following Equation (5.8) with

respect to individual datasets in Table 5.6 to supplement the mean ranking in Table 5.5.

Notably, the TSG-ε model has the highest # of first ranks across all datasets, especially on

datasets with short timespans (i.e., wiki-edit and contacts). It also has the highest # of

first ranking, in terms of ACC and F1, which indicates that this model is generally promising

but at the same time less stable than the other ε-based models. We also confirm this finding

in Table 5.5 as it shows relatively higher variance of ranking. WTRG-ε performs the second

best and is a close second to TSG-ε on datasets with long timespans. This is potentially due

to how they model the temporal recency: TSG models the past information with exponential

decay (5.3), while WTRG models it with the absolute temporal difference (5.5). Thus,

TSG could still capture the temporal evolution within a relatively short period of time.

Nevertheless, both TSG and WTRG perform well on all datasets even though spikes and

flucation are observed such as fb-forum (Figure 5.1). It can be seen that there is not a single

temporal model that prevails across all datasets. On the other hand, the WTRG model

tends to performs well regardless of the timescales in graph representation, while TSG model

tends to perform well on graphs with short timespans. Besides, the temporal models that

are combined with the proposed ε-graph time-series representation tend to outperform their

other τ -counterparts, which is consistent with our previous findings from Section 5.6.3.

Table 5.6: Temporal model performance across the temporal graphs. Each (i, j) is the # of
times temporal model Mj ∈ M in graph Gi performed best comparing to the other models
across all base embedding methods f ∈ F and evaluation criterion. We bold the temporal
model that performs best overall for each graph.

TSG-ε WTRG-ε SG-ε SG-τ WTRG-τ SG TSG-τ
bitcoin 6 6 4 5 0 0 0

stackoverflow 1 4 3 3 9 0 1
enron 4 1 1 3 8 4 0

wiki-elec 2 6 7 6 0 0 0
fb-forum 10 10 0 1 0 0 0

wiki-edit 7 3 2 3 2 2 2
reality-call 1 0 2 4 6 4 4

contacts-dublin 9 2 8 1 1 0 0
overall score 40 32 27 26 26 10 7

85

Figure 5.5: Predictive results of the dynamic embedding methods and our framework. Our
proposed framework approximates well to approaches specifically designed for temporal graphs
with comparable or even better performance (ML = multilens, s2v = struc2vec).

Conclusion 6. Out of all models, WTRG-ε and TSG-ε tend to perform the best. Empir-

ically, WTRG-ε is more stable overall (Table 5.5) and TSG-ε performs well on datasets with

short timespans (Table 5.6).

5.6.5 Dynamic Embeddings: Variants vs. State-of-the-art

To answer Q3, we first use the framework to derive new dynamic embedding methods (by

selecting the representation, temporal model, base embedding method, etc.), then we compare

their performance to the state-of-the-art dynamic embedding methods on all 8 datasets. One

would presumably expect that the state-of-the-art methods for dynamic node embeddings will

outperform the dynamic embedding methods generalized by our framework. This is because

the state-of-the-art methods are typically more complex and have been designed specifically

for learning such dynamic node embeddings. We use 9 recent state-of-the-art dynamic

methods during 2017 ∼ 2020 as baselines, including CTDNE [NLR+18], node2bits [JHRK19],

DANE [LDH+17], DynGem [GKHL18] TIMERS [ZCP+18], DynAE/DynAERNN [GCC19],

DySAT [SWG+20], DyHATR [XYJ+20], and EvolveGCN[PDC+20].

Figure 5.5 shows the mean AUC for each method where the average is taken over all graphs

investigated. As representative dynamic embedding methods from the proposed framework,

we use 4 dynamic embedding variants of struc2vec (s2v-TSG-ε/τ , s2v-WTRG-ε/τ) and 4

86

variants of MultiLENS (ML-TSG-ε/τ , ML-WTRG-ε/τ). Strikingly, we observe that the

dynamic embedding methods from the framework perform comparably or even better than the

state-of-the-art methods that are designed particularly for temporal graphs and time-series

prediction. In particular, ML-TSG-ε performs best with a mean gain of 12.34% followed

by s2v-TSG-ε with a gain in AUC of 10.97%. Also, we note that our proposed framework

is computationally efficient. Taking multilens as an base embedding method, our proposed

framework has the computational complexity O(|E||G|) where |G| is the number of graphs in

the time-series, and the number of parameters to learn is O(|V ||G|). This is also validated

empirically throughout our experiment.

Conclusion 7. The dynamic embeddings derived from our framework leveraging conven-

tional static embedding methods (Section 5.5) perform better than state-of-the-art dynamic

embedding methods.

Notably, in this experiment we do not aim to show substantial improvement of our

framework over all the dynamic approaches, especially those based on deep learning, since

node features are not used. Instead, these results show that our proposed framework could

capture the graph structures and temporal dependency at least as good as those recent

dynamic approaches with less complexity (i.e., no transitional or latent variables), Unlike

methods that are based on complex models as “black boxes”, the components of our proposed

framework are easy-to-understand, which further motivates its usage for practitioners in

predictive applications.

5.7 Complete Experimental Results

In this section, we show the complete experimental results using the both the dynamic

approaches generated from our proposed framework, and the state-of-the-art approaches

specifically designed to handle dynamic graphs. In total, we perform 3 runs of the experiments

on 8 dynamic graphs and report the average AUC, ACC and F1 metrics with the standard

deviation. The dynamic methods generated from our proposed framework include 7 base

static embedding methods coupled with 6 temporal models as well as the static form, i.e.,

not using the temporal information. We also include 7 state-of-the-art dynamic embedding

87

Table 5.7: Complete experimental results on the first 2 datasets. The values are represented
using percentage %.

Base Temporal bitcoin stackoverflow
Method Model AUC ACC F1 AUC ACC F1

Node2vec

Static 89.05± 0.44 76.74± 0.70 75.89± 0.74 95.97± 0.02 84.34± 0.16 84.09± 0.17
SG-τ 93.80± 0.62 86.63± 0.20 86.58± 0.20 96.11± 0.05 88.00± 0.14 87.94± 0.15

WTRG-τ 95.15± 0.45 88.71± 0.61 88.65± 0.63 96.45± 0.05 89.67± 0.34 89.65± 0.35
SG-ε 95.08± 0.63 88.76± 0.67 88.74± 0.67 96.11± 0.05 88.13± 0.29 88.08± 0.29

WTRG-ε 95.89± 0.19 89.82± 0.47 89.79± 0.48 96.51± 0.02 89.41± 0.09 89.37± 0.09
TSG-τ 89.37± 0.40 76.79± 1.02 75.97± 1.12 96.08± 0.04 84.65± 0.25 84.42± 0.26
TSG-ε 90.46± 0.05 77.15± 0.09 76.37± 0.09 96.18± 0.02 84.69± 0.17 84.45± 0.19

LINE

Static 87.58± 0.00 75.86± 0.00 75.11± 0.00 97.08± 0.00 91.41± 0.00 91.39± 0.00
SG-τ 89.75± 0.00 82.48± 0.00 82.46± 0.00 96.79± 0.00 91.87± 0.00 91.87± 0.00

WTRG-τ 89.49± 0.00 82.24± 0.00 82.24± 0.00 96.95± 0.00 91.92± 0.00 91.92± 0.00
SG-ε 89.18± 0.00 83.49± 0.00 83.48± 0.00 96.96± 0.00 91.85± 0.00 91.85± 0.00

WTRG-ε 91.68± 0.00 84.81± 0.00 84.81± 0.00 96.79± 0.00 91.48± 0.00 91.48± 0.00
TSG-τ 87.59± 0.00 76.48± 0.00 75.86± 0.00 97.25± 0.00 91.44± 0.00 91.42± 0.00
TSG-ε 89.28± 0.00 76.71± 0.00 75.99± 0.00 97.23± 0.00 91.26± 0.00 91.23± 0.00

Struc2vec

Static 91.56± 0.16 81.70± 0.28 81.40± 0.33 96.99± 0.02 84.82± 0.17 84.57± 0.17
SG-τ 95.19± 0.59 87.83± 0.68 87.78± 0.68 96.92± 0.05 88.38± 0.29 88.30± 0.30

WTRG-τ 92.10± 0.97 84.22± 1.36 84.19± 1.35 96.66± 0.10 88.12± 1.00 88.04± 1.03
SG-ε 96.37± 0.68 89.85± 0.25 89.83± 0.25 97.01± 0.04 88.39± 0.11 88.30± 0.11

WTRG-ε 92.42± 0.33 83.78± 0.65 83.74± 0.65 96.67± 0.14 87.50± 0.59 87.40± 0.60
TSG-τ 91.61± 0.16 81.93± 0.13 81.65± 0.15 96.95± 0.03 84.92± 0.11 84.67± 0.11
TSG-ε 92.17± 0.07 81.85± 0.75 81.46± 0.79 97.16± 0.03 84.67± 0.15 84.38± 0.16

Role2vec

Static 85.02± 0.04 76.27± 0.24 75.49± 0.24 92.10± 0.15 84.00± 0.05 83.77± 0.05
SG-τ 94.90± 0.84 87.77± 0.63 87.73± 0.63 95.45± 0.11 85.26± 0.14 85.15± 0.16

WTRG-τ 93.07± 1.11 85.64± 1.12 85.63± 1.12 95.51± 0.05 88.27± 0.71 88.24± 0.72
SG-ε 93.33± 0.66 85.70± 0.96 85.68± 0.97 95.34± 0.20 83.94± 0.06 83.67± 0.07

WTRG-ε 93.59± 0.33 86.81± 1.13 86.78± 1.12 95.90± 0.08 86.89± 0.85 86.79± 0.87
TSG-τ 85.50± 0.26 75.96± 0.43 75.16± 0.44 92.36± 0.05 84.00± 0.03 83.76± 0.03
TSG-ε 86.03± 0.20 75.78± 0.88 75.01± 0.91 93.13± 0.10 83.80± 0.06 83.52± 0.07

Graphwave

Static 91.73± 0.00 77.96± 0.00 77.25± 0.00 96.89± 0.00 84.49± 0.00 84.26± 0.00
SG-τ 99.13± 0.00 91.90± 0.00 91.85± 0.00 96.84± 0.00 84.49± 0.00 84.26± 0.00

WTRG-τ 99.13± 0.00 91.36± 0.00 91.29± 0.00 96.89± 0.00 84.51± 0.00 84.28± 0.00
SG-ε 99.48± 0.00 91.12± 0.00 91.05± 0.00 97.07± 0.00 84.25± 0.00 83.97± 0.00

WTRG-ε 99.42± 0.00 89.88± 0.00 89.77± 0.00 97.07± 0.00 84.25± 0.00 83.97± 0.00
TSG-τ 91.98± 0.00 77.26± 0.00 76.46± 0.00 96.96± 0.00 84.49± 0.00 84.26± 0.00
TSG-ε 91.96± 0.00 76.56± 0.00 75.76± 0.00 96.99± 0.00 84.25± 0.00 83.97± 0.00

G2G

Static 85.16± 0.87 76.37± 0.91 75.97± 1.02 93.15± 0.10 83.80± 0.11 83.66± 0.12
SG-τ 72.64± 1.56 67.63± 1.51 67.61± 1.52 92.94± 0.18 86.95± 0.28 86.94± 0.28

WTRG-τ 80.32± 0.92 72.04± 1.15 72.04± 1.15 95.64± 0.30 90.30± 0.17 90.29± 0.17
SG-ε 71.66± 3.08 67.00± 2.46 66.96± 2.47 92.32± 0.51 86.58± 0.41 86.58± 0.41

WTRG-ε 77.97± 1.37 71.08± 2.18 71.07± 2.18 95.37± 0.24 90.67± 0.38 90.65± 0.39
TSG-τ 85.59± 0.91 76.20± 0.66 75.75± 0.66 93.27± 0.32 83.91± 0.54 83.77± 0.57
TSG-ε 87.20± 0.87 77.98± 0.72 77.63± 0.76 93.83± 0.10 84.03± 0.19 83.86± 0.19

Multilens

Static 91.28± 0.00 81.85± 0.00 81.63± 0.00 97.12± 0.00 90.24± 0.00 90.19± 0.00
SG-τ 82.43± 0.00 75.47± 0.00 75.06± 0.00 96.95± 0.00 92.98± 0.00 92.98± 0.00

WTRG-τ 84.48± 0.00 77.80± 0.00 77.55± 0.00 96.97± 0.00 92.16± 0.00 92.15± 0.00
SG-ε 89.56± 0.00 80.22± 0.00 79.99± 0.00 97.24± 0.00 92.84± 0.00 92.84± 0.00

WTRG-ε 87.33± 0.00 79.13± 0.00 78.94± 0.00 96.79± 0.00 92.56± 0.00 92.55± 0.00
TSG-τ 91.28± 0.00 81.85± 0.00 81.63± 0.00 97.12± 0.00 90.24± 0.00 90.19± 0.00
TSG-ε 92.50± 0.00 82.01± 0.00 81.67± 0.00 97.18± 0.00 89.84± 0.00 89.78± 0.00

CTDNE

-

92.70± 0.12 86.29± 0.14 86.24± 0.14 97.43± 0.01 91.81± 0.22 91.79± 0.22
Node2bits 88.97± 0.16 80.69± 0.48 80.43± 0.51 97.01± 0.03 90.85± 0.15 90.82± 0.15

DANE 73.84± 0.00 67.29± 0.00 64.92± 0.00 75.31± 0.00 74.13± 0.00 73.22± 0.00
TIMERS 63.50± 0.00 61.68± 0.00 58.83± 0.00 96.30± 0.00 89.00± 0.00 88.93± 0.00
DynAE 61.41± 0.21 58.57± 0.00 55.36± 0.00 73.23± 0.94 71.57± 0.26 70.82± 0.31

DynAERNN 57.30± 3.93 58.36± 0.46 54.83± 0.61 72.48± 0.92 71.20± 1.32 70.34± 1.63
DySAT 61.08± 0.12 58.10± 0.68 58.09± 0.68 92.97± 1.14 84.06± 0.97 84.15± 1.51

approaches. We leverage Equation (5.7) and Equation (5.8) to aggregate the extensive results

for interpretation. In Table 5.7, we only show the complete results on the first 3 datasets

used in this work due to the space limit.

88

5.8 Conclusion

Despite the recent increasing interest in temporal networks in the field of representation

learning, there has been relatively little work that systematically studies the properties of

temporal network models and their cornerstones, the graph time-series representations. This

works attempts to fill this gap by proposing a general yet powerful framework. Specifically,

we introduce the notion of ε-graph time-series to address data imbalance that arise with the

traditional way of deriving a graph time-series based on a—sometimes arbitrary—time-scale

(e.g., 1 day or 1 week). We find that the ε-graph time-series is beneficial to most existing

embedding methods in temporal link prediction. Furthermore, our proposed framework gives

rise to new dynamic embedding methods by combining these graph time-series representations,

temporal models, and base static embedding methods. We find that although there is no

single temporal model (or embedding method) that could prevail on any dataset, our proposed

WTRG model and TSG model along with the ε time-series tend to perform the best across

all datasets studied. We further show that these dynamic embedding approaches from our

framework outperform recent, powerful dynamic embedding methods.

89

Part II: Node Embedding via Non-latent

Feature Importance Summarization

90

CHAPTER VI

Domain-knowledge-guided Summarization of Graph

Collections

This chapter is based on work that appeared at ICDM 2017 [JK17].

6.1 Introduction

So far, we have introduced new embedding methodology using the idea of graph summa-

rization and verified the effectiveness of summarizing latent graph structural features and

temporal proximity on a variety of machine learning tasks. Now we turn our focus to original

graph features, as these non-latent features are widely used in traditional summarization

approaches for applications that require interpretability, such as visualization or query an-

swering. The remainder of this thesis focuses on the following question: how can we leverage

these non-latent features to perform ML tasks to achieve state-of-the-art performance, while

retaining interpretability? How can we use the non-latent feature summaries as the high-level

knowledge to handle more advanced ML scenarios such as transfer learning?

Technological advances have led to a tremendous increase in the collected data at a

finer granularity than ever, including scientific data from different domains that has the

potential to lead to new knowledge. Graphs are prevalent in scientific and other data, as

they naturally encode various phenomena like structural or functional brain connectivity

in neuroscience [DH14], compounds in chemistry, protein interactions in biology, symptom

relations in healthcare [SSTZ12], behavioral patterns in social sciences, mobility patterns

91

Figure 6.1: Overview of EAGLE: Given an input graph g and a set of B baseline graphs Gi

that encode the domain knowledge, we seek to find a domain-specific, feature-based summary
of g that is diverse, concise, and interpretable. The summary consists of univariate feature
distributions (e.g., degree, PageRank).

in transportation engineering, and more. However, the size and complexity of these graphs

call for statistical and programmatic tools that can harness them. Motivated by this need,

we focus on the problem of summarizing graph data in a scalable and domain-aware way,

enabling the extraction of intelligible information.

The typical first step of exploring a new graph dataset (e.g., brain connectome; social,

technological, or communication network) often involves plotting, fitting, seeking for outliers

in, and summarizing the distributions of various graph invariants (or features) such as degree,

PageRank, radius, local clustering coefficient, eigenvectors, node attributes, and many more.

Univariate and bivariate distributions are often used in graph mining to discover anomalous

patterns at the node or graph level ([ACK+12, KJNF15, JCB+14]). However, the features to

be explored are usually determined in a feature engineering approach, which heavily depends

on the analyst’s knowledge, intuition, and prior studies. For example, in connectomics,

typical features for comparing healthy and non-healthy populations include the average

degree, clustering coefficient, path length [BS09, DH14].

Moreover, the features selected in existing techniques are determined by the choice

of evaluation metrics and are task-dependent. For example, highly correlated features

are more likely to be chosen in clustering; independent features are more likely to be

chosen for classification. Recent developments in representation learning study latent feature

92

representations via optimization frameworks. Although they are promising and remove the

ad-hoc property of feature engineering, they return latent representations which are hard

to interpret and are mostly suited for specific tasks such as link prediction and multi-label

classification. Therefore, there is need for a general summarization or feature selection

technique for exploring graph properties independent of specific tasks.

Proposed Approach: Motivated by these observations, our proposed method, EAGLE,

aims to model the exploratory analysis of graph data as a mathematically rigorous feature

selection problem which is automatically guided by and, thus, conditioned on the domain of

the data. Throughout the paper, features is used to refer to a combination of graph invariants,

or structural node attributes (discrete or continuous—e.g., degree, PageRank, clustering

coefficient), and categorical or numerical node attributes. Each feature is represented by its

(univariate) distribution over the nodes in the graph. Specifically, EAGLE seeks to summarize

an input graph g with the aid of a small set of features by leveraging the information encoded

in a set of “baseline” graphs Gi for i ∈ {1, 2, . . . , k}, which, in combination with their invariant

distributions, represent the domain knowledge.

For instance in Fig. 6.1, let the input graph be a new social network (g) and the domain

contain well-established social networks (Gi). A ‘surprising’ summary of g would consist of a

small set of features including the degree distribution (the leftmost distribution in the central

box) which follows the Gaussian distribution, while in the domain a power-law distribution

is expected. Our approach can be seen either as feature-based graph summarization, or

domain-specific feature selection that seeks to choose some features for an input graph

conditioned on the features of the baseline graphs. This conditional property sets our work

apart from traditional feature selection methods that jointly operate on a set of observations

(e.g., select features from multiple graphs).

We formalize the problem as an optimization model that outputs an interpretable, feature-

based summary satisfying four important properties: diversity, conciseness, domain specificity,

and efficiency. Application-wise, we consider the cases where the number of features in the

summary (i) can be defined via prior knowledge or domain expertise, or (ii) need to be defined

automatically. Our main contributions are:

• Novel Formulation: We propose a new mathematical formulation of graph exploration as

93

a conditional feature selection problem over structural or other node attributes. The goal of

our proposed constrained optimization framework is to find a diverse, succinct, domain-specific

summary for the input graph, which is also interpretable.

• Scalable Algorithms: We propose Eagle-Fix and Eagle-Flex, two efficient methods

for obtaining the desired summaries. To speed up our methods, we carefully handle the

correlations between graph features by systematically investigating their affinities in a data-

driven way.

• Experiments: We compare EAGLE with baseline approaches on a variety of real-world

datasets (including social networks, citation networks, and human connectomes) and show

that it satisfies all the desired properties and it is scalable. Although our approach is

task-independent, we show that it can be applied to traditional graph mining tasks, such as

classification.

6.2 Related Work

Our work is related to several research directions that are additional to work described in

Chapter II:

Feature selection. The process of feature selection consists of two parts: a search

technique for proposing new feature subsets, and a measure for evaluating these different

feature subsets. Search techniques vary from exhaustive [GE03] to improved ones, such as

greedy hill climbing. Evaluation metrics are divided into three categories: wrappers (which

use predictive models to score feature subsets, e.g., [PLD05]), filters (which use measures, such

as pointwise mutual information [YP97]), and embedded methods (which perform selection as

part of the model construction process [Bac08]). Our proposed method, EAGLE, is the first

approach searching for features greedily based on the domain knowledge and expectations and

specifically targeting the graph setting. Moreover, while the above methods select features

by jointly learning from all the available observations, our method performs a ‘customized’

feature selection for a given graph conditioned on observations from a set of baseline graphs.

Though EAGLE is used for summarizing a dataset with desired properties and there is

no particular task guiding its evaluation, we showcase how to adapt it for task-dependent

94

evaluation too.

Pattern mining and Summaries. Mining static graphs often involves analyzing the

distributions of specific graph invariants (e.g., skewed degree distribution [FFF99] in numerous

settings, small-worldness in connectomics [BS09, DH14]), and speeding up their computations

(e.g., betweenness centrality [BKMM07]). Moreover, systems [ACK+12, KJNF15] have been

proposed for anomaly detection via analyzing specific distributions of graph invariants, and

spam detection on bivariate distributions. These methods focus on modeling manually-chosen

distributions of invariants and potentially finding outliers in them, while our work aims to

automatically detect the features that summarize a given graph depending on its domain.

Moreover, we assume that fast methods are used prior to applying EAGLE in order to obtain

the distributions of various node invariants. Although EAGLE finds feature-based summaries

for an input graph, our work differs significantly from graph summarization [LDSK16,

KKVF14], which typically seeks to find a compact representation of a network with fewer

nodes/links.

Similarity/Distance and Interestingness measures. An excellent review of existing

distance/similarity measures for distributions is given in [Cha07]. Attempts to define the

interestingness of a plot or distribution by studying its geometric properties [GH06] include:

Scagnostics [WAG05], which ranks and guides the interactive exploration of bivariate distri-

butions, and motif-based interestingness measures for local patterns in scatterplots [SSB+15].

However, unlike our work, these methods are unaware of the domain and introduce generic

measures that define the ‘interestingness’ of each plot independently.

6.3 Methodology: EAGLE

Motivated by the large amounts of graph data and the prevalent need for exploratory anal-

ysis in various areas (e.g., neuroscience, social science), we focus on generating interpretable

graph summaries by leveraging the domain knowledge:

Definition 18 (Domain Knowledge). We refer to the expected patterns (or laws) for the

distributions of node invariants or other attributes in a specific area as the domain knowledge.

Examples of graph invariants include global structural statistics such as the degree and

95

PageRank; local structural statistics such as the egonet size, interactions to neighbors, and

properties revealed by different algorithms such as community detection. In social science,

examples of categorical and numerical attributes are the gender and age of a user, respectively.

Our assumption is that the domain expectations are implicitly encoded in a set of baseline

graphs which belong to that domain. For example, in social networks many distributions

of structural attributes (e.g., degree variants, PageRank) are expected to follow a power

law [FFF99], while in functional connectomes that are produced via neuroimaging techniques

more uniform distributions are expected. Based on this definition, we state the problem that

we tackle as follows:

Problem 2 (Exploratory Analysis of Graph Data using Domain Knowledge). Given the node

features of a plain or attributed input graph g and a set G of baseline graphs Gi, i = 1, . . . , B,

we seek to find a domain-specific summary consisting of a small set of representative and

interpretable features in an efficient way.

If g is attributed, the features consist of invariants and node attributes. Otherwise, the

features include only node invariants. Our main idea is to formulate the exploratory analysis

of graphs as an optimization model that will produce as an output a feature-based summary

with four desired properties:

• P1. High Diversity / Coverage. The summary is required to ‘cover’ the information or

patterns or laws encoded in the baseline graphs: the features in the summary should provide

diverse aspects of the domain knowledge. We measure diversity between the features through

the concept of “similarity", so the features in the summary should have trivial dependence.

• P2. Conciseness. Although diversity is crucial for good summaries, it connives the

“greed" to select features: the most diverse summary should contain many features. To avoid

duplication and verbosity, conciseness indicates that the number of features in the summary

should be small.

• P3. Domain-specificity. Based on the information of the baseline graphs G, the summary

of g should be related or contrasted to the features of the baseline graphs. For example, if a

‘contrasted’ summary is required and all the baselines follow a power law degree distribution

(e.g., social networks) while g does not, the degree distribution should be included in the

96

summary. However, a ‘contrasted’ summary in a different domain (e.g., neuroscience) would

include different features.

• P4. Efficiency. Given the soaring amount of data being generated daily, the computation

of the summary must be efficient and scale to large amounts of data.

Moreover, an informal desired property is that the selected features are interpretable and

easy-to-understand. To that end, unlike network embedding or factorization-based methods,

we seek summaries that do not rely on latent features. Next we introduce our proposed

optimization framework. For reference, we list the major symbols that are additional to

Table 2.1 from Chapter II in Table 6.1.

Table 6.1: Table of symbols.

Symbol Definition
G a collection of baseline graphs, G = {G1, G2, . . . , GK}
g input graph
K total number of baseline graphs
F size of feature space
B number of buckets in a distribution
λ1,2,3 regularization parameters
f F × 1 indicator vector for selected features, f ∈ {0, 1}F
SF F × F pairwise feature relevance matrix for the baseline graphs G
SFi F × F pairwise feature relevance matrix for baseline graph Gi

w K × 1 weight vector for the baseline graphs in G, ∑K
i wi = 1

h F × 1 vector denoting similarity / distance between
equivalent marginal distributions (e.g., degree) of g and G

φ(·) coupling function of the input graph g and the baseline graphs G

6.3.1 Proposed Formulation

We propose to model the Exploratory Analysis of Graph Data problem as an optimization

problem that encodes the above-mentioned desired properties and selects the features to add

in the summary such that:

arg min
f
λ1 fTSFf︸ ︷︷ ︸

1st term

+λ2 ‖f‖0︸︷︷︸
2nd term

+λ3 · φ(g,G1, G2, . . . , GB)︸ ︷︷ ︸
3rd term

(6.1)

where f ∈ {0, 1}F is the vector indicating the selected features; SF is the aggregated matrix

that represents the pairwise feature relevance in the domain of interest, as encoded in the

baseline graphs G; ‖f‖0 is the l0-norm of the indicator feature vector; φ() is a function

97

that couples the input graph g and the baseline graphs, thus grounding the summary to

domain; and λ1, λ2, λ3 are regularization parameters which are set so that the three terms

are comparable (cf. § 6.3.5).

Intuitively, the first quadratic term, fTSFf , forces the selected features to be diverse. It

uses the baseline graphs to establish the ‘norms’ in the domain of interest and uses them to

capture the relevance between all pairs of graph invariants. Specifically, SF represents the

aggregate of the ‘correlation’ or relevance between all F features over the baseline graphs

G, while the quadratic term evaluates the sum of relevance scores of selected features. The

regularization parameter λ1 is set to a positive number (discussed later). Unlike existing

work, this term quantifies the relevance between different graph invariants (e.g., PageRank

and local clustering coefficient) in the domain by harnessing the information in the baseline

graphs.

The second term, ‖f‖0, which is multiplied by a positive regularization parameter λ2,

requires that the summary is concise, i.e., it consists of a few features. Although, ideally, the

l0-norm encodes this requirement, we will later relax this constraint to the l2-norm which is

mathematically tractable.

The last term, φ(g,G1, . . . , Gk), is crucial because it couples the input graph g and

the domain knowledge. It can be interpreted as the term that forces the features that will

be selected for the summary to come as close (or far) as possible to those of the baseline

graphs. That way, it can be tuned to provide an ‘ordinary/expected’ summary or a ‘surprising’

summary. This is useful when an analyst who knows the information that is being captured

in the baseline graphs (e.g., connectomes of subjects with depression) wants to see a holistic

overview of the feature-based similarities and possible differences of a newly obtained graph

(e.g., connectome of a new subject). When φ() is a positive, increasing function of f , we have

the so-called “0 pit” problem of Equation (6.1):

Definition 19 (The 0-pit problem). When the three terms of Equation (6.1) are positive,

the solution is 0F×1 irrespectively of the input and baseline node invariants, i.e., the objective

function falls into a “pit” with optimal value 0.

To handle this problem, we add constraints to our optimization problem. We elaborate

98

more on the design choices of this term and the additional constraints in Section 6.3.3.

The efficiency of computing the summary comes from our proposed framework, which we

discuss in Section 6.3.4. The additional (informal) requirement for interpretability follows

from our feature representation in f . As opposed to latent representations that are hard

to interpret, in our work the selected features correspond to node invariants (e.g., degree,

PageRank) or node attributes, which depend on the domain. Throughout our formulation, we

assume that the graph features are represented by their PDFs (Probability Density Function)

and adapt appropriate measures to quantify their relevance/dissimilarities.

6.3.2 Proposed Model for Feature Diversity

As we mentioned above, the first term in our proposed optimization function enforces

diversity in the selected features so that they are not correlated. In this subsection we discuss

how we design SF in order to capture the ‘correlation’ between the node invariants per baseline

graph. Assuming that only the PDFs of the node invariants are provided, computing the

correlation between the corresponding invariants is not feasible (more information per node

would be needed). Thus, we use feature relevance or similarity between different invariants

as a surrogate correlation model.

In general, the features (node invariants) that are considered can be: discrete (e.g., degree

distribution) or continuous (e.g., PageRank distribution). If we view each PDF i as a vector

of length li, it can be seen that different invariants are represented by distribution vectors

of different lengths, which leads to two main challenges: (i) What is the right length for

each distribution vector, or, put differently, what is the proper size of buckets to be used in

different node invariant distributions? and (ii) How can we compute the relevance between

two PDFs of different lengths? We address these two questions next.

(i) A general feature representation model. In order to compute the relevance between

the features in the baseline graphs, we first need to define the feature model. As we mentioned,

we view each feature i as the PDF of the corresponding invariant, which can be represented

as a vector of length li or, equivalently, li ‘buckets’. If the PDF is organized in a large

number of buckets, the histogram “looks" uniform, while a small number of buckets results in

information loss by aggregating many original values into one bucket.

99

(a) Social science: Slashdot [SNA] (b) Neuroscience: Functional connectome

Figure 6.2: The discrete and continuous PDFs with different bucket sizing, from left to right,
the bucket sizing is: 1

10 ,
1

100 ,
1

10000 times the range of values; “unique” means the unique values
in the PDF; “Scott” refers to the bucket sizing computed by Scott’s rule.

Visualizing the feature distributions involves selecting the number of buckets li. For

example, for a degree distribution, the number of buckets is equal to the number of unique

node degrees, while for a PageRank distribution the number of buckets depends on the analyst

and the data at hand. As we see in Fig. 6.2, the number of buckets is critical when computing

the relevance between two features via their PDFs, as they can lead to different ‘shapes’

of distributions, and help with or prevent the detection of patterns (e.g., spikes). Fig. 6.2

indicates that a large number of buckets helps show the pattern of discrete PDFs such as the

power-law of the out-degree distribution with 10−4 range in Fig. 6.2a, yet a small number

of buckets fails to reflect the actual pattern and may miss the spikes that often indicate

anomalies. On the contrary, for continuous PDFs, many buckets blur the patterns as the

values in the distribution may differ slightly, while fewer buckets may address this problem.

This is illustrated through the “uniform” distribution with unique bucketing in Fig. 6.2b.

We propose to find proper bucket sizing for any (discrete or continuous) PDF by adapting

Scott’s reference rule [Sco79]:

Bucket size = 3.5 · δ̂/n1/3 (6.2)

where δ̂ is the sample standard deviation and n is the number of elements in the distribution.

The distribution plots labeled “Scott” in Fig. 6.2 illustrate the effectiveness of Scott’s rule

by capturing not only the pattern, but also existing spikes. Scott’s rule generates a flexible

number of buckets for different PDFs, and it applies to both big and small graphs. There are

100

several variants such as Sturges’ formula [Stu26] and Freedman–Diaconis’ rule [FD81], all

apply to different settings. For generality, we integrate all these rules including the fixed sizing

in the proposed framework and use Scott’s rule to conduct computation and experiments.

(ii) A surrogate feature correlation model. Assuming that only the PDFs of the node

invariants are provided, computing the correlation between the corresponding invariants is

not feasible (more information per node would be needed). Thus, we use feature relevance or

similarity between different invariants as a surrogate correlation model. Other traditional

distance-based measures [Cha07] can be applied when two distribution vectors are of the

same length, but, as we saw above, this is usually not the case when dealing with distributions

of different invariants, e.g., degree vs. PageRank. For PDFs of different lengths, such as the

ones generated by Scott’s rule, those measures are not suitable unless they are normalized to

have the same length. We discussed the challenges of such normalization above (a general

feature representation model).

To emphasize the importance of ‘shape’ match between distributions of different invariants,

and not point-wise match, we propose to leverage the dynamic time warping (DTW) algorithm.

DTW is designed to calculate an optimal match between two given sequences by “warping”

them non-linearly, so that the distance calculated is independent of variations in the warped

dimension. For PDFs that denote the graph statistics distributions, DTW calculates the

feature-by-feature distance independent of variations in the number of buckets, which can be

converted to similarity in many ways, including s = (1 + d)−1. DTW-based similarity works

for both cases whether two PDFs are of the same or different lengths.

For generality, we integrate DTW and traditional distance-based methods in the proposed

framework and primarily use DTW similarity in our experiments. Per baseline graph Gi, we

compute the pairwise feature relevance matrix SFi:

SFi(fj, fl) = s(PDFGi,fj , PDFGi,fl) (6.3)

where PDFGi,fj is the PDF for the jth feature of graph Gi, and s() is the desired similarity

between two distributions. By definition, the diagonal elements of each relevance matrix are

101

1. We can obtain the aggregate pairwise feature relevance matrix as their weighted sum:

SF(fj, fl) =
∑B

i=1 wi · SFi(fj, fl) (6.4)

where wi is the weight or ‘importance’ of graph Gi in the computation, and
∑B

i=1wi = 1.

6.3.3 Proposed Model for Domain-Specificity

The last term, φ(g,G1, . . . , Gk), in Eq. (6.1) couples the input graph g and the domain

knowledge. Unlike prior work in the literature which focuses on one graph only and assigns

interestingness or anomaly scores to a distribution independently of the domain knowledge

(e.g., Scagnostics [WAG05]), the third term aims to find the distributions that bear the most

or fewest number of similarities with other graphs in the domain.

We propose to model the domain specificity with a simple and intuitive linear formulation,

φ(g,G1, . . . , Gk) = fTh, where hj in h = [h1, h2, . . . , hF] is the aggregate relation score

between the jth marginal distributions (e.g., degree) of g and the baseline graphs Gi. The

relation can be set to be a similarity or a distance measure resulting in an ‘ordinary’ or

‘surprising’ summary (§ 6.3.5). This choice is directly related to the “0 pit” problem: (i) If h

is modeled as similarity, we need to force the solution of the optimization problem to make

selections by adding constraints on f ; and (ii) If h is modeled as distance, the last term

becomes negative (i.e., minimizing the ‘negative’ distance) by setting λ3 < 0.

Unlike SF which computes the relevance between different invariant distributions of a

single graph Gi, h focuses on the relation between equivalent distributions of the input graph

g and the baseline graphs Gi. The aggregate relation between the input g and the domain

is computed as the weighted average of the relations between all the combinations of g and

the baseline graphs Gi. We use hsj to represent the jth entry of the relation vector based on

similarity:

hsj =
∑B

i=1 wi · s(PDFg,fj , PDFGi,fj) (6.5)

Similarly, hd represents the relation vector based on a distance measure, and is defined

equivalently (by replacing s() with a distance measure d().

102

6.3.4 Algorithm

Our proposed formulation in Optimization Problem 6.1 corresponds to a mixed-integer

quadratic programming (MIQP) problem. The problem of 0–1 integer programming is

NP-complete and the integral constraints bring challenges such as intractability and poorly-

behaved derivatives, which make algorithms such as gradient descent unwarranted. To solve

these challenges, we first explain how we approximate MIQP with a sequence of mixed-integer

linear programming (MILP), and then propose two solutions to the “0 pit” problem by adding

application-driven constraints in Section 6.3.5. We give the theoretical analysis on complexity

in Section 6.3.6.

Although the l0-norm in Eq. (6.1) encodes the conciseness requirement, we relax it by

using the l2-norm, which is mathematically tractable. By rewriting ‖f‖2
2 = fT f and using the

F × F identity matrix IF, the equation takes the form:

arg min
f∈{0,1}F×1

fT (λ1SF + λ2IF)︸ ︷︷ ︸
Q

f + fT λ3h︸︷︷︸
r

. (6.6)

The integer vector f can be expressed as the linear constraint to Eq. (6.6) thus obtaining

the form of MIQP:
minimize

f
fTQf + rT f

subject to 0 ≤∑F
i f(i) ≤ F

0 ≤ f(i) ≤ 1, i = 1, . . . , F.

(6.7)

We apply the cutting plane method [Kel60] to convert Problem 6.7 to a series MILP by

introducing a slack variable z:

minimize
f ,z

z + rT f

subject to 0 ≤∑F
i f(i) ≤ F

0 ≤ f(i) ≤ 1, i = 1, . . . , F.

fTQf − z ≤ 0, z ≥ 0

(6.8)

Problem 6.8 gives the local MILP approximation to Problem 6.7 at one step. To further

103

approximate the MIQP, we need to iteratively solve a series of MILP by updating the linear

constraints until convergence. To update the linear constraints, we denote f at the tth iteration

as ft such that ft = ft−1 + δ, where ft−1 is the vector obtained in the previous iteration and

δ is a variable vector. By using first-order Taylor approximation for the last constraint in

Problem (6.8), we obtain:

fTt Qft − z = fTt−1Qft−1 + 2fTt−1Qδ − z +O(|δ|2)

= −fTt−1Qft−1 + 2fTt−1Qft − z +O(|ft − ft−1|2)

≈ −fTt−1Qft−1 + 2fTt−1Qf − z ≤ 0,

where we omitted the second-order terms. Thus, to solve the MIQP of Problem (6.7), we need

to solve a series of MILPs in Problem (6.8) combined with this updated linear constraint.

6.3.5 Application-driven Constraints

As we mentioned in Section 6.3.1, the last term of Eq. (6.6) can be tuned to provide

an ‘ordinary/expected’ summary or a ‘surprising’ summary by identifying features that are

similar or dissimilar to the ones in the baseline graphs, respectively. During exploratory

analysis, this allows for some flexibility about the type of relevance that is sought between

the summary of g and the baseline graphs G. Next, without loss of generality, we focus on

surprising summaries, and introduce two application-driven constraints: (i) fixed, and (ii)

flexible number of features in the summary. Our analysis can be easily extended to the case

of ordinary summaries as well.

A1. Eagle-Fix: Fixed number of features. In the case of creating a surprising

summary for the input graph, the last term in Eq. (6.6) can be set such that h captures

similarities between the features of g and Gi, i.e., it is computed based on Eq. (6.5) and

denoted by hs. To solve the 0-pit problem, we introduce a capacity constraint for the summary,

in addition to the constraints that are given in Problem (6.7), and set r = λ3hs:

∑F
i f(i) = c [new capacity constraint] (6.9)

To prevent the objective function from reaching the optimum with some desired properties

104

Algorithm VI.1 Eagle-Fix
Input: Graph g with F invariant distributions; Graph database with Gi (i = 1 . . . B) graphs with

their F invariant distributions
Output: Binary vector f of selected features in the summary of g
1 I. Preprocessing Phase: Computations over the Domain
2 for i = 1 . . . B
3 // Step 1: Feature Representation Model
4 for j = 1 . . . F
5 PDFnewGi,fj

= Scott(PDFGi,fj) . Scott’s rule, Eq. (6.2)
6 // Step 2: Feature Diversity Model
7 for j = 1 . . . F , and l = j + 1 . . . F
8 SFi(fj , fl) = s(PDFnewGi,fj

, PDFnewGi,fl
) . Eq. (6.3)

9 SF(fj , fl) =
∑B

i=1wi · SFi(fj , fl) . Eq. (6.4)
10 II. Query Phase: Summary Creation
11 Step 1: Domain-specificity Model
12 for l = 1 . . . F
13 hsl =

∑B
i=1wi · s(PDFnewg,fl

, PDFnewGi,fl
) . Eq. (6.5)

14 Step 2: Feature Selection
15 Q = λ1SF + λ2IF . Regularization parameters λ1, λ2, λ3

16 r = λ3hs
17 f = MIQP(Q, r) . Solve Problem (6.7)

overwhelming the others, λ{1,2,3} should be set such that the three terms in Optimization

Problem 6.1 are comparable (i.e., of the same scale). The values of these normalization terms

are primarily determined by the maximums of (i) fTSFf , (i) ‖f‖2
2, or fT f and (iii) fTh. We

discuss the parameter setting in the experiments (Section 6.4).

Putting everything together, in the case of finding surprising summaries for a given input,

we propose the Eagle-Fix algorithm, for which we give the pseudocode in Algorithm VI.1.

A2. Eagle-Flex: Flexible number of features. In the case of creating a surprising

summary for the input graph, we can search for a flexible number of features by setting the

last term in Eq. (6.6) such that it captures the distances between the features of g and Gi

(i.e., h = hd) and λ3 < 0. Note that a very small value λ3 may render the third term smaller

than other terms, which would lead the objective function to fall into the “0 pit”. Therefore,

to determine the regularization parameters in this case, we propose a different technique that

obtains the range of λ3 based on λ1 and λ2 values.

• Upper bound for λ3. Suppose there are c ≥ 0 selections in the solution f . Then, the value

of the relaxed objective function (6.6) can be calculated as:

105

(a) First term: fTSFf

(b) Third term:
fThd

Figure 6.3: Example: S = {2, 4, 5}, f = {0, 1, 0, 1, 1}, and degree as the newly added feature (i.e.,
ε = 1). (a) The sum of the shaded areas in SF corresponds to the first term. After adding the
degree, i.e., S ′ = S ∪ {1}, the sum of the blue rectangles correspond to the first term. (b) Blue
rounded rectangles in hd indicate hd(ε); The sum of its shaded cells gives the third term.

λ1
∑

i,j∈S SF (i, j) + λ2c+ λ3
∑

i∈S hd(i) (6.10)

where S denotes the collection of the indices of selected features f , which is explained

in Fig. 6.3. When c = 0, S = ∅ Similarly, when there are c+ 1 selections, the value of the

objective function is:

λ1
∑

i,j∈S′ SF (i, j) + λ2(c+ 1) + λ3
∑

i∈S′ hd(i) (6.11)

where S ′ = S∪{ε}, and {ε} denotes the index of the newly selected feature. Our proposed

Optimization Problem 6.1 will only select c+ 1 features if that further reduces the objective

function, which implies that Eq. (6.10) > (6.11), or:

λ3 < −
λ1(
∑

i,j∈S′ SF (i, j)−∑i,j∈S SF (i, j)) + λ2∑
i∈S′ hd(i)−

∑
i∈S hd(i)

⇒

λ3 < −
λ1(
∑

i∈S SF (i, ε) +
∑

i∈S SF (ε, i) + 1) + λ2

hd(ε)

(6.12)

By assuming that ε corresponds to the maximum entry in hd, we obtain the upper bound

of λ3:

106

λ3 < −
λ1 + λ2

max(hd)
(6.13)

• Lower bound for λ3. By requiring the three terms in the optimization problem to be

comparable, we can obtain a lower bound for λ3. Assuming that λ3 < 0 and c = |S|, the
third term must be smaller or equal to the maximum of the others:

λ3 > −
max{λ1

∑
i,j∈S SF (i, j), λ2|S|}∑
i∈S hd(i)

(6.14)

Inequality (6.14) indicates that the lower bound of λ3 is determined by S (it is involved

in all the terms of (6.14)). In order to find the exact lower bound, we need to consider all

possible sets of S (or equivalently, all possible binary vectors f), which are O(2F). Thus, to

reduce the complexity of its computation we provide an empirical lower bound, which works

well in practice:

λ3 ≥ −d
λ1 + λ2

max(hd)
e − 1 (6.15)

We discuss the choices of λ1, λ2 and λ3 more in Section 6.4.

6.3.6 Complexity

The runtime of EAGLE consists of three parts: (1) computing SF, (2) computing h, and

(3) runtime of MIQP. In the first two parts, the runtime τ of computing similarity / distance

between two PDFs is determined by the distance measure. Although τ can be affected by

the lengths of PDFs, it is generally trivial.

(1) Since SFi
is symmetric with diagonal elements equal to 1, the number of similarity

computations for one baseline graph is O(F 2). SF aggregates B of them, so the complexity

for SF is O(KF (F−1)τ
2

).

(2) The feature-by-feature relation between g and Gi constructs the hi vector with O(F)

similarity computations. Then, h aggregates B of them, resulting in O(KFτ) complexity.

107

(a) HepPh citation graph: 21 features (b) Slashdot0922 social graph: 300 perturbed
features

Figure 6.4: Convergence of two runs with MIQP.

(3) The runtime complexity of MIQP depends on the speed of convergence between the

quadratic term and its linear approximation. If the convergence criterion is not reached,

EAGLE would run with every possible value of f to reach the minimum, which is O(2F).

However, empirical experiments show that in general EAGLE takes about 20∼30 iterations

to reach satisfying approximation, if not converging. This is illustrated in Fig. 6.4, where we

set the maximum number of iterations to be 150. Interestingly, we observe that the MIQP

runtime does not only depend on the length of vector f , but also on the values of entries in f :

If the values are small and close to each other, MIQP would require more comparisons to find

the path towards the optimum (Fig. 6.4a); On the contrary, if the values differ tremendously,

this procedure becomes much faster (Fig. 6.4b).

6.4 Experiments

In this section we provide thorough experimental analysis to evaluate our proposed

approach. Specifically, we consider the evaluation metrics: (1) The satisfaction of the desired

properties for exploratory analysis (P1-P3); (2) The scalability of EAGLE algorithm (P4);

and (3) Its robustness to the required parameters. Moreover, we present an application of

EAGLE to a graph mining task, namely the classification of patients (Schizophrenic) and

healthy subjects based on fMRI data.

108

6.4.1 Baselines

No systematic empirical research exists that addresses the problem of finding graph

summaries by automatically leveraging domain knowledge. Moreover, as we discussed in

Section 6.2, unlike traditional feature selection methods that choose features by jointly

operating on a set of observations, our method is ‘conditional’: It selects features for an input

graph conditioned on observations from other graphs (domain knowledge). Despite these

limitations in the literature, we evaluate the effectiveness of EAGLE against:

• Random: This approach randomly selects a subset of features as the summary of the

input graph. It is often used as the preliminary analysis given little or no prior knowledge.

• Scagnostics [WAG05]: This method was proposed to summarize high-dimensional

datasets by detecting anomalies in density, shape, and trend. Since it applies on bivariate

distributions, we modified it to compute 9 measures (area of convex hull, skinniness, stringiness,

straightness, monotonic score, skewness, clumpy score, striation, and binning score) on each

one of F univariate distributions. Features with the top score in at least one measure are

included in the summary.

• Surprising: This method is a special case of EAGLE with λ1 = λ2 = 0 and detects

patterns that are different (or surprising) from the ones that appear in the baseline graphs.

6.4.2 Datasets

The real datasets that we used in our experiments are from three different domains:

connectomics, citation networks, and social science. We give short descriptions of these

datasets in Table 6.2. The first two connectomes, Brain-Voxel1 and Brain-Voxel2, were

generated using the traditional network discovery [BS09] process: (i) computation of the

pairwise correlations between the 3789 time series obtained during fMRI and (ii) application

of threshold (θ = 0.9) to keep the most significant associations and get sparse networks.

6.4.3 Experimental setup

EAGLE is implemented in MATLAB, and all the experiments were performed on a laptop

equipped with an Intel Core i7-4870HQ Processor and 16GB memory.

109

Table 6.2: Domains and graphs used in our experiments.

Domain Name Nodes Edges Description

Connectomics [con]
Brain-Voxel1 3 789 399 069 undirected unweighted
Brain-Voxel2 3 789 148 648 undirected unweighted
COBRE [cob12] 1 166 ∼679 000 undirected unweighted

Citation networks [SNA] HepTh 27 770 352 807 directed unweighted
HepPh 34 546 421 578 directed unweighted

Social science [SNA]
Epinions 75 879 508 837 directed unweighted

Slashdot0811 77 360 905 468 directed unweighted
Slashdot0922 82 168 948 464 directed unweighted

EAGLE takes an arbitrary number of graph features as input and outputs a small set of

representative features as a summary based on the domain knowledge. The features used in

the experiments include 28 common node- and structure-specific invariant distributions and

other graph properties: The node-specific features that we used are in-degree, out-degree,

PageRank, in-closeness, out-closeness, hubs, authorities, clustering coefficient, betweenness,

top eigenvectors, network constraint, and roles [HGER+12]. The structure-specific statistics

comprise egonet features, such as out-degree, out-neighbors, in-degree, in-neighbors, and

size of egonets in edges and nodes. Moreover, we considered other features, such as the

distribution of communities, weak / strong connected components, in / out-going community

affiliations, motifs, community profiles, random left and right singular values, and hops [SNA].

Equation (6.6) defines the relationships between the regularization terms λ1, λ2, and λ3:

By observing that the maximum values of the three terms are F 2, F and F , respectively,

we define the relationship between the regularization terms Fλ1 = λ2 and λ2 = λ3. For

Eagle-Fix, we set λ1 = 1
F
, λ2 = 1, and λ3 = 1; for Eagle-Flex, we set λ1 = 1

F
, λ2 = 1,

and compute λ3 according to Equation (6.15). We use the default value w = { 1
B
}F×1 to

weigh the contribution of baseline graphs. However, if prior information is available, the

weights can be set differently as long as
∑B

i wi = 1.

6.4.4 Satisfaction of Desired Properties

In this experiment, we quantitatively evaluate the satisfaction of the desired properties

by EAGLE and the baselines. We obtain EAGLE summaries for two input graphs, HepPh

and Slashdot0922, considering three domains with different sets of baseline graphs: (i)

connectomics using Brain-Voxel1 and Brain-Voxel2; (ii) citation networks using HepTh;

110

Figure 6.5: Effectiveness in terms of diversity and domain-specificity evaluated using Pearson’s
correlation coefficient (low values are better). EAGLE achieves the best performance in every
case.

and (iii) social networks using Epinions and Slashdot0811. For fairness, we set all the

methods to give the same number of features as Scagnostics, and thus run Eagle-Fix.

To evaluate the conciseness of our method, we present experiments in Section. 6.4.6. For all

the methods, we evaluate the diversity and domain-specificity (‘surprising’) of the selected

features f via correlation: We compute the pairwise feature correlation matrix between the

F univariate distributions (with the same binning) of the baseline graphs, CG, and quantify

diversity as fTCGf . Similarly, based on the correlation matrix C′g between the input graph

and the baseline features, we quantify domain-specificity as fTC′g. For completeness, we

apply three different correlation coefficients: Pearson’s, Kendall’s Tau, and Spearman’s Rank.

Figure 6.5 illustrates the results for Pearson’s correlation (dark shades for diversity, light for

domain specificity). Similar patterns are detected by using the other two metrics, which are

omitted for brevity (they can be found in our code repository).

Diversity. Diversity is measured using pairwise feature correlation in CG, so lower values

indicate higher diversity. The results show that EAGLE outperforms all the baselines in

every case. We observe an extreme case: the summary of HepPh conditioned on citation

networks yields almost 0 Pearson correlation value. This demonstrates the effectiveness of

EAGLE in selecting features that are diverse especially when the baseline graphs and the

input are very similar.

Domain-Specificity. Similar to diversity, we explore ‘surprising’ patterns of the input

111

graph with respect to the baselines via the feature-wise correlation (low values correspond

to high domain-specificity). Figure 6.5 shows that EAGLE outperforms all the baselines

by up to ∼ 51.74%. Qualitatively, the clustering coefficient distribution and community

size distribution are always selected when the input graph and the baseline graphs are from

different domains. Intuitively, this is reasonable because the community structure differs in

graphs from different domains and both properties are related to it.

6.4.5 Scalability

We evaluate the scalability of the proposed methods with regard to (a) number of features,

and (b) size of the baseline graphs. Here we extend the feature space beyond the original 28

by creating ‘perturbed’ features with up to 30% random noise.

Number of features. We create a mixed domain containing the citation graph (HepTh)

and two social graphs (Epinions and Slashdot0922) as baselines, and run Eagle-Flex

to summarize two input graphs: HepPh and Slashdot0811, with the number of features

(original and perturbed) varying from 50 to 400. In Fig. 6.6a, we observe that, for both input

graphs, Eagle-Flex scales linearly and almost identically with the number of features in

the semi-logarithmic plot, which indicates its quadratic complexity. Moreover, given identical

number of features, the runtime of MIQP on different input graphs is almost the same.

(a) Number of features (b) Size of baseline graphs

Figure 6.6: Scalability of Eagle-Flex on two input graphs (citation and social). (a) In
both cases, Eagle-Flex scales quadratically in terms of the number of features with similar
behavior of MIQP (b) The runtime is independent of the size of baseline graphs.

112

(a) Sensitivity to λ1. (b) Sensitivity to λ2. (c) Sensitivity to λ3.

Figure 6.7: Robustness of EAGLE to the regularization parameters. Left y axis: percentage
of identical selected features between λ and its default value. Right y axis: total number of
invariant distributions included in the summary.

Size of baseline graphs. In this experiment we test the scalability in terms of the size of

baseline graphs for a fixed number of selected features. We create a series of synthetic datasets

with feature space including 7 global invariant distributions and 13 perturbed invariants. The

sizes of the synthetic graphs constructed are 10K, 20K, 40K, 80K, and 160K. The runtime of

Eagle-Flex on these datasets is shown in Fig. 6.6b. We observe a relatively “flat” pattern

in running time, which indicates that the optimization solver in EAGLE is independent of

the size of baseline graphs. Note that there is some fluctuation in the curve: the running time

of Eagle-Flex on 40K graphs is the shortest, while that on 10K is the longest. Despite the

presence of randomness, this phenomenon points to one direction of our future work, which

is to explore the behavior of MIQP in EAGLE on large-scale graphs.

6.4.6 Robustness to parameters

We run Eagle-Flex to evaluate the sensitivity of regularization parameters λ{1,2,3} and

the corresponding conciseness of the summary. The baseline graphs are HepTh, Slashdot0811

and Brain-Voxel1, and a total of 28 features are generated (no perturbation). Per regularizer,

we perform a grid search over { 1
32
, 1

16
, . . . , 16, 32} times its default value (§ 6.4.3), while keeping

the other regularizers at their default values. We plot the number of selected features in the

summary and the percentage of common selected features between that summary and the

‘default’ summary (based solely on the default values). These quantities are illustrated as a

function of the regularizer values in Fig. 6.7. We note that we do not depict the percentage

for the default value (marked with ’*’) in the blue curve, since it is 100% by definition.

The blue curves in Figures (6.7a)-(b) show that values of regularization around the

default give relatively stable results, with 50%∼80% identical features to the default setting.

113

Figure (6.7c) shows that the selection of features is stable up to the default value, but sensitive

for larger λ3 for which the last term dominates (and thus puts more emphasis on ‘surprising’

patterns). From the red curves, we observe that the default values lead to few selected

features, indicating the conciseness (property P2) of the EAGLE summaries.

6.4.7 Case study: classification on brain graphs

How can EAGLE be applied to graph classification, a traditional data mining task?

We focus on the domain of neuroscience, and use COBRE [cob12], a dataset from the NIH

Center for Biomedical Research Excellence with resting-state fMRI data from 72 patients

with schizophrenia and 76 healthy controls. From the 1166 fMRI time series (avg. length 100

timesteps), we created undirected, weighted graphs with θ = 0.6 following the traditional

method [BS09] (cf. § 6.4.2).

The task is to use the EAGLE summaries to classify the healthy controls and patients.

We create the feature space by calculating the distributions of 11 features: weighted and

unweighted degree, PageRank, closeness, eigenvector, clustering coefficient, betweenness,

neighbors of the egonets, degree of the egonets, and sizes of egonets in edges and nodes. To

obtain feature representations that can be used for classification, we used a random set of

36 healthy subjects as the baseline graphs, and ran both Eagle-Fix (with F = {6, 8, 10})
and Eagle-Flex on the remaining graphs (40 controls and 40 patients) and obtained both

‘surprising’ and ‘oridinary’ summaries for them. We consider two vector representations for the

summaries: (i) Unweighted: a binary vector b with 1s for the selected features by EAGLE;

and (ii) Weighted: a real vector with the importance of each selected feature, i.e., b�h where

h is given in Eq. (6.5) (or its distance-based counterpart), and � denotes component-wise

multiplication. We also consider ‘Full’, which uses vector h as the representation of each

connectome (without feature selection).

As baselines we considered two traditional methods in neuroscience: (a) per connectome,

a vector representation with the mean of each feature distribution [DH14] and (b) a ‘flat’,

vectorized (1×N2) representation of theN×N adjacency matrix of the connectome [SKW+13].

For the classification task, we trained an SVM classifier that uses the RBF (radial basis

function) kernel on the vector representations of our methods and the baselines, by conducting

114

10-fold cross validation. Table 6.3 gives the accuracy (AUC) of each method.

Table 6.3: Classification on COBRE: AUC scores per method.

Method Category Unweighted Weighted
Ordinary Surprising Ordinary Surprising

Eagle-Flex 0.6893 0.5499 0.7096 0.7296
Eagle-Fix: 6 0.5114 0.5445 0.6961 0.7371
Eagle-Fix: 8 0.6795 0.5904 0.7216 0.7079
Eagle-Fix: 10 0.5003 0.4989 0.7032 0.6807

Full - - 0.6681 0.7147

Baselines Baseline 1: 0.7028 Baseline 2: 0.1099

According to Table 6.3, we have two observations: (1) Without knowing anything about

the dataset, Eagle-Flex provides promising performance on the task of classification,

although Eagle-Fix outperforms Eagle-Flex with some explicit settings on F . The

Eagle-Flex and Eagle-Fix summaries lead to better performance than the baseline

methods, indicating the fact that although not designed explicitly for this, features selected

by EAGLE can be applied to specific tasks such as classification; (2) Compared with the

use of all weighted features (Full) and selection (Eagle-Flex), we observe that the latter

improves the performance over the former by eliminating the noise contained in the dataset,

which demonstrates the effectiveness of selected features. Qualitatively, among the 11 features,

PageRank is the most frequently picked feature by Eagle-Flex. Weighted and unweighted

degree are the most distinguishable features when running Eagle-Fix that are never picked

in summaries for controls, but are selected for patients.

6.5 Conclusion

We proposed a novel way to summarize a graph using a set of interpretable features,

resulting in a diverse, concise, domain-specific, and efficient-to-compute summary. Our

novel formulation targets early data exploration and provides an alternative to the feature

engineering process that is often a part of graph mining tasks. We framed the problem as

constrained optimization, based on ‘conditional feature selection, which is tailored to the

domain expectations and knowledge, in contrast to existing work which views each graph as

a unit independent of its domain or many graph observations as a whole. We also introduced

115

two efficient algorithms, Eagle-Fix and Eagle-Flex, which handle the correlations between

graph features and find summaries that are fixed or flexible in size. Our experiments showed

that the EAGLE variants are effective, their summaries satisfy all the desired properties,

outperform alternative approaches that can be cast to solve this problem, and they are

effective in data mining tasks such as classification despite not being tailored to it. Future

work may explore extensions to more complex design choices or bivariate distributions of

features (often used in spam detection), as well as scaling the method up more.

116

CHAPTER VII

Transfer Learning with Attention-based Summarization

of Relational Data in Knowledge Integration

This chapter is based on work that will appear at PVLDB 2022 [JSW+22].

7.1 Introduction

In Chapter VI, we introduced EAGLE to summarize the non-latent features for graph anal-

ysis, and show the effectiveness of the selected important features through graph exploration

and multi-graph classification tasks. However, using a subset of features as the summary

could incur information loss. Additionally, the features from which EAGLE selected are

determined based on domain knowledge. Ideally, feature importance should be measured in a

“soft” way as a scaling value, and it should be learned automatically. These two requirements

motivate us to summarize the non-latent features with more advanced techniques, such as an

attention mechanism. In this chapter, address the multi-source entity linkage problem which

is important to knowledge integration in industrial settings.

Entity linkage (EL), also known as entity resolution, record linkage, entity matching, is

a fundamental task in data mining, database, and knowledge integration with numerous

applications, including deduplication, data cleaning, user stitching, and more. The key idea

is to identify records across different data sources (e.g., databases, websites, knowledge base,

etc.) that represent the same real-world entity. For example, some music websites record the

song "Hey Jude" by Paul McCartney with the name abbreviation (i.e., “P.M.”) while others

117

with the band name (i.e., “The Beatles”). As newly-generated data surge over time, accurately

consolidating the same entities across semi-structured web sources becomes increasingly

important, especially in areas such as knowledge base establishment [DN09, GM12] and

personalization [JHRK19].

Methods for solving the entity linkage problem across data sources include rule reason-

ing [FJLM09, SME+17], computation of similarity between attributes or schemas [BM03],

and active learning [QPS17]. In particular, recent deep learning approaches that are based on

heterogeneous schema matching or word matching [MLR+18, NHH+19, LLS+20] have been

widely studied. Their promising performance mainly comes from the sophisticated word-level

operations such as RNN and Attention [MLR+18, FHHS20] to represent token sequences

under attributes as the summarization, or the usage of pretrained language models [KT19]

to better learn the word semantics. However, all the above learning approaches implicitly

assume that the “matching/non-matching” info for training records is available (e.g., the

music records in source 1 and source 2 shown in the two blue tables of Fig. 7.1) and can

be queried through the learning process, which does not always hold in practice. In real-

world knowledge integration scenarios, new data come incrementally, and it can be either

well-labeled (e.g., through manual confirmation) or unlabeled. While the existing frameworks

can handle high-quality labeled data, they cannot deal with the massive volume of unlabeled

and previously unseen data or missing values. As the example shown in Fig. 7.1, a model

trained on the high-quality labeled data (blue tables) would fail to generalize to the new data

sources (red tables) with missing and different attribute values (i.e., “Artist”), as well as new

attributes or attributes that are rarely seen (i.e., “Gender”).

Motivated by real-world knowledge integration settings, we consider three key challenges

in the multi-data source scenario: (C1) missing attribute values from unseen data sources;

(C2) new attributes from unseen data sources; and (C3) different value distribution in unseen

data sources. Based on these challenges, we seek to tackle the following MEL (multi-source

entity linkage) problem: Given labeled data from a limited set of sources, what knowledge

can be learned and how can it be transferred to automatically handle multiple unseen data

sources with different value distribution, missing values and new attributes?

To solve this task, human experts typically rely on prior domain knowledge to learn the

118

Source 1 Source 2

Training model

?

Source 3 Source 4

 Seen sources
(well-labeled)

All sources
(unlabeled)

Source 1
Source 2
Source 3
Source 4
…
Source 17

Importance
Adaptation

Importance
Adaptation

Title Artist Gender

Wake Me Up Tim Bergling Male

Sweet Caroline Neil Diamond N/A

River Deep
Mountain High

Neil Diamond N/A

Title Artist Gender

All Falls Down Alan Walker N/A

Riverman Nick Drake N/A

River Deep Neil Diamond N/A

Title Artist Gender
Hello A. A. Female

River Deep N. D. Male
You Raise Me Up J. D. Male

Title Artist Gender
Hello A. W. Male

Riverman N. D. Male
Wake Me Up T. B. Male

Figure 7.1: Well-labeled data sources (e.g., blue tables) are generally outnumbered by massive
unlabeled data in real-world knowledge integration scenarios. Entity linkage models trained
only on well-labeled samples fail to handle new sources with different contexts or formats
(e.g., red tables). Our proposed framework, AdaMEL automatically learns the attribute
importance that adapts to the massive unlabeled data from different sources during training,
and then uses it as the transferable knowledge to perform matching.

attribute importance in the seen data sources, and then transfer it to match the unseen

records based on the similarity of attribute values. As challenges (C1-C3) lead to different

attribute importance, human experts would update their knowledge learned from the seen

data sources and adapt to the unseen data sources. For example in Figure 7.1, when trying

to link entities in the red table, the importance of “Artist” learned in the seen data sources

(blue table) is down-weighted due to the fact that name abbreviation is less informative.

On the other hand, even though it is a rarely-seen attribute in the seen sources, “Gender”

would be more important because the gender difference between artists naturally leads to

non-matching of music records regardless of the fact that entity pairs could share the same

“Title” (“Hello”) and very similar “Artist” values (“A. A.” and “A. W.”). This process, however,

is tedious and does not scale to massive unlabeled data involved in real-world entity linkage

problems, where large volumes of new data sources continuously arrive.

Following this intuition, we propose AdaMEL, a transfer learning framework that leverages

both the labeled and massive unlabeled data to train the model for multi-source entity linkage

while addressing the aforementioned challenges (C1-C3). We define the attribute importance

in entity linkage as the high-level transferable knowledge and automatically learn it through

a proposed attribute-level attention mechanism (what to transfer). In general, as transfer

learning aims to transfers knowledge learned from the domain with abundant training data

119

to a related target domain with limited data, the existing works either rely on increasing

the labeling volume by introducing the external data (e.g., public knowledge bases) [ZH19]

or reusing the seen training data [TPO+18]. On the contrary, AdaMEL adopts domain

adaptation (DA) to jointly update the attention scores for attributes in both the seen and

unseen data as the basis for entity linkage (how to handle multiple sources), so that the

knowledge is adaptive to the continuously incoming data sources. In addition, the insightful

feature importance as transferrable knowledge is explicitly defined by AdaMEL to benefit

both human interpretation and the performance learning tasks, which is also different from

methods that incorporates the knowledge into pretrained models like “black-boxes”, such as

the contextual word/character embeddings. While the widely-adopted NLP-based attribute

summarization in existing works [LLS+20, NHH+19, FHHS20] could accurately capture the

word-level semantics using some pretrained language models or domain knowledge for all

attributes, they are too computationally expensive for the practical scenario. On the contrary,

the feature-level attention is much faster to obtain and we claim that the impact of word-level

similarity under some attributes is limited and even harmful for model performance if those

attributes are not important.

AdaMEL follows the real-world scenario and assumes that new data sources come from

the same or neighboring domains in batches (e.g., music from different websites). Transferring

knowledge between irrelevant domains (e.g., celebrities and products) does not produce

meaningful outputs and is out of the scope of this paper. We also propose a series of

AdaMEL variants for different learning scenarios in practice, namely, they are: (i) AdaMEL-

zero that is based on unsupervised DA to handle the general case with massive unlabeled new

data, (ii) AdaMEL-few that is based on semi-supervised DA to make use of an additional

set of labeled samples from the new data when it is available, and (iii) AdaMEL-hyb

that leverages both the sampled labeled and massive unlabeled data. Our contributions are

summarized as follows.

• We formulate the problem of MEL in real-world knowledge integration where the

incoming data of unseen data sources are associated with missing values, unseen

attributes and different value distributions.

120

• We propose a deep transfer-learning framework that learns the attribute-level importance

as the high-level knowledge, and incorporates massive unlabeled data across multiple

unseen sources through domain adaptation to make it agnostic and transferable.

• We apply AdaMEL to multi-source entity linkage over both industrial and public

datasets, and show that it achieves at least 5.92% improvement in terms of mean

average precision compared to the state-of-the-art deep learning EL methods.

7.2 Related Work

Entity Linkage (EL). Entity linkage has been and continues being a fundamental problem

in the field of database, data mining and knowledge integration [GM12, KR10, DH05]. Early

works are based on the similarity between entity attributes [FJLM09, DH05] through resolving

the data conflicts [DN09], linking relevant attributes through semantic matching or rule

reasoning [SME+17]. Techniques such as blocking or hashing are normally applied to merge

the candidate entities [CR02]. The major drawback of these methods is the dependence on

prior knowledge as the useful attributes are normally selected through human efforts. Recently,

EL models based on deep neural networks [MLR+18, JT18] have been widely studied due to

their capability in automatically deriving latent features and promising results in fields such

as CV and NLP [Ben12, LPM15, FAL17]. For example, DeepER [JT18] proposes to leverage

RNN to compose the pre-trained word embeddings of tokens within all attribute values, and

use them as features to conduct EL as the binary classification task. DeepMatcher [MLR+18]

also takes the embeddings of attribute words as the input and uses RNN to obtain the attribute

similarity representation.CorDel [WSW+20] proposes to compare and contrast the pairwise

input records before getting the embeddings so that small but critical differences between

attributes can be modeled effectively. There are also recent works that formulate entity linkage

across different data sources as heterogeneous entity matching [LLS+20, FHHS20, NHH+19],

for example, EntityMatcher [FHHS20] proposes a hierarchical matching network that jointly

match entities in the token, attribute, and entity level. Ditto [LLS+20] proposes to leverage

the pretrained language model [JT18, KT19, LLS+20] such as BERT or DistilBERT, as well

as domain knowledge and data augmentation to improve the matching quality. The attention

121

mechanisms [LPM15, VSP+17, VCC+18] are generally adopted by these deep models, where

the goal is to improve the linkage performance by highlighting valuable embeddings, e.g., word

embeddings within the attributes. The basis of these above deep models for heterogeneous

schema matching is to accurately summarize the attribute words through advanced NLP

techniques such as word token-level RNN (with attention) or pretrained language models. On

the contrary, our proposed method does not require sophisticated computation to summarize

words in each attribute. AdaMEL focuses on the impact of important attributes in matching

and explicitly models their importance using the soft attention mechanism as the transferable

knowledge. Such attribute-level importance is agnostic to specific data sources and generalizes

better than individual words in the transfer learning paradigm.

Transfer Learning. In the transfer learning scenario, models are trained on a source domain

and applied to a related target domain to handle the same or a different task [PY09, GBC16].

The specific transferable knowledge that bridges the source and target domain has significant

impact to model performance [YZHY18]. A popular approach is to adapt the pre-trained

model for the new task through fine-tuning [KT19], or by adding new functions to specific

tasks such as object detection [HGDG17]. In terms of EL, TLER [TPO+18] is a non-deep

method that reuses and adopts seen data from the source domain to train models for the

new domain. Auto-EM [ZH19] proposes to pre-train models for both attribute-type (i.e.,

schema) and attribute value matching based on word- and character-level similarity. However,

Auto-EM assumes the typed entities are from a single data source and the attributes are seen

during training, and thus cannot handle the multi-source scenario with unseen attributes. A

specific type of transductive transfer learning that is most relevant to our work is known as

Domain Adaptation, where the source and target domain share the same feature space with

different distributions [SSW15], and models are trained on the same task [WC20]. Many well-

designed algorithms propose to map the original feature spaces to a shared latent feature space

between domains [DXT12, CSF+12]. DeepMatcher+ [KQG+19] extends DeepMatcher with

the combination of transfer learning and active learning to achieve comparable performance

with fewer samples. However, this work aims at dataset adaptation rather than the attribute

matching, and the focus is not improving the matching performance. Another line of works

proposes to pre-train models on the source and target domain (if labeling available) and then

122

Table 7.1: Summary of notation.

Symbol Definition
A = {Aj} a set of pre-defined textual attributes (data source schema)
r, r[A] an entity record and the value (word tokens) of attribute A
DS,DT source and target domain, respectively
(r, r′)S/T an entity pair in the source and target domain, respectively
S, S ′ set of data sources in general
r∗ the data source that record r is sampled from
D∗ set of data sources in a domain, e.g., D∗S = {r∗}r∈DS
F the number of relational features, F = 2|A|
x, y H-dim latent feature vector of an entity pair and its label
hj D-dim token embedding of feature j
f attention embedding function RD×F → RF

combine them through specific weighting schemes [SRWS08]. The process of applying the

trained model to handle previously unseen data is also known as zero-shot learning [PPHM09].

Unlike the above approaches, AdaMEL explicitly learns feature importance by adapting

to the massive unlabeled data from unseen sources as the transferable knowledge for the

multi-source EL task.

7.3 Preliminaries

In this section, we first formally define the problem, and then provide several key notions

relevant to our proposed solution. Symbols and notations used specifically in this chapter are

listed in Table 7.1.

7.3.1 Problem Definition

An entity record is collected from a specific data source such as a website or a database,

and is identified by its attributes. For example, a song record r = (“Sweet Caroline”, “Neil

Diamond”, “USA”) is specified by the attributes A = {title, artist, country}. We start

with the formal definition of entity linkage.

Problem 3 (EL: Entity Linkage). Given two entity records r and r′ associated with the same

set of attributes A (schema), entity linkage aims to predict if r and r′ refers to the same

real-world entity.

In this chapter, we conduct analysis based on entity pairs (r, r′) instead of individual

entity records. We now define the MEL problem, which is related to heterogeneous entity

123

matching1 [NHH+19, FHHS20].

Problem 4 (MEL: Multi-source Entity Linkage). Given the labeled entity pairs {(r, r′)}seen
from a limited set of data sources S where each entity record r is associated with attributes

A, and previously unseen pairs {(r, r′)}unseen from the new data sources S ′ with attributes A′,
multi-source entity linkage aims to predict if each pair in {(r, r′)}unseen represents the same

real-world entity, where (r, r′)unseen ∈ (S×S ′) ∪ (S ′×S ′), |S ′| > |S|. Since S 6= S ′, certain
attributes in A′ could be missing (C1), new (C2), or associated with values from different

distributions (C3), and thus A 6= A′.

The key notion in Problem 4 that is different from Problem 3 is that the linkage task is

conducted on entity pairs sampled from a wider range of data sources than the labeled data

used to train the model (ten or hundred orders of magnitude more in reality). Back to the

example shown in Figure 7.1, while the trained model could make perfect prediction based on

“Artist” only, it would fail to handle new records because the attribute “Artist” has missing

or abbreviated values that contain less info. Moreover, the new data sources contain a rarely

seen or unseen attribute (“Gender”). This issue can be addressed by aligning the union of

ontology A ∪A′ with blank “dummy” attributes. Based on our definition, a solution to MEL

should be able to (G1) make use of the massive unlabeled data from the new sources, and

(G2) further improve the linkage performance by leveraging a few labeled record pairs from

the new sources, if available (i.e., an additional support set).

7.3.2 Terminology

Here we discuss the necessary terminology of our framework,.

Definition 20 (Source & target domain). The source domain DS refers to a set of labeled

entity pairs {(r, r′)} sampled from limited data sources that the model is trained on. The

target domain DT refers to the set of unlabeled pairs where each pair has at least one entity

sampled from the data sources unseen in DS.
1In MEL, the entities come from different data sources, and thus there may be new or missing attributes.

On the other hand, in heterogeneous entity matching, the schemas are heterogeneous (i.e., they have different
attributes, which may not be aligned) and the entities do not necessarily come from different data sources.

124

For clarity, we use the superscript ∗ to indicate the data source(s) of a record/domain.

Following Definition 20, the seen and unseen set of data sources in Problem 4 are formulated

as S = D∗S and S ′ = D∗T . Besides, given a pair in the target domain, it could either contain

one entity sampled from the seen data sources in D∗S and the other one from the unseen, i.e.,

(r, r′)T ∈ D∗S×D∗T , or it has both entities sampled from the completely unseen data sources,

i.e., (r, r′)T ∈ D∗T×D∗T . In both cases, achieving G1 requires data in DT . To achieve G2,

we introduce the support set.

Definition 21 (Support set). The support set SU refers to a small set of labeled entity pairs

sampled from the same set of data sources as the target domain D∗T . It has at least one data

source that is not contained in D∗S.

The support set corresponds to the real-world scenario that a few newly incoming entity

pairs are well-labeled (e.g., on-the-fly human annotation). Thus, entity pairs in DS, DT , as
well as SU are all required to achieve G2 for MEL.

7.4 Proposed framework

We propose AdaMEL to address Problem 4, a deep framework that learns attribute

importance as the transferable knowledge K (Section 7.4.1), and adapt it to multiple data-

sources via domain adaptation . AdaMEL first extracts the contrastive relational features of

entity pairs to derive the embeddings (Section 7.4.2). Then, by using the proposed attention

embedding function f , AdaMEL projects features from DS and DT into the same attention

space (Section 7.4.3), and jointly learns the feature importance for data sources in both D∗S
and D∗T . This process is conducted in an unsupervised or supervised domain adaptation

manner (Section7.4.4), depending on the real-world scenario. The overview is depicted in

Figure 7.2.

7.4.1 Formulation

In transfer learning, the generic transferable knowledge K is key to adapt the model

trained on the source domain to the target domain. We denote our domain adaptation

125

Domain adaptation

Training
sources

New
sources

Relational
feature

embedding
Hybrid

Unsupervised

Feature
attention

Labeled support set

No

Support set
available?

Yes

<latexit sha1_base64="cV5TzeE9GpSRxQuFm0qix7+DhpQ=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoseiF8FLBWsLaSib7bZdutmE3RehhP4MLx4U8eqv8ea/cdPmoK0DC8PMe+y8CRMpDLrut1NaWV1b3yhvVra2d3b3qvsHjyZONeMtFstYd0JquBSKt1Cg5J1EcxqFkrfD8U3ut5+4NiJWDzhJeBDRoRIDwShaye9GFEeMyuxu2qvW3Lo7A1kmXkFqUKDZq351+zFLI66QSWqM77kJBhnVKJjk00o3NTyhbEyH3LdU0YibIJtFnpITq/TJINb2KSQz9fdGRiNjJlFoJ/OIZtHLxf88P8XBVZAJlaTIFZt/NEglwZjk95O+0JyhnFhCmRY2K2EjqilD21LFluAtnrxMHs/q3kXdvT+vNa6LOspwBMdwCh5cQgNuoQktYBDDM7zCm4POi/PufMxHS06xcwh/4Hz+AIDSkWU=</latexit>K
Semi-

Supervised

Figure 7.2: Overview. AdaMEL first embeds attributes for records from both the source and
target domain to derive the feature representations, and uses the feature attention function to
get the attention scores (importance) as the transferable knowledge K. Then, depending on the
availability of the labeled support set, AdaMEL uses K and performs either the unsupervised
or semi-supervised manner of domain adaptation for MEL.

solution to MEL as the following binary classification task.

y = M(K, (r, r′)) ∈ {0, 1} (7.1)

where M represents the deep model that generates the binary prediction y for the entity

pair (r, r′) ∈ DT , where 1 and 0 indicate the matching and non-matching, respectively. As

mentioned in Section 7.3.1, the key difference between DS and DT lies in the difference in

data sources, therefore K should be data-source agnostic to address (C1)-(C3). To ensure

DT shares the same feature space as DS (the prerequisite for domain adaptation), AdaMEL

first aligns the ontology so that data sources D∗S and D∗T share the same attribute schema,

but the attribute values (word tokens) can vary significantly. By doing so, entity records

reveal the following properties that correspond to the aforementioned challenges: (C1) entity

records in the source/target domain contain missing values, i.e., r[A] =“” (empty string) for

r ∈ DS ∪ DT , (C2) certain attribute values are completely missing for records in DS, i.e.,
r[Aj] =“” for r ∈ DS, but not in DT , and (C3) rich texts under some attributes in DS but

sparse in DT or vice versa.

7.4.2 Feature Representation

Given entity pairs (r, r′) with the aligned attributes A, AdaMEL leverages the attention

mechanism to learn the importance of each textual attribute A ∈ A as the generic knowledge

for transfer learning. However, instead of computing the attribute importance directly,

126

AdaMEL parses each attribute A into 2 contrastive relational features, which are word

tokens shared by r and r′, and word tokens that only appear in one record but not the other.

This is because the similarity or uniqueness of attribute between r and r′ gives independent

and complementary evidence for linkage [WSW+20]. Taking the attribute A =“music version”

as an example, a pair of music recordings sharing the same word (i.e., “original” or “remix”)

is not as strong an identifier for matching as it would be for non-matching if one recording

is “original” while the other is “remix”. In addition, looking into both the similarity and

uniqueness in attribute A between entities would enrich the feature space and facilitate

training the deep model. We describe the 2 contrastive relational features of an attribute A

as follows. sim(A) = {w} for w ∈ {r[A] ∩ r′[A]}

uni(A) = {w} for w ∈ {r[A] ∪ r′[A]− r[A] ∩ r′[A]}
(7.2)

where w is the word token in attribute r[A]. For clarity, we uniformly denote shared/unique

tokens sim(A)/uni(A) as “features” that contribute independently to entity linkage. Clearly,

there are F = 2|A| features for a pair of entities. To summarize the feature representation,

AdaMEL sums up the embeddings of the cropped word tokens [JGBM17, VSP+17, MLR+18]

without using more sophisticated operations. The embeddings can be obtained using any

pretraining language model, such as BERT [KT19] or Fasttext [JGBM17]. For clarity, we

use i as the index of entity pairs and j as the index of features. Thus, the token embedding

vector of an entity pair (r, r′) is denoted as:

h = [h1,h2, · · · ,hF]

= [emb(sim(Aj)), emb(uni(Aj))] for j = 1, · · · , |A| (7.3)

By doing so, we denote the entity pairs (r, r′) as F textual embedding features (F = 2|A|)
for matching. The complete process is depicted in Figure 7.3. Besides, AdaMEL leverages

per-feature non-linear affine transformation to project the word embeddings to get the latent

feature x:

x = [x1,x2, · · · ,xF] = [σ(Vjhj + bj)] for j = 1, · · · , F (7.4)

127

Input:

Relational
features:

Title Artist

Wake Me Up Tim Bergling

River Deep
Mountain High Neil Diamond

Title Artist

All Falls Down Alan Walker

River Deep Neil Diamond

shared_title unique_title shared_artist unique_artist

[] [Wake, Me,
Up, All, ...] [] [Tim Bergling,

Alan Walker]

[River, Deep] [Mountain, High] [Neil, Diamond] []

label

0

1

<latexit sha1_base64="aHjpvlEC13MHUOQEIBDVixLS8kw=">AAAB9XicbVDLSgMxFL2pr1pfVZdugkVwVWZE0WXRjcsK9gHtWDJppg3NZIYko5Rh/sONC0Xc+i/u/Bsz7Sy09UDgcM693JPjx4Jr4zjfqLSyura+Ud6sbG3v7O5V9w/aOkoUZS0aiUh1faKZ4JK1DDeCdWPFSOgL1vEnN7nfeWRK80jem2nMvJCMJA84JcZKD/2QmLEfpONB6mbZoFpz6s4MeJm4BalBgeag+tUfRjQJmTRUEK17rhMbLyXKcCpYVuknmsWETsiI9SyVJGTaS2epM3xilSEOImWfNHim/t5ISaj1NPTtZJ5SL3q5+J/XS0xw5aVcxolhks4PBYnAJsJ5BXjIFaNGTC0hVHGbFdMxUYQaW1TFluAufnmZtM/q7kXduTuvNa6LOspwBMdwCi5cQgNuoQktoKDgGV7hDT2hF/SOPuajJVTsHMIfoM8f3vySwA==</latexit>

h1
<latexit sha1_base64="f0T1xzdYEry7YHOy9fR1iSTh9F0=">AAAB9XicbVDLSgMxFL3xWeur6tJNsAiuyowPdFl047KCfUA7lkyaaUMzmSHJKGWY/3DjQhG3/os7/8ZMOwttPRA4nHMv9+T4seDaOM43WlpeWV1bL22UN7e2d3Yre/stHSWKsiaNRKQ6PtFMcMmahhvBOrFiJPQFa/vjm9xvPzKleSTvzSRmXkiGkgecEmOlh15IzMgP0lE/PcuyfqXq1Jwp8CJxC1KFAo1+5as3iGgSMmmoIFp3XSc2XkqU4VSwrNxLNIsJHZMh61oqSci0l05TZ/jYKgMcRMo+afBU/b2RklDrSejbyTylnvdy8T+vm5jgyku5jBPDJJ0dChKBTYTzCvCAK0aNmFhCqOI2K6Yjogg1tqiyLcGd//IiaZ3W3Iuac3derV8XdZTgEI7gBFy4hDrcQgOaQEHBM7zCG3pCL+gdfcxGl1CxcwB/gD5/AOIIksI=</latexit>

h3
<latexit sha1_base64="sO+HOO96uhL3pysemX3FvsQLlOY=">AAAB9XicbVDLSgMxFL2pr1pfVZdugkVwVWZE0WXRjcsK9gHtWDJppg3NZIYko5Rh/sONC0Xc+i/u/Bsz7Sy09UDgcM693JPjx4Jr4zjfqLSyura+Ud6sbG3v7O5V9w/aOkoUZS0aiUh1faKZ4JK1DDeCdWPFSOgL1vEnN7nfeWRK80jem2nMvJCMJA84JcZKD/2QmLEfpONBep5lg2rNqTsz4GXiFqQGBZqD6ld/GNEkZNJQQbTuuU5svJQow6lgWaWfaBYTOiEj1rNUkpBpL52lzvCJVYY4iJR90uCZ+nsjJaHW09C3k3lKvejl4n9eLzHBlZdyGSeGSTo/FCQCmwjnFeAhV4waMbWEUMVtVkzHRBFqbFEVW4K7+OVl0j6ruxd15+681rgu6ijDERzDKbhwCQ24hSa0gIKCZ3iFN/SEXtA7+piPllCxcwh/gD5/AOOOksM=</latexit>

h4

Token embeddings :

<latexit sha1_base64="k+8mpSNbdgqxXjCMq1ye2l+Op8o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPVi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6uO55vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+i6t6fV2o3eRxFOIJjOAUPLqEGd1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AG5KY1t</latexit>

A1

<latexit sha1_base64="Y4ogC2xXHvFvMmER0Nf6IvjRqTI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR9Fj14rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9XPeqvVLZrbgzkGXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgpNhNNSaUjegAO5ZKGqH2s9mpE3JqlT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtO0YbgLb68TJrVindRce/Py7WbPI4CHMMJnIEHl1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AG6rY1u</latexit>

A2

<latexit sha1_base64="k+8mpSNbdgqxXjCMq1ye2l+Op8o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPVi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6uO55vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+i6t6fV2o3eRxFOIJjOAUPLqEGd1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AG5KY1t</latexit>

A1

<latexit sha1_base64="Y4ogC2xXHvFvMmER0Nf6IvjRqTI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR9Fj14rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9XPeqvVLZrbgzkGXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgpNhNNSaUjegAO5ZKGqH2s9mpE3JqlT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtO0YbgLb68TJrVindRce/Py7WbPI4CHMMJnIEHl1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AG6rY1u</latexit>

A2

Feature embeddings :

<latexit sha1_base64="dU8KY7T4gO4c/aNcAa53SMdGJNM=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyoqMuiG5cV7APbUjLpnTY0kxmSjFCG/oUbF4q49W/c+Tdm2llo64HA4Zx7ybnHjwXXxnW/ncLK6tr6RnGztLW9s7tX3j9o6ihRDBssEpFq+1Sj4BIbhhuB7VghDX2BLX98m/mtJ1SaR/LBTGLshXQoecAZNVZ67IbUjPwgHU375YpbdWcgy8TLSQVy1Pvlr+4gYkmI0jBBte54bmx6KVWGM4HTUjfRGFM2pkPsWCppiLqXzhJPyYlVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcF1L+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSSVbgrd48jJpnlW9y+r5/UWldpPXUYQjOIZT8OAKanAHdWgAAwnP8ApvjnZenHfnYz5acPKdQ/gD5/MH54WRFA==</latexit>

h

<latexit sha1_base64="BYzA4zx7NVEn14u0eO/gCDfganA=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyoqMuiG5cV7AM6Q8mkmTY0kwxJRixDf8ONC0Xc+jPu/Bsz7Sy09UDgcM693JMTJpxp47rfTmlldW19o7xZ2dre2d2r7h+0tUwVoS0iuVTdEGvKmaAtwwyn3URRHIecdsLxbe53HqnSTIoHM0loEOOhYBEj2FjJ92NsRmGUPU37Xr9ac+vuDGiZeAWpQYFmv/rlDyRJYyoM4VjrnucmJsiwMoxwOq34qaYJJmM8pD1LBY6pDrJZ5ik6scoARVLZJwyaqb83MhxrPYlDO5ln1IteLv7n9VITXQcZE0lqqCDzQ1HKkZEoLwANmKLE8IklmChmsyIywgoTY2uq2BK8xS8vk/ZZ3busn99f1Bo3RR1lOIJjOAUPrqABd9CEFhBI4Ble4c1JnRfn3fmYj5acYucQ/sD5/AEs/JHI</latexit>x1
<latexit sha1_base64="i8v1EDYBQvNHkOI6gOcjhT7Z2GY=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFclZkq6rLoxmUF+4DOUDJppg3NJEOSEcvQ33DjQhG3/ow7/8ZMOwttPRA4nHMv9+SECWfauO63s7K6tr6xWdoqb+/s7u1XDg7bWqaK0BaRXKpuiDXlTNCWYYbTbqIojkNOO+H4Nvc7j1RpJsWDmSQ0iPFQsIgRbKzk+zE2ozDKnqb9er9SdWvuDGiZeAWpQoFmv/LlDyRJYyoM4VjrnucmJsiwMoxwOi37qaYJJmM8pD1LBY6pDrJZ5ik6tcoARVLZJwyaqb83MhxrPYlDO5ln1IteLv7n9VITXQcZE0lqqCDzQ1HKkZEoLwANmKLE8IklmChmsyIywgoTY2sq2xK8xS8vk3a95l3Wzu8vqo2boo4SHMMJnIEHV9CAO2hCCwgk8Ayv8Oakzovz7nzMR1ecYucI/sD5/AEugJHJ</latexit>x2

<latexit sha1_base64="gn/ymQqxYRWIbAFIsGNg9E89hL4=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyoqMuiG5cV7AM6Q8mkmTY0kwxJRixDf8ONC0Xc+jPu/Bsz7Sy09UDgcM693JMTJpxp47rfTmlldW19o7xZ2dre2d2r7h+0tUwVoS0iuVTdEGvKmaAtwwyn3URRHIecdsLxbe53HqnSTIoHM0loEOOhYBEj2FjJ92NsRmGUPU375/1qza27M6Bl4hWkBgWa/eqXP5AkjakwhGOte56bmCDDyjDC6bTip5ommIzxkPYsFTimOshmmafoxCoDFEllnzBopv7eyHCs9SQO7WSeUS96ufif10tNdB1kTCSpoYLMD0UpR0aivAA0YIoSwyeWYKKYzYrICCtMjK2pYkvwFr+8TNpnde+yfn5/UWvcFHWU4QiO4RQ8uIIG3EETWkAggWd4hTcndV6cd+djPlpyip1D+APn8wcwBJHK</latexit>x3
<latexit sha1_base64="km4TmdNeih1/Ejm9rcSXtLlvNek=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUSLuiy6cVnBPqAJZTKdtEMnkzAPsYT+hhsXirj1Z9z5N07aLLT1wMDhnHu5Z06Ycqa06347K6tr6xubpa3y9s7u3n7l4LCtEiMJbZGEJ7IbYkU5E7Slmea0m0qK45DTTji+zf3OI5WKJeJBT1IaxHgoWMQI1lby/RjrURhlT9N+vV+pujV3BrRMvIJUoUCzX/nyBwkxMRWacKxUz3NTHWRYakY4nZZ9o2iKyRgPac9SgWOqgmyWeYpOrTJAUSLtExrN1N8bGY6VmsShncwzqkUvF//zekZH10HGRGo0FWR+KDIc6QTlBaABk5RoPrEEE8lsVkRGWGKibU1lW4K3+OVl0j6veZe1i/t6tXFT1FGCYziBM/DgChpwB01oAYEUnuEV3hzjvDjvzsd8dMUpdo7gD5zPHzGIkcs=</latexit>x4

<latexit sha1_base64="duUk32wJ8dWQqAewSY/utOpBkgQ=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRkVdVl047KCfWBbSia904ZmMkOSEcvQv3DjQhG3/o07/8ZMOwttPRA4nHMvOff4seDauO63s7S8srq2Xtgobm5t7+yW9vYbOkoUwzqLRKRaPtUouMS64UZgK1ZIQ19g0x/dZH7zEZXmkbw34xi7IR1IHnBGjZUeOiE1Qz9Inya9UtmtuFOQReLlpAw5ar3SV6cfsSREaZigWrc9NzbdlCrDmcBJsZNojCkb0QG2LZU0RN1Np4kn5NgqfRJEyj5pyFT9vZHSUOtx6NvJLKGe9zLxP6+dmOCqm3IZJwYlm30UJIKYiGTnkz5XyIwYW0KZ4jYrYUOqKDO2pKItwZs/eZE0TiveReXs7rxcvc7rKMAhHMEJeHAJVbiFGtSBgYRneIU3RzsvzrvzMRtdcvKdA/gD5/MH/9WRJA==</latexit>x

Equation (4)

Figure 7.3: AdaMEL processes 1 attribute A as 2 relational features (i.e., sim(A) and uni(A)).
In this example, F = 4 features are generated from |A| = 2 attributes (i.e., “Title” and “Artist”).
The empty word tokens are embedded as the fixed normalized non-zero vector to form h (red
dashed box). The feature embedding x is obtained through non-linear affine transformation
of the token embedding h (Equation (7.4)). Each feature assumes to contribute independently
to predict the linkage.

where VH×D
j is the learnable weight matrix, bHj is the learnable bias vector, and σ denotes

the non-linear activation function (e.g., Relu). With this representation, Equation (7.1)

can be rewritten as: y = M(K,x) ∈ {0, 1}. Next we discuss how AdaMEL learns feature

importance 2 as the transferable knowledge K.

7.4.3 Feature Attention Embedding

Given a pair of entities denoted through F features, AdaMEL defines the energy score of

feature j as ej = a(Wxj), where xj is the H-dimensional representation of latent feature j,

WH′×H is a shared linear transformation, and a represents the attention mechanism RH′ → R,

as a single-layer neural network (parameterized with a). AdaMEL allows each feature to

attend to the label y independently and computes coefficients using the softmax function

such that the normalized scores are comparable across all features. Formula in Equation (7.5)

computes the attention score of feature j:

g(xj) = softmaxj(ej) =
exp (aT tanh (Wxj))∑F
k=1 exp (aT tanh (Wxk))

(7.5)

2In this work, we compute the feature attention as the transferable knowledge, feature importance.

128

Note that Equation (7.5) only generates the scalar attention score of feature j for an

input vector x. To compute the scores of all features, we introduce the attention embedding

function f that learns attention scores of all F features as follows.

f(x) = f([x1,x2, · · · ,xF]) = [g(x1), g(x2), · · · , g(xF)] (7.6)

In Equation (7.6), all features share the same W and a to compute the attention scores.

We denote f(x)j = g(xj), and
∑F

j=1 f(x)j = 1. AdaMEL takes the generated feature

importance vector f(x) as the transferable knowledge K for the entity pair (r, r′), i.e.,

K = f(x).

In the learning process, AdaMEL feeds the feature representation coupled with its

attention score to a 2-layer feed-forward neural network Θ to perform the binary classification

task:

ŷ = Θ(σ(f(x)� x)) = Θ([σ(g(x1) · x1), · · · , σ(g(xF) · xF)]) (7.7)

where � denotes the element-wise multiplication, σ denotes the non-linear activation (e.g.,

Relu) and ŷ denotes the inference score for matching. AdaMEL uses the same attention

mechanism to handle all records in the training and leverages the cross-entropy loss to update

the shared parameters W, a, as well as the learnable V, b through back-propagation:

Lbase = − 1

N

N∑
i=1

yi log ŷi + (1− yi) log(1− ŷi) (7.8)

where yi denotes the label {0, 1}. To ensure that all learnable parameters can be updated

correctly, AdaMEL initializes the missing attribute values (incurred by challenge C1, C2)

with a fixed normalized non-zero vector.

We name this solution AdaMEL-base as it learns f through the labeled data in DS
and illustrate the architecture in Figure 7.4. The attribute importance learned under the

supervision of labeled data in DS will be carried over to the unseen data sources and may

not generalize well as there is always new data from seen or unseen sources with different

distributions (C3) in MEL. Next we discuss how AdaMEL adopts DT sampled from multiple

data sources to alleviate this issue and make K data-source agnostic.

129

… …

Attention
embedding func.

Loss

Feature embeddings

Back
prop.

<latexit sha1_base64="sWeQjdztTIQDAzlD4kDbnIJO/FM=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6LHoxWOFfkEbyma7addudsPuRCih/8GLB0W8+n+8+W/ctjlo64OBx3szzMwLE8ENet63U1hb39jcKm6Xdnb39g/Kh0cto1JNWZMqoXQnJIYJLlkTOQrWSTQjcShYOxzfzfz2E9OGK9nAScKCmAwljzglaKVWrzFiSPrlilf15nBXiZ+TCuSo98tfvYGiacwkUkGM6fpegkFGNHIq2LTUSw1LCB2TIetaKknMTJDNr526Z1YZuJHStiS6c/X3REZiYyZxaDtjgiOz7M3E/7xuitFNkHGZpMgkXSyKUuGicmevuwOuGUUxsYRQze2tLh0RTSjagEo2BH/55VXSuqj6V1Xv4bJSu83jKMIJnMI5+HANNbiHOjSBwiM8wyu8Ocp5cd6dj0VrwclnjuEPnM8fdEmPDA==</latexit>

⇥

Label

0

<latexit sha1_base64="djRhg0G2LUAFch7eeP0VDknmiDo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUCPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVtXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBzEOM7g==</latexit>

f

<latexit sha1_base64="r8a75tFudBsoT7elDtdSkOanUA8=">AAAB83icbVBNS8NAFHypX7V+VT16WSyCp5KIoseiF48VbC00pWy2L+3SzSbsbsQS+je8eFDEq3/Gm//GTZuDtg4sDDPv8WYnSATXxnW/ndLK6tr6RnmzsrW9s7tX3T9o6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBD8H4JvcfHlFpHst7M0mwF9Gh5CFn1FjJ9yNqRkGYPU37vF+tuXV3BrJMvILUoECzX/3yBzFLI5SGCap113MT08uoMpwJnFb8VGNC2ZgOsWuppBHqXjbLPCUnVhmQMFb2SUNm6u+NjEZaT6LATuYZ9aKXi/953dSEV72MyyQ1KNn8UJgKYmKSF0AGXCEzYmIJZYrbrISNqKLM2JoqtgRv8cvLpH1W9y7q7t15rXFd1FGGIziGU/DgEhpwC01oAYMEnuEV3pzUeXHenY/5aMkpdg7hD5zPH4CSkfw=</latexit>xi
<latexit sha1_base64="0G9DIf2xjhcU0nowLhALP+anAmg=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyVRUZdFNy4r2Ae0oUymk3boZBJmJmIN+RI3LhRx66e482+ctFlo64GBwzn3cs8cP+ZMacf5tkorq2vrG+XNytb2zm7V3ttvqyiRhLZIxCPZ9bGinAna0kxz2o0lxaHPacef3OR+54FKxSJxr6cx9UI8EixgBGsjDexqP8R67AfpYzZImZsN7JpTd2ZAy8QtSA0KNAf2V38YkSSkQhOOleq5Tqy9FEvNCKdZpZ8oGmMywSPaM1TgkCovnQXP0LFRhiiIpHlCo5n6eyPFoVLT0DeTeUy16OXif14v0cGVlzIRJ5oKMj8UJBzpCOUtoCGTlGg+NQQTyUxWRMZYYqJNVxVTgrv45WXSPq27F/Wzu/Na47qoowyHcAQn4MIlNOAWmtACAgk8wyu8WU/Wi/VufcxHS1axcwB/YH3+ADshk3g=</latexit>xi1

<latexit sha1_base64="GIsEOqiz+UZSa7zP+3c7+AXZwT0=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiRV1GXRjcsK9gFtKJPppB06mYSZiVhDvsSNC0Xc+inu/BsnbRbaemDgcM693DPHjzlT2nG+rZXVtfWNzdJWeXtnd69i7x+0VZRIQlsk4pHs+lhRzgRtaaY57caS4tDntONPbnK/80ClYpG419OYeiEeCRYwgrWRBnalH2I99oP0MRukrJ4N7KpTc2ZAy8QtSBUKNAf2V38YkSSkQhOOleq5Tqy9FEvNCKdZuZ8oGmMywSPaM1TgkCovnQXP0IlRhiiIpHlCo5n6eyPFoVLT0DeTeUy16OXif14v0cGVlzIRJ5oKMj8UJBzpCOUtoCGTlGg+NQQTyUxWRMZYYqJNV2VTgrv45WXSrtfci9rZ3Xm1cV3UUYIjOIZTcOESGnALTWgBgQSe4RXerCfrxXq3PuajK1axcwh/YH3+ADymk3k=</latexit>xi2
<latexit sha1_base64="rx7kRW+QyPRIVQoTnqd/NfR3PTc=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyVRUZdFNy4r2Ae0oUymk3boZBJmJmIN+RI3LhRx66e482+ctFlo64GBwzn3cs8cP+ZMacf5tkorq2vrG+XNytb2zm7V3ttvqyiRhLZIxCPZ9bGinAna0kxz2o0lxaHPacef3OR+54FKxSJxr6cx9UI8EixgBGsjDexqP8R67AfpYzZI2Vk2sGtO3ZkBLRO3IDUo0BzYX/1hRJKQCk04VqrnOrH2Uiw1I5xmlX6iaIzJBI9oz1CBQ6q8dBY8Q8dGGaIgkuYJjWbq740Uh0pNQ99M5jHVopeL/3m9RAdXXspEnGgqyPxQkHCkI5S3gIZMUqL51BBMJDNZERljiYk2XVVMCe7il5dJ+7TuXtTP7s5rjeuijjIcwhGcgAuX0IBbaEILCCTwDK/wZj1ZL9a79TEfLVnFzgH8gfX5Az4rk3o=</latexit>xi3

<latexit sha1_base64="pjn9eb0cD4texVzUxpOPIgqnwA0=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyVRUZdFQVxWsA9oQ5lMJ+3QySTMTMQa8iVuXCji1k9x5984abPQ6oGBwzn3cs8cP+ZMacf5skpLyyura+X1ysbm1nbV3tltqyiRhLZIxCPZ9bGinAna0kxz2o0lxaHPacefXOV+555KxSJxp6cx9UI8EixgBGsjDexqP8R67AfpQzZI2XU2sGtO3ZkB/SVuQWpQoDmwP/vDiCQhFZpwrFTPdWLtpVhqRjjNKv1E0RiTCR7RnqECh1R56Sx4hg6NMkRBJM0TGs3UnxspDpWahr6ZzGOqRS8X//N6iQ4uvJSJONFUkPmhIOFIRyhvAQ2ZpETzqSGYSGayIjLGEhNtuqqYEtzFL/8l7eO6e1Y/uT2tNS6LOsqwDwdwBC6cQwNuoAktIJDAE7zAq/VoPVtv1vt8tGQVO3vwC9bHN1sKk40=</latexit>xiF

…
…

Figure 7.4: AdaMEL-base architecture that updates f via labeled data in DS. AdaMEL-
base first computes the attention vector f(xi) for the i−th entity pair (dashed line), and then
compose it with the feature embeddings (solid line) as the input to the neural network Θ.

7.4.4 Domain Adaptation-based Variants

Based on AdaMEL-base, we propose three variants that leverage domain adaptation to

handle different learning scenarios.

7.4.4.1 Unsupervised Domain Adaptation

Our first idea is to adjust the learned attribute importance according to new distribution

of unlabeled data. In Equation (7.6), the attention embedding function f contains the shared

attention mechanism a parameterized by weight vector a and the shared transformation

matrix W. It only takes the feature embeddings x as input to compute the attention scores.

Since W and a are shared across the input data, the attention score vector f(x) can be seen

as projecting the input feature embeddings x into a hyper-plane that is parameterized by W

and a. Without introducing extra information such as entity pair labeling, we can project

data from DT into the same space as DS, and it holds as long as the ontology of the unlabeled

data aligns with the labeled data, i.e., identical attribute schema between DS and DT .
Therefore, AdaMEL uses the KL divergence to measure the attention score distribution

difference between the source and target domain as the regularization term to train the

model. The loss is defined in Equation (7.9). At a specific iteration in the training, AdaMEL

uses the up-to-date f to project data from both DS and DT into the same feature attention

space. Then, AdaMEL updates W and a so that not only the cross-entropy loss introduced

130

in Equation (7.8) is minimized, but also the KL divergence between feature attention

distributions for DS and DT . In this way, feature importance for entity records in DS is

jointly updated with records sampled from a wider range of data sources in DT , and thus being

agnostic to previously unseen data sources that have significantly different value distribution

(C3).

Lun = (1− λ)Lbase + λLtarget (7.9)

where λ is the hyperparameter that balances between Lbase and Ltarget. λ also measures the

amount of adaptation to the target domain DT . Ltarget is given as follows.

Ltarget = KL(f(x), f̄(x′)) =

|DS |∑
i=1

F∑
j=1

f̄(x′)j log(
f̄(x′)j
f(xi)j

) (7.10)

where f̄(x′)j = 1
|DT |

∑
x′i∈DT

f(x′i)j , which represents the attention score for feature j averaged

over the unlabeled data. x and x′ denote the feature vector in the source and target domain,

respectively, and f(xi)j denotes the importance of the j-th feature in the i-th entity pair. In

practice, AdaMEL adopts batch learning to improve the training efficiency, i.e., minimizing

the loss per batch instead of iterating through all records in the data. The unlabeled data

could also come in batches, which makes f̄(x′) be the attention vector averaged over the

batched unlabeled data instead of all in the target domain. By default, the batches are

sampled randomly.

We name this solution AdaMEL-zero as it is based on unsupervised domain adaption

without using any labeled data in DT and performs linkage in the zero-shot manner. This

model also follows the design pattern in [GL15]. Figure 7.5 depicts the architecture and the

algorithm is given in Algorithm VII.1. Line 3-4 project the affine transformation of entity

pairs from both DS and DT . Line 5 computes f̄(x′), the attention vector averaged over

entity pairs in the target domain. Line 8-10 computes each attention vector in the sampled

batch f(xi) and adapt it to f̄(x′) to compute the loss Ltarget. AdaMEL minimizes both

the inference loss Lbase and Ltarget to train the parameters in f and form the transferable

knowledge K = f(xi) for xi ∈ DT (Line 12). Line 14- 15 denote the inference.

131

Loss
Back
prop.

<latexit sha1_base64="sWeQjdztTIQDAzlD4kDbnIJO/FM=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6LHoxWOFfkEbyma7addudsPuRCih/8GLB0W8+n+8+W/ctjlo64OBx3szzMwLE8ENet63U1hb39jcKm6Xdnb39g/Kh0cto1JNWZMqoXQnJIYJLlkTOQrWSTQjcShYOxzfzfz2E9OGK9nAScKCmAwljzglaKVWrzFiSPrlilf15nBXiZ+TCuSo98tfvYGiacwkUkGM6fpegkFGNHIq2LTUSw1LCB2TIetaKknMTJDNr526Z1YZuJHStiS6c/X3REZiYyZxaDtjgiOz7M3E/7xuitFNkHGZpMgkXSyKUuGicmevuwOuGUUxsYRQze2tLh0RTSjagEo2BH/55VXSuqj6V1Xv4bJSu83jKMIJnMI5+HANNbiHOjSBwiM8wyu8Ocp5cd6dj0VrwclnjuEPnM8fdEmPDA==</latexit>

⇥
<latexit sha1_base64="buJBs3uyqOVGHvqTMXB9nqK1pT0=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBHqpsyIosuiG5cV7APaoWTSTBuaScYkUyxDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfzsrq2vrGZmGruL2zu7dfOjhsapkoQhtEcqnaAdaUM0EbhhlO27GiOAo4bQWj28xvjanSTIoHM4mpH+GBYCEj2FjJDyvdCJthEKZP07NeqexW3RnQMvFyUoYc9V7pq9uXJImoMIRjrTueGxs/xcowwum02E00jTEZ4QHtWCpwRLWfzkJP0alV+iiUyj5h0Ez9vZHiSOtJFNjJLKJe9DLxP6+TmPDaT5mIE0MFmR8KE46MRFkDqM8UJYZPLMFEMZsVkSFWmBjbU9GW4C1+eZk0z6veZdW9vyjXbvI6CnAMJ1ABD66gBndQhwYQeIRneIU3Z+y8OO/Ox3x0xcl3juAPnM8fjauR9Q==</latexit>

f(x)

0
1

…
…

…

Equation (11)

…

Source domain Target domain

<latexit sha1_base64="tejEhGinsQiUxKrjHDqI0WoaP7Y=">AAACGnicbVDLSsNAFJ3UV62vqEs3wSK0m5KIqMuiG0EXFewDmhgm00k7dCYJMxOxpPkON/6KGxeKuBM3/o2TNovaeuDC4Zx7ufceL6JESNP80QpLyyura8X10sbm1vaOvrvXEmHMEW6ikIa840GBKQlwUxJJcSfiGDKP4rY3vMz89gPmgoTBnRxF2GGwHxCfICiV5OrW9U3Fr9gMyoHnJ4+pS6rjse1BnvjpjHyf2BEnDKfVqquXzZo5gbFIrJyUQY6Gq3/ZvRDFDAcSUShE1zIj6SSQS4IoTkt2LHAE0RD2cVfRADIsnGTyWmocKaVn+CFXFUhjos5OJJAJMWKe6syOFfNeJv7ndWPpnzsJCaJY4gBNF/kxNWRoZDkZPcIxknSkCEScqFsNNIAcIqnSLKkQrPmXF0nruGad1szbk3L9Io+jCA7AIagAC5yBOrgCDdAECDyBF/AG3rVn7VX70D6nrQUtn9kHf6B9/wILRKGE</latexit>

KL(f(xi)||f̄(x0))

<latexit sha1_base64="H8AwMj76vKeJ2TuB394hJaTwYd0=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWZE1GVRFy4r2ge0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LK6tr6RnGztLW9s7tX3j9o6ihRlDVoJCLV9olmgkvWMNwI1o4VI6EvWMsf3WR+a8yU5pF8NJOYeSEZSB5wSoyVvG5IzJASkd5Oew+9csWpOjPgZeLmpAI56r3yV7cf0SRk0lBBtO64Tmy8lCjDqWDTUjfRLCZ0RAasY6kkIdNeOgs9xSdW6eMgUvZJg2fq742UhFpPQt9OZiH1opeJ/3mdxARXXsplnBgm6fxQkAhsIpw1gPtcMWrExBJCFbdZMR0SRaixPZVsCe7il5dJ86zqXlSd+/NK7TqvowhHcAyn4MIl1OAO6tAACk/wDK/whsboBb2jj/loAeU7h/AH6PMH14+SJQ==</latexit>DS
<latexit sha1_base64="hZkxWStWRmTVYh07+YfOYxXkw/0=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuiLlxW6AvaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfTmFtfWNzq7hd2tnd2z8oHx61tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPxXea3J1RpJkXDTGPqR3goWMgINlbyexE2I4J5ej/rN/rlilt150CrxMtJBXLU++Wv3kCSJKLCEI617npubPwUK8MIp7NSL9E0xmSMh7RrqcAR1X46Dz1DZ1YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwhs/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdK6qHpXVffxslK7zesowgmcwjl4cA01eIA6NIHAEzzDK7w5E+fFeXc+FqMFJ985hj9wPn8A2ROSJg==</latexit>DT

<latexit sha1_base64="afFSP0czSHogEIQ6Mvu+4b2xgEk=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyFRUZdFNy4r2Ae0IUymk3bo5MHMRKwhX+LGhSJu/RR3/o2TNgttPTBwOOde7pnjJ5xJZdvfRmVldW19o7pZ29re2a2be/sdGaeC0DaJeSx6PpaUs4i2FVOc9hJBcehz2vUnN4XffaBCsji6V9OEuiEeRSxgBCsteWZ9EGI19oPsMfcyy8k9s2Fb9gxomTglaUCJlmd+DYYxSUMaKcKxlH3HTpSbYaEY4TSvDVJJE0wmeET7mkY4pNLNZsFzdKyVIQpioV+k0Ez9vZHhUMpp6OvJIqZc9ArxP6+fquDKzViUpIpGZH4oSDlSMSpaQEMmKFF8qgkmgumsiIyxwETprmq6BGfxy8ukc2o5F9bZ3XmjeV3WUYVDOIITcOASmnALLWgDgRSe4RXejCfjxXg3PuajFaPcOYA/MD5/AOEwkz0=</latexit>x.1
<latexit sha1_base64="HfsobcgxAIJtAnsVMPolkYkjf4c=">AAAB+HicbVDLSsNAFL3xWeujUZdugkVwFZIq6rLoxmUF+4A2hMl00g6dTMLMRKwhX+LGhSJu/RR3/o2TNgttPTBwOOde7pkTJIxK5Tjfxsrq2vrGZmWrur2zu1cz9w86Mk4FJm0cs1j0AiQJo5y0FVWM9BJBUBQw0g0mN4XffSBC0pjfq2lCvAiNOA0pRkpLvlkbREiNgzB7zP3MbuS+WXdsZwZrmbglqUOJlm9+DYYxTiPCFWZIyr7rJMrLkFAUM5JXB6kkCcITNCJ9TTmKiPSyWfDcOtHK0ApjoR9X1kz9vZGhSMppFOjJIqZc9ArxP6+fqvDKyyhPUkU4nh8KU2ap2CpasIZUEKzYVBOEBdVZLTxGAmGlu6rqEtzFLy+TTsN2L+yzu/N687qsowJHcAyn4MIlNOEWWtAGDCk8wyu8GU/Gi/FufMxHV4xy5xD+wPj8AeK1kz4=</latexit>x.2

<latexit sha1_base64="m9E1lxkDCUQZ3CKA5qxriCZ6Bzk=">AAAB+HicbVDLSsNAFL2pr1ofjbp0EyyCq5CoqMuiG5cV7APaECbTSTt0MgkzE7GGfIkbF4q49VPc+TdO2iy09cDA4Zx7uWdOkDAqleN8G5WV1bX1jepmbWt7Z7du7u13ZJwKTNo4ZrHoBUgSRjlpK6oY6SWCoChgpBtMbgq/+0CEpDG/V9OEeBEacRpSjJSWfLM+iJAaB2H2mPuZfZb7ZsOxnRmsZeKWpAElWr75NRjGOI0IV5ghKfuukygvQ0JRzEheG6SSJAhP0Ij0NeUoItLLZsFz61grQyuMhX5cWTP190aGIimnUaAni5hy0SvE/7x+qsIrL6M8SRXheH4oTJmlYqtowRpSQbBiU00QFlRntfAYCYSV7qqmS3AXv7xMOqe2e2Gf3Z03mtdlHVU4hCM4ARcuoQm30II2YEjhGV7hzXgyXox342M+WjHKnQP4A+PzB+Q6kz8=</latexit>x.3
<latexit sha1_base64="S2cjQ0qcgon3ocEBE5gwZY5dOlg=">AAAB+HicbVDLSsNAFL2pr1ofjbp0EyyCq5CoqMuiIC4r2Ae0IUymk3boZBJmJmIN+RI3LhRx66e482+ctFlo9cDA4Zx7uWdOkDAqleN8GZWl5ZXVtep6bWNza7tu7ux2ZJwKTNo4ZrHoBUgSRjlpK6oY6SWCoChgpBtMrgq/e0+EpDG/U9OEeBEacRpSjJSWfLM+iJAaB2H2kPuZfZ37ZsOxnRmsv8QtSQNKtHzzczCMcRoRrjBDUvZdJ1FehoSimJG8NkglSRCeoBHpa8pRRKSXzYLn1qFWhlYYC/24smbqz40MRVJOo0BPFjHloleI/3n9VIUXXkZ5kirC8fxQmDJLxVbRgjWkgmDFppogLKjOauExEggr3VVNl+Aufvkv6Rzb7pl9cnvaaF6WdVRhHw7gCFw4hybcQAvagCGFJ3iBV+PReDbejPf5aMUod/bgF4yPbwEok1I=</latexit>x.F

<latexit sha1_base64="sTbF8fOBCRADXy8hVfjGLijChdU=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIrkKioi6LblxWsA9oYphMJ+3QmUmYmYglxI2/4saFIm79C3f+jZM2C209cOFwzr3ce0+YUCKV43wblYXFpeWV6mptbX1jc8vc3mnLOBUIt1BMY9ENocSUcNxSRFHcTQSGLKS4E46uCr9zj4UkMb9V4wT7DA44iQiCSkuBuecxqIZhlD3kd5mXCMJwHmS2mwdm3bGdCax54pakDko0A/PL68coZZgrRKGUPddJlJ9BoQiiOK95qcQJRCM4wD1NOWRY+tnkg9w61ErfimKhiytrov6eyCCTcsxC3VncK2e9QvzP66UquvAzwpNUYY6mi6KUWiq2ijisPhEYKTrWBCJB9K0WGkIBkdKh1XQI7uzL86R9bLtn9snNab1xWcZRBfvgABwBF5yDBrgGTdACCDyCZ/AK3own48V4Nz6mrRWjnNkFf2B8/gA945dm</latexit>

x0
.1

<latexit sha1_base64="2cJIn2FvEdIT0te+LkckI/FzipY=">AAACAXicbVDLSsNAFJ34rPUVdSO4CRbBVUiqqMuiG5cV7AOaGCbTSTt0ZhJmJmIJceOvuHGhiFv/wp1/46TNQlsPXDiccy/33hMmlEjlON/GwuLS8spqZa26vrG5tW3u7LZlnAqEWyimseiGUGJKOG4poijuJgJDFlLcCUdXhd+5x0KSmN+qcYJ9BgecRARBpaXA3PcYVMMwyh7yu8xLBGE4DzK7ngdmzbGdCax54pakBko0A/PL68coZZgrRKGUPddJlJ9BoQiiOK96qcQJRCM4wD1NOWRY+tnkg9w60krfimKhiytrov6eyCCTcsxC3VncK2e9QvzP66UquvAzwpNUYY6mi6KUWiq2ijisPhEYKTrWBCJB9K0WGkIBkdKhVXUI7uzL86Rdt90z++TmtNa4LOOogANwCI6BC85BA1yDJmgBBB7BM3gFb8aT8WK8Gx/T1gWjnNkDf2B8/gA/aJdn</latexit>

x0
.2

<latexit sha1_base64="zMVjzwKZTUA60hwpGrueIq+eA6g=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSyCq5BYUZdFNy4r2Ac0MUymk3boTBJmJmIJceOvuHGhiFv/wp1/46TNQlsPXDiccy/33hMkjEpl29/GwuLS8spqZa26vrG5tW3u7LZlnApMWjhmsegGSBJGI9JSVDHSTQRBPGCkE4yuCr9zT4SkcXSrxgnxOBpENKQYKS355r7LkRoGYfaQ32VuIignuZ9Z9dw3a7ZlTwDniVOSGijR9M0vtx/jlJNIYYak7Dl2orwMCUUxI3nVTSVJEB6hAelpGiFOpJdNPsjhkVb6MIyFrkjBifp7IkNcyjEPdGdxr5z1CvE/r5eq8MLLaJSkikR4uihMGVQxLOKAfSoIVmysCcKC6lshHiKBsNKhVXUIzuzL86R9YjlnVv3mtNa4LOOogANwCI6BA85BA1yDJmgBDB7BM3gFb8aT8WK8Gx/T1gWjnNkDf2B8/gBA7Zdo</latexit>

x0
.3

<latexit sha1_base64="K8Q2FG3MxH227erG1wdMsHnPIU0=">AAACAXicbVDLSsNAFJ34rPUVdSO4CRbBVUhU1GVREJcV7AOaGCbTSTt0ZhJmJmIJceOvuHGhiFv/wp1/46TNQlsPXDiccy/33hMmlEjlON/G3PzC4tJyZaW6ura+sWlubbdknAqEmyimseiEUGJKOG4qoijuJAJDFlLcDoeXhd++x0KSmN+qUYJ9BvucRARBpaXA3PUYVIMwyh7yu8xLBGE4DzL7Kg/MmmM7Y1izxC1JDZRoBOaX14tRyjBXiEIpu66TKD+DQhFEcV71UokTiIawj7uacsiw9LPxB7l1oJWeFcVCF1fWWP09kUEm5YiFurO4V057hfif101VdO5nhCepwhxNFkUptVRsFXFYPSIwUnSkCUSC6FstNIACIqVDq+oQ3OmXZ0nryHZP7eObk1r9ooyjAvbAPjgELjgDdXANGqAJEHgEz+AVvBlPxovxbnxMWueMcmYH/IHx+QNdzJd7</latexit>

x0
.F

<latexit sha1_base64="RIX8PYua0OqRvwnFd7GQvc1qTsI=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyoqMuiG5cV7AM6Q8mkmTY0kwxJRixDf8ONC0Xc+jPu/Bsz7Sy09UDgcM693JMTJpxp47rfTmlldW19o7xZ2dre2d2r7h+0tUwVoS0iuVTdEGvKmaAtwwyn3URRHIecdsLxbe53HqnSTIoHM0loEOOhYBEj2FjJ92NsRmGUPU37rF+tuXV3BrRMvILUoECzX/3yB5KkMRWGcKx1z3MTE2RYGUY4nVb8VNMEkzEe0p6lAsdUB9ks8xSdWGWAIqnsEwbN1N8bGY61nsShncwz6kUvF//zeqmJroOMiSQ1VJD5oSjlyEiUF4AGTFFi+MQSTBSzWREZYYWJsTVVbAne4peXSfus7l3Wz+8vao2boo4yHMExnIIHV9CAO2hCCwgk8Ayv8Oakzovz7nzMR0tOsXMIf+B8/gCB3JIA</latexit>xi

Figure 7.5: AdaMEL-zero architecture that attempts to align the i-th entity pair f(xi) in DS

(solid box) with the averaged f(x′) (dashed box) in DT . x.j and x′.j (j = 1, · · · , F) denote the
j-th feature in general from DS and DT , respectively.

7.4.4.2 Semi-supervised Domain Adaptation

In practice, a small number of labels may be available for the entity pairs coming from

the target domain (e.g., through on-the-fly human annotation). Entity pairs in this support

set SU are sampled from the wide range of data sources and provide clues about the data

characteristics of the target domain. To leverage this set of labeled data (G2), AdaMEL

updates the attention embedding function f under the supervision of SU so that the projected

feature attention vectors of entity pairs in DS could match to those in SU . For this purpose,
AdaMEL computes the centroid of the positive entity pairs in DS as follows:

c+
DS =

1

|DS|
∑

(x+
i ,y

+
i)∈DS

f(xi) (7.11)

The centroid of the negative pairs can be computed in a similar way with negative samples.

Intuitively, entity pairs from the data sources unseen in D∗S are more important in adaptation

than those from the seen sources, and should be highlighted. AdaMEL measures such

difference through the Euclidean-distance between f(x) and cDS , as the deviating attention

vectors are more likely to correspond to unseen data sources in the projected space. In the

loss function shown in Equation (7.12), we compare the distance d(f(x), cDS) with the “mean

distance to cluster centroids” to give higher weights to entity pairs in SU that are deviating

132

Algorithm VII.1 AdaMEL-zero

Ensure: DS = {(hi, yi)}, DT = {hi}, λ, batch size B
Require: Predicted ŷi for hi ∈ DT , updated a,W

1 Initialize a,W and V,b
2 loop training epochs
3 for h ∈ DS ∪ DT do
4 Form x with V,b . Eq. (7.4)
5 f̄(x′)← 1

|DT |
∑

xi∈DT f(xi)
6 J ← 0 . Initialize loss
7 Sbatch ← RANDOMSAMPLE(DS, B)
8 for (x, y) ∈ Sbatch do
9 Lun ← (1− λ)Lbase + λLtarget . Eq. (7.9)

10 J ← J +∇Lun . Update a,W,V,b

11 end loop
12 Form x, f with updated a,W, V,b . Eq. (7.6)
13 ŷ← ∅
14 for xi ∈ DT do
15 ŷi ← Θ(σ(f(xi)� xi))

16 return ŷ, a,W

from seen data sources.

Lsupport =
∑
yi=1

d(f(x+
i), c+

DS)

d̄+
DS

log ŷi +
∑
yi=0

d(f(x−i), c−DS)

d̄−DS
log(1− ŷi) (7.12)

where d denotes the Euclidean distance, d̄+/− represents the mean distance for all posi-

tive/negative pairs in DS to the corresponding centroid. Thus, by integrating Lsupport with

Lbase, the updated loss of AdaMEL in the supervised setting is denoted as follows:

Lssl = Lbase + φLsupport (7.13)

where φ ∈ (0, 1] is a hyperparameter that controls the impact of the labeled support set. The

training process updates not only parameters in the neural network Θ for better classification

performance, but also the attention embedding function f so that the projected positive

and negative feature attentions are matched closer. In this process, feature importance from

the new data sources unseen in D∗S can be incorporated to update the centroids c+/− in the

supervised manner. We name this solution AdaMEL-few as it uses a few labeled data in

DT , and depicts the process in Algorithm VII.2. Particularly, line 7- 8 denote the training

133

process of f to minimize the loss Lbase, and line 10- 11 denote the process of further training

under the supervision of labeled samples in SU .

Algorithm VII.2 AdaMEL-few

Ensure: DS = {(hi, yi)}, SU = {(hi, yi)}, DT = {hi}, φ, B
Require: Predicted ŷi for hi ∈ DT , updated a,W

1 Initialize a,W and V,b
2 loop training epochs
3 for h ∈ DS ∪ DT do
4 Form x with V,b . Eq. (7.4)
5 J ← 0 . Initialize loss
6 Sbatch ← RANDOMSAMPLE(DS, B)
7 for (x, y) ∈ Sbatch do
8 J ← J +∇Lbase . Eq. (7.8)
9 Form f with updated a,W . Eq. (7.6)

10 Compute D+
S , D−S , d̄+

DS , d̄
−
DS . Eq. (7.11)

11 Lssl ← Lbase + φLsupport . Eq. (7.13)
12 J ← J +∇Lssl . Update a,W,V,b
13 end loop
14 Infer ŷ . Same as Line 13- 15 of Algorithm VII.1
15 return ŷ, a,W

7.4.4.3 Hybrid Model

We further propose a hybrid model that incorporates both the labeled support set as well

as the unlabeled data in the target domain in the training process. It can be seen as the

composition of AdaMEL-zero and AdaMEL-few. The loss function is as follows.

Lhybrid = (1− λ)Lbase + λLtarget + φLsupport (7.14)

This variant uses the loss Ltarget defined in Equation (7.10) and Lsupport defined in

Equation (7.12). We name this hybrid solution as AdaMEL-hyb. The algorithm is

similar to Algo. VII.2, the main difference is to incorporate Lun i.e., Equation (7.9) into the

training process (line 7- 8) to learn the parameters simultaneously. The detailed algorithm of

AdaMEL-hyb is shown in Algorithm VII.3.

134

Algorithm VII.3 AdaMEL-hyb

Ensure: DS = {(hi, yi)}, SU = {(hi, yi)}, DT = {hi}, φ, B
Require: Predicted ŷi for hi ∈ DT , updated a,W

1 Initialize a,W and V,b
2 loop training epochs
3 for h ∈ DS ∪ DT ∪ SU do
4 Form x with V,b . Eq. (7.4)
5 f̄(x′)← 1

|DT |
∑

xi∈DT f(xi)
6 J ← 0 . Initialize loss
7 Sbatch ← RANDOMSAMPLE(DS, B)
8 for (x, y) ∈ Sbatch do
9 Lun ← (1− λ)Lbase + λLtarget . Eq. (7.9)

10 J ← J +∇Lun

11 Form f with updated a,W . Eq. (7.6)
12 Compute D+

S , D−S , d̄+
DS , d̄

−
DS . Eq. (7.11)

13 Lhybrid = Lun + φLsupport . Eq. (7.14)
14 J ← J +∇Lhybrid . Update a,W,V,b
15 end loop
16 Infer ŷ . Same as Line 13- 15 of Algorithm VII.1
17 return ŷ, a,W

7.4.5 Parameter Complexity

We measure the parameter complexity of AdaMEL in terms of the numbers of learnable

parameters that comes from three parts: (i) per-feature non-linear affine operations that

transform the word token embeddings to the latent feature vectors, (ii) the shared feature

attention embedding function f , which includes learning W and a, and (iii) the multilayer

perceptron (MLP) Θ with 1 hidden layer for classification. For (i), there are totally F features,

each feature is associated with VH×D and b, thus leading to O(FDH) learnable parameters.

For (ii), as WH′×H and aH
′ are shared across all features, there are totallyO(HH ′) parameters.

The neural network Θ in (iii) takes the concatenated FH ′-dim features as input with one

Hhidden-dim hidden layer. Therefore, AdaMEL has totally O(FDH +HH ′ + FH ′Hhidden)

parameters to learn. We discuss the setup values of H, H ′ and Hhidden in the configuration

of Section 7.5, and empirically estimate the parameter number in Section 7.5.6.

135

7.5 Experiments

In this section we describe the experiments to evaluate properties and the performance

of AdaMEL. Specifically, we aim to answer the following research questions: Q1. Does

AdaMEL effectively handle MEL with the data challenges (C1-C3) under the transfer

learning paradigm? Q2. How well does AdaMEL adapt feature importance in the target

domain and how does it affect the linkage results? Q3. Are generated feature attention

values meaningful? Q4. How stable is AdaMEL in handling different data sources? Q5.

How does the size of support set SU impact the performance of AdaMEL? We conclude

with the model justification (ablation study, limitation).

Table 7.2: Data statistics and properties.

Data # Records Entity_types |D∗S| |D∗T | |A|
Monitor 66,795 Monitor 5 24 13
Music-3K 3,070 Artist, Album, Track 3 7 9
Music-1M 1,723,426 Artist, Album 3 7 9

7.5.1 Experimental Setup

Data In accordance with (Q1-Q5), we use both the public benchmark dataset from the Data

Integration to Knowledge Graphs (DI2KG) challenge [di220] and two real-world datasets in

different scales from an online-sales company. Both datasets are in the tabular form and the

entities are associated with descriptive textual features. The data statistics and source info is

given in Table 7.2.

• Music-1M is a weakly labeled corpus crawled from 7 public music websites. We name

them website 1-7 for confidentiality. There are 2 entity types: artists and albums.

Entity pairs are labeled following the hyperlinks in pages, so there might be mixed-type

errors such as matching an artist to her album.

• Music-3K is a manually labeled corpus containing the same data sources as Music-

1M. It has three types: artist, album and tracks. The manual annotation is based on 9

attributes such as the artist name and album title. Errors such as mixed-type matching

are carefully corrected.

136

• Monitor contains monitor data from 24 sales websites such as ebay.com and shop-

mania.com. We filter out attributes with > 60% empty records, and get totally 13

attributes such as product description, manufacturer info, condition status, etc.

Comparing with the public benchmark datasets [MLR+18], the above datasets are collected

from larger ranges of real-world data sources with heterogeneous schemas. The attribute

values in the above datasets are generally longer with diverse characters, which makes it

harder to summarize the attribute representation. For example, for Music-3K, artist type,

the averaged attribute length is 25.75 word tokens, and for Monitor, the averaged attribute

length is 11.73 word tokens. On the contrary, this number is 6.26 and 5.21 word tokens for

the benchmark “dirty” and “heterogeneous” Walmart-Amazon dataset [FHHS20], respectively.

In terms of the Music datasets, as the music works come from different countries, many

entities are recorded with non-English characters & phrases for attributes such as the title,

album and artist names. Unlike Music-1M that labels entity pairs through website hyperlinks,

Music-3K further inspects whether the pair of music works indicate the same physical copy

(i.e., “Album”), or the same digital copy in formats such as remix or cover (i.e., “Track”). The

Monitor dataset is highly imbalanced with more than 99% entity pairs being unmatched.

Additionally, less than 50% entity pairs in this dataset have non-missing values for most

attributes. Non-missing pairs of 5 attributes only exist in the target domain. These data

challenges do not exist in the benchmark datasets [MLR+18], and we detail the analysis in

the following part. All the above issues make the datasets more challenging and closer to the

real-world knowledge integration scenario.

Table 7.3: Train, support and test statistics in the experiments.

Data Entity_type Train |DS| Support |SU | Test |DT |

Music-3K
Artist 374 100 541
Album 490 100 509
Track 314 100 542

Music-1M Artist 298 566 100 541
Album 697 739 100 509

Monitor Monitor 17 766 100 1 432

Public Data Processing Here we detail the processing of the public dataset, Monitor that

is used in the experiment. We follow the ’monitor_label.csv’ file (1 073 positive pairs and

110 082 negative pairs) from the DI2KG to create the labeled entity pairs that fall into the

137

24 data sources we are interested in. The resultant dataset, Monitor has 734 positive and

66 061 negative pairs. The source domain D∗S contains 5 data sources (i.e., D∗S = {ebay.com,

catalog.com, best-deal-items.com, cleverboxes.com, ca.pcpartpicker.com}), which contains

302 positive pairs. Thus, the test data includes all the remaining positive 432 pairs and

randomly-selected 1, 000 negative pairs.

We provide the code and the splitted public Monitor data in the following in the repo

https://github.com/DerekDiJin/AdaMEL-supplementary.

Public Data Challenges To illustrate the data challenges (C1-C3), we provide detailed

analysis of the Monitor data. We first study the difference of the source and target domain in

terms of the attributes, i.e., missing attribute values (C1) and new attributes (C2). As the

attributes associated with entity pairs, we plot the percentage of pairs without missing values

per attribute, i.e., (r[A], r′[A]) where r[A] 6= ∅, r′[A] 6= ∅ for A ∈ A in both the source and

target domain. This metric also indicates the difference of data source attributes because for

unseen incoming attributes, at least one entities in a pair should have the missing value. The

result is depicted in Figure 7.6. Ideally, the percentage bars included in this plot should all be

close to 1, and this holds for both data in the source and target domain. In fact, we observe

this pattern in the benchmark datasets [MLR+18] (such as Beer, DBLP-ACM, etc.), which

indicates few missing values and no significantly different attributes. For the Monitor dataset,

however, the pattern is different. We first observe that only 2 attributes (i.e., “page_title”

and “source”) are close-to-1, while for all the remaining 11 attributes, less than 50% entity

pairs have complete attribute values. Such data sparsity reflects the challenge (C1). In

addition, we observe that the percentages of pairs without missing values are significantly

different for the source and target domain. Particularly, we find that there are 5 out of 13

attributes only have non-missing entity pairs only in the target domain, which can be seen as

new attributes (C2).

To illustrate the different attribute value distribution (C3), we showcase the attribute

value distribution of one attribute, “prod_type” as the representative. We plot the frequency

distribution of 10 most frequently appearing word tokens. As shown in Figure 7.7, the

distributions of attribute “prod_type” are quite different between the source and target

domain, which indicates the challenge we attempt to address.

138

https://github.com/DerekDiJin/AdaMEL-supplementary

Figure 7.6: Monitor: the challenges of missing attribute values (C1) and new attributes (C2)
between DS and DT is shown with the percentages of entity pairs without missing values per
attribute (i.e., nonempty for both entities). For most attributes, the majority of entity pairs
have at least 1 entity with missing values. 5 out of 13 attributes have non-missing entity pairs
only in the target domain (2 non-missing attributes are “page title” and “source”). For the
remaining 6 attributes, the percentage is also significantly different between the source and
target domain.

Baselines. The following baselines are used in this work.

• TLER [TPO+18] is a non-deep transfer learning framework that defines a standard

feature space and reuses the seen data to train models for the new domain.

• DeepMatcher [MLR+18] is a deep learning framework that consists of 3 modules: at-

tribute embedding, attribute similarity representation, and classification. The public im-

plementation uses Fasttext to embed attribute words and uses attentative RNN to sum-

marize attributes. We report results using the best-performing variant, DeepMatcher-

hybrid.

• EntityMatcher [FHHS20] is a hierarchical deep framework for heterogeneous schema

matching. It jointly matches entities at the level of token, attribute, and entity. The

token-level matching strategy allows EntityMatcher to perform cross-attribute alignment.

Fasttext is used to embed word tokens.

• Ditto [LLS+20] is an EL system that leverages fine-tuned, pre-trained Transformer-

based language models (i.e., BERT, DistilBERT, or RoBERTa) with optimization

including domain knowledge injection, text summarization, and data augmentation

139

(a) Frequency of top 10 word tokens in the
source domain

(b) Frequency of top 10 word tokens in the
target domain

Figure 7.7: Monitor: the challenges of different attribute value distribution (C3) shown with
the representative attribute “prod_type”. The frequency distribution of top 10 word tokens
under this attribute is significantly different between the source and target domain.

with difficult samples.

• CorDel [WSW+20] adopts an alternative deep architecture to the widely-used “twin

architecture”. It compares and contrasts word tokens to filter out minor deviations

between attribute values before embedding. CorDel also uses Fasttext, and it shows

higher performance with reduced runtime compared to DeepMatcher. Out of the

variants, CorDel-Attention is reported to perform the best on dirty EL datasets.

We consider these baselines since they are reported to achieve state-of-the-art EL performance

and outperform methods such as Seq2SeqMatcher [NHH+19] and DeepMatcher+ [KQG+19].

Most of them are particularly proposed to handle heterogeneous entity linkage.

Configuration. In our experiments, we follow the original paper and fine-tune the baselines

for optimal performance. The statistics of training, support and testing data is given in

Table 7.3. Specifically, Musci-1M shares the same testing set as Musci-3K. Monitor adopts all

positive and randomly selected 1000 negative pairs to form the testing set. For DeepMatcher,

we use its hybrid variant (bi-directional RNN with attention) to summarize attributes with

2-layer highway neural network ((hidden dim= 300)). The training epoches is set to 40 with

batch size = 16. For EntityMatcher, we use the full matching model that uses bi-GRU (hidden

size= 150) to embed attribute word sequences with cross-attribute token-level alignment.

The training epoch is set to 20 with batch size = 16. For CorDel, we use the attention-based

variant that learns the word importance within the same attribute to validate the effectiveness

140

of our attribute-level attention module. Moreover, CorDel-Attention was shown to perform

best on long textual attribute values, which matches the property of our input data. All these

3 baselines use the pretrained FastText [JGBM17] to derive the 300-dimensional embeddings

for word tokens in each attribute. We set the cropping size = 20 and sum the embeddings

of word tokens as the feature embeddings for CorDel. The training epoch is set to 20 with

learning rate = 10−4 and batch size = 16. For Ditto, we tested its optimization strategies

and adopted the “token span deletion” for data augmentation, “general” domain knowledge

and retaining high TF-IDF tokens to summarize the input sequences. We also tested all

pretrained language models, i.e., bert, distilbert, and albert, and ended up using bert. The

training epoch is set to 40 with batch size= 64 and learning rate= 3× 10−5.

To evaluate the effectiveness of our proposed framework, we configure AdaMEL with

consistent setup as the baselines. Specifically, we use the 300-dim Fasttext to embed word

tokens for fairness because 3 of the 4 baselines also use it, even though AdaMEL supports any

word embedding techniques such as Bert embedding [KT19]. We set the cropping size= 20 as

CorDel. The hyparameters of AdaMEL are given as follows: the dimension of the projected

embeddings per feature is H = 64, the dimension of the hidden layer in f is H ′ = 256, and

the dimension of the hidden layer in Θ is Hhidden = 256. The activation σ is set to be Relu.

We set λ = 0.98 and φ = 1.0 in Equation (7.9), (7.13) and (7.14) for AdaMEL variants

unless otherwise addressed. To train the AdaMEL, we use Adam optimizer [KB14] for 100

epoches with learning rate = 10−4 and batch size = 16. We conduct all experiments 3 times

and report the mean and std. We run these experiments on the Linux platform with 2.5GHz

Intel Core i7, 256GB memory and 8 NVIDIA K80 GPUs.

Evaluation Metric. We evaluate the model performance using PRAUC as it measures the

precision-recall relation globally and handles data imbalance. We use the python Sklearn

library to compute PRAUC based on the open-source implementation of all baselines.

7.5.2 Transfer Learning for MEL

Our first experiment is to verify the effectiveness of AdaMEL variants on the task of MEL

(Q1). We simulate two real-world scenarios: (S1) data in the target domain (DT) shares
common data sources with the source domain (DS) (i.e., (r, r′)T ∈ D∗S×D∗T), and (S2) data

141

(a) MEL performance on Music-3K

(b) MEL performance on Music-1M (c) MEL performance on Monitor

Figure 7.8: MEL performance (PRAUC) comparison between AdaMEL variants and baselines.
AdaMEL variants outperform baseline heterogeneous entity matching methods in almost all
cases. Particularly, AdaMEL-hyb performs the best on all entity types and datasets.

sources in the target domain are disjointed from the source domain (i.e., (r, r′)T ∈ D∗T×D∗T).
Setup. For the Music data, we use three data sources (i.e., D∗S = {website 1, website 2, website 3})
to train our model and test on all 7 sources (overlapping scenario S1) or only the 4 remaining

sources (disjoint scenario S2) as the target domain DT . In either scenario, we collect 100

samples (50 positive and 50 negative) from the corresponding DT as support set SU . For the
public Monitor data, we use entity pairs from 5 sources (i.e., D∗S = {ebay.com, catalog.com,

best-deal-items.com, cleverboxes.com, ca.pcpartpicker.com}) to train the models. We use data

in all 24 sources as DT for S1, and the rest 19 data sources for S2, respectively. 100 samples

are collected as SU in the same way as Music. We also randomly picked different sources to

form DS and DT to eliminate the randomness, and found similar patterns in the results.

Results. We report the results in Figure 7.8 with complete numerical results in Table 7.5

and 7.4 in the end of this section. Our first observation is that all AdaMEL variants tend

to outperform the baseline methods and our base model without adaptation, AdaMEL-base.

The heterogeneous entity matching baselines do not perform well on these datasets under the

supervision of labeled data only. This is likely because of the long and noisy word sequences

in the data and the difference in attribute value distribution across data sources that is

142

unseen during model training. AdaMEL highlights the impact of important features, and

only represent the sequences by summing the token embeddings. This confirms our conjecture

that learning the attribute-level attention as the transferable knowledge is more effective

in handling the MEL task than refining the word-level sequence representation. Also, we

observe that out of all variants, AdaMEL-hyb achieves the best performance in all cases

with 0.64% ∼ 5.50% improvement in PRAUC than the second-best (AdaMEL-zero in

most cases), which demonstrates its effectiveness in integrating both the labeled support set

SU and unlabeled info from the target domain DT . AdaMEL-zero performs better than

AdaMEL-few on the “Artist” and “Album” type, while AdaMEL-few performs better

on the “Track” type. This is likely due to the fact that the track records are more diverse

than the other types as the digital-format music tracks can be remixed or covered by other

artists. Thus, the high-quality labeled samples from SU is of higher value. On the contrary,

since the records are more consistent for the “Artist” and “Album” type, incorporating more

records in DT leads to higher improvement in MEL performance. Note Figure 7.8b shows that

AdaMEL-few performs slightly worse than AdaMEL-base because the labeled samples

from SU only overfits to the trained model on the source domain, that deviates the actual

feature importance for the massive unlabeled samples in DT . To summarize, the improvement

of AdaMEL-zero, -few and -hyb over the baselines indicates the effectiveness of domain

adaptation in incorporating data in DT .
Overall, AdaMEL variants achieve better performance on the overlapping scenario (S1)

than the disjoint scenario (S2). This is as expected as the disjoint scenario represents an

extreme case where data sources in DT are less likely or even entirely not used in training the

model if the support set is unavailable. Besides, the performance of all approaches running

on Music-1M is lower than Music-3K. The main reason is that the data is weakly labeled

as it simply follows the hyperlinks from the websites, and does not distinguish the actual

media of the music work (i.e., the physical or digital copy). As the models are tested on the

same well-labeled set, training on Music-1M could be vulnerable to cases such as mixed-type

matching. Nevertheless, we observe that AdaMEL still achieves promising results in both

hard cases of transfer learning for MEL, i.e., unseen data sources in the target domain and

training on weakly labeled data, which further demonstrates the advantage of AdaMEL.

143

Table 7.4 gives the result on Monitor. Similarly, AdaMEL variants tend to outperform the

baselines and AdaMEL-hyb performs the best with at least 0.51% improvement in PRAUC

over the second best, EntityMatcher. On average, AdaMEL-hyb outperforms the baseline

by 9.39% improvement in the overlapping scenario and 11.55% improvement in the disjoint

scenario. These results also validates our findings above.

Table 7.4 records the complete numerical results on the Monitor dataset. The results on

the Music dataset are shown in Table 7.5.

Table 7.4: AdaMEL performance (PRAUC) on Monitor. All variants outperform the baseline,
AdaMEL-hyb performs the best (marked in bold) with at least 0.51% improvement over the
second-best (∗).

Method Overlapping Disjoint

Monitor

TLER 0.4932 ± 0.0028 0.3837 ± 0.0033
DeepMatcher 0.8336 ± 0.0032 0.7884 ± 0.0011
EntityMatcher 0.8858 ± 0.0034 0.9051 ± 0.0042∗

Ditto 0.8841 ± 0.0010 0.8518 ± 0.0023
CorDel-Attention 0.7240 ± 0.0026 0.6353 ± 0.0165
AdaMEL-base 0.8884 ± 0.0057 0.8711 ± 0.0050
AdaMEL-zero 0.8930 ± 0.0013 0.8719 ± 0.0030
AdaMEL-few 0.9127 ± 0.0035∗ 0.9005 ± 0.0059
AdaMEL-hyb 0.9258 ± 0.0025 0.9106 ± 0.0029

Table 7.5: AdaMEL performance (PRAUC) of multi-source entity linkage on the Music data.
The best score of each entity type is marked in bold. Out of AdaMEL variants, AdaMEL-hyb
performs the best with 0.64% ∼ 5.50% improvement over the second-best variant (marked with
∗) in PRAUC. AdaMEL-hyb outperforms the best-performing baselines (including AdaMEL-
base) with 8.21% improvement on average.

Method Overlapping (D∗S×D∗T) Disjoint (D∗T×D∗T)
Artist Album Track Artist Album Track

Music-3K

TLER 0.6454 ± 0.0021 0.5655 ± 0.0032 0.4263 ± 0.0011 0.4014 ± 0.0121 0.3605 ± 0.0033 0.4203 ± 0.0042
DeepMatcher 0.6794 ± 0.0022 0.6093 ± 0.0009 0.5826 ± 0.0017 0.4492 ± 0.0021 0.3710 ± 0.0012 0.5572 ± 0.0014
EntityMatcher 0.8682 ± 0.0017 0.6922 ± 0.0021 0.6694 ± 0.0084 0.6629 ± 0.0032 0.4733 ± 0.0014 0.6446 ± 0.0032
Ditto 0.7920 ± 0.0032 0.6373 ± 0.0042 0.5938 ± 0.0051 0.5786 ± 0.0039 0.3832 ± 0.0027 0.5914 ± 0.0055
CorDel-Attention 0.8489 ± 0.0047 0.6531 ± 0.0019 0.7032 ± 0.0364 0.7280 ± 0.0315 0.4586 ± 0.0002 0.6738 ± 0.0121
AdaMEL-base 0.8545 ± 0.0143 0.7204 ± 0.0033 0.7277 ± 0.0077 0.7516 ± 0.0367 0.5569 ± 0.0072 0.7107 ± 0.0093
AdaMEL-zero 0.9142 ± 0.0018∗ 0.7338 ± 0.0001∗ 0.7547 ± 0.0027 0.8263 ± 0.0121∗ 0.6071 ± 0.0072∗ 0.7453 ± 0.0012
AdaMEL-few 0.8633 ± 0.0011 0.7241 ± 0.0080 0.7904 ± 0.0048∗ 0.7510 ± 0.0331 0.5619 ± 0.0119 0.8129 ± 0.0057∗

AdaMEL-hyb 0.9211 ± 0.0040 0.7833 ± 0.0031 0.8454 ± 0.0040 0.8390 ± 0.0125 0.6229 ± 0.0115 0.8193 ± 0.0097

Music-1M

TLER 0.3384 ± 0.0013 0.2128 ± 0.0019

–

0.2465 ± 0.0052 0.1237 ± 0.0031

–

DeepMatcher 0.7132 ± 0.0033 0.5629 ± 0.0021 0.6033 ± 0.0045 0.1742 ± 0.0013
EntityMatcher 0.8098 ± 0.0043 0.6731 ± 0.0024 0.7239 ± 0.0038 0.2331 ± 0.0031
Ditto 0.7663 ± 0.0025 0.6123 ± 0.0022 0.6678 ± 0.0019 0.1933 ± 0.0027
CorDel-Attention 0.8118 ± 0.0087 0.6811 ± 0.0432 0.7129 ± 0.0096 0.2224 ± 0.0010
AdaMEL-base 0.8165 ± 0.0184 0.6872 ± 0.0053 0.7086 ± 0.0180 0.2269 ± 0.0050
AdaMEL-zero 0.8607 ± 0.0066∗ 0.7693 ± 0.0038∗ 0.7469 ± 0.0228∗ 0.3407 ± 0.0056∗

AdaMEL-few 0.7942 ± 0.0090 0.7126 ± 0.0102 0.7177 ± 0.0171 0.2473 ± 0.0131
AdaMEL-hyb 0.8710 ± 0.0130 0.7942 ± 0.0015 0.7632 ± 0.0034 0.3582 ± 0.0043

7.5.3 Effectiveness of Adaptation

Adaptation is the key component to our proposed method. To evaluate how well AdaMEL

learns feature importance adapted to the target domain (Q2), we study the effectiveness of

144

(a) AdaMEL-zero with no
adaptation (λ = 0)

(b) AdaMEL-zero with adaptation
(λ = 0.98)

(c) AdaMEL-hyb with no
adaptation (λ = 0)

(d) AdaMEL-hyb with adaptation
(λ = 0.98)

Figure 7.9: Source and target domain feature attention vectors are better aligned with high
value of λ for both AdaMEL-few and AdaMEL-hyb (visualized with TSNE, dim=2).

λ adopted in AdaMEL-zero and AdaMEL-hyb as it controls the weight of adapting to

unlabeled data in training (larger λ leads to more adaptation).

Setup. We run both variants of AdaMEL on the Music-3K dataset and report the perfor-

mance on MEL. As discussed in Section 7.4.4.1, records from both the source and target

domains are projected into the same space using the shared attention embedding function,

and AdaMEL attempts to adapt the model to match these feature importance distribution.

Intuitively, with sufficient adaptation, feature importance vectors from both domains should

align well, and further benefit the linkage task. To validate this conjecture, we visualize the

learned feature attention vectors using AdaMEL-zero and AdaMEL-hyb with different

values of λ by projecting them into 2-dimensional space using TSNE [MH08]. We also study

the linkage performance of AdaMEL-zero and AdaMEL-hyb with different λ values on

the “artist” and “album” type of the Music-3K dataset.

Results. In Figure 7.9, we observe that for both variants, feature attention vectors from DS
and DT align better when λ = 0.98 than λ = 0, which confirms the effectiveness of adaptation.

145

<latexit sha1_base64="JF1b5SBCMtxeaNReVO+hJrJj93g=">AAACK3icbVDLSsNAFJ3UV62vqEs3o0VwVRIRdSOIblxWsVZoS5lMbuzQyYOZG7GErP0at/ohrhS3foE/4LTNwrYeGDice++Zw/ESKTQ6zodVmptfWFwqL1dWVtfWN+zNrTsdp4pDg8cyVvce0yBFBA0UKOE+UcBCT0LT618O581HUFrE0S0OEuiE7CESgeAMjdS1d9sITzjyyS6U4P0b8POsLY2Dz+gZdfOuXXVqzgh0lrgFqZIC9a790/ZjnoYQIZdM65brJNjJmELBJeSVdqohYbzPHqBlaMRC0J1sFCGn+0bxaRAr8yKkI/XvRcZCrQehZzZDhj09PRuK/81aKQannUxESYoQ8fFHQSopxnTYC/WFAo5yYAjjSpislPeYYhxNexNO/qNIdJH6aRy7UjEtudOdzJK7w5p7XHOuj6rnF0VfZbJD9sgBcckJOSdXpE4ahJNn8kJeyZv1Yr1bn9bXeLVkFTfbZALW9y90cahr</latexit>

� = 1

(a) AdaMEL performance change on
Music-3K, artist type

<latexit sha1_base64="JF1b5SBCMtxeaNReVO+hJrJj93g=">AAACK3icbVDLSsNAFJ3UV62vqEs3o0VwVRIRdSOIblxWsVZoS5lMbuzQyYOZG7GErP0at/ohrhS3foE/4LTNwrYeGDice++Zw/ESKTQ6zodVmptfWFwqL1dWVtfWN+zNrTsdp4pDg8cyVvce0yBFBA0UKOE+UcBCT0LT618O581HUFrE0S0OEuiE7CESgeAMjdS1d9sITzjyyS6U4P0b8POsLY2Dz+gZdfOuXXVqzgh0lrgFqZIC9a790/ZjnoYQIZdM65brJNjJmELBJeSVdqohYbzPHqBlaMRC0J1sFCGn+0bxaRAr8yKkI/XvRcZCrQehZzZDhj09PRuK/81aKQannUxESYoQ8fFHQSopxnTYC/WFAo5yYAjjSpislPeYYhxNexNO/qNIdJH6aRy7UjEtudOdzJK7w5p7XHOuj6rnF0VfZbJD9sgBcckJOSdXpE4ahJNn8kJeyZv1Yr1bn9bXeLVkFTfbZALW9y90cahr</latexit>

� = 1

(b) AdaMEL performance change on
Music-3K, album type

Figure 7.10: AdaMEL-zero and AdaMEL-hyb performance improve with increasing λ from
0 to 0.98 (fitted with linear regression). The performance drops when λ = 1 as no labeled data
in DS is used.

In addition, we observe that comparing with AdaMEL-zero (Figure 7.9b), AdaMEL-hyb

(Figure 7.9d) generates better adapted results as the projected records from DS and DT are

almost indistinguishable, which is as expected as the labeled support set is leveraged.

To evaluate the impact of adaptation to the linkage results, in Figure 7.10 we show the

performance of our variants with different λ values. We observe that as λ approaches (but

not equals) to 1, the general performance in terms of PRAUC improves for both AdaMEL-

zero (0.8014 - 0.9091) and AdaMEL-hyb (0.8242 - 0.9201), which again demonstrates

the effectiveness of adaptation. It is worth noting that when λ = 1, both AdaMEL-zero

and AdaMEL-hyb perform worse without giving meaningful results. This is because at

this point, AdaMEL-zero is trained without supervision of the labeling in DS, and the

only term in the loss function is the regularization. AdaMEL-hyb is better as labeling in

SU is still used, but the overall performance deteriorates due to the lack of labeling from

DS. As a result, the parameters trained (i.e., a,W) would tend to only “match” the feature

distribution between DS and DT that are not tailored to classification.

7.5.4 Attention Analysis

Setup. To testify whether AdaMEL learns meaningful feature attention values (Q3), we

showcase the learned feature importance through the attention scores produced by AdaMEL

on two datasets: Music-3K and Monitor. We only report the artist type and omit the other two

types for brevity. AdaMEL-hyb is configured with the best performance (λ = 0.98, φ = 1.0)

146

in the previous experiments.

Result. For the Monitor dataset in Table 7.6, we observe the long “tail distribution” of

feature importance, i.e., the most important feature is “Page_title_shared” with significantly

high scores, while the other features are with roughly the same low scores. On the other

hand, we observe the more uniform distribution for the artist type in Music-3K dataset,

which makes sense as all top features are related to the artist names. The learned attention

scores on both datasets imply that the task of MEL could be addressed with some of the

most remarkable features (importance inequality).

Table 7.6: AdaMEL learned importance of top-5 features for Monitor and Music-3K, artist
type.

Monitor Music-3K, artist
Feature Score Feature Score
Page_title_shared 0.1635 Main_performer_shared 0.0739
Page_title_unique 0.0595 Name_unique 0.0697
Source_shared 0.0535 Name_shared 0.0628
Manufacturer_unique 0.0473 Source_unique 0.0597
Manufacturer_shared 0.0416 Name_Native_Language_shared 0.0583

We further run AdaMEL-hyb on these selected important features only and compare

the performance with the result using the other features, as well as all the features. For

Monitor, we use 3 attributes (i.e., “Page_title”, “Source” and “Manufacturer”). For the artist

type of Music-3K, we use the 3 name-related attributes (i.e., “Main_performer”, “Name”,

Name_Native_Language), and “Source”. Similarly, for the other two types, we use their

corresponding top important attributes, and report the results in Table 7.7. We observe that

by using the selected important features only, AdaMEL is capable of achieving comparable

and even slightly better performance than using all features with 2.21%, 0.87% and 2.92%

improvement in PRAUC on Monitor, Music-3K (artist) and Music-3K (album), respectively.

For Music-3K (track), using the top attributes only performs slightly worse than using

all attributes, which is likely due to the diversity of track records. Nevertheless, these

experimental results show that model training can further benefit from feature importance

as using all the possible attributes could introduce irrelevant or noisy input to the model

(e.g., using album-related features when inferring the artist type). Also, they shows the

effectiveness of the feature attention module of AdaMEL in learning reasonable feature

147

importance.

Table 7.7: Performance (PRAUC) comparison using the selected important features vs. the
other features and all features. Numbers in the parenthesis denote the counts of features.

Dataset Top Attributes (#) Other Attributes (#) All Attributes (#)
Monitor 0.9479 ± 0.0007 (3) 0.4276 ± 0.0015 (10) 0.9258 ± 0.0025 (13)
Music-3K, artist 0.9298 ± 0.0036 (4) 0.7966 ± 0.0005 (5) 0.9211 ± 0.0040 (9)
Music-3K, album 0.8125 ± 0.0011 (4) 0.4692 ± 0.0009 (5) 0.7833 ± 0.0031 (9)
Music-3K, track 0.8398 ± 0.0004 (3) 0.7026 ± 0.0006 (6) 0.8454 ± 0.0040 (9)

7.5.5 Data Sources Analysis

In this experiment we simulate the real-world knowledge integration, where new data

sources often arrive one by one incrementally (such as in batches from neighboring data

sources), and testify the stability of AdaMEL in handling the various data sources under

this scenario (Q4) .

Setup. We use the public Monitor dataset and compare AdaMEL-hyb with the optimal

configuration (λ = 0.98, φ = 1.0 as shown in Section 7.5.2 and Section 7.5.3) with the

best-performing baseline approach, EntityMatcher, and the fastest baseline approach, CorDel-

Attention. In this experiment, we use 1500 entity pairs from the same 5 data sources as

mentioned in Section 7.5.2 to train the models (i.e., D∗S = {ebay.com, catalog.com, best-deal-

items.com, cleverboxes.com, pcpartpicker.com}). To test the performance on MEL, we first

randomly select 200 entity pairs from each of 7 data sources (the same 5 data sources as

D∗S and 2 unseen ones, i.e., D∗T = D∗S ∪ {yikus.com, getprice.com}) and form totally 1400

pairs to create the target domain. Then, we incrementally add up to 200 entity pairs from

2 new sources (∆D∗T) to D∗T , such that D∗T = D∗T ∪ ∆D∗T . Each of the newly added pairs

{(r, r′)} contains at least one record from ∆DT to ensure new data sources are introduced

to the target domain. As AdaMEL-hyb requires a small set of labeled entity pairs from

D∗T , we randomly select 100 labeled samples from all data sources (D∗S ∪ D∗T). This small

set simulates the on-the-fly manual labeling in the real-world, and we fix it throughout each

run of the experiment to ensure the impact of SU is consistent. We also record the average

runtime over all runs as an empirical study of the model efficiency.

Results. We report the performance of AdaMEL-hyb and the two baselines on MEL in

Figure 7.11, as well as their empirical runtime. As shown in the figure, AdaMEL-hyb is more

148

Method Runtime (s)
Hybrid 319.20 ± 7.20
CorDel 906.19 ± 46.35
E-Matcher 2500.43 ± 17.56

Figure 7.11: AdaMEL-hyb performs more stably (0.9750 ∼ 0.9219 in PRAUC) as #data sources
increases in DT with less runtime.

stable than both EntityMatcher and CorDel-Attention with significantly higher performance

in handling the incrementally incoming data sources. This is due to the fact that AdaMEL-

hyb continuously updates parameters in the attention embedding function f to adapt to new

data sources in DT . Comparing with CorDel-Attention, EntityMatcher performs better and

could occasionally compete with AdaMEL-hyb under some scenarios (|D∗T | = 17, 21), but

it is not stable as the performance fluctuates. Moreover, based on the table in Figure 7.11,

AdaMEL-hyb takes much less time to train than CorDel-Attention and EntityMatcher. The

empirical runtime comparison corresponds to our analysis in Section 7.4.5 as AdaMEL-hyb

does not require sophisticated operations on word-level embeddings and thus having relatively

less parameters to train. In practice, the number of parameters to train for AdaMEL-hyb

is ∼ 2 219 520, which is much less than the number given by EntityMatcher: ∼ 123 119 104.

These findings demonstrate the capability of AdaMEL in consistently handing MEL with a

variety of incoming data sources, while being more robust. In addition, they strengthen our

claim that finding important features as the transferable knowledge in MEL could benefit

the model performance with reduced computational complexity.

7.5.6 Effectiveness of Support Set

Setup. To better understand the effectiveness of the labeled support set (Q5), we perform

the sensitivity analysis with incrementally increasing numbers of labeled samples in the

support set SU . Following Section 7.5.2, we randomly select 200 additional samples from

DT of the public Monitor dataset and create the support set with totally 300 labeled

samples. We run two AdaMEL variants that leverage the support set, AdaMEL-few

149

Figure 7.12: Sensitivity analysis of the size of support set |SU | fitted with order-2 polynomial
regression on AdaMEL-few and AdaMEL-hyb. As more labeled samples are included in
SU , the model performance (PRAUC) increases initially and then flattens out.

(φ = 1.0) and AdaMEL-hyb (λ = 0.98, φ = 1.0) in this experiment with |SU | ranging
from 1 to 300 with step size = 20 (specifically, we “zoom in” the smaller values and have

|SU | = {1, 5, 10, 20, 40, 60, · · · , 300}). In each run, the samples in SU are randomly selected.

Result. The experimental result is shown in Figure 7.12. Our first observation is that at

the initial stage of the experiment, the performance of both AdaMEL-few and AdaMEL-

hyb improves as the number of used labeled samples from SU increases. Particularly, we

observe ∼ 1% performance improvement from |SU | = 1 to |SU | = 140 for AdaMEL-few

and 2% ∼ 3% improvement for AdaMEL-hyb. This overall performance improvement is as

expected since an increasing amounts of labeled samples from DT are used to supervise the

learning process. In the late stage (|SU | > 140), we observe that the performance fluctuates

in each run and the overall performance saturates. This indicates that the feature importance

learned by AdaMEL has sufficiently adapted and does not significantly change as more

labeled data are collected in SU . Moreover, comparing with AdaMEL-few, AdaMEL-hyb

performs similarly when the size of support set is small (|SU | ≤ 60), and it consistently

outperforms when |SU | > 60. This is likely due to the bias of feature importance brought

by particular labeled samples selected when |SU | is small. When SU contains more samples,

the learned feature importance becomes stable and sufficiently adapted to SU , and the

outperformance given by AdaMEL-hyb over AdaMEL-few comes from the unlabeled

samples from DT . As a rule of thumb, Figure 7.12 indicates that a small support set with

|SU | = 100 ∼ 200 labeled samples from DT is beneficial to learn feature importance and

150

to improve the MEL performance of AdaMEL. Too few samples would incur bias to the

trained model, while too many samples would be expensive to obtain in practice, and does

not necessarily help improve the model.

7.5.7 Model Justification

In this section we run experiments to justify the design choices of AdaMEL and its

limitation.

7.5.7.1 Ablation Study

We perform the ablation study of AdaMEL that uses the shared and unique contrastive

features, as well as using both of them as the default setting. Table 7.8 shows that including the

shared and unique attribute values capture different perspectives of the data and thus enriches

the feature space. Including both achieves the highest performance with 0.41% − 6.72%

improvement over using one feature.

Table 7.8: Ablation study: AdaMEL contrastive features on Music-3K, artist and album type.
AdaMEL-zero and -few perform similarly.

Dataset Method Shared Unique Shared & Unique
Music-3K,
artist

AdaMEL-base 0.7868 ± 0.0045 0.7170 ± 0.0132 0.8545 ± 0.0143
AdaMEL-hyb 0.8539 ± 0.0026 0.8069 ± 0.0112 0.9211 ± 0.0040

Music-3K,
album

AdaMEL-base 0.7163 ± 0.0048 0.5520 ± 0.0044 0.7204 ± 0.0033
AdaMEL-hyb 0.7504 ± 0.0059 0.5879 ± 0.0028 0.7833 ± 0.0031

7.5.7.2 Performance on Single Domain

Here we compare AdaMEL-zero and -hyb with DeepMatcher on the benchmark datasets

to justify their performance on well-labeled data from the same seen domain without the 3

challenges (C1 - C3). From Table 7.9, we observe that AdaMEL-zero does not perform

as well as DeepMatcher on these benchmark datasets of one single domain. This shows

the limitation of AdaMEL in handling data with no missing values or schema difference.

The reason is likely due to the simplicity of AdaMEL architecture, as it aims to learn

the data-source-level feature importance instead of improving the token-level embeddings

as DeepMatcher or its variants. In the real-world knowledge integration process where

151

data distributions are highly heterogeneous, transferring these token-level contextualized

embeddings brings extra computation and does not always generalize well, as shown in

Section 7.5.2. Nevertheless, even though AdaMEL is designed to handle data challenges in

practice (C1-C3), we observe that AdaMEL-hyb performs comparably as DeepMatcher

with reduced model complexity, which shows its effectiveness of adaptation.

Table 7.9: Entity linkage performance (F1) of DeepMatcher, AdaMEL-zero and -hyb on
the benchmark datasets, single domain scenario. AdaMEL-hyb performs comparably as
DeepMatcher.

Type Datasets Domain DeepMatcher AdaMEL-zero AdaMEL-hyb

Structured

Amazon-Google Software 69.3 60.2 65.1
Beer Product 78.8 78.6 82.8
DBLP-ACM Citation 98.4 98.7 98.9
DBLP-Google Citation 94.7 93.1 93.5
Fodors-Zagats Restaurant 100 90.0 99.8
iTunes-Amazon Music 91.2 91.2 98.7
Walmart-Amazon Electronics 71.9 57.8 66.7

Dirty
DBLP-ACM Citation 98.1 95.7 97.7
DBLP-Google Citation 93.8 89.7 91.5
iTunes-Amazon Music 79.4 79.3 80.7
Walmart-Amazon Electronics 53.8 48.2 52.2

7.6 Conclusion

In this work, we have tackled the problem of multi-source entity linkage (MEL) and

have described a deep learning solution based on domain adaptation, AdaMEL. AdaMEL

highlights the impact of important attributes in MEL and automatically learns the importance

that adapts to both seen and unseen data sources as the generic transferable knowledge. We

have proposed a series of variants to handle different real-world learning scenarios, depending

on the availability of labeled entity pairs from the target domain. Comparing to heterogeneous

schema matching baselines that are mostly based on supervised learning, AdaMEL is able

to handle hard transfer learning cases such as unseen data sources in the target domain and

achieve on average 8.21% improvement in PRAUC score for MEL. Extensive experiments have

demonstrated the effectiveness of AdaMEL in adaptation. Additionally, we have provided

an analysis of the learned feature attention, and studied the impact of different data sources

and the size of the support set. Future directions include combining our work with advanced

NLP techniques for sequence representation in attribute summarization to further improve

152

the model performance in MEL, and extending our framework to handle data sources in

different languages.

153

CHAPTER VIII

Conclusion

8.1 Summary

As a general type of data structure that models the relations between entities, graphs have

been used to represent the multi-relational data from a wide variety of domains. Summarizing

the key information from the continuously-increasing data volume has become key to reduce

the complexity, which facilitates data compression, query efficiency, and interpretability.

Node representation learning has been widely used to accurately characterize nodes in the

graph for machine learning tasks based on rich latent features, but it suffers the drawbacks

such as storage inefficiency, query inefficiency and the lack of interpretability.

This thesis bridged the two lines of research, node embedding and graph summarization

via feature summarization. By summarizing features such as structural roles or temporal

proximity into the latent space, we have proposed a series of node embedding approaches that

achieve the state-of-the-art performance in machine learning tasks, while requiring significantly

reduced storage. We have also proposed explicitly summarizing the non-latent features via

modeling their importance in specific machine learning tasks, so that the summaries are

easy-to-understand and being useful for machine learning tasks. As feature summaries can be

projected into spaces that are not specific to individual datasets, they can be naturally applied

in inductive learning or transfer learning, and thesis work has described methods for both

the latent and non-latent space. Throughout the thesis, scalability has been an important

consideration when handling challenges from real-world problems. We demonstrated the

effectiveness of our feature summarization approaches through industrial applications, such

154

as entity linkage, user stitching, professional role inference and temporal link prediction.

8.1.1 Latent Feature Summarization

Latent features form the basis for graph representation learning. Specifically for node

representation learning, the goal is to project the node proximity or structural similarity

into the fixed K-dimensional latent space. While the learned node-wise Euclidean vectors

are highly effective in machine learning tasks such as link prediction and node classification,

they incur significant challenges to storage. In Chapter III, we formally defined the problem

of latent network summarization that aims to derive a compressed graph representation

independent to the input graph sizes, and provided our solution, Multi-Lens. Multi-Lens uses

a set of relational operations to collect the multi-level node structural contextual features,

and derives the latent summary through low-rank matrix factorization. By storing the

relational operations and the factorized matrix, Multi-Lens achieves space efficiency and

supports on-the-fly node embedding derivation. Compared to embedding methods, the latent

summaries generated by Multi-Lens require 80-2152× less output storage space for graphs

with millions of edges, while achieving significant improvement in AUC and F1 score on

average for the link prediction task in heterogeneous graphs.

Most real-world graph are dynamic where new nodes and edges are added or existing

ones are removed continuously over time. One of the limitations of Multi-Lens is that it is

designed to handle static heterogeneous graphs. Therefore, in Chapter IV, we explored an

alternative approach to derive the graph summary, node2bits, that incorporates the graph

structural information and temporal proximity. node2bits uses the feature histograms to

efficiently represent the structural contexts and uses feature-based temporal walks to capture

the temporal proximity. Using these walks, node2bits generates contexts (sequences) of

temporally-valid feature values that are further summarized through locality-sensitive hashing.

Experiments on real-world networks demonstrated the utility of node2bits as it outputs

space-efficient binary hashcodes as node embeddings that use orders of magnitude less space

compared to the baselines while achieving better performance in user stitching.

To better understand how temporal proximity is modeled in recent temporal node

embedding approaches, we conducted a systematic study on the properties of temporal

155

network models and their cornerstones, the graph time-series representations in Chapter V.

We introduced a general framework that extends the static node embeddings derived from the

time-series representation of stream data to dynamic settings using interpretable temporal

network models, such as temporal summary graphs (TSG) and temporal reachability graphs

(TRG). The temporal summaries in our study consist of graph time-series representations,

temporal network models and the embedding composition, all of which are more interpretable

than complex methods that model temporal proximity through latent transition or latent

variables . Based on the temporal link prediction results using seven base static embedding

methods and six temporal network models, we found that many state-of-the-art dynamic

embedding approaches do not outperform our framework, and our interpretable temporal

summaries are able to capture the graph structures and temporal dependency at least as well

as recent dynamic approaches, but less complex.

8.1.2 Non-latent Feature Summarization

In addition to summarizing latent features, this dissertation explored summarizing non-

latent features, which are usually more interpretable. Our goal was to generate summaries

that are easy to understand (i.e., consisting of known graph features or properties with

explicit meanings), while achieving state-of-the art performance in machine learning tasks.

In Chapter VI, we introduced EAGLE, a novel way to summarize a graph using a set

of interpretable features, resulting in a diverse, concise, domain-specific, and efficient-to-

compute summary. We framed the problem as constrained optimization that is based on

feature selection to choose the non-latent graph features to be included in the summary. Our

experiments showed that the EAGLE summaries satisfy all the desired properties, outperform

alternative approaches for this problem, and are effective in data mining tasks, such as

classification, despite not being tailored to it.

The output given by EAGLE can be seen as a “hard” indication of which features are

important, i.e., the important features are selected and used, while the unimportant ones

are ignored and excluded from the summary. However in reality, the effectiveness of features

cannot be simply characterized as “useful” or “not useful”, and such hard indication does

not model that some features may contribute more to the downstream tasks than others.

156

Therefore, in Chapter VII, we proposed a “soft” way of modeling feature importance via

a learned attention mechanism. We tackled the problem of multi-source entity linkage

(MEL) and described a deep learning solution based on domain adaptation, AdaMEL.

AdaMEL highlights the impact of important attributes in MEL and automatically learns

feature importance that adapts to the both seen and unseen data sources as the generic

transferable knowledge. We also proposed a series of AdaMEL variants to handle different

real-world learning scenarios such as zero-shot learning and few-shot learning. Comparing

to heterogeneous schema matching baselines, AdaMEL is able to handle difficult transfer

learning cases such as unseen data sources in the target domain and training on weakly-

labeled data, while achieving significant average improvement compared to baselines based

on supervised learning in PRAUC score for the multi-source entity linkage task. More

importantly, we showed that the high-level transferable knowledge is straightforward for

humans to interpret.

8.1.3 Histograms in Embedding

Histograms or the distributions of feature values have been an important component

of the methods proposed throughout this thesis. Compared to simple aggregators that are

commonly used in the literature, such as mean or sum, histogram representation is a more

informative and accurate way to capture the structural graph features, we have seen in

various settings that node embeddings based on histograms are quite powerful and effective.

Throughout this thesis, we have mainly leveraged histograms for three purposes:

To aggregate structural graph feature values in node-centric subgraphs. In Chap-

ter IV, we represented the non-latent structural graph features via histograms, and then

conducted latent feature summarization via low-rank approximation. We showed that his-

tograms could enrich the structural feature space by expanding a single value to a sequence

(depending on the number of bins in the histogram), and result in node embeddings with

improved performance in machine learning tasks, such as link prediction and anomaly

detection.

157

To concisely describe graphs. In Chapter VI, we showed that EAGLE is capable of

exploring and summarizing graph data through histogram-represented features such as degree

distribution and PageRank distribution. The selected histograms provide accurate graph

descriptions that facilitate both human interpretation and machine learning tasks (e.g., graph

classification).

To bridge multiple domains. In Chapter VII, we leveraged the difference between feature

value distributions from different data sources as the regularization term to learn feature

importance as the high-level knowledge. The feature value distributions can be seen as a

shared space that bridges both the seen and unseen data sources in order to learn general

and source-agnostic high-level knowledge.

All these works have demonstrated the power of feature distributions in node representation

learning and graph summarization, and we expect to see more future directions based on

histograms.

8.2 Future Directions

This thesis has shown that feature summarization is useful for node embedding in various

machine learning and graph mining tasks. We now describe some potential future directions.

Theoretical connections to existing deep learning frameworks. There are several

interesting connections between the thesis works and existing deep learning models. In

Chapter III, we have shown the power of relational operators/functions in capturing graph

structural features. From a high level, these operators can be seen as a generalization of the

mean aggregation operation in graph neural networks (GNN) or graph convolutional neural

networks (GCNN) [SGT+09, HYL17a, KW17]. Thus an interesting direction is to study

the theoretical connection between the relational operations and aggregation operations in

GNNs, as well as the connection between relational operator compositions and the feature

smoothing process in GNNs. In Chapter VII, we showed that AdaMEL aims to learn the

high-level feature importance to address the multi-source entity linkage problem without

relying on advanced word token representations. But this does not mean that contextual

158

word representation learning should be excluded from this study. Future directions include

combining our work with advanced natural language processing techniques for sequence

representation in attribute summarization to further improve the model performance in

multi-source entity linkage, and extending our framework to handle faraway data sources, or

data sources in different languages.

Extensions to new applications. It would also be interesting to extend our methods to

new application domains. For example, in Chapter IV, we showed that node2bits is efficient

in terms of computation and storage. It is worth exploring its performance in other tasks,

such as recommendation system or graph alignment. It is also worth exploring how to leverage

the findings in Chapter V to design dynamic node embedding approaches in an end-to-end

manner by modeling the temporal transition between snapshots with interpretable models.

Modeling deep neural networks as graphs. The success of deep neural networks

(NNs) in computer vision and natural language processing has led to increasing interest in

understanding the underlying learning dynamics of these models. The representation of

many complex NN (e.g., LeNet [LBBH98] or ResNet [HZRS16]) can be seen as graphs with

predefined architectures where the nodes and edges represent the neurons and the connections,

respectively. Accordingly, the training process of these networks — which aims to minimize

the loss on the training data and to achieve the best performance on the holdout set — can

be modeled as a dynamic graph with continuously updating edge weights, which is similar to

the temporal representations that we investigated in Chapter IV and V. Most of the existing

works follow a manually-defined stopping criterion, such as a fixed number of epochs or

when the change in loss becomes lower than a threshold. This leads to the research question:

can we summarize the dynamics of the training process of NN architectures to get a better

understanding of the connection to model performance?

Transfer learning for multi-domain graph classification. As feature summaries en-

code high-level knowledge that is not specific to nodes or edges in one graph, they can

naturally be used for inductive learning or transfer learning. The underlying assumption is

that the features from different datasets follow similar patterns. In Chapter III, our method

159

Multi-Lens derived a latent summary of graph structural features that is independent of the

size of the input graph, and we showcased its effectiveness in inductive anomaly detection. In

Chapter VII, we showed that the importance of non-latent features can be jointly learned

from multiple data sources and improve the performance of entity linkage under the transfer

learning scenario. The works in this dissertation follow the above assumption and focus on

handling data from the same or a similar domain, such as training the model on a bibliography

network and inductively learning the anomalies on another citation network, or transferring

the learned feature importance of music recordings from different websites. However, as

we showed in Chapter VI, collectively analyzing graph data across different domains may

lead to new knowledge discoveries since the domain-associated non-latent features could

have different patterns. Therefore, an interesting direction for future work is to transfer the

graph-level latent feature summaries of the data from one domain to another for data mining

analysis and graph classification. In this process, the graph-level summaries should be capable

of aggregating the node embeddings of an individual graph, and general enough to describe

graphs from a domain. Deriving feature summaries under such scenario is more challenging

and may lead to interesting new representation learning methods and applications.

160

BIBLIOGRAPHY

161

BIBLIOGRAPHY

[ABFX08] Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing.
Mixed membership stochastic blockmodels. Journal of Machine Learning
Research, 9:1981–2014, 2008.

[ACK+12] Leman Akoglu*, Duen Horng Chau*, U Kang*, Danai Koutra*, and Christos
Faloutsos. OPAvion: Mining and Visualization in Large Graphs. In SIGMOD,
pages 717–720, 2012.

[ARZ+18] Nesreen K. Ahmed, Ryan A. Rossi, Rong Zhou, John Boaz Lee, Xiangnan
Kong, Theodore L. Willke, and Hoda Eldardiry. Learning role-based graph
embeddings. In IJCAI StarAI, 2018.

[AW10] Charu C Aggarwal and Haixun Wang. A survey of clustering algorithms for
graph data. In Managing and mining graph data, pages 275–301. Springer, 2010.

[Bac08] Francis R Bach. Bolasso: model consistent lasso estimation through the boot-
strap. In ICML, pages 33–40. ACM, 2008.

[BC08] Gregory Buehrer and Kumar Chellapilla. A scalable pattern mining approach
to web graph compression with communities. In WSDM, pages 95–106. ACM,
2008.

[Ben12] Yoshua Bengio. Deep learning of representations for unsupervised and transfer
learning. In Proceedings of ICML workshop on unsupervised and transfer
learning, pages 17–36, 2012.

[BF03] Sandeep Bhadra and Afonso Ferreira. Complexity of connected components in
evolving graphs and the computation of multicast trees in dynamic networks.
In International Conference on Ad-Hoc Networks and Wireless, pages 259–270.
Springer, 2003.

[BG07] I. Bhattacharya and L. Getoor. Collective entity resolution in relational data.
Transactions on Knowledge Discovery from Data, 1(1):1–36, 2007.

[BG17] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embed-
ding of attributed graphs: Unsupervised inductive learning via ranking.
arXiv:1707.03815, 2017.

162

[BGLL08] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast Unfolding of Communities in Large Networks. Journal of
Statistical Mechanics: Theory and Experiment, 2008(10):P10008, 2008.

[BGMZ97] Andrei Z Broder, Steven C Glassman, Mark S Manasse, and Geoffrey Zweig. Syn-
tactic clustering of the web. Computer Networks and ISDN Systems, 29(8):1157–
1166, 1997.

[BKMM07] David A. Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail. Approxi-
mating betweenness centrality. In WAW, pages 124–137, 2007.

[BM03] Mikhail Bilenko and Raymond J Mooney. Adaptive duplicate detection using
learnable string similarity measures. In KDD, pages 39–48, 2003.

[BN02] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques
for embedding and clustering. In Advances in neural information processing
systems, pages 585–591, 2002.

[Bra06] Matthew Brand. Fast low-rank modifications of the thin singular value decom-
position. Linear algebra and its applications, 415(1):20–30, 2006.

[BS09] Ed Bullmore and Olaf Sporns. Complex Brain Networks: Graph Theoretical
Analysis of Structural and Functional Systems. Nature Reviews Neuroscience,
10(3):186–198, 2009.

[CH03] Reuven Cohen and Shlomo Havlin. Scale-free networks are ultrasmall. Physical
review letters, 90(5):058701, 2003.

[Cha02] Moses S Charikar. Similarity estimation techniques from rounding algorithms.
In STOC, pages 380–388, 2002.

[Cha07] Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures be-
tween probability density functions. J MMMAS, 1(2):1, 2007.

[Chr12] Peter Christen. Concepts and Techniques for Record Linkage, Entity Resolution,
and Duplicate Detection. Springer, 2012.

[CLF+09] Chen Chen, Cindy X Lin, Matt Fredrikson, Mihai Christodorescu, Xifeng Yan,
and Jiawei Han. Mining graph patterns efficiently via randomized summaries.
VLDB, 2(1):742–753, 2009.

[CLX15a] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph represen-
tations with global structural information. In Proceedings of the 24th ACM
international on conference on information and knowledge management, pages
891–900, 2015.

[CLX15b] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph represen-
tations with global structural information. In CIKM, pages 891–900. ACM,
2015.

163

[CLX16] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning
graph representations. In AAAI, pages 1145–1152, 2016.

[CO02] Kerry G Coffman and Andrew M Odlyzko. Growth of the internet. In Optical
fiber telecommunications IV-B, pages 17–56. Elsevier, 2002.

[cob12] Center for Biomedical Research Excellence. http://fcon_1000.projects.
nitrc.org/indi/retro/cobre.html, 2012.

[con] Penn dataset. http://www.humanconnectome.org/ccf/.

[CR02] William W Cohen and Jacob Richman. Learning to match and cluster large
high-dimensional data sets for data integration. In KDD, pages 475–480, 2002.

[CSF+12] Rita Chattopadhyay, Qian Sun, Wei Fan, Ian Davidson, Sethuraman Pan-
chanathan, and Jieping Ye. Multisource domain adaptation and its application
to early detection of fatigue. ACM TKDD, 6(4):1–26, 2012.

[CZC+17] Sandro Cavallari, Vincent W Zheng, Hongyun Cai, Kevin Chen-Chuan Chang,
and Erik Cambria. Learning community embedding with community detection
and node embedding on graphs. In CIKM, pages 377–386, 2017.

[DCS17] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec: Scal-
able representation learning for heterogeneous networks. In KDD, pages 135–144,
2017.

[DDGR07] Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. Google
news personalization: Scalable online collaborative filtering. In WWW, pages
271–280, 2007.

[DGZ+12] Anirban Dasgupta, Maxim Gurevich, Liang Zhang, Belle Tseng, and Achint O
Thomas. Overcoming browser cookie churn with clustering. In WSDM, pages
83–92, 2012.

[DH05] AnHai Doan and Alon Y Halevy. Semantic integration research in the database
community: A brief survey. AI magazine, 26(1):83–83, 2005.

[DH14] Zhengjia Dai and Yong He. Disrupted structural and functional brain con-
nectomes in mild cognitive impairment and alzheimer’s disease. Neuroscience
Bulletin, 30(2):217–232, 2014.

[di220] di2kg. 2nd international workshop on challenges and experiences from data inte-
gration to knowledge graphs. http://di2kg.inf.uniroma3.it/2020/, 2020.

[DN09] Xin Luna Dong and Felix Naumann. Data fusion: resolving data conflicts for
integration. VLDB, 2(2):1654–1655, 2009.

[DS13] Cody Dunne and Ben Shneiderman. Motif simplification: improving network
visualization readability with fan, connector, and clique glyphs. In CHI, 2013.

164

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
http://di2kg.inf.uniroma3.it/2020/

[DXT12] Lixin Duan, Dong Xu, and Ivor Wai-Hung Tsang. Domain adaptation from mul-
tiple sources: A domain-dependent regularization approach. IEEE Transactions
on neural networks and learning systems, 23(3):504–518, 2012.

[DZHL18] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning
structural node embeddings via diffusion wavelets. In KDD, volume 24, 2018.

[Eck10] Peter Eckersley. How unique is your web browser? In International Symposium
on Privacy Enhancing Technologies Symposium, pages 1–18. Springer, 2010.

[EV03] Magdalini Eirinaki and Michalis Vazirgiannis. Web mining for web personaliza-
tion. ACM Trans. Internet Technol., 3(1):1–27, February 2003.

[FAL17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning
for fast adaptation of deep networks. In International Conference on Machine
Learning, pages 1126–1135. PMLR, 2017.

[FD81] David Freedman and Persi Diaconis. On the histogram as a density estimator:
L 2 theory. Probability theory and related fields, 57(4):453–476, 1981.

[FFF99] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On Power-law
Relationships of the Internet Topology. SIGCOMM, pages 251–262, 1999.

[FHHS20] Cheng Fu, Xianpei Han, Jiaming He, and Le Sun. Hierarchical matching
network for heterogeneous entity resolution. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, pages 3665–3671, 2020.

[FJLM09] Wenfei Fan, Xibei Jia, Jianzhong Li, and Shuai Ma. Reasoning about record
matching rules. Proceedings of the VLDB Endowment, 2(1):407–418, 2009.

[FKV04] Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms
for finding low-rank approximations. JACM, 51(6):1025–1041, 2004.

[FZX12] Xu Feng, JC Zhao, and Ke Xu. Link prediction in complex networks: a
clustering perspective. The European Physical Journal B, 85(1):1–9, 2012.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
Press, 2016.

[GCC19] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyngraph2vec:
Capturing network dynamics using dynamic graph representation learning.
Knowledge-Based Systems, page 104816, 2019.

[GE03] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.
JMLR, 3:1157–1182, 2003.

[GF18] Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications,
and performance: A survey. Knowledge-Based Systems, 151:78–94, 2018.

165

[GH06] Liqiang Geng and Howard J. Hamilton. Interestingness measures for data
mining: A survey. ACM Comput. Surv., 38(3), September 2006.

[GKHL18] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep embedding
method for dynamic graphs. arXiv preprint arXiv:1805.11273, 2018.

[GL15] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by
backpropagation. In International conference on machine learning, pages 1180–
1189. PMLR, 2015.

[GL16] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for
networks. In KDD, pages 855–864, 2016.

[GLT+16] Huan Gui, Jialu Liu, Fangbo Tao, Meng Jiang, Brandon Norick, and Jiawei
Han. Large-scale embedding learning in heterogeneous event data. In ICDM,
pages 907–912. IEEE, 2016.

[GM12] Lise Getoor and Ashwin Machanavajjhala. Entity resolution: theory, practice &
open challenges. Proceedings of the VLDB Endowment, 5(12):2018–2019, 2012.

[GM13] Lise Getoor and Ashwin Machanavajjhala. Entity resolution for big data. In
KDD, pages 1527–1527, 2013.

[HERPF10] Keith Henderson, Tina Eliassi-Rad, Spiros Papadimitriou, and Christos Falout-
sos. Hcdf: A hybrid community discovery framework. In SDM, pages 754–765.
SIAM, 2010.

[HGDG17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.
In Proceedings of the IEEE ICCV, pages 2961–2969, 2017.

[HGER+12] Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato
Basu, Leman Akoglu, Danai Koutra, Christos Faloutsos, and Lei Li. RolX:
structural role extraction & mining in large graphs. In KDD, pages 1231–1239,
2012.

[His16] Ryohei Hisano. Semi-supervised graph embedding approach to dynamic link
prediction, 2016.

[His18] Ryohei Hisano. Semi-supervised graph embedding approach to dynamic link
prediction. In International Workshop on Complex Networks, pages 109–121.
Springer, 2018.

[HSSK18] Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. Regal: Repre-
sentation learning-based graph alignment. In CIKM, 2018.

[HYL17a] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In NIPS, pages 1024–1034, 2017.

166

[HYL17b] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, pages 1025–1035, 2017.

[HYL17c] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on
graphs: Methods and applications. arXiv preprint arXiv:1709.05584, 2017.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In STOC, pages 604–613, 1998.

[JCB+14] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang.
Catchsync: Catching synchronized behavior in large directed graphs. In KDD,
pages 941–950, 2014.

[JGBM17] Armand Joulin, Édouard Grave, Piotr Bojanowski, and Tomáš Mikolov. Bag of
tricks for efficient text classification. In Proceedings of the 15th Conference of
the European Chapter of ACL: Volume 2, Short Papers, pages 427–431, 2017.

[JHJK21] Junchen Jin, Mark Heimann, Di Jin, and Danai Koutra. Towards understanding
and evaluating structural node embeddings. arXiv preprint arXiv:2101.05730,
2021.

[JHRK19] Di Jin, Mark Heimann, Ryan Rossi, and Danai Koutra. node2bits: Compact
time-and attribute-aware node representations for user stitching. arXiv preprint
arXiv:1904.08572, 2019.

[JHS+19] Di Jin, Mark Heimann, Tara Safavi, Mengdi Wang, Wei Lee, Lindsay Snider, and
Danai Koutra. Smart roles: Inferring professional roles in email networks. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2923–2933, 2019.

[JK17] Di Jin and Danai Koutra. Exploratory analysis of graph data by leveraging
domain knowledge. In ICDM, pages 187–196, 2017.

[JKRK22] Di Jin, Sungchul Kim, Ryan A Rossi, and Danai Koutra. From static to dynamic
node embeddings. arXiv preprint arXiv:2009.10017, 2022.

[JRK+19] Di Jin, Ryan A Rossi, Eunyee Koh, Sungchul Kim, Anup Rao, and Danai
Koutra. Latent network summarization: Bridging network embedding and sum-
marization. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 987–997, 2019.

[JSW+22] Di Jin, Bunyamin Sisman, Hao Wei, Xin Luna Dong, and Danai Koutra. Deep
transfer learning for multi-source entity linkage via domain adaptation. arXiv
preprint arXiv:2110.14509, 2022.

167

[JT18] Muhammad Ebraheem Saravanan Thirumuruganathan Shafiq Joty and Mourad
Ouzzani Nan Tang. Distributed representations of tuples for entity resolution.
Proceedings of the VLDB Endowment, 11(11), 2018.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[KBB17] Arijit Khan, Sourav S Bhowmick, and Francesco Bonchi. Summarizing static
and dynamic big graphs. VLDB, 10(12):1981–1984, 2017.

[Kel60] James E Kelley, Jr. The cutting-plane method for solving convex programs. J
Appl Math, 8(4):703–712, 1960.

[KJNF15] Danai Koutra, Di Jin, Yuanchi Ning, and Christos Faloutsos. Perseus: an
interactive large-scale graph mining and visualization tool. VLDB Endowment,
8(12):1924–1927, 2015.

[KKP+17] Sungchul Kim, Nikhil Kini, Jay Pujara, Eunyee Koh, and Lise Getoor. Proba-
bilistic visitor stitching on cross-device web logs. In WWW, pages 1581–1589,
2017.

[KKVF14] Danai Koutra, U Kang, Jilles Vreeken, and Christos Faloutsos. VoG: Summa-
rizing and Understanding Large Graphs. In SDM. SIAM, 2014.

[KKVF15] Danai Koutra, U Kang, Jilles Vreeken, and Christos Faloutsos. Summarizing
and understanding large graphs. Statistical Analysis and Data Mining: The
ASA Data Science Journal, 8(3):183–202, 2015.

[KQG+19] Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, and Lucian Popa. Low-
resource deep entity resolution with transfer and active learning. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 5851–5861, 2019.

[KR10] Hanna Köpcke and Erhard Rahm. Frameworks for entity matching: A compar-
ison. Data & Knowledge Engineering, 69(2):197–210, 2010.

[KT19] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171–4186, 2019.

[KTR12] Lars Kolb, Andreas Thor, and Erhard Rahm. Dedoop: Efficient deduplication
with hadoop. VLDB, 5(12):1878–1881, August 2012.

[KVF13] Danai Koutra, Joshua T Vogelstein, and Christos Faloutsos. Deltacon: A
principled massive-graph similarity function. In SDM, pages 162–170. SIAM,
2013.

[KW17] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. In ICLR, 2017.

168

[KZL19] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding
trajectory in temporal interaction networks. In KDD, pages 1269–1278. ACM,
2019.

[LBBH98] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[LDH+17] Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu.
Attributed network embedding for learning in a dynamic environment. In
CIKM, pages 387–396. ACM, 2017.

[LDSK16] Yike Liu, Abhilash Dighe, Tara Safavi, and Danai Koutra. Graph Summariza-
tion: A Survey. CoRR, abs/1612.04883, 2016.

[LG14] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix
factorization. In NIPS, pages 2177–2185, 2014.

[LHH+14] Fenhua Li, Jing He, Guangyan Huang, Yanchun Zhang, and Yong Shi. A
clustering-based link prediction method in social networks. Procedia Computer
Science, 29:432–442, 2014.

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[LKF05] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification
laws, shrinking diameters and possible explanations. In Proceedings of the
eleventh ACM SIGKDD international conference on Knowledge discovery in
data mining, pages 177–187. ACM, 2005.

[LKF14] Yongsub Lim, U Kang, and Christos Faloutsos. Slashburn: Graph compression
and mining beyond caveman communities. TKDE, 26(12):3077–3089, 2014.

[LL09] Cheng-Te Li and Shou-De Lin. Egocentric information abstraction for heteroge-
neous social networks. In ASONAM, pages 255–260. IEEE, 2009.

[LLS+20] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
Deep entity matching with pre-trained language models. Proceedings of the
VLDB Endowment, 14(1):50–60, 2020.

[LPM15] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective ap-
proaches to attention-based neural machine translation. In Proceedings of the
2015 Conference on EMNLP, pages 1412–1421, 2015.

[LSDK18] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph summarization
methods and applications: A survey. CSUR, 51(3):62, 2018.

[LSK15] Yike Liu, Neil Shah, and Danai Koutra. An empirical comparison of the summa-
rization power of graph clustering methods. arXiv preprint arXiv:1511.06820,
2015.

169

http://snap.stanford.edu/data

[LYL13] Shou-De Lin, Mi-Yen Yeh, and Cheng-Te Li. Sampling and summarization for
social networks. In SDM, 2013.

[LZS+19] Yike Liu, Linhong Zhu, Pedro Szekely, Aram Galstyan, and Danai Koutra.
Coupled clustering of time-series and networks. In SDM, 2019.

[MA16] Antonio Maccioni and Daniel J Abadi. Scalable pattern matching over com-
pressed graphs via dedensification. In SIGKDD, pages 1755–1764. ACM, 2016.

[MBWB15] Benjamin A Miller, Michelle S Beard, Patrick J Wolfe, and Nadya T Bliss. A
spectral framework for anomalous subgraph detection. IEEE TSP, 63(16):4191–
4206, 2015.

[MH08] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(Nov):2579–2605, 2008.

[MLR+18] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon
Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra.
Deep learning for entity matching: A design space exploration. In Proceedings
of the 2018 International Conference on Management of Data, pages 19–34,
2018.

[NHH+19] Hao Nie, Xianpei Han, Ben He, Le Sun, Bo Chen, Wei Zhang, Suhui Wu,
and Hao Kong. Deep sequence-to-sequence entity matching for heterogeneous
entity resolution. In Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, pages 629–638, 2019.

[NLR+18] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed,
Eunyee Koh, and Sungchul Kim. Continuous-time dynamic network embeddings.
In WWW BigNet, 2018.

[NRS08] Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava. Graph summariza-
tion with bounded error. In SIGMOD, pages 419–432, 2008.

[PARS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning
of social representations. In KDD, 2014.

[PDC+20] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn:
Evolving graph convolutional networks for dynamic graphs. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, pages 5363–5370,
2020.

[PL05] Pascal Pons and Matthieu Latapy. Computing communities in large networks
using random walks. In International symposium on computer and information
sciences, pages 284–293. Springer, 2005.

170

[PLD05] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-redundancy.
IEEE TPAMI, 27(8):1226–1238, 2005.

[PPHM09] Mark Palatucci, Dean Pomerleau, Geoffrey E Hinton, and Tom M Mitchell.
Zero-shot learning with semantic output codes. NIPS, pages 1410–1418, 2009.

[PSGP16] George Papadakis, Jonathan Svirsky, Avigdor Gal, and Themis Palpanas. Com-
parative analysis of approximate blocking techniques for entity resolution.
VLDB, 9(9):684–695, 2016.

[PY09] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):1345–1359, 2009.

[QDM+18] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang.
Network embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec. In WSDM, pages 459–467, 2018.

[QPS17] Kun Qian, Lucian Popa, and Prithviraj Sen. Active learning for large-scale
entity resolution. In Proceedings of the 2017 ACM CIKM, pages 1379–1388,
2017.

[RA15a] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with
interactive graph analytics and visualization. In AAAI, 2015.

[RA15b] Ryan A. Rossi and Nesreen K. Ahmed. Role discovery in networks. IEEE
Transactions on Knowledge and Data Engineering (TKDE), 27(4):1112–1131,
April 2015.

[RA15c] Ryan A. Rossi and Nesreen K. Ahmed. Role discovery in networks. TKDE,
27(4):1112–1131, 2015.

[RAEZ18] Ryan A. Rossi, Nesreen K. Ahmed, Hoda Eldardiry, and Rong Zhou. Similarity-
based multi-label learning. In IJCNN, pages 1–8, 2018.

[RAK+18] Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, Sungchul Kim, Anup Rao, and
Yasin Abbasi-Yadkori. HONE: Higher-Order Network Embeddings. WWW,
2018.

[RGM03] Sriram Raghavan and Hector Garcia-Molina. Representing web graphs. In
ICDE, pages 405–416, 2003.

[RGNH13] Ryan A. Rossi, Brian Gallagher, Jennifer Neville, and Keith Henderson. Mod-
eling dynamic behavior in large evolving graphs. In Proceedings of the Sixth
ACM International Conference on Web Search and Data Mining, pages 667–676,
2013.

[RGSB17] Matteo Riondato, David García-Soriano, and Francesco Bonchi. Graph summa-
rization with quality guarantees. DMKD, 31(2):314–349, 2017.

171

[RJK+19] Ryan A Rossi, Di Jin, Sungchul Kim, Nesreen K Ahmed, Danai Koutra, and
John Boaz Lee. From community to role-based graph embeddings. arXiv
e-prints, pages arXiv–1908, 2019.

[RLU14] Anand Rajaraman, Jure Leskovec, and Jeffrey D. Ullman. Mining Massive
Datasets. 2014.

[RN12] Ryan A. Rossi and Jennifer Neville. Time-evolving relational classification and
ensemble methods. In Advances in Knowledge Discovery and Data Mining,
volume 7301, pages 1–13. Springer, 2012.

[RSF17] Leonardo F.R. Ribeiro, Pedro H.P. Saverese, and Daniel R. Figueiredo.
Struc2vec: Learning node representations from structural identity. In SIGKDD,
2017.

[RZA18] Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. Deep inductive network
representation learning. In WWW BigNet, 2018.

[Sch07] Satu Elisa Schaeffer. Graph clustering. Computer science review, 1(1):27–64,
2007.

[Sco79] David W Scott. On optimal and data-based histograms. Biometrika, pages
605–610, 1979.

[SGR19] Uriel Singer, Ido Guy, and Kira Radinsky. Node embedding over temporal
graphs. In IJCAI, pages 4605–4612, 7 2019.

[SGT+09] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transactions on
Neural Networks, 20(1):61–80, 2009.

[SGZ+18] Yu Shi, Huan Gui, Qi Zhu, Lance Kaplan, and Jiawei Han. Aspem: Embedding
learning by aspects in heterogeneous information networks. In SDM, pages
144–152. SIAM, 2018.

[SKW+13] Chandra Sekhar Sripada, Daniel Kessler, Robert Welsh, Michael Angstadt,
Israel Liberzon, K Luan Phan, and Clayton Scott. Distributed effects of
methylphenidate on the network structure of the resting brain: a connectomic
pattern classification analysis. Neuroimage, 81:213–221, 2013.

[SKZ+15] Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos.
Timecrunch: Interpretable dynamic graph summarization. In KDD, pages 1055–
1064, 2015.

[SME+17] Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed Elmagarmid, Samuel
Madden, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama,
and Nan Tang. Synthesizing entity matching rules by examples. VLDB,
11(2):189–202, 2017.

172

[SMER06] Zeqian Shen, Kwan-Liu Ma, and Tina Eliassi-Rad. Visual analysis of large
heterogeneous social networks by semantic and structural abstraction. TVCG,
12(6):1427–1439, 2006.

[SNA] SNAP. http://snap.stanford.edu/data/index.html#web.

[SRSCS15] Rishiraj Saha Roy, Ritwik Sinha, Niyati Chhaya, and Shiv Saini. Probabilistic
deduplication of anonymous web traffic. In WWW, pages 103–104, 2015.

[SRWS08] Gabriele Schweikert, Gunnar Rätsch, Christian Widmer, and Bernhard
Schölkopf. An empirical analysis of domain adaptation algorithms for ge-
nomic sequence analysis. Advances in neural information processing systems,
21:1433–1440, 2008.

[SSB+15] Lin Shao, Timo Schleicher, Michael Behrisch, Tobias Schreck, Ivan Sipiran, and
Daniel A. Keim. Guiding the exploration of scatter plot data using motif-based
interest measures. In BDVA, pages 1–8, 2015.

[SSTZ12] Parikshit Sondhi, Jimeng Sun, Hanghang Tong, and ChengXiang Zhai. Symp-
Graph: a framework for mining clinical notes through symptom relation graphs.
In KDD, pages 1167–1175, 2012.

[SSW15] Shiliang Sun, Honglei Shi, and Yuanbin Wu. A survey of multi-source domain
adaptation. Information Fusion, 24:84–92, 2015.

[Stu26] Herbert A Sturges. The choice of a class interval. Journal of the American
Statistical Association, 21(153):65–66, 1926.

[SWD16] Qi Song, Yinghui Wu, and Xin Luna Dong. Mining summaries for knowledge
graph search. In ICDM, pages 1215–1220, 2016.

[SWG+20] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat:
Deep neural representation learning on dynamic graphs via self-attention net-
works. In WSDM, pages 519–527, 2020.

[TDSL00] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric
framework for nonlinear dimensionality reduction. science, 290(5500):2319–2323,
2000.

[THP08] Yuanyuan Tian, Richard A Hankins, and Jignesh M Patel. Efficient aggregation
for graph summarization. In SIGMOD, pages 567–580. ACM, 2008.

[TL11] Lei Tang and Huan Liu. Leveraging social media networks for classification.
DMKD, 23(3):447–478, 2011.

[TPO+18] Saravanan Thirumuruganathan, Shameem A Puthiya Parambath, Mourad
Ouzzani, Nan Tang, and Shafiq Joty. Reuse and adaptation for entity resolution
through transfer learning. arXiv preprint arXiv:1809.11084, 2018.

173

[TQW+15a] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
Line: Large-scale information network embedding. In WWW, pages 1067–1077,
2015.

[TQW+15b] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
Line: Large-scale information network embedding. In WWW, 2015.

[TZHH11] Hannu Toivonen, Fang Zhou, Aleksi Hartikainen, and Atte Hinkka. Compression
of weighted graphs. In SIGKDD, pages 965–973. ACM, 2011.

[VCC+18] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. Graph attention networks. In ICLR, 2018.

[vL07] U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, 2007.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in NIPS, pages 5998–6008, 2017.

[WAG05] Leland Wilkinson, Anushka Anand, and Robert L Grossman. Graph-theoretic
scagnostics. In INFOVIS, volume 5, page 21, 2005.

[WC20] Garrett Wilson and Diane J Cook. A survey of unsupervised deep domain
adaptation. ACM TIST, 11(5):1–46, 2020.

[WSW+20] Zhengyang Wang, Bunyamin Sisman, Hao Wei, Xin Luna Dong, and Shuiwang
Ji. Cordel: A contrastive deep learning approach for entity linkage. arXiv
preprint arXiv:2009.07203, 2020.

[WWGW18] Qixiang Wang, Shanfeng Wang, Maoguo Gong, and Yue Wu. Feature hashing
for network representation learning. In IJCAI, pages 2812–2818, 2018.

[XYFS07] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas AJ Schweiger. Scan: a
structural clustering algorithm for networks. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 824–833. ACM, 2007.

[XYJ+20] Hansheng Xue, Luwei Yang, Wen Jiang, Yi Wei, Yi Hu, and Yu Lin. Modeling
dynamic heterogeneous network forlink prediction using hierarchical attention-
with temporal rnn. In Proceedings of the 2020 European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML-PKDD), 2020.

[YP97] Yiming Yang and Jan O Pedersen. A comparative study on feature selection in
text categorization. In ICML, volume 97, pages 412–420, 1997.

[YZHY18] Wei Ying, Yu Zhang, Junzhou Huang, and Qiang Yang. Transfer learning via
learning to transfer. In ICML, pages 5085–5094, 2018.

174

[ZCP+18] Ziwei Zhang, Peng Cui, Jian Pei, Xiao Wang, and Wenwu Zhu. Timers: Error-
bounded svd restart on dynamic networks. In AAAI, 2018.

[ZGGS+16] Linhong Zhu, Majid Ghasemi-Gol, Pedro Szekely, Aram Galstyan, and Craig A
Knoblock. Unsupervised entity resolution on multi-type graphs. In ISWC,
pages 649–667. Springer, 2016.

[ZGY+16] Linhong Zhu, Dong Guo, Junming Yin, Greg Ver Steeg, and Aram Galstyan.
Scalable temporal latent space inference for link prediction in dynamic social
networks. IEEE TKDE, 28(10):2765–2777, 2016.

[ZH19] Chen Zhao and Yeye He. Auto-em: End-to-end fuzzy entity-matching using
pre-trained deep models and transfer learning. In WWW, pages 2413–2424,
2019.

[ZLL+18] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu.
Embedding temporal network via neighborhood formation. In KDD, pages
2857–2866, 2018.

[ZTP10] Ning Zhang, Yuanyuan Tian, and Jignesh M Patel. Discovery-driven graph
summarization. In ICDE, pages 880–891. IEEE, 2010.

[ZYR+18] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dynamic
network embedding by modeling triadic closure process. In AAAI, 2018.

175

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Research Goal
	Overview
	Latent Feature Summarization
	Non-latent Feature Summarization

	Contributions

	Preliminaries & Related Work
	Preliminaries
	Graphs
	Communities and Roles
	Node Embeddings

	Related Work
	Node embedding
	Graph Summarization

	Part I: Node Embedding via Latent Feature Summarization
	Latent Structural Feature Summarization for Static Heterogeneous Graphs
	Introduction
	Latent Network Summarization
	Multi-Lens Framework
	Preliminaries
	Multi-level Structure Extraction
	Base Graph Functions
	Relational Function Compositions

	Heterogeneous Context
	Handling skewness
	Handling object/edge types and directionality

	Latent Summarization
	Multi-level Summarization
	Inductive Summaries (P3)
	On-the-fly embedding derivation (P4)

	Generalization
	Complexity Analysis
	Computational Complexity.
	Space Complexity.

	Experiments
	Experimental Setup
	Data
	Baselines
	Configuration

	Compression rate of Multi-Lens
	Link Prediction in Heterogeneous Graphs
	Inductive Anomaly Detection
	Anomalous Subgraph Detection
	Graph-based Event Detection

	Scalability of Multi-Lens

	Conclusion

	Latent Temporal Proximity Summarization for Temporal Graphs
	Introduction
	Related Work
	Preliminaries and Definitions
	Dynamic Heterogeneous Network Model
	Temporal Random Walks

	node2bits: Hash-based Emdedding Framework
	Temporal Random Walk Sampling
	Temporal Context based on Multi-dimensional Features
	Temporally-valid, multi-dimensional feature contexts.

	Feature-based Context Aggregation and Hashing
	Context Aggregation.
	Similarity-preserving Representations via Hashing.

	Complexity Analysis

	Experiments
	Experimental Setup
	Data
	Task Setup
	Baselines
	node2bits Setup & Variants

	Accuracy in Supervised User Stitching
	Static Networks
	Temporal Networks

	Accuracy in Unsupervised User Stitching
	Output Storage Efficiency
	Scalability

	Conclusion

	Evaluating Temporal Summaries and Node Embedding
	Introduction
	Related Work
	Data
	Preliminaries
	Framework
	Graph Time-Series Representations
	t
	e

	Temporal Network Models
	Snapshot Graph (SG) Model
	Temporal Summary Graph (TSG) Model
	Temporal Reachability Graph (TRG) Model
	Computational Complexity of WTRG

	Temporal Embeddings
	Base embedding methods
	Temporal fusion

	Experiments
	Experimental Setup
	Data
	Model configuration and variants
	Base and dynamic embedding method configuration

	WTRG vs. TRG
	Fixed et
	Temporal Model Comparison
	Dynamic Embeddings: Variants vs. State-of-the-art

	Complete Experimental Results
	Conclusion

	Part II: Node Embedding via Non-latent Feature Importance Summarization
	Domain-knowledge-guided Summarization of Graph Collections
	Introduction
	Related Work
	Methodology: EAGLE
	Proposed Formulation
	Proposed Model for Feature Diversity
	Proposed Model for Domain-Specificity
	Algorithm
	Application-driven Constraints
	Complexity

	Experiments
	Baselines
	Datasets
	Experimental setup
	Satisfaction of Desired Properties
	Scalability
	Robustness to parameters
	Case study: classification on brain graphs

	Conclusion

	Transfer Learning with Attention-based Summarization of Relational Data in Knowledge Integration
	Introduction
	Related Work
	Preliminaries
	Problem Definition
	Terminology

	Proposed framework
	Formulation
	Feature Representation
	Feature Attention Embedding
	Domain Adaptation-based Variants
	Unsupervised Domain Adaptation
	Semi-supervised Domain Adaptation
	Hybrid Model

	Parameter Complexity

	Experiments
	Experimental Setup
	Transfer Learning for MEL
	Effectiveness of Adaptation
	Attention Analysis
	Data Sources Analysis
	Effectiveness of Support Set
	Model Justification
	Ablation Study
	Performance on Single Domain

	Conclusion

	Conclusion
	Summary
	Latent Feature Summarization
	Non-latent Feature Summarization
	Histograms in Embedding

	Future Directions

	BIBLIOGRAPHY

