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ABSTRACT

Over the past decades, biomedical data have grown rapidly both in dimension and in

complexity. Traditional statistical models often lack the power of detecting the nonlin-

ear associations underlying the complex high-dimensional biomedical data. Machine

learning (ML) methods, on the other hand, have been shown to be successful for solv-

ing the challenging problems in some applications. However, because of a “black box”

nature, standard ML neither elucidates the data-generation mechanism nor quantifies

the model-fitting uncertainty, which have largely limited their usefulness in biomedi-

cal studies. Furthermore, the sample sizes required by sophisticated ML approaches,

such as deep neural networks, for analyzing large-scale data, such as those commonly

found in imaging genetics and spatial transcriptomics, are not widely affordable in

typical medical studies. These difficulties have contributed to the relatively scant

success of ML in biomedical applications. To address these challenges, this disserta-

tion aims at developing several novel approaches that combine traditional statistical

models with ML algorithms to efficiently and effectively analyze large-scale complex

biomedical data.

In the first project, we develop a robust and fast method based on principal com-

ponent analysis (PCA) for predicting population stratification (PS) from genotypes.

PS is a major confounder in genome-wide association studies that can lead to false

positive associations. Although PCA-based methods have been widely adopted for

PS adjustment, existing methods are either biased toward the null or computationally

expensive for large reference sets. In response, we propose two alternative approaches

xvi



that can estimate the asymptotic shrinkage bias using random matrix theory and

reduce the computation cost with online SVD. The proposed methods are applied

to extensive simulation studies and data in the UK Biobank and the 1000 Genomes

Project. We show that compared with existing methods, our methods are unbiased

and the computation cost is significantly lower.

In the second project, we propose a novel image-on-scalar regression (ISR) model

to study the association between imaging measurements and scalar covariates. Statis-

tical inferences on medical ISR is challenging due to the high imaging dimensionality,

limited number of images, complex spatial correlations, and heterogeneous noises.

To address these challenges, we utilize deep neural networks to model the spatially

varying coefficient functions of the main effects, individual effects, and noise variance

in the ISR model (NNISR). Compared to existing methods, NNISR is more flex-

ible for capturing complex spatial patterns, more straightforward to interpret, and

more accurate for small numbers of high-resolution images. We develop computation-

ally efficient and scalable algorithms for parameter estimation and activation region

selection. Theoretical analysis is conducted to establish estimation and selection con-

sistency of the proposed method. The superiority of NNISR is further demonstrated

through extensive simulations and analyses of brain fMRI data.

In the third project, we focus on modeling the conditional distribution of the

response given predictors via deep neural networks. Standard neural network regres-

sion makes prediction on the response using the conditional mean and often assumes

a simple homoscedastic error distribution. To better quantify prediction uncertainty,

we develop a novel Bayesian hierarchical neural network model by introducing latent

variables at each hidden layer, which induces high flexibility in modeling the predictive

distribution of the response. In light of the special structure of the proposed model,

we develop a scalable and accurate Gibbs sampling for posterior computation. We

illustrate the proposed method via simulations and analysis of neuroimaging data.
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CHAPTER I

Introduction

Machine learning (ML) methods have been successful in solving many artificial

intelligence (AI) problems. ML models such as deep neural networks, support vec-

tor machines, and random forests are capable of detecting highly complex patterns

and making accurate predictions. However, standard ML methods do not quantify

the uncertainty involved in model fitting and data generation, which makes them

unable to conduct the statistical inferences needed for scientific inquiries. Moreover,

typical biomedical studies cannot afford the large sample sizes required for training

ML models with high numbers of parameters. Furthermore, the “black box” charac-

teristics of these models and their inability to provide insightful explanations have

limited their usefulness in biomedical research and applications, as stakeholders often

require a mechanistic (and ideally causal) understanding of the prediction-making

procedure and how the model reacts to changes in the inputs [Wainberg et al., 2018].

Finally, it has been shown that even after achieving extraordinarily high training and

testing accuracy, trained ML models can be sensitive to small perturbations in data

[Su et al., 2019], which can potentially cause detrimental decision-making in safety-

critical applications, such as precision health and clinical trials. This shortcoming is

exacerbated by the heterogeneity of biomedical data, where the stream of upcoming

samples can contain inputs that are drastically different from those used for model
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training. For example, each cancer patient’s genetic, imaging, and metabolomic pro-

files can be unique and share little similarity with other cancer patient’s. Thus simply

increasing the sample size will not guarantee a solution to this problem, since even a

training set that contains all existing patients might not exhaust all the possible vari-

ations in biological systems of unfathomable complexity [Michael et al., 2018]. The

lack of uncertainty quantification, training efficiency, interpretability, and robustness

in ML methods may explain the skepticism of physicians and medical researchers,

as well as ML’s relatively scant success in biomedical fields, as compared to their

wide adaptation in AI applications, such as computer vision and natural language

processing.

In this dissertation, we aim to address these challenges by developing novel sta-

tistical machine learning methods for analyzing complex biomedical data. Before we

present the projects in this dissertation, we will first introduce the relevant back-

grounds in Sections 1.1 to 1.3. The dissertation outline is listed in Section 1.4.

1.1 Population stratification in genetic association studies

Since the first genome-wide association study (GWAS) was conducted in 2002

[Ozaki et al., 2002, Thomas et al., 2005, Balding et al., 2008, Ikegawa, 2012], many

common single nucleotide polymorphisms (SNPs) have been discovered and verified

to be associated with human diseases and traits. As the focus started to shift toward

the research of rare variants, the need for larger sample sizes continued to grow, and

analyses involving multiple study centers have become increasingly prevalent. In both

single-center and multi-center genetic studies, adjusting for ancestry membership is a

common practice to avoid spurious allelic associations caused by population stratifi-

cation [Cardon and Palmer, 2003]. A widely used approach for detecting population

structure from genotypes is principal component analysis (PCA). PCA utilizes sin-

gular value decomposition (SVD) to search for the linear direction with the greatest
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sample variation. In its standard usage, PCA is applied to the study samples, and

the resulting principal component (PC) scores serve as covariates to adjust for in

association studies. However, when the study samples are composed of data from

multiple sources, a consistent approach is needed to match the individual ancestry

across datasets [Wang et al., 2015]. To this end, two-sample PCA methods have been

developed to predict PC scores by using a reference panel that consists of samples

outside the study set. However, existing methods of this type are either computa-

tionally costly or biased toward the null. Therefore, in this dissertation, we develop

population stratification methods that offer fast and robust ancestry prediction. We

apply our methods to predict the fine-scale (e.g. sub-European) ancestry of 488,366

genotyped samples collected from multiple study centers in the UK Biobank [Biobank,

2014], with 2,492 samples from the 1000 Genomes Project [Clarke et al., 2012] serving

as the reference panel.

1.2 Association studies in functional neuroimaging

Decrease in the cost of collecting high-dimensional medical images has stimulated

the availability of neuroimages in biomedical studies [Liu et al., 2017]. Brain images

of different modalities, such as X-ray computed tomography (CT), magnetic reso-

nance imaging (MRI), positron emission tomography (PET), single photon emission

tomography (SPECT), functional MRI (fMRI), and magnetic resonance spectroscopy

[Powers and Derdeyn, 2014], provide the physiological neuroimaging data needed for

untangling the association of brain regions of interest (ROIs) with physiological, clin-

ical, and demographic characteristics. On the other hand, the growing threat of

neuropsychiatric disorders, such as Alzheimer’s disease and autism spectrum disorder

(ASD), presses for the discovery of ROIs that can potentially accelerate the detec-

tion of high-risk individuals and assist the development of intervention techniques

[Chen et al., 2016]. To this end, image-on-scalar regression models (ISRs) become a
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natural tool for finding the association between high-dimensional imaging data and

scalar variables, such as cognitive score, genetic variants, and disease status. However,

medical imaging analysis with ISRs is complicated by several difficulties, including

the ultrahigh imaging dimensions, heterogeneous noises, limited numbers of training

images, and complex spatial correlations. To address these challenges, we propose a

deep learning-guided ISR that utilizes deep neural networks in the search of spatial

patterns. We identify ROIs significantly associated with intellectual capacities by ap-

plying our methods to two neuroimaging data sets: the Autism Brain Imaging Data

Exchange (ABIDE), a consortium aggregating the resting-state fMRI images, struc-

tural MRI images, and phenotypic information from 1,112 subjects [Di Martino et al.,

2014], and the Adolescent Brain Cognitive Development study (ABCD), a study of

over ten thousand 9- and 10-year-old children recruited from 21 sites in the United

States [Jernigan et al., 2018].

1.3 Density learning with Bayesian neural networks

Although deep learning has achieved high testing prediction accuracy in many

artificial intelligence applications, one of its major drawbacks is the lack of estima-

tion on the model fitting error. This deficiency can be solved by treating the neural

network as a Bayesian hierarchical model, also known as a Bayesian neural network

(BNN), which provides a quantification of estimation uncertainty through the pos-

terior distribution [Wang and Yeung, 2016]. However, in standard BNNs, variation

in the noise is often simplified as a homoscedastic, zero-mean random variable. Such

an approach may misrepresent or underestimate the deviation of the true outcome

from the predicted value and cause detrimental decision-making [Huang et al., 2018],

especially in the presence of multi-modality and heavy tails. To better quantify the

unpredictable randomness in the data, we develop a generalized BNN model for learn-

ing not merely the conditional mean, but rather the whole conditional distribution of
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the outcome. We show that our density learning model is capable of approximating

a wide range of densities. Moreover, the usefulness of BNNs in real-life applications

has been greatly limited by the lack of efficient and accurate posterior computation

algorithms. Standard MCMC methods are inefficient for exploring the ultrahigh-

dimensional parameters of BNNs [Izmailov et al., 2020], while variational inference

methods tend to underestimate the posterior variances [Blei et al., 2017]. To address

these challenges, we will propose a Bayesian hierarchical model with latent variables.

The novel model is an extension of standard neural networks and is capable of repre-

senting complex noise structures. Moreover, in light of the model structure, we will

develop an efficient posterior Gibbs sampler that utilizes the closed-form conditional

distributions in our model. We will apply our approach to simulated data and neu-

roimaging data to evaluate its characterization of non-Gaussian noise distributions

and assess its effectiveness against making overconfident predictions.

1.4 Dissertation outline

The remainder of the dissertation is organized as follows: In Chapter II, we de-

velop a fast and robust approach (FRAPOSA) to predict the ancestry information of

the genotypes in the UK Biobank. In Chapter III, we design a neural network-guided

image-on-scalar regression model (NNISR) and apply it to functional magnetic res-

onance (fMRI) data. In Chapter IV, we propose the deep aleatoric neural network

(DALEA) model and evaluate its performance on neuroimaging data. We conclude

in Chapter V with a discussion and potential future directions.
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CHAPTER II

Fast and Robust Ancestry Prediction Using

Principal Component Analysis

2.1 Introduction

Population stratification (PS) is a major confounder for genetic association anal-

ysis [Price et al., 2006], and the adjustment of PS requires the estimation of the

ancestry structure among study samples. Principal component analysis (PCA) is a

multivariate statistical method which finds the direction of the maximal variability

[Jolliffe, 2002]. By aggregating information across all the genetic markers, PCA has

been effective for PS adjustment [Reich et al., 2008]. To adjust for PS, PCA can

be applied to study data to calculate the principal component (PC) scores, which

are regarded as variables of ancestry and can be used as covariates to adjust for.

An alternative approach is predicting the PC scores of the study samples by using

reference genotyped samples with detailed ancestry information. This prediction-

based approach allows not only adjustment for PS but also inference of the ancestry

memberships of the study samples. In addition, by using a common reference panel,

predicted PC scores across different studies can be directly comparable, allowing to

integrate and match the different study samples [Wang et al., 2015]. For example,

using the predicted PC scores, Zhan et al. [2013] identified the ancestry-matched con-

6



trol samples from the publicly available NHLBI ESP sequencing data, which helped

to identify rare variant associations.

The standard approach of predicting PC scores is to project the study samples

onto the maximal variability directions, called PC loadings. In this paper, we call

this approach simple projection (SP). However, when the number of features greatly

exceeds the size of the reference samples, which is common for data in genome-

wide association studies (GWAS), the PC scores predicted by SP are known to be

systematically biased toward NULL [Dey and Lee, 2019]. This shrinkage bias can

cause inaccurate prediction of the ancestry of each study sample and inappropriate

adjustment of PS.

One way of addressing this shrinkage bias is presented by Wang et al. [2014, 2015].

Their solution is to combine one study sample with all the reference samples and find

the PC scores of this augmented data set. The PC scores of the study individuals

are then mapped to the reference sample PC space by a Procrustes transformation.

We call this method “augmentation, decomposition, and Procrustes transformation”

(ADP). This method has been shown to be effective in eliminating the shrinkage bias

of study PC scores. However since ADP needs to run PCA separately for each of the

augmented data sets, it is computationally expensive, especially with large reference

samples. For example, the estimated computation time for predicting the ancestry of

the UK Biobank data of 488,366 samples with 2,492 reference samples is 1,628 CPU

hours. Since computation time is cubic to the reference sample size, the computation

time will rapidly increase for larger reference samples.

To address the limitations of SP and ADP, we develop and propose two alter-

native methods for ancestry prediction and apply them to the UK Biobank data.

The first approach removes the bias in SP by estimating the asymptotic bias factor,

which is calculated based on random matrix theory [Dey and Lee, 2019]. The second

approach improves the computational efficiency of ADP by using an online singular
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value decomposition (SVD) algorithm [Halko et al., 2011], which obtains the SVD

results of the augmented matrix by updating the SVD results of the reference matrix,

since the latter only differs slightly from the former and many of the overlapping

calculations can be avoided. We call the first approach “bias-adjusted projection”

(AP) and the second approach “online augmentation, decomposition, and Procrustes

transformation” (OADP).

In this paper, we evaluate the accuracy and computational efficiency of AP and

OADP as compared to SP and ADP through extensive simulation studies and the

analysis of the UK Biobank data. In the simulation studies, we show that AP and

OADP have both achieved accuracy similar to or higher than that of ADP and com-

putational efficiency close to that of SP. The UK Biobank data analysis shows that

the proposed approaches are 80-2000 times faster than ADP. In addition, we have de-

veloped the open-source software FRAPOSA in Python that implements AP, OADP,

SP, and ADP.

2.2 Methods

2.2.1 Model and PCA on the reference data

For PC score prediction, we have the reference samples and the study samples,

which can be represented by two matrices. LetX be a p×n matrix of reference geno-

types and Y be a p×m matrix of study genotypes, where p is the number of genetic

markers, n is the number of reference samples, and m is the number of study sam-

ples. In our study, we only consider genotypes composed of biallelic single nucleotide

polymorphisms (SNP), so each entry of X and Y is a minor allele count of 0, 1, or

2. For PCA, the reference data matrix is commonly standardized by subtracting the

marker mean from each marker genotype and then dividing it by the marker standard

deviation. The sample matrix Y also can be standardized using marker means and
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standard deviations calculated from the reference samples. SupposeX and Y are the

standardized reference and study data matrices, respectively. The sample covariance

matrix is S = XX>/n, and then by eigendecomposition,

nS = XX> = UD2U>

whereD2 = diag(d2
1, . . . , d

2
n) is an n×n diagonal matrix of ordered sample eigenvalues

and U = (u1, . . . ,un) is a p× n corresponding eigenvector matrix. The jth PC score

vector is vj = X>uj/dj, where uj is the jth sample eigenvector, which is also called

the jth PC loading. Alternatively, PC loadings and scores can be calculated using

SVD, which is computationally more efficient when p is larger than n. By SVD

X = UDV >, (2.1)

where V = (v1, ...,vn) is the right singular vector matrix and vj is the jth PC scores.

From (2.1),

X>X = V D2V >.

After calculating vj and dj from the eigendecomposition of X>X, the jth loading,

uj, can be calculated as uj = Xvj/dj.

2.2.2 Predicting the PC scores of the study samples

Here we describe the existing approaches, SP and ADP, and the proposed ap-

proaches, AP and OADP, and their computation complexity to predict the top K PC

scores. For practical purposes, we assume that K � n � p. Table 2.1 summarizes

the computation complexity of the four methods.

Simple Projection (SP). SP directly uses the PC loadings of the reference sample

PCA to predict the PC scores of the study samples. The SP algorithm of predicting
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the top K PC scores and the computation complexity (CC) of each step is as follows:

1. Perform the reference sample PCA: X>X = V D2V >. (CC: O[pn2].)

2. Compute the PC loading matrix for the top K PCs: UK = XVKD
−1
K . Here VK

and DK are the the first K columns of V and the upper-left K×K sub-matrix

of D, respectively. (CC: O[npK].)

3. Compute the predicted study PC scores for the top K PCs: WK = Y >UK .

(CC: O[mpK].)

The total computation complexity is O[pn2 + mpK] (assuming K � n � p), which

is the lowest among all the methods discussed in this paper. However, a major

weakness of SP is the loss of accuracy when the number of makers, p, greatly exceeds

the reference sample size, n, a situation that is common in GWAS. Lee et al. [2010]

have shown that when n < p, the predicted PC scores can be shrunken toward NULL.

This shrinkage bias limits the accuracy of SP for high-dimensional data.

Bias-Adjusted Projection (AP). AP calculates the asymptotic shrinkage bias

of SP and adjusts the predicted PC scores using the estimated bias. The estima-

tion of the bias requires all the eigenvalues of the the reference data matrix. The

details for estimating the shrinkage factor are described in Dey and Lee [2019]. Sup-

pose the population covariance matrix Σ = E(XX>/n) has (population) eigenvalues

λ2
1, . . . , λ

2
p, and the sample covariance matrix S = XX>/n has nonzero (sample)

eigenvalues d2
1, . . . , d

2
n. First, the population eigenvalues are assumed to follow a

generalized spiked population model (GSP), where only a few eigenvalues are large

(which are called distant spikes) compared to the rest of them. The rest of the eigen-

values are relatively small but not necessarily all equal to each other. Then for the

top few PCs that correspond to the distant spikes, the ratio of the variance of the

reference PC scores and that of the study PC scores predicted by SP converges in
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probability to the ratio of the corresponding population eigenvalues (distant spikes)

and the sample eigenvalues as p → ∞, n → ∞, p/n → γ < ∞. Formally, suppose

vkj = x>j uk is the k-th PC score of the j-th subject in the standardized reference

data X, and wkl = y>l uk is the k-th PC score of the l-th subject in the standard-

ized study data Y . Then the shrinkage factor along the k-th PC score is defined

as τk =
√

Var(wkl)/Var(vkj), and when λk is a distant spike with multiplicity one,

|τk−dk/λk|
p−→ 0. Dey and Lee [2019] provides two consistent estimators of λk for the

distant spikes (i.e. λ̂k). The consistent estimator of τk can be obtained as τ̂k = dk/λ̂k.

Among the two estimators of λk, we used the method called d-estimation, which is

faster (CC: O[Kn]) than the other l-estimation approach (CC: O[Kp]).

The method for approximating the shrinkage factors has been implemented in

the hdpca package in the R language [Dey and Lee, 2016]. The algorithm of AP is

summarized below.

1. Perform the reference sample PCA: X>X = V D2V >. (CC: O[pn2].)

2. Estimate the shrinkage factors τ̂1, . . . , τ̂K for the top K PCs, where τ̂k = dk/λ̂k

as defined above. (CC: O[Kn].)

3. Compute the PC loading matrix for the top K PCs with the adjustment for

the shrinkage bias: UK = XVKD
−1
K F

−1
K , where FK = diag(f1, ..., fK). (CC:

O[pnK].)

4. Compute the predicted study PC scores for the top K PCs: WK = Y >UK .

(CC: O[mpK].)

The total computation complexity is O[pn2 + mpK] (assuming K � n � p), which

is the same as that of SP. This is because shrinkage factor estimation is asymptotic-

based and can be computed rapidly with the sample eigenvalues. In addition, the

shrinkage factor only needs to be calculated once for all the study samples.
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Augmentation, Decomposition, and Procrustes Transformation (ADP).

ADP, such as LASER and TRACE [Wang et al., 2014, 2015], predicts the study PC

scores by using a different approach compared to SP and AP. ADP first augments the

(standardized) reference matrix by appending a column vector of a (standardized)

study sample. Then SVD is applied to the p × (n + 1) augmented matrix X̃. The

resulted (n + 1) × (n + 1) right singular-vector matrix Ṽ can be divided into two

parts: the first n rows Ṽref = (ṽ>ref,1, . . . , ṽ
>
ref,n)>, which correspond to the reference

samples, and the last row ṽstu, which corresponds to the one study sample. Since Ṽref

is different (though only slightly when n is large) from V , the n × n right singular-

vector matrix of the reference data, ADP uses the Procrustes transformation to map

Ṽref to V in the original reference PC space. That is, it finds a linear transformation

of the form

f(ṽref,i,K′) = ρṽref,i,K′A+ c

that minimizes the mean squared difference between VK and the transformed

(f(ṽref,1,K′)
>, . . . , f(ṽref,n,K′)

>)>, where VK is the first K columns of V , ṽref,i,K′ is

the first K ′ columns of ṽref,i, and K ≤ K ′. Here ρ is a non-negative scalar, A is

an K ′ × K orthogonal matrix, and c is an 1 × K row vector. We then apply this

transformation to ṽstu,K′ , the first K ′ columns of ṽstu, to obtain the predicted PC

score, f(ṽstu,K′). The algorithm is summarized as follows.

1. Perform the reference sample PCA. X>X is obtained in this process. (CC:

O[pn2].)

2. For a study sample y, obtain X̃>X̃ by computing X>y, (X>y)>, and y>y

and appending them to the right edge, bottom edge, and bottom-right corner

of X>X, respectively. (CC: O[pn].)

3. Apply eigendecomposition on X̃>X̃ to get X̃>X̃ = Ṽ D̃2Ṽ >. (CC: O[n3].)
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4. Find the Procrustes transformation f from Ṽref,K′ , the first n rows and first K ′

columns of Ṽ , to VK , the first K columns of V . Note that K ′ ≥ K. (CC:

O[nK ′2])

5. Apply f to ṽstu,K′ , the last row and first K ′ columns of Ṽ , to obtain the top K

PC scores of the current study sample. (CC: O[KK ′])

6. Go to Step 2 for the next study sample unless all the study samples have been

analyzed.

The total computation complexity is O[pn2 + m(np + n3)] given that K ′ � n � p.

In our simulation studies and UK Biobank data analysis, setting K = 4 and K ′ = 8

was sufficient for separating the ancestry groups.

ADP is a nonparametric approach that does not require any assumption on the

distribution of the eigenvalues and therefore can be more robust than AP. It does

not suffer the shrinkage bias. A major disadvantage of ADP, however, is its high

computation cost. In particular, as the reference size increases, the computation cost

for a study sample increases cubicly.

Online Augmentation, Decomposition, and Procrustes Transformation

(OADP). Since the augmented data matrix X̃ differs in only one column from

the reference matrix X, the computational process for the SVD of X̃ is numerically

close to that for the SVD of X. If we avoid the repeated computation and obtain the

SVD of X̃ by updating the SVD of X, the computation cost can be greatly reduced.

One of such “online” algorithms for SVD has been proposed for imaging processing

[Brand, 2002]. This algorithm calculates SVD in an incremental manner and has the

ability to rapidly update the top few singular values and vectors. Here we propose to

use this online SVD algorithm to replace the standard SVD algorithm for ADP and

call it “online augmentation, decomposition, and Procrustes transformation” (OADP).

The algorithm for this method is as follows:
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1. Perform the reference sample PCA. (CC: O[pn2].)

2. Calculate the top K ′′ PC loadings: UK′′ = XVK′′D
−1
K′′ . (CC: O[K ′′np].)

3. Calculate

b = U>K′′y and g = y>h,

where h is the normalized y −UK′′b. (CC: O[K ′′p].)

4. Calculate Q>Q, where

Q =

DK′′ b

0 g

 .
(CC: O[K ′′3].)

5. Apply eigendecomposition to Q>Q to get Q>Q = V̈ D̈2V̈ >. (CC: O[K ′′3].)

6. Calculate

Ṽ =

VK′′ 0

0 1

 V̈ .
(CC: O[nK ′′2].)

7. Find the Procrustes transformation f from Ṽref,K′ , the first n rows and first K ′

columns of Ṽ , to VK , the first K columns of V . Note that K ′′ ≥ K ′ ≥ K.

(CC: O[nK ′2])

8. Apply f to ṽstu,K′ , the last row and first K ′ columns of Ṽ , to obtain the top K

PC scores of the current study sample. (CC: O[KK ′])

9. Go to Step 3 for the next study sample unless all the study samples have been

analyzed.

The total computation complexity is O[n2p+m(K ′′p+K ′2n)] providedK ′′ � n�

p. In our simulation studies and UK Biobank data analysis, setting K = 4, K ′ = 8,
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and K ′′ = 16 was sufficient for the online SVD algorithm to approximate regular SVD

well and separating the ancestry groups. The computation complexity of OADP for

analyzing the study individuals increases linearly with respect to the reference sample

size, which is much more efficient than ADP’s cubicly increasing rate. The closeness

between the results given by OADP and ADP is empirically shown in Section 2.3.

2.2.3 Simulation Studies

We simulated the genotype data using a coalescence-based grid simulation ap-

proach with population migration by Mathieson and McVean [2012]. In this approach,

we simulated 4 different population groups in a 2 × 2 grid. In each population, we

generated (n+m)/2 haploid genotypes with 100,000 biallelic genetic markers. Then

we combined every two of the haploid genotypes to form (n+m)/4 diploid genotypes

in each population. A large migration rate (M=100) was used to evaluate the perfor-

mance of the proposed and existing methods in fine-scale population differentiation.

Among the (n + m) generated samples, we randomly selected reference and study

samples. The reference sample size n ranged from 1000 to 3000, and the study sam-

ple size m was fixed to 200. The proportion of variants with minor allele frequency

less than 0.05, 0.005, 0.0005 was 0.66, 0.37, 0.12, respectively.

After the individual genotypes were simulated, we applied SP, ADP, AP, and

OADP to the data to predict the PC scores for the study samples. We only calculated

the top 2 PCs, and for OADP and ADP, we calculated the top 8 PC scores (i.e.

K ′ = 8) for the study samples and project them to the 2-dimensional reference PC

score space through the Procrustes transformation. For OADP, we calculated the top

16 PC scores in the online SVD algorithm (i.e. K ′′ = 16) but used only the top 8

PCs for the Procrustes transformation (i.e. K ′ = 8). Finally, we used the 20-nearest-

neighbor method to predict each study sample’s population membership. It classified

a study sample by the votes of the 20 nearest neighboring reference samples, where
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the weight of each neighbor was inversely proportional to the distance in between.

To evaluate the accuracy of each method, we obtained the population means of the

reference PC scores and calculated the scaled mean squared difference (MSD) between

the reference population means and the corresponding study population means, that

is,

MSD =

∑Q
q=1

∑K
k=1(Dq,k − Cq,k)2∑Q

q=1

∑K
k=1C

2
q,k

,

where Cq,k andDq,k are population q’s reference and study sample means, respectively,

for the kth PC.

To determine the proportion of the MSD that is caused by the prediction of

the study samples rather than random variations, in each population we randomly

selected some reference samples whose number is the same as that of the study sam-

ples. Then we calculated the MSD of these selected reference samples as if they are

study samples. We repeated this procedure for 100 times to obtain an empirical null

distribution of the MSD.

In addition, to directly compare different methods’ predicted PC scores, we cal-

culated their pairwise mean squared difference across all the samples and PCs.

For the comparison of computation cost, we applied each method 10 times for each

experimental setting and obtained the mean of the study runtimes. Note that the

study runtime did not include the time for running the reference sample PCA, reading

and writing files, or predicting the population membership of the study samples from

their predicted PC scores. For SP, AP, and OADP, we used our FRAPOSA software,

which implements the methods using Python. For ADP, we used the TRACE software

by Wang et al. [2015]. All the programs were run on a single-core CPU.

2.2.4 UK Biobank data analysis

We applied the proposed and existing methods to the UK Biobank data [Sud-

low et al., 2015, Bycroft et al., 2018], which contained the genotypes of 488,366
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individuals in the United Kingdom. The 1000 Genomes Project data served as our

reference panel [Consortium et al., 2015]. We used the Phase 3 release of the 1000

Genomes data, which contained 84.4 million variants and 2,504 individuals from five

super-populations: Africans, admixed Americans, East Asians, Europeans, and South

Asians (Table 2.2). These populations were further divided into 26 sub-populations.

By using the family structure information provided by the 1000 Genomes Project,

we excluded all the individuals with at least one parent that was included in the

data set, which resulted in 2,492 individuals for the reference panel. Furthermore, we

intersected the 147,604 high-quality genotyped SNPs in the UK Biobank data with

the 1000 Genomes SNPs, which gave us 145,282 SNPs in common.

After predicting PC scores, we further predicted the ancestry membership by using

the 20-nearest-neighbors method, as in the simulation studies (Section 2.2.3). If a

study sample’s highest voted population had received less than or equal to 0.875 of the

total weighted votes, we classified it as an admixed individual. Then, we investigated

the finer-scale ancestry structures using the population-specific reference samples.

For example, we used the 498 European 1000 Genomes samples, which consisted

of Iberians, Britons, Finns, Toscani, and Utah resident with Northern and Western

European ancestry, as the reference panel to predict the sub-population membership

of the UK Biobank samples that had been predicted to be Europeans.

Since ADP was very slow for such large reference and study sample sizes, we

did not apply ADP to all the study samples. Instead, we randomly selected 5000

study samples and used them to compare the performance of ADP against the other

methods. The other three methods, SP, AP, and OADP, were applied to all the study

samples. As in the simulation studies, accuracy was measured by MSD, and runtime

excluded the time for PCA on the reference samples.
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2.3 Results

2.3.1 Simulation studies

We applied the proposed (AP and OADP) and the existing methods (SP and

ADP) to the grid-simulated genotypes with the reference sample sizes ranged from

1000 to 3000. Figure 2.1 shows the PC scores calculated by using 1000 reference

samples. It shows that PCA has successfully clustered four different groups. As

expected, SP showed systematic shrinkage, but AP, OADP, and ADP did not show

the bias and had very similar predicted PC scores (Figure 2.2). As the reference

sample size increased, the bias in SP was reduced, but it was still visible even when

the reference sample size was 3000 (Figures A.1 and A.2).

Moreover, SP’s MSD was more than 10 times higher than those of AP, OADP,

and ADP when the reference sample size was 1000. SP’s MSD was reduced as the

number of reference samples increased, but even when the reference sample size was

3000, the MSD of SP was still at least 4 times higher than that of the other methods,

which indicated a higher magnitude of shrinkage for SP. See Figure 2.3 and Table A.1.

Among the proposed approaches, OADP generally had the smallest MSD.

When compared to the empirical null distribution, SP’s MSD exceeded the mean

of the empirical null distribution by 33 to 172 SDs. In comparison, the MSDs of

AP, OADP, and ADP were only 6 to 12 SDs away from the mean of the empirical

null distribution when the reference size was 1000, and 0.2 to 5 SDs away when the

reference size was 1500 or greater. These observations indicated that the differences

in MSD across different methods were mostly due to prediction error.

Figure 2.3 and Table A.1 report the computation time. For all the simulation

settings, the runtime of ADP greatly exceeded those of the other methods and in-

creased faster than linearly with the number of reference samples. In comparison, the

runtime of of OADP only grew slightly, and the runtimes of AP and SP remained
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almost unchanged, as the reference size increased. These observations were consistent

with the O[n3], O[n], O[1], and O[1] computation complexity of ADP, OADP, and

AP and SP, respectively, with respect to reference size (for fixed data dimension and

study size. See Table 2.1). When the reference size reached 3000, ADP’s runtime for

predicting 200 study samples was 3,369 seconds, which was more than 200 times of

OADP’s (16 seconds) and more than 16,000 times of AP’s (0.20 seconds). In a study

of 500,000 samples with a reference size of 3000, the projected computation time of

ADP would be 2,340 CPU hours (97 CPU days), while OADP and AP would only

require 11 and 0.14 CPU hours, respectively.

2.3.2 UK Biobank data analysis

To identify the ancestry structure of the UK Biobank data, we applied the pro-

posed and existing approaches by using the 1000 Genomes data as references. The UK

Biobank data contained 488,366 samples collected over multiple centers in the United

Kingdom. The 2,492 independent samples from the 1000 Genomes data were used

as the reference set. Sample sizes of the super-populations and sub-populations are

given in Table 2.2. The predicted super-populations (by OADP) of the UK Biobank

samples are shown in Table 2.3. Since ADP was computationally too expensive, we

only applied ADP to 5000 randomly selected samples for method comparison. All

the other methods were applied to all the 488,366 samples.

Figure 2.4 shows the top 4 PC scores of all the UK Biobank samples as predicted

by SP, AP, and OADP. The super-populations (Africans, admixed Americans, East

Asians, Europeans, and South Asians) were distinguishable by all these three meth-

ods. Even SP did not show strong shrinkage. The shrinkage factors for the top 4 PCs

predicted by AP were 0.99, 0.99, 0.96, and 0.94.

To compare the PC score prediction of SP, AP, and OADP against ADP’s, we

applied each method to the 5000 randomly selected UK Biobank samples. The PC
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scores are plotted in Figure A.3. All the methods gave similar predicted PC scores

(Figure A.4), and the MSDs were also very close (Table 2.4).

Next, among the 461,807 UK Biobank samples that had been predicted to be

Europeans by OADP, we further estimated their sub-population memberships. For

the reference panel, we used the 498 European samples in the 1000 Genomes data,

where each of them was Iberian, British, Finnish, Toscani, or a Utah resident with

Northern and Western European ancestry. Each European UK Biobank study sample

was predicted to be one of these sub-populations by using the 20-nearest-neighbor

method on the PC scores in the same way as in the analysis of the global samples,

except that the possibility of being identified as an admixed sample was not included.

The top 4 reference and study PC scores of the European samples are shown in

Figure 2.5. Compared to AP and OADP, SP clearly showed shrinkage in PC1 to

PC4. The shrinkage factors for the top 4 PCs predicted by AP were 0.70, 0.40, 0.21,

and 0.14.

Figure A.5 shows the PC scores predicted by SP, AP, OADP, and ADP of the

5000 randomly selected European UK Biobank study samples. The comparison of

the PC scores is illustrated in Figure A.6. Compared to the other methods, PC

scores predicted by SP were much closer to NULL. Unlike in the analysis of the

global samples, SP had a much higher MSD between the population means for the

European samples (Table 2.4).

In addition, we identified the African, East Asian, admixed American, South

Asian, and admixed samples by using the OADP-predicted PC scores based on the

global 1000 Genomes reference samples. Then SP, AP, and OADP were used to

predict their finer-scale PC scores and ancestry memberships. The results are shown

in Figures A.7 to A.11.

The computation cost is shown in Table 2.4. For the analysis of all the 488,366

UK Biobank samples, SP and AP both took 0.82 CPU hour, while OADP took 21
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CPU hour. For ADP, because of its high computation cost, we only ran it on 500

study samples and then scaled its runtime to all the 488,366 samples. The projected

runtime for ADP was 1682 hours, which was almost 80 times higher than OADP and

2000 times higher than SP and AP. For the computation cost of the analysis of the

European samples, SP and AP both took 0.69 hour, and OADP took 17.75 hours.

Because there were only 498 European reference samples, ADP was estimated to cost

only 58.93 CPU hours when applied to the European samples.

2.4 Discussion

In this paper, we have compared two existing (SP and ADP) and two novel meth-

ods (AP and OADP) of predicting PC scores for the purpose of predicting population

structure. The computation complexity calculation shows that our methods greatly

exceed the speed of the existing ADP method when the reference sample size is

large. Moreover, AP improves the accuracy of SP by adjusting for the shrinkage

bias, which is asymptotically estimated from random matrix theory. Our simulation

study and the analysis of the UK Biobank data have empirically demonstrate the

efficiency and unbiasedness of our methods. AP and OADP have been shown to be

16 times to 16,000 times faster than ADP. They have also successfully separated the

sub-populations in the UK Biobank data when SP shrinks most of the study samples

toward NULL and is unable to cluster them.

In our simulation studies, we set the number of markers to 100,000. In studies

focusing on specific regions in the genome, such as exome-chip or exome-sequencing

studies, the number of variants available for ancestry prediction can be substantially

smaller. To investigate the performance of the methods in such situations, we reduced

the number of variants from 100,000 to 50,000 and 10,000. Figures A.12 and A.13

show that when the reference size was 1000, reducing the number of variants caused all

the samples, reference and study, to be close to NULL. This would cause difficulties for
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predicting the population membership of the study samples, as there were more study

samples on the boundaries of the reference populations. ADP, OADP, and AP could

still separate most of the samples from different populations. In comparison, SP’s

study PC scores clustered much more closely around NULL, although their population

memberships were mostly distinguishable. On the other hand, Figure A.14 shows that

the MSD remained almost unchanged as the number of variants was reduced. This

was due to the fact that MSD was scaled with the scale of the reference PC scores

and therefore would change little when the reference and study PC scores shrank by

approximately the same magnitude.

In the UK Biobank data analysis, we observed that the PC scores predicted by

SP had shrunken much more in the analysis of the European samples than in the

analysis of the global samples. This difference could be caused by the sample size

difference and the population diversity difference. To further investigate this issue,

we randomly selected 498 global 1000 Genomes reference samples to analyze the 5000

randomly selected global UK Biobank samples. With the reference size the same as

the European samples, the 5000 global samples’ PC scores shrank more than when

using all the 2,492 global reference samples, as shown in Figures A.15 and A.16.

The shrinkage factors for the top 4 PCs predicted by AP were 0.96, 0.93, 0.80, and

0.70, which indicated stronger shrinkage effect compared to the analysis using all the

2,492 reference samples, especially in PC3 and PC4, though the shrinkage was not

as strong as the shrinkage in the analysis of the European samples. For differences

in population diversity, the global samples in the 1000 Genomes data had a fixation

statistic Fst [Weir and Cockerham, 1984] of 0.087, while that of the Europeans samples

was 0.005. Similarly, the proportion of the total variation explained by top 4 PCs was

0.090 for the global samples and 0.015 for the European UK Biobank samples. Both

population diversity statistics show that the European populations did not differ as

much as the global populations. We conclude that both the reference size difference
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and the population diversity difference contributed to SP’s large shrinkage in the

European sample analysis as compared to the global sample analysis.

Throughout the paper, we estimate the ancestry membership of the study samples

by predicting their PC scores with a reference panel. An alternative method would

be combining the reference samples with the study samples and applying PCA to the

combined data. However, a major drawback of this alternative is that when most

of the study samples belong to one population, this population would dominate the

analysis and cause inaccurate PC score prediction for samples in other populations.

To illustrate this, we combined the European 1000 Genomes samples with the Eu-

ropean UK Biobank samples and applied the FastPCA algorithm [Galinsky et al.,

2016] to the combined data. The PC scores were then used to estimate the ancestry

membership through the 20-nearest-neighbor method, as described in Section 2.2.3.

Figure A.17 shows the PC scores estimated by FastPCA, and Table A.2 compares

the ancestry membership estimated by FastPCA and OADP. The two methods esti-

mated very similar numbers of samples to be British or Utah residents of Northern

and Western European ancestry, which is what we would expect since the study data

was dominated by these two populations. However, the two methods gave very dif-

ferent results for the other three European populations. In the most extreme case,

the difference in the number of Finnish samples was more than ten-fold between the

two methods’ predictions. We note that, due to the lack of the fine-scale ancestry

information, we cannot confirm that our method have provided more accurate results.

However, considering the unsupervised nature of the alternative approach, it is rea-

sonable to assume that the alternative approach would be less accurate. In addition,

the alternative approach does not allow to compare samples in different studies, so it

cannot be used for the sample matching in integrative analysis [Zhan et al., 2013].

An interesting phenomenon we have observed is that in most cases of the simu-

lation studies and the UK Biobank analysis, OADP outperformed ADP in terms of
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prediction accuracy as measured by MSD, even though OADP is an approximation

method of ADP. One possible explanation for this phenomenon is that OADP only

uses the first 16 PCs to update the top 8 PCs. OADP sacrifices the information of

the lower-rank PCs in order to gain computation speed, but this might turn out to

be an advantage for OADP’s prediction accuracy, since it makes this method less

vulnerable to outliers in the lower-rank PCs.

We have also noticed a limitation of AP. While the computation complexity and

memory usage of SP can be further reduced by using some truncated SVD algorithm

(such as the randomized SVD algorithm by Halko et al. [2011]) to compute the SVD

for only the top K PCs of the reference matrix, AP requires all the eigenvalues and

thus a full SVD or eigendecomposition of the reference matrix. This becomes espe-

cially important when the reference set is extremely large. In contrast, OADP needs

only the top few singular values and vectors, which can be computed by randomized

approaches even for large reference sets.

In addition, for concerns about relatedness in the samples, the proposed methods

AP and OADP can in general be applied to high-dimensional genotype data as long

as the reference samples are all unrelated. Relatedness among study samples would

not affect PC score prediction accuracy.

As the cost of genotyping continues to decrease, larger genotype data sets will

become available. High-dimensional large-sized data will be essential for identifying

and adjusting for fine-scale population structure in GWAS, but they also creates

a demand for computationally efficient algorithms. When the size of the reference

samples increases, existing methods such as ADP would become impractical to use.

But our methods will continue to operate within a reasonable computation time

frame without losing accuracy and serve as useful tools for genetic studies. The SP,

AP, OADP, and ADP methods have been implemented in the open source software

FRAPOSA (github.com/daviddaiweizhang/fraposa).

24



Table 2.1: Computation complexity of SP, AP, ADP, and OADP.

Method Reference Complexity Study Complexity

SP O[n2p] O[mKp]
AP O[n2p] O[mKp]
ADP O[n2p] O[m(np+ n3)]
OADP O[n2p] O[m(K ′′p+K ′2n)]

Table 2.2: Super-population and sub-population sizes in the 1000 Genomes.

Super-Popu. Size Sub-Popu. Size

Africans 657

ACB (African Caribbeans in Barbados) 96
ASW (Americans of Afr. Ancestry in SW. USA) 61
ESN (Esan in Nigeria) 99
GWD (Gambian in W. Divisions in the Gambia) 113
LWK (Luhya in Webuye, Kenya) 97
MSL (Mende in Sierra Leone) 84
YRI (Yoruba in Ibadan, Nigeria) 107

Americans 347

CLM (Colombians from Medellin, Colombia) 94
MXL (Mexican Ancestry from Los Angeles USA) 64
PEL (Peruvians from Lima, Peru) 85
PUR (Puerto Ricans from Puerto Rico) 104

East Asians 503

CDX (Chinese Dai in Xishuangbanna, China) 92
CHB (Han Chinese in Beijing, China) 103
CHS (Southern Han Chinese) 105
JPT (Japanese in Tokyo, Japan) 104
KHV (Kinh in Ho Chi Minh City, Vietnam) 99

Europeans 498

CEU (Utah Residents with N. & W. Eur. Ancestry) 95
FIN (Finnish in Finland) 99
GBR (British in England and Scotland) 90
IBS (Iberian Population in Spain) 107
TSI (Toscani in Italia) 107

South Asians 487

BEB (Bengali from Bangladesh) 86
GIH (Gujarati Indian from Houston, Texas) 102
ITU (Indian Telugu from the UK) 102
PJL (Punjabi from Lahore, Pakistan) 96
STU (Sri Lankan Tamil from the UK) 101

Total 2492 2492

Note: The Americans are described as “admixed Americans” by the 1000 Genomes Project.
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Table 2.3: Population memberships of the UK Biobank samples as predicted by
OADP.

Predicted Population Size

Africans 8169
Admixed Americans 2149
East Asians 2569
Europeans 461807
South Asians 10250
Admixed 3422

Total 488366

Note: Admixed samples are defined to be those whose highest vote is 0.875 or less of the total
weighted votes, as determined by the 20-nearest-neighbor method.

Table 2.4: Estimated runtimes and MSDs of SP, AP, OADP, and ADP for the UK
Biobank data analysis.

Runtime (hr) MSD
Population Global European Global European
Ref. size 2492 498 2492 498

Study size 488,366 461,807 5000 5000
SP 0.82 0.69 0.156 0.360
AP 0.82 0.69 0.156 0.107

OADP 20.71 17.75 0.156 0.100
ADP *1628.22 *58.93 0.153 0.102

Note: Runtime was estimated from the 5000 randomly selected study samples.
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Figure 2.1: PC scores of the simulated genotypes as predicted by SP, AP, OADP, and
ADP.

Note: The reference size was 1000. In each of the 4 populations, there were 250 reference samples
and 50 study samples, where each sample contained 100,000 variants. The colored/black circle is
centered at the reference/study sample mean and encloses 90% of the reference/study samples. The
MSD has been scaled with the average distance between the reference population means and the
reference global mean.
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Figure 2.2: Pairwise comparison of the simulated genotypes’ PC scores as predicted
by SP, AP, OADP, and ADP.

Note: The reference and study sizes were 1000 and 200, respectively. Each sample contained 100,000
variants. The upper panels show the PC scores, while the lower panels show the pairwise mean
squared difference between the methods.
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Figure 2.3: Comparison of the accuracy and runtimes of SP, AP, OADP, and ADP
in the simulated data.

Note: Accuracy was measured by the MSD between the population means of the reference samples
and the corresponding population means of the study samples, scaled by the average distance between
the reference population means and the reference global mean. The runtimes only included the time
for analyzing the study samples, and the computation cost for analyzing the reference samples was
ignored. Each experimental setting’s runtime was the average of 10 replications. A single-core CPU
was used for all the cases. The study sample size was 200, and there were 100,000 variants. Only
the top 2 PCs were calculated.
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Figure 2.4: PC scores of all the UK Biobank samples, as predicted by SP, AP, and
OADP.

Note: The reference panel consisted of all the 2,492 samples in the 1000 Genomes data. The
population membership of each study sample was predicted by the votes of the 20 nearest reference
samples with weights inversely proportional to the distance in between. The MSD was scaled with
the average distance between the reference population means and the reference global mean. The
shrinkage factors for the top 4 PCs predicted by AP were 0.99, 0.99, 0.96, and 0.94. The Fst statistic
was 0.10, and the total variation contributed from the top 4 PCs was 0.09.
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Figure 2.5: PC scores of the European UK Biobank samples, as predicted by SP, AP,
and OADP.

Note: European samples were identified by OADP using global 1000 Genome reference samples.
The reference panel consisted of all the 498 European 1000 Genomes samples. The population
membership of each study sample was predicted by the votes of the 20 nearest reference samples with
weights inversely proportional to the distance in between. The MSD was scaled with the average
distance between the reference population means and the reference global mean. The shrinkage
factors for the top 4 PCs predicted by AP were 0.70, 0.40, 0.21, and 0.14. The Fst statistic was
0.01, and the total variation contributed from the top 4 PCs was 0.02.
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CHAPTER III

Image-on-Scalar Regression via Deep Neural

Networks

3.1 Introduction

3.1.1 Background

With the rapid growth of medical imaging studies, it has become a scientific task

of great importance to discover the patterns of the influence of potential factors on

massive imaging data. Primary types of images include T1-weighted magnetic reso-

nance imaging (MRI) data, contrast maps from task-based functional MRI (fMRI),

and the local summary statistics of resting fMRI data, such as fractional amplitude of

low-frequency fluctuations and weighted degree of network connectedness. A typical

imaging dataset contains multiple individuals, with observations from each individual

at spatial points (called voxels) in a large set (called a template) of predetermined lo-

cations inside a common volume (often three-dimensional). The statistical challenge

is to develop a model that delineates the association of voxels or regions of interest

(ROI) with a set of covariates of interests, such as demographic information, clinical

characteristics, and other non-imaging measurements. We refer to this type of models

as image-on-scalar regression models, where the images are regarded as a functional

response variable whose mean value depends on a set of scalar predictive variables.
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Several major challenges are associated with making inferences on the image-

on-scalar regression models for analysis of medical imaging data. First, the spatial

dependence between voxels can be highly complex. Due to biological and technological

reasons, imaging signals are often contained in contiguous, sharp-edged regions that

are sparsely distributed throughout the whole spatial volume [Chan and Shen, 2005,

Tabelow et al., 2008, Chumbley and Friston, 2009]. For example, in neuroimaging

studies, it has been found that the association with fear is substantially higher in

the amygdala than in other brain regions [Whalen et al., 2001]. Second, the signals

across individuals can be heterogeneous and might depend on unobserved variables.

For example, underlying medical conditions and the psychological state at the time

of scanning can affect the outputs of fMRI. Third, the number of individuals is often

limited in imaging studies, while the noise level can be rather high due to machine

artifacts and imperfect preprocessing, leading to a relatively low signal-to-noise ratio.

This limitation makes it particularly difficult to apply traditional machine learning

methods to image-on-scalar regression problems, since methods such as deep learning

rely on a large sample size to train their highly flexible models. This might partially

explain the relatively scant success of applying artificial neural networks to imaging

studies with a small sample size, as compared to other fields such as computer vision

and natural language processing.

3.1.2 Related work and our contributions

A straightforward method for fitting the image-on-scalar regression is the mass

univariate analysis (MUA). This approach fits a general linear model (GLM) at each

voxel and obtains voxel-wise test statistics to identify the brain regions that are sig-

nificantly associated with the covariate of interest, after applying a multiple testing

adjustment method such as the Bonferonni correction or false discovery rate control

[Benjamini and Yekutieli, 2001]. A major limitation of MUA is that the spatial corre-
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lation is not accounted for, which can result in low power for detecting significant brain

regions and may potentially increase the false positive rate. To incorporate spatial

correlation into MUA, one may smooth the imaging data through a kernel convo-

lution before fitting the GLM. For example, statistical parametric mapping (SPM),

utilizes random field theory to make classical inferences [Friston, 2003]. However,

performing MUA on these pre-smoothed data can lead to low accuracy and low ef-

ficiency in estimating and testing the covariates’ effects [Chumbley et al., 2009]. To

improve the performance of noise reduction and feature selection, adaptive smoothing

methods have been developed for data preprocessing [Yue et al., 2010] and parameter

estimation [Polzehl and Spokoiny, 2000, Qiu, 2007], and those methods are especially

powerful for detecting delicate patterns such as jump discontinuities.

Instead of modeling each voxel independently, one can consider the observed out-

come image intensities over all the voxels along with the corresponding regression

coefficients as tensors (i.e. multi-dimensional arrays) and impose certain sparsity

structures for model fitting. For example, parsimonious tensor response regression

[Li and Zhang, 2017], assumes the response tensor to be sparse after some linear

transformation and aims to separate material and immaterial information. Another

example is sparse tensor response regression (STOR) [Sun and Li, 2017], which em-

beds element-wise sparsity and low-rankness on the coefficient tensor and is designed

to handle both symmetric and asymmetric responses. For analysis of medical imaging

data involving a large number of voxels, this family of models has the difficulty in de-

veloping dimension reduction techniques that are both accurate and computationally

efficient.

Alternative to treating the voxels as independent points or the indices of multi-

dimensional arrays, we can also consider them as discrete grid points of the continuous

spatially varying functions. In the image-on-scalar regression problem both the out-

come image and the regression coefficients can be considered as the realizations of
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spatially varying functions evaluated on voxels. Many methods have been developed

for spatial data analysis in environmental health, epidemiology, and ecology [Cressie

and Cassie, 1993, Diggle et al., 1998, Gelfand et al., 2003], where the spatially vary-

ing functions are typically assumed to be smooth or continuously differentiable up

to certain degrees. Motivated by neuroimaging applications, the spatially varying

coefficient model (SVCM) [Zhu et al., 2014] has been developed to systematically

incorporate both spatial smoothness and jump discontinuities. The SVCM can also

identify regions that are significantly associated with the covariates of interest by using

a step-wise estimating procedure and the asymptotic Wald test. Recently, Chen et al.

[2016] adopted a novel penalty function to detect the significant regions. In contrast,

Li et al. [2020] and Yu et al. [2020] use bivariate splines over triangulation (BST) to

approximate the coefficient function, while Gu et al. [2014] use spline smoothing to

produce simultaneous confidence corridors. From the Bayesian perspective, Shi and

Kang [2015] model the spatially varying functions as thresholded multiscale Gaussian

processes, and Bussas et al. [2017] handle them as Gaussian processes with isotropic

priors.

In the proposed NNISR model, NNs are adopted to approximate the spatially

varying coefficient functions of the true effects. NNs are functions composed of multi-

ple layers of linear transformations and nonlinear activation functions. NNs are very

flexible to model nonlinear functions of multiple predictor variables as well as the

interaction between them, which enables NNs to represent a wide variety of complex

functions in various applications. In the recent years, NNs have been successful in

artificial intelligence applications, such as visual object detection, natural language

processing, and game playing [Goodfellow et al., 2016, LeCun et al., 2015, Silver et al.,

2017, Fan et al., 2019]. For biomedical studies, NNs have been applied to drug activity

prediction [Ma et al., 2015], brain circuit reconstruction [Helmstaedter et al., 2013],

clinical radiology [Chartrand et al., 2017], regulatory genomics [Zou et al., 2019], and
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cardiovascular medicine [Krittanawong et al., 2019].

Although deep NNs have numerous successful applications, it remains challeng-

ing to study the theoretical properties of NNs and related models. According to the

universal approximation theory, any continuous function on a compact set can be

approximated by a single layer NN with a sufficiently large number of nodes to an

arbitrary degree of accuracy. For single-layer NNs, Mhaskar [1996] showed that the

approximation errors can be bound by the number of nodes in the NN. Moreover,

Ismailov [2014] proved that by using a specifically constructed activation function,

a two-layer NN with a total of 3k + 2 nodes are sufficient for approximating any k-

dimensional multivariate continuous function arbitrarily well. For NNs with multiple

hidden layers, Rolnick and Tegmark [2017] derived that the number of nodes required

for approximating polynomials is proportional to the input dimension. Furthermore,

Rotskoff and Vanden-Eijnden [2018] combined the approximation error with the train-

ing error and proved asymptotic properties by treating NNs as interacting particle

systems. In addition, although shallower NNs are better understood than deeper NNs,

the latter is known to be more efficient for representing functions than shallower NNs,

in terms of the total number of nodes required [Telgarsky, 2016, Eldan and Shamir,

2016].

The expressiveness of single- and multi-layer NNs makes them promising esti-

mators for nonparametric regression models. Many theoretical results have been

developed for nonparametric regression with single-layer NNs. Their consistency, for

example, was studied in Mielniczuk and Tyrcha [1993]. Furthermore, the rate of con-

vergence (of the L2 risk) could be derived by imposing restrictions on the regression

function. For example, when the regression function has finite first moment in its

Fourier representation, Barron [1991, 1993, 1994] provided a rate of convergence of

n−1/2 multiplied by a logarithmic term, where n is the sample size. Moreover, for

p-smooth regression functions, it has been shown that the minimax rate of conver-
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gence for any estimator is n−
2p

2p+k [Stone, 1982], where k is the input dimension. In

the case of NN estimators, McCaffrey and Gallant [1994] derived a sub-optimal rate

of n−
2p

2p+k+5 for single-layer NNs, and Kohler and Krzyżak [2017] showed the minimax

rate n−
2p

2p+k′ for two-layer NNs, where k′ ≤ k represents the sparsity of the regression

function. More recently, this sparse minimax rate, with the inclusion of a logarithmic

term, was extended in Bauer et al. [2019] to multi-layer NNs with smooth activation

functions, and Schmidt-Hieber et al. [2020] proved a similar result for NNs with rec-

tified linear unit (ReLU) activation functions. From the Bayesian perspective, Polson

and Rocková [2018] proved that the same convergence rate holds for the posterior

probability concentration of deep Bayesian ReLU NNs with spike-and-slab priors on

the weight parameters. For p-smooth regression functions, Liu et al. [2019] further

improves the upper error bound by eliminating the logarithmic term.

In addition to nonparametric regression, the universal approximation ability of

NNs has also motivated their usage in nonlinear variable selection. Traditional vari-

able selection methods such as lasso [Tibshirani, 1996] and elastic nets [Zou and

Hastie, 2005] have been successful in high-dimensional data regression. However,

many of the existing variable selection methods are limited to linear models, which

could be inadequate for capturing the nonlinear relations in complex systems, such as

those in biological mechanisms [Janson, 2012]. To address this difficulty, NN-based

methods have been proposed to model nonlinearity and detect interactions in model

selections problems. Feng and Simon [2017] imposed a group lasso penalty on the

weights of the first layer and showed the convergence of the weights for irrelevant

features. Chen et al. [2020] proposed a NN model that consists a selection layer and

and multiple approximation layers and provided a greedy algorithm for estimating

the selection and approximation parameters. From a Bayesian perspective, Liang

et al. [2018] treated variable selection as a sub-problem of NN structure selection and

developed a Bayesian NN model in which a truncated binomial prior distribution is
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assigned to on the number of non-zero weights in the NN to assure posterior selection

consistency.

In this work, we propose a novel NN-based ISR model (NNISR) that takes advan-

tage of NNs’ universal approximation capability to estimate the associations between

the images and the covariates Our model takes the FDA framework and constructs

the spatially varying coefficient functions of the main effects, individual deviations,

and noise variances through multi-layer NNs. The NNs are applied across voxels in-

stead of across images, so that the spatial patterns are approximated by NNs but the

associations between images and covariates are still assumed to be linear. This model

structure relies on the high dimensionality of response images to provide ample train-

ing observations for the NNs esp At the same time, the imposed linear image-covariate

relations ensures interpretability of the main effects and estimation efficiency when

the number of images is small. For fitting the model, we provide an estimation al-

gorithm based on stochastic gradient descent [Bottou, 2010] and hard-thresholding.

Theoretically, we establish selection consistency by linking the convergence rate of the

NNISR estimator to the convergence rate of the general NN regression model that

has same architecture, where the sample size in the latter corresponds to the product

of the number of voxels and the number of images in the former. The theoretical

error bounds show that the estimation accuracy could be improved by increasing the

number of voxels, even when the number of images remains fixed. We compare the

performance of NNISR with existing methods through extensive simulation studies

with complex spatial pattern designs skewed noise distributions. The advantage of

NNISR is the most distinct in the settings with small image numbers and high imag-

ing resolutions. The efficacy of NNISR is further evaluated by the analyses of brain

fMRI data in the Autism Brain Imaging Data Exchange (ABIDE) [Di Martino et al.,

2014] and the Adolescent Brain Cognitive Development (ABCD) study [Casey et al.,

2018]. We conduct cross validation across experimental sites to evaluate the estima-
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tion accuracy and compare the selected regions by each method to demonstrate their

selection characteristics.

The remainder of the manuscript is organized as follows. We formulate the NNISR

model and present the model fitting algorithm in Section 3.2.2. The theoretical prop-

erties of NNISR is established in Section 3.3. Next, we evaluate NNISR against ex-

isting methods through extensive simulation studies in Section 3.4 and apply them to

brain fMRI data in Section 3.5. Finally, we conclude with a discussion in Section 3.6.

3.2 Image-on-Scalar Regression via Deep Neural Networks

3.2.1 Model specification

Suppose the imaging measurements are collected in a compact space D ⊂ RK

along with Q covariate variables from M individuals. For each individual m ∈

{1, . . . ,M}, let ym(d) ∈ R be image measurements at each spatial location d ∈ D,

which can be considered as a function of d in domain D, and let xm ∈ RQ be the

covariate vector. The proposed image-on-scalar regression model is

ym(d) = x>mβ(d) + αm(d) + εm(d), (3.1)

where β(d) = {β1(d), . . . , βQ(d)}> ∈ RK is a vector of Q coefficient functions of

d, representing the main effects of covariates xm; αm(d) ∈ R is a function of d,

characterizing the variation of the mth individual from the main effects x>mβ(d); and

εm(d) is the random noise at location d, reflecting the imaging measurement errors.

We assume that E{εm(d)} = 0, Var{εm(d)} = σ2(d), and εm(d) is independent from

εm′(d
′) for m 6= m′ or d 6= d′. Note that the noise variance σ2(d) > 0 is a function

of d which has a flexibility to capture the spatial heterogeneity in the variation of

measurement errors.

Of note, the individual effects α(d) = {α1(d), . . . , αm(d)}> play a similar role as
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the functional random effects in SVCM [Zhu et al., 2014, Li et al., 2020], which are

assumed to be identical copies of a stochastic process. However, in (3.1), for each

individual, αm(d) is a deterministic coefficient function which is unknown and needs

to be estimated. To ensure the model identifiability and interpretability, we make a

few assumptions on main effects, individual effects and noise variances. We list the

key concepts here; see Section 3.3 for comprehensive and rigorous definitions.

1. (Piecewise smoothness): Functions {βq(d)}Qq=1, {αm(d)}Mm=1 and σ2(d) are

piecewise smooth with a finite number of discontinuous jumps.

2. (Sparsity): For each covariate q, there exists a large region on which the main

effects are equal to zero.

3. (Constant lower bound of nonzero effects): For each covariate q, the absolute

values of the nonzero main effects have a positive constant lower bound.

In brain imaging application, the piecewise smoothness is introduced to model the

spatial dependence of brain signals. The discontinuous jumps may reflect the brain

activity differences among different types of brain tissues. The sparsity assumes the

brain activation region is relatively small. The constant lower bound of nonzero effects

models the sharp edges of brain activation regions.

To satisfy the aforementioned three assumptions, we adopt feed-forward neural

networks (NNs) to model the spatially varying functions in (3.1). We define ℵ(d |

θ) as a general G-layer feed-forward NN with the input dimension R0, the output

dimension RG+1, and the jth layer having Rj hidden units for j = 1, . . . , G, if ℵ(d | θ)

is a vector-value function of d ∈ RR0 and taking values in RRG+1 , which has the form

ℵ(d | θ) = WGφG {· · ·W1φ1 (W0d+ b0) + b1 · · · }+ bG,

where Wj ∈ RRj+1×Rj and bj ∈ RRj are the weight and bias parameters of the
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jth layer respectively, for j ∈ {0, 1, . . . , G}. The activation function φj(xj) =

{φj(xj1), . . . , φj(xjRj)}> for xj = (xj1, . . . , xjRj)
> ∈ RRj , where φj(x) ∈ R is a

nonlinear function defined on R. Common choices include the sigmoid function,

i.e., φj(x) = {1 + exp(x)−1}−1 and the rectified linear unit (ReLU) function, i.e.,

φj(x) = max(0, x). The parameter set θ = {Wj, bj}Gj=0 is a collection of weight and

bias parameters. Thus, the NNs are specified by the network architecture {Rj}Gj=0,

activation functions {φj(x)}Gj=1, and the parameters θ.

We construct the spatially varying functions of main effects, individual effects and

the noise variance in (3.1) by using three different NNs, respectively. In particular,

we assume, for d ∈ D,

β(d) = ℵβ(d | θβ), (3.2)

α(d) = ℵα(d | θα),

log{σ2(d)} = ℵσ(d | θσ),

where the input variables of the three NNs are all the spatial coordinate for d ∈ D.

The output variables of ℵβ(d | θβ), ℵα(d | θα) and ℵσ(d | θσ) are of dimensions Q,

M and 1 respectively. There are three key advantages of combining (3.1) and (3.2).

First, the NNs have a very large flexibility to capture the complex patterns of the

spatially-varying coefficient functions in terms of heterogeneous shapes and adaptive

smoothness. Second, we do not need to directly interpret the NN parameters θβ, θα

and θσ in (3.2); instead we focus on the explicit and straightforward interpretations on

the outputs of the NNs, i.e., the spatially-varying functions β(d), α(d) and σ2(d) in

the ISR model (3.1). Moreover, in brain imaging applications, the spatial coordinates

of voxels are considered as the input “data” for the NN models in (3.2). The number

of voxels in the observed images becomes to the training sample size for the NN

models. As high resolution brain images may contain hundreds of thousands or even
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millions of voxels, which provides a sufficiently large sample size to train the deep

NNs in (3.2).

3.2.2 Estimation method

Let X = (x1, . . . ,xM)> be the M ×Q observed design matrix of covariates. Let

y(d) = {y1(d), . . . , yM(d)}> be a vector of imaging measurements at d for the M

individuals. Suppose y(d) is only observed on V voxels, denoted as DV = {dv}Vv=1 ⊂

D. Given the data {y(dv)}Vv=1 and X, our goal is to estimate the spatially-varying

functions β(d), α(d) and σ2(d) in (3.1). Combining models (3.1) and (3.2), we

convert the problem of interest to fitting NNs from the following model: for v =

1, . . . , V ,

E{y(dv) |X} = Xℵβ(dv | θβ) + ℵα(dv | θα), (3.3)

Var{y(dv) |X} = IM exp{ℵσ(dv | θσ)},

where IM is an M ×M identity matrix. Our estimation procedure consists of three

major steps.

Step One: Main effect estimation. The main effects are estimated by the fol-

lowing procedure.

1. Obtain a naive estimate of the noise variance

σ̃2
v = M−1

∥∥[IM −X(X>X)−1X>
]
y(dv)

∥∥2

2

for v = 1, . . . , V , which is the mean squared residuals of the MUA estimate.
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2. Estimate the weight parameters of the main effect NN

θ̂β =arg min
θβ

V∑
v=1

∥∥∥y(dv)−Xℵβ(dv | θβ)
∥∥∥2

σ̃−2
v + λ‖ℵ(dv | θβ)‖1, (3.4)

where λ > 0 is a tuning parameter. The loss function is minimized by mini-batch

stochastic gradient descent (SGD) [Bottou et al., 1991, Bottou, 2010, Kingma

and Ba, 2014]. Notice that in the context of our NNISR model, a mini-batch of

samples in SGD corresponds to a subset of the voxels in DV = {d1, . . . ,dV }.

3. Apply hard thresholding to the output of the main effect NN:

β̂(d) = ℵβ(d | θ̂β)⊗ I{|ℵβ(d | θ̂β)| > ρη} (3.5)

where I is the element-wise indicator function, “⊗” is the element-wise product

operator, and ρη = (ρη,1, . . . , ρη,q)
> is the covariate-dependent thresholding lev-

els. For each covariate q, ρη,q is determined by the ηth quantile of the absolute

value of the main effect NN. Note that both hard thresholding and L1 penalty

are applied to the main effect NN to induce sparsity. This approach is similar

to the procedure in thresholded LASSO [Zhou, 2010].

Step Two: Individual effect estimation. Obtain the estimate of the individual

effects α̂(d) = ℵα(d|θ̂α) by estimating the weight parameters of the individual effect

NN

θ̂α =arg min
θα

V∑
v=1

∥∥∥y(dv)−Xβ̂(dv)− ℵα(dv | θα)
∥∥∥2

σ̃−2
v , (3.6)

where the loss function is minimized by SGD.
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Step Three: Noise variance estimation. Obtain the estimate of the noise vari-

ance by the following procedure.

1. Find the mean squared residuals of the NNISR estimate

σ̄2
v = M−1

∥∥∥y(dv)−Xβ̂(dv)− α̂(dv)
∥∥∥2

2

for v = 1, . . . , V .

2. Estimate the noise variance σ̂2(d) = ℵσ(d|θ̂σ) by estimating the weight param-

eters of the noise variance NN:

θ̂σ = arg min
θσ

V∑
v=1

∥∥σ̄2
v − exp{ℵσ(dv | θσ)}

∥∥2

2
, (3.7)

where the loss function is minimized by SGD.

Model tuning. The L1 penalty weight λ for the main effects is selected by cross

validation on the image recovery error. To reduce the computation cost, the full

NNISR estimation procedure can be subsituted with voxel-wise LASSO [Tibshirani,

1996] in the cross validation for tuning λ. For the quantile selection threshold ρη, it

can be set equal to the proportion of voxels selected by MUA. The optimization of NN

architectures have been discussed in many works [Bergstra et al., 2011, Feurer and

Hutter, 2019, Zhang et al., 2019, Benardos and Vosniakos, 2007, Luo et al., 2018]. In

the NNISR model, since the input dimension is often small (e.g. 2- or 3-dimensional),

the NN architecture does not need to be as large and complex as those commonly

used in applications such as computer vision and natural language processing. In

our experiments, we found that the NN architecture does not have a major impact

on the performance of NNISR (as long as the architecture is not extremely simple),

and 4 hidden layers with 64 nodes in each layer was sufficient in every experimental

setting.
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3.3 Theoretical Properties

In this section, we perform a theoretical analysis of the NNISR estimator. In

Lemma III.16, we provide an error bound on the L2 estimation error of the main

effects before thresholding, expressed in terms of the number of images, number of

voxels, and number of nodes in the NNs, which is based on the theoretical results for

nonparametric regression with NNs [Bauer et al., 2019, Schmidt-Hieber et al., 2020].

The error bound on the main effects provides an error bound on the individual effects

(Corollary III.18) and the noise variance (Corollary III.19). Next, we demonstrate

the selection consistency and prove the error bound for the L0 sign error of the sparse

main effect estimator (Theorem III.17). Finally, we present the optimal growth rates

of the number of NN nodes and the number of images as a function of the number of

voxels (Corollaries III.20 and III.21).

We start with the definitions used in our theoretical analysis of NNISR. As a

common practice for theoretical work on nonparametric regression, we restrict the

class of candidate functions in our nonparametric analysis, following the framework

in Bauer et al. [2019] and Schmidt-Hieber et al. [2020]. We require the main effects,

individual effects, and noise variance to satisfy piecewise smooth generalized hierar-

chical interaction models (piecewise smooth GHIMs), as defined in Definitions III.1

to III.3.

Definition III.1 (Hölder smoothness). Let K ∈ N+ and P ∈ R+ with P = P ′+P ′′,

where P ′ = dP − 1e and P ′′ = P − P ′. A function f : RK → R is said to be smooth

with Hölder index P (abbreviated as P -smooth) if there exist c18, c19 ∈ R+ such that

for every (p1, . . . , pK) ∈ NK
0 with

∑K
k=1 pk = P ′, we have:

1. The partial derivative ∂P
′

∂d
p1
1 ···∂d

pK
K

f exists.

2. For all x ∈ RK ,
∂P
′

∂xp11 · · · ∂x
pK
K

f(x) < c18.
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3. For all x,x′ ∈ RK ,

∣∣∣∣ ∂P
′

∂xp11 · · · ∂x
pK
K

f(x)− ∂P
′

∂xp11 · · · ∂x
pK
K

f(x′)

∣∣∣∣ ≤ c19‖x− x′‖P
′′

2 .

Definition III.2 (Smooth generalized hierarchical interaction model (smooth

GHIM)). Let K,K ′ ∈ N+ and P ∈ R+.

1. A function f : RK → R is called a P -smooth (K ′, 0)-GHIM if there exist

ak ∈ RK (k = 1, . . . , K ′) and g : RK → R such that

f(x) = g(a>1 x, . . . ,a
>
K′x),

where g is P -smooth.

2. Let l ∈ N+. A function f : RK → R is called a P -smooth (K ′, l)-GHIM if there

exist R̄ ∈ N+, gr : RK′ → R (r = 1, . . . , R̄), hr,k : RK → R (r = 1, . . . , R̄; k =

1, . . . , K ′) such that

f(x) =
R̄∑
r=1

gr(hr,1(x), . . . , hr,K′(x)),

where gr : RK′ → R (r = 1, . . . , R̄) and hr,k : RK → R (r = 1, . . . , R̄; k =

1, . . . , K ′) are P -smooth (K ′, l − 1)-GHIMs.

Definition III.3 (Piecewise smooth GHIM). Let K,K ′ ∈ N+ and P ∈ R+.

1. A function f : RK → R is called a J-piecewise P -smooth (K ′, 0)-GHIM if there

exist g : RK → R, ak ∈ RK (k = 1, . . . , K ′) and a Ω ⊂ RK such that

f(x) = g(a>1 x, . . . ,a
>
K′x) · IΩ(x)

where g is P -smooth, and Ω is a J-side K-dimensional polytope.
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2. Let l ∈ N+. A function f : RK → R is called a J-piecewise P -smooth (K ′, l)-

GHIM if there exist gr : RK → R (r = 1, . . . , R̄) and Ωr ⊂ RK (r = 1, . . . , R̄)

such that

f(x) =
R̄∑
r=1

gr(hr,1(x), . . . , hr,K′(x)) · IΩr(x),

where gr : RK′ → R (r = 1, . . . , R̄) and hr,k : RK → R (r = 1, . . . , R̄; k =

1, . . . , K ′) are P -smooth (K ′, l − 1)-GHIMs, and Ωr ⊂ RK (r = 1, . . . , R̄) are

J-side K-dimensional polytopes.

Definition III.1 provides a general definition of function smoothness by bounding

the derivatives up to a certain order. Definition III.2 describes a class of functions,

GHIMs, that are constructed by composition and summation of multiple layers of

smooth functions of the type defined in Definition III.1. GHIMs cover a wide range

of functions. Both Definition III.1 and Definition III.2 are based on Bauer et al.

[2019]. In Definition III.3, we generalize Definition III.2 by allowing the element

functions to be piecewise smooth, where the boundary of the piecewise components are

polytopes. The piecewise GHIMs in Definition III.3 covers a wide range of functions.

For example, suppose the spatial volume is two-dimensional (K = 2). If the non-

zero regions of β∗ can be partitioned into a finite number of polygons, and β∗ is

Lipschitz continuous inside each partition, then β∗ is a piecewise GHIM with a degree

of smoothness equal to 1. In the special case of J = 1 and Ω1 = D, the function is

smooth over the whole spatial domain and satisfies the GHIMs in Definition III.2.

In searching for an optimal NN, we focus our theoretical analysis on a subset of

multi-layer feed-forward NNs, where the number of layers, number of nodes, and the

weight parameters are all bounded. This collection of NN functions are described in

Definition III.4, following the framework in Bauer et al. [2019].

Definition III.4 (Candidate NNs). For γ > 0 and R,K ′′, K ∈ N+, define G0,R,K′′,K,γ
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to be the collection of all functions f : RK → R of the form

f(x) =
R∑
r=1

ξ[3]
r φ
( 4K′′∑
k′=1

ξ
[2]
r,k′φ

( K∑
k=1

ξ
[1]
r,k′,kxk + ξ

[1]
r,k′,0

)
+ ξ

[2]
r,0

)
+ ξ

[3]
0 ,

where φ(·) = [1 + exp(·)−1]−1, with |ξ[1]
r,k′,k|, |ξ

[2]
r,k′ |, |ξ

[3]
r | < γ (r = 0, . . . , R; k′ =

0, . . . , 4K ′′; k = 0, . . . , K). Moreover, for l ∈ N+, define Gl,R,K′′,K,γ to be the collection

of all the functions f : RK → R of the form

f(x) =
R̄∑
r=1

gr(fr,1(x), . . . , hr,K′′(x))

for some R̄ ∈ N+, gr ∈ G0,R,K′′,K′′,γ (r = 1, . . . , R̄), and hr,k′ ∈ Gl−1,R,K′′,K,γ (r =

1, . . . , R̄; k′ = 1, . . . , K ′′).

In Definition III.4, Gl,R,K′′,K,γ is a collection of NN functions that are resulted

from composing and taking the sum of l layers of two-layer feed-forward NNs, where

R,K ′′, K specify the number of nodes in each element NN, and γ bounds the weight

parameters in the NN. In addition, we use the logistic function as our activation

function φ, as in Bauer et al. [2019]. Theoretical results on NN regression with ReLU

activation can be found in Schmidt-Hieber et al. [2020].

Next, we ennumrate the conditions required in our derivation of the theoretical

properties of NNISR. We first list the assumptions on the characteristics of the true

model.

Assumption III.5. For q = 1, . . . , Q and m = 1, . . . ,M , β∗q (·), α∗m(·), and σ2
∗(·) are

J-piecewise P -smooth (K ′, l)-GHIMs.

Assumption III.6. There exists a cD ∈ R+ such that D ⊂ [−cD, cD]K.

Assumption III.7. There exists a constant c55 > 0 such that for anym ∈ {1, . . . ,M}

and any d ∈ D, |αm(d)| < c55.
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Assumption III.8. There exist constants c56, c59 > 0 such that E[X] = 0,

E[‖X‖4
2] < c56, and ‖Cov[X]‖2

F < c59. In addition, Cov[X] is positive-definite.

Assumption III.9. Let Z(·) = X>β∗(·) + ε(·). There exist constants c52, c53 ∈ R+

such that for all d ∈ D, E{exp[c52Z(d)2]} < c53.

Assumption III.5 constrains the smoothness of the spatially varying function of

the main effects, individual effects, and noise variance by using the piecewise smooth

GHIMs defined in Definition III.3. In comparison, similar smoothness conditions are

required in [Zhu et al., 2014], which assumes the main effect coefficient function to

be (piecewise) Lipschitz continuous. On the other hand, Li et al. [2020] imposes

smoothness by assuming the main effects to be in a Sobolev space. Moreover, the

domain of the SVFs is contained in a closed set (Assumption III.6), which is reasonable

to assume for most imaging studies, as the measurement boundaries of the imaging

machine is usually bounded, although the imaging resolution within this boundary

could potentially be improved. In addition, the individual effects are globally bounded

(Assumption III.7). For the covariates, Assumption III.8 enumerates the conditions

on the moments and the covariance matrix of the covariates, while Assumption III.9

bound the expected exponential of the imaging values without the individual effects.

For the NN estimators, we require the following conditions.

Assumption III.10. The NN parameters satisfy ℵ(· | θβ) ∈ GQl,R,K′+J,K,γ, ℵ(· | θα) ∈

GMl,R,K′+J,K,γ, and ℵ(· | θσ) ∈ Gl,R,K′+J,K,γ, where γ = (MV )c40 for some sufficiently

large constant c40 ∈ R+.

Assumption III.11. There exists a cℵ > 0 such that for any d ∈ D, ‖ℵ(d | θ̂β)‖2
2 <

cℵ, ‖ℵ(d | θ̂α)‖2
2 < cℵ, and ℵ(d | θ̂σ)2 < cℵ.

Assumption III.12. There exists a c67 > 0 such that λ ≤ c67(MV )−1.

Assumption III.10 defines the subset of feed-froward NNs from which we draw

the candidate NNs for our NNISR estimator. In particular, the condition limits the
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absolute values of the weight parameters. This framework is based on the theoretical

analysis of NN regression in Bauer et al. [2019]. Assumption III.11 assumes that the

NN functions are bounded in absolut evalues, which virtually always holds in practice.

In addition, Assumption III.12 bounds the L1 penalty for the main effect estimators.

The rate in Assumption III.12 is analogous to the λn/n → 0 upper bound for sign

consistency of LASSO model selection [Zhao and Yu, 2006], although our estimator

does not require a lower bound on the penalty weight, since hard-thresholding will

be applied for model selection. The conditions for required for selection consistency

are listed below.

Assumption III.13. Let µ be the Lebesgue measure on D ⊂ RK. For q ∈ {1, . . . , Q},

let S̃0
q = {d ∈ D : β∗q (d) = 0}. Then µ(D \ S̃0

q )/µ(D)� 1.

Assumption III.14. There exists a ψ > 0 such that for any q ∈ {1, . . . , Q},

inf
d∈D\S̃0

q

|β∗q (d)| > ψ.

Assumption III.15. For any q ∈ 1, . . . , Q, ρq → 0, and there exists a c80 > 0 such

that ρq > c80 log(M)−1.

Assumption III.13 and Assumption III.14 assumes the main effects are sparse

and there is a gap between zero and the the minimal signal levels. In addition,

Assumption III.15 requires the selection threhsold to converge to zero but prevents it

from decreasing too fast, which in practice can be realized by setting a minimum on

the thresholding level below which the signals, if any, are negligible.

Our main theorem requires the following lemma, which provides an L2 error bound

of the penalized least-square estimator for the main effects. Recall that R is propor-

tional to the total number of nodes in the NN (Assumption III.10), and P is the

degree of smoothness of β (Assumption III.5).
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Lemma III.16. There exists a c22 > 0 such that for sufficiently large M and V ,

E

[
V −1

V∑
v=1

∥∥∥β(dv)− ℵ(dv | θ̂β)
∥∥∥2

2

]
≤c22[log(MV )3(M−1V −1R +R−

2P
K ) +M−1].

(3.8)

Lemma III.16 decomposes the mean squared errors into a sum of three terms.

The first term corresponds to the estimation error (i.e. the “variance” of the esti-

mator). It decreases as the number of images or voxels increases, since a greater

number of observations is provided, and increases as the number of nodes in the NNs

increases, since more flexible models have higher estimation variation. The second

term corresponds to the approximation error (i.e. the “bias” for the estimator) due

to the imperfect approximation ability of neural networks. It decreases as the neural

network incorporates more nodes, and the convergence is faster for regression func-

tions with higher degree of smoothness. The third term corresponds to deviation

from the true main effects caused by the error in estimating the individual effects (i.e.

the difference between the target function and the expectation of the “observations”).

Since the individual effects are also spatially correlated, the errors caused by them

cannot be reduced by increasing the number of voxels, nor are they impacted by the

complexity of the neural networks.

We now present our main theorem. In Lemma III.16, an error bound is established

for the penalized least-square estimator. From here we apply hard thresholding to

the estimate to induce sparsity. In Theorem III.17, we derive error bounds of the L0

sign error and the L2 error of the sparse main effects estimator. The L0 sign error

across all the voxels in a main effect is a weighted average between the false positive

rate, false negative rate, and the false sign flipping rate, where the weights depend on

the true proportion of the three signs in the main effect. It is equal to zero if and only

if the signs on all the voxels of the main effects are estimated correctly. The error
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bounds in Theorem III.17 are the same as that in Equation (3.8) up to a logarithmic

factor. The result follows in a straightforward way from Lemma III.16 by Markov’s

inequality.

Theorem III.17. There exists a c79 ∈ R+ such that for all sufficient large M and

V ,

E

{
V −1

V∑
v=1

∥∥∥sign[β(dv)]− sign[β̂(dv)]
∥∥∥

0

}

≤c79[log(MV )5(M−1V −1R +R−
2P
K ) + log(M)2M−1] (3.9)

E

{
V −1

V∑
v=1

∥∥∥β(dv)− β̂(dv)
∥∥∥2

2

}

≤c80[log(MV )5(M−1V −1R +R−
2P
K ) + log(M)2M−1] (3.10)

Next, we derive the error bound of the individual effects and the noise variance. In

Corollary III.18 and Corollary III.19, we show that the error bounds of the individual

effects and the noise variance are similar to those of the main effects.

Corollary III.18. There exists a c26 > 0 such that for sufficiently large M and V ,

E

[
M−1V −1

V∑
v=1

‖α(dv)− α̂(dv)‖2
2

]

≤c26[log(MV )5(M−1V −1R +R−
2P
K ) + log(M)2M−1 + log(V )3V −1R].

Corollary III.19. There exists a c27 > 0 such that for sufficiently large M and V ,

E

[
V −1

V∑
v=1

∥∥σ2(dv)− σ̂2(dv)
∥∥2

2

]

≤c27[log(MV )5(M−1V −1R +R−
2P
K ) + log(M)2M−1 + log(V )3V −1R].

Unlike in Lemma III.16, the convergence of the error bound in Corollary III.18
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and Corollary III.19 to zero relies on both the number of voxels and the number

of images approaching infinity. As the number of images increases, the number of

individual effects that need to be estimated also increases, and a sufficient number of

voxels is necessary for estimating the individual effects, which is in turn required for

determining the noise variance.

In Theorem III.17, the error bounds are a summation that involves the number

of voxels, number of images, and NN complexity (as measured by the number of NN

nodes). In practice, we would like to know the optimal NN complexity in relation to

the numbers of voxels and images that results in the smallest error bound. Such op-

timization of the trade-off between the bias and the variance of the NNISR estimator

is described in Corollary III.20.

Corollary III.20. If R = c31(MV )
K

2P+K for some c31 > 0, then

E

{
V −1

V∑
v=1

∥∥∥sign[β(dv)]− sign[β̂(dv)]
∥∥∥

0

}

≤c32[log(MV )5(MV )−
2P

2P+K + log(M)2M−1]

E

{
V −1

V∑
v=1

∥∥∥β(dv)− β̂(dv)
∥∥∥2

2

}

≤c33[log(MV )5(MV )−
2P

2P+K + log(M)2M−1]

for some constants c32, c33 ∈ R+, provided sufficiently large M and V .

Corollary III.20 is an immediate consequence of Theorem III.17. By setting the

NN flexibility R proportional to (MV )
K

2P+K , it optimizes the balance between the

estimation error M−1V −1R and the approximation error R
−2P
K for the main effect.

By setting ν = 2P/K, the optimal network complexity can be rewritten as

(MV )
K

2P+K = (MV )
1
ν+1 .
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The exponent here controls the optimal rate at which R should grow with respect to

MV , and it converges to zero as ν approaches infinity. Recall that P is the Hölder

degree of smoothness of the true main effect function, and K is its input dimension.

Thus ν can be interpreted as a standardized degree of smoothness of the true spatially

varying function of the main effects. Conceptually, when the regression function to

be estimated is highly smooth, model flexibility is of low priority, as a simple model

can already approximate the regression function fairly well, and a over-flexible model

makes overfitting more likely. On the other hand, a highly non-smooth regression

function can benefit greatly by a more flexible model. In this case, the model should

grow fast in complexity as the numbers of images and voxels increase and provide

more data points.

On top of the result in Corollary III.20, we can further set the number of images

to be a function of the number of voxels, so that the optimal error bound depends on

the latter only, as shown in Corollary III.21.

Corollary III.21. Suppose M ≥ c35V
2P
K for some c35 > 0. Then

E

{
V −1

V∑
v=1

∥∥∥sign[β(dv)]− sign[β̂(dv)]
∥∥∥

0

}
≤c37 log(MV )5V −

2P
K

E

{
V −1

V∑
v=1

∥∥∥β(dv)− β̂(dv)
∥∥∥2

2

}
≤c34 log(MV )5V −

2P
K

for some constant c37, c34 ∈ R+, provided V is sufficiently large.

Corollary III.21 further optimizes the rate in Corollary III.20 by letting the number

of images depends on the number of voxels. To achieve the most ideal error bound,

the number of images should be no less than V
2P
P , up to a constant. Recall that

in nonparametric regression in general, the minimax error bound is N−
2P

2P+K [Stone,

1982]. The seemingly super-optimal performance of NNISR in Corollary III.21 (up

to a logarithmic term) is due to the fact that the number of images grows along with
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the number of voxels, which makes the number of observations increase faster than

linearly with respect to V .

3.4 Simulation studies

3.4.1 Experiment setup

To assess the estimation and selection accuracy of NNISR, we conducted exten-

sive simulation studies to compare it against baseline methods. We generated imag-

ing data according to Equation (3.3). The covariates xm (m = 1, . . . ,M) were 3-

dimensional and were independently drawn from the standard Gaussian distribution.

For the main effects β∗q (·) (q = 1, . . . Q), individual effects α∗m(·) (m = 1, . . .M), and

noise variance σ2
∗(·), we designed their spatially varying functions with diverse pat-

terns and set their domain to a bounded 3-dimensional rectanguloid, as illustrated in

Figure 3.1a. First, for each main effect β∗q (·), the rectanguloid is further divided into

a 2× 2 grid among the first two axes of the spatial coordinates, with different spatial

patterns in each of the 4 blocks. The top-left block contains no signals, and the value

of the spatially varying function is set to zero in this area. In the top-right block,

we generated two spherical regions that contains signals with strength smoothly di-

minishing to zero at the boundary. The size and location of the spherical regions are

randomly and independently selected, and the two regions may be mutually exclusive

or overlapping. In the latter case, a superposition of the two regions is produced,

with the values inside the overlapping area equal to the sum of the values in the two

regions. In the bottom-left block, the spatial pattern is similar to that in the top-

right block, except that the regions are rectangular, with a constant level of signal,

which gives rise to sharp edges. For the bottom-right block, the spatial pattern is a

mixture of those in the top-right block and the bottom-left block. Moreover, for each

individual effect α∗m(·), we design the spatial patterns as follows: a random spatial lo-
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cation is selected as the center and assigned with a random value. Then the spatially

varying function increases or decreases proportionally to the distance from the center.

Finally, the variance of the noises varies in a periodic manner across the three axes in

the spatial volume by using a randomly linearly transformed sine function. Slices of

the main effects, noise variance, and an example of the individual effects are shown

in Figure 3.1a. Notice that we have intentionally violated some of our theoretical

assumptions listed in Section 3.3 to test the robustness of our method. For example,

the non-zero regions in the main effects are not all polytopes (Assumption III.5),

and some of the non-zero regions have continuous transitions toward zero on their

boundaries (Assumption III.14).

Three experimental variables were adjusted in our studies. First, the noises fol-

lowed either the standard Gaussian distribution or a (Chisq3 − 3)/
√

6 distribution.

Second, we set the imaging resolution to 16 × 16 × 8, 32 × 32 × 8, 64 × 64 × 8, or

128× 128× 8. Finally, each data set contained either 20 or 50 images. Each of the 12

experimental settings was replicated for 50 times. In all experiments, the ratio of the

variances of the main effects, individual effects, and noises were set to 0.2 : 0.5 : 1.0.

The bottom-left panel of Figure 3.1a shows (a slice of) an example of the response

image. With such a low signal-to-noise ratio, we intended to simulate the highly noisy

imaging data common to biomedical imaging studies.

We compared NNISR against MUA, SPM, BST, STOR, and SVCM. The methods

were assessed for their estimation and selection accuracy. The estimation accuracy

was measured by the MSE between the true main effects and the estimated effects,

while the selection accuracy was measured by the area under the operating character-

istic curve (AUC), as well as the false positive and power. We report the median and

the interquartile range (IQR) of these four summary statistics across the replications

in each of the experimental settings.

For model selection in NNISR, the selection quantile was set to ηq =
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min(ηq,MUA, ηmax), where ηq,MUA equals to the proportion of voxels selected by MUA

for the qth main effect, and ηmax = 0.2 to reflect the prior belief that in practice

the proportion of significant voxels rarely exceeds 20%. In addition, the minimum

selection level was set to ρmin = 0.0001, as effect levels below this are negligible. The

test size was set to 0.05 for MUA, BST, SVCM, and SPM. Notice that the test size

for SPM is automatically adjusted for the number of voxels by using its algorithm

based on random field theory. Sparsity in STOR is not determined by a pre-specified

test size but rather embedded in the algorithm and controlled by hyperparameters,

which were tuned according to the authors’ recommendations.

For the hyperparameters in NNISR, we used 4 hidden layers with 64 nodes in each

layer. In our experiments, we noticed that the performance was not sensitive to the

complexity of the NN architecture. Moreover, the weight of the L1 penalty on the

main effects were selected by cross-validation with LASSO on each voxel and then

taking the geometric mean of the optimal weights across all the voxels. For the base-

line methods, the hyperparameters were selected according to the recommendations

in the original papers.

3.4.2 Experiment results

Table 3.1 shows the estimation accuracy, as measured by MSE, and selection

accuracy, as measured by AUC, false positive rate, and power, of each method For

estimation accuracy, NNISR has the lowest median MSE and the smallest IQR in all

the experimental settings, which shows NNISR to be the uniformly most accurate and

most stable method for estimating the main effects. The characteristics of NNISR’s

performance is demonstrated in several trends. First, the advantage of NNISR is the

most prominent when the imaging resolution is high. In all the 4 combinations of noise

distribution and number of images, there is a clear trend of decreasing MSE for NNISR

as the number of voxels increases. Among the baseline methods, such trend is also
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observed for SPM, BST, and STOR but with much slower speeds of improvement,

while MUA and SVCM show no significant improvement with increasing imaging

resolutions. For example, consider the experiment with Gaussian noise, 50 images,

and 16×16×8 voxels. Although the MSE of NNISR is the lowest and is less than 50%

of those of MUA and SVCM, the MSEs of STOR, BST, and SPM are no more than

120% of NNISR’s. However, as the imaging resolution is increased to 128× 128× 8,

the MSE of NNISR becomes less than 20% of MUA and SVCM and no more than

52% of those of STOR, BST, and SPM. In fact, NNISR’s exploitation of high imaging

resolutions is so efficient that its MSE for 20 images with 128× 128× 8 voxels is less

than its MSE for 50 images with 16× 16× 8 voxels. In contrast, none of the baseline

methods can overcome deficiency in the numbers of images with abundance in the

number of voxels.

Moreover, the advantage of NNISR over the baseline methods is greater for small

numbers of images than for large numbers of images. Compared to the second most

accurate method in each setting, NNISR’s reduction in MSE is 38% to 62% for 20

images and 7% to 48% for 50 images. This trend demonstrates NNISR’s usefulness

for datasets with deficiency in the number of images. Furthermore, NNISR is shown

to be robust against skewed noise distribution. Compared to the Gaussian-generated

noise, NNISR has lower MSE for chi-squared distribution in all the experimental set-

tings. For the baseline methods, robustness against skewed noise also holds for MUA

and SVCM, but SPM, BST, and STOR show clear increase in MSE for chi-squared

noise. Overall, NNISR is the only method that exploits high imaging dimensions and

robust against skewed distributions simultaneously. It is noticeable that for both the

Gaussian and chi-squared noise, NNISR’s estimation accuracy for 20 images with the

highest resolution is better than any other method’s accuracy for 50 images with any

resolution. This result demonstrates the advantage of NNISR in imaging studies with

limited numbers of images but high imaging resolutions.
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To further illustrate the estimation characteristics of each method, we show two-

dimensional slices of their three-dimensional estimates of the main effects in Fig-

ure 3.1. MUA has produced the most noisy estimate, which is expected due to its

ignoring of spatial information. It estimation accuracy on a voxel highly depends on

its local noise level, as shown by the contrast of the estimates in the noisy blobs versus

the other imaging regions. SVCM, whose algorithm is based on smoothening the noise

in the MUA estimate, has eliminated the majority of the estimation errors caused by

lower noise, but most of the fluctuation in the high-noise regions have remained. In

contrast, SPM and BST are less susceptible to white noise, but they tend to generate

errors of wrinkle patterns, ignore the backdrop bias, (i.e. the gradual transition in the

background from blue at the top to red at the bottom), and over-smoothen the true

signals, as shown in the blurry boundaries of the rectangular activation regions in

the estimates. Moreover, the characteristics of the estimate by STOR is very distinct

from the other methods. It favors activation regions with rectangular boundaries,

due to its treatment of images as tensors (multi-dimensional arrays) and imposing

low-rankedness on them, and thus tend to produce spatially correlated error regions

of rectangular shapes and overlook true activation regions with curvy boundaries.

Finally, NNISR has successfully detected all the activation regions of various geomet-

ric shapes and adapted for both the smooth boundaries and the sharp boundaries.

It has also generated the cleanest estimate, with the estimated values on most of

the null voxels virtually equal to zero, eliminating most of the highly noisy blobs in

MUA and SVCM as well as the smooth backdrop bias in SPM and BST, which is

especially impressive considering the fact that model selection has yet been applied.

The almost-sparse property of the NNISR estimate is caused by the L1 penalty in the

model, though it is extremely unlikely to shrink any voxel exactly to zero, unless all

the weight parameters in the last layer of the NN is exactly zero, Overall, compared

to the baseline methods, the estimate by NNISR resembles the true main effect more
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closely, both quantitatively, as measured by the MSE, and visually, as shown by the

plots. It has cleaned up many of the bias patterns common to the other methods.

These results demonstrate the flexibility of NNISR and its robustness against not

only white noise but also spatially correlated fluctuations in the images.

For selection accuracy, NNISR has higher median AUC than the other methods

under all experimental settings except when the number of images and the number

of voxels are both the smallest. The selection accuracy of NNISR increases as the

number of voxels increases, and the performance of NNISR relative the the baseline

methods is greater for small numbers of images with high resolutions than for large

numbers of images with low resolutions. In addition, the AUCs of NNISR are similar

in median for the Gaussian and chi-squared noises, with only a slight increase in IQR

in the latter case.

The selection accuracy of each method is further demonstrated by their false

positive rate and power. NNISR has successfully controls the false positive rate,

which has a median of 0.05 or lower in all the experimental settings and is uniformly

more stable than the other methods, as reflected in the IQR. For the baseline methods,

MUA is more conservative than NNISR and has false positive rates between 0.03 and

0.04, while SPM is over-conservative with a uniform 0.00 false positive rate, due to

its automatic adjustment for the number of voxels being tested and the low signal-

to-noise ratio in the data design. In contrast, SVCM, BST, and STOR all have false

positive rates above 0.05, although for STOR the false positive rate is not intended

to be controlled. Finally, for the testing power, NNISR’s performance reflects the

reoccurring trends: improvements with increasing imaging resolution and robustness

against skewed noise. The power is less comparable across methods, since SPM is over-

conservative while SVCM, BST, and STOR are over-liberal. The most comparable

method for NNISR in terms of power is MUA, since it has similar false negative rates.

Compared to MUA, NNISR has lower power for small numbers of voxels and higher
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power for large numbers of voxels, which again demonstrates NNISR’s advantage on

high-dimensional imaging data.

3.5 Analysis of fMRI data

3.5.1 Experiment setup

To evaluate the performance of NNISR in medical imaging studies, we applied it

and baseline methods to two neuroimaging consortia: the Autism Brain Imaging Data

Exchange (ABIDE) and the Adolescent Brain Cognitive Development study (ABCD).

ABIDE and ABCD collected fMRI images from multiple experimental sites in the U.

S. In addition, the cortia contain clinical characteristics such as cognitive ability (CA),

disease status, and psychiatric diagnostics, as well as demographic information such

as age and sex.

The ABIDE [Di Martino et al., 2014] project aims at improving the neurological

understanding of autism and the associated cognitive behaviors. In our our analysis,

we used the Phase I data of the study, which include 20 resting-state fMRI datasets

from 19 experimental sites, with a total of 1,112 subjects. We employed a widely

adopted fMRI processing pipeline [Craddock et al., 2013, He et al., 2019]. For the

response image, we used the weighted degrees of network connectedness, which corre-

spond to each voxel’s number of direct connections to the other voxels. The covariate

of primary interest is CA, which is measured by the full-scale intelligence quotient.

In addition, our model adjusts for autism status, age, and sex. After removing the

missing values, the dataset contains 821 subjects.

The ABCD [Casey et al., 2018] study focuses on studying the association between

cognitive behaviors and brain development. This project collected the brain images

and various CA assessment scores of more than 11,800 children of age 9 to 10 from 21

experimental sites. Our analysis used the minimally preprocessed 2-back task-based
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fMRI data of 1991 subjects in 20 sites from the curated ABCD annual release 1.1

[Hagler Jr et al., 2019]. The response image is the contrast map of the 2-back task,

which has been consistently found to engage brain regions for memory regulation

processes and cognitive functions [Barch et al., 2013]. The covariate of interest, CA,

is measured by the general CA component score [Sripada et al., 2019]. The psychiatric

diagnostic score, age, and sex have also been adjusted in the model.

We compared the performance of NNISR with MUA, SPM, and SVCM. We were

unable to evaluate STOR and BST, since their software sent out error messages when

running on our fMRI data. To examine the estimation accuracy of each method, we

conducted cross validation across the experimental sites. In each fold of the cross

validation, one site was selected for training and the other sites were used for testing.

Estimation accuracy was measured by the response image recovery MSE on the testing

data, which is equivalent to the proportion of variation of the testing response images

explained by the estimated main effects. Then we applied model selection to the

estimated main effects, where the selection hyperparameters are the same as in the

simulation studies, described in Section 3.4. As the true signals on the real data are

unknown, we instead examine the selection results by their reproducibility, defined as

follows. First, we combined all the experimental sites and applied the estimation and

selection procedures to the combined dataset. To make the results comparable, in

both the all-site analysis and each single-site analysis, we set all the baseline methods

to select the same proportion of voxels as NNISR, according to the ranking of the

signal strength defined by each method (e.g. the p-values for MUA). Then we compute

the proportion of voxels selected for CA in the all-site analysis that are reproducible

in the single-site analyses. A voxel is said to be reproducible if it is selected in at

least 5 single-site analyses. We use this metric to measure the degree of selection

reproducibility of each method on the fMRI data.

Furthermore, in the all-site analysis of the neuroimages, we summarized the selec-
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tion results in various brain regions. We divided the brain volume into parcels based

on the automated anatomical labeling (AAL) atlas [Tzourio-Mazoyer et al., 2002],

and the parcels were further grouped into functional networks (FNs) [Power et al.,

2011]. The voxels selected by different methods for CA were compared in each AAL

region and FN. We reported the top ten regions and top five FNs as ranked by the

proportion of voxels selected in each region or FN in the all-sample analysis. In addi-

tion, each region- and FN-based rate of reproducibility is also recorded. Finally, we

investigated the top regions selected in the ABIDE and ABCD data in the literature

and reported their biological significance in existing works.

3.5.2 Experiment results

Figure 3.2 shows the cross-validation testing MSE for response image recovery

recovery across the experimental sites. To compare the relative performance of the

methods, we report the testing MSE relative to that of MUA. Each point on the plot

represents an experimental site, and the x-coordinate corresponds to the testing MSE

of the MUA model trained on that site, and the y-coordinate corresponds to the pro-

portion difference in testing MSE of each method compared to MUA. For the ABIDE

data, the performance of MUA, SPM, and SVCM are similar when the MSE of MUA

is low, although SPM tends to be less stable than the other methods. These are the

cases where the estimation task is less challenging. As the MSE of MUA increases,

the different methods are further differentiated. NNISR has the smaller relative MSE

than the other methods on most sites. Moreover, the reduction of MSE by NNISR

compared to MUA becomes greater when the MSE of MUA is greater, which corre-

sponds to the experimental sites with data that are more difficult to generalize and

on which MUA performs poorly. Similar performance patterns are observed on the

ABCD data, with the aforementioned advantage of NNISR being even more promi-

nent compared to MUA and the other baseline methods. These characteristics echos
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the results in the simulation studies and demonstrate the usefulness of NNISR on

difficult imaging datasets, which usually have limited numbers of images and high

level of noise with complex spatially correlations.

The results for the reproducibility analysis is shown in Table 3.2. Reproduciblity

is measured by the proportion of voxels selected in the all-sample analysis that are

also selected in 5 or more single-site analyses. NNISR has achieved the highest rate

of reproducibility, which is 217% and 153% of that of SVCM, the second most re-

producible method. These results are visualized in Figures 3.3a and 3.3b. Only the

voxels selected in all-site analysis are colored, with red and blue represents whether

or not a voxel is reproducible. Beside the clear pattern that NNISR has consistently

selected more voxels across the experimental sites, the regions it selected tend to form

large, contiguous clusters, which are more interpretable in biomedical imaging studies

than small, isolated patches sporadically scattered over the whole volume.

Moreover, Table 3.3 shows the region-based and FN-based selection results. For

ABIDE, regions in the occipital lobe [Goriounova and Mansvelder, 2019, Yoon et al.,

2017, Simard et al., 2015, Menary et al., 2013], the calcarine fissure and surrounding

cortex [Yu et al., 2008], and the cuneus [Schnack et al., 2015, Haier et al., 2004, Song

et al., 2008] have high proportions of voxels selected by most of the methods. This

result is consistent with the known associations between the aforementioned regions

and CA in the literature. In addition, these regions all belong to the visual FN, which

has been found to be related to CA in existing works [Dubois et al., 2018, Hearne

et al., 2016] and is the top FN selected by all the methods in ABIDE. The other

FNs all have much lower low selection rates. Compared to the baseline methods,

NNISR’s reproducibility is higher in most of the top regions and FNs. Furthermore,

the selection proportion by NNISR is more concentrated at the top regions in the all-

sample analysis of ABIDE, This trend indicates that the voxels selected by NNISR

are more closely aligned with biologically meaningful regions and networks in the
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brain.

For ABCD, the regions with high selection rate for CA include those in the the

parietal lobe [Haier et al., 2005, Woolgar et al., 2010, Jung and Haier, 2007], frontal

lobe [Duncan et al., 1996, Roca et al., 2010], and the precuneus [Basten et al., 2015,

Jauk et al., 2015]. For the FN-based selection results, the memory retrieval FN has

the highest selection rate by all the methods, which is consistent with the fact that

the ABCD response images used in our analysis are task-based contrast maps for

activities designed to engage working memory. The selection rate for dorsal attention

FN is also high, which has been found in the literature to be associated with both

general CA [Hilger et al., 2020] and working memory capacity [Majerus et al., 2018,

Broadway and Engle, 2010, Gray et al., 2017]. Other top FNs include frontal-parietal

task control [Uddin et al., 2019, Zanto and Gazzaley, 2013] and salience [Hilger et al.,

2017, Liang et al., 2016], which are consistent with findings in existing works regarding

their associations with CA and working memory. Finally, the reproducibility rate of

NNISR is much higher than the that of the other methods in most of the regions and

networks, making NNISR the most stable and consistent method for model selection.

3.6 Discussion

In this work, we have presented a novel image-on-scalar regression model based

on neural networks. From the perspective of functional data analysis, our model

uses multi-layer feed-forward neural networks to approximate the spatially varying

coefficient functions of the main effects, individual effects, and noise variance. Al-

though conceptually straightforward, our NNISR model has been shown to be capa-

ble of adapting to a wide variety of spatial correlation patterns, including not only

smooth transitions but also jump discontinuities across the spatial volume. We have

provided an algorithm for model fitting and selection that takes advantage of the

high-dimensionality of the imaging data. Such estimation procedure has been proved
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to posses theoretically guaranteed convergence properties.

In our theoretical analysis, we have derived L2 estimation error bounds for the

main effects, individual effects, and noise variance. Our results are not only based on

existing works on nonparametric regression with neural networks but also extend them

to include not only globally smooth functions but also piecewise smooth functions.

Moreover, for our model selection procedure, we have demonstrated their selection

consistency and proved L0 sign error bounds. We also have showed the optimal neural

network complexity as a function of the number of images and voxels.

In our extensive simulation studies, we have designed complex spatial images to

test NNISR against multiple existing image-on-scalar regression methods. NNISR

has successfully eliminated a great proportion of the noises and learned most of the

the underlying heterogeneous patterns in the main effects. Moreover, NNISR has

been shown to effective in exploiting the increasing imaging dimensions compared to

the existing methods, both in terms of estimation accuracy and selection accuracy.

For the analysis of brain fMRI data, NNISR has produced more accurate estimates

in the cross-validation across experimental sites. The advantage of NNISR over the

baseline methods is more prominent when the estimation problem is more difficult.

In addition, our model has also achieved the highest selection reproducibility, as

measured by the proportion of voxels that are consistently selected in the single-site

analyses. Finally, as we break down the results into AAL regions and functional

networks, the top regions and networks selected by NNISR are supported by findings

in existing works. The reproducibility rate in each region or network is also much

higher for NNISR than the baseline methods.

We have envisioned multiple directions for future works. In our current setting,

although the imaging resolution is high, the number of covariates is fixed at a constant

value. We could extend the current theoretical results and modify the algorithm to

accommodate an increasing number of covariates, which is common in applications
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such as imaging genetics. In addition, the images are currently assumed to be uni-

modal. This condition can be potentially generalized to multi-modal images, such as

data generated from spatial transcriptomics.
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3.7 Tables and Figures

Figure 3.1: Slices of the images for the true and estimated main effects, noise variance,
individual effects, and observed response in the simulation studies.

(a) True parameters and observed responses.

(b) Estimates of main effect 1 by NNISR and the baseline methods.
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Figure 3.2: Cross-site testing MSE for recovering imaging response on the fMRI data.
Each point represents a single-site analysis, where the data from one experimental
site is used for training and those from the other sites are used for testing. The x-
coordinate equals to the testing MSE of MUA, which measures the overall difficulty
of estimation and generalization for models trained on each site. The y-coordinate
equals to the relative testing MSE of each method compared to MUA. The testing
response recovery MSE is equivalent to the proportion of variance explained by the
estimated main effects on the testing data, which is used as a metric to indirectly
measure the estimation error.
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Figure 3.3: Selection results for cognitive ability (CA) on the fMRI data and the
reproduciblity status of each voxel by NNISR and the baseline methods. Voxels
selected for CA in the all-site analysis are shown in color. Red represents voxels
selected in the all-site analysis that are reproducible in the single-site analyses, while
blue represents voxels selected in the all-site analysis that are not reproducible in the
single-site analyses. A voxel is said to be reproducible if it is selected in at least 5
single-site analyses.

(a) ABIDE

(b) ABCD
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Table 3.1: Summary statistics for main effect estimation and selection in the sim-
ulation studies by NNISR and the baseline methods. The data are generated with
the standard Gaussian or standardized chi-squared distribution, with the number of
images M equal to 20 or 50 and the number of voxels set to V ′ × V ′ × 8, where V ′
varies from 16 to 128. Each setting is replicated for 50 times. The median and the
interquartile range (displayed in parentheses) of the summary statistics are reported
(in the unit of 0.01).

N (0, 1) noise (χ2
3 − 3)/

√
6 noise

M V ′ MUA SPM BST STOR SVCM NNISR MUA SPM BST STOR SVCM NNISR

Mean squared error (MSE)

20 16 191 (57) 61 (32) 63 (31) 63 (27) 157 (51) 38 (22) 187 (78) 66 (41) 69 (43) 59 (36) 153 (73) 35 (19)
20 32 190 (59) 59 (36) 59 (34) 51 (33) 161 (53) 28 (15) 185 (64) 63 (41) 64 (41) 52 (31) 155 (64) 25 (18)
20 64 192 (58) 58 (37) 58 (35) 47 (32) 160 (50) 23 (19) 185 (66) 62 (41) 62 (42) 53 (31) 158 (64) 20 (18)
20 128 193 (54) 58 (37) 56 (36) 44 (31) 161 (50) 22 (16) 186 (64) 62 (41) 61 (42) 50 (30) 157 (63) 19 (19)

50 16 66 (12) 30 (10) 27 (11) 28 (10) 52 (12) 25 (08) 65 (16) 32 (14) 26 (14) 30 (10) 51 (15) 24 (11)
50 32 65 (11) 26 (11) 24 (11) 24 (08) 52 (10) 16 (08) 66 (17) 27 (13) 24 (13) 26 (09) 52 (14) 15 (10)
50 64 65 (10) 24 (11) 22 (11) 23 (10) 52 (11) 12 (07) 66 (16) 25 (13) 22 (13) 22 (11) 53 (14) 13 (08)
50 128 64 (10) 24 (10) 21 (10) 22 (08) 51 (11) 11 (06) 67 (15) 24 (14) 21 (14) 21 (09) 53 (13) 11 (08)

Area under the operating characteristic curve (AUC)

20 16 66 (08) 63 (13) 64 (11) 61 (12) 67 (09) 65 (10) 68 (07) 64 (12) 66 (08) 62 (14) 67 (08) 64 (10)
20 32 66 (08) 66 (11) 66 (11) 64 (15) 67 (10) 69 (08) 67 (07) 67 (10) 68 (07) 64 (12) 67 (08) 70 (10)
20 64 66 (07) 67 (11) 67 (10) 65 (12) 67 (09) 70 (06) 67 (07) 68 (10) 69 (07) 66 (09) 68 (08) 71 (09)
20 128 66 (08) 67 (11) 68 (11) 64 (09) 67 (09) 70 (06) 67 (07) 68 (10) 69 (07) 64 (11) 68 (08) 71 (09)

50 16 76 (08) 74 (11) 77 (09) 74 (14) 77 (08) 78 (09) 75 (07) 74 (12) 76 (08) 73 (09) 77 (08) 78 (09)
50 32 76 (08) 77 (10) 78 (09) 77 (14) 77 (08) 81 (06) 75 (07) 77 (10) 77 (09) 73 (10) 76 (08) 79 (08)
50 64 76 (08) 78 (09) 79 (09) 76 (16) 78 (08) 81 (05) 75 (06) 78 (09) 78 (08) 75 (09) 77 (07) 80 (08)
50 128 76 (08) 79 (08) 79 (09) 76 (15) 78 (08) 81 (06) 75 (07) 78 (09) 78 (09) 74 (12) 77 (07) 81 (08)

False positive rate

20 16 04 (05) 00 (00) 23 (20) 45 (53) 08 (06) 05 (04) 04 (04) 00 (00) 23 (14) 51 (59) 07 (04) 04 (04)
20 32 04 (05) 00 (00) 23 (21) 80 (85) 08 (06) 04 (04) 03 (04) 00 (00) 23 (14) 75 (79) 07 (04) 03 (04)
20 64 04 (05) 00 (00) 23 (21) 82 (76) 08 (07) 03 (04) 03 (04) 00 (00) 24 (15) 85 (61) 08 (04) 03 (04)
20 128 04 (05) 00 (00) 23 (22) 89 (81) 08 (07) 03 (04) 03 (04) 00 (00) 24 (15) 84 (75) 08 (05) 03 (04)

50 16 04 (04) 00 (00) 38 (14) 41 (47) 07 (06) 05 (04) 05 (05) 00 (00) 41 (20) 56 (52) 08 (06) 05 (03)
50 32 03 (05) 00 (00) 39 (15) 86 (79) 08 (06) 03 (04) 04 (05) 00 (00) 42 (19) 63 (72) 08 (06) 04 (04)
50 64 03 (05) 00 (00) 39 (15) 85 (82) 07 (06) 03 (04) 04 (05) 00 (00) 42 (19) 90 (63) 08 (06) 04 (03)
50 128 04 (05) 00 (00) 39 (14) 69 (82) 07 (06) 03 (04) 04 (05) 00 (00) 43 (19) 79 (74) 08 (06) 03 (04)

Power

20 16 21 (08) 00 (01) 45 (20) 69 (54) 28 (11) 19 (09) 23 (09) 00 (01) 45 (18) 71 (59) 29 (12) 21 (10)
20 32 22 (07) 01 (02) 47 (16) 85 (75) 27 (10) 24 (09) 24 (09) 01 (02) 49 (16) 81 (65) 29 (14) 25 (10)
20 64 22 (07) 01 (01) 48 (15) 91 (36) 28 (10) 25 (07) 23 (08) 01 (02) 51 (14) 95 (33) 30 (13) 26 (10)
20 128 22 (07) 01 (01) 49 (16) 93 (55) 28 (10) 25 (07) 24 (09) 01 (01) 52 (16) 92 (47) 30 (13) 26 (10)

50 16 42 (09) 02 (03) 73 (09) 79 (43) 49 (11) 36 (11) 43 (07) 03 (03) 73 (10) 82 (28) 50 (07) 39 (10)
50 32 42 (10) 05 (04) 75 (10) 97 (39) 41 (12) 42 (09) 43 (08) 05 (04) 75 (10) 89 (28) 50 (09) 44 (09)
50 64 42 (10) 05 (03) 76 (10) 97 (44) 50 (11) 43 (09) 43 (08) 06 (04) 76 (10) 97 (23) 51 (09) 45 (09)
50 128 42 (10) 04 (03) 78 (09) 94 (46) 50 (11) 45 (09) 43 (08) 05 (03) 77 (10) 95 (36) 51 (09) 46 (09)
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Table 3.2: Selection reproducibility of voxels in the fMRI data by NNISR and the
baseline methods. Reproducibility is measured by the proportion of voxels selected
in the all-sample analysis that are also selected in at least 5 single-site analyses.

Dataset MUA SPM SVCM NNISR

ABIDE 0.021 0.000 0.168 0.365

ABCD 0.397 0.423 0.428 0.655
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Table 3.3: Voxel selection and reproducibility of AAL regions and functional networks
in the ABIDE and ABCD data. Inside each row for each method, the first column is
the name of the region/network, the second column shows the proportion of voxels
inside the region/network that are selected in the all-site analysis, and the third
column (in parentheses) reports the proportion of these voxels that are reproducible
in the single-site analyses, where reproducibility is defined as being selected in 5 or
more single-site analyses. All the proportions are displayed in the unit of 0.01.

MUA SPM SVCM NNISR

AAL regions in ABIDE

Occ.Mid.R 11(10)Occ.Mid.L 13(00)Rec.R 13(00)Cal.R 17(40)
Cal.R 10(00)Cal.R 12(00)Rec.L 12(25)Cal.L 15(67)
Rec.L 09(00)Occ.Sup.L 10(00)Occ.Mid.R 10(23)Cun.R 12(27)
Occ.Mid.L 07(00)Occ.Mid.R 10(00)Occ.Mid.L 09(00)Occ.Mid.R 12(46)
Occ.Sup.L 06(04)Cun.R 08(00)Occ.Sup.L 08(04)Occ.Mid.L 07(14)
Sup.Mot.Are.R 06(00)Cal.L 05(00)Cal.R 06(03)Occ.Sup.L 06(39)
Cal.L 05(00)Sup.Mot.Are.R 05(00)Fro.Med.Orb.L 05(38)Cun.L 05(35)
Rec.R 04(00)Cun.L 04(00)Fro.Sup.Orb.R 05(83)Fus.L 03(06)
Cun.L 04(00)Rec.L 03(00)Tem.Pol.Mid.L 04(00)Lin.L 03(21)
Occ.Inf.R 04(00)Rec.R 02(00)Sup.Mot.Are.R 04(00)Sup.Mot.Are.R 02(22)

Functional networks in ABIDE

Vis 04(03)Vis 06(00)Vis 04(07)Vis 07(38)
Ven.Att 01(00)Ven.Att 01(00)Sen.Som.Han 01(24)Def.Mod 01(46)
Tas.Con 01(00)Cin.Ope.Tas.Con01(00)Cin.Ope.Tas.Con01(04)Ven.Att 00(22)
Som.Han 01(02)Def.Mod 00(00)Ven.Att 01(00)Cin.Ope.Tas.Con00(20)
Def.Mod 01(07)Sen.Som.Han 00(00)Def.Mod 01(21)Sen.Som.Han 00(22)

AAL regions in ABCD

Par.Inf.L 49(42)Par.Inf.L 55(40)Par.Inf.L 51(42)Par.Inf.L 51(74)
Par.Sup.L 40(23)Par.Sup.L 50(30)Par.Sup.R 47(46)Fro.Mid.Orb.L 44(00)
Pre.L 35(59)Par.Sup.R 47(35)Par.Sup.L 46(33)Par.Sup.L 42(70)
Par.Inf.R 34(56)Pre.L 40(61)Par.Inf.R 39(56)Fro.Mid.L 36(79)
Inf.Ope.L 33(40)Par.Inf.R 38(54)Pre.L 35(63)Par.Sup.R 36(25)
Par.Sup.R 32(13)Fro.Inf.Ope.L 33(37)Pre.R 32(71)Fro.Inf.Ope.L 33(73)
Pre.R 31(65)Pre.R 33(68)Fro.Inf.Ope.L 31(31)Fro.Sup.Orb.L 32(97)
Pre.L 29(59)Fro.Mid.L 28(49)Fro.Mid.L 29(53)Pre.L 31(83)
Lin.L 25(12)Pre.L 27(53)Pre.L 28(57)Fro.Mid.Orb.R 31(96)
Fro.Mid.L 24(42)Sup.Mot.Are.L 24(82)Lin.L 23(03)Fro.Mid.R 29(75)

Functional networks in ABCD

Mem.Ret 35(59)Mem.Ret 40(61)Mem.Ret 35(63)Mem.Ret 31(83)
Dor.Att 22(43)Dor.Att 25(49)Dor.Att 23(49)Fro.Par.Tas.Con 24(75)
Fro.Par.Tas.Con 19(43)Fro.Par.Tas.Con 19(47)Fro.Par.Tas.Con 20(48)Sal 23(75)
Sal 18(42)Sal 17(47)Sal 19(49)Dor.Att 21(77)
Cin.Ope.Tas.Con17(53)Cin.Ope.Tas.Con16(62)Cin.Ope.Tas.Con16(53)Def.Mod 14(72)
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CHAPTER IV

Bayesian Deep Aleatoric Neural Networks

4.1 Introduction

Deep neural networks (DNNs) [Goodfellow et al., 2016, LeCun et al., 2015] have

achieved state-of-the-art in numerous data analysis challenges [Pouyanfar et al., 2018].

It has been shown that the DNNs are highly successful and of great potential in a wide

range of applications, ranging from computer vision [Voulodimos et al., 2018], natural

language processing [Young et al., 2018], and autonomous driving [Grigorescu et al.,

2020], to medical imaging [Ker et al., 2017], genomics [Zou et al., 2019], health man-

agement [Zemouri et al., 2019], astronomy [Meher and Panda, 2021], and agriculture

[Kamilaris and Prenafeta-Boldú, 2018]. In some areas such as image classification,

DNNs are able to produce a higher accuracy than human classifiers, and thus they

have been given serious consideration in practice [Berner et al., 2021]. The rise of

popularity for DNNs, in addition, is witnessed by an increasing number of conferences

and workshops that exclusively focus on deep learning methods [Deng and Yu, 2014]

A key advantage of DNNs is their flexibility in fitting data with complex patterns.

In theory, the universal approximation property ensures that DNNs have the ability

to approximate any continuous function on a compact set up to arbitrary precision,

provided that they have sufficient numbers of nodes and layers [Elbrächter et al.,

2019]. With a large training set, DNNs have been shown in practice to be able to
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learn the complex relations within high-dimensional data well and thus achieve a high

prediction accuracy.

However, a major drawback of DNNs is their lack of quantification for uncer-

tainty. Standard neural network regression methods aim at producing an optimal

predictive function. but this is often done without accounting for estimation errors in

model fitting (epistemic uncertainty) or unpredictable randomness in data (aleatoric

uncertainty). To fit DNNs under the frequentist framework, a common approach

is to minimize a loss function with respect to the weight parameters in the model.

Gradient-based methods are often adopted for implementing the optimization pro-

cedure. The trained DNN is then used to generate a point prediction for each new

sample. However, it remains unclear on how to accurately and appropriately esti-

mate the standard errors of point predictions, since the weight parameters are not

identifiable in a typical DNN model. Moreover, regularization methods are usually

taken to obtain the point estimates, and these methods may pose challenges for sta-

tistical inferences (e.g. estimating the standard errors or constructing the confidence

intervals) for weight parameters as well as point predictions in the DNN model. A

practical solution is to add randomness in the optimization procedure (e.g. when

initializing or updating the parameters) and independently train multiple versions of

the model. An example is deep ensembles [Lakshminarayanan et al., 2016]. However,

as a frequentist approach, methods in this category have no theoretical guarantee

on the calibration of the confidence intervals [Guo et al., 2017]. Without accurate

quantification of uncertainty in prediction, it is impossible to establish the reliability

of DNNs even with a state-of-the-art architecture. The reliability of the prediction

model is vitally important in many applications, especially the safety-critical ones.

For example, if an assisted driving systems simply takes a point prediction of DNN

to determine the next action on the road but fails to accurately measure the degree

of confidence of the prediction, detrimental consequences can follow, including fatal
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accidents [Huang et al., 2018].

In comparison, the Bayesian framework provides a natural way for measuring

uncertainty in statistical models. Instead of searching for a best-fit model by mini-

mizing a loss function, the Bayesian methods focus on the posterior distribution of

the parameters of interests, which not only produces point estimates but also enables

statistical inference. It is straightforward to use the posterior distributions to quan-

tify the uncertainty in model fitting and outcome prediction. Bayesian modeling of

DNNs can be traced back to as early as the 1990’s [MacKay, 1995, Neal, 2012], and it

has sustained an increasing interest in the recent years due to the rapid development

in computation capacities in the past decade [Gal and Ghahramani, 2016, Wenzel

et al., 2020, Wilson and Izmailov, 2020]. Bayesian DNNs (BDNNs) have been found

to be not only practical for decision making under uncertainty but also boost the

prediction accuracy of standard DNNs [Kendall and Gal, 2017, Izmailov et al., 2018].

Despite their natural representation of uncertainty, BDNNs face multiple statisti-

cal and computational difficulties. The posterior distributions of BDNNs not only lack

closed-forms due to the nested nonlinearity across the hidden layers but also covers

an ultrahigh number of parameters that need to be estimated. This makes poste-

rior Markov chain Monte Carlo (MCMC) sampling extremely difficult for modern

DNNs, which can have millions of weight parameters. Moreover, variational methods

can provide fast approximations to the exact posterior distribution, but their uni-

modal nature makes it easy for them to be trapped at local modes, in which case

the variance of the approximated posterior distribution could be significantly under-

estimated. Furthermore, due to their high degree of flexibility, many different DNNs

can approximate the same function equally well, making it difficult to survey the

posterior distribution among equivalent parametrization of the same target function.

Finally, even though the model fitting uncertainty can be quantified by the posterior

distribution of the parameters, the inherent randomness in data might still be over-
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simplified if a homoscedastic noise is imposed in the model, since data density and

noise level can vary greatly across the sample space. Moreover, the noise can contain

multi-modality, heavy tails, and skewed outliers. In these cases, the uncertainty in the

model will be underestimated by the posterior distribution, leading to over-confidence

on predictions about the incoming data.

To address these challenges, we propose a novel model by introducing latent vari-

ables to the hidden nodes in the DNN. Instead of treating the whole DNN as a

deterministic function and adding noise only to the last layer, we introduce aleatoric

uncertainty to each hidden layer and assume all the intermediate values to be in-

herently noisy. We refer to this model a Bayesian deep aleatoric neural network

(DALEA). Compared to standard BNNs, the incorporation of latent variables intro-

duces greater degree of flexibility in learning the noise distribution. Although the

latent variables are assumed to follow normal distributions, combining their effects

with non-linear activation functions throughout the layers makes the final noise (i.e.

deviation from the mean function, which does not have closed forms) no longer nec-

essarily homoscedastic, uni-modal, or symmetric. Moreover, the proposed Bayesian

hierarchical model with latent variables leads to closed forms for the full conditional

distributions, based on which we develop a more efficient Gibbs sampler for posterior

computation. We demonstrate the prediction accuracy and uncertainty quantification

of DALEA via extensive simulations, comparing it against BDNNs with the Hamilto-

nian Monte Carlo sampler (HMC) [Neal et al., 2011], which has been shown to have

a fast convergence rate and can survey the posterior distribution efficiently [Izmailov

et al., 2021], and BDNNs with variational inference (VI) [Blei et al., 2017], which

provides fast approximations of the posterior distribution. We investigate estimation

and prediction accuracy, as well as the relation between widths of the credible in-

tervals (which reflect the prediction confidence) and prediction errors. In addition,

we apply DALEA to analysis of fMRI data in the the Adolescent Brain Cognitive
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Development (ABCD) Study.

The rest of this Chapter is organized as follows. We first introduce the model

in Section 4.2 by describing the details of its structure in Section 4.2.1. Then the

conditional distributions are derived to develop a posterior sampling algorithm in

Section 4.2.3. Next, we apply the methods to simulated data and show the experiment

results in Section 4.3, followed by the experiments on neuroimaging data Section 4.4.

We conclude this Chapter with a discussion in Section 4.5.

4.2 Bayesian Deep Aleatoric Neural Networks

We begin with basic notation. Let Rd represent a d-dimensional Euclidean vector

space. Let Ra×b represent the space of matrices with dimension a by b. All vectors

are column vectors unless specified otherwise. Let 0d = (0, . . . , 0)> ∈ Rd, 1d =

(1, . . . , 1)> ∈ Rd and Id be an d× d identity matrix. Let N(µ,Σ) represent a normal

distribution with mean µ ∈ Rd and (co-)variance Σ ∈ Rd×d. Let IG(a, b) denote the

inverse gamma distribution with shape a and rate b.

4.2.1 DNNs with latent variables

Suppose the observed data consist of vector-valued predictor variables x(n) ∈ RP

and vector-valued response variables y(n) ∈ RQ for n = 1, . . . , N . Our goal is to

model the complex functional association between y(n) and x(n). For this purpose,

we may first consider a standard DNN. Recall that in an L-layer feed-forward DNN,

where the lth hidden layer contains Kl (l = 0, . . . , L− 1) units, the output layer has

KL = Q units, and the input layer has K−1 = P units, matching the dimensions

of the response variable and the predictor variable respectively, the model can be
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formulated recursively as follows:

y(n) =ε(n) + γL + βLu
(n)
L , ε(n) ∼ N(0Q, τ

2
LIQ)

u
(n)
l+1 =h{γl + βlu

(n)
l }, for l = 0, . . . , L− 1

u
(n)
0 =x(n)

where h(·) is a nonlinear activation function, such as the rectified linear unit (ReLU)

function max(0, ·) and the logistic function [1 + exp(·)−1]−1. The lth hidden layer

consists of two sets of parameters: the weight parameter βl = (βl,k,k′) ∈ RKl×Kl−1 and

the bias parameter γl = (γl,k) ∈ RKl .

To quantify the uncertainty of the functional association between y(n) and x(n),

we propose a deep aleatoric neural network (DALEA) model by introducing two sets

of latent variables in the DNNs. In particular, we assume

y(n) =ε
(n)
L + γL + βLu

(n)
L , ε

(n)
L ∼ N(0Q, τ

2
LIQ) (4.1)

u
(n)
l+1 =δ

(n)
l + h{ε(n)

l + γl + βlu
(n)
l }, for l = 0, . . . , L− 1

δ
(n)
l

iid∼N(0Kl , σ
2
l IKl), ε

(n)
l

iid∼ N(0Kl , τ
2
l IKl)

u
(n)
0 =x(n).

In the lth layer, latent variables δ(n)
l = (δ

(n)
l,k ) ∈ RKl and ε(n)

l = (ε
(n)
l,k ) ∈ RKl are

independently and identically distributed across n = 1, . . . , N . The introduction of

the latent variables enables the model to represent complex noise distributions that

cannot be fully characterized by the conditional mean and the conditional variance.

An example of the flexibility of DALEA’s conditional distribution is illustrated in

Figure 4.1. DALEA is able to generate not only non-linear mean functions but also

a variety of noise patterns. The conditional distribution is virtually Gaussian at

±3. Near ±2, the conditional distribution starts to become skewed, which gradually
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evolves into bi-modal around ±1 and eventually to tri-modal at 0. In this example,

for any given value of the input variable, the conditional distribution is a Gaussian

mixture. Intuitively, as Gaussian mixtures are universal approximators of densities

(Plataniotis and Hatzinakos [2017], Calcaterra and Boldt [2008], Goodfellow et al.

[2016, Sec. 3.9.6]) and DNNs are universal approximators of functions [Scarselli and

Tsoi, 1998, Yarotsky, 2017, Lu and Lu, 2020], DALEA has the potential of being

an universal approximator of conditional densities. In contrast, if a model only fits

the conditional mean and the conditional variance (Figure 4.1, center panel), the

noise structure will be over-simplified, which can results in inaccurate and and inef-

ficient uncertainty quantification, especially when the true conditional distribution is

heavy-tailed, skewed, or multi-modal. This problem is exacerbated if the conditional

variance is further assumed to be constant and only the conditinal mean is learned

(Figure 4.1, bottom panel), which is a practice common in standard applications of

DNNs.

DALEA can be viewed as a frequentist model or a Bayesian model. To make

statistical inferences on DALEA under the Bayesian framework, we assign the normal

priors on the weight and bias parameters in the lth layer, for l = 0, . . . , L:

βl,k,k′
iid∼ N(0, ρ2

l ), γl,k
iid∼ N(0, ξ2

l ).

We assign inverse gamma priors for the variance parameters, for l = 0, . . . , L:

ρ2
l

iid∼ IG(aρ, bρ), ξ2
l

iid∼ IG(aξ, bξ), τ 2
l

iid∼ IG(aτ , bτ ), σ2
l

iid∼ IG(aσ, bσ).

4.2.2 Model representation

To develop efficient posterior computation algorithms, we consider an equiv-

alent model representation of DALEA. Let u0 = (x(1), . . . ,x(N)) ∈ RP×N and
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vL = (y(1), . . . ,y(N)) ∈ RQ×N . Moreover, let βl,k = (βl,k,1, . . . , βl,k,KL−1
) ∈ R1×Kl−1

for k = 1, . . . , Kl and l = 0, . . . , L. Then the DALEA model (4.1) can be equivalently

represented as

vl,k
iid∼N(γl,k1N + βl,kul, τ

2
l IN) ∈ RN , for k = 1, . . . , Kl, l = 0, . . . , L (4.2)

ul+1,k
iid∼N(h(vl,k), σ

2
l IN) ∈ RN , for k = 1, . . . , Kl−1, l = 0, . . . , L− 1

(4.3)

where ul = (u>l,1, . . . ,u
>
l,Kl−1

)> ∈ RKl−1×N .

4.2.3 Posterior Computation

Compared to standard multi-layer feed-forward neural networks, including latent

variables in DALEA not only allows for more model flexibility but also gives rise to

conditional distributions with closed-forms, which enables us to develop a posterior

sampling algorithm based on Gibbs sampling. In addition, the computation of the

conditional distributions is parallelizable across samples and layers. The conditional

distributions can be demonstrated by using Equations (4.2) and (4.3), which provides

the full probability density function for all the parameters and data in the DALEA

model. Before we start, we need to introduce the heterogeneous normal distribution,

which will be used in the subsequent derivations.

Definition IV.1 (Heterogeneous normal distribution). Let J ≥ 1 and

−∞ = c0 < c1 < cJ−1 . . . < cJ =∞

µ1, . . . , µJ ∈ R

τ1, . . . , τJ ∈ R.

Define φ and Φ to be the PDF and CDF of the standard normal distribution, respec-

tively, and let ψ be the PDF of the truncated normal distribution with mean µ and
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variance τ 2 inside the interval [c′, c′′]:

ψ(x|µ, τ 2, c′, c′′) = I{x ∈ [c′, c′′]}
τ−1φ(x−µ

τ
)

Φ( c
′′−µ
τ

)− Φ( c
′−µ
τ

)

Then

x ∼ HN[(c1, µ1, τ
2
1 ), . . . , (cJ , µJ , τ

2
J )]

if and only if the PDF of x equals

f [x|(c1, µ1, τ
2
1 ), . . . , (cJ , µJ , τ

2
J )]] =

J∑
j=1

I{x ∈ (cj−1, cj]}πjψ(x|µj, τ 2
j , cj−1, cj),

where

πj =
ζj∑J
j=1 ζj

, ζj =


1, j = 1

νjζj−1, 1 < j ≤ J

, νj =
ψ(cj−1|µj−1, τ

2
j−1, cj−2, cj−1)

ψ(cj−1|µj, τ 2
j , cj−1, cj)

.

According to Definition IV.1, a heterogeneous normal distribution by definition

is a mixture of a finite number of truncated normal distributions whose supports

form a partition of R. Moreover, it is straightforward to show that the PDF of a

heterogeneous normal distribution is continuous, though not necessarily differentiable

at the border points c1, . . . , cJ−1.

Moreover, to derive the full conditional distributions of the parameters in DALEA,

we need the the following assumption on the activation function.

Assumption IV.2. The activation function h(·) is a continuous piecewise linear

function with a finite number (call it J) of linear components:

h(x) =
J∑
j=1

(bjx+ b′j) · I{x ∈ [cj−1, cj]}

for some coefficients bj, b′j ∈ R and −∞ < c1 < . . . < cJ−1 <∞ that satisfy bjcj+b′j =
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bj+1cj + b′j+1 for j = 1, . . . , J − 1.

The family of functions defined in Assumption IV.2 includes many common ac-

tivation functions, such as ReLU (max[0, x]), leaky ReLU (max[0, x] + min[0, rx]

for some constant r > 0), truncated ReLU (min[1,max[0, x]]), and hard sigmoid

(min[1,max[0, 1
2

+ rx)]] for some constant r > 0). Smooth activation functions are

not piecewise linear, but many of them they can be approximated by one of such.

For example, the logistic function [1 + exp(−x)]−1 can be approximated by the hard

sigmoid function, while the softplus function log[1 + exp(x)] can be approximated by

the ReLU function.

Given Assumption IV.2, the pre-activation latent variables v(n)
l,k conditioned on

the other variables, denoted as “rest”, independently follow heterogeneous normal

distributions. For brevity, we only present the case for the truncated ReLU activation

function:

v
(n)
l,k

∣∣∣ rest ∼HN[(c1, µ1,v,l,k,n, υ1,v,l,k,n), (c2, µ2,v,l,k,n, υ2,v,l,k,n), (c3, µ3,v,l,k,n, υ3,v,l,k,n)]

υ2
1,v,l,k,n =υ2

3,v,l,k,n = τ 2
l

υ2
2,v,l,k,n =τ−2

l + σ−2
l

µ1,v,l,k,n =µ3,v,l,k,n = γl,k + βl,ku
(n)
l

µ2,v,l,k,n =
τ−2
l

τ−2
l + σ−2

l

(γl,k + βl,ku
(n)
l ) +

σ−2
l

τ−2
l + σ−2

l

u
(n)
l+1,k

c1 =0, c2 = 1, c3 =∞.

Next, we show that the weight parameters βl,γl and the post-activation latent vari-

able ul both have conditional distribution being a normal distribution. Recall that

in Bayesian linear regression, if the data X ∈ RK×N , y ∈ R1×N and the weight
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parameter β ∈ R1×K satisfy

y|β,X ∼ N(βX, τ 2IN), β|X ∼ N(µ0,Σ0), Σ0 = ρ2IK

for some known noise variance τ 2 and prior parameter parameter ρ2, then the posterior

distribution of β has conjugate form

β|y,X ∼N(µN ,ΣN)

ΣN =(τ−2XX> + ρ−2IK)−1

µN =(XX> + Σ−1
0 )−1(µ0Σ

−1
0 + yX>).

Then the weight parameters βl,γl in DALEA have conditional distribution

(βl,k, γl,k)
∣∣∣ rest ∼N(µβ,γ,l,k,Σβ,γ,l,k)

Σβ,γ,l,k =(τ−2
l ūlū

>
l + Σ−1

0,β,γ,l,k)
−1

µβ,γ,l,k =(ūlū
>
l + Σ−1

0,β,γ,l,k)
−1vl,kū

>
l

Σ0,β,γ,l,k = diag(ρ2
l , . . . , ρ

2
l , ξ

2
l )

where ūl = (ul,1). Moreover, by swapping and transposing the input variables with

the weight parameters in the Bayesian linear regression model with conjugate priors,

the latent variable ul conditioned on the other variables follows

u
(n)
l

∣∣∣ rest ∼N(µu,l,n,Σu,l,n)

Σu,l,n =(τ−2
l β

>
l βl + Σ−1

0,u,l,n)−1

µβ,γ,l,k =(βlβ
>
l + Σ−1

0,u,l,n)−1(Σ−1
0,u,l,nw

(n)
l + β>l v̄

(n)
l )

Σ0,u,l,n =σ2
l−1IKl−1

, w
(n)
l = h(v

(n)
l−1), v̄

(n)
l = v

(n)
l − γl.
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Finally, the full conditionals of the variance parameters are given by

τ 2
l

∣∣∣ rest ∼ IG

(
aτ +

1

2
KlN, bτ +

1

2
‖vl − βul‖2

F

)
σ2
l

∣∣∣ rest ∼ IG

(
aσ +

1

2
KlN, bσ +

1

2
‖ul+1 − h(vl)‖2

F

)
ρ2
l

∣∣∣ rest ∼ IG

(
aρ +

1

2
KlKl−1, bρ +

1

2
‖βl‖2

F

)
ξ2
l

∣∣∣ rest ∼ IG

(
aξ +

1

2
Kl, bξ +

1

2
‖γl‖2

2

)

Based on the conditional distributions, we obtain the posterior Gibbs sampling al-

gorithm in Algorithm 1. The computation complexity (per posterior sample) is

O[NLK2], where N is the training sample size, L is the number of layers, and K

is the average number of nodes in each layer. By using mini-batch methods, this

rate can be reduced to O[NbatchLK
2], where Nbatch is the size of the mini-batches.

Notice that the algorithm outputs M many posterior samples of the predictive dis-

tribution. For any M̃ ∈ Z+, each predictive distribution f [m](·|·) (1, . . . ,M) can be

used as a sampler based on a new sample xnew to draw M̃ many predicted samples

ynew,m,1, . . . ,ynew,m,M̃

iid∼ f [m](ynew|xnew), which in total samples MM̃ many predic-

tions. The sample dimension 1, . . . ,M corresponds to variation due to uncertainty in

model fitting (epistemic), which can be reduced by increasing the sample size, while

the dimension 1, . . . , M̃ corresponds to uncertain inherent to the model (aleatoric),

which cannot be reduced by increasing the sample size.

In addition, although our work primarily focuses on continuous outcomes, DALEA

is also able to analyze categorical data, where the softmax function is approximated

by continuous piecewise linear functions. A detailed description of the categorical

DALEA model is presented in Appendix C.1.
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4.3 Simulations

4.3.1 Experiment setup

We simulated data with nonlinear mean functions and heteroscedastic, non-

Gaussian noise distributions. To better visualize the analysis, both the predictors and

outcomes are one-dimensional. The predictors x(n) (1, . . . , N) are randomly drawn

between -4 and 4 with different sample density to emulate uneven distribution of

samples in real data. We sampled 200 training samples, with 10% of them uniformly

sampled in (-4, -2), 40% in (-2, 0), 40% in (0, 2), and 10% in (2, 4). For the testing set,

we drew 2000 samples uniformly in (-4, 4). The outcome is set to y(n) = g(x(n))+ε(n),

with mean function being g(x) = sin(πx) + 2x and noise sampled from Gaussian,

chi-squared, and Gaussian mixture distributions. In the first setting, the noise are

sampled from zero-mean Gaussian distributions. The standard deviation is set to 0.2

for x ∈ (−4, 0) and 1.0 for x ∈ (0, 4). In the second setting, the noise distribution

is the same as in the first setting except that the zero-mean Gaussian distribution is

replaced with centered and rescaled chi-squared distribution with one degree of free-

dom (χ2
1− 1)/

√
2. In the third setting, we make the noise follow mixture of Gaussian

distributions. For x ∈ (−4, 0), the noise is sampled from N(0, 0.1). For x ∈ (0, 4),

it follows a mixture of N(−1, 0.1) and N(1, 0.1) with equal weights. Examples of the

simulation data design are illustrated in Figure 4.2.

We compared the performance of DALEA with standard BDNN optimized by

Hamiltonian Monte Carlo (HMC) and variational inference (VI). DNN ensembles

(DNNE) and deterministic DNN with optimizers based on mini-batch stochastic gra-

dient descent (SGD) was also included in our experiments. Although deterministic

DNNs cannot quantify uncertainty, we used them as a reference for the point esti-

mates (e.g. posterior means) of DALEA and the other alternative methods. Each

experimental setting was replicated for 25 times. For the neural network architecture,
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we used one hidden layer with 32 nodes, activated by the bounded ReLU function. We

used weak prior distribution InverseGamma(0.001, 0.001) for the parameter weights,

as well as for the latent variables in DALEA. We took 18000 burn-in samples took an-

other 6000 samples and thinned them into 600 samples. This procedure was repeated

on 5 independent chains. To reduce the computation cost, we initialize the weight

parameters by fitting the model with SGD. For HMC, we set the number of leap frog

steps to 10 and initialized the step size to 0.001 multiplied by the standard deviation

of the parameters across the independent chains. In the burn-in process, we dynam-

ically adjust the step size to make the acceptance rate close to 0.6. For DNNE, we

set the number of independent networks to 5, as recommended in Lakshminarayanan

et al. [2016]. For SGD, we used the ADAM [Kingma and Ba, 2014] optimizer.

For performance evaluation, we first access each methods’ prediction accuracy by

the MSE of the point estimates (posterior mean for DALEA, HMC, and VI, ensemble

mean for DNNE, and model output for SGD) for the true mean function on the testing

set. Then we compare their uncertainty quantification by examining the correlation

between the CI width and the estimation error. Correlations are computed with

Kendall correlation coefficient [Kendall, 1945] in order to ensure robustness against

outliers. Finally, we divide the testing samples into 5 strata based on the quantile of

the CI and show the stratified MSE between the posterior mean and the true mean

function, which demonstrates the relation between the estimation confidence and the

estimation error.

4.3.2 Experiment results

Figure 4.3 shows the estimation MSE of the posterior mean. In all the three set-

tings, DALEA achieved the best estimation accuracy, as its posterior mean had the

uniformly lowest MSE. DNNE had the highest estimation errors, followed by SGD

and then by VI, whose MSEs were at least three times higher than those of DALEA.
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Compared VI and SGD, HMC’s performance was closer to DALEA, but its MSE was

still significantly higher. Moreover, the IQR of DALEA is overall lower than that of

the baseline methods, (although this pattern is less visible on the box plots since they

are log-scaled), reflecting a higher estimation stability. Across the experimental set-

tings, the performance of the different methods had similar trends. All the methods

achieved the lowest median MSE on the Gaussian noise, which is expected due to

its simpler structure compared to the other noise distributions. In comparison, the

chi-square noise elevated the median MSE slightly and widened the IQR, a sign for

decreased estimation stability, potentially caused by the high proportion of skewed

outliers. The highest MSE was observed in the Gaussian mixture noise data. These

results suggest that the multi-modal characteristics of the Gaussian mixture distri-

butions making the estimation task challenging for all methods. Within each type of

noise, DALEA was the most accurate and overall the most stable compared to the

alternative methods. In addition, the Bayesian methods achieved lower estimation

MSE than the frequentist methods. This trend shows that the extra computation ef-

fort spent on uncertainty quantification not only provides information on the degree

of confidence but also improves the accuracy of the estimates.

Moreover, for uncertainty quantification, DALEA had the most positive correla-

tion between estimation confidence and estimation error for the Gaussian and chi-

squared noises. In the case of Gaussian mixture noise, the median correlation for

DALEA is about the same as that of DNNE, though the latter had narrower IQR.

Furthermore, we stratified the MSE of the posterior mean by the width of the CIs

to examine the usefulness of the latter as a predictor of the former. The results are

shown in Section 4.6. There was a clear trend for DALEA between the quantile of

CI width and the estimation MSE. For the data with Gaussian chi-squared noise, the

median MSE of the posterior mean increased monotonically across the strata of the

CI widths. This relation shows a close and positive correspondence between estima-
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tion confidence and estimation error for DALEA. Similar trend was observed for the

Gaussian mixture noise, although the the last two strata exhibited more fluxtuation.

In contrast, the CIs of HMC was not as monotonic as DALEA in all the settings.

DNNE had overall positive trends across the strata, but the increment was almost

binary, with the MSE having two distinc groups of levels for CI quantiles less than

0.4 and those greater than 0.4. In addition, there was no clear trend for VI between

the CI width and estimation MSE. Overall, compared to the baseline methods, the

degree of estimation confidence by DALEA corresponds more closely to the actual

estimation error, which shows its higher reliability in uncertainty quantification.

Finally, we illustrate examples of the posterior distributions by DALEA and HMC

in Figures D.1 to D.3. For the experiments with Gaussian noise, it is clear that

DALEA’s CI width is closely related to noise level and data density. The training

samples in (-4, 0) is much less noisy than those in (0, 4), and this difference is

distinctively reflected in the CI width. Moreover, inside the interval of (-4, 0), the

training data points are denser in (-2, 0) than in (-4, -2). As a result, CI is narrower

in the former than in the latter. The same trend is observed for the (0, 2) interval

vs (2, 4) interval. In addition, regions with wider CI also tend to have less curvature

in the posterior mean, showing the model’s preference for simpler structure in the

absence of abundant data. In contrast, the CI band for HMC is much more constant.

For example, the samples are less noisy in (-4, 0) than in (0, 4), but the CI is about

the same width in the two intervals. Inside (-4, 0), the predictive CI over-covers the

testing samples by a large margin, wasting the extra width of the CI. On the other

hand, the true mean function in (0, 4) is more difficult to estimate, as shown by

the greater deviation of the posterior mean from the true mean. However, instead

of increasing the CI width in this region, HMC attempted to overfit the data, which

is indicated by the close alignment between the erroneous spikes in the posterior

mean and the outliers in the training data Figure 4.2. As a result, the posterior
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distribution of HMC is more bumpy. Compared to HMC, DALEA is less sensitive

to outliers, since it is able to accommodate samples far away from the mean by

adjusting the corresponding latent variables without drifting the mean function too

much. Moreover, VI completely missed the periodic fluctuations of the true mean

function and only fit the broader increasing trend. Thus its CI varied little across the

input space, since deviation of its posterior mean from the true mean was dominated

by the periodic error. DNNE had similar patterns as VI, although the estiamted mean

and CI width are more linear. and the CI width less constant. Overall, compared

to the alternative methods, DALEA produced more informative CI and more robust

posterior mean, which resulted in higher estimation accuracy and better uncertainty

quantification.

Similar patterns were also observed on the datasets with chi-squared and Gaussian

mixture noise. In the chi-squared case (Figure D.2), HMC was even more prune to

outliers, which occurred at a higher frequency in comparison to the Gaussian noise

data, while DALEA still produced accurate posterior mean and CI width, without

being too influenced by the outlying training samples. VI, on the other hand, omitted

the sinusoidal fluctuation in the true mean function as in the case of the Gaussian

noise, which caused low estimation accuracy and almost constant CI width. The

performance of DNNE was similar to that for Gaussian noise. Finally, in the case

of Gaussian mixture noise, all the methods faced greater estimation difficulty, but

the posterior distributions by different methods had very different characteristics.

However, for example in the interval of (0, 4) with bimodal outcomes, HMC still tired

to fit the non-normally distributed training samples by increasing the curvature of the

estimated function, but DALEA, in the contrary, made the mean function smoother

and increased the width of the CI to accommodate for the greater uncertainty in the

data, which resulted in a CIs with more constant width in (0, 4), although there were

still uniformly wider than in the less noisy (-4, 0) interval. For VI and DNNE, the
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CI width mostly depended on the modality of the data, and the estimation error was

dominated by the periodic pattern in the true mean function and had little relation

with the CI with. Altogether, these characteristics of the posterior distributions

illustrate that DALEA is able to not only fit highly nonlinear mean functions but

also adjust the confidence level appropriately inside highly noisy regions.

4.4 Analysis of neuroimaging data

We further evaluate the performance of DALEA by applying it to the fMRI data

in the Adolescent Brain Cognitive Development (ABCD) Study. The ABCD data

includes the task fMRI images and other clinical characteristics of 11,800 children

from multiple study sites in the U. S. In our analysis, we used the minimally pro-

cessed contrast map for the 2-back task, which is designed to engage brain regions

for cognitive functions including memory regulation. Moreover, we divided the whole

brain volume into 90 regions according to the automated anatomical labeling (AAL)

atlas and take the mean of the voxels inside each region, which resulted in 90 model

features. We aimed at using these input variables, as well as age, sex, and the psy-

chiatric diagnostic score, to predict cognitive ability (CA), which is measured by the

general CA component score. Both the model features and the outcome variable were

inverse-normal transformed. After removing missing values, our data contained 1,911

subjects.

We replicated the experiment for 25 times. For each replicate, 75% of the samples

were selected to form the training set, while the other 25% were used for testing.

DALEA and the baseline methods were applied to the ABCD data, with the hyper-

parameters being the same as those in the simulation studies (Section 4.3.1). We

accessed prediction accuracy by the Kendall correlation between the posterior mean

and the testing samples. To evaluate uncertainty quantification, we first computed

the MSE between the posterior mean on the testing samples. Then we calculated the
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Kendall correlation between the MSE and the CI width.

Figure 4.6a shows the correlation of each method’s posterior mean with the testing

samples. Neither method achieved a very high testing r2, which indicated a high noise

level. The prediction correlation of DALEA was higher than all the other methods

except DNNE. However, DALEA had the most positive correlation between the CI

width and the testing MSE, as shown in Figure 4.6b. Since the prediction difficulty

was already high, the task of uncertainty quantification was no simpler, which caused

the low MSE-CI correlations for all the methods. But even so, DALEA still achieved

MSE-CI correlations that are significantly higher than all the other methods. In fact,

the MSE-CI correlation for DALEA was positive in all of the 25 replicates, while the

baseline methods had negative MSE-CI correlations in at least 6 replicates. Overall,

in the analysis of the ABCD data, the esimation accuracy of DALEA was higher than

standard DNN and baseline Bayesian DNN methods, while the correlation bewteen

accuracy and confidence for DALEA was higher than that of all the existing methods

for DNN uncertainty quantification.

4.5 Discussion

In this work, we have presented a novel Bayesian deep neural network model with

the capacity of representing complex noise structure in the data. By adding normal la-

tent variables to the intermediate values both before and after activation, our DALEA

model redistributes the noise from the last layer in the DNN to every layer in the DNN,

making it possible to adapt for heteroscedasticity and other intricate relations in the

aleatoric uncertainty. In light of the model structure of DALEA, we have developed

a Gibbs sampling algorithm that allows us to sample from the posterior distribution

without using computationally expensive Metropolis-Hastings-based MCMC methods

or uni-modal approximations by variational inference methods. Moreover, we have

demonstrated the effectiveness of DALEA both in terms of estimation accuracy and
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uncertainty quantification by comparing it against BDNN with Hamiltonian Monte

Carlo, BDNN with variational inference, DNN ensembles, and standard DNNs on

simulated data and neuroimaging data. In the extensive simulation studies, DALEA

has been shown to be able to adjust the CI width efficiently to represent the degree of

estimation uncertainty at each local point. Compared to standard DNNs and DNN

ensembles DALEA has achieved higher estimation and prediction accuracy. Compare

to BNN with HMC and VI, DALEA has not only produced more accurate posterior

means but also generated credibility intervals that are more closely correlated with

the true estimation error, even in the presence of skewed or multimodal noises. Fur-

thermore, DALEA has been shown to be robust against outliers. Instead of shifting

the whole estimated mean function to accommodate for the outlying observations, a

trend that is common for HMC, DALEA can adjust the CI width to reflect the higher

degree of uncertainty caused by the outliers. Finally, in the analysis of the fMRI data

in ABCD, DALEA has achieved higher prediction accuracy than standard DNNs and

outperformed all the alternative methods in uncertainty quantification.

For furture work, one limitation of DALEA that we have noticed is the uniden-

tifiability of the weight parameters, which is also a difficulty in standard DNN mod-

els. Imposing more stringent structures on the weights and reducing the number

of possible equivalent parametrizations can potentially improve the efficiency and

performance of the model. In addition, we plan on applying our model to biomed-

ical datasets with various sample sizes and data dimensions to further evaluate its

estimation accuracy and uncertainty quantification. We look forward to the future de-

velopment of DALEA that will provide more effective and efficient tools for analyzing

high-dimensional complex biomedical data.
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4.6 Tables and Figures

Algorithm 1: Posterior Gibbs sampler for DALEA
Input: data x, y, and hyper parameters
Output: Posterior samples of the predictive distribution F =

{
f [1](·|·), . . . , f [M ](·|·)

}
Initialize F ← {}, u−1 ← x, vL ← y ;
for l← 0, . . . , L do

Sample ρ2l
iid∼ IG(aρ, bρ), ξ

2
l

iid∼ IG(aξ, bξ), τ
2
l

iid∼ IG(aτ , bτ ) ;

Sample βl
iid∼ N(0, ρ2l ), γl

iid∼ N(0, ξ2l ), vl ∼ N(γl + βlul, τ
2
l ) ;

if l > 0 then
Sample σ2

l
iid∼ IG(aσ, bσ), ul+1 ∼ N[h(vl), σ

2
l ] ;

end
end
for m← −mburnin + 1, . . . ,−1, 0, 1, . . . ,M do

for m′ ← 1, . . . ,mthinnning do
for l← 0, . . . , L do

Sample βl,γl ∼ f(βl,γl|ul,vl, τl, ρl) ;
Sample vl ∼ f(vl|βl,γl,ul,ul+1, τl, σl) ;
Sample ul ∼ f(ul|βl,γl,vl,vl−1, τl, σl−1) ;
Sample τ2l ∼ f(τ2l |ul,vl,βl,γl) ;
Sample σ2

l ∼ f(σ2
l |ul+1,vl) ;

Sample ρ2l ∼ f(ρ2l |βl) ;
Sample ξ2l ∼ f(ξ2l |γl) ;

end
end
if m > 0 then

β[m] ← β0, . . . ,βL;
γ[m] ← γ0, . . . ,γL;
τ [m] ← τ0, . . . , τL;
σ[m] ← σ0, . . . , σL−1 ;
Obtain the predictive distribution from the parameters:
f [m](·|·)← fβ[m],γ[m],σ[m],τ [m](·|·) ;

Save the distribution: F ← F ∪ {f [m](·|·)} ;
end

end
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Figure 4.1: Comparison of the conditional distribution of different models. Colors in
the heatmap represent the conditional density. The red solid line corresponds the con-
ditional mean, while the orange dashed lines correspond the 0.025-0.975 conditoinal
quantiles. The top panel illustrates the conditional distribution of a DALEA model.
The center and bottom panels show the conditional distributions with homoscedastic
and heteroscedastic Gaussian noise, respectively, that best approximate that of the
DALEA model.
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Figure 4.2: Data design in simulation studies.

(a) Gaussian noise

(b) Chi-squared noise

(c) Gaussian mixture noise
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Figure 4.3: Estimation accuracy in simulated data. Accuracy is measured by the
MSE (shown in log10 scale) between the true mean function (on the testing samples)
and the point estimates for them. Point estimates are posterior mean for DALEA,
HMC, and VI, ensemble mean for DNNE, and the output of the trained DNN for
SGD.

Figure 4.4: Correlation between CI width and estimation error of the posterior mean.
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Figure 4.5: Accuracy as a function of confidence. x-axis: Strata of CI width percentile.
y-axis: MSE (log10 scale) between posterior mean and true mean function on the
testing data.

(a) Gaussian noise

(b) Chi-squared noise

(c) Gaussian mixture noise
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Figure 4.6: Analysis results for estimation accuracy and uncertainty quantification in
the ABCD data.

(a) Testing prediction r2. (b) Testing correlation between CI width and
squared prediction error.
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CHAPTER V

Conclusion

This work has been motivated by the rapid growth of biomedical data. As the

data dimension and complexity increase much faster than the sample size in biomed-

ical studies, traditional statistical methods have limited power in discovering the

diverse patterns present in data. On the other hand, blind application of machine

learning methods without insight into the data-generation mechanism has limited

usefulness in the biomedical setting. To address these challenges, in this dissertation

I developed several novel methods for analyzing biomedical data from a variety of

application areas. In Chapter II, I proposed two methods for predicting population

structures from genotypes. The proposed methods are robust against the shrink-

age effect caused by the data dimension growing at a higher rate than the training

sample size. From another angle, the proposed methods avoid overfitting the high-

dimensional PCA by updating the training set and decomposing the data matrix for

every new sample. In Chapter III, I developed a neural network-based method for

regressing high-dimensional imaging data on scalar variables. In light of the spatial

correlation among the ultrahigh number of voxels, I used neural networks to take

the voxels as samples to learn the complex spatial patterns and provide more accu-

rate estimates of the association coefficients. This solution interprets the dimension

of the data as another dimension of the sample size, which in effect converts the
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curse of dimensionality into a blessing of dimensionality. In Chapter IV, I proposed

a novel Bayesian neural network model with the capacity to represent complex noise

distributions in order to better quantify uncertainty. The proposed method is able

to avoid oversimplifying randomness in model fitting and data generation and pro-

vide predictions with confidence even under heterogeneous information density and

noise structure. As a whole, this dissertation focuses on developing more effective

and robust methods for analyzing biomedical data with growing dimension and com-

plexity but limited sample sizes. The flexibility of sophisticated machine learning

algorithms has been combined with the theoretical properties of traditional statisti-

cal frameworks to produce methods that are not only accurate but also scientifically

interpretable and sample-efficient. It is my hope that the novel methods proposed in

this dissertation will provide more useful tool sets for analyzing the next-generation

biomedical data.

Several directions have been envisioned for future research. The methods proposed

in this work focus on datasets with relatively small sample sizes compared to data

dimension and complexity, which is common in typical biomedical studies currently.

However, with the rapid development of biotechnology, the sample size is catching

up, which is causing an increasing interest among scientists in analyzing datasets that

are large in both sample size and data dimension. To address this trend, the pro-

posed methods can utilize randomized algorithms to process high volumes of training

samples. For example, the population structure prediction method in Chapter II

can be extended by replacing standard SVD with randomized SVD, accommodating

larger training sets for ancestry prediction at finer levels. On the other hand, the

posterior sampler proposed in Chapter IV can incorporate more advanced techniques

to accelerate the sampling speed as the training size grows. For the image-on-scalar

regression method in Chapter III, not only can the model be extended to handle

large number of images, but the number of covariates and the number of outcomes
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(imaging channels) can also grow together with the number of voxels, which would

require more efficient training algorithms. By developing statistical learning methods

that can handle growth in different dimensions in data, information of higher quality

and quantity can be retrieved from big and complex biomedical datasets to better

facilitate the understanding of biological processes and assist the discovery of novel

therapies.
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APPENDIX A

Supplementary Tables and Figures for Experiments

on FRAPOSA

A.1 Supplementary Tables and Figures of FRAPOSA Exper-

iments
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Table A.1: The study runtimes, MSDs, and the pairwise mean squared differences be-
tween methods, as the reference size varied for the simulated genotypes. The runtimes
were the averages of running each setting for 10 times. “MSD” is the mean squared
difference between the means of the reference populations and the means of the study
populations, scaled by the average distance between the reference population means
and the reference global mean. “Pairwise mean squared difference between methods”
measures the distance between the PC scores predicted by the two methods. Fst is
the fixation index of the reference samples, and the proportional eigenvalue is the
ratio of the sum of the top 2 eigenvalues to the sum of all the eigenvalues for the
reference PCA. The number of variants was 100,000, and the study sample size was
200. Only the top 2 PCs were calculated.

Reference Size 1000 1500 2000 2500 3000
Runtime (sec)

SP 0.26 0.28 0.25 0.22 0.22
AP 0.27 0.25 0.25 0.21 0.20
OADP 15.12 15.21 15.95 15.99 15.89
ADP 247.93 663.23 1249.75 2119.08 3368.69

MSD (10−3)
Null mean 1.2 1.1 1.1 1.1 1.0
Null SD 0.5 0.5 0.5 0.5 0.4
SP 87 53 32 23 14
AP 7 2 3 3 3
OADP 4 1 2 2 2
ADP 6 2 3 3 3

Pairwise mean squared differences between methods (10−3)
ADP-OADP 0.10 0.03 0.02 0.01 0.01
ADP-AP 0.19 0.12 0.09 0.06 0.05
ADP-SP 39 19 12 8 6
OADP-AP 0.33 0.16 0.11 0.07 0.05
OADP-SP 35 17 11 7 5
AP-SP 40 19 12 8 6

Population diversity statistics (10−3)
Fst 4.01 4.29 3.98 4.27 4.06
Proportional eigenvalue 6.0 5.3 4.8 4.7 4.4
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Table A.2: Number of European UK Biobank samples predicted by OADP and Fast-
PCA to belong to each ancestry group. FastPCA was applied to the combined sam-
ples of the European samples in 1000 Genomes and UK Biobank data. European
UK Biobank samples were identified by OADP using global 1000 Genome reference
samples. The PC scores of each of the the UK Biobank samples were then used to
predict its ancestry membership by using the 20-nearest-neighbor method.

Population OADP FastPCA
CEU & GBR 450465 450336
FIN 317 4348
IBS 1816 4175
TSI 9209 2948
Total 461807 461807
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Figure A.1: The PC 1 and PC2 scores of the simulated genotypes as predicted by SP,
AP, OADP, and ADP when the number of variants was 100,000, and the reference size
was 2000. In each of the 4 populations, there were 250 reference samples and 50 study
samples, where each sample contained 100,000 variants. The colored/black circle is
centered at the reference/study sample mean and encloses 90% of the reference/study
samples. The MSD has been scaled with the average distance between the reference
population means and the reference global mean.
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Figure A.2: The PC1 and PC2 scores of the simulated genotypes as predicted by SP,
AP, OADP, and ADP when the number of variants was 100,000, and the reference size
was 3000. In each of the 4 populations, there were 250 reference samples and 50 study
samples, where each sample contained 100,000 variants. The colored/black circle is
centered at the reference/study sample mean and encloses 90% of the reference/study
samples. The MSD has been scaled with the average distance between the reference
population means and the reference global mean.
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Figure A.3: PC scores of 5000 randomly selected UK Biobank samples, as predicted
by SP, AP, OADP, and ADP. The reference panel consisted of all the 2492 samples
in the 1000 Genomes data. The population membership of each study sample was
predicted by the votes of the 20 nearest reference samples with weights inversely
proportional to the distance in between. The MSD has been scaled with the average
distance between the reference population means and the reference global mean.
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Figure A.4: Pairwise method-to-method comparison of the top 4 PC scores predicted
by SP, AP, OADP, and ADP for the 5000 randomly selected UK Biobank study sam-
ples. The differences across methods were measured by the mean squared difference
between the two methods’ PC score prediction. The 2492 samples in 1000 Genomes
were used as the reference set. The coloring of the samples represents the populations
predicted by OADP. The upper panels show the PC scores, while the lower panels
show the pairwise mean squared difference between the methods.
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Figure A.5: PC scores of the 5000 randomly selected European UK Biobank samples,
as predicted by SP, AP, OADP, and ADP. European samples were identified by OADP
using global 1000 Genome reference samples. The reference panel consisted of all the
498 European 1000 Genomes samples. The population membership of each study
sample was predicted by the popular votes of the 20 nearest reference samples with
weights inversely proportional to the distance in between. The MSD has been scaled
with the average distance between the reference population means and the reference
global mean.
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Figure A.6: Pairwise method-to-method comparison of the top 4 PC scores predicted
by SP, AP, OADP, and ADP for the 5000 randomly selected European UK Biobank
study samples. The differences across methods were measured by the mean squared
difference between the two methods’ PC score prediction. The 498 European 1000
Genomes samples were used as the reference set. The coloring of the samples rep-
resents the populations predicted by OADP. The upper panels show the PC scores,
while the lower panels show the pairwise mean squared difference between the meth-
ods.
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Figure A.7: PC scores of the African UK Biobank samples, as predicted by SP, AP,
and OADP. African samples were identified by OADP using global 1000 Genome
reference samples. The reference panel consisted of all the 657 African 1000 Genomes
samples. The population membership of each study sample was predicted by the
votes of the 20 nearest reference samples with weights inversely proportional to the
distance in between. The MSD has been scaled with the average distance between
the reference population means and the reference global mean.
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Figure A.8: PC scores of the admixed American UK Biobank samples, as predicted
by SP, AP, and OADP. Admixed American samples were identified by OADP using
global 1000 Genome reference samples. The reference panel consisted of all the 347
admixed American 1000 Genomes samples. The population membership of each study
sample was predicted by the votes of the 20 nearest reference samples with weights
inversely proportional to the distance in between. The MSD has been scaled with
the average distance between the reference population means and the reference global
mean.
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Figure A.9: PC scores of the East Asian UK Biobank samples, as predicted by SP, AP,
and OADP. East Asian samples were identified by OADP using global 1000 Genome
reference samples. The reference panel consisted of all the 503 East Asian 1000
Genomes samples. The population membership of each study sample was predicted
by the votes of the 20 nearest reference samples with weights inversely proportional
to the distance in between. The MSD has been scaled with the average distance
between the reference population means and the reference global mean.

115



Figure A.10: PC scores of the South Asian UK Biobank samples, as predicted by
SP, AP, and OADP. South Asian samples were identified by OADP using global
1000 Genome reference samples. The reference panel consisted of all the 487 South
Asian 1000 Genomes samples. The population membership of each study sample
was predicted by the votes of the 20 nearest reference samples with weights inversely
proportional to the distance in between. The MSD has been scaled with the average
distance between the reference population means and the reference global mean.

116



Figure A.11: PC scores of the admixed UK Biobank samples, as predicted by SP, AP,
and OADP. Admixed samples were identified by OADP using global 1000 Genome
reference samples. The reference panel consisted of all the 2492 samples in the 1000
Genomes data. The population membership of each study sample was predicted by
the votes of the 20 nearest reference samples with weights inversely proportional to the
distance in between. Admixed samples are defined to be those whose highest-voted
population received 0.875 or less of the total weighted votes by the 20-nearest-neighbor
method. The MSD has been scaled with the average distance between the reference
population means and the reference global mean.
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Figure A.12: The PC1 and PC2 scores of the simulated genotypes as predicted by
SP, AP, OADP, and ADP when the number of variants was 50,000 and the reference
size was 1000. In each of the 4 populations, there were 250 reference samples and
50 study samples. The colored/black circle is centered at the reference/study sample
mean and encloses 90% of the reference/study samples. The MSD has been scaled
with the average distance between the reference population means and the reference
global mean.
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Figure A.13: The PC1 and PC2 scores of the simulated genotypes as predicted by
SP, AP, OADP, and ADP when the number of variants was 10,000 and the reference
size was 1000. In each of the 4 populations, there were 250 reference samples and
50 study samples. The colored/black circle is centered at the reference/study sample
mean and encloses 90% of the reference/study samples. The MSD has been scaled
with the average distance between the reference population means and the reference
global mean.
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Figure A.14: Comparison of the accuracy of SP, AP, OADP, and ADP when applied
to the simulated genotype data. Accuracy was measured by the MSD between the
population means of the reference samples and the corresponding population means
of the study samples, scaled by the average distance between the reference population
means and the reference global mean. Only the top 2 PCs were calculated.
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Figure A.15: PC scores of 5000 randomly selected UK Biobank samples, as predicted
by SP, AP, OADP, and ADP. The reference panel consisted of 498 randomly selected
samples in the 1000 Genomes data, so that the reference size was the same as that
in the analysis of the European samples. The population membership of each study
sample was predicted by the votes of the 20 nearest reference samples with weights
inversely proportional to the distance in between. The MSD has been scaled with
the average distance between the reference population means and the reference global
mean. The shrinkage factors for the top 4 PCs predicted by AP were 0.96, 0.93, 0.80,
and 0.70.
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Figure A.16: Pairwise method-to-method comparison of the top 4 PC scores pre-
dicted by SP, AP, OADP, and ADP for the 5000 randomly selected UK Biobank
study samples. The differences across methods were measured by the mean squared
difference between the two methods’ PC score prediction. The 2492 samples in the
1000 Genomes data were used as the reference set. The coloring of the samples rep-
resents the populations predicted by OADP. The upper panels show the PC scores,
while the lower panels show the pairwise mean squared difference between the meth-
ods.
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Figure A.17: PCA of the combined data of 498 European 1000 Genomes samples and
461,807 European UK Biobank samples. The total sample size was 462,305. The
Europeans in the UK Biobank data were identified by using OADP with all the 2492
samples in the 1000 Genomes data as the reference panel and then applying the 20-
nearest-neighbor method. The analysis used the FastPCA algorithm implemented in
the Eigensoft software.
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APPENDIX B

Proofs for Theoretical Properties of NNISR

B.1 Proofs

For clarity, let β∗, α∗, and σ2
∗ be the true main effects, individual effects, and

noise variance, respectively, in this section.

Definition B.1 (Covering number). Let F be a collection of functions f : RQ → R,

Moreover, let A ⊂ RQ and δ > 0. A finite collection f1, . . . , fL : RQ → R is called

a (δ, ‖ · ‖∞,A)-cover of F if for any f ∈ F , there exists an l ∈ {1, . . . , L} such that

supx∈A |f(x)− fl(x)| < δ. Furthermore, the (δ, ‖ · ‖∞,A)-covering number of F is the

cardinality of the smallest (δ, ‖ · ‖∞,A)-cover of F , denoted as N(F , δ, ‖ · ‖∞,A)

Remark B.2. Definition B.1 is based on Definitions 9.1 and 9.2 in Györfi et al. [2002].

Lemma B.3. Let U ∈ RQ be a random vector with ‖E(U )‖2 <∞ and ‖Cov(U)‖F <

∞. Moreover, assume Cov(U) is positive-definite. Then for any fixed vector a ∈ RQ,

[E(U )>a]2 +eigmin[Cov(U)]‖a‖2
2 ≤ E[(U>a)2] ≤ [E(U)>a]2 +eigmax[Cov(U)]‖a‖2

2.
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Proof. We have

E[(U>a)2] = E[U>a]2 + Var[U>a] = [E(U)>a]2 + a>Cov[U ]a

The eigen-decomposition of Cov(U) implies

eigmin[Cov(U)]a>a ≤ a>Cov[U ]a ≤ eigmax[Cov(U)]a>a.

The proof is complete.

Corollary B.4. For any β̂ : D → R,

V −1

V∑
v=1

∫
x

[
x>β∗(dv)− x>β̂M,V (dv)

]2

µX(dx)

≥ eigmin[Cov(X)]V −1

V∑
v=1

∥∥∥β∗(dv)− β̂M,V (dv)
∥∥∥2

2

V −1

V∑
v=1

∫
x

[
x>β∗(dv)− x>β̂M,V (dv)

]2

µX(dx)

≤ eigmax[Cov(X)]V −1

V∑
v=1

∥∥∥β∗(dv)− β̂M,V (dv)
∥∥∥2

2
.

Proof. This result is a consequence of applying Lemma B.3 to X and β∗(dv) −

β̂M,V (dv), with E[X] = 0 and Cov(X) being positive-definite by Assumption III.8.

Lemma B.5. Let

β̄′M,V = arg min
β∈FM,V

1

MV

V∑
v=1

M∑
m=1

[Ym − x>mβ(dv)]
2

be the least square estimator based on a collection of functions FM,V . Moreover,

for some constant c23 > 0, truncate β̄′M,V at level bM,V = c23 log(MV ) to obtain
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β̄M,V = TbM,V ◦ β̄′M,V . Define

∆2
M,V =V −1

V∑
v=1

∫
x

[
x>β∗(dv)− x>β̄M,V (dv)

]2
µX(dx).

Then there exists a constant c58 > 0 such that

E
[
∆2
M,V

]
≤c58{1 + logN[FM,V , (MV )−1b−1

M,V , ‖ · ‖∞,D]} log(MV )2(MV )−1

+c58 inf
β∈FM,V

V −1

V∑
v=1

‖β∗(dv)− βM,V (dv)‖2
2 + c58M

−1

Proof. First, for any fixed dataset

ΓM,V = {xm,ym(dv) : m ∈ {1, . . . ,M}, v ∈ {1, . . . , V }}

and the corresponding truncated least square estimator β̄M,V (·), the error can be

decomposed into

∆2
M,V =V −1

V∑
v=1

EX|ΓM,V

{[
X>β∗(dv)−X>β̄M,V (dv)

]2}
=T1,M,V + T2,M,V + T3,M,V + T4,M,V
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where

T1,M,V =V −1

V∑
v=1

EX,Z(dv)|ΓM,V

{[
Z(dv)−X>β̄M,V (dv)

]2}
−V −1

V∑
v=1

EX,Z(dv)

{[
Z(dv)−X>β∗(dv)

]2}
−V −1

V∑
v=1

EX,Z(dv)|ΓM,V

{[
TbM,V ◦ Z(dv)−X>β̄M,V (dv)

]2}
+V −1

V∑
v=1

EX,Z(dv)

{[
TbM,V ◦ Z(dv)− ζbM,V (dv)

]2}
T2,M,V =V −1

V∑
v=1

EX,Z(dv)|ΓM,V

{[
TbM,V ◦ Z(dv)−X>β̄M,V (dv)

]2}
−V −1

V∑
v=1

EX,Z(dv)

{[
TbM,V ◦ Z(dv)− ζbM,V (dv)

]2}
−2(MV )−1

V∑
v=1

M∑
m=1

[
TbM,V ◦ Zm(dv)−X>mβ̄M,V (dv)

]2
+V −1

V∑
v=1

[
TbM,V ◦ Zm(dv)− ζbM,V (dv)

]2
T3,M,V =2(MV )−1

V∑
v=1

M∑
m=1

[
TbM,V ◦ Zm(dv)−X>mβ̄M,V (dv)

]2
−2(MV )−1

V∑
v=1

M∑
m=1

[
TbM,V ◦ Zm(dv)− ζbM,V (dv)

]2
−2(MV )−1

V∑
v=1

M∑
m=1

[
Zm(dv)−X>mβ̄M,V (dv)

]2 − [Zm(dv)−X>mβ∗(dv)
]2

T4,M,V =2(MV )−1

V∑
v=1

M∑
m=1

[
Zm(dv)−X>mβ̄M,V (dv)

]2 − [Zm(dv)−X>mβ∗(dv)
]2
,

where TbM,V ◦ Z(·) is the truncated version of Z(·) at level bM,V , and ζbM,V (·) =

E[TbM,V ◦ Z(·)]. We bound each term separately. For T1,M,V , T2,M,V , and T3,M,V , the

proof of their bounds is identical to in the proof of Lemma 1 in Bauer et al. [2019],
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which gives

T1,M,V ≤c47 log(MV )(MV )−1

E[T2,M,V ] ≤c48 log(MV )2 log{N[FM,V , (MV )−1b−1
M,V ], ‖ · ‖∞,D}(MV )−1

E[T3,M,V ] ≤c49 log(MV )(MV )−1.

For T4,M,V , we further decompose it into T4,M,V = T41,M,V + T42,M,V , where

T41,M,V =2(MV )−1

V∑
v=1

M∑
m=1

[
Zm(dv)−X>mβ̄M,V (dv)

]2 − [Zm(dv)−X>mβ∗(dv)
]2

−2(MV )−1

V∑
v=1

M∑
m=1

[
Ym(dv)−X>mβ̄M,V (dv)

]2 − [Ym(dv)−X>mβ∗(dv)
]2

T42,M,V =2(MV )−1

V∑
v=1

M∑
m=1

[
Ym(dv)−X>mβ̄M,V (dv)

]2 − [Ym(dv)−X>mβ∗(dv)
]2
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We can bound T41,M,V as

1

2
E[T41,M,V ] =(MV )−1

V∑
v=1

M∑
m=1

E
[
Zm(dv)−X>mβ̄M,V (dv)

]2
−(MV )−1

V∑
v=1

M∑
m=1

E
[
Zm(dv)−X>mβ∗(dv)

]2
−(MV )−1

V∑
v=1

M∑
m=1

E
[
Zm(dv) + αm(dv)−X>mβ̄M,V (dv)

]2
+(MV )−1

V∑
v=1

M∑
m=1

E
[
Zm(dv) + αm(dv)−X>mβ∗(dv)

]2
=(MV )−1

V∑
v=1

M∑
m=1

E
{
αm(dv)X

>
m[β∗(dv)− β̄M,V (dv)]

}
=V −1

V∑
v=1

E

{[
β∗(dv)− β̄M,V (dv)

] [
M−1

M∑
m=1

αm(dv)X
>
m

]}

≤

√√√√E

{
V −1

V∑
v=1

∥∥β∗(dv)− β̄M,V (dv)
∥∥2

2

}

·

√√√√√E

V −1

V∑
v=1

∥∥∥∥∥M−1

M∑
m=1

αm(dv)Xm

∥∥∥∥∥
2

2


Notice that the first term is bounded by

√
eigmin[Cov(X)]−1 E[∆2

M,V ] by Corol-
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lary B.4. For the second term, for any v ∈ {1, . . . , V },

E


∥∥∥∥∥M−1

M∑
m=1

αm(dv)Xm

∥∥∥∥∥
2

2


= E


Q∑
q=1

[
M−1

M∑
m=1

αm(dv)Xm,q

]2


=

Q∑
q=1

{
E

[
M−1

M∑
m=1

αm(dv)Xm,q

]}2

+ Var

{
M−1

M∑
m=1

αm(dv)Xm,q

}

=

Q∑
q=1

{
M−1

[
M∑
m=1

αm(dv)

]
E[Xq]

}2

+M−2

[
M∑
m=1

αm(dv)
2

]
Var {Xq}

=0 +

[
M∑
m=1

αm(dv)
2

]
M−2

Q∑
q=1

Var {Xq}

≤

[
M∑
m=1

c2
55

]
M−2‖Cov(X)‖2

F = c2
55c59M

−1

by Assumption III.8. Then T41,M,V is bounded by

E[T41,M,V ] ≤ 2c2
55c59M

− 1
2

√
eigmin[Cov(X)]−1 E[∆2

M,V ].

For T42,M,V , define AM,V to be the event that

max{|Ym(dv)| : 1 ≤ m ≤M, 1 ≤ v ≤ V } > bM,V .

Then T42,M,V = T7,M,V + T8,M,V , where

T7,M,V =2(MV )−1

V∑
v=1

M∑
m=1

[
Ym(dv)−X>mβ̄M,V (dv)

]2 I[AM,V ]

T8,M,V =2(MV )−1

V∑
v=1

M∑
m=1

[
Ym(dv)−X>mβ̄M,V (dv)

]2 I[AcM,V ]

−2(MV )−1

V∑
v=1

M∑
m=1

[
Ym(dv)−X>mβ∗(dv)

]2
.

130



For T7,M,V , we have

1

2
E[T7,M,V ]

= E

{
I[AM,V ](MV )−1

V∑
v=1

M∑
m=1

[
Ym(dv)−X>β̄M,V (dv)

]2}

≤
√

E {I[AM,V ]}

√√√√(MV )−1

V∑
v=1

M∑
m=1

E
{[
Ym(dv)−X>β̄M,V (dv)

]4}

≤
√

Pr[AM,V ]

√√√√(MV )−1

V∑
v=1

M∑
m=1

E
{

8Ym(dv)4 + 8[X>β̄M,V (dv)]4
}

≤
√

Pr[AM,V ]

√√√√(MV )−1

V∑
v=1

M∑
m=1

E
{

8Zm(dv)4 + 8αm(dv)4 + 8[X>β̄M,V (dv)]4
}

Notice that because of x < exp(x) for all x ∈ R, we have

E[Zm(d)4] = E{[Zm(d)2]2} ≤ E

{[
2

c52

exp
(c52

2
Zm(d)2

)]2
}

=
4

c2
52

E[exp(c52Zm(d)2)] ≤ 4c53

c2
52

by Assumption III.9. Moreover, |αm(dv)| < c55 by Assumption III.7, and

E
{∣∣X>β̄M,V (dv)

∣∣4} ≤E
{[
‖X‖‖β̄M,V (dv)‖

]4}
= ‖β̄M,V (dv)‖4 E

{
‖X‖4

}
≤c56b

4
M,V = c56c

4
23 log(MV )4

by Assumption III.8. Thus the first term is bounded by c57 log(MV )2 for some con-

stant c57 > 0. For the second term, by using the inequality

I[|U | > bM,V ] ≤ exp(c52U
2)

exp(c52b2
M,V )

,
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we have

√
Pr[AM,V ] ≤

√√√√ V∑
v=1

M∑
m=1

Pr[|Ym(dv)| > bM,V ]

≤

√√√√ V∑
v=1

M∑
m=1

Pr[|Zm(dv)|+ |αm(dv)| > bM,V ]

≤

√√√√ V∑
v=1

M∑
m=1

Pr[|Zm(dv)| > bM,V − c55]

≤

√∑V
v=1

∑M
m=1 E[exp[c52Zm(dv)2]]

exp[c52(bM,V − c55)2]
≤ c43

√
MV

exp[c44 log(MV )2]
.

Since for any c > 0,

exp(−c log(n)2) = n−c log(n) < n−2

for n > exp(2/c), we get

1

2
E[T7,M,V ] ≤ c45

log(MV )2
√
MV

M2V 2
≤ c46

1

MV

for MV sufficiently large. For T8,M,V , because |Tb(z)− y| < |z − y| for all |y| < b, we
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have

T8,M,V ≤2(MV )−1

V∑
v=1

M∑
m=1

[
Ym(dv)−X>mβ̄′M,V (dv)

]2 I[AcM,V ]

−2(MV )−1

V∑
v=1

M∑
m=1

[
Ym(dv)−X>mβ∗(dv)

]2
≤2(MV )−1

V∑
v=1

M∑
m=1

[
Ym(dv)−X>mβ̄′M,V (dv)

]2 − [Ym(dv)−X>mβ∗(dv)
]2

=2(MV )−1 inf
β∈FM,V

V∑
v=1

M∑
m=1

[
Ym(dv)−X>mβ(dv)

]2
−2(MV )−1

V∑
v=1

M∑
m=1

[
Ym(dv)−X>mβ∗(dv)

]2
≤2(MV )−1

V∑
v=1

M∑
m=1

[
Ym(dv)−X>mβ̈M,V (dv)

]2

−
[
Ym(dv)−X>mβ∗(dv)

]2
for any β̈M,V ∈ FM,V . Choose β̈M,V such that

V −1

V∑
v=1

∥∥∥β∗(dv)− β̈M,V (dv)
∥∥∥2

≤ inf
β∈FM,V

V −1

V∑
v=1

‖β∗(dv)− βM,V (dv)‖2 + (MV )−1.
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Then

1

2
E[T8,M,V ]

≤(MV )−1

V∑
v=1

M∑
m=1

E

{[
Ym(dv)−X>mβ̈M,V (dv)

]2
}

−(MV )−1

V∑
v=1

M∑
m=1

E
{[
Ym(dv)−X>mβ∗(dv)

]2}
=(MV )−1

V∑
v=1

M∑
m=1

E
{[
Ym(dv)−X>mβ∗(dv)

]2}
+(MV )−1

V∑
v=1

M∑
m=1

E

{[
X>mβ

∗(dv)−X>mβ̈M,V (dv)
]2
}

+(MV )−1

V∑
v=1

M∑
m=1

E
{

2
[
Ym(dv)−X>mβ∗(dv)

] [
X>mβ

∗(dv)−X>mβ̈M,V (dv)
]}

−(MV )−1

V∑
v=1

M∑
m=1

E
{[
Ym(dv)−X>mβ∗(dv)

]2}
=T81,M,V + T82,M,V ,

where

T81,M,V =(MV )−1

V∑
v=1

M∑
m=1

E

{[
X>mβ

∗(dv)−X>mβ̈M,V (dv)
]2
}

T82,M,V =(MV )−1

V∑
v=1

M∑
m=1

E
{

2
[
Ym(dv)−X>mβ∗(dv)

] [
X>mβ

∗(dv)−X>mβ̈M,V (dv)
]}

.
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For T81,M,V , we have

T81,M,V =V −1

V∑
v=1

E

{[
X>β∗(dv)−X>β̈M,V (dv)

]2
}

=V −1

V∑
v=1

∫
x

[
x>β∗(dv)− x>β̈M,V (dv)

]2

µX(dx)

≤ eigmax[Cov(X)]V −1

V∑
v=1

∥∥∥β∗(dv)− β̈M,V (dv)
∥∥∥2

≤ eigmax[Cov(X)] inf
β∈FM,V

V −1

V∑
v=1

‖β∗(dv)− βM,V (dv)‖2

+ eigmax[Cov(X)](MV )−1

by Lemma B.3. For T82,M,V , we have

T82,M,V

=2(MV )−1

V∑
v=1

M∑
m=1

E
{[
Ym(dv)−X>mβ∗(dv)

]
Xm

}> [
β∗(dv)− β̈M,V (dv)

]
=2(MV )−1

V∑
v=1

M∑
m=1

E {[εm(dv) + αm(dv)]Xm}>
[
β∗(dv)− β̈M,V (dv)

]
=2(MV )−1

V∑
v=1

M∑
m=1

E {εm(dv) + αm(dv)}E {Xm}>
[
β∗(dv)− β̈M,V (dv)

]

by the independence between εm and Xm. Then T82,M,V = 0 because E[Xm] = 0.

Therefore, 1
2

E[T8,M,V ] ≤ T81,M,V , which leads to

E[T4,M,V ] ≤c50

{
inf

β∈FM,V
V −1

V∑
v=1

‖β∗(dv)− βM,V (dv)‖2

}

+c50

{
+(MV )−1 +M− 1

2

√
eigmin[Cov(X)]−1 E[∆2

M,V ]
}
.
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Altogether, we have

E[∆2
M,V ] ≤ c50

{
inf

β∈FM,V
V −1

V∑
v=1

‖β∗(dv)− βM,V (dv)‖2

+ log(MV )2(1 + log{N[FM,V , (MV )−1b−1
M,V ], ‖ · ‖∞,D})(MV )−1

+M− 1
2

√
eigmin[Cov(X)]−1 E[∆2

M,V ]

}
,

which implies

(√
E[∆2

M,V ]− 1

2
c50M

− 1
2

)2

= E[∆2
M,V ]− c50M

− 1
2

√
E[∆2

M,V ] +
1

4
c2

50M
−1

≤c50 inf
β∈FM,V

V −1

V∑
v=1

‖β∗(dv)− βM,V (dv)‖2

+c50 log(MV )2(1 + log{N[FM,V , (MV )−1b−1
M,V ], ‖ · ‖∞,D})(MV )−1

+
1

4
c2

50M
−1.

Thus

√
E[∆2

M,V ]

≤c20

{
inf

β∈FM,V
V −1

V∑
v=1

‖β∗(dv)− βM,V (dv)‖2

+ log(MV )2(1 + log{N[FM,V , (MV )−1b−1
M,V ], ‖ · ‖∞,D})(MV )−1 +M−1

} 1
2

+c20

√
M−1

≤c28

{
inf

β∈FM,V
V −1

V∑
v=1

‖β∗(dv)− βM,V (dv)‖2

+ log(MV )2(1 + log{N[FM,V , (MV )−1b−1
M,V ], ‖ · ‖∞,D})(MV )−1 +M−1

}
.
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Therefore,

E[∆2
M,V ] ≤c58 inf

β∈FM,V
V −1

V∑
v=1

‖β∗(dv)− βM,V (dv)‖2

+c58 log(MV )2(1 + log{N[FM,V , (MV )−1b−1
M,V ], ‖ · ‖∞,D})(MV )−1

+c58M
−1.

Lemma B.6. For σ2 : D → R+, let

β̃′M,V = arg min
β∈FM,V

1

MV

V∑
v=1

M∑
m=1

[Ym − x>mβ(dv)]
2σ−2(dv).

be the weighted least square estimator based on a collection of functions FM,V . More-

over, for some constant c23 > 0, truncate β̃′M,V at level bM,V = c23 log(MV ) to obtain

β̃M,V = TbM,V ◦ β̃′M,V . Then there exists a constant c59 > 0 such that

V −1

V∑
v=1

∫
x

[
x>β∗(dv)− x>β̃M,V (dv)

]2

µX(dx)

≤c59{1 + logN[FM,V , (MV )−1b−1
M,V , ‖ · ‖∞,D]} log(MV )2(MV )−1

+c59 inf
β∈FM,V

V −1

V∑
v=1

‖β∗(dv)− βM,V (dv)‖2
2 + c59M

−1

Proof. This result is obtained by applying the same argument for Lemma B.5,

which does not require assumptions on the distribution of d (i.e. regardless of

whether the L2 errors at the voxels d1, . . . ,dV are weighted uniformly or weighted by

σ−2(d1), . . . , σ−2(dV )).

Lemma B.7. For σ2 : D → R+ and λM,V > 0 with λM,V ≤ c67(MV )−1 for some
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constant c67 > 0, let

β̂′M,V = arg min
β∈FM,V

1

MV

V∑
v=1

M∑
m=1

[Ym − x>mβ(dv)]
2σ−2(dv) + λM,V

1

V

V∑
v=1

‖β(dv)‖1

be the L1-penalized weighted least square estimator based on a collection of functions

FM,V , which satisfies FM1,V1 ⊂ FM2,V2 for all M1 ≤ M2 and V1 ≤ V2. Moreover,

for some constant c23 > 0, truncate β̂′M,V at level bM,V = c23 log(MV ) to obtain

β̂M,V = TbM,V ◦ β̂′M,V . There exists a constant c59 > 0 such that

V −1

V∑
v=1

∫
x

[
x>β∗(dv)− x>β̂M,V (dv)

]2

µX(dx)

≤c59{1 + logN[FM,V , (MV )−1b−1
M,V , ‖ · ‖∞,D]} log(MV )2(MV )−1

+c59 inf
β∈FM,V

V −1

V∑
v=1

‖β∗(dv)− βM,V (dv)‖2
2 + c59M

−1

Proof. The proof is almost identical to those of Lemma B.5 and Lemma B.6. We only
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need to change the arguments for T8,M,V and after:

T8,M,V ≤2(MV )−1

V∑
v=1

M∑
m=1

[
Ym(dv)−X>mβ̂′M,V (dv)

]2

σ−2(dv)

−2(MV )−1

V∑
v=1

M∑
m=1

[
Ym(dv)−X>mβ∗(dv)

]2
σ−2(dv)

≤2(MV )−1

V∑
v=1

M∑
m=1

[
Ym(dv)−X>mβ̂′M,V (dv)

]2

σ−2(dv)

+2λM,V V
−1

V∑
v=1

‖β(dv)‖1

−2(MV )−1

V∑
v=1

M∑
m=1

[
Ym(dv)−X>mβ∗(dv)

]2
σ−2(dv)

= inf
β∈FM,V

2(MV )−1

V∑
v=1

M∑
m=1

[
Ym(dv)−X>mβ(dv)

]2
σ−2(dv)

+ 2λM,V V
−1

V∑
v=1

‖β(dv)‖1

−2(MV )−1

V∑
v=1

M∑
m=1

[
Ym(dv)−X>mβ∗(dv)

]2
σ−2(dv)

≤2(MV )−1

V∑
v=1

M∑
m=1

[
Ym(dv)−X>mβ̈M,V (dv)

]2

σ−2(dv)

+2λM,V V
−1

V∑
v=1

‖β̈M,V (dv)‖1

−2(MV )−1

V∑
v=1

M∑
m=1

[
Ym(dv)−X>mβ∗(dv)

]2
σ−2(dv)

for any β̈M,V ∈ FM,V . Choose β̈M,V such that

V −1

V∑
v=1

∥∥∥β∗(dv)− β̈M,V (dv)
∥∥∥2

≤ inf
β∈FM,V

V −1

V∑
v=1

‖β∗(dv)− βM,V (dv)‖2 + (MV )−1.
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Then by the same argument as in Lemma B.5 and Lemma B.6

1

2
E[T8,M,V ] ≤T81,M,V + T82,M,V + T83,M,V ,

where

T81,M,V =(MV )−1

V∑
v=1

M∑
m=1

E

{[
X>mβ

∗(dv)−X>mβ̈M,V (dv)
]2
}
σ−2(dv)

=V −1

V∑
v=1

E

{[
X>β∗(dv)−X>β̈M,V (dv)

]2
}
σ−2(dv)

≤ eigmax[Cov(X)]V −1

V∑
v=1

∥∥∥β∗(dv)− β̈M,V (dv)
∥∥∥2

≤ eigmax[Cov(X)] inf
β∈FM,V

V −1

V∑
v=1

‖β∗(dv)− βM,V (dv)‖2

+ eigmax[Cov(X)](MV )−1

T82,M,V =(MV )−1

V∑
v=1

M∑
m=1

E
{

2
[
Ym(dv)−X>mβ∗(dv)

] [
X>mβ

∗(dv)−X>mβ̈M,V (dv)
]}

=0

T83,M,V =λM,V V
−1

V∑
v=1

‖β̈M,V (dv)‖1 ≤ λM,VQ
1
2V −1

V∑
v=1

‖β̈M,V (dv)‖2

≤λM,VQ
1
2V −1

V∑
v=1

‖β∗(dv)‖2 + λM,VQ
1
2V −1

V∑
v=1

‖β∗(dv)− β̈M,V (dv)‖2

≤λM,VQ
1
2V −1

V∑
v=1

Q
1
2 c51 + λM,VQ

1
2

√√√√V −1

V∑
v=1

‖β∗(dv)− β̈M,V (dv)‖2
2

≤c51λM,VQ+ λM,VQ
1
2 c66 ≤ c68(MV )−1

for some constant c66 such that V −1
∑V

v=1 ‖β∗(dv)− β̈M,V (dv)‖2
2 ≤ c2

66 for M and V

sufficiently large, and c68 = (c51Q+ c66Q
1
2 )c67. Then

1

2
E[T8,M,V ] ≤ T81,M,V + T83,M,V ≤ c69T81,M,V
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for some constant c69 > 0. The rest of the proof is the same as in Lemma B.5 and

Lemma B.6.

Lemma B.8. Let N ∈ N+. Suppose random vector (XN , YN) ∈ RK × R satisfies

E[Y 2
N ] ≤ ∞ and has conditional mean function f(x) = E[YN |XN = x] for all N .

Moreover, suppose f is a P -smooth (K ′, l)-GHIM with P > 1, and define P ′ = bP−1c.

Let SN , T ∈ N+ with T ≥ P ′, and let aN ∈ R+ satisfy 1 ≤ aN ≤ SN and aT+P ′+3
N ≤ SPN

for N sufficiently large. Set R =
(
K′+T
K′

)
(T+1)(SN +1)K

′. For arbitrary c29 ∈ R+ and

κN ∈ (0, 1], let γ = log(N)S
K′+P (2T+3)+1
N κ−1

N . There exist f̂N ∈ Gl,R,K′,K,γ, χn ⊂ RK,

and c30, c36 ∈ R+ such that for N sufficiently large,

|f(x)− f̂N(x)| ≤ c30a
T+P ′+3
N S−PN for all x ∈ [−aN , aN ]K \ χN ,

|f̂N(x)| ≤ c36a
P ′

N S
K′+TP
N for all x ∈ RK

where PrXN
(χN) < c29κN .

Proof. Lemma B.8 is based on Theorem 3 in Bauer et al. [2019]. In addition to simpli-

fying the conditions to suit the purpose of our theoretical analysis, we generalizes the

result by extending the constant probability measure PrX to the probability measure

PrXN
that depends on N , which make the result applicable to the fixed-design model

in NNISR, since the empirical mean of the samples in a fixed-design model can be

interpreted as the theoretical mean of a discrete distribution with the support having

a cardinality equal to the sample size.

To grant this generalized result, the proof in Bauer et al. [2019] only needs minimal

adjustment. In the original proof, [−aN , aN ]K is divided into SKN manyK-dimensional

hypercubes, and it is shown that for each hypercube, a neural network exists such that

inside the hypercube (except near the boundary), the neural network approximates

the Taylor polynomial of f arbitrarily well, while outside the hypercube (except near

the boundary), the neural network is arbitrarily close to zero. As for all the transi-
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tion zones near the boundaries, the union of all of them can be made to have PrX

measure less than c29κN by appropriately shifting the grid that divides [−aN , aN ]K

into hypercubes. However, this argument does not require the probability measure

to be independent of N . In fact, since a different neural network is fitted for each N

and the mean conditional function f does not depend on N , even if the probability

measure PrXN
is allowed to vary with respect to N , the same grid-shifting argument

is still valid, and thus the bound on the exception set χN remains unchanged. See

Supplement A in Bauer et al. [2019] for the original proof.

Lemma B.9. Let N ∈ N+. Suppose random vector (XN , YN) ∈ RK × R satisfies

E[Y 2
N ] ≤ ∞ and has conditional mean function f(x) = E[YN |XN = x] for all N .

Moreover, suppose f is a J-piecewise P -smooth (K ′, l)-GHIM with P > 1, and define

P ′ = bP − 1c. Let SN , T ∈ N+ with T ≥ P ′, and let aN ∈ R+ satisfy 1 ≤ aN ≤ SN

and aT+P ′+3
N ≤ SPN for N sufficiently large. Set R =

(
K′+T
K′

)
(T + 1)(SN + 1)K

′. For

arbitrary c29 ∈ R+ and κN ∈ (0, 1], let γ = log(N)S
K′+P (2T+3)+1
N κ−1

N . There exist

f̂N ∈ Gl,R,K′+J,K,γ, χn ⊂ RK, and c30, c36 ∈ R+ such that for N sufficiently large,

|f(x)− f̂N(x)| ≤ c30a
T+P ′+3
N S−PN for all x ∈ [−aN , aN ]K \ χN ,

|f̂N(x)| ≤ c36a
P ′

N S
K′+TP
N for all x ∈ RK

where PrXN
(χN) < c29κN .

Proof. We first consider the case when l = 0. Since f is a J-piecewise P -smooth

(K ′, 0)-GHIM, there exists a P -smooth g : RK → R and a J-side polytope Ω ⊂ RK

such that

f(x) = g(a>1 x, . . . ,a
>
K′x) · IΩ(x)

according to Definition III.3. By Lemma B.8, there exists a f̃N ∈ Gl,R,K′,K,γ of the
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form

f̃N(x) =
R∑
r=1

ξ[3]
r φ
( 4K′∑
k′=1

ξ
[2]
r,k′φ

( K∑
k=1

ξ
[1]
r,k′,kxk + ξ

[1]
r,k′,0

)
+ ξ

[2]
r,0

)
+ ξ

[3]
0 ,

such that ‖f̃N‖∞ ≤ c64a
P ′
N S

K′+TP
N and |f(x) − f̃N(x)| ≤ c65a

T+P ′+3
N S−PN for all x ∈

[−aN , aN ]K except for a set with PrXN
measure less than 1

2
c29κN . We insert a neural

network of the type defined in Lemma 6 of Bauer et al. [2019] to make f̃N vanish

outside Ω:

f̂N(x) =
R∑
r=1

ξ[3]
r φ

(
4K′∑
k′=1

ξ
[2]
r,k′φ

( K∑
k=1

ξ
[1]
r,k′,kxk + ξ

[1]
r,k′,0

)
+

4K′+J∑
k′=4K′+1

ξ
[2]
r,k′φ

( K∑
k=1

ξ
[1]
r,k′,kxk + ξ

[1]
r,k′,0

)
+ ξ

[2]
r,0

)
+ ξ

[3]
0

such that |ξ[2]
r,k′|, |ξ

[1]
r,k′,k| < γ (r = 1, . . . , R; k′ = 4K ′ + 1, . . . , 4K ′ + J ; k = 1, . . . , K)

and for some constant c38, c39 ∈ R+,

|f̃N(x)− f̂N(x)| <c38|f(x)− f̃N(x)| for all x ∈ Ω \ ∂δNΩ

|f̂N(x)| <c39|f(x)− f̃N(x)| for all x ∈ Ωc \ ∂δNΩ

for all N sufficiently large, where ∂δNΩ ⊂ RK is the collection of all the points within

a distance of δN from the boundary of Ω. By setting δN to be the same as the width

of the hypercubes in the proof for Theorem 2 in Bauer et al. [2019], ∂δNΩ has PrXN

measure less than the union of all the hypercube boundaries for N sufficiently large,

since the number of hypercubes increases with N . Thus PrXN
(∂δNΩ) < 1

2
c29κN for N

sufficiently large. Therefore, for some constants c30, c36 ∈ R+,

|f(x)− f̂(x)| ≤ c30a
T+P ′+3
N S−PN for all x ∈ [−aN , aN ]K \ χN ,

|f̂(x)| ≤ c36a
P ′

N S
K′+TP
N for all x ∈ RK
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where PrXN
(χN) < c29κN . Finally, observe that f̂N ∈ G0,R,K′+dJ/4e,K,γ ⊂ G0,R,K′+J,K,γ,

which completes the proof for the case of l = 0.

For l > 0, we have

f(x) =
R̄∑
r=1

fr(x) · IΩr(x) =
R̄∑
r=1

gr(hr,1(x), . . . , hr,K′(x)) · IΩr(x)

for some P -smooth (K ′, l − 1)-GHIMs gr : RK′ → R (r = 1, . . . , R̄) and hr,k : RK →

R (r = 1, . . . , R̄; k = 1, . . . , K ′), and J-side polytopes Ωr ⊂ RK (r = 1, . . . , R̄).

By Lemma B.8, fr(x) can be approximated by f̃r,N that is a composition of g̃r,N ∈

G0,R,K′,K′,γ with ĥr,k,N ∈ Gl−1,R,K′,K,γ:

f̃r,N(x) =
R∑
r=1

ξ[3]
r φ
( 4K′∑
k′=1

ξ
[2]
r,k′φ

( K′∑
k=1

ξ
[1]
r,k′,kĥr,k,N(x) + ξ

[1]
r,k′,0

)
+ ξ

[2]
r,0

)
+ ξ

[3]
0 .

Let Ωr be bounded by hyperplanes ãr,jx + ār,j ≤ 0 (j = 1, . . . , J) with ãr,j ∈ RK

and ār,j ∈ R. Define hr,K′+j(x) = ãr,jx + ār,j, which is P -smooth, since it is a

linear function. Then hr,K′+j (j = 1, . . . , J) can be approximated by some ĥr,K′+j,N ∈

Gl−1,R,K′,K,γ with the approximation error no greater than that of hr,k and ĥr,k,N for

k = 1, . . . K ′. Then by applying the same argument as in the case for l = 0, we can

insert a neural network of the type defined in Lemma 6 of Bauer et al. [2019] that

results in

f̂r,N(x) =
R∑
r=1

ξ[3]
r φ
( 4K′+J∑

k′=1

ξ
[2]
r,k′φ

(K′+J∑
k=1

ξ
[1]
r,k′,kĥr,k,N(x) + ξ

[1]
r,k′,0

)
+ ξ

[2]
r,0

)
+ ξ

[3]
0

such that the weights are all bounded by γ, and for some constants c30, c36 ∈ R+,

|f(x)− f̂(x)| ≤ c30a
T+P ′+3
N S−PN for all x ∈ [−aN , aN ]K \ χN ,

|f̂(x)| ≤ c36a
P ′

N S
K′+TP
N for all x ∈ RK
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where PrXN
(χN) < c29κN . In addition, f̂N ∈ Gl,R,K′+dJ/4e,K′+J,γ ⊂ Gl,R,K′+J,K′+J,γ,

which completes the proof for the case of l > 0.

Proof of Lemma III.16. Lemma B.7 decomposes the total L2 error of β∗ into

estimation error, approximation error, and bias due to individual effects (which is of

order M−1. The estimation error depends on the covering number of the collection

of neural networks, which is given by Lemma 2 in Bauer et al. [2019] by setting the

sample size to MV . The approximation error is given by Lemma B.9 by setting

N = V and PrX(A) =
∑V

v=1 I[dv ∈ A]. The rest of the proofs is the same as the

proof for Theorem 1 in Bauer et al. [2019], except that here we do not require the

neural network complexity (which is controlled by R) to be a function of M and V ,

which makes the error bound in Equation (3.8) dependent on R.

Proof of Theorem III.17. Let β◦M,V,R,q(dv) be the thresholded estimator. Let

MV be sufficiently large so that c81 log(MV )−1 < ψ/2. For q ∈ {1, . . . , Q} and

v ∈ {1, . . . , V }, notice that

E
[∣∣∣ sign[β∗M,V,R,q(dv)]− sign[β◦M,V,R,q(dv)]

∣∣∣]
= Pr

[
| sign[β∗M,V,R,q(dv)]| 6= | sign[β◦M,V,R,q]|

]
+ Pr

[
sign[β∗M,V,R,q(dv)] = − sign[β◦M,V,R,q]

]
.
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Moreover,

Pr
[
| sign[β∗M,V,R,q(dv)]| 6= | sign[β◦M,V,R,q]|

]
= Pr

[
|β◦M,V,R,q(dv)| ≥ ρM,V,R,q

]
I
[
β∗M,V,R,q(dv) = 0

]
+ Pr

[
|β◦M,V,R,q(dv)| < ρM,V,R,q

]
I
[
β∗M,V,R,q(dv) 6= 0

]
≤Pr

[
|β◦M,V,R,q(dv)− β∗M,V,R,q(dv)| ≥ c80 log(MV )−1

]
I
[
β∗M,V,R,q(dv) = 0

]
+ Pr

[
|β◦M,V,R,q(dv)− β∗M,V,R,q(dv)| > ψ/2

]
I
[
β∗M,V,R,q(dv) 6= 0

]
≤Pr

[
|β◦M,V,R,q(dv)− β∗M,V,R,q(dv)| ≥ c80 log(MV )−1

]
≤c−2

80 log(MV )2 E

[∣∣∣β◦M,V,R,q(dv)− β∗M,V,R,q(dv)
∣∣∣2]

by Markov’s Inequality. By the same argument,

Pr
[
sign[β∗M,V,R,q(dv)] = − sign[β◦M,V,R,q(dv)]

]
≤c−2

80 log(MV )2 E

[∣∣∣β◦M,V,R,q(dv)− β∗M,V,R,q(dv)
∣∣∣2] .

Thus

E

[
V −1

V∑
v=1

∥∥∥ sign[β∗M,V,R(dv)]− sign[β◦M,V,R(dv)]
∥∥∥

0

]

≤2Qc−2
80 log(MV )2 E

[
V −1

V∑
v=1

∥∥∥β◦M,V,R,q(dv)− β∗M,V,R,q(dv)
∥∥∥2
]

≤c79[log(MV )5(M−1V −1R +R−
2b
K ) + log(MV )2M−1]

for some constant c79 > 0.
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Proof of Corollary III.18. Consider the conditional loss function for estimating

the individual effects:

`α|β,σ2(α|β̂M,V,R, σ
2)

= M−1V −1

V∑
v=1

∥∥∥y(dv)−Xβ̂M,V,R(dv)−α(dv)
∥∥∥2

2
σ−2(dv).

=M−1V −1

M∑
m=1

V∑
v=1

∣∣∣ym(dv)− x>mβ̂M,V,R(dv)− αm(dv)
∣∣∣2σ−2(dv)

=M−1V −1

M∑
m=1

V∑
v=1

∣∣∣α∗m(dv) + x>m

[
β∗(dv)− β̂M,V,R(dv)

]
+ εm(dv)− αm(dv)

∣∣∣2σ−2(dv).

Since each αm is fitted independently by using samples on V voxels, it has error bound

E

[
V −1

V∑
v=1

∣∣∣α∗m(dv) + x>m

[
β∗(dv)− β̂M,V,R(dv)

]
− α̂M,V,R,m(dv)

∣∣∣2]

≤c82[log(V )3(V −1R +R−
2b
K )]

for some constant c82 ∈ R+. Moreover,

E

[
V −1

V∑
v=1

∣∣∣x>m [β∗(dv)− β̂M,V,R(dv)
] ∣∣∣2]

≤c83[log(MV )5((MV )−1R +R−
2b
K ) + log(M)2M−1]
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for some constants c83 ∈ R+ by Lemma III.16. Then

E

[
V −1

V∑
v=1

∣∣∣α∗m(dv)− α̂M,V,R,m(dv)
∣∣∣2]1/2

≤E

[
V −1

V∑
v=1

∣∣∣α∗m(dv) + x>m

[
β∗(dv)− β̂M,V,R(dv)

]
− α̂M,V,R,m(dv)

∣∣∣2]1/2

+ E

[
V −1

V∑
v=1

∣∣∣x>m [β∗(dv)− β̂M,V,R(dv)
] ∣∣∣2]1/2

≤c26[log(MV )5((MV )−1R +R−
2b
K ) + log(M)2M−1 + log(V )3(V −1R)]1/2

for some constant c26 ∈ R+.

Proof of Corollary III.19. The proof follows the same argument as in the proof

for Corollary III.18.
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APPENDIX C

DALEA for Categorical Outcomes
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C.1 DALEA for categorical outcomes

For classification problems, we use the softmax function to map the values of the

nodes in the last layer to a probability vector that sums to one:

softmax−1
{

E
[
y(n)

]}
=

βJ+1φ
[
· · ·β2φ

[
β1x

(n) +α1 + δ
(n)
1

]
+α2 + δ

(n)
2 · · ·

]
+αJ+1 + δ

(n)
J+1, (C.1)

where

softmax(z) =
[exp(z), 1]>

1> exp(z) + 1

Suppose there are K outcome categories, and each outcome y(n) belongs to category

k̄(n). We represent the outcome as a one-hot vector y(n) = [y
(n)
1 , . . . , y

(n)
K ], where

y
(n)
k =


1, if k = k̄(n),

0, otherwise,

for k = 1, . . . , K. The problem is to sample z(n)|y(n),µ(n), τ 2 from the model

z(n) iid∼ N(µ(n), τ 2)

π(n) = softmax(z(n))

y(n) ∼ Multinoulli(π(n)),

where z(n),µ(n) ∈ RK−1 and τ 2 ∈ R. To do this, we update one element of z(n) at a

time while fixing the other K − 2 elements. Then the joint log density for element k
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is

−log f
(
z

(n)
k ,y(n)

∣∣∣z(n)
−k , µ

(n)
k , τ 2

)
= − log f

(
z

(n)
k , k(n)

∣∣∣z(n)
−k , µ

(n)
k , τ 2

)
=

1

2τ 2

(
z

(n)
k − µ

(n)
k

)2

+ log
[

exp
(
z

(n)
k

)
+
∑

exp
(
z

(n)
−k

)]
− z(n)

k̄(n)
+ C0

=
1

2τ 2

(
z

(n)
k − µ

(n)
k

)2

+ log

 exp
(
z

(n)
k

)
∑

exp
(
z

(n)
−k

)
+ 1

+ 1

− z(n)

k̄(n)
+ C1

=
1

2τ 2

(
z

(n)
k − µ

(n)
k

)2

+ log
[

exp
(
z

(n)
k − a

(n)
k

)
+ 1
]
− z(n)

k̄(n)
+ C1

=
1

2τ 2

(
z

(n)
k − µ

(n)
k

)2

+ log
[

exp
{
s

(n)
k

(
z

(n)
k − a

(n)
k

)}
+ 1
]

+ C2

where

a
(n)
k = log

[∑
exp

(
z

(n)
−k

)
+ 1
]

s
(n)
k =


−1, if k = k̄(n),

1, otherwise,

Notice that log
[

exp
(
z

(n)
k − a

(n)
k

)
+ 1
]
is the softplus function with respect to z(n)

k

centered at a(n)
k , which approaches the ReLU function max(0, ·) when z

(n)
k → ±∞,

and is convex around a(n)
k . Thus we can approximate it by breaking its domain into
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three parts:

log{exp[s(z − a)] + 1} = φ[s(z − a)]

≈ ψ[s(z − a)]

=


0 if s(z − a) < − 1

2c

c
2
(z − a+ s

2c
)2 if − 1

2c
≤ s(z − a) ≤ 1

2c

s(z − a) if s(z − a) > 1
2c

=



s−1
2

(z − a) if z ∈ (−∞, a− 1
2c

)

c
2
(z − a+ s

2c
)2 if z ∈ [a− 1

2c
, a+ 1

2c
]

s+1
2

(z − a) if z ∈ (a+ 1
2c
, ∞)

where c > 0 is a constant for approximating the logistic function with a hard sigmoid

function

{exp[s(z− a)]−1 + 1}−1 = φ′[s(z− a)] ≈ ψ′[s(z− a)] = min[max[0.5 + sc(z− a), 0], 1].

For example, the first-order Taylor polynomial of φ′ at 0 sets c = 0.25, while Ten-

sorFlow and Theano sets c = 0.2. (For the middle part, we may be tempted to use

the Taylor polynomial of φ centered at a (i.e. log(2) + 0.5(z − a) + 0.125(z − a)2) or

centered at one of the two boundary points, but that does not guarantee the overall
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function to be continuous.) Then the density function is broken into three cases:

− log f
(
z
(n)
k ,y(n)

∣∣∣z(n)−k , µ(n)
k , τ2

)
=

1

2τ2

(
z
(n)
k − µ(n)

k

)2
+ log

[
exp

{
s
(n)
k

(
z
(n)
k − a(n)k

)}
+ 1
]
+ C2

≈ 1

2τ2

(
z
(n)
k − µ(n)

k

)2
+ ψ

[
s
(n)
k

(
z
(n)
k − a(n)k

) ]
+ C2

=



1
2τ
−2
(
z
(n)
k − µ(n)

k

)2
+ C2 if s(n)k

(
z
(n)
k − a(n)k

)
< − 1

2c

1
2 (τ
−2 + c)

{
z −

[
τ−2

τ−2+cµ+ c
τ−2+c

(
a− s

(n)
k

2c

)]}
+ C3 if − 1

2c ≤ s
(n)
k

(
z
(n)
k − a(n)k

)
≤ 1

2c

1
2τ
−2
[
z
(n)
k −

(
µ
(n)
k − s(n)k τ2

)]2
+ C4 if s(n)k

(
z
(n)
k − a(n)k

)
> 1

2c

=



1
2τ
−2
[
z
(n)
k −

(
µ
(n)
k − s

(n)
k −1
2 τ2

)]2
+ C4 if z(n)k ∈

(
−∞, a(n)k − 1

2c

)
1
2 (τ
−2 + c)

{
z −

[
τ−2

τ−2+cµ+ c
τ−2+c

(
a− s

(n)
k

2c

)]}
+ C3 if z(n)k ∈

[
a
(n)
k − 1

2c , a
(n)
k + 1

2c

]
1
2τ
−2
[
z
(n)
k −

(
µ
(n)
k − s

(n)
k +1

2 τ2
)]2

+ C4 if z(n)k ∈
(
a
(n)
k + 1

2c , ∞
)

In all the cases the density has a quadratic form, and the density overall is continuous,

which implies that the distribution is a three-part heterogeneous normal distribution.
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APPENDIX D

Supplementary Tables and Figures for DALEA
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Figure D.1: Posterior distributions for data generated with Gaussian noise.
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Figure D.2: Posterior distributions for data generated with centered chi-squared
noise.
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Figure D.3: Posterior distributions for data generated with Gaussian mixture noise.
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