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ABSTRACT

Novel technologies and innovations lead to new applications. This dissertation

demonstrates new applications enabled by novel nanophotonic devices. I will de-

scribe two nanophotonic devices: hyperbolic metamaterial and transparent graphene

photodetector and show their applications when combined with proper algorithms.

The first nanophotonic device I will introduce is hyperbolic metamaterial. Hyper-

bolic metamaterial has been known to support high-k mode waves. Several methods

have been proposed to use hyperbolic metamaterial for imaging beyond the diffraction

limit. However, they suffer from high loss, or require coherent illumination. We take

a different route to this task and propose a novel method for nanostructure discrimi-

nation based on hyperbolic metamaterial. Instead of imaging the objects of interest,

we showed that nano-sized objects with different configuration have different scat-

tering spectrum, which could be used for fingerprinting and discriminating between

different object configurations with deep subwavelength resolution.

The second nanophotonic device I will describe is the focal stack camera made

from transparent graphene photodetectors. Single layer graphene is highly transpar-

ent, which only absorbs about 2% of the light. The recent developed focal stack cam-

era, made from multiple planes of such transparent graphene imaging array stacked

along the optical axis, is able to capture the focal stack of a scene in a single exposure.

Note that before the introduction of such focal stack camera, capturing of a focal stack

is only possible for a static scene using sequential exposure by adjusting the focusing

depth. Combining with proper algorithms, we demonstrated several applications us-

ing such focal stack data, including light field reconstruction, depth estimation, 3D

object tracking and secure imaging: we proposed an iterative neural network based

method, Momentum-Net, for light field reconstruction, with improved convergence

speed compared to existing iterative neural network based methods; We further sped

up the reconstruction by proposing a non-iterative learning based method; An unsu-

pervised depth estimation from focal stack method is also developed, which achieves

significantly better depth accuracy, compared to single-image based method; We de-

signed a neural network based method to track objects in 3D, without the need of

light field reconstruction or depth estimation and achieves great tracking accuracy;

xvii



We also demonstrated image forgery detection using focal stack data. Compared with

single-image based forgery detection, the proposed focal stack based method has sig-

nificantly better generalization ability on new unseen datasets and is robust against

common post-processing methods. Since the design of the focal stack camera would

affect its 3D sensing performance, we investigated the dependence of the camera pa-

rameters, on its depth estimation performance. The performance is further compared

with the light field camera on several datasets, highlighting scenarios where the focal

stack camera might be preferred.
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CHAPTER I

Introduction

Imaging is the process of represent or reproduce objects of interests in a visual

representation. The process of how we see the world is one familiar example of

the imaging process: light rays emanating from the objects enters the human’s eye

through the pupil, get refracted by the cornea and lens and then form an image on

the retina. Cameras also work in a similar way, with the role of the pupil replaced

by a lens aperture, and the retina by a image sensor. Imaging are not limited to

the macroscopic world. It also plays a very important role in the microscopic world.

Microscopes are developed for this purpose and they allow us to examine extremely

small structures of interests, such as bacterial, protein and DNA.

Countless efforts have been made to improve the imaging speed, image quality

and the image resolution. With innovations in the imaging hardware and software,

enormous progress has been achieved. For example, in the history of photography,

photosensitive films were used to detect the light, which requires additional chemical

processes to develop the final image. The introduction of electronic image sensors

such as CCD or CMOS to detect the light, has revolutionized the way photos are

taken: images nowadays are stored as digital signals and films are no longer needed.

It also enables additional post-processing and editing to the captured images.

This dissertation concerns imaging-related applications in both microscopic world

and macroscopic world, enabled by novel nanophotonic devices. The thesis is orga-

nized as follows: chapter II presents a novel method of nanoscale structure finger-

printing and discrimination using hyperbolic metamaterial, with deep subwavelength

resolution. Chapter III describes learning based light field reconstruction from focal

stack methods, improving the reconstruction quality and speed. Chapter IV intro-

duces an unsupervised learning based method for estimating depth from focal stack.

Chapter V presents a fast and accurate 3D object tracking method using focal stack.

Chapter VII proposes to use focal stack as a tamper-evident secure image file to make
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the images and videos more secure against malicious manipulation and forgery. The

remaining part of this chapter provides background information of our works in this

dissertation.

1.1 Concepts in imaging

1.1.1 Microscopy

A typical imaging system consists of a lens system, and an image sensor. Over

the past years, lots of efforts have been spent to design lens using computer-aided

software, and grind them precisely to minimize the aberration and improve the image

quality. However, even with a perfect lens with no aberration, the resolution of the

microscope is still limited by a fundamental physical limit due to the diffraction of the

light. Such ideal imaging system is called diffraction-limited imaging system and the

spatial resolution ∆x,y it can achieve is on the order of λF , where λ is the wavelength

of the light used for imaging and F is the f-number of the imaging system.

Diffraction refers to the phenomenon of the bending of waves around the corners

of an obstacle or through an aperture. It can be explained by the Huygens–Fresnel

principle: each point in a propagating wavefront behaves like an individual spherical

wavelets. These spherical wavelets can be considered as the new source of the wave.

Sum of these spherical wavelets leads to the light propagation and the apparent

bending of the light around obstacles.

Fig. 1.1(a) shows the diffraction pattern produced by imaging a point object with

perfect lens with circular aperture. Instead of a point according to the geometric

optics, it exhibits a circular disk pattern due to the diffraction of light from the

circular aperture. The angle between the central maximum and the first minimum is

given by θmin = 1.22 λ
A

, where A is the aperture diameter. The fact that the image of

an point object is a disk with finite size, instead of a point, limits the resolution of

an imaging system: when two point objects are close to each other with significant

overlap, two points can no longer be distinguished clearly, as illustrated in Fig. 1.1(b).

Rayleigh criterion is one of the criterion that defines when two patterns are merely

distinguishable. It is defined as the case when the first minimum of one Airy pattern

overlaps with the maximum of the other Airy pattern. According to the Rayleigh

criterion, the resolution of a diffraction-limited system is given by: ∆x,y = 1.22λN .

To resolve objects beyond the diffraction limit, numerous novel imaging systems

have been proposed. Betzig et al. [9] proposed to turn the fluorescence of individual

molecules on and off, and by imaging the same region multiple times, a super-resolved
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(a) (b)

Figure 1.1. (a) Airy pattern produced by imaging a point object using a perfect lens
with a circular aperture.(b) Airy pattern produced by light from two point sources
passing through a circular aperture and meets the Rayleigh criterion.

image can be obtained. Hell et al. [37] proposed the stimulated emission depletion

(STED) microscopy, in which one laser is used to stimulates fluorescent molecules

to glow, and another laser is used to cancels out all fluorescence except for that

in a manometer-sized volume. Scanning over a 3D volume with nanometer-sized

spatial step leads to a super-resolved image. These inventions have wide applications,

especially in biology, and were awarded the 2014 Noble Prize in Chemistry.

Superlens [79] was also proposed as a way to achieve super-resolution imaging. It

is a slab of special material with negative refractive index, which is able to amplify

the evanescent waves that typically decay exponentially along propagation and hence

preserve high spatial frequency signals.

1.1.2 Light field photography

Describing the geometric distribution of light is an important topic in computer

graphics, which has applications including novel view synthesis [51], synthetic aper-

ture imaging [73, 42], 3D display [61]. Plenoptic function [2], was proposed by Adlson

and Bergen for this purpose, which define the distribution of light as a 5D function

P (x, y, z, θ, φ), 3D for each spatial position (x, y, z) and 2D for each angular direction

of the light ray (θ, φ). Based on this definition, the value of the plenoptic function

P (x, y, z, θ, φ) indicates the radiance of the ray at location (x, y, z), traveling along

direction (θ, φ).

3



When the light is propagating in the free-space that are free from absorption and

scattering, the radiance of the ray is preserved along its propagation. Hence the 5D

plenoptic function can be reduced to a 4D function called light field. A 4D light field

can be parameterized using two parallel reference planes placed at arbitrary positions.

In this two-plane parameterization, every light ray can be identified by its interception

at the first plane coordinates ν = (u, v) and the second plane coordinates x = (x, y),

with its radiance being l(x,ν).

Such a 4D light field can be thought of as a collection of 2D conventional im-

ages Iu0,v0(x, y), called sub-aperture images, each with a different view point (u0, v0).

These sub-aperture images are visually similar to each other, but with minute dif-

ferences. This is because a point in 3D space maps to different spatial locations in

different sub-aperture images due to parallax. For example, a pixel at (x, y) in view

(u, v), if unoccluded, corresponds to the pixel at (x−D, y) in view (u+ 1, v), where

D is the disparity of the 3D point. The disparity D of the point is directly related to

its depth do as:

D = b · f ·
(

1

do
− 1

df

)
, (1.1)

where b is the separation between sub-aperture images (baseline), f is the focal length,

df is the light field focusing depth, do is the depth of the 3D object. Fig. 1.2 shows two

sub-aperture images of ‘boardgame’ light field from the HCI light field dataset [38],

illustrating the parallax effect due to the change in the viewpoint.

Center view Bottom-right view

Figure 1.2. Example sub-aperture images of the ‘boardgame’ light field in the HCI
dataset.
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Instead of fixed (u, v), as in a sub-aperture image Iu0,v0(x, y), fixing (x, u) or fixing

(y, v) leads to the so called epi-polar images (EPI): l(x, y0, u, v0) , Ey0,v0(x, u) is called

horizontal EPI and l(x0, y, u0, v) , Ex0,u0(y, v) is called vertical EPI. Fig. 1.3 shows

example EPI images of the ‘boardgame’ light field from the HCI light field dataset. A

apparent feature of the EPI is that it has a stripe-like structure with different slopes.

It is directly due to the parallax effect described above and can be used as a cue for

depth estimation [117]: a vertical stripe in EPI indicates the pixel is at the focusing

depth and a positive slope, indicates the pixel is located closer to the focusing depth.

Ey0=100,v0=5(x, u) Ey0=400,v0=5(x, u)

Figure 1.3. Example horizontal EPIs of the ‘boardgame’ light field in the HCI dataset.

There exists multiple ways to capture a light field, including using an array of

cameras, or using a plenoptic camera, such as Lytro and Raytrix1. The camera

array works by directly capturing images of the scene from different viewpoint. The

plenoptic camera, works by multiplexing the 4D light field onto a 2D sensor plane

using a microlens array. It is also possible to reconstruct a light field using focal stack

data, which will be described in chapter III.

Light field can be used for tasks including depth estimation [117, 93], material

recognition [104] and pose estimation [121].

1.1.3 Focal stack photography

Focal stack refers to a set of images of the same scene, captured with varying

focus positions. These images contain depth-dependent defocus blur and encode 3D

information about the scene.

In conventional focal stack photography, a focal stack is typically collected by

multiple exposures with changing focus position. This approach, however, is only

applicable to static scenes with no moving objects. Motion artifacts can be minimized

by rapid sequential acquisition of the focal stack images; Another method is to use

1https://raytrix.de/
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Figure 1.4. Illustration of circle of confusion for a sensor plane with focusing distance
df .

liquid lens [50], which can change focal length quickly, though such lenses suffer from

aberrations and hence degraded image quality.

According to the thin lens equation:

1

do
+

1

di
=

1

f
, (1.2)

where do is the object distance, di is the image distance and f is the focal length of

the lens. Either changing di by moving the sensors or changing f using a liquid lens

will leads to the image focusing at a different depth and a set of these images form a

focal stack. Each image in the focal stack contains depth-dependent defocus blur as

illustrated in Fig. 1.4. Specifically, for a camera with an aperture of diameter A, the

diameter of the circle of confusion c is given by:

c = A
|do − df |

do

f

df − f
, (1.3)

where df is the distance from an in-focus object point to the lens (camera focusing

distance) and do is the distance from an out-of-focal-plane object to the lens.

Other than directly capturing a focal stack, a focal stack can be synthesized from

a light field using the add-shift algorithm [73]. It works by shifting each sub-aperture

image of the light field according to the desired focusing depth and then averaging

the shifted images. The resulted averaged image is the image focused at the desired

focusing depth. Repeating the algorithm with different focusing depth construct a

focal stack.
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(a) (b)

Figure 1.5. Iso-frequency curves of HMM. (a) Type I HMM. (b) Type II HMM.
Adapted from [83].

Since the focal stack encodes the 3D information of the scene, when combined

with suitable algorithms, it can be used to track 3D objects [114], estimate depth

maps [70, 62, 91, 33] and reconstruct light fields [18, 54, 39].

1.2 Emerging nanomaterials and new imaging approaches

1.2.1 Hyperbolic metamaterial

Metamaterials are artificial inhomogeneous structured media with the scale of

inhomogeneity that is much smaller than the wavelength of interest; through engi-

neering their structure, special optical properties not existing in natural materials can

be realized. In the effective medium approximation, the response of most metamate-

rials can be characterized by macroscopic effective permittivity ε and permeability µ

tensors.

Hyperbolic metamaterial (HMM) is one type of metamaterial that exhibits hy-

perbolic dispersion, i.e., when the real parts of two different primary components of

either the dielectric permittivity (electric HMM) or magnetic permeability (magnetic

HMM) tensors have opposite signs. Electric HMM (magnetic HMM) can be either

classified as type I if ε⊥ > 0 and ε‖ < 0 (µ⊥ > 0 and µ‖ < 0) or type II if ε⊥ < 0

and ε‖ > 0 (µ⊥ < 0 and µ‖ > 0), where ε⊥, µ⊥ represent the tensor component

perpendicular to the optical axis and ε‖ > 0, µ‖ > 0 represent the tensor component

parallel to the optical axis.
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(a) (b)

Figure 1.6. Example HMM structure. (a) metal-dielectric layered structure. (b) Wire
array structure. Adapted from [83].

Electric HMM can be realized either using a metal-dielectric layered structure

or a metallic wire array structure, as shown in Fig. 1.6. Since the permittivity of

metal is negative below the plasma frequency, by constraining the electrons in 2D

(Fig. 1.6(a)) and 1D (Fig. 1.6(b)), the material will have anisotropic electric response

and hyperbolic dispersion regime can be reached via proper design.

The most attractive feature of HMM is that it can support high-k modes, which

leads to many novel super resolution imaging applications. Hyper-lens [57] made from

HMM was proposed to magnify high spatial frequency features and convert them

to low spatial frequency features. These low spatial frequency features can then be

imaged by conventional optics. Narimanov proposed to use HMM for hyperstructured

illumination [67]. By measuring the phase and amplitude of electric field distribution

in the far field, the Motti projection [64] of the object with deep subwavelength

resolution can be reconstructed.

1.2.2 Graphene

Graphene is a monolayer of carbon atoms arranged in a two-dimensional (2D)

hexagonal honeycomb lattice. Fig. 1.7(a) shows the graphene lattice structure. A

unit cell of graphene consists of a pair of carbon atoms A and B . Repeating the

unit cell along lattice vector a1 and a2 forms the entire graphene lattice. Fig. 1.7(b)

shows the graphene’s reciprocal lattice in k space, which is also hexagonal. The two

sets of equivalent points, K and K’ , which are called Dirac points.

According to the tight-binding model, the graphene has a band structure of the
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(a) (b)

(c)

Figure 1.7. (a) Graphene lattice. (b) Graphene reciprocal lattice in k-space. (c)
Graphene energy band structure. Adapted from [72].

form:

E±(k) = ±t
√

3 + f(k)− t′f(k), (1.4)

f(k) = 2 cos
(√

3kya
)

+ 4 cos

(√
3

2
kya

)
cos

(
3

2
kxa

)
(1.5)

where the plus sign corresponds to the energy of conduction band electrons and

the minus sign corresponds to the energy of valence band electrons, t (≈ 2.8eV ) is

the nearest-neighbor hopping energy and t′ (in range [0.02t, 0.2t], depending on the

tight-binding parameterization) is the next nearest-neighbor hopping energy in the

same sub-lattice, a is the carbon-carbon distance (1.42 Å). Fig. 1.7(a) shows the

calculated band structure. Around the Dirac points, the electron dispersion relation

is approximately linear and is given by:

E±(k) = ±vFk, (1.6)
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(a) (b)

Figure 1.8. (a) Photograph of an aperture partially covered by graphene. The line
scan profile shows the intensity of transmitted white light along the yellow line. (b)
Transmittance spectrum of single-layer graphene (open circles). The red line is the
transmittance expected for 2D Dirac fermions. The green curve takes into account a
nonlinearity and triangular warping of graphene’s electronic band structure. Adapted
from [66].

where vF = 3ta/2 ≈ 1× 106m/s is called the Fermi velocity.

Due to this linear dispersion relationship, graphene has a flat absorption spec-

trum from visible to the THz frequency, with an absorbance of πe2/~c ≈ 2.3%, where

~ is the reduced Planck’s constant. Fig. 1.8 (a) shows a photograph of graphene

sample, highlighting its high transparency. Fig. 1.8 (b) shows the measured trans-

mittance spectrum of the graphene (open circles) and its comparison with theoretical

calculation.

Numerous methods have been developed to synthesize graphene. Common meth-

ods include mechanical exfoliation [75], epitaxial growth [7, 8, 24], and chemical vapor

deposition (CVD) growth methods [53]. Graphene obtained from exfoliation method

has high quality, but is hard to scale up the production. The epitaxial growth method

is scalable and compatible with Si technology. On the other hand, graphene synthe-

sized from CVD method has a lower quality, but is low-cost and have large-area device

applications.

Due to the graphene’s ultra-broadband absorption spectrum and high carrier mo-

bility, it has great potential to be used for high-speed broadband photodetection.

Many graphene-based photodetectors have been proposed in the recent years. Mueller

designed a interdigitated metal-graphene-metal photodetector, which achieves a max-

imum external photoresponsivity of 6.1 mA/W at a wavelength of 1.55 um [65] and

an operation speed of 16 GHz can be achieved. Furchi et al. [28] proposed to use a
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(a) (b)

Figure 1.9. (a) Device structure of the graphene phototransistor. (b) Schematic of
band diagram and photoexcited hot carrier transport under light illumination. Elec-
trons and holes are represented by grey and red spheres, respectively. Vertical arrows
represent photoexcitation, and lateral arrows represent tunnelling of hot electron
(grey) and hole (red). Adapted from [55].

(a) (b)

Figure 1.10. (a) Schematic showing simultaneous capture of multiple images of a
3D object on different focal planes using focal stack camera. Inset: photograph of
focal stack camera used in experiments with two transparent focal planes. (b) Upper
panel: optical image of a 4×4 transparent graphene photodetector array, Lower panel:
schematic of the all-graphene phototransistor design. It includes a top graphene layer
as transistor channel and a bottom graphene patch as floating gate, separated by a
silicon tunneling barrier (purple).
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microcavity to enhance the absorption of the graphene and achieves a responsivity of

21 mA/W at the cavity resonance frequency of 864 nm. More recently, research teams

at University of Michigan designed a ultra-broadband graphene-based phototransis-

tor with high responsivity [55]. Fig. 1.9 shows the device structure and the working

principle. The photodetector consists of two graphene layers sandwiching a thin tun-

nel barrier. Upon light illumination, charge accumulation on the top graphene layer

due to quantum tunnelling leads to strong photogating effect, which results in high

photoconductive gain.

In the follow-up works, after replacing the Si substrate by glass and replacing

the metal interconnect by graphene, highly transparent graphene photodetectors are

demonstrated [54, 114]. A novel focal stack camera, based on such highly transparent

graphene photodetectors, was introduced [54, 114]; this optical system can capture

a focal stack in a single exposure. Note that this is not possible for conventional

focal stack photography, in which sensor movement or lens focus adjustment are

needed. The system is illustrated in Fig. 1.10. Such graphene-transistor based image

sensor is highly transparent (90 %-95 % transmission), while still maintaining high

responsivity. This novel focal stack camera can be applied to applications including

light field reconstruction, depth estimation and secure imaging, as will be presented

in the following chapters.
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CHAPTER II

Nanoscale Fingerprinting with Hyperbolic

Metamaterials

2.1 Introduction

To resolve the objects beyond the diffraction limit is of great interests, especially in

biology. Fluorescence based super-resolution methods [9, 37] requires sequential image

captures and fluorescent labeling, making them inapplicable to real-time dynamic

imaging applications. This is also true for near-field approach to super-resolution

imaging [10], in which spatial scanning of the sample is needed.

Metamaterials, having extraordinary material properties not found in nature, pro-

vide another direction to super-resolution imaging. Superlens [79] is able to enhance

the evanescent waves of the object, but it can be subsequently focused and brought

to far-field using conventional optics. On the other hand, the later introduced hyper-

lens [44], was designed to propagate near field signals and magnify it spatially, which

can be then imaged by conventional optics. However, both methods have high loss

due to the typical use of metallic materials in these metamaterials. Such high loss

necessitates a strong illumination to the sample in order to have a good signal to

noise ratio in the signal. This is not practical for many applications in biology, where

the cells would be damaged by strong intensity illumination.

This chapter proposes an alternative method for discriminating nanoscale objects.

Importantly, our proposed method does not capture an image of the object. Instead,

it captures a spectral fingerprint of the object and allow us to discriminate nanoscale

objects with different spatial separations and/or made from different materials. Con-

trary to the hyperlens approach where the sample has to be strongly illuminated,

the sample in our methods are illuminated by light that is already attenuated by the

metamaterial. Our proposed method provides an alternative way for discriminating
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(a) (b)

Figure 2.1. (a): Structure design of the HMM. (b): The norm square of the scattered
electric field for the TM wave incident from top at wavelength 1200 nm.

nanoscale objects and may find applications in the cases where other methods are not

suitable. The result of this project is published in APL Photonics [40].

2.2 HMM device design and working principle

In this project, we designed a HMM structure shown in Fig. 2.1(a) and showed

that, using HMM, a spectral scan of the scattered intensity can be used to deter-

mine the positions of sub-wavelength sized objects. We take advantage of the deep

subwavelength resolution from the highly localized beams and we are able to obtain

the nanoscale object’s spatial and material information by matching the measured

spectral characteristics to known records, which we refer to as “fingerprinting.”

If the incident field illuminates an object present near an HMM, the scattered field

excites Volume Plasma Polariton (VPP) modes [43] inside the HMM; these modes

have a highly localized field pattern and propagate along a well-defined direction,

as illustrated in Fig. 2.1(b). This highly localized beam has subwavelength width,

and its propagation direction is strongly wavelength dependent. By using wavelength-

dependent intensity only measurement, it is then possible to resolve the subwavelength

structure. We used a 2D finite element analysis (COMSOL 5.2) to demonstrate the

feasibility of the proposed method (see appendix section 2.4 for COMSOL implemen-

tation details).

In our simulations, the type II HMM device consists of 8 pairs of alternating

20.4 nm Ta2O5 and 6.5 nm Al-doped Ag layers [113, 112], as shown in Fig. 2.1(a).

An Al-doped Ag scatterer is placed 1 nm above the HMM and is illuminated with a

normally incident plane wave. The small distance between the scatterer and the HMM
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(a) (b)

Figure 2.2. (a): Iso-frequency curve of the type II HMM for the TM wave, illustrat-
ing how the localized beam propagation angle θ can be determined. Wavevector k
(blue arrow); group velocity vg (red arrow). (b): Localized beam angle versus wave-
length/unit cell size for different wavelengths using exact simulation (solid lines with
filled circles). Asterisks: The beam angle of the HMM structure shown in (a) at
corresponding wavelengths. The dashed line indicates the beam angle using EMT at
corresponding wavelengths.

enables coupling of the scattered field into VPP modes inside the HMM. The layered

structure is uniaxially anisotropic, and under the effective medium theory (EMT)

approximation [90], the structure has Re (ε⊥) < 0 and Re
(
ε‖
)
> 0 for wavelengths

larger than 647 nm and behaves as the type II HMM (a calculation of the effective

dielectric constants within the EMT approximation is given in appendix section A.2).

We note that the use of a type II HMM is necessary in this scheme: for the type I

HMM, the direct transmission of the incident field is high and will act as background

noise in the experimental measurement. On the contrary, for the type II HMM, most

of the incident field is reflected back toward the light source and does not contribute

to the measurement noise. This is evident by considering the iso-frequency curve

shown in Fig. 2.2(a): there is no mode with k⊥ = 0 (normal incident) supported

by HMM. Fig. 2.1(b) shows a typical scattered field distribution when the HMM

device is illuminated by a plane wave (with an out-of-plane magnetic field) at a

wavelength of 1200 nm. Note in the figure that two localized beams (VPP modes)

with subwavelength beam width are generated in the HMM. The angle between the

beam propagation direction and the x axis in the EMT limit is given by:

θ(λ) = tan−1

(√
ε‖(λ)

|Re ε⊥(λ)|

)
, (2.1)
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For a small scatterer, the scattered light will have mostly large k⊥ components, so

we may approximate k⊥ as k⊥ � ω
c
, where ω is the angular frequency and c is the

speed of light; in that case, eqn. 2.1 can be derived by noting that the group veloc-

ity direction is perpendicular to the iso-frequency curve, as illustrated in Fig. 2.2(a)

(Further details are provided in appendix section A.1). In Fig. 2.2(b), the dashed

lines show the beam angle obtained from EMT and a strong wavelength dependence

is clearly apparent. The exact simulation [asterisks in Fig. 2.2(b) also shows a sim-

ilar wavelength dependence, and the difference between the two will be discussed in

section 2.5.

This wavelength dependence, as we will see, is central to our nanoscale finger-

printing concept. The physical processes illustrated in Fig. 2.1(b) are summarized as

follows: The top scatterer generates a scattered field under excitation. The propagat-

ing components and some evanescent components
(
k⊥ < kmin

⊥
)

of the scattered field

are totally reflected at the top HMM/air interface (see appendix section A.1), while

the remaining evanescent components
(
k⊥ ≥ kmin

⊥
)

of the scattered field from the top

scatterer are coupled to the propagating VPP modes in the HMM and form the highly

localized beams. The propagation and reflection of the beams at the HMM/air inter-

faces leads to a zig-zag field pattern. At the bottom HMM/air interface, the beams

couple to evanescent modes in air, which gives rise to a highly localized field dis-

tribution and can be scattered by nanoscale objects positioned nearby. This highly

localized field distribution is wavelength dependent and enables nanoscale fingerprint-

ing; The next section describes two possible configurations (shown in Fig. 2.3) for the

proposed HMM device.

2.3 Operating configurations

In the configuration of Fig. 2.3(a), a target object to be identified (with refractive

index n = 1.73) is placed below the HMM device, with a certain spacing relative

to the top scatterer. By sweeping the wavelength of the incident light, the beam

propagation direction θ will change, as indicated by asterisks in Fig. 2.2(b), and the

target scatters strongly only at the wavelength for which the beam is localized close

to the scatterer. Fig. 2.4(a) shows the scattering strength, defined as scattered power

with target scattered power without target, measured as a function of wavelength for

different spacing (see appendix section A.3 for calculation of the scattering strength).

It can be seen in the curve that targets located at different spacing differ in their peak

scattered wavelength and the peak position shifts to longer wavelength monotonically
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(a) (b)

Figure 2.3. Two possible device configurations. Dashed lines show the change in the
beam direction as the wavelength is increased from shorter (blue) to longer (red). A
photodetector measures the scattered power P(λ).

as the spacing is increased, as expected from the wavelength dependence of the beam

angle. Since objects at different spacing differ in their peak position, this spectral

curve serves as the “fingerprint” for us to identify the target’s location.

Next consider the case in which two targets (again with the refractive index n =

1.73) are placed below the HMM with a gap between them, as shown in Fig. 2.3(b).

Fig. 2.4(b) shows the scattering strength versus wavelength for three different gap

sizes. For a gap size of 60 nm, two peaks are clearly visible and the peak at shorter

wavelength is due to the scattering from the target object closer to the top scatterer.

For a gap size of 20 nm, two targets are close enough that they are just barely resolved.

For a gap size of 0 nm, only one peak is present as expected. Again, the spectral shape

encodes the bottom targets’ spatial position and serves as the “fingerprint” for us to

determine the gap, which is deep-subwavelength in size.

We next consider the case in which two bottom targets in the configuration of

Fig. 2.3(b) consist of different materials. Since the scattered power increases as the

refractive index contrast of the target to the air is increased (see additional discussion
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(a) (b) (c)

Figure 2.4. (a): Scattering strength versus wavelength for different nanoparticle
spacing [see configuration in Fig. 2.3(a)]. n = 1.73 for the bottom target. (b):
Scattering strength versus wavelength for different gap sizes [see configuration in
Fig. 2.3(b)]. n = 1.73 for both the targets. (c) Scattering strength versus wavelength
for four different target material combinations at gap = 100 nm [see configuration in
Fig. 2.3(b). L, left target; R, right target].

in appendix section A.4), the magnitude of the spectral peak contains material infor-

mation about the targets and helps to identify the target’s material composition, in

addition to their spatial information during the ”fingerprinting” process. Four mate-

rial combinations using Ag and Si are simulated at a fixed gap size of 100 nm to show

that a calibrated measurement can in principle distinguish their material composi-

tion information in addition to the spatial information, as shown in Fig. 2.3(c). Two

peaks can be seen for each material combination in the plot, indicating that there is a

resolvable gap (100 nm) between two bottom targets. In addition, each curve has its

unique spectral shape, which can be used for ”fingerprinting” to determine material

information. Finally, we show in the appendix section A.5 that changing the bottom

target shape does not change the scattering strength significantly. As a result, the

proposed ”fingerprinting” process is robust to unintended small structure variations

of the bottom target.

2.4 COMSOL implementation

We used the COMSOL for the device simulation and the details are described

below. The scattered field of our device is calculated in a two step manner: In the

first step, a simulation is done without the top scatterer and bottom target(s) (i.e.
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only the HMM structure is present) to get the background field. In this step, periodic

boundary condition is used on left/right boundaries. The port condition is used on the

top/bottom boundaries. In the second step, the top scatterer and bottom target(s)

are introduced into the model. The background field obtained from the first step is

used as excitation to calculate the scattered field. In this step, absorbing boundary

condition (referred to as the scattering boundary condition in COMSOL) is used in

all boundaries.

Figure 2.5. The permittivity values of the metal (εm) and dielectric (εd) layer

The permittivity values of the metal (Al-doped Ag) and dielectric (Ta2O5) layers

used in simulation are acquired through spectroscopic ellipsometry characterization

of Al-doped Ag and Ta2O5 films. The Al-doped silver film was prepared by Al and

Ag co-sputtering, whose details are described in previous publications [113, 112]. The

Ta2O5 layer was prepared by radio frequency (RF) magnetron sputtering of Ta2O5.

The measured permittivity values are plotted in Fig. 2.5. The permittivity values
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fitted by polynomial functions are given by:

Re (εm) = −5× 10−5λ2 − 0.0047λ+ 5.7457,

Im (εm) = 6× 10−9λ3 − 4× 10−6λ2 + 0.0027λ− 0.1546,

Re (εd) = −6× 10−15λ5 + 3× 10−11λ4 − 6× 10−8λ3 + 6× 10−5λ2 − 0.0253λ+ 9.8605,

Im (εd) = 2× 10−10λ3 + 2× 10−7λ2 − 0.0015λ+ 1.2267,

(2.2)

where εm and εd are respectively the permittivity of metal and dielectric layers, λ is

the wavelength of light in unit of nm.

2.5 Deviation from effective medium approximation

We will now return to the cause of the beam angle difference between the EMT

calculation and the exact simulation, as observed in Fig. 2.2(b). This difference is

due to the finite thickness of the metal/dielectric layers composing the HMM, which

leads to a deviation in the exact iso-frequency curve from the EMT case, where the

structure is assumed to be homogeneous. This deviation due to the finite thickness of

the composing layers has been previously reported [68]. As the ratio wavelength/unit

cell size of the HMM structure becomes smaller, the EMT approximation should im-

prove. This may be seen in Fig. 2.2(b), in which the beam angle versus wavelength

/unit cell size using exact simulation at different wavelengths is plotted (solid lines).

Note that the beam angle obtained via exact simulation (solid lines) approaches the

value obtained from the EMT (dashed lines) as the unit cell size is reduced, and it is

very close to the EMT result when an extremely small unit cell size (wavelength/unit

cell size = 400 ) is used. This also reveals that the device operates in a very large

k⊥ regime: the excited high k-modes in HMM require a very small unit cell size for

the EMT to be accurate. It is worth noting that in the proposed 2D structure, the

scattered field is transverse-magnetic (TM) polarized and couples to the extraordi-

nary wave (e-wave) of hyperbolic dispersion in HMM under TM excitation. There

is no transverse electric (TE) polarized component coupling to the ordinary wave

(o-wave) in HMM. However, in a more realistic 3D geometry, the scattered field will

have both TE and TM components and the transmission of TE components through

HMM may reduce the signal-to-noise ratio on the measurement due to an increased

background [27]. We give an estimate of the noise magnitude compared to the signal

in the 3D geometry in the next section.
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2.6 3D geometry noise analysis

In the more practical applications with 3D geometry, the transmission of TE

polarized components through HMM will act like noise in the measurement. In this

section, we estimate the noise magnitude compared to the signal. In a 3D geometry,

the TE polarized scattered field from the top scatter will couple to ordinary modes

(o-wave) in the HMM, which have dispersion relation: k2⊥+k2‖ = ε⊥
ω2

c2
(ε⊥ < 0). Here

k‖ and k⊥ are respectively the components of wave vector parallel and perpendicular

to optical axis, ω is the angular frequency of wave and c is the speed of light. Since

ε⊥ < 0, all ordinary modes in HMM are decaying. Denoting the ordinary mode

electric field E ∼ eik⊥r⊥eik‖z = eik⊥r⊥e−αz, then α2 = k2⊥ − ε⊥ ω
2

c2
, according to the

dispersion relation. It can be seen from the expression that how fast these modes

decay (how large α is) depends on the magnitude of k⊥, which can be divided into

two groups, low-k⊥and high-k⊥:

1. Low-k⊥ o-waves: From α2 = k2⊥−ε⊥ ω
2

c2
, Low-k⊥ o-waves have small α and hence

are not attenuated much as their decay length (1/α) is larger than the thickness

of the HMM. For a subwavelength scatterer on top of the proposed structure,

however, the total power of the low-k⊥ waves is only a small fraction of the total

power of all o-waves. So this is a small fraction of the scattered power and can

be tolerated as a low-power noise, with the total power that is ∼ a
λ0

fraction of

the signal power, where a is the characteristic subwavelength scale of the target

and λ0 is the free space wavelength (assuming the HMM is surrounded by free

space).

2. High-k⊥ o-waves: Most of the scattered power among o-waves are from high-k⊥

o-waves. Initially (i.e., before propagation through the HMM), their total power

is comparable to the total power of light scattered into the extraordinary modes

(e-wave). However, for these high-k⊥ o-waves, their decay length L is on the

order of 1/k⊥ (since α2 = k2⊥ − ε⊥ ω
2

c2
≈ k2⊥ for high k⊥), which is much smaller

than the thickness of the HMM. Therefore, the transmission of these high-k⊥

o-waves will be negligible.

Considering both i) and ii), we find only small noise background due to the o-

waves in 3D geometry, which is much smaller than our signal, with the effect of the

o-waves on the SNR ∼ a
λ0

.
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2.7 Summary

In summary, we have demonstrated a novel concept based on HMM that is able to

discriminate nanostructures. The proposed ”fingerprinting” process can be used to

determine the location of a single target with deep-subwavelength accuracy, resolve

a nanoscale gap between two targets, and obtain information on the target material.

Similar devices working in other wavelength ranges can be achieved by appropriate

modifications of the HMM design.

This work could potentially find applications in metrology or in biomolecular mea-

surements. For example, determining the separation between two biomolecules with

nanoscale separation is important and can be used to study interaction between pro-

teins, such as dimerization of motor proteins soppina2014dimerization or association

of regulator proteins [60]. Foster resonance energy transfer [82] (FRET) methods are

commonly used for this purpose; however, they are typically applicable when the

separation is in the range 1 − 10 nm, and it is challenging to provide an absolute

distance estimation between molecules in FRET because the energy transfer and flu-

orescence process are sensitive to the environment and orientation of the dyes [89]

and photobleaching of the dye molecules hinders distance estimation for a long period

of time. On the other hand, our proposed method does not have the aforementioned

limitations and works best in the separation range of tens of nanometers, which is

hard to reach using FRET.
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CHAPTER III

Learning Based Light Field Reconstruction

3.1 Introduction

This chapter presents the application of using the focal stack camera for light field

reconstruction. Although there already exists light field cameras that directly capture

a light field of a scene (chapter I), the use of the micro-lens array in such light field

cameras for multiplexing inevitably leads to a spatial-angular resolution trade-off in

the captured light field. For a 4D light field l(x, y, u, v), where x, y are the spatial

coordinates and u, v are the angular coordinates, one sees that for a fixed resolution

image sensor, a higher image spatial resolution then forces a lower angular resolution

and vice versa. For example, the light field by Lytro Illum camera has a resolution of

376× 541× 14× 14 [104] and the low spatial resolution is due to the above spatial-

angular resolution trade-off. Motivated by this, it is worth investigating whether it

is possible to reconstruct the light field of a scene from its focal stack measurement,

in which case there is no such sptial-angular resolution trade-off.

Reconstructing a signal from its indirect measurement is called inverse problem

and has been studied extensively in medical imaging. An example is CT scan, where

X-ray sensor measures the transmitted X-ray with known intensity through the pa-

tient body. The process is repeated with different X-ray directions and from the

collected sensor measurements, algorithms can be used to reconstruct the 3D internal

structure of the patient body.

In many cases, the inverse problem can not be solved directly and exactly because

the inverse problem is ill-posed or the measurement is corrupted heavily by noise.

Instead, an model-based image reconstruction (MBIR) is a more suitable choice that

has a better reconstruction quality, at the cost of increased computation time due to

its iterative nature. MBIR typically have five components [26], which are outlined as

follows:
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• A object model that expresses the continuous signal to be reconstructed in a

basis with finitely many unknown coefficients.

• A system model that relates the signal to the “ideal” measurement in the ab-

scence of noise. This is typically in the form of a linear model as: y = Ax,

where A is the system model matrix, x is the signal to be reconstructed, y is

the measurement.

• A statistical model that describes how the noisy measurement vary around the

expectation. Often a Gaussian noise or Poisson statistics are assumed.

• A cost function to be minimized to find the unknown signal coefficients.

• A algorithm, typically iterative, for minimizing the cost function.

For light field reconstruction, Lien et al. has already built the system model

and successfully demonstrated light field reconstruction from focal stack using MBIR

with 4D Edge Preserving (EP) regularizer [54]. Since the light field contains low

rank structure as exhibited in its EPI, Blocker et al. proposed to use a low-rank

plus sparse regularization term in the cost function to improve the reconstruction

quality. However, the regularizer in these methods are all hand-crafted, which is not

guaranteed to be optimal. With the recent advancement in deep learning, there have

been many works incorporating deep learning techniques into the image reconstruc-

tion task, achieving improved performance [98, 3, 16, 13, 19, 20]. This motivates us to

develop a learning based method that is suitable for light field reconstruction, which

will be described next. The work in section 3.2 is published in IEEE Transaction

of Pattern Recognition and Machine Intelligence [18] and the work in section 3.3 is

published in The international Conference on Acoustics, Speech, and Signal Process-

ing [39].

3.2 Iterative Neural Networks for Light Field Reconstruction

Light field reconstruction is to estimate a 4D light field x from focal stack mea-

surement y, which can be done by solving the following optimization problem:

argmin
x

F (x; y), F (x; y) ,
1

2
‖Ax− y‖22 +R(x), (3.1)

where A is the imaging model matrix, 1
2
‖Ax − y‖22 is the data fidelity term that en-

sures the reconstructed signal x is consistent with the measurement y, and R(x) is
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the regularization term that contains prior information about x. This optimization

problem is under-determined and a good regularizer is critical to ensure good re-

construction. Conventional methods use some handcrafted regularizers, such as total

variation regularization and edge-preserving regularization [11]. However, these hand-

crafted regularizers are by no means optimal, which lead to recent works of learning

based image reconstruction.

Iterative Neural Network (INN) method is one way to incorporate deep learning

into image reconstruction. It combines denoising neural networks with an unrolled

iterative MBIR algorithm [98, 16, 20]. Compared to methods that directly use a

neural network to regress from the raw measurement to reconstructed image [122], it

reduces the risk of network overfitting issue, by balancing the data-fitting term and

the reguarlization term in the MBIR.

ADMM-Net [98] was the first to propose unrolling an iterative optimization al-

gorithm (ADMM [12]) to solve inverse problems. It replaces the tunning parameters

in ADMM with learnable parameters. It is trained end to end and shows signifi-

cantly improves the reconstruction accuracy over baseline ADMM method. Similarly,

PD-Net [3] proposed to unroll the primal-dual algorithm [123] and BCD-Net [20]

is obtained by unrolling the block coordinate descent algorithm [77]. However, the

convergence and acceleration of these methods remains to be a challenge.

3.2.1 Momentum-Net structure

This section proposes Momentum-Net, a fast and convergent iterative neural net-

work for inverse problems. It’s constructed by unrolling the iterative block proximal

extrapolated gradient method (BPEG-M [17]) and incorporating learned regularizer

into it. To accelerate the convergence, it contains an extrapolation step (momentum

term) in the iterative updating process and hence its name, Momentum-Net.

Fig. 3.1 and Algorithm 1 show the structure of the Momentum-Net. Each iteration

of Momentum-Net consists of 1) image refining, 2) extrapolation, and 3) Model-

Based Image Reconstruction (MBIR) modules. At the i-th iteration, Momentum-Net

performs the following three processes:

• Refining: The i-th image refining module gives the refined image z(i+1), by

applying the i-th refining Neural Network (NN) , Rθ(i+1) , to an input image at

the i-th iteration, x(i) (i.e., image estimate from the (i − 1)-th iteration). We

apply ρ-relaxation with ρ ∈ (0, 1); The parameter ρ controls the strength of

inference from refining NNs, but does not affect the convergence guarantee of
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Figure 3.1. The architecture of the Momentum-Net, showing its updating rules at
the i-th iteration.

Algorithm 1: Momentum-Net for Light Field Reconstruction

Require: {Rθ(i) : i = 1, . . . , Niter } , ρ, δ ∈ (0, 1), γ > 0, β0 = 1, x(0) = x(−1), y
for i = 0, . . . , Niter−1 do

Calculate M̃ (i+1) by (3.5) and E(i+1) by (3.2) and (3.3)
Image refinining:

z(i+1) = (1− ρ)x(i) + ρRθ(i+1)

(
x(i)
)

Extrapolation:
x́(i+1) = x(i) + E(i+1)

(
x(i) − x(i−1)

)
MBIR:

x(i+1) = ProxM̃
(i+1)

IX

(
x́(i+1) −

(
M̃ (i+1)

)−1
∇F

(
x́(i+1); y, z(i+1)

))
end

Momentum-Net. Proper selection of ρ can improve MBIR accuracy.

• Extrapolation: The i-th extrapolation module gives the extrapolated point x́(i+1),

based on momentum terms x(i) − x(i−1);. Intuitively speaking, momentum pro-

vides information from previous updates to amplify the changes in subsequent

iterations. The extrapolation coefficient is given by:

E(i) = δ2m(i), (3.2)

and the momentum coefficients m(i) are updated by the following formula [17]:

m(i+1) =
β(i) − 1

β(i+1)
, β(i+1) =

1 +

√
1 + 4 (β(i))

2

2
, (3.3)

• MBIR: This step solves a majorized version of the following MBIR problem at
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the extrapolated point x́(i+1):

min
x
F (x; y, z(i+1)), (3.4)

with F defined in 3.1, using the majorization matrix:

M̃ (i+1) = diag(ATA1) + γI. (3.5)

This step gives a reconstructed image x(i+1) and is used as the input to the next

Momentum-Net iteration.

3.2.2 Benefits of Momentum-Net

Momentum-Net has several benefits over existing INNs:

1. Benefits from refining module: The image refining module can use iteration-wise

image refining NNs {Rθ(i+1) : i≥0}: those are particularly useful to reduce over-

fitting risks by reducing dimensions of their parameters θ(i+1) at each iteration

[20]. Iteration-wise refining NNs require less memory for training, compared to

methods that use a single refining NN for all iterations, e.g., [30].

2. Benefits from extrapolation module: The extrapolation module uses the mo-

mentum terms x(i) − x(i−1) that accelerate the convergence of Momentum-Net.

In particular, compared to the existing gradient-descent-inspired INNs, e.g.,

TNRD [16], Momentum-Net converges faster.

3. Benefits from MBIR module: The MBIR module does not require multiple

inner iterations for a wide range of imaging problems and has both theoreti-

cal and practical benefits. Different from the existing BCD-Net-type methods

[98, 13, 87, 116] that can require iterative solvers for their MBIR modules, MBIR

module of Momentum-Net can have practical close-form solution, and its cor-

responding convergence analysis can hold stably for a wide range of imaging

applications. Second, combined with extrapolation module, noniterative MBIR

modules lead to faster MBIR, compared to the existing BCD-Net-type meth-

ods that can require multiple inner iterations for their MBIR modules for con-

vergence. Third, Momentum-Net guarantees convergence even for nonconvex

MBIR cost function F (x; y, z) or nonconvex data-fit f(x; y) of which the gradi-

ent is Lipschitz continuous, while existing INNs overlooked nonconvex F (x; y, z)
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or f(x; y). Detailed analysis on convergence of Momentum-Net can be found

in [18].

3.2.3 Momentum-Net experimental setup

To reconstruct a light field, the MBIR problem considers a data fidelity term

f(x; y)= 1
2
‖y−Ax‖22 and a box constraint X =[0, 1], where A is the system matrix of

light field imaging system. In general, a light field photography system using a focal

stack is extremely under-determined, because the system matrix A is a wide matrix.

To avoid the inverse crime [107], our imaging simulation used higher-resolution

synthetic light field dataset [38] (we converted the original RGB sub-aperture im-

ages to grayscale ones by the rgb2gray function in MATLAB, for simplicity and

smaller memory requirements in training). We simulated nF = 5 focal stack images

of size 255×255 with 40 dB Additive White Gaussian Noise (AWGN) that models

electronic noise at sensors. The sensor positions were chosen such that five sensors

focus at equally spaced depths; specifically, the closest sensor to scenes and farthest

sensor from scenes focus at two different depths that correspond to dispmin+ 0.2 and

dispmax−0.2, respectively, where dispmax and dispmin are the approximate maximum

and minimum disparity values specified in [38]. We reconstructed 4D light fields of

resolution 255× 255× 9× 9.

We used Convolutional Neural Networks (CNN) as the refining neural networks

in the Image refining step of Algorithm 1. We used either a shallow 3-layer CNN

(sCNN) or a deep 6-layer CNN (dCNN), with a residual connection [36, 115] to refine

the input light field. We chose to refine the light field in the EPI domain. Specifically,

the input light field is sliced to two sets of horizontal EPIs and vertical EPIs. Each

EPI was refined by the CNN refiner. We then took the average of two light fields

that were permuted back from refined horizontal and vertical EPI sets. We found

that refining the light field in the EPI domain performs better than refining the light

field in the subaperture image domain. This is likely because the image structure in

the EPI domain is much simpler, hence easier to refine.

We trained image refining NNs at the (i + 1)-th iteration Rθ(i+1) by minimizing

the following loss:

L =
1

2S

N∑
s=1

∥∥xs −Rθ(i+1)

(
x(i)s
)∥∥2

2
, (3.6)

where xs is the ground truth signal to be reconstructed, x
(i)
s is the reconstructed

signal by the Momentum-Net at the (i)-th iteration, N is the total number of training
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samples. The networks were trained in Pytorch using Nvidia GTX 1080 Ti. We set the

hyperparameters of Momentum-Net as: Niter =100, γ = 1, ρ = δ=1−ε, where ε is the

machine epsilon. The initial reconstruction x(0) is set to ATy rescaled to the interval

[0, 1] (i.e., dividing by its max value). The parameters of the first refiner network,

Rθ(1) , was initialized with Kaiming uniform initialization [35]; Refiner networks in

the later iteration, i.e., at the i-th INN iteration, for i ≥ 2, are initialized from those

learned from the previous iteration, i.e., (i− 1)-th iteration.

We tested trained INNs to three samples of which scene parameter and camera

settings are different from those in training samples (all training and testing samples

have different camera and scene parameters). We evaluated the reconstruction qual-

ity using peak signal-to-noise ratio (PSNR). In addition, we compared the trained

Momentum-Net to MBIR method using the state-of-the-art non-trained regularizer,

4D EP introduced in [54]. (The low-rank plus sparse tensor decomposition model [11]

failed when inverse crimes and measurement noise are considered.) We finely tuned

its regularization parameter to achieve the lowest RMSE values.

We further investigated impacts of the light field MBIR quality on a higher-level

depth estimation application, by applying the robust Spinning Parallelogram Opera-

tor (SPO) depth estimation method [117] to reconstructed light fields.

3.2.4 Momentum-Net results

Figure 3.2. PSNR maximization comparisons between different INNs (Light field
photography system with nF =5 detectors obtain a focal stack of light fields consisting
of S=81 sub-aperture images; averaged PSNR values across three test reconstructed
images).

Fig. 3.2 compares the proposed Momentum-Net with existing INN method, i.e.,
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BCD-Net [20]. It shows that to reach the 32 dB PSNR value in light field reconstruc-

tion from a focal stack, the proposed Momentum-Net using sCNN (red) decreases

MBIR time by 36.5% and 61.5%, compared to Momentum-Net without extrapolation

(black) and BCD-Net using three inner iterations (light blue), respectively. It also

shows that using a deep CNN model (blue) performs better than a shallow CNN

model (red). Note that using dCNN refiners instead of sCNN refiners has a negligible

effect on total run time of Momentum-Net, because reconstruction time of MBIR

modules (in CPUs) dominates inference time of image refining modules (in GPUs).

Fig. 3.3 shows the comparison of the light field reconstruction quality, using

state-of-the-art non-trained 4D EP regularizer introduced in [11] (Fig. 3.3(b)), using

Momentum-Net with shallow 3-layer sCNN (Fig. 3.3(c)), and using Momentum-Net

with deeper 6-layer dCNN (Fig. 3.3(d)). Proposed Momentum-Net with deep CNN

as refining network achieves the best reconstruction quality. We further used the

reconstructed light field for downstream depth estimation task and evaluated their

depth RMSE. Fig. 3.4 shows the proposed Momentum-Net also leads to the best final

depth estimation accuracy.
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Figure 3.3. Error map comparisons of reconstructed sub-aperture images (at the
angular coordinate (5, 5)) from different MBIR methods. The PSNR values in paren-
thesis were measured from reconstructed light fields.
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Figure 3.4. Comparisons of estimated depths from light fields reconstructed by differ-
ent MBIR methods. SPO depth estimation [117] was applied to reconstructed light
fields
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3.3 Non-iterative neural networks for light field reconstruc-

tion

The light field reconstruction methods described in the previous section, are all

iterative in nature, which are typically slow. This section proposes a non-iterative

light field reconstruction and depth estimation method based on sequential CNNs.

CNN methods are rapidly emerging as a powerful tool for various image process-

ing and computer vision tasks due to their ability to model complicated functions

and short inference time. Prior works have applied CNN method to light field view

synthesis [46, 97, 101]. The most relevant work is from Srinivasan et al [97]. They

proposed a sequential CNN approach that reconstructs a light field from a single

all-in-focus image. Their pipeline consists of a CNN that estimates ray depth of the

scene from the input all-in-focus image, a rendering module that renders a Lamber-

tian light field using the estimated ray depth, and a second CNN that corrects the

artifacts in the rendered Lambertian light field. As their method uses ray depth to

render a light field, light field reconstruction quality largely depends on the quality of

the estimated ray depth. However, depth estimation from single image is challenging

as it lacks reliable depth cues. On the other hand, depth from focal stack images is

more accurate and could greatly benefit light field reconstruction.

Motivated by [101], our proposed method uses three sequential CNNs. The first

CNN estimates an all-in-focus image from focal stack images; the second CNN es-

timates 4D ray depth from focal stack images and the estimated all-in-focus image;

a rendering module renders a Lambertian light field with the estimated all-in-focus

image and ray depth, and the third CNN subsequently refines the rendered light

field and provides the final reconstructed light field. Numerical experiments show

that the proposed method significantly improves light field reconstruction accuracy,

compared with a state-of-the-art sequential CNN approach using a single all-in-focus

image [97], conventional MBIR using 4D edge-preserving (EP) regularizer (from a

focal stack) [11], and direct regression CNN from a focal stack. In addition, the

proposed method considerably reduces light field reconstruction time compared with

MBIR using EP regularizer.

3.3.1 Algorithm for non-iterative light field reconstruction

The proposed approach uses four steps to reconstruct light fields, as illustrated in

Fig. 3.5. In the first step, an “all-in-focus image synthesis” neural network (NN) syn-

thesizes an all-in-focus image from a focal stack (section 3.3.1.1). In the second step,
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Figure 3.5. Proposed CNN-based method for light field reconstruction and depth
estimation using focal stack.

a depth estimation NN estimates 4D ray depth d (depth maps for every view point)

from the estimated all-in-focus image î and focal stack images f (section 3.3.1.2).

The third step renders a Lambertian light field lw by backward warping the all-in-

focus image î, using the estimated 4D ray depth d (section 3.3.1.3). Because the

rendered light field is Lambertian and may contain artifacts around occlusions, we

use a refining NN to further refine lw and obtain a final light field l? (section 3.3.1.4).

The following subsections describe details of each step.

3.3.1.1 All-in-focus image synthesis NN

We first estimated an all-in-focus image, given the focal stack images; this pro-

cess is called focal stacking. There are several focal stacking approaches, e.g., edge

detection, Fourier analysis, and CNN. Among these, we choose CNN-based method

– specifically, U-Net [88] with modified input and output channel numbers – due to

its good image mapping capability. We forward pass reshaped focal stack images

(from the size C×NF×H×W to (C · nF)×H×W , where C is the number of color

channel, nF is the number of focal planes in the focal stack, H and W are the image

height and width, respectively) through the modified U-Net. To squeeze the output

all-in-focus image to be within the interval [0, 1], we put a differentiable nonlinear

function g(·) = (tanh(·)+1)/2 at the end of the U-Net. We train the modified U-Net,

Aθa(f), having parameter set θa, by minimizing the `1 loss:

min
θa

∑
n

‖Aθa(fn)− in‖1,

where {fn : ∀n} are training focal stack images, and {in : ∀n} are the ground truth

all-in-focus images. We use the center sub-aperture images of the ground truth light

fields for {in}, because sub-aperture images of light fields have small enough aperture

such that all regions of the image are well in focus.
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3.3.1.2 Depth estimation NN

The light field rendering (section 3.3.1.3) uses both an all-in-focus image and a

4D ray depth d(x,ν), i.e., a collection of 2D disparity maps, one for each angular

coordinate ν. We modified the CNN architecture in [97] to estimate 4D ray depth

using focal stack images and the all-in-focus image from Aθa . We reshape the input

focal stack in the same way as described in section 3.3.1.1. We use dilated convolution

layers [110] to have exponentially growing receptive field without losing resolution.

At the end of the NN, a tanh scaling layer squeezes the estimated disparity within

the range [−1, 1]. We jointly train the depth estimation NN and the refining NN

(section 3.3.1.4); see training loss in section 3.3.2.

3.3.1.3 Light field rendering

Given the estimated 4D ray depth d and the estimated all-in-focus image î via

trained Aθ?a(·), we render a Lambertian light field lw by backward warping î as fol-

lows [97]:

lw(x,ν) = lw(x+ νd(x,ν),0) = î(x+ νd(x,ν)) (3.7)

=:W(î,d).

We use bilinear interpolation to calculate the values of î(x+ νd(x,ν)) in the warping.

As the rendering at a viewpoint ν given by (3.7) is essentially a sampling of the pixel

values at the center view, the rendered light field lw will be approximately Lambertian

and can have artifacts around the occlusion regions.

3.3.1.4 Refining NN

Because the rendered light field lw from section 3.3.1.3 does not model the non-

Lambertian effect and occlusion effect, we use an additional refining NN (see its

architecture in [97]) to remove these artifacts and get a final reconstructed light field

l̂. We use a residual connection [36] for the NN to learn the difference between the

Lambertian light field lw and true light field l. We input both estimated 4D ray depth

d and Lambertian light field lw to the NN; in particular, d is useful for predicting

occluded region and to refine lw.
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3.3.2 Training of depth estimation NN and refining NN

We jointly train the depth estimation NN and the refining NN, similar to [97]. By

using differentiable bilinear interpolation for the light field rendering, the loss gradi-

ent can be back-propagated from the refining NN, through the light field rendering

module, and to the depth estimation NN. Specifically, we jointly train a depth es-

timation NN, Dθd(f , î), and a refining NN, Rθr(d, lw) having parameters θd and θr,

respectively, by minimizing the following loss function:

min
θd,θr

∑
n

∥∥∥W(în,Dθd(fn, în)
)
−ln

∥∥∥
1
+∥∥∥Rθr

(
Dθd(fθ, în),W

(
în,Dθd(fn, în)

))
−ln

∥∥∥
1
+

λcψc

(
Dθd(fn, în)

)
+λtvψtv

(
Dθd(fn, în)

)
, (3.8)

where the training data consists of focal stack images {fn}, estimated all-in-focus

images {în=Aθ?a(fn) :∀n} and ground truth light fields {ln :∀n}. In (3.8), ψc and ψtv

are 4D ray depth consistency and total variation regularizer, respectively, designed to

make the estimated ray depth d reasonable [97]. The regularizers are defined by [97]

ψc(d) :=
∑
x,ν

|d(x,ν)− d(x+ d(x,ν),ν − 1)| (3.9)

ψtv(d) := ‖∇xd‖1. (3.10)

As the ray depth consists of depth maps at different viewpoints, these depth maps

should be consistent with each other. Specifically, they are related by the equality

d(x,ν) = d(x+ ∆D(x,ν),ν −∆) (3.11)

that is similar to the relation in (3.7). Note that the relation in (3.7) corresponds to a

special case of ∆ = ν; choosing ∆ = 1 leads to the ray depth consistency regularizer

in (3.9), which encourages depths maps at neighboring views to be consistent. On

the other hand, the total variation regularizer in (3.10) ensures the estimated depth

maps are spatially smooth.

3.3.3 Experimental setup

We compared the proposed method with following three methods: 1) a state-

of-the-art sequential CNN method that estimates 4D ray depth from a single image
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and then reconstructs a light field [97]; 2) a conventional 4D EP MBIR method that

reconstructs a light field from focal stack (see, e.g., [11, 18]); 3) a direct regression

CNN from focal stack – we chose a U-Net architecture [88]. For 3), a sufficient number

of network parameters is chosen such that further increasing the parameter doesn’t

give better performance.

For all experiments in the paper, we used the light field dataset in [97] that consists

of 3343 RGB light fields of flowers and plants taken with Lytro Illum camera. To

avoid an inverse crime, we simulated 185×269 focal stack images with number of

focal planes NF = 7, from high spatial resolution light fields consisting of 370×538

sub-aperture images on (central) 7×7 angular (ν-) grid. The locations of the seven

sensors were chosen to focus at equally spaced disparities in the interval [−1, 0.3].

We reconstructed light fields consisting of 185×269 RGB sub-aperture images on the

7× 7 ν-grid.

We used the Adam optimizer [48] to train all the NNs compared in the paper.

We set the default learning rate as 3×10−4; for training the direct regression CNN,

we used 5×10−4. In training the all-in-focus synthesis NN in section 3.3.1.1, we used

a batch size of 2 and 40 epochs. We used learning rate scheduling to stabilize the

training: the learning rate decays by 0.5 at epochs 3, 6, 10, and 20. For joint training

of depth estimation and refining NNs, we used a batch size of 1 and 50 epochs. We

chose the regularization parameters in (3.8) as λc = 0.005 and λtv = 0.01.

For evaluating the performance of conventional MBIR with 4D EP regularizer,

we used the hyperbola penalty function, selected the regularization and hyperpola

penalty parameter as 1.6×105 and 0.38, respectively, and used conjugate gradient

descent method with 30 iterations. We reconstructed each color channel of the light

field independently.

3.3.4 Results

Fig. 3.6(a-c) shows an example of reconstructed light field and intermediate esti-

mated depth from the proposed method. The proposed method can reconstruct both

ray depth and light field with good quality from a focal stack.

Fig. 3.6(c-d) shows ray depth estimated by the proposed method using focal stack

(c) and by sequential CNN using a single image (d). The proposed method can im-

prove depth estimation. As expected, better depth estimate benefits subsequent light

field reconstruction: Table 3.1 shows that the proposed method achieves a 4.8 dB

peak signal-to-noise ratio (PSNR) improvement over the state-of-the-art sequential

CNN using a single image [97]. In addition, the proposed method significantly im-
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Figure 3.6. Sub-aperture images and epipolar slices of the reconstructed light field and
the estimated 4D ray depth. (a) Ground truth light field visualized at the corner view.
(b) Reconstructed light field via the proposed method at the corner view (PSNR =
42.23 dB). (c) Estimated center view depth via the proposed method. (d) Estimated
center view depth via single image sequential CNN [97].

Figure 3.7. Error maps of the reconstructed light field sub-aperture view (u = −1, v =
3). The PSNR values shown in parenthesis are calculated from reconstructed light
fields.

proves light field reconstruction accuracy compared to other light field reconstruction

methods using focal stack images: the proposed method achieves 2.85 dB and 1.97 dB

PNSR improvements, over the conventional 4D EP MBIR method and direct regres-

sion CNN, respectively; see Table 3.1. Fig. 3.7 shows sub-aperture view error maps

of two test light field for all the methods. The error maps of proposed method show

significantly reduced error.

The second column of Table 3.1 includes the timing comparison between the pro-

posed method and other methods. In particular, it shows that the proposed method

significantly reduces computation time compared to 4D EP MBIR.

3.4 Summary

We have presented learning based methods for light field reconstruction, which

shows improved reconstruction performance over traditional MBIR methods. Momen-
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Methods PSNR (dB) Time (sec.)

Proposed method 39.76 4.14 (6.2×10−2)
Single image
sequential CNN [97]

34.96 3.96 (4.6×10−2)

4D EP MBIR 36.91 152 (n/a)
Direct regression CNN 37.79 0.23 (1.7×10−3)

Table 3.1. Average PSNR of the reconstructed light field and reconstruction time
(on CPU/GPU) for 100 test samples. Values in parenthesis are GPU reconstruction
times.

tum-Net, an iterative NN based approach was first presented, which incorporates

both the physical model and learned regularizer in an unrolled optimization frame-

work. The light field is reconstructed in an iterative way. In each iteration, the

reconstruction is refined by a NN refiner and followed by MBIR. This soft-refiner ap-

proach increases the reliability of the reconstruction module as the knowledge of the

physical model is incorporated through the system matrix in MBIR step. It could po-

tentially have better generalization ability across different light field datasets. Then

we presented a sequential-NN based method for light field reconstruction. This ap-

proach reconstructs the light field in a non-iterative way. It is a data-driven approach

without the need of system matrix at test time and has the benefits of much faster

reconstruction speed over the iterative reconstruction methods.
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CHAPTER IV

Unsupervised Depth Estimation from Focal Stack

4.1 Introduction

This chapter proposes a learning based methods for depth estimation from focal

stack. Since collecting a focal stack dataset with ground truth depth map could be

time-consuming and challenging, a method without requiring depth ground truth is of

great interest. The method described in section 3.3 is already one method that is able

to estimate depth with network trained only using light field as the supervision signal.

Here we propose another method to estimate depth, without any supervision: using

an input focal stack, an all-in-focus image is estimated using a focus measure and a

depth map is estimated using a CNN. Then using a differentiable focal stack synthesis

module, a focal stack is reconstructed from the all-in-focus image and the estimated

map. The network is trained using the focal stack reconstruction loss without the need

of any supervision (self-supervised). The chapter is organized as follows: section 4.2

describes related work on unsupervised depth estimation. Section 4.3 describes our

proposed method for unsupervised depth estimation from focal stack. Section 4.4

describes the experimental setup and presents the results of the proposed method.

4.2 Related work

Training a network without supervision is useful when the training labels are hard

to obtain. Garg et al. [29] proposed a CNN based unsupervised monocular depth

estimation method, which only requires stereo image pairs for training. The network

estimates a disparity map for an input left-view image and warps the right-view

image using the estimated disparity to reconstruct the left-view image. The network

is trained end-to-end by minimizing the photometric reprojection loss. Later work in

MonoDepth [31] achieved better performance by exploiting the left-right consistency.
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Figure 4.1. Flow chart of the proposed unsupervised depth from focus method.

Srinivasan et al. [96] proposed to use a defocused image as the supervision and trains

a depth estimation network end-to-end to predict the scene depths that best explain

the defocused image. Similarly, [32] proposed to use a defocused focal stack, instead

of single image, as the supervision to train the network. However, both methods

accept a single input image as the input and unsupervised depth estimation from

focus stack has not been explored, which will be the topic of this chapter.

4.3 Method

Fig. 4.1 illustrates the pipeline of unsupervised depth estimation framework. The

input focal stack is passed into a CNN and estimates a depth map. Then a differen-

tiable focal stack rendering module (section 4.3.2) takes in the estimated depth map

and an estimated all-in-focus (section 4.3.1) image as inputs and reconstruct the focal

stack. A photometric reconstruction error is used as the loss and the gradient can

be back-propagated to train the CNN. The details of each step are described in the

following subsections.

4.3.1 All-in-focus image estimation

To estimate the all-in-focus image from a focal stack, we first convert all images

to gray. Then the images are filtered by 2D gaussian with σ = 1.1 to reduce the

noise. Next, a laplacian operator is applied to each image to measure the focus

sharpness. The RGB pixel value of the final estimated all-in-focus image at each

pixel location is then taken from the sensor plane with maximum laplacian response.

Fig. 4.2 visualizes the result of all-in-focus image estimation.
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First image Last image Pred. AIF Image G. T. AIF Image

Figure 4.2. Visualization of all-in-focus (AIF) image estimation. First and last image
in the focal stack sequence are shown in the first two columns. 3rd column: estimated
AIF images. 4th column: ground truth AIF images.

4.3.2 Differentiable focal stack synthesis

Here we will describe the differentiable focal stack synthesis from depth in more

detail. According to the thin lens model, the out-of-focus object will be blurred in the

captured image Iblur. If denoting an all-in-focus image (sharply focused everywhere)

as IAIF and the captured defocused image as Iblur, the imaging process modeled as

follows:

Iblur = IAIF ∗ PSF(r;R), (4.1)

where ‘∗’ is the convolution operation with spatially varying kernel and PSF(r;R)

is the position-dependent point spread function. We model the PSF(r;R) as a 2D
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Gaussian function with radius R given by:

R = A
|O −D|

O

f

D − f
, (4.2)

where O is the distance between an object and the lens, D is the focusing distance

of the lens, A is the radius of the lens aperture and f is the focal length. With a

known camera configuration and an estimated depth map of the scene, we can then

calculate a 2D pixel-wise R map using equation 4.2 and generate the defocused image

Iblur using equation 4.1. Importantly, this process is differentiable with respect to

the input depth map, which allows the gradient of reconstruction error in Iblur to

backprogate to the depth estimation network.

4.3.3 Network training

We used the same depth estimation network as described in section 3.3. The

following loss L is used to train the network:

L = λ1Lrec + λ2Lsmooth + λ3Lsharp, (4.3)

Lrec =
1

N

∑
α

1− SSIM(Îblur, Iblur)

2
+ (1− α)‖Îblur − Iblur‖1, (4.4)

Lsmooth =
1

N

∑
|∂xÔ| exp−|∂xIAIF|+|∂yÔ| exp−|∂yIAIF| (4.5)

Lsharp = ‖S(Îblur)− S(Iblur)‖1, (4.6)

where S(I) is a sharpness measure described in [59], and ‘ ˆ ’ indicates the quantity

is from estimation.

4.4 Experimental setup and results

We trained and evaluated the proposed method using NYU-v2 dataset [69]. It con-

tains 120k RGB images of indoor scene in depth range [0.7 m, 10 m], with correspond-

ing depth maps captured using Microsoft Kinect. Following previous works [32, 105],

we used 654 images from a subset of 1449 aligned RGB-depth pairs for testing. Since

the NYU-v2 dataset only contains sharp in-focus images, we generated a focal stack

dataset with nF = 6 from sharp in-focus images using equation 4.1. Following the

method in [120], we set their focus distances to be [0.8 m, 1 m, 1.2 m, 1.6 m, 2.4 m,

5 m]. This particular focus distance setting ensures the depth of field of neighboring

imaging sensors are contacting with each other, but with no overlap. We trained the
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network for 170k iterations using a batch size of 2, a learning rate of 2× 10−5 using

Adam optimizer [48].

Scene Pred. Depth G. T. Depth
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Figure 4.3. Visualization of the depth estimation result.

Fig. 4.3 visualizes depth estimation results on the test samples. It shows the

proposed method can estimate the depth of the scene with good quality using the

focal stack, without depth supervision during training. Table 4.1 compares the depth

estimation result of several methods. Comparing with prior work of single image

based unsupervised depth estimation in [32] (2nd row), our proposed method (3rd

row) achieves much lower RMSE and better δ accuracy, demonstrating the advan-

tage of focal stack for 3D sensing purpose. We also compared the depth estimation

accuracy using the proposed method, with either all-in-focus image estimated from

focal stack (3rd row) or with ground truth all-in-focus image (4th row). It indicates

that with a better all-in-focus image estimation can further improve the depth es-

timation accuracy. This could be achieved using a deep-learning based all-in-focus

image estimation and is the direction of our future work.
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Supervision RMSE (m) δ < 1.25 δ < 1.252 δ < 1.253

Depth from single image [32] FS 0.546 0.797 0.951 0.987
Focal stack with syn. IAIF FS 0.310 0.959 0.990 0.997
Focal stack with g.t. IAIF FS 0.244 0.955 0.985 0.997
Supervised depth from focus Depth 0.174 0.983 0.997 0.999

Table 4.1. Result of unsupervised depth from focus.

4.5 Summary

This chapter presents an unsupervised depth from focal stack method. The pro-

posed method estimates a depth map from input focal stack. By using a differentiable

focal stack synthesis module and a focal stack reconstruction loss, the network can be

trained end to end without depth supervision. Numerical experiments shows that the

proposed method achieves good depth estimation accuracy and outperforms existing

single-image based unsupervised depth estimation method.
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CHAPTER V

Focal Stack Based 3D Tracking

5.1 Introduction

Chapter III have described 4D light field imaging and reconstruction from a focal

stack. However, some optical applications, e.g., ranging and tracking, do not require

computationally expensive 4D light field reconstruction. The question naturally arises

as to whether the focal stack geometry will allow optical sensor data to provide the

necessary information for a given application, without reconstructing a 4D light field

or estimating a 3D scene structure via depth map.

To this end, this chapter demonstrates how combinations of focal stacks obtained

by transparent sensor arrays and machine learning algorithms enable 3D object track-

ing, without the need for light-field reconstruction. Experimental results illustrate

that the implemented neural networks using focal stack data can achieve accurate

3D object tracking efficiently (millisecond inference time using a conventional GPU

computing power). This work demonstrates a transparent focal stack imaging sys-

tem that is capable of tracking single and multiple point objects in 3D space. The

proof-of-concept experiment is demonstrated with a vertical stack of two 4 × 4 (16-

pixel) graphene sensors and feedforward neural networks that have the form of a

multilayer perceptron (MLP). The imaging schematic is illustrated in Fig. 1.10. We

also acquired focal stack data sets using a conventional CMOS camera with sep-

arate exposures for each focal plane. The simulations demonstrate the capability

of future higher-resolution sensor arrays for tracking extended objects. Our exper-

imental results show that the graphene-based transparent photodetector array is a

scalable solution for 3D information acquisition, and that a combination of trans-

parent photodetector arrays and machine learning algorithms can lead to a compact

camera design capable of capturing real-time 3D information with high resolution.

This type of optical system is potentially useful for emerging technologies such as
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face recognition, autonomous vehicles and unmanned aero vehicle navigation, and

biological video-rate 3D microscopy, without the need for an integrated illumination

source. Graphene-based transparent photodetectors can detect light with a broad

bandwidth from visible to mid-infrared. This enables 3D infrared imaging for even

more applications. This work has been published in Nature Communications [114].

5.2 Focal stack imaging with transparent sensors

The concept of focal stack imaging was demonstrated using two vertically stacked

transparent graphene arrays. As shown in Fig. 5.1(a), two 4 × 4 sensor arrays were

mounted vertically along the optical axis, separated at a controlled distance, to form a

stack of imaging planes. This double-focal-plane stack essentially serves as the camera

of the imaging system. A convex lens focuses a 532 nm laser beam, with the beam

focus serving as a point object. The focusing lens was mounted on a 3D-motorized

stage to vary the position of the point object in 3D. The AC photocurrent is recorded

for individual pixels on both front and back detector arrays while the point object

is moving along the optical axis. Fig. 5.1(b) shows a representative set of images

captured experimentally by the two detector arrays when a point object is scanned

at different positions along the optical axis (12 mm, 18 mm, 22 mm) respectively,

corresponding to focus shifting from the back plane toward the front plane (Fig.

2(c)). The grayscale images show the normalized photoresponse, with white (black)

color representing high (low) intensity. As the focus point shifts from the back plane

toward the front plane, the image captured by the front plane shrinks and sharpens,

while the image captured by the back plane expands and blurs. Even though the low

pixel density limits the image resolution, these results nevertheless verify the validity

of simultaneously capturing images at multiple focal planes.

5.3 3D tracking of point objects

While a single image measures the lateral position of objects as in conventional

cameras, differences between images captured in different sensor planes contain the

depth information of the point object. Hence focal stack data can be used to recon-

struct the 3D position of the point object. Here we consider three different types of

point objects: a single-point object, a three-point object, and a two-point object that

is rotated and translated in three dimensions.

First, we consider single-point tracking. In this experiment, we scanned the point
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Figure 5.1. Experimental demonstration of focal stack imaging using double stacks
of graphene detector arrays. (a) A schematic of measurement setup. A point object
(dotted circle) is generated by focusing a green laser beam (532 nm) with the lens. Its
position is controlled by a 3D motorized stage. Two detector arrays (blue sheets) are
placed behind the lens. An objective and CCD camera are placed behind the detector
array for sample alignment. A chopper modulates the light at 500 Hz and a lock-
in amplifier records the AC current at the chopper frequency. (b) Images captured
by the front and back photodetector planes with objects at three different positions
along the optical axis (12 mm, 18 mm, 22 mm respectively). The grayscale images
are generated using responsivities for individual pixels within the array, normalized
by the maximum value for better contrast. The point source is slightly off-axis in the
image presented, leading to the shift of spot center. (c) The illustrations of the beam
profiles corresponding to the imaging planes in (b). The focus is shifting from the
back plane (top panel) toward the front plane (bottom panel).

source (dotted circle in Fig. 5.1(a)) in a 3D spatial grid of size 0.6 mm × 0.6 mm
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(x, y axes) × 20 mm (z axis, i.e., the longitudinal direction). The grid spacing was

0.06 mm along the x, y axes, and 2 mm along the z axis, leading to 1,331 grid points

in total. For each measurement, two images were recorded from the graphene sensor

planes. We randomly split the data into two subsets, training data with 1131 samples

(85% of total samples) and testing data with 200 samples (15% of total samples); all

experiments used this data splitting procedure. To estimate three spatial coordinates

of the point object from the focal stack data, we trained three separate MLP neural

networks (one for each spatial dimension) with mean-square error (MSE) loss. The

results (Fig. 5.2(a)(b)) show that even with the limited resolution provided by 4×4

arrays, and only two sensor planes, the point object positions can be determined

very accurately. We used RMSE to quantify the estimation accuracy on the testing

dataset; we obtained RMSE values of 0.012 mm, 0.014 mm, and 1.196 mm along the

x, y, and z directions, respectively.

Given the good tracking performance with the small-scale (i.e., 4 × 4 arrays)

graphene transistor focal stack, we studied how the tracking performance scales with

array size. We determined the performance advantages of larger arrays by using

conventional CMOS sensors to acquire the focal stack data. For each point source

position, we obtained multi-focal plane image stacks by multiple exposures with vary-

ing CMOS sensor depth (note that focal stack data collected by CMOS sensors with

multiple exposures would be comparable to that obtained by the proposed trans-

parent array with a single exposure, as long as the scene being imaged is static),

and down-sampled the resolution of high resolution (1280×1024) images captured by

CMOS sensor to 4 × 4, 9 × 9, and 32 × 32. We observed that tracking performance

improves as the array size increases; results are presented in appendix B.5.

We next considered the possibility of tracking multi-point objects. Here, the

object consisted of three point objects, and these three points can have three possible

relative positions to each other. We synthesized 1,880 3-point objects images as

the sum of single-point objects images from either the graphene detectors or the

CMOS detectors (see details of focal stack synthesis in appendix B.2). This synthesis

approach is reasonable given that the detector response is sufficiently linear and it

avoids the complexity of precisely positioning multiple point objects in the optical

setup. To estimate the spatial coordinates of the 3-point synthetic objects, we trained

a MLP neural network with MSE loss that considers the ordering ambiguity of the

network outputs (see appendix B.4). We used 3-point object’s data synthesized from

the CMOS-sensor readout in the single-point tracking experiment (with each CMOS

image smoothed by spatial averaging and then down-sampled to 9 × 9). We found
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Figure 5.2. (a-b) Tracking results for single point object. Results are based on
images captured with the graphene photodetector arrays. (c-d) Tracking results for
three points objects. Results are based on data synthesized from multi focal-plane
CMOS images (downsampled to 9 × 9) of single point source. (e): Tracking results
for rotating two-point objects on one testing trajectory. Results are based on data
synthesized from single point source images captured with graphene photodetector
arrays.

that the trained MLP neural network can estimate a multi-point object’s position with

remarkable accuracy; see Fig. 5.2(c-d). The RMSE values calculated from the entire

test set are 0.017 mm, 0.016 mm, 0.59 mm, along x-, y-, z-directions, respectively.

Similar to the single-point object tracking experiment, the multi-point object tracking

performance improves with increasing sensor resolution (see appendix B.5).

Finally, we considered tracking of a two-point object that is rotated and translated

in three dimensions. This task aims to demonstrate 3D tracking of a continuously

50



moving object, such as a rotating solid rod. Similar to the 3-point object tracking

experiment, we synthesized a 2-point object focal stack from single-point object focal

stacks captured using the graphene transparent transistor array. The two points are

located at the same x-y plane and are separated by a fixed distance, as if tied by

a solid rod. The rod is allowed to rotate in the x-y plane and translate along the

z-axis, forming helical trajectories, as shown in Fig. 5.3(e). We trained a MLP neural

network with 242 training trajectories using MSE loss to estimate the object’s spatial

coordinates and tested its performance on 38 test rotating trajectories. Fig. 5.2(e)

shows the results of one test trajectory. The neural network estimated the orientation

(x- and y-coordinates) and depth (z-coordinate) of test objects with good accuracy:

RMSE along x-, y-, and z-directions for the entire test set are 0.016 mm, 0.024 mm,

0.65 mm, respectively. Appendix B.4 gives further details on the MLP neural network

architectures and training.

5.4 3D extended object tracking

The aforementioned objects consisted of a few point sources. For non-point-like

(extended) objects, the graphene 4 × 4 pixel array fails to accurately estimate the

configuration, given the limited information available from such a small array. To

illustrate the possibilities of 3D tracking of a complex object and estimating its ori-

entation, we used a ladybug as an extended object and moved it in a 3D spatial grid

of size 8.5 mm × 8.5 mm × 45 mm. The grid spacing was 0.85 mm along both x-

and y-directions, and 3 mm along z-direction. At each grid point, the object took

8 possible orientations in the x-z plane, with 45° angular separation between neigh-

boring orientations (see experiment details in appendix B.3). We acquired 15,488

high-resolution focal stack images using the CMOS sensor (at two different planes)

and trained two convolutional neural networks (CNNs), one to estimate the lady-

bug’s position and the other for estimating its orientation, with MSE loss and the

cross-entropy loss, respectively. Fig. 5.3 shows the results for five test samples. The

CNNs correctly classified the orientation of all five samples and estimated their 3D

position accurately. For the entire test set, the RMSE along x-, y-, and z-directions is

0.11 mm, 0.13 mm, and 0.65 mm, respectively, and the orientation is classified with

99.35% accuracy. We note that at least two imaging planes are needed to achieve

good estimation accuracy along depth (z)-direction: when the sensor at the front

position is solely used, the RMSE value along z-direction is 2.14 mm, and when the

sensor at the back position is solely used, the RMSE value along z-direction is 1.60
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mm.

Appendix B.4 describes the CNN architectures and training details.

Figure 5.3. 3D extended-object tracking and its orientation estimation using focal
stack data collected by a CMOS camera, in (a) the x-y-plane perspective and (b) in
the x-z-plane perspective. The estimated (true) ladybug’s position and orientation
are indicated by green (orange) dots and green (orange) overlaid ladybug images.

5.5 Summary

In conclusion, we designed and demonstrated a focal stack imaging system enabled

by graphene transparent photodetector arrays and the use of feedforward neural net-

works. Even with limited pixel density, we successfully demonstrated simultaneous

imaging at multiple focal planes, which can be used for 3D tracking of point objects

with high speed and high accuracy. Our computer model further proves that such

an imaging system has the potential to track an extended object and estimate its

orientation at the same time. Future advancements in graphene detector technology,

such as higher density arrays and smaller hysteresis enabled by higher quality tunnel

barriers, will be necessary to move beyond the current proof-of-concept demonstra-

tion. We also want to emphasize that the proposed focal stacking imaging concept is

not limited to graphene detectors alone. Transparent (or semi-transparent) detectors

made from other 2D semiconductors and ultra-thin semiconductor films can also be

implemented as the transparent sensor planes within the focal stacks. The resulting

ultra-compact, high-resolution, and fast 3D object detection technology can be ad-

vantageous over existing technologies such as LiDAR and light-field cameras. Our

work also showcases that the combination of nanophotonic devices, which is intrinsi-

cally high-performance but nondeterministic, with machine learning algorithms can

complement and open new frontiers in computational imaging.
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CHAPTER VI

Focal Stack Camera Depth Estimation

Performance Comparison and Design Exploration

6.1 Introduction

Previous chapters have presented 3D sensing applications of the focal stack cam-

era, including light field reconstruction (chapter III), depth estimation (chapter III,

IV), and 3D tracking (chapter V). Despite these successful demonstrations of focal

stack camera applications, the dependence of the focal stack camera design on its 3D

sensing performance has not yet been explored. It is also unknown what the per-

formance trade-offs might be when comparing the focal stack and light field camera

approaches.

This chapter addresses these questions via a set of numerical experiments. Specifi-

cally, we focus on depth estimation performance evaluation, using deep learning based

methods. Using focal stacks that are either computed from publicly available light

field datasets [38, 33, 81] or captured experimentally, we train convolutional neural

network (CNN) models to estimate depth maps from the input focal stack and study

the dependence of the camera parameters, including number of sensor planes, aper-

ture size and sensor resolution, on the depth estimation accuracy. We further compare

the system performance with the light field camera and show that focal stacks achieve

comparable performance.

This chapter is organized as follows: Section 6.2.1 and 6.2.2 describe the back-

ground and methods for focal stack and light field depth imaging. Section 6.2.3

describes the network structure we used for estimating the depth from the focal stack

and from the light field. Section 6.2.4 describes the datasets we used for performance

evaluation. Section 6.3 contains the experiment results and analysis. This work has

been submitted to OSA Optics Express for peer review.
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6.2 Methods

6.2.1 Focal stack depth imaging

Several approaches have been developed to estimate depth maps from a focal stack.

Nayar et al. [70] used a sum-modified-Laplacian to measure the focus sharpness and

fit the focus sharpness by a gaussian distribution to obtain accurate depth. Moeller et

al. [62] cast the depth estimation as a nonconvex optimization problem that includes a

data fidelity term and a regularization term, which is solved by linearized alternating

directions method of multipliers (ADMM) [12]. Sakurikar et al. [91] used a composite

focus measure that is a weighted combination of standard focus measures to measure

the focus sharpness and showed that it achieves better performance than those using

a single individual focus measure. Hazirbas et al. [33] trained a deep neural network

for depth estimation from focal stack.

6.2.2 Light field depth imaging

As one of our goals in this paper is to compare the depth estimation performance

of the focal stack camera with the light field camera, this section describes some

related works on the light field based depth sensing.

Since light field is essentially a multi-view image set, identifying the pixel corre-

spondence between different views in the light field allows one to estimate the depth.

Chen et al. [14] proposed a bilateral consistency metric to evaluate the surface cam-

era light field and then apply a stereo matching algorithm to estimate the depth.

Shin et al. [93] trained a neural network, EPINet, to process sub-aperture views

along horizontal, vertical, and diagonal directions to regress a depth map. Tsai et

al. [100] computed a 4D disparity cost volume and employed an attention mecha-

nism to scale a feature map from each sub-aperture view by its importance and then

estimate the depth. As illustrated in chapter I, since EPIs of a light field contains

stripe-like structure with slope indicating the depth, Zhang et al. [117] designed a

spinning parallelogram to estimate the slope of lines in the EPIs of the light field.

6.2.3 Network structure

This section describes the neural networks used for estimating the depth from a

focal stack and from light field images. Fig. 6.1 shows the neural network structure

we used for estimating depth from a focal stack. The input RGB focal stack contains

nF images that are concatenated along the color dimension for a total of 3nF input
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Figure 6.1. Network structure for depth estimation from focal stack. All convolutions
have filter size of 3 × 3, stride 1, and the output channel number for each layer is
indicated beneath. Blue border around a layer indicates that Batch Normalization
and leaky ReLU are applied to the output. Red border indicates tanh non-linearity
is applied to the output. nF is the number of images in the focal stack.

channels. The network consists of 10 convolution layers with no spatial pooling or

up-sampling operations, to preserve fine-details in the final output. Dilated convolu-

tions [110] are used to ensure a large receptive field without significant computation

cost. The output from the last convolution layer (after tanh nonlinearity) is further

scaled and offset by dataset-dependent constant α and β, respectively to constrain

the output to a plausible range.

We use the EPI-Net [93] for estimating the depth from the light field image.

The network has a four-branch structure, where each branch takes in sub-aperture

images of the light field along a particular direction (horizontal, vertical, left-diagonal

or right-diagonal). Features are extracted from each branch independently using

2D convolutions and then concatenated along the color dimension. Then additional

convolutions are used to process the concatenated feature map to predict the final

depth map. More details about the network structure can be found in [93].

6.2.4 Focal stack dataset

We generated focal stack data from three publicly available light field datasets: the

HCI light field dataset [38], the DDFF dataset [34] and the CVIA dataset [81]. The

HCI light field dataset contains 28 synthetic light fields of resolution 9×9×512×512,

of which 16 light fields in the category ‘additional’ are used as the training data

and the remaining 8 light fields are used as the testing data. We synthesized focal

stacks using the add-shift algorithm [73], with images focusing at disparity planes

evenly distributed in [-3,3]. The DDFF dataset contains 600 training and 120 testing

realistic light fields of size 9×9×383×552 captured by a Lytro light field camera. 480

light fields from the original training data are used in our experiments for training,
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Figure 6.2. Example focal stacks showing the 2nd, 4th and 6th images in the stack
sequence. Last column shows the ground truth depth maps. Rows correspond to HCI
dataset, DDFF dataset, CVIA dataset and Nikon dataset, respectively.

with the remaining 120 light fields in the original training data used for testing. We

synthesized focal stacks, each containing nF images focusing at disparity planes evenly

distributed in [0.020, 0.282]. The CVIA dataset contains 40 light fields of resolution

15× 15× 434× 625 in a distance range of 0.2 to 1.6m using a Lytro camera, of which

32 are used for training, and 8 for testing. We synthesized focal stack with images

focusing at disparity planes evenly distributed in [-0.44, 0.17]. All datasets above

contain ground truth depth maps for evaluation, either from its synthetic 3D models

(HCI synthetic light field), or from depth sensors (DDFF dataset and CVIA dataset).

In addition to using focal stacks generated from the existing light field datasets,

we also collected an additional focal stack dataset, which we named as Nikon dataset.

Unlike all the above datasets, where the focal stacks are synthesized from the light

fields, it consists of focal stacks captured directly using a DLSR camera (Nikon D7200,

35 mm lens) with focal stacking function provided in camera control software ‘con-

trolMyNikon’. As such, the focal stacks in the Nikon dataset resemble most closely
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the focal stack one would capture using the focal stack imaging system shown in

Fig. 1.10. We set the step size of the focal stacking in the software to 200, and size

of the focal stack nF to 7, which covers a depth range of approximately 0.4 m to 1.3

m. We repeat the focal stack collection process for 4 aperture size settings (f/3.2,

f/5, f/10, f/22). Each setting contains 40 focal stacks of resolution 854 × 1280 after

resizing, of which 32 are used as the training data and the remaining 8 are used

as the test data. We additionally form Nikon datasets with nF = 2, from the nF

= 7 datasets, by using only the 2nd and 6th focus position images, which are used

to study the dependence on number of sensor planes. Since the raw captured focal

stack exhibits a focus breathing effect due to the change of magnification when the

35-mm lens focus is changed, we additionally perform a focal stack alignment process

to compensate the magnification change and align the images in the focal stack. We

also capture ground truth depth maps for each focal stack, using an Intel RealSense

D415 Depth Camera, and register the depth onto the RGB images. More details on

the focal stack collection, focal stack alignment and depth registration can be found

in the appendix D. Fig. 6.2 shows example focal stack images of the datasets we use.

6.3 Experiments and results

We trained separate networks (Fig. 6.1) to estimate depth, using focal stack

datasets with varying camera parameters (number of sensor planes in focal stack,

sensor resolution, aperture size), to study their dependence on the depth estimation

accuracy. Finally, we compared the depth performance from the focal stack and the

light field. The details of the training setup and experiments are described next.

6.3.1 Training setup

All networks were trained in Pytorch with L1 loss using Adam optimizer [48] with

learning rate 10−4, batch size 4. The input focal stacks/light fields were randomly

cropped in the spatial dimension to 125× 125. Models were trained till convergence

(80k epochs for HCI dataset, 5k epochs for DDFF dataset, 15k epochs for CVIA and

Nikon datasets).

6.3.2 Sensor resolution dependence

Here we study how the sensor pixel resolution affects the depth estimation perfor-

mance. Specifically, a down-sample rate of N means reducing the effective resolution
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of the images in the focal stack by setting the pixel values in every N×N block to the

value of the top left pixel. Fig. 6.3a illustrates the downsampling process that mimics

the fact that the active sensing areas (individual pixels) of a low resolution sensor are

not densely packed in the 2D plane. The first 3 rows of Fig. 6.3b show example focal

stacks (nF = 2) with varying down-sample rates collected with f/3.2 aperture setting,

along with the estimated depth maps, which indicate that higher resolution sensors

lead to higher quality depth maps as one may intuitively expect. The left column of

Fig. 6.4 shows how the RMSE of the depth estimates depend on the focal stack image

resolution. Better resolution images lead to better performance on DDFF, CVIA and

Nikon datasets. This trend can be understood as follows: degrading the resolution

causes some defocus blur information to be lost (at the extreme of very low resolution,

objects at all depths will be equally blurred). In addition, the nF = 7 result has lower

RMSE than that from nF = 2, especially for a large down-sample rate, indicating

that having more focal planes in the focal stack camera is helpful, as expected.

6.3.3 Aperture size dependence

We next study how the aperture size affects the depth estimation performance.

According to Eq. 1.3, a larger aperture leads to a larger defocus blur, which could

potentially affect the depth estimation performance. For focal stacks that are synthe-

sized from a light field (HCI dataset, DDFF dataset, CVIA dataset), changing the

aperture size can be realized by refocusing using only the sub-aperture images that

are within the desired aperture window from the light field. For our Nikon datasets,

we acquired separate focal stacks with different aperture sizes for each scene. Com-

paring the 1st and 4th row of Fig. 6.3b shows the effect of reducing the aperture size.

The images in the focal stack become sharper as the aperture is reduced and the esti-

mated depth becomes noisier. The right column of Fig. 6.4 shows quantitatively that

decreasing the aperture size increases the RMSE error. This trend can be understood

because in the limit of very small aperture size, all images in the focal stack would

be the same image with every depth in focus. Comparing the results of nF = 2 and

nF = 7 with changing aperture size, having more focal planes slightly improves the

accuracy in this case.

6.3.4 Focal stack and light field camera comparison

Here we compare the performance between depth from light field and depth from

focal stack on the HCI, DDFF and CVIA datasets. EPINet [93] is used to estimate
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(a)

(b)

Figure 6.3. Example focal stacks with different camera parameters in Nikon dataset.
(a) Schematic illustrating focal stack generation with down-sample rate = 3. (b)
Focal stack examples (nF = 2) captured with different down-sample rate and aperture
setting. The depth estimated from the focal stack and the ground truth depth are
also shown.

DDFF CVIA HCI
Focal Stack 0.018 0.035 0.36
Light Field 0.027 0.042 0.17

Table 6.1. RMSE of depth map estimated from focal stack and light field. Focal stack
of nF = 7 is used. For DDFF and HCI, the RMSE is calculated on the disparity map
with unit of pixel. For CVIA, the RMSE is calculated on the depth map with unit
of meter. Largest possible aperture is used in all experiments.
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Figure 6.4. RMSE of the depth estimated from focal stack images on DDFF dataset,
CVIA dataset and Nikon dataset as a function of resolution down-sample rate (left
column), aperture size (right column) and number of sensor planes nF.

the depth from light fields. Light fields and focal stacks with the largest possible

aperture sizs are used for each dataset. We used nF = 7 for the focal stack data and

used no down-sampling of the focal stack/light field images. Table 6.1 shows that

the depth estimation from focal stack has a disparity RMSE error of 0.018 pixel on
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Figure 6.5. Qualitative disparity estimation results from light field data and focal
stack data. (a) Results on HCI dataset. (b) Results on DDFF dataset.

the DDFF dataset, which is 33% lower compared to that from the light field. On the

CVIA dataset, the focal stack based method also performs better than the light field

based method, with 17% lower RMSE. However, the light field based depth estimation
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performs better on the HCI dataset, with a disparity RMSE of 0.17 pixel, as opposed

to 0.36 pixel for focal stack based method.

To better understand when the focal stack would perform better than a light field

camera for depth estimation, Fig. 6.5 shows qualitative depth estimation results on

the HCI dataset and DDFF datasets. On the HCI dataset (Fig. 6.5a), depth from light

field can better resolve the fine structures compared to focal stack method, as can be

seen, for example, by comparing the estimated depth maps of sample 1. This is likely

because HCI dataset has a large disparity and hence the amount of defocus blur on

the out-of-focus object is significant. Unless the object happens to be in focus on one

of the image plane, it would be hard to precisely localize the object boundary using

the focal stack. On the DDFF dataset, light field based method performs poorly and

shows poor estimates on texture-less regions. This is because the maximum disparity

in the DDFF dataset is small, and as a result the sub-aperture images in the light

field become very similar. This makes it hard to estimate the depth from the light

field. On the other hand, the focal stack based method is still able to produce smooth

and good depth estimates in this case, by analyzing the small change in the focus

sharpness, which is what a CNN excels at. This also suggests that more information

is not always better, and the way the information is presented is also important: the

light field, which has a larger data size and more information, may not perform better

than focal stack on depth estimation, in the cases where the maximum disparity of

the scene is small, e.g., small aperture camera, or far away objects. In such cases, it

turns out that the more compact representation of the scene in the form of a focal

stack is better suited for a neural network to estimate the depth.

6.4 Summary

This chapter explored the focal stack camera design parameter space, including the

number of focal planes, size of the aperture and sensor resolution, and studied their

effects on the depth estimation performance, using three public light field datasets

and an experimentally acquired Nikon focal stack dataset. We further compared the

focal stack camera performance with the light field camera and showed that which

one is better for depth estimation depends on the maximum disparity of the scene.

These findings can be helpful for future designs of focal stack cameras.
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CHAPTER VII

Secure Imaging using Focal Stack Camera

7.1 Introduction

Previous chapters have presented 3D sensing applications of the focal stack cam-

era. This chapter, in contrast, concerns the application of using focal stack camera

for secure imaging applications. That is, to detect faked or manipulated images using

a focal stack.

Digital images are convenient to store and share, but they are also susceptible

to malicious manipulations. With common photo editing tools, little effort or ex-

pertise are needed to convincingly manipulate an image. With the advancement of

deep learning, this issue becomes even more severe: Generative Adverserial Networks

(GAN) are able to synthesize realistic non-existing images, change the style of an

image, or inpaint an image to remove specific objects in it. Deepfakes can even seam-

lessly swap the face of one person with another in images [1, 49]. These malicious

manipulated images could appear in the news, causing misleading opinions in the

public or being provided in the court as evidence, with obvious serious consequences.

Verifying the integrity of multi-media has been a research topic for long time in

the field of multi-media forensics [25, 21, 23, 95, 85, 58]. Traditional methods verify

the integrity of a digital medium and detect traces of malicious manipulation by

examining some signatures in the image, using either passive or active approaches.

In the active approach, semi-fragile watermarks are pro-actively embedded into the

image. The introduced watermark (which is visually imperceptible) is persistent after

benign image operations such as brightness adjustment, resizing and compression,

but gets destroyed after malicious editing. In the passive approach, imaging artifacts

such as those due to lens distortion [45], color filtering [85], Photo Response Non-

Uniformity (PRNU) [58], or compression are used to authenticate an image.
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Each method has its own limitations, however. The passive approach, while being

simple to implement, relies on weak traces that are likely to be destroyed after com-

pression/resizing. PRNU fingerprint analysis, while being a popular forensic method,

requires knowledge about the source camera’s PRNU. On the other hand, the active

watermarking approach is more robust against compression/resizing, but alters the

original content due to the watermark embedding. More recently, deep learning based

forensic detection methods have also been proposed [41, 102, 108, 52]. However, the

ability to generalize data-driven models remains as a key challenge: these models

perform well on images that are similar to the training data, but the performance can

quickly degrade when the models are fed with images that differ too much from the

training data distribution [118, 22].

Most existing image forgery detection methods assume a standard camera and

attempt to determine the image authenticity by analyzing features present in a given

2D image file. Adding security features directly on the hardware side can improve

forgery detection. Motivated by this possibility, this paper proposes a new way to

prevent and detect malicious image manipulation by enriching the information carried

by the digital images and videos. Specifically, we propose to use a focal stack, instead

of a single image, for secure media sharing, where the entire focal stack image file is

shared publicly. Fig. 7.1 illustrates the idea: images in the focal stack contain depth

dependent defocus blur. Since generating physically realistic content with defocus

blur that is consistent across the focal stack is extremely challenging, we show that

detecting image manipulation is much easier for a focal stack compared to a single

image, by using such inter-focal stack consistency cues. This approach leads to a much

more secure media format. Someone attempting to manipulate the image would have

to do it for every image in the focal stack, and it would be extremely challenging to

accomplish this in a way where the consistencies of the content and the defocus blur

are maintained across the focal stack.

To demonstrate the advantage of focal stack image sets over single 2D images as

a tamper-evident image file, we limit our scope to inpainting types of image ma-

nipulation. We generated inpainted focal stacks using several CNN-based meth-

ods [71, 106, 111]; we then trained inpainting region localization CNNs to detect

regions in the focal stack that are inpainted. We show that the focal stack based

method achieves significantly better detection performance and generalization abil-

ity, compared to single image based methods. We further study how detection per-

formance depends on the number of images in the focal stack and also whether the

performance gain of using a focal stack might be mainly due to increased total pixel
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(a)

(b)

Figure 7.1. Focal stack system for inpainting region localization. (a) Imaging system
schematic showing depth dependent defocus blur of a cube-ball object. (b) Inpainting
localization CNN estimates inpainting regions from a focal stack.

number.

This chapter is organized as follows: section 7.2 describes related work on im-

age inpainting, forgery localization and focal stack cameras. Section 7.3 describes

the method we used to generate inpainted focal stacks and the method to localize

inpainted regions. Section 7.4 presents multiple numerical experiments and results.

This work has been submitted to IEEE Transactions on Image Processing for peer

review.

7.2 Related work

7.2.1 Image inpainting

Traditional image inpainting methods work well on highly textured or patterned

regions, but fail on inpainted regions with rich context and semantic meaning, such

as natural scenes and human faces. Simakov et al. proposed a bidirectional similar-
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ity measure, a metric based on nearest neighbor patch search, to determine if two

signals are similar and can be used as the objective function for image inpainting.

PatchMatch [6] accelerated the patch matching process in the bidirectional similarity

measure using random search and coherence propagation. Shift-Map [86] achieved

inpainting by computing a shift-map, where the pixels in the inpainting region are

sampled from a relative position indicated by the shift-map. The shift-map is es-

timated by a global optimization objective function that contains a data term and

a smoothness term. The optimization is done in a hierarchical way to accelerate

the computation, with low resolution shift-map estimated first and then refined by

high-resolution one.

Deep learning based inpainting methods have better performance for inpainting

complex objects and scenes due to their powerful capability for modeling the high

level semantics presented in the image. The context encoder [78] is an early approach

to image inpainting using deep learning methods. An encoder extracts semantic in-

formation from a masked input image, and a decoder reconstructs a full image with

coherent contents filled in the inpainting region. Pixel-wise reconstruction loss and

adversarial loss are used as the loss function to train the network. Later works typ-

ically follow this adversarial training to improve the fidelity of the inpainted region.

GMCNN [106] used a multi-column network to inpaint missing regions at multiple-

scales in parallel. A confidence driven pixel reconstruction loss is used to constrain

filling boundary pixels more strictly, compared to those pixels that are far away from

the boundary. A Markov Random Fields (MRF) type regularization promotes content

diversity in the inpainting region. As standard convolution’s response is conditioned

on both valid pixels and also placeholder values in the inpainting region, it also leads

to color discrepancies. To resolve this issue, Liu et al. [56] proposed partial convolu-

tion to reduce these artifacts by introducing a layer-wise binary valid mask to select

out only valid pixels for convolution computation and to normalize the convolution

output. Gated Convolution [111] further generalized the partial convolution by hav-

ing a learnable gating mechanism to select only proper pixels for convolution. Nazeri

et al. [71] divided the inpainting process into edge generation and colorization stages.

In the first stage, the edges of the inpainting regions are first generated. Then the

colorization network inpaints the region conditioned on the input image and also the

edge map. Such proposed two-stage inpainting exhibits better details in the inpaint-

ing region. There has been continued progress on improving inpainting using deep

learning methods. Li et al. proposed to use a recurrent feature reasoning module to

improve the inpainting performance on large continuous holes. Yi et al. proposed
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a contextual residual aggregation mechanism to inpaint ultra-high resolution images

with good quality [109]. Peng et al. proposed to use a hierarchical vector quantized

variational auto-encoder (VQ-VAE), to generate diverse inpainting results [80].

7.2.2 Forgery localization

Early attempts to localize manipulated regions in images relied on local anomalies

of some signatures present in the image. Johnson et al. [45] analyzed the chromatic

aberration presented in the image and identified the image regions where the chro-

matic aberrations are inconsistent with other regions in the image. Popescu et al. [85]

showed that the color interpolation algorithm used for the color filter array in com-

mercial cameras leads to periodic correlation patterns that can be revealed by Fourier

analysis. They demonstrated that this signature can be used to localize tampered

regions in an image. Assuming a known camera model or other reference images

available, sensor pattern noise can also be used to localize a forged region by check-

ing whether a region has such noise patterns [58]. In addition, splicing and copy-

move forgery likely involves several post-processing steps, such as scaling/rotating

the object and blurring the object/background boundary. These steps can generate

re-sampling artifacts and can also be detected by spectral analysis [84].

Recent deep learning based methods, in contrast, learn discriminating forgery

features from the data directly. Salloum et al. [92] trained a multi-task CNN (MFCN)

for splicing localization. The network estimates both the splicing region and the

splicing boundaries, with partially shared parameters between two tasks. Such multi-

task design leads to better localization performance, compared to only estimating

the splicing region. Huh et al. detected image splicing by training a classifier to

determine whether two image patches have EXIF meta consistency [41]. Wang et

al. [102] detected image warping manipulation by training a CNN on script-generated

warped images in Photoshop. Wu et al. [108] proposed a two-branch CNN model

(BusterNet) to localize copy-move forgery regions. Li et al. [52] localized inpainted

regions by using a CNN model with the first few layers initialized as high-pass filters

to enhance the inpainting traces. Despite these efforts, developing a well performing

forgery detection method with good generalization ability remains as a challenge.

7.2.3 Focal stack

There are numerous applications of focal stack imaging as we have seen in previous

chapters. However, to the best of our knowledge, there is no prior work using focal
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Figure 7.2. Example real and inpainted focal stacks. Only the first and the last
image in each focal stack is shown. The region to be inpainted is shown as white in
the second row.

stacks for image forensic related applications and this work is the first one to propose

using focal stack imaging as a secure image format.

7.3 Method

To demonstrate the effectiveness of using focal stacks as a secure image format, we

generated datasets containing manipulated focal stacks and trained a detection CNN

to localize the forgery regions. The localization performance is then compared with

single image based methods to show the advantage of focal stack over conventional

images for image security applications. We focus on image inpainting forgery where
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Figure 7.3. Localization F1 scores for focal stack data with networks trained on
GMCNN dataset with JPEG augmentation and tested on GMCNN data (1st col-
umn), EdgeConnect (2nd column) and Gated Convolution (3rd column) datasets.
The robustness against Gaussian noise (1st row), resizing (2nd row) and JPEG com-
pression(3rd row) are shown for each model. Symbol ‘*’ on x-axis indicates the result
without JPEG compression.

the inpainting is done by deep learning methods. Section 7.3.1 describes how we

generate inpainted focal stacks using CNN methods. Section 7.3.2 describes how we

localize inpainting regions in the manipulated focal stack.

7.3.1 Generating CNN inpainted focal stack

We first generated a set of authentic focal stacks from the Lytro flower light field

dataset [97], using the add-shift algorithm [74]. The Lytro flower light field dataset

contains 3343 light fields of flower scenes captured by Lytro Illum light field camera.

Each light field has a size of 376× 541× 14× 14, and following [97], we used only the

central 8 × 8 sub-aperture images for focal stack generation. Each generated focal

stack contains nF = 7 images with differing focus positions. The focus positions are

chosen to have their corresponding disparities evenly distributed in range [-1, 0.3],

which covers roughly the entire possible object depth range. The first row of Fig. 7.2
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shows example generated authentic focal stacks images.

Then we generated inpainted focal stack datasets, using three CNN based meth-

ods: GMCNN [106], EdgeConnect [71] and Gated Convolution [111]. GMCNN uses

a multi-column network to extract features at different scale level. A special ID-

MRF loss is designed to promote the diversity and realism of the inpainted region.

EdgeConnect is a two-stage inpainting process. In the first stage, an edge generator

generates edges for the inpainting region. In the second stage, an inpainting network

fills the missing region with the help of the completed edges from the first stage.

Gated Convolution [111] uses a learnable feature gating mechanism to solve the is-

sue that a normal convolution treats both all pixels equally and inpaints the image

following a two-stage coarse to fine process. We generated inpainted focal stacks us-

ing multiple methods to test the generalization ability of the network; we train the

detection network using focal stacks inpainted by one method and then evaluate its

performance on focal stacks inpainted by another method. This investigation mim-

ics the more realistic scenario where the method used to inpaint the focal stack is

unknown at the time of detection.

We generated random stroke-type regions to be inpainted for each focal stack.

All images in the same focal stack shared the same spatial inpainting region. The

goal of inpainting is typically trying to hide something in the original image and

hence identical inpainting region across images in the same focal stack should be a

reasonable assumption. Each image is then inpainted independently using one of the

above CNN methods.

The CNN inpainting models were pre-trained on the places2 [119] dataset us-

ing their original implementation and fined tuned on the flower focal stack dataset.

Fig. 7.2 shows example inpainted focal stacks.

7.3.2 Detecting CNN inpainted focal stack

The detection network we used for localizing inpainting region is based on Deep-

Labv3 [15]. DeepLabv3 was originally proposed for semantic segmentation and we re-

purposed it for region localization due to the similarity in these two tasks. The Atrous

Spatial Pyramid Pooling (ASPP) layer in DeepLabv3 ensures large receptive field and

fine detailed network output at the same time, which is beneficial for our inpainting

region localization. We used ResNet-18 [36] as the backbone for feature extraction.

A normal input image to the DeepLabv3 is a 3D tensor of shape (C,H,W ), whereas

focal stack is a 4D tensor of shape (nF, C,H,W ), so we reshaped the focal stack to

be (nF × C,H,W ) by concatenating images along the color channel. The network
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outputs a pixel-wise probability map that indicates whether a pixel is inpainted and

we train the network using binary cross-entropy loss.

Wang et al. [103] showed that proper data augmentations, such as applying JPEG

compression, lead to a model with better generalization ability and robustness against

common post-processing. Motivated by this, we followed their approach and trained

our detection network with JPEG augmentation. Specifically, the training input

focal stacks have a 50% probability of being JPEG compressed, with a JPEG quality

factor of 70. For reference, we also trained models without JPEG augmentation; these

models performed worse so the results are shown in the appendix C.

Scene G.T. Inpainting Region Prediction (nF = 1) Prediction (nF = 2) Prediction (nF = 7)

F1 = 0.47 F1 = 0.90 F1 = 0.93

F1 = 0.49 F1 = 0.82 F1 = 0.90

F1 = 0.33 F1 = 0.83 F1 = 0.90

Figure 7.4. Example localization results of the model trained on GMCNN dataset
and tested on Gated Convolution dataset. Probability threshold of 0.5 is used for
classification. F1 scores are indicated in green for each prediction.

7.4 Experiments and results

7.4.1 Implementation

The inpainted focal stack dataset generated from Lytro flower light fields con-

tains 3343 focal stacks for each inpainting method (GMCNN, EdgeConnect, Gated

Convolution). Each focal stack contains nF = 7 images with changing focus depth

and is associated with a ground truth inpainting region for training and evaluation.

We used 2843 focal stacks for fine-tuning the inpainting networks and also training

the detection network. The remaining 500 focal stacks are used for evaluating the

inpainting localization performance.
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We trained the detection network using Adam optimizer [48] with batch size 3.

The models were trained for 110 epochs, with an initial learning rate 10−4 that was

reduced to 10−5 after 70 epochs. We used data augmentation in the form of horizontal

flipping with 50% probability, in addition to the JPEG compression augmentation

described above.

We counted the true positive (TP), false positive (FP) and false negative (FN)

predictions at the pixel level for each test sample, with the classification probability

threshold set to 0.5. Then the F1 scores, defined as TP
TP+ 1

2
(FP+FN)

, were computed

and averaged over all test samples to evaluate the network’s inpainting localization

performance.

We additionally tested the models’ robustness against common post-processing

methods including JPEG compression, gaussian noise, and resizing. Specifically, we

added additive white gaussian noise with σ in range [0, 1.6] to test the robustness

against noise. We downsampled test focal stacks using nearest neighbor interpolation

with ratio in range [1, 2] to test the robustness against resizing. We JPEG compressed

test focal stacks with JPEG quality in range [30, 100] to test the robustness against

compression. Note that these post-processing processes are only applied to the test

focal stacks; the models were trained using augmentation based only on horizontal

flipping and JPEG compression with quality 70.

To study the dependence of the localization performance on the focal stack size

nF, we trained models using inpainted focal stack datasets with nF = 1, 2, 3, 5, 7.

Specifically, the nF = 7 dataset is the one described at the begining of this section.

We obtained the nF = 1 dataset by only using the 7th (last) image of each focal stack

in nF = 7 dataset. Similarly, the nF = 2 dataset contains the 1st and 7th images, the

nF = 3 dataset contains the 1st, 4th, 7th images, and the nF = 5 dataset contains

the 1st, 3rd, 4th, 5th and 7th images.

7.4.2 Results

Fig. 7.3 shows the localization results trained on the GMCNN inpainted focal

stack dataset and evaluated on testing focal stacks inpainted by GMCNN, Edge-

Connect and Gated Convolution. The advantage of using focal stack (nF ≥ 2) over

single image (nF = 1) for inpainting region localization is apparent and significant

for every test configuration. Taking the 1st row of Fig. 7.3 for example, training and

testing both on the GMCNN dataset using nF = 1 has a F1 score about 0.67 and

using nF = 2 has a F1 score about 0.87. The difference is even more dramatic when

training is performed on the GMCNN dataset and testing is performed on the Gated
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Figure 7.5. Localization F1 scores for focal stack data with networks trained on
EdgeConnect dataset with JPEG augmentation and tested on GMCNN (1st column),
EdgeConnect (2nd column) and Gated Convolution (3rd column) datasets. Symbol
‘*’ on x-axis indicates the result without JPEG compression.

Convolution dataset (top-right subplot): nF = 1 has a F1 score about 0.11 and using

nF = 2 has a F1 score about 0.80. Increasing nF further improves the F1 score, though

not significantly. Although the single image (nF = 1) localization method performs

fairly well when the testing data are generated by the same inpainting method as the

training data, it performs poorly when the testing data are inpainted by a different

method. On the other hand, there is only a very small performance drop for the focal

stack based method when testing on focal stacks inpainted by a method different from

training. These results show that the focal stack based method has a much better

generalization ability across different inpainting methods. This benefit can be under-

stood as follows: for single image based inpainting region localization, the network

relies heavily on detecting inpainting method specific artifacts, such as checkerboard

patterns produced by transpose convolutions [76] or unnatural transitions between

inpainted and not inpainted regions, to determine whether a region is inpainted.

However, these criteria cannot be universal for detecting inpainting because a differ-
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Figure 7.6. Localization F1 scores for focal stack data with networks trained on Gated
Convolution dataset with JPEG augmentation and tested on GMCNN (1st column),
EdgeConnect (2nd column) and Gated Convolution (3rd column) datasets. Symbol
‘*’ on x-axis indicates the result without JPEG compression.

ent method will likely have a different checker board pattern or a different transition

artifact between inpainted and not inpainted region. On the other hand, the focal

stack based method has a much more inpainting-method agnostic clue to determine

whether a region is inpainted or not: it can check whether the content and the defocus

blur across a focal stack in a region is physically and semantically consistent. Such

consistency checks do not depend on the methods used for inpainting and hence it

should better generalize across different inpainting methods.

Fig. 7.4 shows example predicted inpainting regions, using a model trained on

GMCNN inpainted focal stacks and tested on Gated Convolution inpainted focal

stacks. The single image based inpainting localization performs poorly, whereas using

a focal stack of only nF = 2 greatly improves the prediction and nF = 7 model has

the best performance.

We also trained models using EdgeConnect inpainted focal stacks, and using Gated

Convolution inpainted focal stacks, to verify that the trends above are not specific to

74



the particular training dataset. Fig. 7.5 and Fig. 7.6 show the results. The general

findings are similar as those from Fig. 7.3, with some minor differences: the advantage

of a focal stack over a single image for the model trained and tested on EdgeConnect

inpainted dataset is smaller, as shown in the middle column of Fig. 7.5. This is likely

because the EdgeConnect inpainted images contain more visually apparent inpaint-

ing artifacts. Indeed, when we inspect closely some EdgeConnect inpainted regions,

they tend to be darker, compared to non-inpainted regions. This makes inpainting

localization using single image easier so the additional images in the focal stack do

not help much. However, when the model is evaluated on the dataset inpainted by

a method different from the training data, the single image localization performance

degrades severely, as shown in the 1st and 3rd column of Fig. 7.5, while the focal stack

based models retain high performance in these cases. This is again because the focal

stack based method uses the more generalizable inter-focal stack consistency check to

localize the inpainting region. For models trained on Gated Convolution, the single

image based method performs poorly (3rd column of Fig. 7.6), even when tested on

focal stacks inpainted by the same method. This is because the Gated Convolution

inpainted images contain fewer artifacts and are more visually realistic. This makes

the single image based method struggle to find discriminating forgery traces.

All results presented in Fig. 7.3, Fig. 7.6 and Fig. 7.5 demonstrate good robustness

against several post-processing methods, including Gaussian noise (1st row), image

resizing (2nd row) and JPEG compression (3rd row), showing that our proposed

method would be useful in practical cases, such as in determining whether an internet

image file is authentic or not, where these post-processing operations are common.

To verify that the advantage of a focal stack over a single image is not simply

due to the increase in the number of total pixels, we trained additional models for

nF = 2, using focal stacks downsampled by factors of
√

2 and 2. Fig. 7.7 shows the

results. The nF = 2, downsampling ratio =
√

2 system has the same total number of

pixels as nF = 1 system without downsampling, and nF = 2, downsampling ratio = 2

model has two times fewer total pixels, compared to the system of nF = 1, without

downsampling. Fig. 7.7 shows that reducing the total pixel numbers in the focal stack

system only slightly reduces the localization performance; the main performance gain

of using a focal stack for inpainting localization is due to the multiple sensor plane

nature of the focal stack system that encodes robust inter-focal stack consistency

clues for forgery detection.

In practical applications, the testing focal stack to be authenticated may have a

different focus setting than the training time focus setting. Thus, in Table 7.1 we
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Figure 7.7. Localization F1 scores for focal stack data with networks trained on
GMCNN dataset with JPEG augmentation and tested on GMCNN (1st column),
EdgeConnect (2nd column) and Gated Convolution (3rd column) datasets, showing
the total pixel dependence. Symbol ‘*’ on x-axis indicates the result without JPEG
compression.

Table 7.1. F1 scores of the model trained on GMCNN inpainted focal stacks with
focusing disparity range [-1, 0.3], and evaluated on focal stacks inpainted by GMCNN,
EdgeConnect and Gated Convolution. Three values in each field correspond to the
results on focal stacks with focusing disparity range [-1, 0.3], [-0.8, 0.5] and [-1.2, 0.5],
respectively.

nF GMCNN EdgeConnect Gated Convolution
1 0.68 / 0.66 / 0.66 0.40 / 0.37 / 0.37 0.11 / 0.10 / 0.10
2 0.88 / 0.87 / 0.87 0.83 / 0.82 / 0.81 0.80 / 0.79 / 0.79
3 0.91 / 0.91 / 0.85 0.88 / 0.87 / 0.82 0.87 / 0.86 / 0.80
5 0.91 / 0.92 / 0.89 0.89 / 0.89 / 0.86 0.88 / 0.89 / 0.85
7 0.92 / 0.92 / 0.90 0.90 / 0.89 / 0.87 0.89 / 0.89 / 0.87
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also evaluated our model using inpainted focal stacks having a different focus setting

compared to the training time. Specifically, the model is trained using GMCNN in-

painted Lytro flower focal stacks, with focusing disparity evenly distributed in range

[-1, 0.3], and tested on Lytro flower focal stacks with focusing disparity evenly dis-

tributed in range [-1, 0.3] (same setting as training), and in the ranges [-0.8, 0.5], and

[-1.2, 0.5]. The case [-0.8, 0.5] corresponds to the scenario where every image in the

testing focal stack is focusing closer to the camera and the case [-1.2, 0.5] corresponds

to the scenario where the focus depth range is larger for the testing data compared to

the training data. The table shows that there is only a slight drop in inpainting local-

ization performance when testing the trained focal stack based model on focal stacks

with different focus setting. This excellent generalization ability across camera focus

settings is due to the fact that the focal stack based model relies on the inter-focal

stack consistency for detection, which is insensitive to the focus of each image.

Finally, as performance references, we also evaluated the forgery localization F1

scores by predicting all pixels to be forged (all-forged) and by predicting a pixel to

be forged or not with 50 % probability (flip-coin). The all-forged method has a F1

score of 0.38 and the flip-coin method has a F1 score of 0.32. Note that these values

are higher than some F1 scores of nF = 1 models evaluating on the unseen datasets.

For example, the nF = 1 model trained on the EdgeConnect dataset and tested on

the Gated Convolution dataset (top-right panel of Fig. 7.5) at σ = 0 has a F1 score

of 0.07. This is because the F1 score is a harmonic mean of precision and recall:

F1 , TP
TP+ 1

2
(FP+FN)

= 2 precision · recall
precision + recall

. The all-forged method has a precision of 0.24,

a recall of 1, the flip-coin method has a precision of 0.24, a recall of 0.5, and the

nF = 1 model at σ = 0 has a precision of 0.71, a recall of 0.04. As can be seen,

although the nF = 1 model has a much higher precision, it’s very conservative at

predicting forged samples, hence a very low recall value (note that in the case where

all pixels are predicted to be real, the F1 score is 0). The nF = 1 model is essentially

predicting almost all pixels to be real since the forgery trace in the unseen dataset is

different from the training time and the model struggles to find such traces. This fact

could also explain the reason why the nF = 1 trace in the top-right panel of Fig. 7.5

increases slightly with σ: an inclusion of the noise leads to some spurious features in

the image, leading to an increased number of pixels to be predicted as forged, which

in turn leads to an increased recall. For example, the nF = 1, σ = 1.6 point in the

same figure has a recall of 0.07, a precision of 0.47, which corresponds to an increased

F1 of 0.12.
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7.5 Summary

This chapter proposed a novel system and method of using a focal stack for lo-

calizing image inpainting regions in manipulated images. We trained CNN models

for inpainting localization and showed that using an image focal stack, instead of

a single image, leads to significantly better localization performance and significant

robustness to common post-processing image perturbations. The proposed method

also shows excellent generalization ability across different inpainting methods and

different camera focus settings.

Although we focused on the inpainting type of forgery, we expect the findings are

applicable to many other types of forgery detection as well. We hope this work can

lead to a new direction for image forgery detection and make images in the future

more secure.
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CHAPTER VIII

Conclusions and Future Work

We have presented two imaging systems enabled by novel nanophotonic devices,

i.e., a HMM-based nanoscale structure fingerprinting system and a transparent graph-

ene based focal stack camera. Following sections summarize the result of each project

and discuss the future directions.

8.1 Nanoscale fingerprinting with hyperbolic metaterials

Chapter II presented a new approach of discriminating nanoscale objects using

HMM, with deep subwavelength resolution. Instead of imaging directly the nanoscale

objects, we proposed to measure a far-field scattering spectrum of the objects placed

on the HMM device. Thanks to the highly localized beam profile in the HMM, the

measured spectrum is extremely sensitive to the spatial/material configuration of the

objects under examination, and can be used as the fingerprinting to discriminate dif-

ferent nanoscale structures. We demonstrated results of localizing a single nanoscale

object, determining the gap between two closely spaced objects, and also showed

the dependence of the spectrum on the material composition. Importantly, our pro-

posed method only relies on the far-field intensity-only measurement to achieve a

deep-subwavelength resolution. Unlike fluorescence based method imaging method,

it doesn’t require fluorescent labeling process. And compared to hyperlens imaging

approach, where the high loss of the metamaterial demands a high intensity illumi-

nation, which in turn could damage the sample, our proposed device works using the

localized light beam that is already attenuated by the HMM. This makes it possible

to increase the illumination level without damaging the sample. Future works of this

project include studying the resolution dependence on the HMM top scatterer con-

figuration, demonstrating nanoscale fingerprinting applications experimentally in 3D

configuration.
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8.2 Learning based light field reconstruction

Chapter III presented methods for reconstructing the light field from focal stack.

We first presented the Momentum-Net, an iterative network network based method

obtained by unrolling the Block Proximal Extrapolated Gradient Method (BPEG-

M), to solve inverse problems. Compared with reconstruction using hand-crafted 4D

EP regularization, Momentum-Net improves significantly the reconstruction quality.

And compared with existing iterative network based method (BCD-Net with 3 inner

iteration), it is 2.5 times faster. Possible future works of this project include designing

a sharper majorizer to further improve the reconstruction speed and accuracy and

learning Momentum-Net regularization parameters from datasets during the training

stage.

However, as an iterative reconstruction method, reconstruction from Momentum-

Net is still not applicable to real-time applications. As a result, a non-iterative light

field reconstruction method is highly favored. To this end, in the latter part of

Chapter III, we proposed a learning based non-iterative light field reconstruction

method. The method reconstructs the light field using physics-based rendering using

CNN estimated depth and all-in-focus image. The PSNR of reconstructed light fields

on the Lytro flower light field dataset is 2.85 dB higher than the MBIR using 4D

EP regularization and runs at a frame rate of 16 fps, making real-time light field

photography from focal stack possible. The proposed model estimates an intermediate

4D ray depth from the focal stack, but is trained using light field as supervision.

Hence it can also be used as a method for depth estimation from focal stack where

the depth ground truth is not available. Future works of this project include designing

a better all-in-focus image synthesize network, and using an occlusion-aware light field

reconstruction loss to improve the reconstruction performance.

One important aspect of these proposed learning based reconstruction methods, is

the stability of the reconstruction, e.g., the robustness against small perturbations in

the focal stack. Such issue has been realized and studied in deep learning based image

classification tasks [63, 99, 47], and also in the medical image reconstruction tasks [5].

It is possible that a small perturbation, even visually imperceptible, in the input to

the network leads to a very different prediction. Hence it would be interesting to

investigate the robustness of our proposed method against such perturbations.
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8.3 Unsupervised depth estimation from focal stack

Since a typical learning based depth estimation method requires depth supervi-

sion, which is not easily available for many applications, chapter IV proposed an

unsupervised depth estimation method from focal stack. A CNN is trained to esti-

mate a depth map using focal stack reconstruction loss, hence avoiding the need of

the depth ground truth. We compared the proposed method performance with single

image based unsupervised depth estimation method and also with focal stack based

supervised depth estimation method. Although it performs worse compared to su-

pervised depth from focal stack method, it has significantly better depth quality over

single image based unsupervised depth estimation, indicating the benefits of using

focal stack as a depth sensing component.

In our proposed method, using the input focal stack, we reconstruct the focal stack

using the estimated depth map and the estimated all-in-focus image. We found that

the quality of the estimated all-in-focus image plays an important role in the final

depth estimation performance. Although the all-in-focus image is estimated using a

classical Laplacian focus measure in the current proposed pipeline, it is possible to

train an unsupervised CNN to estimate the all-in-focus image from the focal stack,

which is one of the future work of this project.

8.4 Focal stack based 3D tracking

Chapter V introduced a method of 3D tracking using the novel focal stack camera.

The project is motivated by the fact that in many applications, a dense depth map

or a time-consuming light field reconstruction is not necessary and only sparse object

location information is needed. To this end, this chapter designed neural networks to

accomplish the 3D tracking, and using the proof-of-concept low resolution focal stack

of 4× 4 with nF = 2, we demonstrates experimentally accurate 3D position tracking

of point object. We further showed that it is possible to track an extended object

using higher resolution focal stacks and also at the same time estimate its orientation.

In the current method, the algorithm only localize a fixed number of objects. One

future work could be to allow the algorithm to detect and localize a variable number

of objects in the camera field of view, which is more close to the practical application

3D sensing scenarios.
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8.5 Focal stack camera design exploration

Chapter VI explored the camera parameter’s dependence, including aperture size,

sensor resolution and number of sensor planes on its depth estimation performance.

It shows that increasing the aperture size and sensor resolution leads to lower depth

estimation error and using more sensor planes is helpful when the sensor resolution

is low. We also conducted a performance comparison between the focal stack camera

and the light field camera on several datasets. The results indicates that the focal

stack camera performs better than the light field camera on the scenes with small

disparity. This work provides guidelines for future focal stack camera design and

indicates suitable application scenarios for focal stack camera.

8.6 Secure imaging using focal stack camera

Chapter VII proposed to use the focal stack camera for secure imaging purpose.

We showed that using a focal stack, instead of a single image, leads to much more

robust inpainting-type forgery detection and localization. In contrast to single image

based method, the focal stack based forgery detection maintains good performance

when the manipulated images are JPEG-ed, noise-corrupted or resized. In addition,

the single image based forgery detection method fails quickly when the model is eval-

uated on a different dataset, while the focal stack based forgery detection generalizes

well on unseen datasets. Importantly, the performance gain of using a focal stack of

nF = 2 over a single image (nF = 1) is already very significant. There are multi-

ple possible future works on this project. Firstly, since the image security is always

a rivalry between faking and detecting techniques, one interesting direction of fu-

ture work is to explore possible ways to fool the proposed focal stack based forgery

detection method. Potentially viable ways to achieve this include learning to syn-

thesize the entire focal stack jointly while encouraging and observing the inter-focal

stack consistency, instead of synthesizing each image independently; generating a very

photo-realistic 3D model of the scene and then rendering realistic focal stack from it.

In addition, it would be interesting to study forgery detections in focal stack videos,

instead of focal stack images, and evaluating the focal stack based method on more

types of image forgery, including image splicing, deepfakes, etc.
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APPENDIX A

Nanoscale Fingerprinting with Hyperbolic

Metamaterials

A.1 Volume plasmon polariton modes in HMM

The proposed 2D uniaxial HMM structure can support both ordinary modes

(transverse electric polarized or TE polarized for short) and extraordinary modes

(transverse magnetic polarized or TM polarized for short). The new property of the

HMM originates from the extraordinary modes, which is also known as volume plas-

mon polariton (VPP) modes in the context of HMM [43]. The dispersion relation of

the extraordinary modes is given by:

k2⊥
ε‖

+
k2‖
ε⊥

=
ω2

c2
, (A.1)

where k‖ and k⊥ are respectively the components of wave vector parallel and perpen-

dicular to the optical axis; ε‖ and ε⊥ are the structure’s effective permittivity tensor

components along the optical axis and perpendicular to the optical axis (a calcula-

tion of ε‖ and ε⊥ is given in Supplementary material section A.2); ω is the angular

frequency of wave and c is the speed of light.

Note that from eqn. A.1, we have kmin
⊥ =

√
ε‖

ω
c

(when k‖ = 0). Since ε‖ > 6

(Fig. A.1), kmin
⊥ > ω

c
. As a result, any propagating modes in air and evanescent

components with k⊥ < kmin
⊥ are totally reflected at the HMM/air interface.

When the top scatterer of the HMM device is illuminated by a TM polarized plane

wave, the scattered field from the top scatterer excites many VPP modes with different
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wavevectors and the localized beam inside the HMM is a coherent superposition

of these modes. Hence its propagation angle is determined by the group velocity

direction, i.e., the normal of the iso-frequency curve. Since the asymptote of the

hyperbolic dispersion curve has slope
√
|Reε⊥(λ)|
ε‖(λ)

according to eqn. A.1, evaluating the

group velocity at k⊥ =∞ leads to beam angle θ (λ) = tan−1
(√

ε‖(λ)

|Reε⊥(λ)|

)
.

Figure A.1. Effective medium theory calculation of the permittivity tensor compo-
nents, using eqn. A.2. Device behaves as type II HMM (Re(ε⊥) < 0, Re(ε‖) > 0)) in
the yellow shaded region and as normal anisotropic medium (Re(ε⊥), Re(ε‖) > 0))
in the green shaded region.

The assumption of k⊥� ω
c

in calculating beam angle θ is valid for small scatterers.

This also holds for the structure we are considering. This can be verified by examining

Fig. 2.2(b) in the main text: by only decreasing the unit cell size, the beam angle

obtained from the exact simulation approaches the EMT case, where k⊥ � ω
c

is

assumed.
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A.2 Effective medium theory (EMT) description of the per-

mittivity tensor

In the effective medium theory (EMT) limit, the structure’s permittivity tensor

components along the optical axis (ε‖) and perpendicular to the optical axis (ε⊥) are

given by:

ε⊥ = rεm + (1− r)εd, ε−1‖ = rε−1m + (1− r)ε−1d , (A.2)

where εm and εd are respectively the permittivity of metal and dielectric layers of

thickness dm and dd, and r is the filling ratio of the metal given by r = dm/ (dm + dd).

Figure A.1 shows the results of the EMT calculation of the HMM permittivity tensor

components using equation A.2. As discussed in the main text, it can be seen that

Re (ε⊥) < 0 and Re
(
ε‖
)
> 0 for wavelengths larger than 647 nm and the structure

behaves as type II HMM.

A.3 Calculation of the scattering strength

Here we present the results of our calculation of the scattering strength, which

is defined as the ratio of the scattered power in the system with the target to the

corresponding scattered power in the system without the target. The motivation for

introducing this quantity is to compensate for the wavelength dependent scattering

efficiency of the top scatterer. Given this definition, any fluctuation in scattering

strength versus wavelength will then be mainly due to the varying degree of interaction

between the localized beam and the bottom target only. The peak in the scattering

strength then directly corresponds to the case of maximum interaction, i.e., when the

localized beam is towards the bottom target. The scattered power versus wavelength

without bottom target is shown in Fig. A.2 , which is used for all calculations of

scattering strength.

A.4 Target material dependence of the scattering strength

In the main text, we claimed that the scattering strength increases as the refractive

index of the target to the air is increased. Fig. A.3 shows an example calculation

illustrating this point. Among the materials that are considered here, Ag has the

highest index contrast to the air; hence it has largest scattering strength as expected.

This material dependence of scattering strength serves as the basis for discriminating

targets with different material composition demonstrated in the main text Fig. 2.2(c).
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Figure A.2. The scattered power versus wavelength in the system without target.

Figure A.3. Scattering strength versus wavelength for different bottom target material
at fixed spacing of 400 nm.
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Figure A.4. (a) The device configuration after changing the shape of the bottom target
from square to semi-circle. (b) Comparison of scattering strength versus wavelength
for semi-circle target (red) and square target (blue). Both targets are at spacing of
400 nm.

A.5 Target shape dependence of the scattering strength

Here we consider the influence of the target shape on the scattering strength.

We change the bottom target shape from a rounded square to a rounded semi-circle

having the same area, as illustrated in Fig. A.4(a). Fig. A.4(b) shows the scattering

strength versus wavelength for the rounded semi-circle (red line) and for the rounded

square (blue line). It can be seen that two curves are quite similar. They have the

same peak position, indicating the targets are at the same spacing of 400 nm. The

scattering strength for the semi-circle target is slightly higher, because it is closer to

the HMM surface on average and hence stronger scattering from the localized beam.
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APPENDIX B

Focal Stack Based 3D Tracking

B.1 Single-point object focal stack from CMOS camera

We recorded the 1,331 single-point object focal stacks using the transparent graphene

transistor array and separately using a CMOS sensor (Thorlab DCC1645C); see the

right part of the Fig. 5.1 in the main text. By moving the CMOS sensor along z

to focus at either the transparent detector array closer to or farther away from the

lens, we captured focal stacks from CMOS camera. This data allows us to test how

the image resolution and image quality of the graphene sensors affect the 3D ranging

performance of a machine-learning algorithm.

We applied the following procedure to each high-resolution (1280 × 1024) color

image captured by the CMOS camera: we convert the captured color image to gray

image and optionally smooth it by spatial averaging and generate low resolution

single-point object focal stacks of spatial size 4 × 4, 9 × 9 or 32 × 32. We used the

processed images in either single-point tracking (to investigate the effects of imaging

resolution to the tracking performance) or synthesizing multi-point object focal stacks.

B.2 Synthesizing multi-point object focal stack

We synthesized the multi-point object focal stack using focal stacks from the

scanned single point object (either from transparent graphene transistor array or

from CMOS camera). The synthesis is based on the assumption that the detector’s

response is linear, i.e., suppose Ii is the sensor image of the single point object at

location (xi, yi, zi) . Then the sensor image Imulti consisting of multiple points can
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be synthesized as Imulti =
∑N

i=1 Ii, where N is the number of point objects. We

constructed the M -point object focal stack dataset, where the dataset consists of

multiple subsets, and each subset consists of K possible shapes (relative position be-

tween points), by synthesizing each shape independently and then combining them.

We translated an object to all possible (i.e., no point of M -point object is off the 3D

grid) locations in the 3D 11×11×11 scanning grid; at each location, we synthesize the

corresponding focal stack according to the summation above. The number of synthe-

sized datasets with (M = 2, K = 2), (M = 2, K = 3), (M = 3, K = 2), (M=3, K=3)

were 1600,2320,1232, and 1880, respectively.

We constructed the rotating 2-point object focal stack dataset by selecting focal

stacks from the M-point focal stack with K possible shapes dataset, with M = 2, K =

4. Four shapes of a 2-point object (i.e., M = 2, K=4) are chosen to have same inter-

point distance but rotated by different angles (26.5◦, 63.5◦, 116.5◦, and 153.5◦) about z

axis (e.g., (1, 0, 0) means 0◦ rotation about zaxis and (0, 1, 0) means 90◦ rotation about

zaxis). To form the helical trajectory in the M = 2, K = 4 setup, we selected an angle

from the set {26.5◦, 63.5◦, 116.5◦ , and 153.5◦} at each z position in the following se-

quence: 63.5◦, 26.5◦, 153.5◦, 116.5◦, 63.5◦, 26.5◦, 153.5◦, 116.5◦, 63.5◦, 26.5◦, 153.5◦, for

z = −10 mm,−8 mm, . . . , 10 mm. See graphical illustration in Fig. 5.2(e) of the

main text.

B.3 Extended object focal stack

We captured extended object focal stacks using the CMOS sensor. The experi-

mental setup is shown in Supplementary Fig. B.1. We used a ladybug as the extended

object and moved it in a 3D spatial grid of size 8.5 mm× 8.5 mm× 45 mm. The grid

spacing is 0.85 mm along both x and y, 3 mm along z. At each grid point, the object

has 8 possible orientations in the x-z plane, with 45◦ angular separation between

neighboring orientations. This leads to in total 1,5488 focal stacks, where each focal

stack consists of two images captured by the CMOS sensor positioned at different

z positions. Similar to section B.1, all images are converted to gray images before

feeding to the neural networks.

B.4 Neural network architectures and training

We implemented all neural networks in Pytorch (ver. 1.0). The network architec-

tures and training details are described below.
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Figure B.1. Experimental set-up for capturing the extended object (ladybug) focal
stack, using CMOS sensor.

For single-point object tracking, separate neural networks were trained for estimat-

ing the three spatial coordinates x, y and z, respectively. Supplementary Fig. B.1(a)

shows the network architecture used for estimating coordinates x and y, and Sup-

plementary Fig. B.1(b) shows the network architecture used for estimating z. For

multi-point object tracking, a single neural network (Fig. B.1(c)) is trained to esti-

mate all points’ coordinates. In point object tracking cases, the focal stack data is

flattened into a one-dimensional vector and subsequently passed through multilayer

perceptron (MLP) using Rectified Linear Unit (ReLU) as the activation function.

Figure B.2. Neural network architectures for 3D ranging. B is the general batch
size of the data (e.g., in training, B is the training batch size; in testing with a single
sample, B= 1). (a) Network for estimating single point object’s x or y coordinate. (b)
Network for estimating single point object’s z coordinate. (c) Network for estimating
M-point object’s (xi, yi, zi) coordinates tuple.

For single-point object tracking, the network outputs a single coordinate value

for each focal stack, and the networks are trained by minimizing the following mean-
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square error (MSE) loss:

1

N

N∑
i=1

(ŝi − si)2 ,

where N is the number of training samples, si is the true spatial coordinate (xi, yi ,

or zi) and ŝi is the estimated spatial coordinate from a neural network. We trained

networks using the Adam optimizer with the learning rate of 10−2, the training batch

size of 50, and 2000 epochs.

For training multi-point object tracking neural networks, we defined the following

MSE loss that considers the ordering ambiguity of the network outputs in training:

1

N

N∑
i=1

min
(p1,...,pM )∈P

M∑
j=1

(
x̂
(j)
i − x

(pj)
i

)2
+
(
ŷ
(j)
i − y

(pj)
i

)2
+
(
ẑ
(j)
i − z

(pj)
i

)2
, (B.1)

where M is the number of points of the object, P is the set containing all possible

permutations of the tuple (1, 2, . . .M), x
(j)
i and x̂

(j)
i are the true and estimated coordi-

nate of the ith data sample, jth point. The network outputs a coordinates tuple for all

the points of the object as
{(
x̂(1), ŷ(1),

(1)
z

)
, . . . ,

(
x̂(M), ŷ(M), ẑ(M)

)}
. To consider the

ordering ambiguity of the network outputs in training, e.g., for
(
x(1), y(1), z(1)

)
, the

network cannot determine which estimate gives lower MSE, between
(
x(1), ŷ(1), ẑ(1)

)
and

(
x̂(2), ŷ(2), ẑ(2)

)
, we found proper orders by minimizing MSE over the permutation

set P in B.1. With the help of minimization over P , the loss will be low as long as a

trained network predicts the overall shape of the object, regardless of the order of the

network estimates. In the training, we scaled down the true z coordinate values by

33.3 so that it is in the same range as coordinates x and y. This avoids the loss B.1

from being dominated by z component of MSE loss, i.e., avoids training from being

biased to z-coordinate estimation. We trained the network using Adam optimizer

with the learning rate of 10−3, the training batch size of 100, and 2000 epochs. For

tracking the two-point rotating object, we also trained the network by B.1 and scaled

the z coordinate values by 33.3. For training the network, we used Adam optimizer

with the learning rate of 10−3, the training batch size of 100, and 2000 epochs.

For extended object tracking and orientation estimation, we use two convolu-

tional neural networks (CNNs) (Fig. B.3) similar to VGG-16 [94]. The CNN shown

in Fig. B.3(a) is used for the tracking. For each focal image, we first extract high-level

feature maps with multiple convolution-batch normalization (BN)-ReLU-pooling lay-

ers. Then we apply the following procedure to extracted feature maps from all focal

images: 1) concatenation of all feature maps along channel dimension, 2) average
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Figure B.3. Convolutional neural network architectures for extended object tracking
and orientation estimation. B is the general batch size of the data (e.g., in training,
B is the training batch size; in testing with a single sample, B= 1). (a) Network for
estimating extended object’s spatial coordinates (x, y, z). (b) Network for estimating
extended object’s orientation.

pooling, 3) flattening, and 4) feeding the output into fully connected layers (FC) that

lead to final coordinates. The network is trained by minimizing the following MSE

loss:
1

3N

N∑
i=1

(x̂i − xi)2 + (ŷi − yi)2 + (ẑi − zi)2 ,

where N is the number of training samples. In the training, we scaled the true

z coordinate values to have the same range as x and y coordinates, for the same

reason as in the multi-point object tracking. The CNN shown in Fig. B.3(b) is
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used for object orientation estimation. We consider the problem as a multi-class

classification problem: the CNN takes focal stack as input and output scores that are

used to classify the object orientations with eight different orientations. The network

is trained by minimizing the cross-entropy loss.

B.5 Ranging performance comparison

We studied the effect of the detector resolution and spatial smoothing on the

single-point object 3D ranging performance. Table B.1 summarizes the results. The

resolution of the CMOS focal stack is varied to see its effect on the ranging perfor-

mance: it can be seen by comparing horizontally the root mean square error (RMSE)

in the 2nd, 3rd and 4th columns or in the 5th and 6th columns that higher resolution

focal stack gives lower loss. Besides, note that spatially averaged results have lower

loss, compared to those without averaging. This is because the noise from interference

fringes is suppressed after applying spatial averaging.

4× 4
Graphene

4× 4
CMOS

9× 9
CMOS

32× 32
CMOS

4× 4 (Avg. 20)
CMOS

9× 9 (Avg. 20)
CMOS

x 0.012 0.031 0.020 0.021 0.014 0.009
y 0.014 0.028 0.017 0.012 0.012 0.010
z 1.196 1.304 1.192 0.480 0.616 0.458

Table B.1. Single-point object 3D ranging RMSE (unit: mm) table on testing set.
Avg. 20 means spatial averaging with window size 20 is performed on the raw high-
resolution focal stack.

4× 4
Graphene

4× 4
CMOS

9× 9
CMOS

32× 32
CMOS

4× 4 (Avg. 20)
CMOS

9× 9 (Avg. 20)
CMOS

2p2s 0.017 0.036 0.025 0.013 0.020 0.013
2p3s 0.019 0.033 0.022 0.013 0.019 0.012
3p2s 0.019 0.042 0.027 0.025 0.021 0.016
3p3s 0.021 0.041 0.029 0.028 0.022 0.017

Table B.2. Multi-point object 3D ranging RMSE (unit: mm) table of x on testing
set. Avg. 20 means spatial averaging with window size 20 is performed on the raw
high-resolution focal stack. First column encodes different object configurations, e.g.,
2p3s means 2-point object with 3 possible shapes.

Table B.2, B.3, B.4 summarize the study of the effect of the detector resolution

and spatial smoothing on the multi-point object 3D ranging performance. Similar to
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4× 4
Graphene

4× 4
CMOS

9× 9
CMOS

32× 32
CMOS

4× 4 (Avg. 20)
CMOS

9× 9 (Avg. 20)
CMOS

2p2s 0.022 0.045 0.033 0.019 0.026 0.017
2p3s 0.025 0.039 0.028 0.018 0.025 0.015
3p2s 0.010 0.019 0.013 0.016 0.011 0.007
3p3s 0.019 0.035 0.026 0.027 0.021 0.016

Table B.3. Multi-point object 3D ranging RMSE (unit: mm) table of y on testing
set. Avg. 20 means spatial averaging with window size 20 is performed on the raw
high-resolution focal stack. First column encodes different object configurations, e.g.,
2p3s means 2-point object with 3 possible shapes

4× 4
Graphene

4× 4
CMOS

9× 9
CMOS

32× 32
CMOS

4× 4 (Avg. 20)
CMOS

9× 9 (Avg. 20)
CMOS

2p2s 0.685 1.073 0.759 0.349 0.557 0.371
2p3s 1.164 1.573 1.142 0.788 0.983 0.641
3p2s 0.793 1.328 0.876 0.715 0.750 0.470
3p3s 0.894 1.444 1.004 0.895 0.850 0.594

Table B.4. Multi-point object 3D ranging RMSE (unit: mm) table of z on a testing
set. Avg. 20 means spatial averaging with window size 20 is performed on the raw
high-resolution focal stack. First column encodes different object configurations, e.g.,
2p3s means 2-point object with 3 possible shapes.

the single-point object case, more pixels are useful in reducing the ranging error, as

can be seen by comparing horizontally the RMSE in 2nd, 3rd and 4th columns or

in the 5th and 6th columns. The spatial averaging is again helpful, as in the single

object case, in reducing the estimation error. The numerical results above are also

illustrated graphically in Fig. B.4, B.6, B.7, B.8 below.
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Figure B.4. Single-point object tracking performance (only 10 test samples are
shown). Focal stack data from: (a-b) 4×4 transparent graphene detector. (c-d)
4×4 CMOS sensor. (e-f) 9×9 CMOS sensor. (g-h) 32×32 CMOS sensor. (i-j) 4×4
Avg. 20 CMOS sensor. (k-l) 9×9 Avg. 20 CMOS sensor.
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Figure B.5. 2-point object with 2 possible shapes tracking performance (only 7 test
samples are shown). Focal stack data from: (a-b) 4×4 transparent graphene detector.
(c-d) 4×4 CMOS sensor. (e-f) 9×9 CMOS sensor. (g-h) 32×32 CMOS sensor. (i-j)
4×4 Avg. 20 CMOS sensor. (k-l) 9×9 Avg. 20 CMOS sensor.
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Figure B.6. 2-point object with 3 possible shapes tracking performance (only 7 test
samples are shown). Focal stack data from: (a-b) 4×4 transparent graphene detector.
(c-d) 4×4 CMOS sensor. (e-f) 9×9 CMOS sensor. (g-h) 32×32 CMOS sensor. (i-j)
4×4 Avg. 20 CMOS sensor. (k-l) 9×9 Avg. 20 CMOS sensor.
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Figure B.7. 3-point object with 2 possible shapes tracking performance (only 4 test
samples are shown). Focal stack data from: (a-b) 4×4 transparent graphene detector.
(c-d) 4×4 CMOS sensor. (e-f) 9×9 CMOS sensor. (g-h) 32×32 CMOS sensor. (i-j)
4×4 Avg. 20 CMOS sensor. (k-l) 9×9 Avg. 20 CMOS sensor.
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Figure B.8. 3-point object with 3 possible shapes tracking performance (only 4 test
samples are shown). Focal stack data from: (a-b) 4×4 transparent graphene detector.
(c-d) 4×4 CMOS sensor. (e-f) 9×9 CMOS sensor. (g-h) 32×32 CMOS sensor. (i-j)
4×4 Avg. 20 CMOS sensor. (k-l) 9×9 Avg. 20 CMOS sensor.
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APPENDIX C

Secure Imaging using Focal Stack Camera

C.1 Effect of JPEG augmentation for training

Here we include additional results of models trained without JPEG augmenta-

tion (section 7.3.2). Comparing Fig. 7.3 and Fig. C.1 shows that include JPEG

augmentation during training leads to a model more robust against post-processing

perturbations and better performance. The benefit is more significant for Gaussian

noise perturbation (1st row of Fig. C.1) and JPEG compression (3rd row of Fig. C.1).

The F1 score of the model trained without JPEG augmentation will degrade quickly

when the images are JPEG compressed or noise is added. Regardless, the advantage

of using focal stack over single image based method is still significant for this training

scheme as well.
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Figure C.1. Localization F1 scores for focal stack data with networks trained on
GMCNN dataset without JPEG augmentation and tested on GMCNN (1st column),
EdgeConnect (2nd column) and Gated Convolution (3rd column) datasets. Symbol
‘*’ on x-axis indicates the result without JPEG compression.
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APPENDIX D

Focal Stack Camera Depth Estimation

Performance Comparison and Design Exploration

This supplement describes additional details in the Nikon focal stack dataset col-

lection process.

D.1 Focal stack collection

Figure D.1 shows the setup of the RGB camera and the depth camera. When

changing the aperture size, we also changed the exposure time and the ISO setting

such that the exposure level is approximately the same. Specifically, the shutter

settings are 1/60, 1/25, 1/6, 1/3 for aperture f/3.2, f/5, f/10, f/22, respectively, and

the ISO is set to 1000 for f/3.2, f/5, f/10 and set to 2500 for f/22.

Since there could be mechanical hysteresis in the focus motor, when capturing each

focal stack sequence, we adjusted the focus such that the image is sharply focused at

the reference target on the bottom-left corner of the field of view. This step ensures

that the first image in each focal stack starts at the same focus position.

D.2 Focal stack alignment

The magnification change when changing the focus of the camera can be modeled

by a homography [4]. To correct this magnification change, we place a chessboard

in front of the camera and captured a focal stack, using aperture f/16. We extract

all the corners locations using corner detector, and then estimate the homography

between the first image in the focal stack and any other images in the focal stack. We
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Figure D.1. Setup of the RGB camera and the Intel RealSense D415 Depth Camera.

then use the estimated homographies to align other collected focal stack data. Fig-

ure D.2 shows the first and the last image in the focal stack used for the homography

estimation.

D.3 Depth registration

The depth map captured by the depth camera has a different resolution and

view point than the RGB camera. Thus, a depth registration process was needed

to register the raw depth map onto the RGB image. Using a set of chessboard

images with different poses, we calibrated the RGB camera and the depth camera

separately to extract intrinsic camera parameters and then use stereo calibration to

estimate the relative rotation R and translation T between them. The estimated

parameters were then used to project the depth pixel onto the RGB image plane

using the ‘registerDepth’ function in OpenCV library. Figure D.3 shows example

images for camera calibration.
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Figure D.2. The first and the last image of the focal stack used for focal stack
alignment.

Figure D.3. Example images used for RGB camera and depth camera calibration.
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[3] Jonas Adler and Ozan Öktem. Learned primal-dual reconstruction. IEEE
Transactions on Medical Imaging, 37(6):1322–1332, 2018.

[4] Alex M Andrew. Multiple view geometry in computer vision. Kybernetes, 2001.

[5] Vegard Antun, Francesco Renna, Clarice Poon, Ben Adcock, and Anders C
Hansen. On instabilities of deep learning in image reconstruction and the poten-
tial costs of ai. Proceedings of the National Academy of Sciences, 117(48):30088–
30095, 2020.

[6] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman.
PatchMatch: A randomized correspondence algorithm for structural image edit-
ing. ACM Trans. Graph., 28(3):24, 2009.

[7] Claire Berger, Zhimin Song, Tianbo Li, Xuebin Li, Asmerom Y Ogbazghi, Rui
Feng, Zhenting Dai, Alexei N Marchenkov, Edward H Conrad, Phillip N First,
et al. Ultrathin epitaxial graphite: 2d electron gas properties and a route
toward graphene-based nanoelectronics. The Journal of Physical Chemistry B,
108(52):19912–19916, 2004.

[8] Claire Berger, Zhimin Song, Xuebin Li, Xiaosong Wu, Nate Brown, Cécile
Naud, Didier Mayou, Tianbo Li, Joanna Hass, Alexei N Marchenkov, et al.
Electronic confinement and coherence in patterned epitaxial graphene. Science,
312(5777):1191–1196, 2006.

[9] Eric Betzig, George H Patterson, Rachid Sougrat, O Wolf Lindwasser, Scott
Olenych, Juan S Bonifacino, Michael W Davidson, Jennifer Lippincott-
Schwartz, and Harald F Hess. Imaging intracellular fluorescent proteins at
nanometer resolution. Science, 313(5793):1642–1645, 2006.

[10] Eric Betzig and Jay K Trautman. Near-field optics: microscopy, spectroscopy,
and surface modification beyond the diffraction limit. Science, 257(5067):189–
195, 1992.

105

https://github.com/deepfakes/faceswap


[11] Cameron J Blocker, Il Yong Chun, and Jeffrey A. Fessler. Low-rank plus sparse
tensor models for light-field reconstruction from focal stack data. In Proc. IEEE
Image, Video, and Multidim. Signal Process. Workshop (IVMSP), pages 1–5,
June 2018.

[12] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and statis-
tical learning via the alternating direction method of multipliers. Now Publishers
Inc, 2011.

[13] Gregery T Buzzard, Stanley H Chan, Suhas Sreehari, and Charles A Bouman.
Plug-and-play unplugged: Optimization-free reconstruction using consensus
equilibrium. SIAM Journal on Imaging Sciences, 11(3):2001–2020, 2018.

[14] Can Chen, Haiting Lin, Zhan Yu, Sing Bing Kang, and Jingyi Yu. Light field
stereo matching using bilateral statistics of surface cameras. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1518–1525, 2014.

[15] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam.
Rethinking atrous convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017.

[16] Yunjin Chen and Thomas Pock. Trainable nonlinear reaction diffusion: A
flexible framework for fast and effective image restoration. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 39(6):1256–1272, 2016.

[17] Il Yong Chun and Jeffrey A Fessler. Convolutional analysis operator learn-
ing: Acceleration and convergence. IEEE Transactions on Image Processing,
29:2108–2122, 2019.

[18] Il Yong Chun, Zhengyu Huang, Hongki Lim, and Jeff Fessler. Momentum-
net: Fast and convergent iterative neural network for inverse problems. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2020.

[19] Il Yong Chun, Hongki Lim, Zhengyu Huang, and Jeffrey A Fessler. Fast and
convergent iterative image recovery using trained convolutional neural networks.
In 2018 56th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pages 155–159. IEEE, 2018.

[20] Il Yong Chun, Xuehang Zheng, Yong Long, and Jeffrey A. Fessler. BCD-Net for
low- dose CT reconstruction: Acceleration, convergence, and generalization. In
Proc. Med. Image Computing and Computer Assist. Interven. (MICCAI) (to
appear), Shenzhen, China, Oct. 2019.

[21] Davide Cozzolino, Diego Gragnaniello, and Luisa Verdoliva. Image forgery local-
ization through the fusion of camera-based, feature-based and pixel-based tech-
niques. In 2014 IEEE International Conference on Image Processing (ICIP),
pages 5302–5306. IEEE, 2014.

106



[22] Davide Cozzolino, Justus Thies, Andreas Rössler, Christian Riess, Matthias
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Leal-Taixé, and Daniel Cremers. Deep depth from focus. In Asian Conference
on Computer Vision, pages 525–541. Springer, 2018.

[34] Caner Hazirbas, Sebastian Georg Soyer, Maximilian Christian Staab, Laura
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