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Abstract 

 
Changes in gene expression are an important source of phenotypic diversity both within 

and between species. Mutations generating variation in gene expression can be cis-regulatory to 

a particular gene, which typically occur in promoters or enhancers and cause allele-specific 

changes in expression, or trans-regulatory to the gene, which are mediated by diffusible factors 

and thus do not result in allele specific changes in expression. Cis-regulatory mutations are 

hypothesized to be less pleiotropic, or impact fewer traits, than trans-regulatory mutations to the 

same gene. Also, mutations that are more pleiotropic are hypothesized to more frequently be 

deleterious than those that are less pleiotropic. Thus, lower pleiotropy could contribute to a 

preferential fixation of cis-regulatory mutations relative to trans-regulatory mutations over time. 

Here I test these hypotheses by examining the fitness effects and genome-wide effects on gene 

expression of cis- and trans-regulatory mutations in the baker’s yeast Saccharomyces cerevisiae.  

I first use RNA-sequencing data and fitness data for strains of bearing cis- and trans-regulatory 

mutations to the gene TDH3 to define a distribution of the pleiotropic fitness effects of trans-

regulatory mutations relative to cis-regulatory mutations and show that most pleiotropic fitness 

effects are indeed detrimental. I then compare the extents of the mutations’ impacts on genome-

wide gene expression and show that trans-regulatory mutations have a more widespread impact 

on gene expression than cis-regulatory mutations of similar effect size on the focal gene TDH3. 

In addition, I show that trans-regulatory mutations have pleiotropic effects on expression of 

genes affected by changes in the expression of the focal gene itself.  I next use gene expression 



 xiv 

data for a set of of ~1400 gene deletion strains of Saccharomyces cerevisiae to compare the 

genome-wide impacts on gene expression of cis- and trans-acting deletions for all genes in the 

dataset, and find that for the vast majority of genes, trans-acting deletions have more widespread 

effects on gene expression, or are more pleiotropic, than cis-acting deletions. Furthermore, this 

pattern can be explained by the degree distribution of the regulatory network resulting in highly 

pleiotropic trans-regulatory factors serving as trans-regulatory deletions to many genes. Finally, 

I return to the RNA-sequencing data to explore a mechanism of active compensation for 

reduction in TDH3 expression by its paralog TDH2 that is dependent on the trans-regulators 

Gcr1p and Rap1p. This compensation occurs when TDH3 expression is lowered via cis-

regulatory mutations, but not when it is lowered via mutations in these trans-regulators, resulting 

in the different downstream effects of changing TDH3 expression in cis and in trans. Together 

these analyses provide the first empirical description of the pleiotropic effects of cis- and trans-

regulatory mutations on both fitness and gene expression. 
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Chapter 1 Introduction1 

Gene expression variation in evolution and disease 

The regulation of gene expression is a critical step in translating genotypes into 

phenotypes. Variation in this regulation is common within and between species (Zheng et al. 

2011) and contributes to trait diversity. For example, changes in the regulation of gene 

expression have been shown to contribute to divergent pigmentation in plants and animals 

(Kronforst et al. 2012; Wessinger and Rausher 2012), polymorphic body size in mice (Oliver et 

al. 2005), the sporulation rate in domesticated yeast (Deutschbauer and Davis 2005), and many 

other morphological, physiological and behavioral traits (Martin and Orgogozo 2013; Courtier-

Orgogozo et al. 2020), including disease states in humans (Albert and Kruglyak 2015). 

Understanding how regulatory variation arises and evolves is thus critical for understanding 

many aspects of biology. 

Genetic variation that affects the activity of regulatory networks underlies variation in 

gene expression.  These networks include interactions among  proteins, RNAs and DNA 

sequences. Transcription factor proteins and DNA sequences such as enhancers and promoters 

are most often considered to define the structure of gene regulatory networks (Babu et al. 2004; 

Yu and Gerstein 2006), but protein–protein interactions, signaling pathways and even metabolic 

states can also have an impact on their activity (Flint and Ideker 2019). Mutations that alter any 

of these elements can give rise to variation in gene expression. Such mutations can be classified 

 
1 Sections of this chapter are published as: Hill MS*, Vande Zande P*, Wittkopp PJ. 2021. Molecular and 
evolutionary processes generating variation in gene expression. Nat. Rev. Genet. 22:203–215. *Equal contributions 
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as either cis- or trans- acting (Rockman and Kruglyak 2006): cis-acting mutations alter 

expression of a gene located on the same chromosome and tend to be located close to the 

affected gene, whereas trans-regulatory mutations have effects on gene expression that are 

mediated by diffusible molecules (such as RNAs and proteins) and can be located anywhere in 

the genome. Both types of mutation contribute to variation in gene expression, but differences in 

their molecular mechanisms suggest that they might contribute unequally to regulatory variation 

over evolutionary time. 

Genomic studies describing variation in gene expression and the relative contributions of 

cis- and trans-  acting variants have now been performed for diverse plant, animal and microbial 

species (Signor and Nuzhdin 2018). As with all traits, this variation reflects the introduction of 

new genetic variants by mutation, the filtering of these variants by natural selection and the 

chance survival of variants mediated by genetic drift. The extent to which each of these 

processes shapes the variation we see in wild populations, however, remains difficult to discern. 

For example, if one gene shows more variation in its expression than another, this might be 

because expression of the first gene is under less selective constraint or because a greater fraction 

of new mutations alters its expression (among other possibilities). Likewise, the patterns 

observed in cis- and trans-regulatory expression divergence within and between species could be 

the result of differences in the frequencies at which cis- and trans-regulatory mutations influence 

expression of a gene and/or differences in the selective constraints that exist for each category.  

Pleiotropy in adaptive evolution 

A mutation’s degree of pleiotropy, or the number of traits it impacts, is thought to 

increase the probability of that mutation being deleterious, potentially imposing a strong 

selective constraint on adaptative evolution (Kimura and Ohta 1974). Fisher’s geometric model 
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of adaptive evolution provides an intuitive explanation for why this may be. If a trait is 

conceptualized as a single dimension in phenotypic space, a mutation of a particular effect size 

on that trait can either move the phenotype toward or away from an optimum with equal 

probability. In contrast, a mutation that affects two traits, or moves the phenotype along two 

dimensions, has less than a 50% chance of moving closer to an optimum (Fig. 1-1). The more 

traits, or dimensions, that are simultaneously influenced by a mutation, the smaller the 

probability that the resulting phenotype will be closer to the optimum (Fisher 1930; Pavlicev and 

Wagner 2012). This led to the hypothesized ‘cost of complexity,’ or the idea that the more 

complex an organism is, the slower adaptation becomes, as smaller mutational steps have a 

higher proportion of potentially advantageous phenotypes in a multidimensional trait space (Orr 

2000). 

This theoretical work generated much interest in empirically quantifying how pleiotropic 

mutations typically are in order to understand how much of a constraint on adaptive evolution 

pleiotropy may actually impose (Wagner and Zhang 2011; Kinsler et al. 2020). However, 

quantifying pleiotropy by some absolute metric has proven challenging. Distinct organismal 

traits upon which a mutation acts are difficult to define, as traits can be correlated for genetic, 

mechanical, or morphological reasons (Stearns 2010). Furthermore, a quantification of the 

number of traits influenced by a mutation will always be limited by which traits are measured in 

any particular study (Paaby and Rockman 2013). Measuring the relative degrees of pleiotropy 

among different mutations for which the relevant traits have been carefully defined is less 

problematic, and in some cases a relationship between a specific description of pleiotropy and 

fitness has been empirically demonstrated (Featherstone and Broadie 2002; He and Zhang 2006; 

Cooper et al. 2007).  
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The pleiotropy of mutations influencing gene expression can also be described in 

multiple ways. In the case of a multicellular organism, mutations that influence expression of a 

gene in a subset of tissues, organs, or developmental stages can be considered less pleiotropic 

than those that influence expression in all tissues where the gene is typically expressed (Carroll 

2005; Wray 2007). For a unicellular organism, the number of environmental conditions under 

which a mutation influences expression of a gene could similarly be considered less pleiotropic 

than mutations that influence expression in all environments (Dudley et al. 2005). In both of 

these cases, mutations that occur in non-coding elements that are specific to a developmental 

stage, tissue, or environment may be less pleiotropic than those in coding regions that affect the 

gene’s function wherever it is expressed, potentially making noncoding mutations important 

sources of morphological variation (Stern and Orgogozo 2008). However, new studies suggest 

that many noncoding regulatory elements may be more pleiotropic than previously appreciated 

(Preger-Ben Noon et al. 2018; Sabarís et al. 2019) and systematic investigations of how this type 

of pleiotropy may relate to fitness are lacking.  

The pleiotropy of regulatory mutations can also be defined as the number of genes for 

which expression is affected by a mutation. A negative relationship between this type of 

pleiotropy and fitness has been observed (Featherstone and Broadie 2002). In this case, 

mutations that occur in a gene that is less connected to other genes in various cellular networks 

such as metabolic, transcriptional, or protein-protein interaction networks might be considered 

less pleiotropic than a gene that is more connected if the level of connectivity directly translates 

to the number of genes that will be differentially expressed. For example, a trans-regulatory 

mutation influencing expression of a gene via a highly connected transcription factor might 

influence expression of more genes than a cis-regulatory mutation at the gene itself. This 
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difference in pleiotropy could in turn result in a more severe constraint on mutations changing 

the expression level or sequence of highly connected genes. Studies have failed, however, to find 

a relationship between a gene’s connectivity in transcriptional regulatory networks and 

expression divergence (Kopp and McIntyre 2012; Yang and Wittkopp 2017), or connectivity in 

protein-protein interaction networks and divergence (Siegal et al. 2007). The incongruence of 

these findings with the observed relationship between the fitness and pleiotropy described above 

may result from a lack of a direct relationship between connectivity in these networks and the 

number of genes that are differentially expressed upon mutation (Flint and Ideker 2019), or a 

lack of a direct relationship between the immediate fitness impact of a mutation and its ultimate 

expression or sequence divergence between species. Empirical data directly assessing trends in 

pleiotropy and fitness of cis- and trans-regulatory mutations, in conjunction with known patterns 

in their contributions to expression divergence is needed to form a comprehensive picture of the 

role pleiotropy might play in expression divergence. 

Patterns of expression divergence and regulatory variation 

Distinguishing between cis- and trans- regulatory  variation reveals patterns in their 

contributions to expression divergence. Two general strategies have primarily been used to 

disentangle the effects of cis- and trans- regulatory variants on a genomic scale. The first 

approach uses allele- specific expression (ASE) in  F1 hybrids to compare the activity of cis- 

regulatory alleles in a common trans-regulatory background with expression in the parents of the 

F1 hybrid (Wittkopp et al. 2004). The second strategy uses statistical associations between 

genetic variants and gene expression to identify quantitative trait loci affecting gene expression 

(eQTLs) (Brem et al. 2002; Schadt et al. 2003). These two approaches provide complementary 

information about cis- and trans-regulatory variation, with the first capturing the net effect of all 
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cis- and trans-regulatory variants and the second providing information about the effects of 

individual loci. Studies using ASE to estimate the relative contributions of cis- and trans-

regulatory variants to variation in gene expression have been conducted in various taxa, 

including plants (Springer and Stupar 2007; Zhang and Borevitz 2009; Shi et al. 2012; Bell et al. 

2013), yeast (Wang et al. 2007; Sung et al. 2009; Emerson et al. 2010; Metzger et al. 2017), mice 

(Goncalves et al. 2012; Mack et al. 2016), birds (Davidson and Balakrishnan 2016; Wang et al. 

2017), wasps (Wang et al. 2016) and flies (Wittkopp et al. 2008; McManus et al. 2010; Suvorov 

et al. 2013; Coolon et al. 2014). These studies include analysis of gene expression among 

individuals from outbred populations, between more isolated strains of the same species and 

between species. Each of these comparisons captures the evolution of gene expression at a 

different stage in the evolutionary process. Within species, trans-regulatory variants seem to 

contribute more to variation in gene expression than cis-regulatory variants (Emerson et al. 2010; 

Schaefke et al. 2013; Chen et al. 2015; Metzger et al. 2017; Signor and Nuzhdin 2018). This 

pattern has been suggested to be due to a larger mutational target size for trans-regulatory 

variants (Wittkopp 2005): that is, there are more places in the genome where a mutation can 

affect a gene’s expression in trans than in cis. trans- acting variants are also often assumed to 

affect expression of more genes, on average, than cis- acting variants. However, cis-regulatory 

variants often make similar (McManus et al. 2010; Shi et al. 2012; Coolon et al. 2014; Guerrero 

et al. 2016) or greater (Wittkopp et al. 2008; Shi et al. 2012; Mack et al. 2016) contributions to 

gene expression divergence between species. Studies directly comparing the relative 

contributions of cis- and trans- regulatory variants with expression divergence suggest that the 

relative contribution of cis- regulatory variants increases with divergence time (Fig. 1-2A,B; 

Coolon et al. 2014; Metzger et al. 2017). This increasing cis-regulatory contribution can be 
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explained by cis-regulatory variants being more beneficial (Emerson et al. 2010; Coolon etc) 

and/or less deleterious (Schaefke et al. 2013) than trans-regulatory variants, which might result 

from differences in their average pleiotropy, as discussed in the section above. 

Studies identifying eQTLs contributing to variation in gene expression have been 

conducted in a similarly diverse array of taxa (Gibson and Weir 2005; Rockman and Kruglyak 

2006; Gilad et al. 2008; Nica and Dermitzakis 2013). eQTLs located close to the affected gene 

(that is, proximal) are often considered cis- acting whereas eQTLs  located further from the 

affected gene (that is, distal) are often considered trans- acting (Brem et al. 2002). Consistent 

with this assumption, proximal eQTLs often have allele-specific effects on gene expression 

(Mohammadi et al. 2017). Indeed, the largest study of eQTLs to date, which was conducted by 

the Genotype-Tissue Expression (GTEx) Consortium and surveyed gene expression in cells 

derived from 49 tissues from up to 838  humans,  has shown a strong correlation between the 

estimated effect of eQTLs designated as cis- acting and allele-specific measures of expression in 

heterozygous individuals (GTEx Consortium 2020). Several eQTL studies have reported that the 

majority of heritable expression variation is explained by trans- acting eQTLs (Grundberg et al. 

2012; Wright et al. 2014; Liu et al. 2019), some of which affect the expression of many genes 

and are known as ‘hot spots’ (Yvert et al. 2003; Kliebenstein 2009; Albert et al. 2018; Lutz et al. 

2019). The GTEx study detected at least one cis- acting eQTL for nearly 95% of protein- coding 

genes, whereas trans- acting eQTLs were detected for only 121 protein-coding genes. The 

number of individuals surveyed for each tissue was a strong predictor of the number of trans- 

acting eQTLs detected, however, underscoring the importance of taking statistical power into 

account when comparing the number of trans-  acting eQTLs reported among studies (GTEx 

Consortium 2020). The unequal power for detecting cis- and trans- regulatory  variants must also 
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be considered when comparing eQTLs: systematically testing for  trans-regulatory variants 

requires many more statistical tests, and thus a greater multiple testing burden, than cis-

regulatory variants. For this reason, some eQTL studies have focused solely on identifying cis- 

eQTLs (Lappalainen et al. 2013; Kita et al. 2017). Relative effect sizes of putatively cis- and 

trans- eQTLs can be more fairly compared. Such comparisons tend to show that cis- eQTLs have 

larger effects on gene expression than trans- eQTLs (Gilad et al. 2008; Kliebenstein 2009). For 

example, in the GTEx study, an average of 22% of cis- eQTLs caused a two fold or greater 

change in gene expression compared with 19% of trans-eQTLs (GTEx Consortium 2020). 

Similarly, in a recent, highly powered eQTL mapping study between two strains of S. cerevisiae, 

the average cis-eQTL also explained 2.8- fold more of the expression variation than the average 

trans-eQTL (Albert et al. 2018). But genes are often regulated by multiple trans-regulatory 

variants, and sets of trans- eQTLs affecting expression of the same gene tend to explain more of 

that gene’s expression variation than its cis- eQTLs (Grundberg et al. 2012; Wright et al. 2014; 

Albert et al. 2018). This observation is consistent with the greater combined contribution of 

trans-regulatory variation to polymorphic gene expression inferred using ASE. Although ASE 

and eQTL studies reveal the relative contributions of cis- and trans-regulatory variation, they 

provide little insight into the specific genetic changes and molecular mechanisms altered by this 

variation. Only when such studies reach single-variant resolution can they provide this type of 

insight, which is necessary for a complete understanding of why the patterns of regulatory 

variation we see today exist (Bernardo Lemos, Christian R. Landry, Pierre Fontanillas, Susan C. 

P. Renn, Rob Kulathinal, Kyle M. Brown, and Daniel L. Hartl 2008). Considering the molecular 

mechanisms by which cis- and trans-regulatory mutations can have an effect give some insight 
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into why they may differ in their pleiotropic effects and, therefore, why natural selection may act 

on them differently.  

The mechanistic effects of cis-regulatory mutations 

cis-regulatory variation arises from genetic changes affecting sequences controlling the 

expression of a particular allele of a gene. These changes can affect the core promoter and 

enhancers of the gene, which both contain binding sites for transcription factors. They can also 

affect chromatin structure influencing the accessibility of DNA to transcription factors and 

sequences in the RNA transcript that affect its structure, stability or translation (Fig. 1-3), 

although more research is needed in these areas (Schaefke et al. 2018). At the most proximal 

level, a gene’s expression is controlled by its core promoter sequence, which contains binding 

sites for the general transcription factors necessary for transcription. Despite the potential for 

core promoters to contribute to expression divergence, key elements of their sequence (Carninci 

et al. 2006), histone marks (Villar et al. 2015) and function (Lubliner et al. 2015) are often highly 

conserved among species. This conservation is presumably driven by the requirement for a 

functional promoter to express a gene as well as the strong functional constraints on proteins that 

bind to these sequences because they regulate so many different  genes, making them highly 

pleiotropic. Indeed, sequences within promoters that serve as binding sites for general 

transcription factors, such as TATA boxes, are the most highly conserved portions of 

mammalian core promoters (Carninci et al. 2006). However, a comparison of core promoter 

sequences between human and rhesus macaque suggested that core promoters for a small number 

of genes might be diverging due to positive selection (Liang et al. 2008), and other work has 

shown that the gain and loss of core promoters contributes to expression divergence between 

mouse and human (Young et al. 2015). Furthermore, even if variation in the core promoter itself 
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is not the source of expression divergence, the structure of the core promoter can still influence 

expression divergence. For example, the presence of a TATA box (Tirosh et al. 2006; Landry et 

al. 2007), nucleosome positioning in the core promoter (Hornung et al.) and tandem repeats in 

the core promoter sequence have all been shown to correlate with expression divergence in yeast 

(Tirosh et al. 2009). 

Compared with core promoters, enhancers are typically located further from the 

transcription start site in either upstream (5′), downstream (3′) or intronic regions (Andersson and 

Sandelin 2020) and seem to more often be the source of cis- regulatory variation affecting gene 

expression (Wray 2007; Wittkopp and Kalay 2011; Long et al. 2016). Because enhancers 

regulate gene expression in a more time-specific, tissue-specific or  environment-specific manner 

than core promoters, they are expected to be subject to less functional constraint due to 

pleiotropy (Paaby and Rockman 2013) and thus more evolvable (Wray et al. 2003). Indeed, 

histone marks commonly associated with enhancers show greater divergence among mammalian 

species than histone marks associated with core promoters (Villar et al. 2015). Although single-

cell organisms such as S. cerevisiae lack enhancers, they have upstream activating and repressing 

sequences that often work in a similarly context- dependent manner (Hahn and Young 2011). 

The primary functional units within all of these cis-regulatory DNA sequences are 

binding sites for transcription factors, which can activate or repress transcription (Spitz and M 

Furlong 2012). These sequences are  short, degenerate and able to evolve relatively quickly, even 

from random sequences (Rockman and Wray 2002; de Boer et al. 2019). Mutations that change 

the identity, affinity, orientation, number and/or spacing of transcription factor binding sites 

(TFBSs) can alter cis-regulatory  activity (Swanson et al. 2011; Sharon et al. 2012; Long et al. 

2016). Large-scale mutagenesis studies of enhancers and other similar cis-regulatory elements 
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have shown that, although many mutations in these sequences can alter gene expression, 

mutations in TFBSs tend to have the largest effects (Kwasnieski et al. 2012; Melnikov et al. 

2012; Patwardhan et al. 2012; Metzger et al. 2015). Although TFBSs are often among the most 

highly conserved sequences within an enhancer (Zhang and Gerstein 2003; Cooper et al. 2006; 

Burgess and Freeling 2014; Glenwinkel et al. 2014), they can also harbor genetic changes 

responsible for variation in gene expression within species (Lewinsky et al. 2005; Claussnitzer et 

al. 2014; Corradin and Scacheri 2014) and between species (Arnoult et al. 2013; Chang et al. 

2013). However, in most cases where functional changes have been mapped to enhancers or 

similar cis-regulatory sequences, the specific genetic changes responsible for altering their 

function have not yet been identified (Stern and Orgogozo 2008; Martin and Orgogozo 2013; 

Rebeiz and Williams 2017; Klein et al. 2018). 

The mechanistic effects of trans-regulatory mutations 

Whereas cis-regulatory variants tend to lie near the affected gene, trans-regulatory 

variants affecting a gene’s expression can be located virtually anywhere in the genome (Fig. 1-

4A). These potential sites of trans-regulatory  variants include both coding and non-coding 

sequences that affect expression or activity of gene products that regulate the focal gene’s 

expression either directly (by binding to its cis-acting sequences) or indirectly (by influencing 

the activity of direct regulators) (Fig. 1-4B; Lutz et al. 2019). The diversity of mechanisms by 

which trans-regulatory variants can influence a gene’s expression leads to considerable 

variability in their effects on the expression of the focal gene, as well as their effects on other 

genes throughout the genome.  

Coding and non-coding sequences.  
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Although the effects of trans-regulatory variants are mediated by diffusible molecules 

such as RNAs or proteins, studies of regulatory variation segregating in humans suggest that 

most trans- acting variants are not located within the sequences encoding these molecules (GTEx 

Consortium et al. 2017). Instead, in large-scale genome-wide association studies, the majority of 

trans-regulatory variants have been found in non-coding, putatively cis-regulatory sequences 

controlling the gene’s expression (Battle et al. 2014; GTEx Consortium et al. 2017; Yao et al. 

2017; GTEx Consortium 2020). By changing expression of the gene they affect in cis, such 

variants can affect the expression of other genes in trans (Yvert et al. 2003; Grundberg et al. 

2012; Brynedal et al. 2017; GTEx Consortium et al. 2017). For example, a cis- acting eQTL 

located near the gene encoding lysozyme (an enzyme that breaks down bacterial cell walls) has 

been shown to also act as a trans-acting eQTL for expression of other genes in monocytes 

(Fairfax et al. 2012). Similarly, a cis-acting eQTL near the transcription factor KLF14, which 

regulates expression of genes in adipose tissue, explains trans- acting effects observed on 

expression of other genes (Small et al. 2011). However, studies of S. cerevisiae suggest that this 

species might have a different distribution of trans- regulatory variants in coding and non-coding 

sequences. As in humans, hotspot genes with trans- regulatory eQTLs affecting expression of 

many genes are more likely to have local, putatively cis- acting eQTLs than expected by chance 

(Albert et al. 2018), but the functional trans- regulatory variants mapped and validated in S. 

cerevisiae so far have primarily, although not exclusively, been in coding regions (Brem et al. 

2002; Yvert et al. 2003; Ronald et al. 2005; Sudarsanam and Cohen 2014; Albert et al. 2018; 

Lutz et al. 2019). S. cerevisiae might have a higher proportion of trans-regulatory variants in 

coding sequences than humans because so much less of their genome is non-coding (27% in S. 

cerevisiae versus 97% in humans (Alexander et al. 2010); however, the higher proportion of 
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coding variants might also be a consequence of often using a laboratory-adapted strain that 

carries many variants absent from wild populations (Doniger et al. 2008). Determining the true 

relative contributions of coding and non-coding variants to trans- regulatory variation in yeast 

(and other species) will require much more extensive mapping and functional testing of variants 

from natural populations. If trans-regulatory variants generally do map to non-coding sequences 

more often than coding sequences, this might be because mutations in non-coding sequences 

tend to be less pleiotropic. For example, non-coding mutations that affect activity of a tissue-

specific enhancer are expected to have an impact on fewer traits than coding mutations that alter 

the same gene’s protein sequence everywhere it is expressed (Wray et al. 2003; Wray 2007; 

Carroll 2008; Stern and Orgogozo 2009). Indeed, most trans- acting eQTLs in human non-

coding sequences seem more likely to affect enhancers than core promoters (GTEx Consortium 

et al. 2017), and often have tissue-specific effects (GTEx Consortium et al. 2017; Liu et al. 

2019). Because mutations that are more pleiotropic are expected to typically be more deleterious 

than less pleiotropic mutations (Kimura and Ohta 1974), coding  mutations might be selected 

against  more strongly than non-coding mutations, reducing their frequency in natural 

populations. However, this paradigm is challenged by data showing that cis-regulatory sequences 

are more pleiotropic (Sabarís et al. 2019), and protein sequences more modular (Lynch and 

Wagner 2008; Wagner and Lynch 2008), than generally appreciated. Indeed, a recent study has 

shown how modularity in the yeast MATα2  transcription factor  protein facilitated its 

divergence, which was then followed by changes in cis-regulatory, non-coding sequences of the 

genes it regulates (Britton et al. 2020).  

These findings highlight the fact that coding and noncoding mutations are not 

synonymous with cis- and trans-regulatory mutations (Wittkopp 2005). The differences in 
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pleiotropy between coding and noncoding sequences based on the modularity of regulatory 

elements described above, therefore, may or may not contribute to differences in pleiotropy, and 

potentially fitness, between cis- and trans-regulatory mutations. Furthermore, because many 

trans-regulatory mutations occur in noncoding sequences controlling expression of the trans-

regulator rather than in the coding sequences, they are simultaneously cis-acting mutations to the 

trans-regulator, and trans-acting mutations to the genes regulated. Since the designation of 

mutations as cis- or trans-regulatory is relative to the specific gene being discussed, it is likely 

that any difference in pleiotropy between cis- and trans-regulatory mutations is also relative, and 

not dependent on whether the sequence being mutated is in coding or noncoding DNA. Rather, 

the differences in pleiotropy between cis- and trans-regulatory mutations may be related to the 

number of genes they affect based on their positions relative to the focal gene in the regulatory 

network.  

Transcription factors.  

Transcription factors are often considered the most likely source of trans-regulatory 

variation, especially for hotspot eQTLs, because most transcription factors regulate expression of 

many target genes (Gerstein et al. 2010; modENCODE Consortium et al. 2010; ENCODE 

Project Consortium 2012; Kemmeren et al. 2014; Yue et al. 2014). Indeed, transcription factors 

do often seem to be responsible for  hotspot eQTLs in both humans (Bryois et al. 2014; Yao et 

al. 2017; Cesar et al. 2018) and S. cerevisiae (Lee and Bussemaker 2010; Albert et al. 2018). 

However, the ability  of transcription factors to affect expression of multiple downstream target 

genes also results in functional constraint on their variation. Indeed, their protein-coding 

sequences, DNA-binding specificities and general physiological roles are often conserved over 

long evolutionary timescales (Lambert et al. 2018). Despite these general trends of conservation, 
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transcription factors can and do diverge in function, as changes in protein sequences, including 

those that affect their DNA binding specificity, have been reported for transcription factors 

controlling the mating type in yeast (Gerke et al. 2009; Baker et al. 2011), flower development 

and cell division in plants (Sayou et al. 2014) and body patterning in insects (Galant and Carroll 

2002; Ronshaugen et al. 2002), among others.  

Sources of trans- regulatory variation other than transcription factors.  

Variants affecting genes not encoding transcription factors are also important sources of 

trans-regulatory variation. For example, chromatin regulators can have widespread effects on 

gene expression (Choi and Kim 2008), and an eQTL study in S. cerevisiae suggests that genes 

encoding these types of protein harbor trans- acting  eQTLs affecting expression of many genes 

(Lee et al. 2006). Functional studies in S. cerevisiae have also demonstrated trans-regulatory 

effects of variants in cofactors that modulate the activity of transcription factors (Fazlollahi et al. 

2016) as well as genes that influence metabolism, such as the glucose receptor RGT258, and a 

membrane protein, SSY1, that senses the concentration of extracellular amino acids (Brown et al. 

2008). In humans, trans-eQTLs have also been shown to map to genes that do not encode 

transcription factors, such as the SLCO1A6 gene, in which a genetic variant was shown to alter 

expression of many genes by altering the transport of bile acids in pancreatic islets (Tian et al. 

2015). The diverse sources of trans-regulatory variation illustrated by these and other studies 

result from the interconnectedness of transcriptional, structural, signaling and metabolic 

networks, and underscore the challenge of predicting and identifying trans-regulatory variants 

with our current understanding of systems biology (Flint and Ideker 2019). They are also 

consistent with the proposed ‘omnigenic’ model of heritability, in which every gene expressed 

has the potential to influence every trait (Boyle et al. 2017).  
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Comparing the pleiotropic effects of cis- and trans-regulatory mutations 

While the interconnected nature of cellular networks hints at the potential for trans-

regulatory mutations to indeed be very pleiotropic, it also suggests that cis-regulatory mutations 

may trigger many downstream effects and therefore also be very pleiotropic. It is necessary, 

therefore, to collect empirical data directly addressing the questions of how the pleiotropic 

effects of cis- and trans-regulatory mutations compare to each other. Mutants bearing individual 

cis- and trans-regulatory mutations to the same gene, TDH3, now exist in the baker’s yeast 

Saccharomyces cerevisiae (Metzger et al. 2015; Duveau et al. 2021), making such a direct 

comparison of pleiotropic effects at a detailed molecular level possible for the first time. 

Analysis of these strains, in conjunction with broader analyses to address the generalizability of 

the findings, provide direct empirical evidence of differences in pleiotropy between cis- and 

trans-regulatory mutations and their relationship to fitness. 

Thesis overview 

In this thesis I examine the pleiotropic effects of cis- and trans-regulatory mutations on 

both gene expression and fitness. In addition, I explore active compensation as a molecular 

mechanism that may explain some of the differences in pleiotropic effects of cis- and trans-

regulatory mutations to the gene TDH3 in Saccharomyces cerevisiae. 

In the second chapter, I investigate the hypothesis that trans-regulatory mutations have 

more extensive pleiotropic effects than cis-regulatory mutations, leading to differences in fitness 

that are an important factor in the evolution of gene expression. While this hypothesis has 

frequently been stated, the difficulty of quantifying pleiotropy has resulted in a dearth of 

empirical data to support this hypothesis. I fill this gap by designing and performing fitness 

assays and an RNA-sequencing strategy to collect genome-wide gene expression data for 45 
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yeast strains containing single point mutations affecting the expression of the same gene in cis or 

in trans. My analysis of these data demonstrates for the first time that the effects of trans-

regulatory mutations are indeed more pleiotropic than the effects of cis-regulatory mutations, but 

only for mutations with a similar effect size on expression of the focal gene. In addition, trans-

regulatory mutations frequently have negative pleiotropic fitness effects. Importantly, this work 

also revealed that the downstream consequences of changing a gene’s expression via a cis-

regulatory mutation are not reproduced when its expression is changed via trans-regulatory 

mutations. This unexpected finding highlights the necessity of understanding the context in 

which a mutation occurs in order to predict the consequences of that mutation for the organism 

as a whole. 

In the third chapter I explore whether the pattern of more pleiotropic trans-regulatory 

mutations than cis-regulatory holds for other genes in the genome, and whether this is dependent 

on cis and trans mutations being in noncoding or coding sequences. I develop a framework to 

test these questions using existing gene expression data for a large number of yeast gene deletion 

strains. By building a perturbation network from these data and considering each node in turn as 

the focal gene, I find that the topology of that network is able to generate a pattern in which 

trans-acting mutations have more widespread effects than cis-acting mutations for the vast 

majority of genes analyzed. This finding demonstrates broad generalizability of cis-acting 

mutations being less pleiotropic than trans-acting mutations to the same focal gene in the yeast 

Saccharomyces cerevisiae. 

In the fourth chapter I provide one potential explanation for why cis- and trans-regulatory 

mutations to the same gene do not have comparable effects on genes influenced by the change in 

expression of the focal gene. I do this by demonstrating that the reduction in expression of the 
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yeast gene TDH3 by mutations in the cis-regulatory element can be compensated for by 

upregulation of its paralogs TDH1 and TDH2. This compensation appears to happen via a 

feedback mechanism that involves at least two of the direct regulators of all three paralogs, RAP1 

and GCR1, as it increases the expression of the paralogs and a reporter gene driven by an intact 

TDH3 promoter. This upregulation does not occur in yeast strains with mutated versions of 

RAP1 and GCR1. This work provides a look into the mechanism by which active compensation 

for reduction in an enzyme may take place in the cell, and provides one explanation for why the 

genome-wide effects of cis- and trans-regulatory mutations differ as they do.  
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Figures 

 
Figure 1-1: Fisher's geometric model and the fitness effects of pleiotropy 

In a one-dimensional trait space, 50% of the mutations of a particular effect size will move the 
phenotype toward an optimum (blue arrow) and therefore be advantageous. In a two-dimensional 
trait space, the overlap between the movement of the phenotype and those phenotypes that are 
closer to the optimum is less than 50% (blue colored overlap). (Adapted from Pavlicev & 
Wagner, 2012) 
 

 
Figure 1-2: cis- and trans-regulatory contributions to expression differences between and within 
species 

An analysis of allele-specific expression in hybrid yeast (Saccharomyces) species with a range of 
divergence times (a, branch lengths reflect relative divergence times) showed increasing 
contributions of cis-regulatory variation to expression differences with increasing divergence 
time (b, notches in the boxplot indicate 95% CI of the median). 
 



 30 

 
Figure 1-3: Sources of cis-regulatory variation in eukaryotes 

(a) Mutations that are sources of cis-regulatory variation occur in close proximity to the gene of 
interest. (b) Mutations (indicated with lightning bolts) affecting the core promoter (including in 
motifs such as the TATA box used to assemble the transcription machinery activating RNA 
polymerase), enhancers (whose functional units are transcription factor binding sites (TFBS)), 
chromatin accessibility (altered by nucleosome placement and stability), and post-transcriptional 
regulation such as splicing sites or microRNA targets in the 3’ UTR, can have cis-regulatory 
effects on gene expression.  
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Figure 1-4: Sources of trans-regulatory variation 

(a) Mutations that are sources of trans-regulatory variation can occur anywhere throughout the 
genome, in coding or non-coding sequences, and affect diffusible molecules that then influence 
the expression of the gene of interest. (b) These mutations (indicated by lightning bolts) can 
occur in non-coding or coding sequences of transcription factors, cellular sensors, transporters, 
signaling receptors and ligands, and other molecules that influence transcription of many genes 
via effects on the many interconnected cellular networks. 
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Chapter 2 Pleiotropic Effects of Trans-Regulatory Mutations on Fitness and Gene 

Expression  

Abstract 

Variation in gene expression arises from cis- and trans-regulatory mutations, which 

contribute differentially to expression divergence. Here, we compare the impacts on gene 

expression and fitness for cis- and trans-regulatory mutations affecting expression of the TDH3 

gene in Saccharomyces cerevisiae. We use the effects of cis-regulatory mutations to isolate 

effects of trans-regulatory mutations caused by impacts on TDH3 from impacts on other genes, 

providing a rare distribution of pleiotropic effects. Cis- and trans-regulatory mutations had 

different effects on expression of genes downstream of TDH3, showing that the pleiotropic 

effects of trans-regulatory mutations do not only act in parallel to cis-regulatory mutations. The 

more widespread and deleterious effects of trans-regulatory mutations we observed are 

consistent with their decreasing relative contribution to expression differences over evolutionary 

time. 
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Main Text 

Heritable variation in gene expression is widespread within and between species and 

often contributes to phenotypic diversity (Stern and Orgogozo 2008). This variation arises from 

mutations that alter activity of the regulatory networks that control when, where, and how much 

of a gene product is produced. Each regulatory mutation can act in cis or in trans with respect to 

a specific gene. cis-regulatory mutations tend to be located close to the focal gene and often 

impact functional elements in non-coding sequences that regulate the focal gene’s expression, 

such as promoters or enhancers. By contrast, trans-regulatory mutations can be located anywhere 

in the genome and can impact either coding or non-coding sequences of genes that influence the 

focal gene’s expression through activity of a diffusible molecule such as a protein or RNA. cis- 

and trans-regulatory variants contribute differently to the evolution of gene expression (Coolon 

et al. 2014; Metzger et al. 2017; Signor and Nuzhdin 2018; Gokhman et al. 2021; Hill et al. 

2021): trans-regulatory variants appear to be the primary source of mRNA expression 

differences within a species but the relative contribution of cis-regulatory variants often increases 

with evolutionary time. Understanding how and why these classes of regulatory mutations 

contribute differently to variation in gene expression is important for understanding how gene 

expression evolves. 

Differences in the way cis- and trans-regulatory mutations affect gene expression might 

contribute to a preferential fixation of cis-regulatory variants relative to trans (Wray 2007; 

Wittkopp et al. 2008; Schaefke et al. 2013; Hill et al. 2021). A cis-regulatory mutation alters 

expression of a focal gene, which can in turn also have effects on expression of downstream 

genes (orange box in Figure 2-1). By contrast, a trans-regulatory mutation affecting expression 
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of the same focal gene might have effects comparable to the cis-regulatory mutation plus 

independent effects on expression of other genes, each with its own potential downstream 

consequences (blue box in Figure 2-1). Effects of cis-regulatory mutations might thus be a subset 

of the effects of trans-regulatory mutations, and mutations altering expression of the focal gene 

in trans might have more wide-spread effects on gene expression than mutations altering 

expression of this focal gene in cis. Consequently, trans-regulatory mutations might be more 

pleiotropic (i.e., affect more traits) and fixed less often than cis-regulatory mutations because 

mutations that are more pleiotropic are predicted to be more deleterious (Kimura and Ohta 

1974). However, regulatory networks are often more complex than shown in Figure 2-1 

(Kemmeren et al. 2014), potentially complicating these expectations and making it important to 

test these ideas empirically (Paaby and Rockman 2013; Zhang and Wagner 2013, Paaby and 

Rockman 2013b). 

Here, we examine the pleiotropic effects of trans-regulatory mutations by using cis-

regulatory mutations to separate the effects of a trans-regulatory mutation caused by its impact 

on a focal gene from its effects caused by impacts on other genes.  We separate these mutational 

effects for fitness and gene expression by measuring relative growth rate and expression profiles 

for 40 strains of S. cerevisiae: 5 with mutations that titrate expression of a focal gene in cis and 

35 with mutations that alter expression of the same gene in trans. The TDH3 gene in the baker’s 

yeast Saccharomyces cerevisiae, which encodes a glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH), was used as the focal gene for this work because prior studies have systematically 

identified and isolated cis- and trans-regulatory mutations that affect its expression (Metzger et 

al. 2015; Metzger et al. 2016; Duveau et al. 2021). The 5 cis-regulatory mutants examined 

caused expression of TDH3 to vary from 0% to ~135% of wild-type levels and had mutations in 
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the TDH3 promoter, disrupting well-characterized binding sites for the transcription factors 

RAP1p and GCR1p (Huie et al. 1992; Yagi et al. 1994) (Fig. 2-1B, see Methods). The 35 trans-

regulatory mutants examined caused TDH3 expression to vary from ~6% to ~130% of wild-type 

levels and had mutations in the coding sequences of direct regulators RAP1 (4 mutants) or GCR1 

(5 mutants) or indirect regulators involved in purine biosynthesis (4 mutants), iron transport (4 

mutants), transcriptional regulation (8 mutants), or other processes (10 mutants) (Fig.  2-1C, 

Table 1).  

To separate the fitness effects of trans-regulatory mutations attributable to changes in 

TDH3 expression from the fitness effects attributable to the pleiotropic impacts of these 

mutations on other genes, we first defined the relationship between TDH3 expression and fitness 

using only the cis-regulatory mutants. Relative fitness was estimated for each mutant based on 

measures of clonal population growth rate under the same conditions used to grow cells for 

expression profiling (RNA-seq) (see Methods). To predict the fitness effects of any change in 

TDH3 expression between 0 and 135% of wild-type expression, we fit a local polynomial 

regression (LOESS) curve to these data. We found that both increases and decreases in TDH3 

expression decreased fitness (Fig. 2-2A), consistent with prior work using competitive growth to 

estimate the fitness effects of changing TDH3 expression (Duveau et al. 2017; Duveau et al. 

2018). 

Using these inferred effects of changes in TDH3 expression on fitness, we estimated the 

pleiotropic fitness effects of each trans-regulatory mutant by comparing its measured fitness to 

the fitness predicted for a cis-regulatory mutant with the same change in TDH3 expression. More 

specifically, we calculated the pleiotropic fitness effects of trans-regulatory mutants as the 

deviation from the TDH3 expression -- fitness curve (Fig. 2-2B). Excluding 2 flocculant trans-
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regulatory mutants for unreliable estimates of growth rate, 52% (17/33) of mutants had 

significant deleterious pleiotropic effects based on the LOESS regression curve falling above 

their 95% confidence intervals for fitness. By contrast, 9% (3/33) of mutants had significant 

beneficial pleiotropic effects based on the LOESS regression curve falling below their 95% 

confidence intervals. The remaining 13 trans-regulatory mutants (39%) showed fitness effects 

comparable to cis-regulatory mutants with similar impacts on TDH3. Overall, the empirical 

distribution of pleiotropic fitness effects was bimodal, with smaller pleiotropic effects skewed 

toward deleterious effects and larger pleiotropic effects entirely deleterious (Fig. 2-2C). These 

data provide a rare distribution of pleiotropic effects and direct empirical support for the 

hypothesis that trans-regulatory mutations tend to be more deleterious than cis-regulatory 

mutations, causing them to be more likely to be removed from a population by natural selection. 

These differences in the fitness effects of cis- and trans-regulatory mutations presumably 

arise from differences in how they impact expression of other genes in the genome; mutants 

affecting expression of more genes tend to be more deleterious (Featherstone and Broadie 2002) 

(Fig. 2-6). As described above, trans-regulatory mutations might have more widespread effects 

on the transcriptome than cis-regulatory mutations because they affect expression of the focal 

gene as well as other genes in parallel. To determine whether the trans-regulatory mutants 

generally tended to have more widespread effects on gene expression than the cis-regulatory 

mutants, we compared the number of genes considered significantly differentially expressed in 

the cis- and trans-regulatory mutants at a false discovery rate (FDR) of 10%. We found no 

statistically significant difference in the median number of differentially expressed genes 

between cis- and trans-regulatory mutants (Fig.  2-3A, permutation test p-value: 0.11, Fig. 2-

7A), but the trans-regulatory mutants showed significantly more variable effects (permutation 
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test p-value = 0.01, Fig. 2-7B). We also compared gene expression using the Euclidean distance 

among log2 fold change estimates between each mutant and wild type for all genes other than 

TDH3, which captures the magnitude of expression changes estimated for all genes regardless of 

statistical significance. Again, we found no significant difference in the median impact on gene 

expression for cis- and trans-regulatory mutants (Fig. 2-3B, permutation test p-value: 0.25, Fig. 

2-7C) but a greater variance in the effects of trans-regulatory mutants (permutation test p-value = 

0.02, Fig. 2-7D). 

The absence of a larger median effect of trans-regulatory mutants relative to cis-

regulatory mutants might be due to differences in the severity of mutational effects between the 

sets of cis- and trans-regulatory mutants examined. To test this possibility, we examined the 

effects of cis- and trans-regulatory mutants on the number of significantly differentially 

expressed genes while taking their impact on TDH3 expression into account. We found that 83% 

of trans-regulatory mutants showed a greater number of differentially expressed genes than 

predicted for a cis-regulatory mutant with the same effect on TDH3 expression (Fig. 2-3C). 

Using Euclidean distances among log2 fold changes in gene expression rather than the number of 

significantly differentially expressed genes showed the same pattern (Fig. 2-3D). Prior work has 

shown that new trans-regulatory mutations tend to have smaller effects on TDH3 expression than 

new cis-regulatory mutations (Metzger et al. 2016), suggesting that greater pleiotropy of trans-

regulatory mutations is often offset by their smaller effect sizes. Consequently, relative 

pleiotropy between cis- and trans-regulatory mutations is not as simple as trans-regulatory 

mutations always tending to be more pleiotropic than cis-regulatory mutations. Rather, trans-

regulatory mutants should only be assumed to be more pleiotropic than cis-regulatory mutants 

when they have comparable effects on expression of the focal gene.  
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As shown in Figure 2-1, trans-regulatory mutants are hypothesized to have more 

widespread effects than cis-regulatory mutants because they are expected to impact expression of 

genes downstream of the focal gene similarly to cis-regulatory mutations but also have additional 

pleiotropic effects on expression of other genes. This model predicts that the effects of cis-

regulatory mutations are a subset of the effects of trans-regulatory mutations. To determine 

whether the effects of cis-regulatory mutations were indeed a subset of the effects of trans-

regulatory mutations impacting expression of the same gene, we focused on genes downstream 

of TDH3 whose expression was significantly altered when TDH3 expression was eliminated. 

Using an FDR of 10%, we identified 154 such downstream genes in the TDH3 null mutant 

(Table 2). 55 (36%) of these 154 genes were under-expressed in the null mutant relative to the 

wild-type strain, and 99 (64%) were over-expressed (Table 2). This gene set was significantly 

enriched for genes encoding proteins involved in glycolytic processes (Fig. 2-8), suggesting that 

many expression changes observed in TDH3 null mutants might be due to a homeostatic 

response of the cells to maintain metabolism in the absence of the TDH3p enzymatic activity 

involved in glycolysis and gluconeogenesis (McAlister and Holland 1985). These downstream 

genes were also enriched for genes associated with the gene ontology terms DNA biosynthesis, 

integration, and transposition (Fig. 2-8), and expression changes in these genes might be related 

to non-metabolic functions of TDH3p, such as its interaction with SIR2p to regulate 

transcriptional silencing and rDNA recombination (Ringel et al. 2013). 

The median absolute log2 fold expression changes observed for this set of 154 genes 

downstream of TDH3 decreased monotonically as TDH3 expression approached wild type, with 

the smallest median expression change seen in the cis-regulatory mutant overexpressing TDH3 

(Fig. 2-4A). To determine how expression of each of these genes scaled with changes in TDH3 
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expression, we used linear regressions to test for significant correlations between TDH3 

expression and expression of each downstream gene in the 5 cis-regulatory mutants. 132 (86%) 

of these 154 genes showed a significant linear relationship with TDH3 expression at a 10% FDR 

(Fig. 2-9A), with 49 genes showing a significant positive correlation and 83 genes showing a 

significant negative correlation (Fig. 2-4B, Fig. 2-9B). For example, the GPD2 gene, which 

encodes an NAD-dependent enzyme two steps away from TDH3 in the metabolic network, 

showed a strong negative correlation with TDH3 expression (Fig. 2-4C), indicating that when 

TDH3 expression was decreased by cis-regulatory mutations, GPD2 expression increased in 

response. 

To determine whether similar impacts on expression of these 132 downstream genes were 

observed when TDH3 expression was altered in trans, we used the linear models fitted to the cis-

regulatory mutant data to predict the change in expression expected for each downstream gene 

due to the impact of the trans-regulatory mutant on TDH3 expression alone. Deviations from 

these expectations indicate pleiotropic effects of the trans-regulatory mutant on expression of the 

genes downstream of TDH3. For example, 13 of the 35 trans-regulatory mutants showed 

evidence of a pleiotropic effect on expression of GPD2, as indicated by a change in GPD2 

expression outside of the 95% confidence interval for the expression change predicted by cis-

regulatory mutants (Fig. 2-4D). Such pleiotropic effects were observed for every downstream 

gene in multiple trans-regulatory mutants, with the magnitude of the pleiotropic effects 

(measured as residuals from the gene-specific regression models based on the cis-regulatory 

mutants) varying among trans-regulatory mutants and genes (Fig. 2-4E). These data indicate that 

the trans-regulatory mutants examined in this study often changed the relationship between 

TDH3 expression and expression of its downstream genes. Consequently, the effects of cis-
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regulatory mutations altering TDH3 expression were not a simple subset of the effects of trans-

regulatory mutants also altering TDH3 expression.  

The deviation in effects between cis- and trans-regulatory mutations on expression of 

genes downstream of TDH3 differed among trans-regulatory mutants with mutations in different 

genes as well as among mutants with different mutations in the same gene (Fig. 2-5A). 

Hierarchical clustering of the residuals for genes downstream of TDH3 also showed these 

different impacts (Fig. 2-5B). For example, four trans-regulatory mutants all caused large 

decreases in TDH3 expression, but the two mutants with mutations in GCR1 (GCR1339 and 

GCR1162) had different impacts on expression of genes downstream of TDH3 than the two 

mutants with mutations in RAP1 (RAP154 and RAP1238) (Fig. 2-5B). Each pair of mutants with 

mutations in the same gene had similar effects on expression of these downstream genes. By 

contrast, two other mutant alleles of RAP1 (RAP1484 and RAP1357) both increased expression 

of TDH3 but had distinct impacts on expression of genes downstream of TDH3 (Fig. 2-5B). 

These different impacts of the four RAP1 mutant alleles underscore that different coding 

mutations in the same gene can have different pleiotropic effects (Lynch and Wagner 2008). In 

other cases, pleiotropic effects for mutants with mutations in different genes that function in the 

same pathway (e.g., ADE4, ADE5, ADE6) were similar (Fig. 2-5B). Taken together, these data 

illustrate that trans-regulatory mutants have impacts on expression of genes downstream of 

TDH3 that deviate from the effects of cis-regulatory mutants in a variety of ways, implying 

additional connections between trans-regulators of TDH3 and its downstream genes not shown 

in Figure 2-1. 

By quantifying and comparing the effects of cis- and trans-regulatory mutations on gene 

expression and fitness, this work provides an important complement to studies describing the 
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relative contributions of cis- and trans-regulatory variants to expression differences within and 

between species because it can help explain why we see the variation we see. For example, the 

tendency of trans-regulatory mutations to be more pleiotropic than cis-regulatory mutants 

suggests that the increasing contribution of cis-regulatory variation to expression differences 

over evolutionary time (Signor and Nuzhdin 2018; Hill et al. 2021) is due to natural selection 

preferentially removing trans-regulatory mutations. However, our data suggests that statements 

about the relative fitness of cis-and trans-regulatory mutations should be more nuanced, 

considering the relative effect sizes of cis- and trans-regulatory mutations when predicting their 

evolutionary fates. Differences in the rate at which new cis- and trans-regulatory mutations arise 

as well as their relative dominance in diploid species are also expected to contribute to the 

patterns of regulatory variation seen in natural populations. Ultimately, understanding both the 

properties of new regulatory mutations and the sources of regulatory variation seen in the wild 

are needed to understand the evolution of gene expression. 

Materials and Methods 

Yeast Genotypes 

Strains of S. cerevisiae bearing cis-regulatory mutations used in this study are a subset of 

the strains used to assay the fitness effects of changing TDH3 expression constructed and 

described in Duveau et al (2017). They are haploid, mating type a strains of S. cerevisiae derived 

from S288C and constructed from the progenitor strain YPW1001, which contains a wild type 

PTDH3-YFP construct and a NatMX4 drug resistance marker at the HO locus and alleles of MKT1, 

SAL1, CAT5 and MIP1 decreasing petite frequency and the alleles of RME1 and TAO3 

increasing sporulation efficiency, as previously described (Duveau et al. 2017). The strains 
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specifically used in this study include: (1) YPW1177: a strain with a deletion of the entire native 

TDH3 promoter and coding sequence (0% of wild-type expression), (2) YPW1156: a strain with 

a C->T point mutation in the native TDH3 promoter 482 bp upstream of the TDH3 start codon in 

a binding site for the GCR1 transcription factor (~20% of wild-type expression), (3) YPW1200: 

a strain with a C->T point mutation in the native TDH3 promoter 485 bp upstream of the start 

codon in the same binding site for GCR1 (~50% of wild-type expression), (4) YPW1188: a strain 

with a G->A point mutation in the native TDH3 promoter 510 bp upstream of the start codon in a 

binding site for the RAP1 transcription factor (~85% of wild-type expression), (5) YPW1189: a 

strain with the wild type TDH3 promoter and coding sequence used as a reference strain for the 

previous four mutant strains, (6) YPW3059: a strain with two copies of the TDH3 gene separated 

by a URA3 selectable marker in which each copy of TDH3 contained a G->A point mutation in 

its promoter 505 bp upstream of the start codon in a RAP1 binding site (resulting in a total 

~135% of wild-type expression), and (7)  YPW2682: a strain with the same URA3 selectable 

marker as the strain with the TDH3 gene duplication inserted after the native TDH3 locus used as 

a reference strain for the overexpression mutant strain.  

The 35 trans-regulatory mutants analyzed in this study (Table 1) include a subset of those 

described in Duveau et al (2021). Briefly, mutants analyzed with mutations in GCR1 or RAP1 

were constructed by using mutagenic PCR to randomly introduce mutations within each gene 

and then using CRISPR-mediated allele-replacement to substitute the native locus with a mutant 

allele (Duveau et al. 2021). The 9 trans-regulatory mutants with mutations in one of these two 

genes each contained 1 to 6 mutations (Table 1). The remaining 26 trans-regulatory mutants 

analyzed each contained a single nucleotide change introduced into the genome by site-directed 

mutagenesis and either delitto perfetto or CRISPR, with the specific mutation introduced 
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identified by genetic mapping of mutant genotypes isolated from an EMS mutagenesis screen for 

altered expression of TDH3 (Duveau et al. 2021). Trans-regulatory mutant strains and the 

corresponding reference strain are haploid, mating type a strains of S. cerevisiae derived from 

S288C and constructed from the progenitor strain YPW1139, which also contains a wild type 

PTDH3-YFP construct and a KanMX drug resistance marker at the HO locus and alleles of MKT1, 

SAL1, CAT5 and MIP1 decreasing petite frequency and the alleles of RME1 and TAO3 

increasing sporulation efficiency, as previously described (Duveau et al. 2017). This same 

progenitor strain YPW1139, re-stocked and renamed as YPW3016, was used as the reference 

strain for these trans-regulatory mutant strains.  

These 43 strains (5 cis-regulatory mutants, 35 trans-regulatory mutants, and 3 reference 

strains), as well as 3 deletion mutants not used in this study, were randomly arrayed into a 96-

well plate containing YPD media (2% dextrose monohydrate, 2% peptone, 1% yeast extract, 

weight to volume in milliQ purified water and sterilized by autoclave), including 3 replicates of 

the reference for trans-regulatory mutants. The outer rows and columns of this 96-well plate 

were filled only with sterile media because slight differences in yeast growth at the outer wells of 

the 96-well plate had been previously observed. 4 unique random plate arrays, each containing 

all mutants and 3 replicates of the trans-regulatory reference strain but in different plate positions 

were designed and assembled. Each plate was then grown to saturation in YPD media with glass 

beads while shaking at 250 rpm to maintain suspension. 100 uL of each culture in these four 

plates was mixed with 23 uL of 80% glycerol and stored at -80 C.  

Estimating relative fitness 
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Relative fitness was estimated based on quadruplicate measures of growth rate for each 

genotype. A pin tool was used to transfer cells from the four replicate 96-well plates containing 

glycerol stocks to a solid YPG (5% glycerol by volume, 2% peptone weight to volume, 2% agar 

weight to volume, 1% yeast extract weight to volume in milliQ purified water and sterilized by 

autoclave) agar plates to prevent the formation of the petite phenotype which can be common 

upon thawing. These plates were then incubated at 30 C for ~3 days to allow colony growth. 

Cells from each genotype were then transferred using a pin tool from the agar plate into 500 uL 

of liquid YPD media in a 1 mL plate with glass beads and grown with shaking at 30 C for ~3.5 

days. 5 uL of these saturated cultures were transferred into 100 uL of fresh YPD liquid media in 

a Costar 96 well plate with lid, which was then inserted into a BioTek Synergy (Agilent). Cells 

were grown for 24 hrs at 30 C while being continually shaken to maintain suspension, pausing to 

take optical density measurements of each well, including blank control wells, every hour. Two 

strains, containing a mutation in either CYC8 or SSN2 showed visible evidence of flocculation (a 

known phenotype for deletions of both of these genes (Cherry et al. 2012), and were excluded 

from growth rate analysis and subsequent analyses using growth rate measurements. Optical 

density curves from 0 to 18 hrs (when the diauxic shift occurred), were then plotted and fit to a 

sigmoidal growth curve using the R program ‘growthcurver’ (Sprouffske and Wagner 2016). 

Maximal growth rates, calculated as the maximal slope of each fitted curve, were used to 

calculate growth rate relative to the appropriate control strain to yield average relative growth 

rates and standard errors (scripts used for analysis and raw data available at Github). 

RNA extraction 



 45 

Cells used for RNA-seq were sampled from the 4 replicate plate glycerol stocks 

described above. A pin tool was used to transfer cells from each glycerol stock plate to solid 

YPG agar plates and cells were grown for ~3 days at 30 C to prevent the formation of the petite 

phenotype which can be common upon thawing. Cells were then transferred by pin tool again 

into 500 uL liquid YPD media in 1 mL 96-well plates with glass beads and grown at 30 C while 

shaking at 250 rpm for 2 days, until all strains were once again at saturation. 100 uL of the 

saturated culture was then transferred to a Costar 96 well plate and OD measured using a Tecan 

Sunrise (Tecan). The OD was then used to calculate cell density. A separate 1mL 96 well plate 

was then filled with 500 uL of YPD in each well, and each well inoculated with a volume of the 

saturated culture calculated to grow to a cell density of 5x106 cell per mL (an OD of about 0.4) 

after 12.5 hr. These cultures were then grown rotating on a wheel at 30 C for 12.5 hrs, after 

which 100uL was removed and used to measure OD to ensure all cultures were between an OD 

of 0.26 to 0.48. Plates were then centrifuged for 5 min at 3000 g, and liquid media pipetted off. 

Remaining cell pellets were frozen by plunging the entire plate containing cell pellets into liquid 

nitrogen. Plates were sealed with foil and stored at -80 C until RNA extractions were 

performed. For any very slow growing strains that did not reach an OD of between 0.26 and 

0.48, this process was repeated and multiple cell pellets pooled at the RNA extraction stage to 

achieve uniform cell numbers across all strains and replicates. 

Frozen cell pellets were resuspended in 700 uL of lysis buffer (100mM Tris-HCl, pH 7.5, 

500 mM LiCl, 10mMEDTA, pH 8, 1% LiDS, 5mM DTT) containing beta-mercaptoethanol and 

transferred to a plate containing ~250 uL of acid-washed 425-600 um beads. These plates were 

vortexed 10x for 1min each with 1min on ice in between. Plates were centrifuged at 3000 rpm at 

4 C for 4 min, and 400 uL of lysis supernatant were removed and transferred into a new 96 well 
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plate containing 50 uL oligodT magnetic beads resuspended in lysis buffer (Dynabeads mRNA 

DIRECT Kit, Ambion, cat# 61011). Beads and lysate were incubated at room temperature with 

agitation for 5 minutes, and then placed on a magnetic stand. Supernatant was pipetted off and 

beads were washed 2x with Wash Buffer A (10mM Tris-HCl, pH 7.5, 0.15 M LiCl, 1 mM 

EDTA, 0.1% LiDS) and 2x with Wash Buffer B (10mM Tris-HCl, pH 7.5, 0.15 M LiCl, and 

1mM EDTA) and then eluted in 10 uL of elution buffer (10mM Tris-HCl, pH 7.5) for 2 min at 

72 C. After incubation, plate was placed immediately back on magnetic stand and supernatant 

containing eluted RNA transferred to an RNAse-free plate. After extraction, several random 

samples were run on Agilent Bioanalyzer to check RNA quality and concentration before 

moving on to library preparation. In addition, selected wells were tested for the presence of 

NatMX or KanMX resistance markers present in distinct strains and controls by RT-PCR and 

visualized on a gel to determine whether well-cross contamination had taken place at any step 

previous to library prep; we found no evidence of such cross contamination.  

RNA-seq pipeline and DESeq2 analysis 

RNA-seq libraries were prepared using ⅓ volume reactions from TruSeq RNA Sample 

Preparation v2 Kit, and using multiplexable adapters from the TruSeq RNA CD Index Plate (cat# 

20019792). Ten of the 198 library preps used in this study failed, resulting in those strains being 

analyzed in triplicate rather than quadruplicate. All samples from the same replicate plate were 

pooled and run on one lane on the Illumina HiSeq 4000 by the University of Michigan Advanced 

Genomics Core, for a total of 4 replicate plates run on 4 sequencing lanes. Raw reads were run 

through the FastQC (version 0.11.5) read quality software and passed the program benchmarks 

for read quality. Reads were then trimmed using Cutadapt ((Martin 2011), version 1.10) and 
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pseudo-mapped to the a transcriptome index generated using Salmon ((Patro et al. 2017), version 

0.9.1) on S. cerevisiae cDNA (Ensemble, release 38, retrieved from 

ftp://ftp.ensemblgenomes.org/pub/release-38/fungi/fasta/saccharomyces_cerevisiae/cdna/). Read 

counts from Salmon were imported into R using TxDb (version 3.2.2). Read counts for the entire 

dataset were supplied to DESeq2 (Love et al. 2014) to model gene expression levels, with 

different strain backgrounds being analyzed separately. The DESeq2 ‘contrast’ wrapper was then 

used to estimate log2 fold changes for each strain relative to its appropriate reference and identify 

differentially expressed genes and estimate log2 fold changes in expression relative to the 

reference. We used PCA analysis to identify any outliers amongst the replicates sequenced and 

identified one trans-regulatory mutant control replicate as well as one of each of the TDH3 cis-

regulatory mutants with expression of 0%, 20%, 50%, and 85%, all coming from the fourth 

replicate plate, as outliers (Fig. 2-10). These samples were excluded from the analyses.  

To assess the reliability of DESeq2 estimates of expression levels from our RNA-seq 

data, we compared the RNA-seq expression measures for the cis-regulatory mutants to 

previously published expression driven by the same set of cis-regulatory mutant alleles 

controlling expression of a fluorescent reporter gene (Duveau et al. 2017). However, because the 

reporter gene was at the HO locus, the fluorescence measures were first compared to 

fluorescence measures in set of strains with cis-regulatory mutations at the native TDH3 locus 

driving expression of a TDH3-YFP fusion protein (Duveau et al. 2018). This relationship was 

used to predict expression values at the native locus for strains that contained cis-regulatory 

mutations that were not present in a fusion protein strain themselves. These predictions were 

then compared with the expression values estimated directly from the RNA-seq data. RNA-seq 

and fluorescence estimates were strongly correlated with an r2 value of 0.97 (Fig. 2-11). 
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Comparing the RNA-seq data for reference strains with a single copy of TDH3 that were 

mating type a (YPW3016) and mating type a (YPW1189) showed that 35 genes were 

significantly differentially expressed between these two strains, 28 of which were annotated as 

mating type genes, dubious, or uncharacterized ORFs, and 7 of which were annotated with 

different functions (Fig. 2-12, Table 3). These genes were not significantly differentially 

expressed between the reference strain and mutant strains of the same mating type, indicating 

that all differentially expressed genes in mutant strains are attributable to the cis- or trans-

regulatory mutations affecting TDH3 expression. Expression of URA3 was discovered in 5 of the 

trans-regulatory mutant lines, suggesting that they had not lost the URA3 containing plasmid 

used during strain construction (Duveau et al. 2021). To ensure that these strains did not 

influence the patterns of analysis presented in the main text, all analyses were carried out with 

and without these strains, without affecting the conclusions. Analyses with these 5 mutants 

excluded are included in the scripts provided at Github. 

Statistical analysis 

Permutation tests were conducted to assess differences in the number of differentially 

expressed genes or the Euclidean distance between log2-fold changes for cis- and trans-

regulatory mutants. These permutation tests were used because they take into account the 

differences in sample size for  cis- and trans-regulatory mutants. Because there are 5 cis-

regulatory mutants, 5 trans-regulatory mutants were drawn from the total of 35 for each 

permutation (without replacement), and the median and variance of each sample was calculated. 

This sampling was repeated 1000 times to create a distribution of the medians and variances 

measured for 5 trans-regulatory mutants, which was then compared to the observed median and 
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variance values for the 5 cis-regulatory mutants. P-values were calculated as the proportion of 

the 1000 random samples with a median less than or equal to the median or variance of the cis-

regulatory mutants (Fig. 2-7). 

Gene ontology analysis was performed using the Saccharomyces genome database (SGD) 

‘GO Term Finder’ (Version 0.86) tool (Cherry et al. 2012). Both gene sets were tested for 

enrichment against a background set of all genes included for analysis in our RNA-seq 

experiment. GO process terms significant at an FDR of 0.01 were examined, and those terms 

with direct gene associations with the most significant enrichments (rather than parent terms) 

were reported. 

To compare the downstream effects of perturbing TDH3 expression via cis- and trans-

regulatory mutations, for each gene significantly differentially expressed in the TDH3 null 

mutant (Table 2), the log2 fold change estimates across all cis-regulatory mutants were converted 

to percent wild-type estimates. A linear model was then fit to each gene’s expression level 

regressed on the percent wild-type expression level of TDH3 across all cis-regulatory mutants 

using the base R ‘lm’ function. We then applied a Benjamini-Hochberg multiple testing 

correction to the p-values generated from the F-test of the linear regression to identify the 132 

genes that were significantly linearly related to TDH3 expression at an FDR of 10%. These linear 

models were then used to predict each of the 132 genes’ expression levels in trans-regulatory 

mutants using TDH3 expression level in each mutant as the predictor. The absolute difference 

between the predicted gene expression level and the actual observed gene expression level (i.e., 

the residual) was calculated for each mutant for each of the 132 genes. All scripts used to 

perform these analyses are available on Github. 
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Figures 

 

Figure 2-1: cis- and trans-regulatory mutations have different effects on gene expression 

(A) Trans-regulatory mutations in either indirect or direct regulators (blue) influence expression 
of a focal gene (orange), which in turn influences expression of downstream genes (light blue). 
Mutations in trans-regulators can also influence expression of additional genes in the genome 
(black), suggesting the effects of trans-regulatory mutations (blue box) should be more 
widespread than the effects of mutations that affect the focal gene’s expression in cis (orange 
box). (B) Schematic shows the cis-regulatory sequence (promoter) for the S. cerevisiae TDH3 
gene (pTDH3) used as a focal gene for this work. This promoter is in the intergenic sequence 
between PDX1 and TDH3 and includes transcription factor binding sites (TFBS) for the direct 
regulators (transcription factors) encoded by the RAP1 and GCR1 genes as well as a TATA box. 
(C) Previously identified (Duveau et al. 2021) indirect regulators of TDH3 expression harboring 
trans-regulatory mutations tested in this work are shown. 
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Figure 2-2: Pleiotropic effects of trans-regulatory mutations on fitness 

(A) Relative fitness is shown for 5 cis-regulatory mutants and a wild-type strain based on the 
level of TDH3 expression in each strain, with error bars representing 95% confidence intervals. 
TDH3 expression from RNA-seq data is plotted on the x-axis, with error bars representing one 
standard error. A local polynomial regression (LOESS) fit line is also shown. (B) Relative fitness 
and TDH3 expression of trans-regulatory mutants is shown, with the cis-regulatory mutants and 
fitted LOESS curve from (A) included for comparison in orange. The degree to which relative 
fitness of a trans-regulatory mutant deviates from the relative fitness predicted for a cis-
regulatory mutant with similar effects on TDH3 expression (orange line) is defined as the 
pleiotropic fitness effect of that trans-regulatory mutant (example shown with solid black line). 
Trans-regulatory mutants with significant pleiotropic fitness effects (95% confidence intervals 
for fitness that do not overlap the LOESS fit line for cis-regulatory mutants) are shown in blue. 
(C) Histogram summarizes pleiotropic fitness effects of all trans-regulatory mutants, as defined 
in panel B. A smoothed density distribution derived from this histogram is underlaid in black. 
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Figure 2-3: trans-regulatory mutants have broader impacts on expression than cis-regulatory 
mutants only when they have similar effects on the focal gene 

(A) The number of significantly differentially expressed (DE) genes at a 10% FDR is shown for 
cis-regulatory mutants (orange) and trans-regulatory mutants (blue). (B) Euclidean distances 
among log2 fold changes in expression are shown for cis-regulatory (orange) and trans-
regulatory (blue) mutants. Box plots in (A) and (B) show median and quartile values. (C) The 
number of significantly differentially expressed genes at a 10% FDR is shown for each mutant, 
plotted according to the mutant’s impact on TDH3 expression. (D) Euclidean distances among 
log2 fold changes in expression are shown for each mutant, plotted according to the mutant’s 
impact on TDH3 expression. In both (C) and (D), cis-regulatory mutants are shown in orange, 
with points connected by straight line segments. Error bars for TDH3 expression are one 
standard error from RNA-seq data. 
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Figure 2-4: cis- and trans-regulatory mutants have distinct effects on expression of genes 
downstream of TDH3 

(A) Violin plots show absolute log2 fold changes in the 5 cis-regulatory mutants for the 153 
genes other than TDH3 that were significantly differentially expressed (DE) in the TDH3 null 
mutant. Median absolute log2 fold changes are shown above each plot and indicated with black 
dots. (B) Log2 fold changes in cis-regulatory mutants are shown for the 153 genes downstream of 
TDH3, with expression changes for the same gene connected by line segments. Genes whose 
expression was not significantly linearly correlated with TDH3 expression are shown in grey. (C) 
Expression of TDH3 and GPD2 is shown for the cis-regulatory mutants. The best fit linear 
regression line and 95% confidence interval (grey shaded area) are shown with error bars 
representing one standard error of the log2 fold change. (D) Expression of GPD2 and TDH3 is 
shown for the trans-regulatory mutants (blue), with the expression and linear regression from 
cis-regulatory mutants shown in (C) included in orange for comparison. Effects of trans-
regulatory mutants on GPD2 that are not explained by their impact on TDH3 were considered 
pleiotropic expression effects of the trans-regulatory mutant (illustrated by a solid black line for 
one trans-regulatory mutant). (E) For each of the 132 genes downstream of TDH3 with a 
significant linear relationship to TDH3 expression in the cis-regulatory mutants (x-axis), the 
pleiotropic expression effect is shown as the absolute value of the residual from fitting trans-
regulatory mutant expression levels to the gene-specific linear regression model defined by the 
cis-regulatory mutant expression data, as illustrate in D (y-axis). For each gene, each point 
represents a different trans- regulatory mutant. Genes are ordered on the x-axis by median 
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absolute residual (black points). Blue points indicate trans-regulatory mutants that lie outside of 
the 95% confidence interval for the linear model fit to the cis-regulatory mutants. 8 points 
representing trans-regulatory mutants with absolute residuals between 600 and 1000 are not 
shown for better resolution of the rest of the data 
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Figure 2-5: trans-regulatory mutations have diverse pleiotropic effects on expression of genes 
downstream of TDH3 
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(A) For each trans-regulatory mutant, violin plots show the distribution of absolute pleiotropic 
expression effects (measured as absolute residuals from a linear model, as described in Figure 
4E) for the 132 genes that were significantly differentially expressed in the TDH3 null mutant 
(i.e., downstream of TDH3) and had expression significantly correlated with TDH3 in the cis- 
regulatory mutants. Trans-regulatory mutants are shown grouped according to the functional 
categories shown in Figure 1C and ordered within each group by the median pleiotropic 
expression effect. The y-axis is truncated at 200 to better visualize most of the data. (B) A 
heatmap of residuals from the 132 gene-specific linear models based on expression of genes 
downstream of TDH3 in cis-regulatory mutants (rows) is shown with hierarchical clustering used 
to group trans-regulatory mutants based on these pleiotropic expression effects (columns). The 
log2-fold change in TDH3 expression level relative to wildtype in each trans-regulatory mutant is 
shown in the bar chart below. 
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Figure 2-6: The number of differentially expressed genes correlates with relative fitness 

The number of significantly differentially expressed genes (DEGs) at an FDR of 10% is shown 
plotted against relative fitness (relative growth rate) for all cis-regulatory and trans-regulatory 
mutants. The best-fit line from a linear regression of relative fitness on the number of 
differentially expressed genes in all mutants is shown, with the 95% confidence interval for the 
fit line shaded gray.  
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Figure 2-7: Permutation tests for comparing effects of cis- and trans-regulatory mutations on 
gene expression 

(A) Histogram (in grey) shows the median number of significantly differentially expressed genes 
(DEGs) for sets of 5 trans-regulatory mutants randomly sampled from the total set of 35 without 
replacement (1000 permutations). Red line is the median of the 5 cis-regulatory mutants. (B) 
Histogram (in grey) shows the variance in the number of DEGs for sets of 5 trans-regulatory 
mutations randomly sampled from the total set of 35 without replacement (1000 permutations). 
Red line is the variance of the 5 cis-regulatory mutants. (C,D) The same information is shown as 
in A and B, but for Euclidean distances among log2-fold changes rather than the number of 
DEGs. 
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Figure 2-8: Gene Ontology (GO) terms enriched in genes differentially expressed in the TDH3 
null mutant 

Terms significantly enriched for genes significantly differentially expressed in the TDH3 null 
mutant are shown. The three terms associated with transposition are shown in dark blue, and 
terms associated with glycolysis shown in light blue. Negative log10 P-values were calculated 
using the SGD online GO term finder tool, using the total set of genes analyzed in this study as 
the background gene list for enrichment. 
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Figure 2-9: Linear relationships between TDH3 expression and expression of other genes in cis-
regulatory mutants 

(A) A linear regression was performed for each gene included in the study (n = 6,128) regressed 
on TDH3 values for cis-regulatory mutants. Histograms show the p-value of the F-test 
calculating TDH3 level’s additional information as a predictor in the linear model. All genes are 
shown in grey. Genes significantly differentially expressed in the TDH3 null mutant are shown 
in black and enlarged in the inset. (B) The coefficients (slopes) of the linear models in panel A 
calculated for all genes in the study (grey). As in A, genes that are significantly differentially 
expressed in the TDH3 null mutant are shown in black and enlarged in inset. 
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Figure 2-10: Principle Components Analysis (PCA) of cis-regulatory mutant strains and 
references showing removal of outlier samples 

PCA analysis performed on a variance stabilizing transformed count matrix of all genes with 
more than 10 reads in all mating type a strains, which includes under-expression cis-regulatory 
mutants and reference. Outliers circled in red were excluded from the data set prior to DESeq2 
modeling and differential expression analysis. Trans-regulatory mutants and the cis-regulatory 
overexpression strain and references are not shown for better visibility of the cis-regulatory 
mutants that were outliers. 
  



 65 

 
Figure 2-11: Measures of TDH3 expression in RNA-seq data were similar to measures using a 
fluorescent reporter gene for cis-regulatory mutants 

RNA-seq estimates of TDH3 expression correlated highly (Pearson’s r2 = 0.97) with estimates 
predicted by the same mutations in the TDH3 promoter driving expression of a fluorescent 
reporter and measured using flow cytometry (see Methods). Error bars represent one standard 
error for the log2 fold change estimates from RNA-seq and flow cytometry. 
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Figure 2-12: Genes differentially expressed between mating type alpha and mating type "a" 
reference strains 

A volcano plot showing P-values and log2 fold change estimates between the mating type a 
reference strain and mating type a reference strain. Genes significantly differentially expressed 
at a 10% FDR are colored in blue, while non-significant genes are colored in orange. 
Significantly differentially expressed genes are listed in Table 3. 
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Table 1: Trans-regulatory mutant identities, growth rates, and effects on TDH3 expression 

Each row contains a description of one trans-regulatory mutant used in this study. Columns include collection 
numbers for each strain, the gene in which the mutation is located, the exact position of the nucleotide change for 
each mutation, the mutation type, the effect on TDH3 expression relative to the alpha wild type reference strain, and 
the growth rate relative to the same reference strain. 
 

 
 

Collection Gene Position
Reference 
Nucleotide

Resulting 
Nucleotide Mutation Type

TDH3  Expression (Relative 
to Wild Type)

Growth Rate (Relative to 
Wild Type)

YPW2504 CYC8 1010 G A nonsynonymous -0.084233803 NA: flocculant
YPW2506 WWM1 313 C T nonsense -0.003769963 1.002461824
YPW2525 PRE7 83 G A nonsynonymous -0.019909986 0.910057698
YPW2690 NAR1 536 G A nonsynonymous 0.388543289 0.969350403
YPW2728 TYE7 391 C T nonsense -0.194962679 0.985029755
YPW2794 SDS23 676 G A nonsynonymous -0.042533121 0.906479485
YPW2798 CCC2 2108 G A nonsynonymous 0.306681567 0.979599089
YPW2800 NAM7 1304 G A nonsynonymous -0.140366862 1.006228554
YPW2911 ADE4 856 G A nonsynonymous -0.02728248 0.577954779
YPW2919 ADE6 3327 G A nonsynonymous -0.367210264 0.6888549
YPW3068 ADE5 1715 G A nonsynonymous -0.477739095 0.610869021
YPW3088 RIM8 436 C T nonsense 0.049997138 0.886004651
YPW3092 SSN2 2911 C T nonsense -0.06525204 NA: flocculant
YPW3161 FTR1 856 G A nonsynonymous -0.354215414 1.008109509
YPW3191 ATP23 476 G A nonsense -0.017727453 1.046129642
YPW3198 MOD5 765 G A nonsense 0.150842738 1.013285564
YPW3202 FRA1 2175 G A nonsense 0.123593606 1.033096543
YPW3203 TRA1 8560 G A nonsynonymous 0.369973614 0.932334074
YPW3228 CIA2 626 G A nonsynonymous 0.122862838 0.9739733
YPW3241 CAF40 674 G A nonsynonymous -0.423146658 0.926848067
YPW3245 HXK2 1388 G A nonsynonymous -0.123392389 0.88000086
YPW3247 BRE2 405 G A nonsense -0.058319984 0.929150318
YPW3254 IRA2 7496 G A nonsense 0.151125465 1.070307468
YPW3256 MRN1 1664 G A nonsynonymous -0.17371249 1.033420585
YPW3272 TUP1 2098 T del nonsynonymous 0.053700866 1.026132314
YPW3275 ADE2 3275 C T nonsynonymous 0.022035294 0.684375025

YPW3282 GCR1162
833, 1112, 1946, 
2305, 2755 del, T, G, A, T T, C, A, G, C

frameshift, 
nonsynonymous, 
nonsynonymous, 
synonymous, 
synonymous -3.927013598 0.30252632

YPW3283 GCR1281
940, 1224, 2178, 
2599 T, T, T, T C, C, C, C

synonymous, 
nonsynonymous, 
nonsynonymous, 
synonymous -0.513344386 0.957384576

YPW3284 GCR1037

737, 1183, 1224, 
1258, 2038, 
3079, G, T, T, T, A, TC, C, C, C, G, del

intron, silent, 
nonsynonymous, silent, 
silent, frameshift -0.198930953 0.9883014

YPW3285 GCR1339
726, 737, 740, 
840, 2574 T, G, C, A, A G, C, G, G, G

intron, intron, intron, 
nonsynonymous, 
nonsynonymous -2.191062688 0.784056797

YPW3286 GCR1241 1366 A G synonymous 0.07367076 0.977587627

YPW3287 RAP1357 2378, 1881, 284 A, G, T G, A, C
silent, nonsynonymous, 
silent 0.210454342 1.009266995

YPW3288 RAP154
upstream922, 
1100, 2042,2043 C, T, A, T T, C, del, del, 

promoter, 
nonsynonymous, 
frameshift nonsense -1.265524056 0.35949695

YPW3289 RAP1238

95, 568, 693, 
1365, 1338, 
2121 T, A, A, G, A, AC, G, G, A, G, G

silent, all other 
nonsynonymous -2.15553115 0.4112339

YPW3290 RAP1484
upstream85, 
2128, 1060 A, A, A G, G, G

noncoding, 
nonsynonymous, 
nonsynonymous 0.169982976 0.537104052
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Table 2: Genes significantly differentially expressed in the TDH3 null mutant and their expression levels across cis-
regulatory mutants 

Rows are genes significantly differentially expressed in the TDH3 null mutant. Columns include the gene’s 
systematic name, the GO terms associated with that gene that were enriched in this gene set, and the expression level 
of the gene in each of the cis-regulatory mutants used in this study. 

 

Gene GO Term 0%TDH3 20% TDH3 50% TDH3 85% TDH3 135% TDH3
YAL005C 0.86066634 0.46867909 0.64915917 0.62505496 -0.2322649
YAL053W 0.70014478 0.63765153 0.7219827 0.87795873 -0.03986
YAR019C 0.73592328 0.6418794 0.38690003 0.42155652 -0.3494885
YBL004W 0.65422297 0.47528772 0.39420511 0.40090958 0.22571344
YBL023C -0.5207478 -0.2853212 -0.3550784 -0.4728499 0.12688174

YBL100W-B
transposition, DNA-biosynthetic 
processes, integration 0.9549226 0.49362961 0.39937317 0.04841407 0.16901136

YBR007C -0.5376707 -0.3188718 -0.3522927 -0.2521071 0.15077559
YBR054W 2.51147046 1.82159869 1.9868231 1.46512146 -1.8074294
YBR068C 1.22596614 1.04236262 0.94520549 1.0192456 -0.1848353
YBR093C 1.39689238 1.1236301 0.79792075 0.7527805 0.71096701
YBR191W-A -1.6786788 -1.3289287 -1.164011 -1.2806877 0.29904333
YBR195C -0.7358919 -0.181189 -0.067738 -0.1182993 0.10196586
YBR208C -1.297964 -1.318449 -1.3772373 -1.4758394 0.13166646
YBR261C -0.5293321 -0.2989313 -0.2524233 -0.2126064 0.21917058
YBR279W -0.3803111 -0.296689 -0.2068958 -0.22538 0.04669047

YCL019W
transposition, DNA-biosynthetic 
processes, integration 1.17683614 0.80309918 0.50879323 0.40759858 -0.4221329

YCL056C -0.5904766 -0.284652 -0.3991719 -0.2941421 -0.0290152
YCR012W glycolytic processes 0.637829 0.46439832 0.47153713 0.38398315 -0.2846416
YCR013C 0.70993409 0.430882 0.53651839 0.39315451 -0.2193424
YCR021C 2.61590346 1.95957799 2.29181667 2.17487065 -1.6492935
YCR023C 0.56383548 0.27779257 0.33905855 0.27374732 -0.3238732
YCR051W -0.6665915 -0.3894082 -0.4536655 -0.38827 0.34349723
YDL021W glycolytic processes 0.85684961 0.09729501 -0.2005881 -0.2164709 -1.1500561
YDL048C 1.02970916 0.56110847 0.58283593 0.78878269 -0.4529256
YDL085C-A -0.8264719 -0.7944528 -0.7671969 -0.7880634 0.10403448
YDL092W -0.4939471 -0.4763423 -0.3802905 -0.3858608 0.53779105
YDL124W 0.94439258 0.61128381 0.58871702 0.46319703 -1.0344842
YDL130W -0.6076937 -0.3845098 -0.275188 -0.3256289 0.2178517
YDL136W -0.6407814 -0.4289455 -0.3304797 -0.3571794 0.34333329
YDL150W -0.7587477 -0.2972928 -0.333881 -0.3790837 0.52289683
YDL154W 0.58582875 0.17550295 -0.0061721 -0.096088 0.05499779
YDL184C -0.8967832 -0.679928 -0.5730351 -0.6134652 0.1793895
YDL206W 0.99685689 0.65005378 0.55600104 0.69961501 -0.7633393
YDL215C -0.6777918 -0.785325 -0.7804942 -0.586021 0.45106268
YDR013W -0.5462004 -0.4363923 -0.2837542 -0.3604916 0.13374363

YDR034C-D
transposition, DNA-biosynthetic 
processes, integration 1.23883682 1.08104378 0.56208386 0.42892389 -0.0327272

YDR046C 0.96786207 0.70310004 0.64349972 0.54353664 -0.4833774
YDR055W 0.92319318 0.54562398 0.81672432 0.86432579 -0.5518199
YDR147W -0.5606684 -0.1685244 -0.2552964 -0.3842678 0.02213538
YDR222W 1.65311834 1.512342 1.55165996 1.34021699 -0.8308529
YDR247W 1.36913967 0.49823725 0.43531949 0.69531746 -0.6514854

YDR261C-D
transposition, DNA-biosynthetic 
processes, integration 1.42935682 1.51581413 1.27959632 1.65425259 -0.3066979

YDR261W-B
transposition, DNA-biosynthetic 
processes, integration 1.04882158 0.19274226 0.27898746 0.08342882 -0.2226545

YDR349C 0.51047609 0.36448651 0.3590008 0.36677682 0.02625158
YDR373W -0.3598618 -0.2423316 -0.185691 -0.253708 0.0521549
YDR378C -0.6252056 -0.4212149 -0.2939464 -0.4450057 0.12059366
YDR422C 0.37076387 0.29920349 0.09000073 0.1131553 -0.2405016
YDR472W -0.4927066 -0.2973928 -0.2297901 -0.2777246 0.10823909
YDR497C -0.4468258 -0.3818399 -0.2892402 -0.2960419 -0.5258938
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YER009W -0.3056796 -0.2740487 -0.1425791 -0.2320449 0.16835746
YER029C -0.8404108 -0.5391244 -0.5674455 -0.6218083 0.22258765
YER037W 1.88899967 1.75286412 1.64919922 1.40175236 -1.1554391
YER053C-A 2.42470394 1.76621497 1.82214719 1.35693898 -1.0219239
YER062C 0.81458787 0.50062181 0.57965887 0.322569 -0.4834964
YER073W 1.12501631 0.85778382 0.62433256 0.95645546 0.41824078
YER092W -0.5627956 -0.2917561 -0.2851196 -0.3021331 0.17476597

YER138C
transposition, DNA-biosynthetic 
processes, integration 0.92119869 0.69215076 0.36275624 0.4396383 0.06799732

YER150W 1.82971459 0.88344585 0.68761325 1.07093467 -1.3613543
YER158W-A -0.7239621 -0.4593073 -0.6104178 -0.5445631 0.0062481
YER175C 1.00092359 0.33312463 0.48747156 0.49257478 -0.5885706
YER177W 0.41169458 0.31483614 0.34190112 0.32740319 -0.3108167

YFL002W-A
transposition, DNA-biosynthetic 
processes, integration 1.50686586 1.13182247 0.77658193 0.71411418 0.0253865

YGL059W 1.23762084 0.40180693 0.49103164 0.55404651 -0.6432454
YGL077C -0.5965786 -0.3843474 -0.4729184 -0.5525173 0.03762174
YGR023W 1.52120796 0.89854953 0.83599049 0.93635066 -0.7178598

YGR027W-B
transposition, DNA-biosynthetic 
processes, integration 0.91484337 0.64116504 0.57765049 0.58437387 -0.0980371

YGR052W 1.09715656 0.55524713 0.69507861 0.68626911 -0.0635117
YGR097W 1.22883749 0.9547725 0.72897341 0.73625084 -0.2201387
YGR138C 1.52073516 1.30240259 1.58652534 1.45280752 -0.9832644
YGR192C glycolytic processes -7.2184431 -2.4832589 -0.9476816 -0.199752 0.43256327
YGR249W 2.05940792 1.42762796 1.22733858 1.52291153 0.27740313
YGR254W glycolytic processes 0.95344727 0.41583639 0.47999643 0.43161383 -0.889351
YGR275W -0.5027187 -0.1988632 -0.1557657 -0.2574876 0.13003787
YHR030C 1.14075097 1.02651822 1.20143 1.37454988 0.05881109
YHR094C 1.26872732 1.1976312 0.79388569 0.68940646 0.92859022
YHR099W 0.55753817 0.32617899 0.37181349 0.37287062 -0.2453025
YHR211W 0.88244982 0.67245168 0.14566263 0.15755503 -0.1499835

YHR214C-B
transposition, DNA-biosynthetic 
processes, integration 0.98152823 0.72758317 0.52029813 0.40384828 -0.1579098

YIL002W-A -1.0539483 -0.883223 -0.7889473 -0.8972083 0.38549425
YIL053W 0.75948429 0.64882808 0.60393888 0.40320191 -0.1737059
YIL117C 1.01935741 0.92310396 0.98618865 1.04857293 0.3363456
YJL016W 0.93021892 0.86316934 0.72914943 0.69118167 -0.7475784
YJL052W glycolytic processes 1.14736473 0.30939502 0.27993022 0.30027725 -1.5507751
YJL106W 1.17940156 0.94121445 0.74538347 0.81936365 -0.4667983
YJL107C 0.96144709 0.89317709 0.67133033 0.94970027 0.01240414
YJL159W 0.77844051 0.67937056 0.71780592 0.80249474 -0.2605412
YJL165C 0.64510747 0.67968242 0.68136453 0.90828424 -0.5183733

YJR027W
transposition, DNA-biosynthetic 
processes, integration 0.88165004 0.51054626 0.20409902 0.53267417 0.24208928

YJR029W
transposition, DNA-biosynthetic 
processes, integration 0.7759587 0.7366108 0.44515869 0.30437809 0.03811381

YJR057W -0.6609933 -0.3383362 -0.3979509 -0.473859 0.1492504
YJR148W -0.8245001 -0.7070821 -0.5257967 -0.4290103 0.46722147
YKL018C-A -0.7521448 -0.4530152 -0.2949304 -0.372647 -0.2863031
YKL028W -0.4465961 -0.2467237 -0.3503454 -0.3574153 0.19202553
YKL042W -0.702744 -0.2596756 -0.3366526 -0.3567737 -0.1349093
YKL113C -0.7519998 -0.4927659 -0.4944739 -0.5901704 0.13347236
YKR039W -1.1951768 -1.2258048 -1.1849119 -1.1225647 -0.4061292
YLL026W 1.23260815 0.84063786 0.98383007 1.02798103 -0.7971515
YLL039C 0.67645737 0.38921617 0.37381477 0.46560265 -0.4415091
YLR058C -0.5875071 -0.324415 -0.2225145 -0.2071374 -0.148967
YLR154W-A 1.17950125 1.24786287 0.55248206 1.01371498 -0.0471554
YLR154W-B 1.09850774 1.05661347 0.51228049 0.84567192 0.06864263
YLR168C -1.0089094 -0.7342781 -0.655504 -0.534473 -0.0983332
YLR183C -0.4309238 -0.2400174 -0.1106977 -0.1942807 -0.1559593
YLR198C -0.7990229 -0.5872125 -0.5415412 -0.4937648 0.52437752
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YLR227W-B
transposition, DNA-biosynthetic 
processes, integration 0.75309476 0.87452381 0.65078568 0.53751864 0.31281102

YLR256W-A transposition 0.60528041 0.17546561 0.03192263 -0.0870855 -0.0987043
YLR342W 0.60149886 0.47332817 0.47687147 0.46304462 -0.2281693

YLR410W-B
transposition, DNA-biosynthetic 
processes, integration 0.91688031 0.56472791 0.64438237 0.46447923 -0.1127141

YLR431C -0.5324455 -0.2461052 -0.1156486 -0.1689699 -0.0371495
YMR011W -0.6844054 -0.6241923 -0.718308 -0.2455436 0.84385126
YMR173W 0.83141522 0.34797302 0.36667095 0.4094405 -0.4834893
YMR194W -0.4329798 -0.2460524 -0.1737232 -0.2505416 0.16866355
YMR205C glycolytic processes 0.42895711 0.24394723 0.25074132 0.26996543 -0.14892
YMR291W 0.84254655 0.36268789 -0.0587458 0.28300356 -0.4999755
YNL149C -0.4581966 -0.3050828 -0.2548503 -0.2648983 0.56961344
YNL153C -0.6368529 -0.3083021 -0.2931977 -0.2863009 0.33164859
YNL160W 1.77181042 0.91723952 0.76874567 0.45225038 -1.5539747
YNL216W -0.4531155 -0.299457 -0.4229376 -0.3339431 -0.0598565
YNL217W 0.53357911 0.48605335 0.55183819 0.62889629 -0.0076583
YNR001C 0.7185517 0.09752488 0.1339201 0.22064893 -1.0869248
YNR033W 0.40597877 0.20583885 0.17058988 0.35067118 -0.1254372
YOL059W 1.28022919 0.84175963 0.51287373 0.330073 -0.6505222

YOL103W-B
transposition, DNA-biosynthetic 
processes, integration 0.76343481 0.42455728 0.29060327 0.25347599 0.10228976

YOL130W 0.38922891 0.47749275 0.38362897 0.51239699 0.16199552
YOR120W 1.68549372 0.6645684 0.64348851 1.01699522 -1.1220238
YOR123C -0.5078559 -0.3780871 -0.2891009 -0.2978429 0.10196898

YOR142W-B
transposition, DNA-biosynthetic 
processes, integration 1.08032994 0.75944245 0.48121039 0.45816432 0.29347694

YOR185C 0.42146273 0.25032531 0.2119808 0.24557619 -0.8851427

YOR192C-B
transposition, DNA-biosynthetic 
processes, integration 1.19389331 0.78545801 0.77778425 0.59503152 -0.1155479

YOR194C -0.4978772 -0.2550435 -0.2924639 -0.2107798 0.15553717
YOR208W 1.14076079 0.95517447 1.01530067 1.24680247 -0.2202613
YOR267C 0.78965039 0.55563098 0.57089915 0.54479677 -0.4423027
YOR289W 0.95355565 0.35701709 0.10436301 0.50966473 -1.0049502
YOR303W 1.24971178 0.79492582 0.71341413 0.84550794 0.11371954
YOR304C-A -0.9003944 -0.4348218 -0.2437335 -0.402951 0.02448415
YOR347C glycolytic processes 0.71123851 0.12474379 0.17189174 0.33221604 -0.7291648
YOR375C -0.6612782 -0.851605 -0.6987726 -0.6761926 0.17610604
YPL006W 0.59448022 0.32238009 0.26435939 0.34490556 -0.3880468
YPL014W 1.39840873 1.01253195 1.19550022 1.17775826 -1.1492074
YPL075W 0.8148559 0.7046063 0.60311361 0.5206207 -0.3146591
YPL089C 0.73179837 0.73762565 0.65555204 0.89511814 -0.0109038
YPL109C 0.77860967 0.45735114 0.34032088 0.39319688 -0.396289
YPL110C 0.88650857 0.634204 0.63752351 0.61633787 0.20459414
YPL213W -0.6926151 -0.4330097 -0.3941716 -0.6459169 0.15279932
YPL250C 1.59078856 0.95905662 0.98663081 1.10323877 0.48883344
YPR018W -0.8210867 -0.4333412 -0.4491297 -0.5939671 0.35508964
YPR024W 0.36282346 0.28707249 0.38735899 0.29962013 -0.0776075
YPR036W-A 1.2857187 0.88458966 0.92582115 0.94722496 -0.4693108
YPR133C -0.3597467 -0.2303225 -0.2250339 -0.2133372 0.33245168
YPR156C 0.78584778 0.66439269 0.71891206 0.6446663 -0.6981469
YPR157W 1.49814804 1.37416846 1.51727234 1.17039695 -0.6318488

YPR158C-D
transposition, DNA-biosynthetic 
processes, integration 0.80343069 0.27984836 0.282714 0.43478332 -0.1361258

YPR158W-B
transposition, DNA-biosynthetic 
processes, integration 0.98918972 0.61063099 0.26412448 0.38671415 0.42410433

YPR188C -0.498461 -0.3884995 -0.2239871 -0.2965941 0.24175091
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Table 3: Genes significantly differentially expressed between mating type alpha and mating type 'a' reference strains 

Rows are genes significantly differentially expressed between mating type a and mating type a reference strains. 
Columns include gene systematic name, adjusted P-value for differential expression obtained from DESeq2, and 
functional category or common name of each gene. Un orf = uncharacterized open reading frame, mating = gene 
associated with mating type differences, dub orf = dubious open reading frame, as annotated in the Saccharomyces 
Genome Database. 
 

Gene Adjusted p-value
Functional category 
or Common name

YBR056W-A 0.000595218 un orf
YCL066W 2.14E-16 mating
YCL067C 1.41E-09 mating
YCR040W 6.41E-07 mating
YCR097W 0.05681645 mating
YCR097W-A 0.00314114 dub orf
YDR461W 8.42E-14 mating
YER160C 0.096872963 Ty gene
YFL026W 4.57E-75 mating
YFL027C 1.09E-09 Gyp8
YGL032C 1.38E-52 mating
YGL089C 2.58E-18 mating
YGL263W 0.000222955 Cos12
YGR240C-A 0.082307423 un orf
YHR054C 0.065441286 un orf
YIL015W 1.82E-188 mating
YIL117C 0.018482987 mating
YJL170C 5.16E-18 mating
YJR004C 1.15E-22 mating
YKL177W 4.84E-15 dub orf
YKL178C 1.11E-25 mating
YKL209C 1.80E-69 mating
YKR035W-A 6.08E-05 Did2
YKR091W 0.056163877 Srl3
YLR040C 1.93E-14 mating
YLR041W 1.60E-12 dub orf
YLR121C 0.06307448 Yps3
YLR154C-H 0.006771427 un orf
YNL145W 0.088266952 mating
YNL146C-A 1.90E-07 un orf
YOL016C 0.007109895 Cmk2
YOR208W 0.018333026 mating
YOR225W 0.0724697 dub orf
YPL088W 0.05681645 un orf
YPL187W 8.15E-33 mating
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Chapter 3 Network Topology Generates Differences in the Pleiotropy of Cis- and Trans-

Acting Mutations in Saccharomyces cerevisiae  

Abstract 

A mutation’s degree of pleiotropy, or the number of traits it impacts, is predicted to 

increase the probability of the mutation being detrimental to fitness. For mutations that impact 

gene expression, pleiotropy is suggested to be an important factor explaining why some types of 

regulatory mutations are more likely to fix than others. Specifically, mutations that affect a 

gene’s expression in cis are hypothesized to generally be less pleiotropic and thus more likely to 

fix than mutations that affect expression of the same gene in trans. Here, we use gene expression 

data from Saccharomyces cerevisiae gene deletion strains to test this hypothesis, estimating the 

pleiotropy of cis- and trans-acting mutations with pleiotropy measured as the number of genes 

that change expression in response to each cis- or trans-acting mutation. These data showed that 

trans-acting mutations did indeed tend to have higher pleiotropy than cis-acting mutations 

affecting expression of the same gene. We found that this pattern held for the vast majority of 

genes in the dataset and could be explained by the topology of the regulatory network controlling 

gene expression. Coupling this analysis with measures of fitness for the same gene deletions 

showed that trans-acting deletions tended to be more detrimental to fitness than the 

corresponding cis-acting deletion, supporting the hypothesis that differences in pleiotropy 

contribute to the apparent preferential fixation of cis-regulatory alleles over evolutionary time. 
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Introduction 

A mutation is said to be pleiotropic if it affects more than one trait. For example, in a 

multicellular organism, a mutation in the coding sequence of a gene required for development of 

multiple tissues is considered pleiotropic if it impacts formation of all these tissues (Paaby and 

Rockman 2013). Mutations affecting activity of this gene in only one or a subset of these tissues, 

however, including mutations in modular, tissue-specific, enhancers controlling expression of the 

gene, are less pleiotropic. Because evolutionary theory suggests that mutations that are more 

pleiotropic are more likely to be deleterious (Kimura and Ohta 1974), mutations in noncoding 

sequences that affect a subset of a gene’s functions have been suggested to be more likely to 

contribute to evolutionary change than coding mutations that impact all functions of a gene 

(Carroll 2005; Wray 2007; Carroll 2008; Stern and Orgogozo 2009). Indeed, many examples of 

such noncoding changes between species have now been identified (Stern and Orgogozo 2008; 

Martin and Orgogozo 2013, Courtier-Orgogozo et al. 2020). 

Mutations in non-coding sequences are often cis-acting (and known as cis-regulatory) 

because they tend to affect expression of a coding sequence allele on the same chromosome, 

whereas mutations in coding sequences are often trans-acting (and known as trans-regulatory) 

because they tend to impact expression of genes by altering a diffusible RNA or protein that can 

impact expression of genes on any chromosome (Signor and Nuzhdin 2018). But the terms cis- 

and trans-acting are not strictly synonymous with non-coding and coding mutations. Rather, cis- 

and trans-acting describe the way by which a mutation affects expression of a particular gene, 

with cis-acting variation having allele-specific effects on expression and trans-acting variation 

affecting expression of both alleles of a gene in diploid cells.  
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Comparing gene expression between strains or species to allele-specific expression in F1 

hybrids produced by crossing these strains or species allows the relative contributions of cis- and 

trans-acting variation to be estimated without identifying specific genetic variants (Wittkopp et 

al. 2004). Using this approach, which is agnostic to the coding or noncoding status of the 

causative genetic variants as well as its tissue-specificity, to analyze regulatory evolution in fruit 

flies (Drosophila) showed a greater contribution of cis- than trans-acting variation to expression 

differences between than within species (Wittkopp et al. 2008; McManus et al. 2010; Coolon et 

al. 2014), suggesting that cis-regulatory divergence accumulates preferentially over evolutionary 

time. An even stronger pattern of increasing relative cis-regulatory contributions to expression 

divergence with increasing divergence time was observed when comparing strains and species of 

Saccharomyces yeast (Metzger et al. 2017), suggesting it is a common feature of regulatory 

evolution. Moreover, observing this evolutionary advantage of cis-regulatory variation in 

unicellular yeasts indicates that it cannot solely be explained by lower pleiotropy of tissue-

specific noncoding mutations acting in cis relative to more pleiotropic coding mutations acting in 

trans. 

Indeed, both cis- and trans-acting mutations can be found in either coding or noncoding 

sequences  (Jakobson and Jarosz 2019; Lutz et al. 2019; Hill et al. 2021). In fact, because the 

categorization of mutations as cis- or trans-acting is relative to a focal gene, a single mutation 

can be classified as either cis- or trans-acting depending on which gene is considered the focal 

gene. For example, a noncoding difference between two species of yeast in the promoter of the 

OLE1 gene has been shown to affect expression of OLE1 in cis as well as expression of many 

other genes in trans (Lutz et al. 2019). But if the same mutation can be considered cis- or trans-
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acting depending on the point of reference, how can we explain the observed preferential 

accumulation of cis-regulatory divergence? 

Considering the effects of regulatory mutations in the context of gene regulatory 

networks offers an explanation for this pattern; one that is still based on differences in the 

relative pleiotropy of cis- and trans-acting mutations (Wittkopp 2005; Wittkopp 2007; Kopp and 

McIntyre 2012; Yang and Wittkopp 2017). If the pleiotropy of a mutation is measured as the 

number of genes whose expression it affects, cis-acting mutations are expected to be less 

pleiotropic than trans-acting mutations because although a cis-acting mutation affecting 

expression of a particular gene might also have downstream effects on expression of other genes 

(making it pleiotropic to a degree), mutations that affect expression of the same gene in trans 

should also have these same effects plus effects attributable to their impact on expression of 

other genes in parallel (making them more pleiotropic than cis-acting mutations).  

This idea has recently been tested in the baker’s yeast Saccharomyces cerevisiae by 

directly comparing the effects of cis- and trans-regulatory mutations affecting expression of the 

TDH3 gene (Vande Zande and Wittkopp, in review). As predicted, the trans-regulatory 

mutations tended to cause changes in the expression of more genes than the cis-regulatory 

mutations, but only when cis- and trans-regulatory mutations had similar effects on expression of 

TDH3. The impacts of cis- and trans-regulatory mutations on expression of genes downstream of 

TDH3 differed significantly, suggesting that feedforward and/or feedback loops involving genes 

downstream of TDH3 complicate the simple model described above. Because this study 

examined cis- and trans-regulatory mutations defined by a single focal gene, and because all the 

cis-acting mutations examined were noncoding and all the trans-acting mutations coding (Vande 
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Zande and Wittkopp, in review), it remains to be seen whether these same relationships hold for 

other genes and for other mutations with cis- and trans-acting effects.  

Here, we compare the pleiotropic effects of cis- and trans-acting gene deletion mutations 

for 1484 genes in S. cerevisiae. For each gene, deletion of the gene itself is a cis-acting mutation 

whereas deletions of other genes that impact its expression are trans-acting.  With this approach, 

we compare the effects of the same mutations acting in both cis and trans, eliminating the often-

confounded correlation of cis- and trans-acting variants with noncoding and coding mutations. 

Specifically, we compared the extent of pleiotropy (measured as the number of genes 

significantly differentially expressed in response to the mutation) for mutations that affect 

expression of a focal gene in cis or in trans, considering each deleted gene sequentially as a focal 

gene. At both the level of individual genes and in aggregate we find that cis-acting mutations 

tend to be less pleiotropic than trans-acting mutations. Analysis of a perturbation network 

describing how deletion of one gene impacts expression of other genes showed that the topology 

of this network is sufficient to explain this tendency of cis-regulatory mutations to be less 

pleiotropic than trans-regulatory mutations. Consistent with prior work, we observed a negative 

relationship between fitness and pleiotropy defined by impacts on gene expression, indicating 

that trans-acting deletions tend to be more detrimental to fitness than cis-acting deletions. These 

findings indicate that the larger pleiotropic impacts of trans-regulatory mutations as compared to 

cis-regulatory mutations does not require differences between coding and noncoding mutations. 

Results 

trans-acting mutations are more pleiotropic than cis-acting mutations 

To quantify the pleiotropic effects on gene expression of cis- and trans-acting mutations, 

we utilized a large compendium of gene expression profiles, consisting of microarray data 
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measuring expression levels of 6,123 genes in 1,484 single gene deletion mutations in the 

baker’s yeast S. cerevisiae (Kemmeren et al. 2014). Using the significance and fold change 

thresholds used in the original publication of these data (p-value < 0.05, fold change > 1.7, see 

Methods), we excluded gene deletion strains that did not show a significant decrease in 

expression of the deleted gene, resulting in measurements of 6,123 genes in a total of 1275 

deletion strains. These data can be visualized as a perturbation network in which each gene in the 

dataset is represented by a node, and edges are directed from gene 1 to gene 2 when the 

expression of gene 2 is significantly changed upon deletion of gene 1 (Fig. 3-1A).  

We considered each deleted gene, or node, in turn to be the focal gene. The deletion of 

the focal gene itself acts in cis to the focal gene because it causes an allele specific absence of 

expression for that gene. A complete deletion of the focal gene is expected to cause a more 

extreme change in expression than other mutations in cis-regulatory sequences that modify the 

focal gene’s expression level, but using the deletion as a cis-acting mutation allowed us to 

compare cis- and trans-acting mutations that are identical in mutation type and use the same 

exact mutations as cis- or trans-acting when considering different focal genes. Furthermore, 

because deletions tend to cause more severe phenotypes than other reductions in expression 

(Keren et al. 2016), cis-acting deletions are expected to be more pleiotropic than other types of 

regulatory mutations and using deletions as cis-acting mutations is thus a conservative way to 

test the hypothesis that cis-regulatory mutations tend to be less pleiotropic than trans-acting 

mutations.  

We then identified mutations that act in trans on expression of the same focal gene as 

deletion mutants in which the focal gene is significantly differentially expressed, or as nodes 

with an outgoing edge to the focal gene (Fig. 3-1B). The number of trans-regulators per focal 
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gene ranged from 0 to 228, with a large number of focal genes being influenced by a few trans-

regulators, and a few being influenced by a large number (Fig. 3-1C). Because they are identified 

exclusively from expression data, these trans-regulators can influence expression of the focal 

gene either directly or indirectly. Therefore, the trans-regulators include not only transcription 

factors directly controlling transcription of the focal gene, but also genes that influence cellular 

systems such as metabolism or progression through the cell cycle that indirectly change 

expression the focal gene. As expected, effects of trans-acting deletions on expression of the 

focal gene tended to be smaller than the impact of the cis-acting deletion of the focal gene itself 

(Fig. 3-4). 

We next quantified the pleiotropy of cis- and trans-acting deletions as the number of 

genes significantly differentially expressed in that deletion strain. Specifically, when the focal 

gene itself was deleted, the number of genes that were significantly differentially expressed as a 

result, except for the focal gene itself, was taken as the pleiotropy of the cis-acting mutation for 

that focal gene, visualized as the number of out-going edges from that node (Fig. 3-1D). For 

example, when the membrane peptide transporter gene PTR2 was deleted, 1 other gene was 

significantly differentially expressed, so the pleiotropy of the cis-acting mutation to PTR2 was 1. 

The distribution of cis-acting pleiotropy for all focal genes ranged from 1 to 1014, with once 

again many focal genes having a very small pleiotropic effect and a small proportion of genes 

affecting expression of a large number of other genes (Fig. 3-1E).  

We then similarly estimated the pleiotropy of trans-acting mutations as the number of 

other genes differentially expressed in each trans-acting deletion for each focal gene (Fig. 3-1F). 

For example, there were 116 gene deletion mutants in which PTR2 is significantly differentially 

expressed, so there are 116 trans-acting mutations to PTR2. The total number of genes that are 
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significantly differentially expressed in each of those 116 trans-acting mutations, minus the focal 

gene and trans-regulator itself, or the number of outgoing edges from each of those nodes, 

together make up the distribution of the pleiotropic effects of all trans-acting mutations to the 

PTR2 (Fig. 3-1G, purple histogram).  

To compare the effects of cis- and trans-acting deletions to each focal gene, we 

calculated the median pleiotropy of all trans-acting mutations for each focal gene (for PTR2, Fig. 

3-1G, black line) and plotted these against the cis-acting pleiotropy for the same focal gene (Fig. 

3-1H). Points falling above the x = y line are focal genes in which the median pleiotropy of all 

trans-acting mutations is larger than the pleiotropy of the cis-acting deletion. We next calculated 

the difference between the median pleiotropy for all trans-acting mutations to one focal gene and 

the pleiotropy of the cis-acting mutation for that focal gene. We examined the distribution of all 

of the differences between cis- and trans-acting mutations (Fig. 3-1I) and found that the median 

of this distribution was significantly greater than zero (Student’s t-test p-value = 3x10-165), 

indicating greater pleiotropy of trans- than cis-acting mutations. In fact, only ~3% of all focal 

genes with at least one trans-regulator (26/804) had a cis-acting mutation with higher pleiotropy 

than the median trans-acting mutation. When considering each trans-acting mutation 

individually rather than summarizing the trans-acting mutations in a median value (Fig. 3-5), 

only 4% of all trans-acting and cis-acting mutation pairs (365/8392) had more pleiotropic cis-

acting deletions. These results were robust to changes in both the significance and fold-change 

cutoffs used to identify genes as significantly differentially expressed (Fig. 3-6). Relative to 

specific focal genes, cis-acting mutations were thus indeed less pleiotropic than trans-acting 

mutations, even though the cis-acting mutations had greater impacts on expression of the focal 

gene.  
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Network topology can explain differences in pleiotropy between cis- and trans-regulatory 

mutations  

We hypothesized that the strong trend of trans-acting mutations being so frequently more 

pleiotropic than cis-acting mutations affecting expression of the same focal gene might be related 

to the overall topology of the perturbation network. As described above, the pleiotropic effects of 

both cis- and trans-acting mutations are drawn from the distribution of out-going edges for the 

entire perturbation network. This distribution of all out-going edges approximates a power-law 

distribution, in agreement with previous studies examining perturbation networks for yeast gene 

expression (Featherstone and Broadie 2002; Kemmeren et al. 2014) (Fig. 3-2A). This type of 

degree distribution is indicative of a scale-free network, in which a few nodes are highly 

connected while most have many fewer connections, and is a common network topology found 

in diverse contexts such as social relationships, the internet, and protein-protein interactions 

(Barabási and Oltvai 2004). Because each deletion is the cis-acting mutation at that focal gene, 

the overall distribution of out-going edges from each node is identical to the distribution of 

pleiotropy for all cis-acting mutations. In contrast, the total distribution of pleiotropy for trans-

acting mutations for all focal genes is drawn from the same distribution as the cis-acting 

mutations, but each gene can be drawn as a trans-acting mutation multiple times, depending on 

the number of focal genes for which that deletion operates as a trans-acting mutation. This 

‘repeated sampling’ of highly connected trans-acting deletions results in a distribution of 

pleiotropic effects of trans-acting mutations with a much higher median or average than than that 

for all cis-acting mutations (Fig. 3-2B).  

This overall network topology explains how differences in the pleiotropic effects of cis- 

and trans-acting mutations might simply be accounted for by a statistical feature of the 
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perturbation network topology. Essentially, the structure of the perturbation network results in a 

type of sampling bias for highly pleiotropic trans-acting mutations. Any gene is likely to be the 

target of a highly connected trans-acting mutation because of the very fact that the trans-acting 

mutation is highly connected. Therefore, many focal genes will be influenced by highly 

pleiotropic trans-acting deletions that are more pleiotropic than themselves. In contrast, less 

pleiotropic trans-acting mutations influence the expression of few focal genes, and therefore do 

not frequently serve as potential trans-acting mutations. In this way, the perturbation network 

structure inherently generates a pattern in which each gene is likely to be influenced by genes 

that are more pleiotropic than itself. This phenomenon has been described in other contexts as an 

emergent feature of scale free networks (Feld 1991).  

To test whether the network topology rather than the specific connections between nodes 

are responsible for the difference in the extent of effects between cis- and trans-acting mutations, 

we permuted the edges in the network in two different ways. In the first, we rearranged all 

network edges but maintained the overall degree distribution, so that the number of targets a 

gene was connected to did not change but the specific genes it was connected to did. This 

permutation did not affect the pattern of trans-acting mutations being more more pleiotropic than 

cis-acting mutations affecting expression of the same focal gene (Fig. 3-2C, 100 permutations, p-

value = 0). In the second type of permutation, we randomly permuted all edges without 

maintaining the degree distribution, destroying the scale-free network topology by changing both 

the number of connections for each gene as well as which genes they were connected to. In this 

case, the difference between cis- and trans-acting mutations was removed (Fig. 3-2D, 100 

permutations, p-value = 1), indicating that trans-regulatory mutations no longer tended to be 

more pleiotropic than cis-acting mutations affecting expression of the same focal gene. 



 82 

Consequently, we conclude that the degree distribution of the S. cerevisiae perturbation network 

can explain the pattern of less pleiotropic effects of cis-acting mutations than trans-acting 

mutations that we observed, and that this trend does not require connections between specific 

regulators and target genes.  

trans-acting deletions are more detrimental to fitness than cis-acting deletions affecting 

expression of the same focal gene 

The differences in the pleiotropic effects of cis- and trans-acting deletions described 

above may result in a difference in the average fitness effects of these different types of 

mutations, potentially contributing to a preferential fixation of cis-regulatory alleles over time. 

Consistent with this hypothesis, pleiotropy, defined here as the number of genes differentially 

expressed as a result of a particular mutation, has been shown to be negatively correlated with 

fitness in S. cerevisiae (Featherstone and Broadie 2002, Vande Zande and Wittkopp, in review). 

This negative correlation suggests that the higher pleiotropy of trans-acting than cis-acting 

deletions may also produce a pattern of lower fitness of trans-acting deletions as compared to 

cis-acting deletions to the same focal gene. To test whether this was also true for the set of 

mutations examined in this study, we used measures of fitness for the S. cerevisiae deletion 

strains from another study (Maclean et al. 2017) and found that pleiotropy was indeed negatively 

correlated with fitness for all gene deletions present in both datasets (n = 1105, R2= 0.25, p-value 

< 2.2x10-16). We next examined the fitness cost of all trans-acting deletions relative to the cis-

acting deletion for each focal gene present in both datasets (706/804 focal genes with at least one 

trans-regulator). As predicted, we found that the majority of pairs of trans-acting and cis-acting 

deletions fell above the x=y line (7378/11579, ~63%, Fig. 3-3B), indicating that the trans-acting 

deletion had a greater fitness cost than the cis-acting deletion. This pattern was stronger when the 
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effects of all trans-acting deletions affecting expression of a focal gene were represented by the 

median trans-acting fitness measure for each focal gene (503/599, ~83%, Fig. 3-3C). Taken 

together, these data show that for the majority of genes, trans-acting deletions tend to be more 

deleterious than cis-acting deletions, supporting the hypothesis that mutations affecting 

expression of a focal gene in cis should tend to be preferentially fixed over evolutionary time.  

Discussion 

This study demonstrates that network structure can result in trans-acting mutations 

tending to have more pleiotropic effects on gene expression than cis-acting mutations even when 

the same set of mutations is considered as cis- or trans-acting. Furthermore, the data analyzed 

are consistent with mutations that act in trans tending to be more detrimental to fitness than 

mutations that act in cis. As a statistical result of network structure, this pattern is essentially the 

result of a sampling bias for trans-acting mutations that are highly pleiotropic, as they are likely 

to be ‘sampled’ from all mutations influencing the expression of any particular focal gene.  

Consequently, this work suggests that the tendency of trans-regulatory mutations to be more 

pleiotropic and more deleterious than cis-regulatory mutations is not dependent on the type of 

sequence mutated (e.g., coding or non-coding) or the function of the focal gene. These findings 

have several important implications for interpreting the preferential fixation of cis-acting 

mutations relative to trans-acting mutations over evolutionary time suggested by prior work 

(Metzger et al. 2017).  

First, the limited pleiotropy of cis-acting mutations is not dependent on them occurring in 

tissue specific regulatory elements, but occurs even when cis-acting mutations are deletions of 

the coding sequence of the focal gene. This means that the pattern of less pleiotropic cis-acting 

mutations as compared to trans-acting mutations is not limited to organisms with complex 



 84 

regulatory elements and may help explain why we see trends of preferential fixation of cis-

regulatory mutations in unicellular systems such as yeast that have relatively low regulatory 

complexity. This does not mean that mutations in tissue specific regulatory elements are not less 

likely to be deleterious than coding mutations. It does suggest, however, that because differences 

in tissue specificity between cis- and trans-acting mutations are not necessary to produce 

differences in their relative pleiotropy, expression divergence occurring most frequently via cis-

regulatory mutations may not be limited to organisms or loci that are regulated in a tissue 

specific matter, such as those involved in morphological patterning (Carroll 2005).  

Second, the patterns we observe are not specific to a functional category of focal gene or 

trans-regulatory genes, but instead are nearly universal. This may be surprising giving that some 

categories of genes have been shown to have different levels of connectivity in genetic networks 

(Luscombe et al. 2004). However, because of the relative nature of the differences in pleiotropy 

between cis- and trans-acting mutations for each focal gene, all genes except those few most 

highly connected ‘hub genes’ will have less pleiotropic cis-acting mutations than trans-acting 

mutations regardless of their connectivity. Furthermore, which transcription factors serve as 

‘hubs’ is not permanent and can change in response to environmental perturbations (Luscombe et 

al. 2004). Therefore, it is likely that all genes show a pattern of less pleiotropic cis-acting 

mutations than trans-acting mutations in at least some environmental contexts. The 

independence of the differences in cis- and trans-pleiotropy from the connectivity of the focal 

gene itself may help explain why past studies have not found a significant relationship between 

the number of targets of a transcription factor and its cis-regulatory expression divergence (Kopp 

and McIntyre 2012; Yang and Wittkopp 2017). Of course, the most highly connected genes need 

not necessarily be transcription factors at all, but more broadly can be any gene whose deletion 
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will result in sweeping changes in genome-wide gene expression by disrupting important cellular 

functions (Rockman and Kruglyak 2006).  

While our analyses are limited to gene expression patterns in Saccharomyces cerevisiae 

in one environmental condition, we expect that the pattern of lower relative pleiotropy and 

higher fitness for cis-acting mutations as compared to trans-acting mutations will hold true for 

any organism or environment in which the perturbation network of gene expression is 

approximately scale free. However, while it is likely that the overall topologies of various 

perturbation networks are similar, it remains to be seen how perturbation network structure 

relates to transcription factors binding regulatory elements of target genes (Flint and Ideker 

2019). Integrating the various determinants of a mutation’s impact on global gene expression and 

fitness is an important next step in understanding how gene expression evolves and in moving 

toward predictive models of gene expression evolution.  

Materials and Methods 

Expression data and inference of the perturbation network 

The file containing microarray expression data used in this study to build a perturbation 

network for gene deletions in S. cerevisiae from Kemmeren et al. (2014) named 

“deleteome_all_mutants_ex_wt_var_controls.txt”, was downloaded from 

http://deleteome.holstegelab.nl/ on 06/19/2020. This file included all M values and p-values for 

expression changes of each gene on the microarray (n = 6,123) for each gene deletion strain 

relative to the wild type control, where the M value is the log2 fold-change in expression and the 

p-value is obtained after Benjamini-Hochberg FDR correction for a statistically significant 

change in expression relative to a wild-type strain as calculated using the limma R package. 

Limma uses linear expression models and an empirical Bayes model to moderate standard errors 
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and calculate a moderated t-statistic and log-odds of differential expression (Smyth et al, 2005). 

The file also included experiments for strains grown in different media types, which were 

removed from the dataset for the analyses conducted in this paper. The authors of this study were 

aware of the aneuploid strains that have been identified in yeast gene deletion mutants and 

analyzed all expression profiles for evidence of aneuploidy. Any strains showing evidence of 

aneuploidy were remade and re-assayed or excluded from the dataset. The file was read into R 

(version 3.5.2) where all statistical analysis was performed. A gene was considered significantly 

differentially expressed in a deletion mutant if it showed a 1.7 or greater log2-fold change in 

expression (M value) and a P-value less than or equal to 0.05 after Benjamini-Hochberg FDR 

adjustment, resulting in a directed edge drawn from the deleted gene to the differentially 

expressed gene. In this way, we generated a binary, asymmetrical, adjacency matrix in which 

rows represent each deleted gene and columns represent the expression levels of all genes in the 

microarray (Supplementary Fig. 2). We then excluded 127 genes for which their deletion did not 

cause a statistically significant decrease in their expression. This matrix was the basis for all 

analyses on gene expression described in this paper. To test the robustness of patterns reported in 

the main text, we repeated analyses with different cut-offs used for both the fold change and p-

value, with results shown in Fig. 3-6. 

Assessing the impact of network topology 

To determine whether the perturbation network was consistent with a scale free topology, 

we tested whether it was well-represented by the formula, p(K) ~= K-gamma, where K is the node 

out-degree, or number of edges proceeding from the node. p(K) was calculated based on the 

distribution of K values and the probability density function. The relationship between p(K) and 

K was then assessed using a least-squares regression of the log(p(K)) on the log(K). The linear 
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regression was highly significant (R2 = 0.73, p-value = < 2x10-16), with a coefficient (which 

translates to the -gamma value) of -0.75. This value is similar to the gamma of 0.7 calculated for 

a perturbation network of a smaller yeast gene expression dataset (Featherstone and Broadie 

2002).  

Two types of permutations to the network topology were conducted. In both, the number 

of nodes and edges were not changed, only the structure of the network itself. In the first type of 

permutation, conducted 100 times, we randomly reassigned the target of each directed edge 

without re-assigning the node the edge came from, changing the structure of the network without 

affecting the out-degree distribution. We did this by randomly shuffling the values of each row 

of the adjacency matrix described above. For the second type of permutation, also conducted 100 

times, we randomly shuffled all edges of the adjacency matrix by first randomly shuffling the 

values in each row, and then randomly shuffling the values in each column. This resulted in a 

random network structure as demonstrated by the roughly normal distribution of out-degrees for 

each node (Fig. 3-2D).  

Measures of fitness for gene deletions 

Fitness measurements for gene deletion strains from Maclean et al. (2017) as reported in 

“Supplementary Data 6” of that publication. The reported fitness measures of gene deletions 

relative to the reference strain in YPD media were used directly, without any sort of significance 

cutoff to identify deletions that resulted in statistically significant decrease in fitness.  

Statistical analyses 

All statistical analyses and plots were produced using R (version 3.5.2) and code 

available on Github. 
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Figure 3-1: cis-acting deletions are less pleiotropic than trans-acting deletions 

(a) Schematic shows a cartoon example of the perturbation network constructed from gene 
expression data in S. cerevisiae gene deletion mutants. Directed edges are drawn when a deleted 
gene (gene 1) causes a significant change in expression of another gene (gene 2, among others). 
In the sample matrix, “Sig” indicates a gene that was significantly differentially expressed in that 
gene deletion, and “NS” indicates a gene that was not significantly differentially expressed in 
that gene deletion. (b) Two copies of the network schematic from Fig.1A are shown with the first 
illustrating a gene considered as the focal gene (orange node) that is influenced by two trans-
regulatory mutations (blue nodes) and the second illustrating a gene considered as the focal gene 
that is influenced by one trans-regulatory mutation. (c) Histograms show the number of deletions 
that affect expression of each focal gene in trans (i.e., the number of trans-regulatory mutations). 
Inset histogram is a close-up of the larger histogram with the x-axis ranging from 0-20 for better 
resolution of that portion of the data. (d) The same schematics are shown as in panel B, but with 
the pleiotropic effects (i.e., genes significantly differentially expressed upon deletion of the focal 
gene) shown in green. (e) Histograms show the distribution of pleiotropic effects for cis-
regulatory mutations, measured as the number of genes significantly differentially expressed 
upon deletion of the focal gene, for all focal genes. Inset histogram shows close-up of the x-axis 
ranging from 0 to 100 for better resolution of that portion of the data. (f) Same schematics are 
shown as in panel B, but with the pleiotropic effects of trans-acting mutations for the two focal 
genes shown in purple. (g) The number of differentially expressed genes in the deletion of PTR2 
(pleiotropy of its cis-regulatory deletion, green line) is smaller than the median (black line) 
number of differentially expressed genes for all trans-regulatory mutations to PTR2 (purple 
histogram). (h) For all focal genes, the log10 median pleiotropy of all deletions that act in trans to 
that gene is plotted on the y-axis and the log10 pleiotropy of the deletion that acts in cis to that 
gene is plotted on the x-axis. An x=y line is shown in green. (i) A histogram of differences 
between cis-acting pleiotropy and the median trans-acting pleiotropy for all focal genes included 
in the study is shown. The median difference (red line) is significantly greater than zero (black 
line) (p-value = 3x10-165 , one-sided t-test). 
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Figure 3-2: Network topology can explain trans-acting mutations tending to be more pleiotropic 
than cis-acting mutations 

(a) The out-degree distribution, or number of outgoing edges from each node (gene), follows a 
power-law distribution, as indicated by a significant linear relationship (black line surrounded by 
95% confidence intervals) between the log of the out-degree and the log of the probability of that 
out-degree (see Methods). (b) A histogram showing the distribution of all out-degrees for all 
trans-regulatory mutations for all focal genes. (c) After the network edges were permuted (100 
permutations) to change connections between individual genes while maintaining the overall 
degree distribution, all 100 medians of the distributions of differences between the pleiotropy of 
the cis-acting mutation and the median pleiotropy of trans-acting mutations affecting expression 
of the same focal genes were higher than zero, showing the greater median pleiotropy of trans- 
than cis- acting mutations in all 100 permuted networks. (d) Permuting edges of the perturbation 
network without maintaining the degree distribution results in distributions of pleiotropy for cis 
(green) and trans-regulatory mutations (purple) that are not significantly different from each 
other (Welch two-sample t-test, p-value = 0.8221). This type of permutations was conducted 100 
times. In 98 cases, median difference between the pleiotropy of the cis-acting deletion and the 
median pleiotropy of the trans-acting deletion was zero, in one case it was -0.5 and in one case 
0.5, resulting in a p-value of 1 (inset). 
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Figure 3-3: trans-acting deletions tend to decrease fitness more than cis-acting deletions 
affecting expression of the same focal gene 

(a) The fitness of each gene deletion strain (measures taken from Maclean et al. 2017) is plotted 
against the log10 number of significantly differentially expressed genes attributable to the 
deletion of that gene (using data from Kemmeren et al. 2014). The fit line is a least-squares 
regression surrounded by the 95% confidence interval. (b) For every focal gene, one minute the 
fitness of each trans-acting deletion (signifying the fitness cost of the mutation) is plotted on the 
y-axis and the fitness cost of the cis-acting deletion is plotted on the x-axis. Each focal gene thus 
has one x value and many y values. An x=y line, corresponding to equal fitness of cis- and trans-
acting deletions, is plotted in green. (c) For all focal genes, the median fitness cost of all trans-
acting deletions to that gene is plotted on the y-axis and the fitness cost of the cis-acting deletion 
is plotted on the x-axis. An x=y line is shown in green. 
 
 
 

 
Figure 3-4: cis-acting mutations tend to have larger effects on expression of the focal gene than 
trans-acting mutations 
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(a) For each deletion mutant (focal gene, x-axis), the value of the focal gene’s expression level 
relative to the wild-type control is plotted for the deletion mutant itself (cis-acting mutation, 
orange points) and all other deletion mutants in which the focal gene was significantly 
differentially expressed (trans-acting mutations, blue points). 
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Figure 3-5: trans-acting mutations tend to be more pleiotropic than cis-acting mutations 
affecting expression of the same focal gene in pairwise comparisons 

(a) For every focal gene, the pleiotropy of each trans-acting deletion is plotted on the y-axis and 
the pleiotropy of the cis-acting deletion is plotted on the x-axis. Therefore, for each focal gene 
there is one x value and many y values. An x=y line is plotted in green. (b) A histogram of the 
differences between the pleiotropy of cis- and trans-acting mutations for all pairs of one trans-
regulator and the corresponding focal gene (all purple points in panel A). The median (red line) 
is significantly higher than zero (one-sided t-test, p-value = 0).  
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Figure 3-6: Differences between median pleiotropy of trans-acting deletions and cis-acting 
deletions for all focal genes are robust to changes in thresholds used for differential expression 

Each panel shows the distribution of differences in pleiotropy between the cis-acting deletion 
and the median pleiotropy of the trans-acting deletions affecting expression of the same focal 
gene. The fold-change cutoffs (rows) and P-value cutoffs (columns) used to classify a gene as 
significantly differentially expressed in each case are shown. The similarity of distributions 
across columns demonstrates that fold-change cutoffs had a larger impact on the number of 
edges in the network than P-value cutoffs. Despite these effects, the median of the difference in 
pleiotropy between the cis- and trans-acting mutations was higher than zero for all cutoff 
combinations, showing that the trans-acting mutations tended to be more pleiotropic than the cis-
acting mutation affecting expression of the same focal gene regardless of the criteria used to 
identify significant changes in gene expression. 
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Chapter 4 Differing Mechanisms of Active Compensation for Reduction of TDH3 Activity 

by its Paralogs TDH1 and TDH2 

Abstract 

Paralogous genes that retain overlapping functions can confer robustness to genetic 

networks by compensating for each other. Compensation occurs passively when the normal 

activity of one paralog can compensate for the loss of the other, or actively when a change in one 

paralog’s expression, localization, or activity is required to compensate for loss of the other. 

Here we explore the mechanisms of active compensation for loss or reduction in expression of 

the Saccharomyces cerevisiae gene TDH3 by its paralogs TDH1 and TDH2. TDH1 and TDH2 

are upregulated in dose-responsive manners to reductions in TDH3 by a mechanism that also 

upregulates a wild type TDH3 promoter. TDH2 is not upregulated when TDH3 expression is 

lowered via mutations in the transcription factors Rap1p and Gcr1p, which regulate both TDH3 

and TDH2 expression, suggesting that active compensation by TDH2 occurs via homeostatic 

feedback mechanisms involving the transcription factors Gcr1p and Rap1p. TDH1 is upregulated 

in Gcr1p and Rap1p mutants, indicating a different mechanism of compensation by TDH1. Other 

glycolytic genes regulated by Rap1p and Gcr1p show a similar pattern to TDH2, indicating that 

the mechanism of active compensation by TDH2 is not specific to the paralog, but a general 

homeostatic response to reductions in TDH3 expression.  
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Introduction 

Biological systems are often robust to genetic and environmental perturbations (Félix and 

Barkoulas 2015; Gibson and Lacek 2020). This robustness is explained at least in part by the 

presence of independent genes in the genome with overlapping functions (Diss et al. 2014). Such 

genes often arise evolutionarily through gene duplication events that give rise to two or more 

paralogous genes (Wagner 2000; Gu et al. 2003). Divergence of duplicate genes is often a 

prerequisite for their survival (Lynch and Force 2000; Zhang 2003), yet many paralogous genes 

retain overlapping functions that contribute to robustness (Kafri et al. 2006; Ihmels et al. 2007; 

Dean et al. 2008; DeLuna et al. 2008; Kafri et al. 2008; Hanada et al. 2009; Li et al. 2010; 

Kuzmin et al. 2020). As described in Diss et al. (2014), paralogs can contribute to phenotypic 

robustness through either passive or active mechanisms. In passive paralogous compensation, the 

normal activity of one of the paralogs is sufficient to minimize the phenotypic impact of losing 

the activity of the other paralog, whereas in active paralogous compensation, activity of one 

paralog is changed in some way in response to loss of activity of the other paralog such that its 

phenotypic impact is reduced. One such type of change in activity of the paralog is an increase in 

its expression level leading to more protein available to perform the function of the mutated 

gene. While some examples of active compensation by upregulation of a paralog exist (Rudnicki 

et al. 1992; DeLuna et al. 2010; Denby et al. 2012; Dong et al. 2016; Dohn and Cripps 2018; 

Rodriguez-Leal et al. 2019), the molecular mechanisms behind active compensation remain to be 

elucidated (Diss et al. 2014). 

The TDH1, TDH2, and TDH3 genes of Saccharomyces cerevisiae are an example of a set 

of paralogous genes that appear to be able to compensate for each other’s function. All three of 

these genes encode proteins that act as glyceraldehyde-3-phosphate dehydrogenases (GAPDHs) 
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(McAlister and Holland 1985a; Linck et al. 2014), catalyzing a central step in both glycolysis 

and gluconeogenesis. The TDH2 and TDH3 proteins are most similar to each other, retaining 

94% amino acid sequence identity (Holland and Holland 1980; Engel et al. 2014), with the 

TDH1 and TDH3 proteins having 89% amino acid sequence identity (Holland et al. 1983; Engel 

et al. 2014). TDH2 and TDH3 are also more similar in their expression pattern, as they are 

expressed during exponential growth, while TDH1 is expressed primarily during stationary phase 

(Delgado et al. 2001; Bradley et al. 2019). The first characterization of the TDH paralogs 

reported a reduction in fitness when either TDH1, TDH2, or TDH3 were disrupted by insertion 

mutations (McAlister and Holland 1985b). The triple mutant and the double tdh2-D,tdh3-D 

mutant were reported to be lethal, while the tdh1-D,tdh3-D mutant showed a larger reduction in 

fitness than would be expected for an additive effect of the single mutant fitness measures 

(McAlister and Holland 1985b). A more recent assay for negative genetic interactions in S. 

cerevisiae found that deletion of TDH3 reduced fitness to ~90% of wild type, while deletion of 

either TDH1 or TDH2 did not have a significant impact on fitness (Costanzo et al. 2010). The 

double mutant tdh1-D,tdh3-D had a slightly significant negative genetic interaction, while the 

tdh2-D,tdh3-D double mutant demonstrated a strong negative genetic interaction, growing at only 

7% relative to wild type (Costanzo et al. 2010). These nonadditive impacts on fitness suggest 

that the functional overlap of these paralogs allows them to compensate for each other. The 

mechanism by which they may compensate for each other and whether they do so in an active or 

passive manner, however, is unknown. 

Here we test the hypothesis that a reduction in the TDH3 protein is actively compensated 

for by one or both of its paralogs, TDH1 or TDH2, via a mechanism of transcriptional 

upregulation. We use RNA-sequencing data from a series of S. cerevisiae strains bearing 
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mutations in the TDH3 promoter that result in expression of TDH3 ranging from 0% to 135% of 

wild type expression to show that TDH1 and TDH2 expression are upregulated in a dose-

responsive manner when TDH3 expression is reduced. A wild-type TDH3 promoter driving 

expression of a reporter gene was also upregulated when expression of the native TDH3 gene 

was reduced, suggesting that the cells respond to reduced TDH3 expression by increasing 

activity of one or more factors that regulate expression of TDH3. Rap1p and Gcr1p are 

transcription factors known to directly regulate TDH3 as well as expression of other glycolytic 

genes, thus we also tested whether the reduced expression of TDH3 seen in strains with mutated 

versions of Rap1p or Gcr1p caused a upregulation of TDH1 and/or TDH2. We found that TDH1 

but not TDH2 was upregulated in these mutants, suggesting that Rap1p and Gcr1p are involved 

in the upregulation of TDH2 in response to reduced TDH3 activity. These data are consistent 

with a model in which feedback mechanisms that homeostatically regulate expression of TDH3 

also cause the upregulation of other genes regulated by Rap1p and Gcr1p, including TDH2. Prior 

work indicates that paralogs retaining some shared transcriptional regulators often compensate 

for each other (Kafri et al. 2005; He and Zhang 2006; Kafri et al. 2006), suggesting that the 

molecular mechanism we identify here for active compensation among TDH paralogs might also 

apply to other sets of paralogous genes.  

Results 

Active compensation for loss of TDH3 by paralogs TDH1 and TDH2 

To determine whether the compensation for loss of TDH3 activity by TDH1 or TDH2 

might be mediated by changes in their expression, we used RNA-seq data describing changes in 

gene expression when TDH3 was deleted (Chapter 2) to test for significant changes in expression 

of TDH1 and/or TDH2. We found that both genes showed significantly higher expression in the 
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tdh3-D deletion strain than in the unmutated wild-type strain (Figure 4-1A, Wald test P-value for 

TDH1 = 2x10-5, P-value for TDH2 = 0.04). Using strains carrying mutations in the promoter of 

TDH3 that resulted in TDH3 expression levels 20%, 50%, and 85% of wild type, as well as a 

strain expressing TDH3 at 135% of wildtype levels carrying a duplication of a mutant TDH3 

allele (Chapter 2), we also tested for changes in TDH1 or THD2 expression in response to more 

moderate alterations in TDH3 activity using RNA-seq data. We found that TDH2 expression was 

negatively correlated to TDH3 expression among these strains, with TDH2 expression increased 

when TDH3 expression was decreased and TDH2 expression decreased when TDH3 expression 

was increased (Figure 4-1B). TDH1, on the other hand, showed more of a threshold-like 

relationship to TDH3 expression: TDH1 expression increased to a similar extent in the mutants 

expressing TDH3 at 20%, 50%, and 85% of wild-type levels, but increased much more strongly 

in the TDH3 null mutant strain and decreased in the TDH3 overexpression strain (Figure 4-1C). 

Taken together, these data show that expression of TDH1 and TDH2 changes when TDH3 

expression is altered in ways expected to help compensate for the changes in TDH3 expression. 

All of the strains with modified TDH3 expression also carried a wild-type TDH3 

promoter driving expression of a yellow fluorescent protein (YFP) (Duveau et al. 2017). We 

noticed that expression of this reporter gene was also increased when TDH3 expression was 

decreased (Figure 4-1D), suggesting that factors regulating expression of TDH3 itself might be 

involved in the mechanism of active compensation. The transcription factors Rap1p and Gcr1p 

are known to directly regulate expression of TDH3 (Figure 4-1E, Huie et al. 1992; Yagi et al. 

1994) as well as expression of other glycolytic genes, including TDH1 and TDH2  (MacIsaac et 

al. 2006; Hu et al. 2007; Venters et al. 2011; Lickwar et al. 2012). In fact, the mutations altering 

expression of TDH3 in the mutant strains expressing TDH3 at 20%, 50%, 85%, and 135% of 
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wild-type expression levels all contained mutations in either the Rap1p or Gcr1p binding sites 

(Figure 4-1G). Taken together, these observations suggest that changes in expression of TDH1 

and TDH2 in response to changes in expression of TDH3 might be caused by homeostatic 

feedback mechanisms involving Rap1p and/or Gcr1p. 

TDH2 is not upregulated when TDH3 expression is reduced by mutations in RAP1 or GCR1 

If the upregulation of TDH1 and TDH2 upon reduction of TDH3 expression is the result 

of a homeostatic feedback mechanism involving Rap1p and Gcr1p, we would not expect to 

observe an increase in expression of TDH1 and TDH2 when TDH3 expression is reduced via 

mutations in Rap1p and Gcr1p that affect their ability to regulate TDH3 expression. Using RNA-

seq data from a set of 9 strains of S. cerevisiae each carrying 1-6 mutations in the RAP1 (4 

mutants) or GCR1 (5 mutants) gene previously shown to affect TDH3 expression (Duveau et al. 

2021), we asked whether the changes in TDH3 expression observed in these strains were 

accompanied by compensatory changes in expression of TDH1, TDH2, and/or YFP driven by a 

wild type TDH3 promoter. One GCR1 mutant strain carries a single nucleotide deletion resulting 

in an early stop codon, suggesting it is likely to be a null mutation, whereas the other mutant 

alleles are more likely to be hypo- or hypermorphs. GCR1 mutants showed TDH3 expression 

levels ranging from ~7% to ~105% of wild type TDH3 expression (Figure 4-2A), with the likely 

null mutant allele showing the largest reduction in expression of TDH3. RAP1 null mutants are 

lethal (Giaever et al. 2002), suggesting that all of the RAP1 mutants examined were either 

hypomorphs or gain of function alleles which caused changes in TDH3 expression ranging from 

~20% to ~115% (Figure 4-2A). We found that when TDH3 expression was reduced in these 

strains, TDH2 expression did not increase (Figure 4-2B). Expression of TDH1, on the other hand, 

was increased in the RAP1 and GCR1 mutants (Figure 4-2C). The expression of the YFP reporter 
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gene being driven by a wild type TDH3 promoter closely matched expression of TDH3 itself 

(Figure 4-2D), demonstrating that these two promoters function similarly when neither are 

mutated. These data are consistent with a model in which upregulation of TDH2, but not TDH1, 

is the result of homeostatic feedback mechanisms involving Rap1p and Gcr1p, which 

consequently does not occur when these transcription factors are mutated.  

Upregulation of TDH2 upon reduction of TDH3 when RAP1 and GCR1 are not mutated 

could occur via an upregulation of Rap1p and/or Gcr1p themselves. Examining our RNA-

sequencing data for strains bearing mutant alleles of the TDH3 promoter, we found that GCR1 

transcripts were upregulated linearly in response to reductions in TDH3 expression caused by 

mutations in the TDH3 promoter (Figure 4-2E). Transcription of RAP1, however, was not 

upregulated upon reduction in TDH3 expression (Figure 4-2E). Therefore, changes in GCR1 

abundance might be primarily responsible for the linear response to reductions in TDH3 

expression seen in TDH2 and the intact TDH3 promoter expressing YFP.  

Upregulation of genes regulated by Gcr1p/Rap1p upon reduction in TDH3 is not limited to 

TDH2 

Upregulation by Rap1p and Gcr1p upon reduction in TDH3 might not be limited to 

TDH2, but might extend to other genes that are regulated by these transcription factors. To see if 

this is the case, we used our RNA-sequencing data to examine the expression levels of other 

genes which encode enzymes that catalyze steps in glycolysis and which are regulated by Rap1p 

and Gcr1p (Figure 4-3A). We found that the genes PGK1, ENO1, and PFK2 were significantly 

upregulated in the thd3-D null mutant. Fold changes in expression of these genes showed a 

similar pattern to TDH2, with expression increasing when TDH3 expression is lowered via 

mutations in the TDH3 promoter (Figure 4-3B), but not when it is lowered via mutations in 
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RAP1 or GCR1 (Figure 4-3C). The genes FBA1, TPI1, and GPM1 showed a similar pattern of 

expression fold changes (Figure 4-3D,E), but of a smaller magnitude, and were not significantly 

upregulated in the thd3-D null mutant. This common pattern among glycolytic genes regulated 

by Gcr1p/Rap1p further suggests that reduction in TDH3 expression leads to homeostatic 

feedback in which glycolytic genes regulated by the transcription factors Gcr1p and Rap1p are 

upregulated, including TDH2.  

Discussion 

These findings are consistent with a model in which reduction in TDH3 expression 

triggers feedback mechanisms aimed at increasing its expression level via the transcription 

factors Rap1p and Gcr1p. TDH3 expression cannot be increased because the transcription factor 

binding sites for Rap1p or Gcr1p have been destroyed (or because the locus is absent in the null 

mutant), but expression of other genes regulated by Gcr1p and Rap1p is increased, including the 

TDH3 paralog TDH2. This results in active compensation for reduction in TDH3 by an 

upregulation of TDH2 that does not occur when RAP1 or GCR1 are mutated (Figure 4-3F). 

It appears that the upregulation of TDH2 by Gcr1p/Rap1p might be achieved by an 

upregulation of expression of the GCR1 gene. Although transcriptional upregulation is not the 

only mechanism of activation of transcription factors (Hahn and Young 2011), GCR1 has been 

shown to be both transcriptionally and post-transcriptionally regulated by glucose availability 

(Hossain et al. 2016). Reductions in TDH3 expression hindering metabolic flux through 

glycolysis and leading to an abundance of glucose might therefore result in an upregulation of 

GCR1 transcripts and protein available to upregulate the TDH genes. RAP1, on the other hand, 

performs roles in telomere maintenance and activation of ribosomal protein genes in addition to 

the activation of glycolytic genes (Sussel and Shore 1991; Shore 1994), and is not known to be 
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transcriptionally regulated in response to glucose availability. Rap1p and Gcr1p act in a complex 

to activate target gene expression, with Gcr1p being the major activator of the complex (Piña et 

al. 2003). It is likely, therefore, that upregulation of GCR1 upon reduction in TDH3 is primarily 

responsible for the upregulation of the Rap1p/Gcr1p complex’s target genes. 

Active compensation by TDH1 appears to occur via a different mechanism, as indicated 

by its more threshold-like response to reduction in TDH3 expression and its upregulation in 

strains bearing mutations in RAP1 and GCR1. These differences in how TDH1 and TDH2 

respond to reduction in TDH3 expression may not be surprising considering the fact that the 

expression pattern of TDH1 has diverged from that of the other two paralogs (McAlister and 

Holland 1985a). TDH1 has been shown to be upregulated under various stress conditions causing 

slow growth (Linck et al. 2014), and may therefore be upregulated by a mechanism related to the 

slower growth of mutants with reduced TDH3 expression level rather than feedback specifically 

involving Gcr1p or Rap1p.  

The fact that the upregulation of TDH1 and TDH2 does not completely eliminate the 

fitness effect of deleting or reducing TDH3 expression suggests that the functions of these 

paralogs have diverged to some extent and cannot completely compensate for each other. Such 

partial subfunctionalization is thought to occur relatively frequently (Harrison et al. 2007; 

Kuzmin et al. 2020), and suggests that the maintenance of these paralogs by natural selection is 

not exclusively due to their ability to compensate for each other. Although TDH3 is best known 

for its roles in glycolysis and gluconeogenesis, it has also been implicated in transcriptional 

silencing (Ringel et al. 2013), RNA-binding (Shen et al. 2014) and possibly antimicrobial 

defense (Branco et al. 2014). These functions may not be able to be compensated for by TDH1 or 

TDH2 despite their high levels of protein conservation.  
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The mechanism of active compensation by TDH2 presented here appears to be the result 

of shared regulators between paralogs that may be a consequence of the paralogs common 

ancestry rather than a result of natural selection for robustness. Natural selection undoubtedly 

plays a role in the maintenance of regulatory structures, but may not be selecting for robustness 

itself. Active compensation by TDH1, however, may not be due to similar regulatory structures 

and should be further explored. In this way, the case of active compensation by TDH2 provides 

an example of the molecular mechanisms by which compensation can take place, while the case 

of TDH1 hints at the variety of possible mechanisms of active compensation that could be at play 

for paralogous genes across the genome.  

Materials and Methods 

Strains used in this study 

The S. cerevisiae strains used in this study include a set of 5 cis-regulatory mutants to the 

yeast gene TDH3 and their wild type reference strain, as well as 9 trans-regulatory mutants 

bearing mutations in either the RAP1 or GCR1 gene, and their wild type reference strain. Strains 

bearing cis-regulatory mutations to TDH3, including the tdh3-𝚫 strain, were first described in 

(Duveau et al. 2017). They are haploid, mating type a strains of S. cerevisiae derived from 

S288C and constructed from the progenitor strain YPW1001, which contains a wild type PTDH3-

YFP construct and a NatMX4 drug resistance marker at the HO locus. It also bears alleles of 

MKT1, SAL1, CAT5 and MIP1 decreasing petite frequency and the alleles of RME1 and TAO3 

increasing sporulation efficiency, as previously described (Duveau et al. 2017). The collection 

numbers and specific mutations in each strain, as well as their impacts on TDH3 expression, are 

detailed in Table 4. Strains bearing mutations in the genes RAP1 or GCR1 are first described in 

(Duveau et al. 2021). They are haploid, mating type alpha strains of S. cerevisiae derived from 
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S288C and constructed from the progenitor strain YPW1139, which also contains a wild type 

PTDH3-YFP construct and a KanMX drug resistance marker at the HO locus and also bears alleles 

of MKT1, SAL1, CAT5 and MIP1 decreasing petite frequency and the alleles of RME1 and TAO3 

increasing sporulation efficiency, as previously described (Duveau et al. 2017). The mating type 

and drug resistance marker are the only differences in the background of the strains bearing cis-

regulatory mutations and strains bearing mutations in either RAP1 or GCR1, and have been 

shown not to influence expression of genes mis-expressed upon reduction in TDH3 expression 

(Chapter 2, Materials and Methods). Mutants analyzed with mutations in GCR1 or RAP1 were 

constructed from this progenitor strain by using mutagenic PCR to randomly introduce mutations 

within each gene and then using CRISPR-mediated allele-replacement to substitute the native 

locus with a mutant allele. The collection numbers and specific mutations in each strain, as well 

as their impacts on TDH3 expression, are detailed in Table 4.  

Gene expression data 

RNA-sequencing data presented in this paper is a subset of the data described in Chapter 

2, and which are available at GEO accession GSE175398. That dataset consists of RNA-

sequencing data for cis-regulatory mutants and a larger set of trans-regulatory mutants affecting 

TDH3 expression. Details of data collection and processing are available in Chapter 2: Materials 

and Methods, and are summarized here. Briefly, yeast cells were grown to mid log phase in 

glucose media, pelleted, and frozen at -80C. polyA RNA was extracted from frozen cell pellets 

using oligodT magnetic beads. RNA libraries were prepared for sequencing using a ⅓ volume 

TruSeq RNA Sample Preparation v2 kit (Illumina), and sequenced on a HiSeq 4000 by the 

University of Michigan Sequencing Core. Each genotype (all mutants and non mutated reference 

strains) was assayed in quadruplicate with each replicate consisting of a unique random array of 
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genotypes and controls in a 96 well plate. Reads were pseudomapped to the S.cerevisiae 

transcriptome (Ensemble, release 38, retrieved from ftp://ftp.ensemblgenomes.org/pub/release-

38/fungi/fasta/saccharomyces_cerevisiae/cdna/), and DeSeq2 (Love et al. 2014) was used to 

estimate log2 fold changes and significance values reported in the text.  
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Figures 

 
Figure 4-1: TDH1 and TDH2 actively compensate for changes in TDH3 expression  

(A) Changes in expression of TDH1, TDH2, and TDH3 in response to the deletion of TDH3 are 
shown, measured as fold change in expression relative to a wild type. Error bars represent one 
standard error of the mean. Statistical significance of expression changes was assessed using 
Wald tests in DESeq2, with the P-value for TDH1 = 2x10-5, TDH2 = 0.04, and TDH3 = 7x10-107. 
Changes in expression of TDH3 and TDH2 (B), TDH1 (C), and a reporter gene with a wild type 
TDH3 promoter driving expression of YFP (PTDH3-YFP) (D) are shown for strains with cis-acting 
mutations causing 0%, 20%, 50%, 85%, and 135% of wild type TDH3 expression.  Error bars 
show one standard error of the mean. (F) A schematic of the wild type TDH3 promoter is shown 
with the location and sequences of previously identified Rap1p and Gcr1p transcription factor 
binding sites indicated. (G) Schematics and sequences of the TDH3 promoter in mutant strains 
bearing mutations in binding sites for Rap1p and Gcr1p that result in TDH3 expression levels of 
20%, 50%, and 85% relative to wild type are shown. No schematic is shown for the mutant strain 
expressing TDH3 expression at 135% of wild type levels, which contains two copies of the 
TDH3 gene separated by a copy of the URA3 gene, with both copies of TDH3 containing a 
mutation in the binding site for Rap1p (GGTGTCTGaGT). 
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Figure 4-2: TDH2 is not upregulated when TDH3 expression is reduced by mutations in RAP1 
or GCR1 

(A) Changes in expression of TDH1, TDH2, and TDH3 in response to various mutations in either 
GCR1 or RAP1, measured as fold change in expression relative to a wild type. Specific mutation 
identities are listed in Table 4. Error bars represent one standard error of the mean. Changes in 
expression of TDH3 and TDH2 (B), TDH1 (C), and a reporter gene with a wild type TDH3 
promoter driving expression of YFP (PTDH3-YFP) (D) are shown for strains with mutations in 
either RAP1 (triangles) or GCR1 (circles).  Error bars show one standard error of the mean. (E) 
Changes in expression of RAP1, GCR1, and TDH3 are shown for strains with cis-acting 
mutations causing 0%, 20%, 50%, 85%, and 135% of wild type TDH3 expression, measured as 
fold change in expression relative to a wild type. Error bars represent one standard error of the 
mean. 
 
  



 115 

 
Figure 4-3: Multiple enzymes in the glycolysis pathway are upregulated upon reduction in TDH3 
expression in a Rap1p/Gcr1p dependent manner 

(A) A schematic of the glycolytic pathway surrounding the metabolic step catalyzed by TDH1,2, 
and 3, showing other enzymes catalyzing adjacent reactions that are significantly upregulated 
upon reduction in TDH3 in blue. Enzymes in this pathway that were not significantly 
upregulated are shown in grey. (B) Expression fold changes relative to wild type of the genes 
PGK1, PFK2, ENO1, and TDH3 in yeast strains with varying levels of TDH3 expression due to 
mutations in the native TDH3 promoter, as estimated by RNA-sequencing data. Error bars are 
one standard error of the mean. (C) Expression fold changes relative to wild type of the genes 
PGK1, PFK2, ENO1, and TDH3 in the 9 yeast strains with varying levels of TDH3 expression 
due to mutations in the genes encoding RAP1 or GCR1, as estimated by RNA-sequencing data. 
Error bars are one standard error of the mean. (D) Expression fold changes relative to wild type 
of the genes TPI1, FBA1, GPM1, and TDH3 in yeast strains with varying levels of TDH3 
expression due to mutations in the native TDH3 promoter, as estimated by RNA-sequencing 
data. Error bars are one standard error of the mean. (C) Expression fold changes relative to wild 
type of the genes TPI1, FBA1, GPM1 and TDH3 in 9 yeast strains with varying levels of TDH3 
expression due to mutations in the genes encoding RAP1 or GCR1, as estimated by RNA-
sequencing data. Error bars are one standard error of the mean. (F) A model for active 
compensation (grey dotted arrow) in which feedback from a reduction in TDH3 expression (red 
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arrows) upregulates GCR1p/RAP1p complex (purple circle) which leads to upregulation of 
TDH2 and other glycolytic genes regulated by GCR1/RAP1 (black arrows).  
 
 
Table 4: TDH3 titration and Rap1p/Gcr1p mutant identities and effect on TDH3 expression 

 
 
 

Collection Strain name Position
Reference 
Nucleotide

Resulting 
Nucleotide Mutation Type

TDH3  Expression 
(Relative to Wild Type)

YPW1177 tdh3-delta deletion of locusNA NA deletion -7.218443

YPW1156 20% expression strain -482 C T promoter -2.483259

YPW1200 50% expression strain -485 C T promoter -0.9476816

YPW1188 85% expression strain -510 G A promoter -0.199752

YPW3059 135% expression strainduplication, -505 in both duplicatesG A duplication, promoter 0.4325633

YPW3282 GCR1162

833, 1112, 

1946, 2305, 

2755 del, T, G, A, T T, C, A, G, C

frameshift, 

nonsynonymous, 

nonsynonymous, 

synonymous, synonymous -3.927013598

YPW3283 GCR1281

940, 1224, 

2178, 2599 T, T, T, T C, C, C, C

synonymous, 

nonsynonymous, 

nonsynonymous, 

synonymous -0.513344386

YPW3284 GCR1037

737, 1183, 

1224, 1258, 

2038, 3079, G, T, T, T, A, T C, C, C, C, G, del

intron, silent, 

nonsynonymous, silent, 

silent, frameshift -0.198930953

YPW3285 GCR1339

726, 737, 740, 

840, 2574 T, G, C, A, A G, C, G, G, G

intron, intron, intron, 

nonsynonymous, 

nonsynonymous -2.191062688

YPW3286 GCR1241 1366 A G synonymous 0.07367076

YPW3287 RAP1357

2378, 1881, 

284 A, G, T G, A, C

silent, nonsynonymous, 

silent 0.210454342

YPW3288 RAP154

upstream922, 

1100, 

2042,2043 C, T, A, T T, C, del, del, 

promoter, nonsynonymous, 

frameshift nonsense -1.265524056

YPW3289 RAP1238

95, 568, 693, 

1365, 1338, 

2121 T, A, A, G, A, A C, G, G, A, G, G

silent, all other 

nonsynonymous -2.15553115

YPW3290 RAP1484

upstream85, 

2128, 1060 A, A, A G, G, G

noncoding, 

nonsynonymous, 

nonsynonymous 0.169982976
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Chapter 5 Conclusions and Future Directions  

Fitness has been at the center of evolutionary biology from the beginning of the field 

(Darwin et al. 1859). But what determines how a mutation will impact fitness? Is there any way 

to predict which mutations will be advantageous and which will be deleterious? These questions 

are at the center of research in evolutionary biology today (de Visser and Krug 2014; Das et al. 

2020; Zheng et al. 2020). The work in this dissertation represents one small step forward in the 

journey toward answering them.  

 

The interconnected nature of organisms results in mutations frequently influencing not 

just one trait, but several (Stearns 2010; Wagner and Zhang 2011; Boyle et al. 2017; Mehlhoff et 

al. 2020). The extent of these pleiotropic effects are expected to increase the probability that a 

mutation will be deleterious for the organism as a whole (Fisher 1930), potentially imposing a 

strong constraint on the evolution of complexity (Orr 2000). While attempts have been made to 

describe the extent of mutational pleiotropy (Featherstone and Broadie 2002; Dudley et al. 2005; 

Cooper et al. 2007; McGuigan et al. 2014; Kinsler et al. 2020), relating pleiotropy to fitness has 

remained difficult due to the imprecision of defining distinct traits and quantifying them (Paaby 

and Rockman 2013a; Paaby and Rockman 2013b; Zhang and Wagner 2013).  

 

Mutations that influence gene expression are an ideal system in which to explore the 

relative pleiotropy of different types of mutations because the traits upon which they act – 
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expression of all genes across the genome – represent discreet units that can be precisely 

quantified. In addition, gene expression can be molecularly manipulated and analyzed at larger 

systems-level scales, enabling the molecular dissection of expression changes genome-wide that 

are due to changes in one particular gene’s expression level. In addition, pleiotropy is 

hypothesized to differ between mutations occurring proximally, or in cis to a particular gene, and 

those occurring distally, or in trans (Wittkopp 2005; Wray 2007; Signor and Nuzhdin 2018; Hill 

et al. 2021). These potential differences in the pleiotropic effects of cis- and trans-regulatory 

mutations may result in cis-regulatory mutations being preferentially fixed relative to trans-

regulatory mutations, leading to an increasing proportion of expression divergence due to cis-

regulatory changes over evolutionary time (Emerson et al. 2010; Coolon et al. 2014; Metzger et 

al. 2017). The work presented in this dissertation is the first exploration of this hypothesis 

utilizing empirical data. 

 

Here I utilize both molecular and systems level approaches to provide a quantitative 

description of the pleiotropic effects of regulatory mutations and their relationship to fitness. In 

the second chapter, a detailed analysis of cis- and trans-regulatory mutations to the gene TDH3 

in Saccharomyces cerevisiae enables the calculation of a distribution of pleiotropic fitness effects 

of trans-regulatory mutations. In addition, I compare the extents the impacts of cis- and trans-

regulatory mutation on gene expression across the genome and demonstrate that the pleiotropic 

effects of trans-regulatory mutations affect genes that are downstream of the focal gene in 

addition to those outside of it. Going forward, similar studies should be conducted using other 

focal genes and biological systems to reveal how generalizable these trends are and to define 

more distributions of pleiotropic fitness effects that can be used to model the evolution of gene 
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expression while incorporating pleiotropic fitness costs. The third chapter fully embraces 

systems level analysis by demonstrating that the degree distribution of a network constructed 

from the effects of deletion mutants can explain the pattern of trans-regulatory mutations being 

on average more pleiotropic than cis-regulatory mutations to the same gene. This work can also 

be extended into other organisms as similar datasets are produced. Computationally, network 

simulations can demonstrate the range of degree distributions that will result in this pattern. Also, 

the degree to which accumulation of expression divergence due to cis-regulatory mutations can 

be accounted for by network topology as compared to the contributions of other factors, such as 

modularity of regulatory sequences, should be further explored. In the fourth chapter, I return to 

the TDH3 system to describe how compensation for loss of TDH3 by its paralogs can help to 

explain the molecular mechanism behind the pleiotropic effects of trans-regulatory mutations on 

expression of genes downstream of TDH3. Whether this type of compensation occurs for many 

paralogs in the S. cerevisiae genome is debatable (Kafri et al. 2005; He and Zhang 2006; Kafri et 

al. 2006), and can begin to be elucidated as datasets for other genes that have partially redundant 

paralogs are gathered.  

Pleiotropic effects of trans-regulatory mutations relative to cis-regulatory mutations to the 

focal gene TDH3 

It has been hypothesized that trans-regulatory mutations should influence the expression 

of more genes, and therefore be more pleiotropic, than cis-regulatory mutations based on their 

positions relative to each other in the regulatory network (Wittkopp 2005). This difference could 

explain the increase in expression divergence attributable to cis-regulatory variation observed 

over increasing evolutionary distances in both flies and yeast (Coolon et al. 2014; Metzger et al. 

2017). Despite the intuitive nature of this model, it had not previously been tested with empirical 
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data (Signor and Nuzhdin 2018; Hill et al. 2021). My use of strains of S. cerevisiae containing 

one mutation that is either cis-regulatory or trans-regulatory to the yeast gene TDH3 enables me 

to directly test this question by separating the effects of changing the focal gene from those that 

are pleiotropic to it occurring in trans-regulatory mutants. The separation the fitness effects of 

changing the expression of the focal gene from the pleiotropic fitness effects in trans-regulatory 

mutations creates a framework for quantifying the fitness effects of pleiotropy which can be 

included in models of gene expression evolution. This will enable more realistic predictions and 

descriptions of what classes of mutations are likely to generate population level and species level 

variation in gene regulation (Hill et al. 2021).  

 

The findings presented here provide empirical support for theoretical expectations, 

showing that the pleiotropic fitness effects are mostly negative and that trans-regulatory 

mutations have more widespread effects than cis-regulatory mutations, but with added nuance of 

being dependent on the effect size of both classes of mutations on expression of the focal gene. 

While we suspect that these findings will be generalizable for many genes beyond TDH3 (see 

Chapter 3), more work should be done to collect similar datasets for other focal genes to 

empirically test this. The ability to collect RNA-sequencing data for a larger number of 

genotypes (Jackson et al. 2020), and measure the genomic impact of titrated gene expression 

levels (Jost et al. 2020) using single cell sequencing and CRISPR is making such an undertaking 

more feasible than ever before.  

 

Additionally, the work presented here raises the interesting point that cis- and trans-

regulatory mutations have different effects on genes downstream of a change in the focal gene 
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itself in a way that is somewhat akin to epistasis (Domingo et al. 2019). If one conceptualizes the 

change in expression of the focal gene as a mutation itself, and the downstream consequences of 

that change as the phenotype, trans-regulatory mutations essentially have epistatic effects on 

those phenotypes. These epistatic effects heavily influence the phenotype that results from a 

change in the focal gene, particularly if there are multiple variants present. This is reminiscent of 

the ‘omnigenic’ model of heritability (Boyle et al. 2017), in which the highly connected nature of 

genetic networks results in many indirect effects of variants on complex traits, all of which 

influence whether or not a phenotype will result from a variant of major effect (Liu et al. 2019). 

It could be interesting to explore how these pleiotropic effects of trans-regulatory mutations 

influence overall phenotypes when there are compensatory mutations that occur in cis, which 

may restore expression of the focal gene but potentially not have the same downstream 

consequences (Goncalves et al. 2012; Coolon et al. 2014).  

 Network topology can explain differences in cis and trans pleiotropy and fitness 

This finding that the effects of cis-regulatory mutations are not ‘encapsulated’ within the 

effects of trans-regulatory mutations raises the question of what then might explain the higher 

pleiotropy of trans-regulatory mutations relative to cis-regulatory mutations. The third chapter of 

this thesis takes this question on from a systems biology perspective, taking the structure of the 

regulatory network into account rather than describing the specific effects on one gene. Although 

gene expression data is not available for cis- and trans-regulatory mutations to many different 

focal genes (Hill et al. 2021), the effects of cis-regulatory mutations can be approximated by the 

effects of a deletion of the focal gene itself, with the caveat that they are likely the most severe 

effects of changing the expression of a gene in cis (Keren et al. 2016). Likewise, effects of trans-

regulatory mutations can be approximated by the effects of gene deletions that cause 
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misexpression of the focal gene (Landry et al. 2007). Using these approximations to estimate the 

degree of pleiotropy for cis- and trans-regulatory mutations to ~1200 focal genes (Kemmeren et 

al. 2014), I show that for the vast majority of genes assayed, trans-regulatory mutations are more 

pleiotropic than cis-regulatory mutations, even when cis-regulatory mutations are of a greater 

effect size on the focal gene than trans-regulatory mutations. This pattern is not dependent on 

specific connections between regulators and target genes. Rather, it is the result of a sampling 

bias for highly pleiotropic trans-regulators that serve as trans-regulatory mutations for a large 

number of focal genes- a phenomenon that has been described in social networks with similar 

topologies and termed the ‘friendship paradox’ (Feld 1991).  

 

Although the scale-free topology of many biological networks has raised much interest in 

applying network theory to biological systems (Barabási and Oltvai 2004; Barzel and Barabási 

2013), there is also evidence that many empirical networks may not be strictly scale-free (Broido 

and Clauset 2019), and many questions remain about whether findings from network science will 

be informative for biological systems, especially at evolutionary timescales (Siegal et al. 2007). 

The work presented here is an interesting case in which the empirical data led to an explanation 

from network science rather than network science being applied to a biological system, and 

therefore suggests that network science can indeed inform biological systems.  

 

Another interesting implication of the findings presented in chapter three is that the 

difference in pleiotropy between cis and trans-regulatory mutations could be independent of 

differences in the modularity (such as environmental or tissue specificity) of the elements 

mutated. This could explain why we see patterns of increasing proportions of expression 
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divergence due to cis-regulatory mutations in species without extensive, modular regulatory 

sequences such as yeast (Metzger et al. 2017). One possible consequence of this finding is that 

the accumulation of cis-regulatory divergence would occur for all genes, rather than just those 

with more modular regulatory elements (Wittkopp 2005) or for genes with roles in morphology 

as opposed to physiology (Carroll 2005; Stern and Orgogozo 2008). A connection between the 

modularity of regulatory elements and the accumulation of cis-regulatory divergence should be 

further explored to test whether or not this is the case. Any test of this hypothesis, however, must 

be careful to also take in to account alternative, non-mutually exclusive differences between cis- 

and trans-regulatory mutations such as effect size and dominance that may also influence their 

relative frequency of fixation (Gruber et al. 2012).  

 

The presence of a few very pleiotropic trans-regulators as ‘network hubs’ as discussed in 

chapter three suggests that the expression or sequence divergence of these hub genes may be 

more constrained than other genes in the genome. Past attempts to draw a connection between 

divergence and network hubs has only been moderately successful, however (Featherstone and 

Broadie 2002; Siegal et al. 2007; Costanzo et al. 2010; Kopp and McIntyre 2012; Yang and 

Wittkopp 2017; Flint and Ideker 2019; Wollenberg Valero 2020). This could be partially due to 

the fact that different trans-regulators serve as highly connected ‘hubs’ in different environments 

or genetic backgrounds (Luscombe et al. 2004), and that different genes can serve as ‘hubs’ in 

different cellular networks. More work should be done to assess the connectivity of different 

regulators in different environments to test whether there is a connection between the number of 

conditions under which a trans-regulator serves as a hub gene and its evolutionary divergence in 

expression or sequence.  
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Compensatory upregulation of paralogs in cis-regulatory mutants 

In the fourth chapter, I return to the TDH3 system to characterize a phenomenon that can 

help explain the differences in downstream effects of cis- and trans-regulatory mutations to the 

same focal gene. Specifically, I test the hypothesis that the two paralogs of TDH3, TDH1 and 

TDH2, actively compensate for loss or reduction of TDH3. In the case of TDH2, an upregulation 

of TDH2 expression appears to be the result of feedback mechanisms that control the expression 

levels of all three paralogs involving the transcription factors Rap1p and Gcr1p. Therefore, 

upregulation of TDH2 does not occur when TDH3 expression is lowered by mutations in these 

Rap1p or Gcr1p themselves. Whether this type of compensation by co-regulated paralogs is 

common across the genome is an open question in the field (Kafri et al. 2005; He and Zhang 

2006; Kafri et al. 2006; Li et al. 2010; Diss et al. 2014; Kuzmin et al. 2020; Kovács et al. 2021). 

Once again, collecting similar information for other paralogs can speak to the generality of these 

findings across the genome.  

 

These findings also describe one reason why the downstream effects of lowering TDH3 

expression differ when a mutation occurs in cis or in trans. Mutations that induce ‘breaks’ in the 

regulatory network at different points relative to the focal gene will determine what feedback 

mechanisms are still intact and how they will be employed, and whether or not they will be 

advantageous (Kovács et al. 2021). Examining the effects of mutations that titrate gene 

expression to varying degrees at different points in the regulatory network allow us to examine 

how the network is rewired when specific regulatory connections are broken. An extension of 

this work could include a larger, more systematic collection of genome-wide gene expression 

data upon titration of the expression levels of many focal genes, which may now be possible with 
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single cell sequencing and methods for titrating gene expression levels using targeted 

interference with CRISPR (Jackson et al. 2020; Jost et al. 2020; Urbonaite et al. 2021).  

Conclusion 

Here I focus on understanding whether and why cis- and trans-regulatory mutations to 

the same focal gene have different pleiotropic effects on expression and fitness and therefore are 

likely to be acted on differently by natural selection. This work advances our understanding how 

pleiotropy may influence the evolution of gene expression and is also an example of the 

information exchange between molecular and systems biology that is necessary to address the 

questions of how mutations influence phenotype. The work in this dissertation makes another 

small step forward in answering questions of how genotypes are related to phenotypes and 

ultimately to fitness, which continue to be a major focus of evolutionary and molecular biology.  
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Appendix: Mutational Sources of Trans-regulatory Variation Affecting Gene Expression in 

Saccharomyces cerevisiae 2 

Abstract 

Heritable variation in a gene’s expression arises from mutations impacting cis- and trans-

acting components of its regulatory network. Here, we investigate how trans-regulatory 

mutations are distributed within the genome and within a gene regulatory network by identifying 

and characterizing 69 mutations with trans-regulatory effects on expression of the same focal 

gene in Saccharomyces cerevisiae. Relative to 1766 mutations without effects on expression of 

this focal gene, we found that these trans-regulatory mutations were enriched in coding 

sequences of transcription factors previously predicted to regulate expression of the focal gene. 

However, over 90% of the trans-regulatory mutations identified mapped to other types of genes 

involved in diverse biological processes including chromatin state, metabolism and signal 

transduction. These data show how genetic changes in diverse types of genes can impact a gene’s 

expression in trans, revealing properties of trans-regulatory mutations that provide the raw 

material for trans-regulatory variation segregating within natural populations. 

 

 

 
2 This appendix is published as: Duveau F, Vande Zande P, Metzger BP, Diaz CJ, Walker EA, Tryban S, Siddiq 
MA, Yang B, Wittkopp PJ. 2021. Mutational sources of trans-regulatory variation affecting gene expression in 
Saccharomyces cerevisiae. Elife. Available from: http://dx.doi.org/10.7554/eLife.67806. Specific contributions by 
PVZ include the generation of all strains bearing mutations in RAP1 and assaying their effects on TDH3 expression. 
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Introduction 

The regulation of gene expression is a complex process, essential for cellular function, 

that impacts development, physiology, and evolution. Expression of each gene is regulated by its 

cis-regulatory DNA sequences (e.g., promoters, enhancers) interacting either directly or 

indirectly with trans-acting factors (e.g. transcription factors, signaling pathways) encoded by 

genes throughout the genome. Genetic variants affecting both cis- and trans-acting components 

of regulatory networks contribute to expression differences within and between species (Albert 

& Kruglyak, 2015; Barbeira et al., 2018; Ferraro et al., 2020; Gamazon et al., 2018; Oliver et al., 

2005). This regulatory variation arises the same way as genetic variation affecting any other 

quantitative trait: new mutations generate variation in gene expression and selection favors the 

transmission of some genetic variants over others, giving rise to polymorphism within a species 

and divergence between species. Because new mutations are the raw material for this 

polymorphism and divergence, knowing how new mutations impact gene expression is essential 

for understanding how gene regulation evolves (reviewed in Hill et al., 2020). Targeted 

mutagenesis has been used to systematically examine the effects of individual mutations in cis-

regulatory sequences for a variety of elements in a variety of species (Hornung et al., 2012; 

Kwasnieski et al., 2012; Maricque et al., 2017; Melnikov et al., 2012; Metzger et al., 2015; 

Patwardhan et al., 2009; Sharon et al., 2012), but such targeted approaches are not well-suited for 

surveying the effects of new trans-regulatory mutations because trans-regulatory mutations can 

be located virtually anywhere within the genome. Consequently, we know comparatively little 

about the genomic sources, molecular mechanisms of action and evolutionary contributions of 

individual trans-regulatory mutations. 
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Genetic mapping experiments and genome-wide association studies (GWAS) have shown 

that gene expression is a highly polygenic trait, with hundreds of genetic variants typically 

associated with natural variation in expression levels of each gene (Albert et al., 2018; Metzger 

& Wittkopp, 2019; Sinnott-Armstrong et al., 2021). Although these studies often lack the 

resolution to identify individual genetic changes affecting expression, most of this variation 

maps far from the gene whose expression it affects and is therefore likely to have trans-acting 

effects. Trans-acting variants segregating in natural populations are most often expected to affect 

transcription factors (Albert et al., 2018; Lewis et al., 2014), but they can also alter genes 

encoding signaling proteins, chromatin modifiers, metabolic enzymes, or any other gene product 

that can influence the availability, accessibility, or activity of transcription factors (Lutz et al., 

2019; Mehrabian et al., 2005; Schadt et al., 2005; Yvert et al., 2003). Indeed, the recently 

proposed omnigenic model emphasizes the interconnectedness of regulatory networks 

controlling transcription to help explain the highly polygenic nature of diverse quantitative 

traits.  

Despite the vast potential target size for trans-regulatory mutations (Hill et al., 2020), 

regions of the genome most likely to harbor mutations affecting a particular gene’s expression 

might be predictable from knowledge of its regulatory network. Among eukaryotes, the set of 

genes and interactions regulating gene expression in trans is perhaps best understood in the 

baker’s yeast Saccharomyces cerevisiae (Hughes & Boer, 2013): networks of regulatory 

connections (Teixeira et al., 2018) have been inferred from experiments that profile the 

transcriptional effects of gene deletions (Hughes et al., 2000; Jackson et al., 2020; Kemmeren et 

al., 2014), map binding sites for transcription factors (Rhee & Pugh, 2011; Zheng et al., 2010; 

Zhu et al., 2009), identify protein-protein interactions (Gavin et al., 2002; Liu et al., 2020; 
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Tarassov et al., 2008), and test pairs of genes for genetic interactions (Costanzo et al., 2016; 

Leeuwen et al., 2016). However, the extent to which the genomic sources of trans-regulatory 

mutations can be predicted from such networks is generally unknown (Flint & Ideker, 2019). In 

addition, the extent to which the genomic distribution of new mutations predicts the genomic 

distribution of natural polymorphisms is also unclear because mutations that are strongly 

deleterious might rarely be found circulating within a population as standing genetic variation. 

For example, mutations in coding sequences might often impact gene expression but might also 

tend to be more pleiotropic and thus more deleterious than mutations in non-coding regions of 

these genes. Comparing the genomic distribution of mutations that have not experienced natural 

selection to the genomic distribution of polymorphisms that have can reveal such differences 

between the possible and actual sources of variation in gene expression in the wild.  

Systematic studies of new mutations identifying and characterizing the effects of 

individual genetic changes are thus an important complement to GWAS describing the polygenic 

variation segregating within a species. Recently, a chemical mutagen was used to induce 

mutations throughout the genome of S. cerevisiae, and hundreds of mutant genotypes were 

collected that all altered expression of the same gene, providing the biological resources needed 

to systematically characterize properties of new trans-regulatory mutations and to test the 

predictive power of inferred regulatory networks (Gruber et al., 2012; Metzger et al., 2016). 

Here, we use genetic mapping, candidate gene sequencing and functional validation to identify 

69 trans-regulatory mutations that alter expression of the focal gene from this set of mutants and 

contrast their properties with a comparable set of 1766 mutations that did not affect expression of 

the focal gene.  
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Using this collection of individual trans-regulatory mutations, we determined how trans-

regulatory mutations affecting expression of a single gene were distributed within the genome 

and within a regulatory network. For example, we asked how frequently trans-regulatory 

mutations were located in coding or non-coding sequences because trans-regulatory variants are 

often predicted to affect coding sequences (Hill et al., 2020) but some non-coding variants have 

been shown to be associated with trans-regulatory effects on gene expression (Consortium, 

2020; Yao et al., 2017; Yvert et al., 2003). We also asked whether genes encoding transcription 

factors were the primary source of trans-regulatory variation, which is often assumed (Albert et 

al., 2018; Lewis et al., 2014) despite case studies identifying trans-regulatory variants in genes 

encoding proteins with other functions (Lutz et al., 2019; Mehrabian et al., 2005; Schadt et al., 

2005; Yvert et al., 2003). To determine how well an inferred regulatory network can predict 

genomic sources of expression changes, we mapped the trans-regulatory mutations to a network 

of transcription factors predicted by functional genomic data to regulate expression of the focal 

gene and examined the molecular functions and biological processes impacted by trans-

regulatory mutations that did not map to genes in this network. By systematically examining the 

properties and identity of new trans-regulatory mutations, this work fills a key gap in our 

understanding of how expression differences arise and may help predict sources of trans-

regulatory variation segregating in natural populations. Indeed, we found that the genomic 

distribution of new trans-regulatory mutations overlaps significantly with the genomic 

distribution of trans-regulatory variants segregating among wild isolates of S. cerevisiae that 

affect expression of the same gene (Metzger & Wittkopp, 2019), suggesting that the mutational 

process generating new trans-regulatory variation significantly shaped the regulatory variation 

we see in the wild. 
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Results 

Genetic mapping of trans-regulatory mutations 

To characterize properties of new trans-regulatory mutations affecting expression of a 

focal gene, we took advantage of three previously collected sets of haploid mutants that all 

showed altered expression of the same reporter gene (Figure A-1A, Gruber et al., 2012; Metzger 

et al., 2016). This reporter gene (PTDH3-YFP) encodes a yellow fluorescent protein whose 

expression is regulated by the S. cerevisiae TDH3 promoter, which natively drives constitutive 

expression of a glyceraldehyde-3-phosphate dehydrogenase involved in glycolysis and 

gluconeogenesis (McAlister & Holland, 1985). Mutations in these mutants were caused by 

exposure to the chemical mutagen ethyl methanesulfonate (EMS), which induces primarily G:C 

to A:T point mutations randomly throughout the genome (Shiwa et al., 2012). The dose of EMS 

used in these studies was chosen so that most mutants with a detectable change in PTDH3-YFP 

expression should have only one mutation causing this change in expression among the 

mutations they carry (Metzger et al., 2016; Gruber et al., 2012). Together, these collections 

contain ~1500 mutants isolated irrespective of their fluorescence levels (“unenriched” mutants) 

and ~1200 mutants isolated after enriching for cells with the largest changes in fluorescence 

(Figure A-1A, see Figure A-2 for a diagram showing the number of mutants and mutations 

included at each step of the study). When we started this work, expression level of PTDH3-YFP in 

these mutant genotypes had been described (Gruber et al., 2012; Metzger et al., 2016), but the 

specific mutations present within each mutant as well as which mutation(s) alter(s) PTDH3-YFP 

expression in each genotype were unknown.  

From these collections, we selected 82 EMS-treated mutants for genetic mapping to 

identify individual causal mutations (Figure A-1A, Figure A-2). Sanger sequencing of the 
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reporter gene in these mutants showed that none had mutations in the TDH3 promoter or any 

other part of the reporter gene, indicating that they harbored mutations affecting PTDH3-YFP 

expression in trans. 39 of these mutants were selected based on previously published 

fluorescence data, with 11 mutants selected from the collections enriched for large effects (red 

points in Figure A-1B,C) and 28 mutants selected from the unenriched collection (red points in 

Figure A-1D). Each selected mutant showed changes in average YFP fluorescence greater than 

1% relative to the un-mutagenized progenitor strain. Another 197 mutants from the unenriched 

collection (blue points in Figure A-1D) were subjected to a secondary fluorescence screen, from 

which an additional 43 mutants with a change in fluorescence greater than 1% (red points in 

Figure A-1E) were chosen. Overall, the 82 mutants were selected randomly from the 528 EMS 

mutants that showed statistically significant fluorescence changes greater than 1% relative to 

wild-type (P < 0.05, see Methods and Figure A-2 legend for a description of the statistical tests). 

A 1% change in YFP fluorescence has previously been shown to correspond to a ~3% change in 

YFP mRNA abundance (see Methods and Duveau et al., 2018), although changes in fluorescence 

caused by trans-regulatory mutations in these mutants could affect either transcription driven by 

the TDH3 promoter or post-transcriptional regulation of YFP synthesis or stability.  

To identify mutations within the 82 selected EMS mutants, and to determine which of 

these mutation(s) were most likely to affect YFP expression in each mutant, we performed bulk-

segregant analysis followed by whole-genome sequencing (BSA-Seq) as described in Duveau et 

al. (2014) with minor modifications (see Methods). Briefly, each mutant strain was crossed to a 

common mapping strain expressing the PTDH3-YFP reporter gene, and large populations of 

random haploid spores were isolated after inducing meiosis in the resulting diploids (Figure A-

3A). For each of the 82 segregant populations, a low fluorescent bulk and a high fluorescent bulk 
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of ~1.5 x 105 cells each were isolated using fluorescence-activated cell sorting (FACS) (Figure 

A-3B). Genomic DNA extracted from each bulk was then sequenced to an average coverage of 

~105x (ranging from 75x to 134x among samples, Supplementary File 1) to identify the 

mutations present within each mutant genotype and to quantify the frequency of mutant and non-

mutant alleles in both bulks (Figure A-3C). A mutation causing a change in fluorescence is 

expected to be found at different frequencies in the two populations of segregant cells. 

Conversely, a mutation with no effect on fluorescence that is not genetically linked to a mutation 

affecting fluorescence is expected to be found at similar frequencies in these two populations.  

Using a stringent approach for calling sequence variants (see Methods), we identified a 

total of 1819 mutations in the BSA-Seq data from the 76 mutants from Metzger et al. (2016) 

(Supplementary File 2, Figure A-2), among which 1768 mutations (97.2%) were single 

nucleotide changes (Figure A-3D). Of these single nucleotide changes, 96.3% were one of the 

two types of point mutations (G:C to A:T transitions) known to be primarily induced by EMS 

(Shiwa et al., 2012). 48 small indels and 3 aneuploidies, which could have arisen spontaneously 

or been introduced by EMS, were also identified. Of these 3 mutants with aneuploidies, 2 were 

found to have an extra copy of chromosome I and 1 was found to have an extra copy of 

chromosome V based on ~1.5-fold higher sequencing coverage of these chromosomes relative to 

the rest of the genome in the BSA-seq data from segregant populations (shown in Supplementary 

File 3). We identified an average of 23.9 mutations per strain, which is within the 95% 

confidence interval of 21 to 45 mutations per strain estimated previously from the frequency of 

canavanine resistant mutants (Metzger et al., 2016). Surprisingly, the number of mutations per 

strain did not follow a Poisson distribution: we observed more strains with a number of 

mutations far from the average than expected for a Poisson process (P-value < 10-5, resampling 
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test; Figure A-4), which could be explained by cell-to-cell heterogeneity in DNA repair after 

exposure to the mutagen (Liu et al., 2019; Uphoff et al., 2016).  

At least one mutation was significantly associated with fluorescence in 46 of the mutants 

analyzed based on likelihood ratio tests (G-tests described in Methods, Supplementary File 2), 

with a total of 67 mutations associated with fluorescence identified among these mutants (Figure 

A-2), including all 3 aneuploidies (Supplementary File 3). 29 mutants had a single mutation 

associated with fluorescence, 13 mutants had two associated mutations, and 4 mutants had three 

associated mutations. However, 8 of the 13 mutants with two associated mutations and all 4 

mutants with three associated mutations showed linkage (genetic distance below 25 cM) between 

at least two of the mutations associated with fluorescence (Supplementary File 4, Figure A-2), 

suggesting that only one of the linked mutations might impact fluorescence in each of these 

mutants. To determine whether one linked mutation was more likely to impact fluorescence than 

the others, we compared the magnitude of allele-frequency difference between the high and low 

fluorescence pools (estimated by the G-value) for each mutation. For 9 of the 12 mutants with 

linked mutations, we found that the mutation with the highest G-value was significantly more 

strongly associated with fluorescence than the linked mutation(s) (resampling test: P < 0.05, 

Supplementary File 4), suggesting that this mutation was responsible for the fluorescence 

change. For the other 3 mutants, none of the linked mutations showed stronger evidence of 

impacting fluorescence than the others (resampling test: P > 0.05, Supplementary File 4). 

The remaining 36 mutants did not have any mutations significantly associated with 

fluorescence (Supplementary File 2, Figure A-2). These mutants tended to show smaller changes 

in fluorescence than mutants with one or more associated mutations (Figure A-5), suggesting that 

our power to map mutations causing 1% changes in fluorescence might have been lower than 
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anticipated. These 36 mutants might also harbor multiple mutations with small effects on 

expression, each of which was below our detection threshold. Consistent with this possibility, we 

observed a small but significant correlation (r2 = 0.127, P = 0.03) between the total number of 

mutations in these 36 EMS mutants and their expression level (Figure A-6). It is also possible 

that we failed to find associated mutations in some of these mutants because their change in 

fluorescence was initially overestimated by the “winner’s curse” (Xiao & Boehnke, 2009). 

Accordingly, 71% of mutants selected for mapping after two independent fluorescence screens 

had at least one mutation significantly associated with fluorescence compared to only 30% of 

mutants selected after a single fluorescence screen. Some changes in fluorescence observed in 

these 36 mutants might also have been caused by non-genetic variation and/or undetected 

mutations. 

Additional trans-regulatory mutations identified by sequencing candidate genes 

We noticed in the BSA-seq data that three mutations increasing fluorescence more than 

5% relative to the un-mutagenized progenitor strain mapped to two genes (ADE4 and ADE5) in 

the same biochemical pathway (de novo purine biosynthesis) (Supplementary File 2). We 

therefore used Sanger sequencing to test whether these genes or other genes in this pathway were 

also mutated in 15 additional EMS mutants with fluorescence at least 5% higher than the 

progenitor strain. We first looked for mutations in ADE4, then ADE5 if no mutation was found in 

ADE4, and then ADE6 if no mutation was found in the other genes. At least one nonsynonymous 

mutation was identified by Sanger sequencing in one of these three genes in 14 of the 15 EMS 

mutants (green points in Figure A-1C,E; Supplementary File 5, Figure A-2). For the remaining 

mutant (brown point in Figure A-1E), we sequenced a fourth purine biosynthesis gene, ADE8, 

but again found no mutation. In two additional EMS mutants with smaller increases in 
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fluorescence (2.1% and 4.6%, purple points in Figure A-1D,E) and a reddish color characteristic 

of ADE2 loss of function mutants (Roman, 1956), we found nonsynonymous mutations in ADE2 

by Sanger sequencing (Supplementary File 5, Figure A-2). Follow-up experiments showed that 

mutations in ADE2, ADE5, and ADE6 did not increase YFP fluorescence driven by two other 

promoters (PRNR1 and PSTM1), suggesting that mutations in the purine biosynthesis pathway 

affected expression of PTDH3-YFP through mechanisms mediated by the TDH3 promoter rather 

than YFP (Figure A-7). Taken together, these data suggest that genes in the purine biosynthesis 

pathway are the predominant mutational source of large increases in TDH3 expression.  

Functional testing confirms effects of trans-regulatory mutations identified by genetic 

mapping and candidate gene sequencing 

To determine whether mutations statistically associated with fluorescence in the BSA-seq 

data actually affected expression of PTDH3-YFP, we introduced 34 of the 67 associated mutations 

individually into the fluorescent progenitor strain using scarless genetic engineering approaches 

(Supplementary File 6, Figure A-2). We also used scarless genome editing to create single-site 

mutants for 11 of the 17 additional mutations identified in purine biosynthesis genes by Sanger 

sequencing (Supplementary File 5, Supplementary File 6, Figure A-2). Fluorescence of these 

engineered strains (called “single-site mutants” hereafter) was then quantified by flow cytometry 

in parallel with fluorescence of the EMS mutant carrying the same associated mutation as well as 

the un-mutagenized progenitor strain, with four replicate populations analyzed for each 

genotype. Fluorescence values were then transformed into estimates of YFP abundance as 

described in the Methods.  

Of the 24 mutations without linked variants in EMS mutants that were tested in single-

site mutants, 23 (96%) caused a significant change in expression (P < 0.05, permutation test, 
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Supplementary File 6), suggesting a ~4% false positive rate in our BSA-Seq experiment. In 

addition, all 11 single-site mutants with mutations in purine biosynthesis genes identified by 

Sanger sequencing showed statistically significant effects on fluorescence relative to the un-

mutagenized progenitor strain (all increased fluorescence, P < 0.05, permutation test, 

Supplementary File 6). The remaining 10 mutations tested in single-site mutants were from 5 of 

the EMS mutants with two linked mutations associated with fluorescence. Each of these 

mutations was introduced separately into a single-site mutant to independently measure its effect 

on expression. For 4 of these 5 pairs of linked mutations, only one of the two single-site mutants 

showed a significant change in expression relative to the progenitor strain (Figure A-3E). In each 

case, the single-site mutant and the EMS mutant showed changes in expression in the same 

direction relative to the progenitor strain (Figure A-3E). The mutation affecting expression was 

always the mutation with the larger G-value in the BSA-Seq data, consistent with the results of 

the statistical tests described above (Supplementary File 4). In the last case (YPW54 in Figure A-

3E), both mutations affected expression in the single-site mutants, consistent with our inability to 

statistically predict which mutation was more likely to impact expression from the BSA-Seq data 

for this mutant as well as both mutations being nonsynonymous changes in the same gene 

(CHD1) (Supplementary File 4). The BSA-seq data also accurately predicted whether a mutation 

increased or decreased fluorescence for 27 (93%) of the 29 mutations with significant effects on 

fluorescence in single-site mutants (Figure A-3F). For the other two mutations, effects on 

expression in the same direction were observed in the single-site mutants and the corresponding 

EMS mutants (Supplementary File 5), suggesting that the different growth conditions used for 

the mapping experiment (see Methods) might have modified the effects of these mutations. 
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Comparing PTDH3-YFP expression in the 40 single-site mutants that significantly altered 

fluorescence to that in the 40 EMS mutants from which these mutations were identified showed 

that expression was very similar overall between single-site and EMS mutants sharing the same 

mutation (Figure A-3G, linear regression: r2 = 0.944, P = 2.4 x 10-25), although significant 

differences in expression were observed for some pairs (Figure A-3G, Figure A-8). The linear 

correlation between the expression of single-site mutants and EMS mutants remained strong 

when mutations identified by sequencing candidate genes (triangles in  Figure A-3G) were 

excluded (r2 = 0.854, P = 5.5 x 10-13). These data suggest that (1) the vast majority of the 

mutations we identified by genetic mapping and candidate gene sequencing do indeed have 

trans-regulatory effects on expression of PTDH3-YFP and (2) the majority of EMS mutants 

analyzed had a single mutation that was primarily, if not solely, responsible for the observed 

change in PTDH3-YFP expression. 

Properties of trans-regulatory mutations affecting expression driven by the TDH3 promoter 

In all, 69 mutations showed evidence of affecting PTDH3-YFP expression in trans (Figure 

A-2), including 3 aneuploidies and 66 point mutations. 52 of these mutations were identified by 

genetic mapping (Supplementary File 7) and 17 were identified by sequencing candidate genes 

(Supplementary File 5). 12 of the mutations identified by genetic mapping were genetically 

linked to one or more other mutations but showed stronger evidence of affecting PTDH3-YFP 

expression than the linked mutation(s) in statistical and/or functional tests described above 

(Supplementary File 3). To identify trends in the properties of these 69 trans-regulatory 

mutations, we compared them to 1766 mutations considered non-regulatory regarding PTDH3-

YFP expression because they showed no significant association with expression of the reporter 

gene in the BSA-Seq experiment (G-test: P > 0.01, Figure A-2). To be conservative, 8 mutations 
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that showed a marginally significant association with expression (G-test: 0.001 < P < 0.01) as 

well as 15 mutations associated with expression only because of genetic linkage were excluded 

from further analyses. 

First, we asked whether the mutational spectra of trans-regulatory mutations differed 

from non-regulatory mutations (Figure A-9A). We found that G:C to A:T transitions most 

commonly introduced by EMS occurred at similar frequencies in the two groups (G-test, P = 

0.84). No indels were associated with expression in the BSA-seq data (Supplementary File 7), 

which was not statistically different from the frequency of indels among non-regulatory 

mutations (0% vs 2.7%, G-test, P = 0.056). By contrast, aneuploidies were highly over-

represented in the set of trans-regulatory mutations since all three extra copies of a chromosome 

observed in the BSA-Seq data were found to be associated with fluorescence (G-test, P = 8.6 x 

10-6); a similar overrepresentation was observed when considering only mutations identified by 

BSA-Seq (Figure A-10A; G-test, P = 3.5 x 10-6). We also found a significant difference in the 

genomic distribution of the two sets of mutations (G-test, P = 2.4 x 10-3), with non-regulatory 

mutations appearing to be randomly distributed throughout the genome but trans-regulatory 

mutations enriched on chromosomes VII and XIII (Figure A-9B, Figure A-11). However, these 

two chromosomes contain the purine biosynthesis genes in which multiple trans-regulatory 

mutations were identified, and there was no significant difference in genomic distributions 

between trans-regulatory and non-regulatory mutations when mutations in purine biosynthesis 

genes were excluded (G-test, P = 0.35) or when mutations identified by direct sequencing of 

candidate genes were excluded (Figure A-10B; G-test, P = 0.22).  

Trans-regulatory mutations are often assumed to be located in coding sequences, but they 

can also be located in non-coding, presumably cis-regulatory, sequences of trans-acting genes 
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(Hill et al., 2020). We therefore asked whether trans-regulatory mutations affecting PTDH3-YFP 

expression were more often found in coding or non-coding regions of the genome than expected 

by chance. Of the 1766 non-regulatory mutations, 1257 (71.3%) were coding mutations located 

in exons, and 506 (28.7%) were non-coding mutations located in intergenic (n = 500) or intronic 

(n = 6) regions (Figure A-9C). This paucity of mutations in introns is consistent with the rarity of 

introns in S. cerevisiae, and the overall frequency of non-coding mutations (28.7%) is similar to 

the fraction of the S. cerevisiae genome (30.6% of 12.1 Mb) considered non-coding 

(www.yeastgenome.org). By contrast, of the 66 trans-regulatory point mutations, only one was 

located in a non-coding sequence (Figure A-9C). This non-coding mutation was located in the 

intergenic sequence between IOC2 and KIN2, presumably affecting expression of one or both 

genes with a downstream effect on PTDH3-YFP expression. The 3 aneuploidies were excluded 

from this and subsequent analyses because they affected both coding and non-coding sequences 

of a large number of genes. The underrepresentation of non-coding changes among regulatory 

mutations was statistically significant (1.5% of trans-regulatory mutations are non-coding vs 

28.4% of non-regulatory mutations; G-test, P = 4.3 x 10-9), even when excluding mutations 

identified by sequencing candidate genes (Figure A-10C; G-test, P = 9.1 x 10-7).These 

observations suggest that new trans-regulatory mutations affecting PTDH3-YFP expression by 

more than 3% (i.e. fluorescence changes greater than 1%) are more likely to alter coding than 

non-coding sequences. This enrichment in coding sequences might be because coding sequences 

tend to have a higher density of functional sites than non-coding sequences.  

Finally, we examined how trans-regulatory mutations located in coding sequences 

impacted the amino acid sequences of the corresponding proteins. Among mutations identified in 

coding sequences, 100% of the 65 trans-regulatory mutations changed the amino acid sequence 



 145 

of proteins compared to only 70% of 1257 non-regulatory mutations (Figure A-9D, G-test, P = 

1.4 x 10-4). Limiting this analysis to the 48 trans-regulatory mutations identified by BSA-seq 

also showed an enrichment of mutations changing the amino acid sequence of proteins (Figure 

A-10D, G-test, P = 5.6 x 10-6). This difference was primarily driven by mutations that introduced 

stop codons (nonsense mutations) rather than mutations that substituted one amino acid for 

another (nonsynonymous mutations): 20% of trans-regulatory mutations in coding sequences 

were nonsense mutations versus 3% of non-regulatory mutations (Figure A-9D; G-test, P = 4.8 x 

10-6), and 80% of trans-regulatory mutations were nonsynonymous versus 67% of non-

regulatory mutations (Figure A-9D; G-test, P = 0.07). A similar pattern was observed when 

considering only trans-regulatory mutations identified by BSA-Seq (Figure A-10D). Nonsense 

mutations always altered an arginine, glutamine, or tryptophan codon (Figure A-9E), consistent 

with the structure of the genetic code and the types of mutations induced by EMS (figure S8 in 

Metzger et al., 2016). For nonsynonymous mutations, two types of amino acid changes were 

particularly enriched among trans-regulatory mutations (Figure A-9E; Figure A-12): 26.2% of 

trans-regulatory mutations changed glycine to aspartic acid versus 5.2% of non-regulatory 

mutations (permutation test, P < 10-4), and 10.8% of trans-regulatory mutations changed glycine 

to glutamic acid versus 2.7% of non-regulatory mutations (permutation test, P = 0.0042). As a 

consequence, mutations altering glycine codons were strongly over-represented in general 

among trans-regulatory mutations (49.2% of trans-regulatory mutations vs 14.5% of non-

regulatory mutations in coding sequences; permutation test, P < 10-4). This over-representation 

remained significant after excluding mutations identified by Sanger sequencing (Figure A-10E, 

A-13; 41.7% of trans-regulatory mutations altering glycine vs 14.5% of non-regulatory 

mutations, P = 10-4). This pattern may be observed because glycine is the smallest amino acid, 
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making its substitution likely to modify protein structure (Bhate et al., 2002; Miller, 2007). 

Indeed, glycine is one of the three amino acids with the lowest experimental exchangeability 

(Yampolsky & Stoltzfus, 2005) and mutations affecting glycine codons are enriched among 

mutations causing human diseases (Khan & Vihinen, 2007; Molnár et al., 2016; Vitkup et al., 

2003). 

Regulatory mutations are enriched in a predicted TDH3 regulatory network 

Because of the key role transcription factors play in the regulation of gene expression, 

and because transcription factors have been shown to be a source of trans-regulatory variation in 

natural populations (Albert et al., 2018; Lewis et al., 2014), we asked whether trans-regulatory 

mutations affecting PTDH3-YFP expression were enriched in genes encoding transcription factors. 

We found that 5 (7.7%) of the 65 trans-regulatory coding mutations mapped to the coding 

sequence of one of the 212 genes predicted to encode a transcription factor in the YEASTRACT 

database (Teixeira et al., 2018), but this was not significantly more than the 5.6% of non-

regulatory coding mutations mapping to these genes (G-test: P = 0.52). Trans-regulatory coding 

mutations were also not significantly enriched in transcription factor genes when we excluded 

the 17 mutations identified by Sanger sequencing (G-test: P = 0.22). Not all transcription factors 

are expected to regulate expression of TDH3, however, so we also tested for enrichment of trans-

regulatory mutations among transcription factors specifically predicted to regulate TDH3.  

Using information consolidated in the YEASTRACT database (Teixeira et al., 2018) that 

supports evidence of a transcription factor binding to a gene’s promoter and regulating its 

expression, we constructed a network (Figure A-14) of potential direct regulators of TDH3 as 

well as potential direct regulators of these direct regulators (1st and 2nd level regulators of TDH3) 

and asked how often the trans-regulatory mutations we identified mapped to these genes. We 
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found that 4 trans-regulatory mutations mapped to three genes in this network, with 2 mutations 

affecting the 1st level regulator TYE7, 1 mutation affecting the 1st level regulator GCR2, and 1 

mutation affecting the 2nd level regulator TUP1 (Supplementary File 7). This number of 

mutations mapping to genes in the predicted TDH3 regulatory network was 12-fold greater than 

expected by chance (6.1% for trans-regulatory vs 0.5% for non-regulatory mutations; G-test, P = 

0.0037), or 16-fold greater than expected by chance when excluding mutations identified by 

Sanger sequencing (8.2% for trans-regulatory vs 0.5% for non-regulatory mutations; G-test, P = 

0.0024). Therefore, the inferred regulatory network had predictive power as expected, but the 

vast majority of trans-regulatory coding mutations (61 of 65, or 94%) mapped to genes outside 

of this network. Only one of these other trans-regulatory mutations mapped to a transcription 

factor. This mutation was a nonsynonymous substitution affecting ROX1, which is predicted in 

the YEASTRACT database to directly regulate expression of the indirect TDH3 regulator TUP1. 

In other words, ROX1 is predicted by existing functional genomic data to be a 3rd level regulator 

of TDH3 (Figure A-14). With no other transcription factors harboring a trans-regulatory 

mutation in our dataset, this result suggests that mutations in transcription factors located more 

than three levels away from TDH3 in its transcriptional regulatory network are unlikely to be 

sources of new expression changes driven by the TDH3 promoter.  

Deleterious effects of mutations in two direct regulators of TDH3 

Transcription factors encoded by the TYE7 and GCR2 genes found to harbor trans-

regulatory mutations affecting expression of PTDH3-YFP are known to regulate the expression of 

glycolytic genes (including TDH3) by forming a complex with transcription factors encoded by 

the RAP1 and GCR1 genes (Shively et al., 2019). Rap1p (Yagi et al., 1994) and Gcr1p (Huie et 

al., 1992) are both known to bind directly to the TDH3 promoter (Figure A-15A), and mutations 
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in these binding sites cause large decreases in TDH3 expression (Metzger et al., 2015). These 

observations strongly suggest that mutations in RAP1 and GCR1 should also cause detectable 

changes in TDH3 expression, yet no mutations were observed in these genes in our set of trans-

regulatory mutations. To investigate why we did not recover trans-regulatory mutations in RAP1 

or GCR1, we used error-prone PCR to generate mutant alleles of these genes with mutations in 

either the promoter or coding sequence of RAP1 or the second exon of GCR1, which includes 

99.7% of the GCR1 coding sequence (Figure A-15B). Hundreds of these RAP1 and GCR1 

mutant alleles were then introduced individually into the un-mutagenized strain carrying the 

PTDH3-YFP reporter gene using CRISPR/Cas9-guided allelic replacement. Sequencing the 

mutated regions of RAP1 and GCR1 in a random subset of transformants showed that each strain 

harbored an average of 1.8 mutations in the RAP1 gene (Figure A-15C) or 2.4 mutations in the 

GCR1 gene (Figure A-15D). As expected for PCR-based mutagenesis, the number of mutations 

per strain appeared to follow a Poisson distribution both for RAP1 mutants (Figure A-15C, Chi-

square goodness of fit, P = 0.14) and GCR1 mutants (Figure A-15D, Chi-square goodness of fit, 

P = 0.79). 

Among the RAP1 mutant strains, only 9.1% (43 of 470 strains) showed a significant 

change in PTDH3-YFP expression greater than 3% (corresponding to a ~1% change in 

fluorescence) relative to the un-mutagenized progenitor strain (Figure A-15E), suggesting that 

most EMS mutants harboring coding mutations in RAP1 would have been excluded from our 

mapping study. In addition, the strongest decrease in PTDH3-YFP expression observed among 

RAP1 mutants (17%) was substantially smaller than the strongest decrease in expression caused 

by mutating the RAP1 binding site in the TDH3 promoter (57.5% reported in Duveau et al., 

2018), suggesting that even this most severe phenotype was not caused by a null allele of RAP1. 
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To test this hypothesis, we used site-directed mutagenesis to alter 5 amino acids (one at a time) 

in Rap1p expected to disrupt DNA binding based on the crystal structure of Rap1p complexed 

with DNA (Konig et al., 1996). In each case, we obtained by PCR a DNA fragment containing 

either a synonymous mutation in the codon corresponding to the amino acid (which should not 

affect the DNA binding of Rap1p) or one of two nonsynonymous mutations, with one 

nonsynonymous mutation more likely to alter protein function than the other (Yampolsky & 

Stoltzfus, 2005). We then used CRISPR/Cas9 allele replacement to introduce each mutation into 

the yeast genome and sequenced 10 independent clones from each transformation to determine if 

the mutation was introduced in the RAP1 coding sequence as intended. All five synonymous 

mutations were observed in several of the clones sequenced, but 7 of the 10 nonsynonymous 

mutations were never recovered (Supplementary File 8). This outcome suggests that 

nonsynonymous mutations altering the DNA binding of Rap1p are lethal or nearly lethal, making 

them unlikely to have been recovered in a mutagenesis screen. Indeed, Rap1p1 is known to be an 

essential, pleiotropic transcription factor playing critical roles in regulating expression of 

glycolytic genes like TDH3 as well as ribosomal proteins and genes required for mating 

(reviewed in Piña et al., 2003). Taken together, these data indicate that RAP1 mutations are 

unlikely to be common sources of variation in expression driven by the TDH3 promoter.  

For the GCR1 mutant strains, 37.7% showed a significant change in PTDH3-YFP 

expression greater than 3% relative to the un-mutagenized progenitor strain (Figure A-15F). 

Several of these mutant alleles decreased the expression driven by the TDH3 promoter by ~80%, 

which is similar to the previously reported effects of mutations in the Gcr1p binding sites of the 

TDH3 promoter (Metzger et al., 2015), suggesting that they were null alleles. Indeed, 

resequencing these large effect alleles revealed that one of them had a single nucleotide insertion 
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in the 28th codon of the GCR1 ORF, which led to a frame shift eliminating 96% of amino acids 

(757 of 785) from Gcr1p. Because Gcr1p regulates expression of many glycolytic genes 

(Uemura et al., 1997) and GCR1 deletion has been reported to cause severe growth defects in 

fermentable carbon source environments (Clifton et al., 1978; Hossain et al., 2016; López & 

Baker, 2000), we hypothesized that the fitness effects of mutations in GCR1 might also have 

caused them to be underrepresented in the population from which the EMS mutants analyzed 

were derived. To test this hypothesis, we measured the relative fitness of 62 of the 220 GCR1 

mutants, including all mutants with decreased PTDH3-YFP expression. GCR1 mutants causing the 

largest changes in PTDH3-YFP expression showed strong defects in growth rate; however, several 

GCR1 mutants with changes in PTDH3-YFP expression greater than 3% did not strongly affect 

fitness (Figure A-15G). This observation suggests that some of the coding mutations in GCR1 

decreasing PTDH3-YFP expression could have been sampled among the EMS mutants used for 

mapping. We therefore conclude that mutations in GCR1 were most likely not recovered in our 

set of regulatory mutations because of the wide diversity of mutations that can affect TDH3 

expression and the limited number of EMS mutants included in the mapping experiment. 

Properties of genes harboring regulatory mutations 

With only 5 of the 65 trans-regulatory point mutations in coding sequences mapping to 

transcription factors, we used gene ontology (GO) analysis to examine the types of genes 

harboring trans-regulatory mutations affecting PTDH3-YFP expression more systematically. In all, 

these 65 mutations mapped to 42 different genes, with 9 genes affected by more than one 

mutation, 4 of which were genes involved in the de novo purine biosynthesis pathway (Figure A-

16A). Several gene ontology terms were significantly enriched among genes affected by trans-

regulatory mutations relative to genes affected by non-regulatory mutations. Supplementary File 
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9 includes all enriched GO terms, whereas Figure 6B only includes enriched GO terms that are 

not parent to other GO terms in the GO hierarchy. Excluding mutations identified by sequencing 

candidate genes had a negligible impact on the outcome of the GO term analysis, with more than 

96% of overlap between the GO terms found to be enriched before and after excluding mutations 

identified by Sanger sequencing (Supplementary File 8). Of the 33 GO terms enriched for trans-

regulatory mutations shown in Figure 6B, 11 terms (including 13 of the 42 genes with trans-

regulatory mutations) were related to chromatin structure (Figure A-16B), which is known to 

play an important role in the regulation of gene expression (Li et al., 2007). An additional 5 GO 

terms (including 6 genes with trans-regulatory mutations) were related to metabolism, and 4 

terms (including 9 genes with trans-regulatory mutations) were related to transcriptional 

regulation (Figure A-16B). Three GO terms related to glucose signaling, including regulation of 

transcription by glucose, carbohydrate transmembrane transport and glucose metabolic process, 

were also significantly enriched for genes affected by trans-regulatory mutations (Figure A-

16B). When we broadened this category of genes based on a review of glucose signaling 

(Santangelo, 2006), the enrichment included 5 genes implicated in glucose signaling 

(Supplementary File 10; 12.2% of genes affected by trans-regulatory mutations were involved in 

glucose signaling vs 2.7% of genes affected by non-regulatory mutations; Fisher’s exact test: P = 

6.2 x 10-3).  

At the pathway level, we found that genes involved in glycolysis and de novo purine 

biosynthesis were also significantly enriched for trans-regulatory mutations (Figure a-16B), with 

the latter driven by the mutations in ADE2, ADE4, ADE5 and ADE6 genes described above 

(Supplementary File 11). Genes involved in iron homeostasis also emerged as an over-

represented group, with 5 GO terms (including 7 genes) being related to the regulation of 
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intracellular iron concentration (Figure A-16B). Diverse cellular processes implicated in iron 

homeostasis were represented among genes harboring trans-regulatory mutations, such as iron 

transport (FTR1, CCC2), iron trafficking and maturation of iron-sulfur proteins (CIA2, NAR1), 

transcriptional regulation of the iron regulon (FRA1) and post-transcriptional regulation of iron 

homeostasis (TIS11). Remarkably, nearly half of all trans-regulatory point mutations in coding 

sequences (31 of 65) were located in genes involved either in purine biosynthesis or iron 

homeostasis. Moreover, 6 of the 8 genes harboring more than one trans-regulatory mutation 

(Figure A-16A) were involved in one of these two processes. Mutations in purine biosynthesis 

genes tended to cause large increases in expression, whereas mutations in iron homeostasis genes 

tended to cause large decreases in expression (Supplementary File 11). Although the mechanistic 

relationship between these pathways and TDH3 expression is not known, changing cellular 

conditions, including concentrations of metabolites (Pinson et al., 2009) or iron within the cell 

(reviewed in Outten & Albetel, 2013), can affect the regulation of gene expression. Ultimately, 

our data suggest that although mutations affecting PTDH3-YFP expression map to genes with 

diverse functions, genes involved in a small number of well-defined biological processes are 

particularly likely to harbor such trans-regulatory mutations.  

Trans-regulatory mutations are enriched in genomic regions harboring natural variation 

affecting TDH3 expression 

Because new mutations affecting gene expression provide the raw material for regulatory 

variation segregating within a species, we asked whether the trans-regulatory mutations we 

observed were enriched in genomic regions associated with naturally occurring trans-regulatory 

variation affecting expression driven by the TDH3 promoter. Specifically, we compared the 

genomic locations of trans-regulatory mutations identified in the current study to the locations of 
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trans-acting quantitative trait loci (QTL) affecting expression of PTDH3-YFP identified from 

crosses between the progenitor strain of the EMS mutants (BY) and 3 other S. cerevisiae strains 

(SK1, YPS1000, M22) (Metzger & Wittkopp, 2019) (Figure A-17A).  

Non-regulatory mutations were observed in eQTL regions as often as expected by chance 

(66.7% of non-regulatory mutations vs 65.1% of the whole genome in eQTL regions; G-test: P = 

0.15), but the 66 trans-regulatory mutations were significantly enriched in eQTL regions (Figure 

A-17B; 88% of trans-regulatory mutations vs 66.7% of non-regulatory mutations in eQTL 

regions; G-test: P = 9.6 x 10-5). The overrepresentation of trans-regulatory mutations in eQTL 

regions remained statistically significant when we considered only the 44 trans-regulatory 

mutations identified from the collection of EMS mutants not enriched for large effects (Figure A-

17B; G-test: P = 0.027) or when we excluded the 17 trans-regulatory mutations identified by 

sequencing candidate genes (Figure A-18; G-test: P = 8.4 x 10-3). The enrichment of trans-

regulatory mutations in eQTL regions was thus not driven solely by the effect size of these 

mutations or by the fact that several of the trans-regulatory mutations with large effects were 

located in the same genes. We also found that differences in sequencing coverage across the 

genome were unlikely to account for this enrichment (Figure A-18). When we considered eQTL 

regions identified from each cross separately, we observed a significant enrichment of trans-

regulatory mutations in eQTL regions identified in SK1 x BY and YPS1000 x BY crosses, but 

not in eQTL regions identified in the M22 x BY cross (Figure A-17B; G-tests: P = 0.016 for SK1 

x BY, P = 6.5 x 10-3 for YPS1000 x BY, P = 0.70 for M22 x BY). Overall, the enrichment of 

trans-regulatory mutations in eQTL regions suggests that biases in the mutational sources of 

regulatory variation have shaped genetic sources of expression variation segregating in wild 

populations.  
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Discussion 

By systematically isolating and characterizing 69 trans-regulatory mutations that all 

affect expression of the same focal gene, this study reveals how trans-regulatory mutations are 

distributed within a genome and within a regulatory network. For example, we found that these 

trans-regulatory mutations were widely spread throughout the genome, with all except one 

located in coding sequences. These data also allowed us to determine how well a regulatory 

network inferred from integrating functional genomic and genetic data can predict sources of 

trans-regulatory variation. Like many biological networks, transcriptional regulatory networks 

have been inferred with the promise of explaining relationships between genetic variants and the 

higher order trait of gene expression, but the predictive power of such networks remains sparsely 

tested (Flint & Ideker, 2019).  

We found that although the trans-regulatory mutations in coding regions were not 

enriched in transcription factors generally, they were overrepresented among transcription 

factors inferred to be regulators of TDH3. None of these transcription factors are known to 

directly bind to the TDH3 promoter, however, and mutations in RAP1 and GCR1, which have 

well characterized binding sites in the TDH3 promoter, were notably missing from our set of 

trans-regulatory mutations affecting PTDH3-YFP expression. Targeted mutagenesis of RAP1 and 

GCR1 suggested that most mutations in these genes (particularly RAP1) cause severe growth 

defects that might have prevented their recovery in mutagenesis screens. Over 90% of the trans-

regulatory mutations examined were located in genes outside of this transcription factor network 

encoding proteins with diverse molecular functions involved in chromatin remodeling, nonsense-

mediated mRNA decay, translation regulation, purine biosynthesis, iron homeostasis, and 

glucose sensing. Surprisingly, nearly half of the trans-regulatory mutations mapped to genes 
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involved in either the purine biosynthesis or iron homeostasis pathways. Although not 

anticipated, finding so many trans-regulatory mutations in genes that are not transcription factors 

is consistent with the transcriptomic effects of gene deletions showing that transcription factors 

tend not to affect expression of more genes than other types of proteins (Featherstone & Broadie, 

2002). Consequently, it seems that regulatory networks describing the relationships between 

transcription factors and target genes might capture only a small fraction of the potential sources 

of trans-regulatory variation. 

Understanding the properties of trans-regulatory mutations is important because these 

mutations provide the raw material for natural trans-regulatory variation. We found that 

mutations affecting PTDH3-YFP expression were enriched in genomic regions associated with 

expression variation among wild isolates of S. cerevisiae, suggesting that mutational sources of 

regulatory variation have had a lasting effect on sources of genetic variation affecting gene 

expression segregating in natural populations. This pattern is not necessarily expected if the 

trans-regulatory mutations we characterized captured only a small subset of the loci that can 

contribute to segregating trans-regulatory variation for this gene. Differences between the 

distribution of new trans-regulatory mutations and segregating trans-regulatory variants are also 

expected to arise when natural selection favors the maintenance of mutations at some loci more 

than others. Such differences in fitness can arise independently of a mutation’s impact on TDH3 

expression because trans-acting mutations can also have pleiotropic effects on expression of 

other genes. A third reason why differences between the mutational sources of trans-regulatory 

variation characterized here and trans-regulatory variation segregating in the wild can occur 

would be because of epistatic interactions among variants that are not captured by studying the 

effects of mutations individually. Ultimately, explaining the variation in gene expression we see 
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in natural populations will require studies like this elucidating the mutational input as well as 

studies describing the fitness, pleiotropic, and epistatic effects of these mutations in native 

environments.  

To the best of our knowledge this work provides the largest collection of individual 

mutations with trans-regulatory effects on expression of a single gene available to date, but it 

still only interrogates a single gene in a single species. Moreover, although the methods used 

were sensitive enough to identify genetic changes impacting expression of the focal gene as little 

as 1.6%, many mutations important for natural variation might have even smaller individual 

effects on a focal gene’s expression and are thus missing from this study (Rockman, 2012). The 

chemical mutagen (EMS) used to generate the mutants analyzed in this work also captures only a 

subset of the type of mutations that arise naturally, and the use of a YFP reporter gene to 

measure activity of the TDH3 promoter precluded recovery of trans-regulatory mutations that 

can impact native TDH3 expression post-transcriptionally. The focal gene chosen for this work, 

TDH3, might also have properties that cause its spectrum of trans-regulatory mutations to differ 

from other genes in S. cerevisiae. For example, TDH3 is one of the most highly expressed genes 

in S. cerevisiae (Ghaemmaghami et al., 2003), and it is one of the ~8% of genes in the S. 

cerevisiae genome that contains both a TATA box and a large nucleosome-free region in its 

promoter (Tirosh & Barkai, 2008). The metabolic functions of the TDH3p protein encoded by 

the TDH3 gene might also cause its regulatory network to have properties that differ from genes 

encoding proteins with other types of functions (Luscombe et al., 2004).  

It is tempting to extend these results from S. cerevisiae to other eukaryotes, but such 

extrapolation must take into account differences in genomes and gene regulatory mechanisms 

among species. For example, compared to species like fruit flies, mice, and humans, the baker’s 
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yeast S. cerevisiae has a much higher proportion of its genome (69.4%, www.yeastgenome.org) 

that codes for proteins and much more compact cis-regulatory sequences (the median promoter 

length is 455 bp (Kristiansson et al., 2009)). Consequently, new trans-regulatory mutations in 

coding sequences might be more likely to arise in S. cerevisiae than in these other species. Most 

S. cerevisiae genes also lack introns (Parenteau et al., 2019) and DNA methylation is less 

prevalent than in many other eukaryotic species (Tang et al., 2012), so these potential sources of 

trans-regulatory variation in other species are unlikely to be captured when studying regulatory 

mutations in S. cerevisiae. Nonetheless, we think some observations, such as that genes with 

diverse functions can harbor trans-regulatory mutations, are likely to also apply to other 

eukaryotic species. Ultimately, we believe that this work provides an important foundation for 

understanding how the trans-regulatory mutations that give rise to trans-regulatory variation 

segregating in natural populations are structured within a genome and a regulatory network.  

Materials and methods 

Mutant strains selected for mapping 

To identify mutations associated with expression changes, we selected 82 haploid mutant 

strains for bulk segregant analysis (Figure A-2A) from three collections of mutants obtained in 

Gruber et al. (2012) and Metzger et al. (2016) via ethyl methanesulfonate (EMS) mutagenesis of 

two progenitor strains expressing a YFP reporter gene (Yellow Fluorescent Protein) under 

control of the TDH3 promoter (PTDH3-YFP). 71 mutants were selected from a collection of 1498 

lines founded from cells isolated randomly (unenriched) after mutagenesis in Metzger et al. 

(2016), 5 mutants were selected from 211 lines founded from cells enriched for fluorescence 

changes after mutagenesis in Metzger et al. (2016) and the last 6 mutants were selected from 

1064 lines founded from cells enriched for fluorescence changes in Gruber et al. (2012). Mutants 
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from Metzger et al. (2016) were obtained by mutagenesis of the progenitor strain YPW1139 

(MAT𝛼 ura3d0), while mutants from Gruber et al. (2012) were obtained by mutagenesis of the 

progenitor strain YPW1 (MATa ura3d0 lys2d0). Both progenitors were derived from S288c 

genetic background (see Metzger et al. 2016 and Gruber et al. 2012 for details on construction of 

YPW1139 and YPW1 strains). In YPW1139, PTDH3-YFP is inserted at the ho locus with a 

KanMX drug resistance marker. In YPW1, PTDH3-YFP is inserted at position 199270 on 

chromosome I near a pseudogene. YPW1139 harbors RME1(ins-308A) and TAO3(1493Q) alleles 

(Deutschbauer & Davis, 2005) that increase sporulation frequency relative to YPW1 alleles, as 

well as SAL1, CAT5 and MIP1 alleles that decrease the frequency of the petite phenotype 

(Dimitrov et al., 2009). We previously showed that the few genetic differences between YPW1 

and YPW1139 did not affect the magnitude of effects of TDH3 promoter mutations on 

fluorescence (Metzger et al., 2016). Fluorescence levels of the three collections were measured 

in Gruber et al. (2012) and in Metzger et al. (2016). From these data, we selected 39 mutants for 

BSA-Seq that showed statistically significant fluorescence changes greater than 1% relative to 

the progenitor strain. Among these mutants, 6 were selected from the Gruber et al. (2012) 

collection (Z-score > 2.58, P < 0.01), 5 were selected from mutants enriched for large effects in 

Metzger et al. (2016) (permutation test, P < 0.05) and 28 were selected from unenriched mutants 

in Metzger et al. (2016) (permutation test, P < 0.05). The remaining 43 mutants included in 

BSA-Seq experiments were selected from mutants in Metzger et al. (2016) for which we 

collected new fluorescence measures using flow cytometry. This second fluorescence screen 

included 197 lines from the unenriched collection that were chosen because they showed 

statistically significant fluorescence changes (permutation test, P < 0.05) greater than 1% relative 

to the progenitor strain in the initial screen published in Metzger et al. (2016). The 43 mutants 
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selected from this 2nd screen showed statistically significant fluorescence changes (permutation 

test, P < 0.05) greater than 1% relative to the progenitor strain. 

Measuring YFP expression by flow cytometry 

Fluorescence levels of mutant strains were quantified by flow cytometry using the same 

approach as described in Metzger et al. (2016) and Duveau et al. (2018). For assays involving 

strains stored in individual tubes at -80°C, all strains were thawed in parallel on YPG plates (10 

g yeast extract, 20 g peptone, 50 ml glycerol, 20 g agar per liter) and grown for 2 days at 30°C. 

Strains were then arrayed using pipette tips in 96 deep well plates containing 0.5 ml of YPD 

medium (10 g yeast extract, 20 g peptone, 20 g D-glucose per liter) per well at positions defined 

in Supplementary File 12. The reference strain YPW1139 was inoculated at 20 fixed positions on 

each plate to correct for plate and position effects on fluorescence. The non-fluorescent strain 

YPW978 was inoculated in one well per plate to quantify the autofluorescence of yeast cells. 

Plates were incubated at 30°C for 20 hours with 250 rpm orbital shaking (each well contained a 

sterile 3 mm glass bead to maintain cells in suspension). Samples from each plate were then 

transferred to omnitrays containing YPG-agar using a V & P Scientific pin tool. For assays 

involving strains already arrayed in 96-well plates at -80°C (i.e. RAP1 and GCR1 mutants), 

strains were directly transferred on YPG omnitrays after thawing. After 48 hours of incubation at 

30°C, samples from each omnitray were inoculated using the pin tool in four replicate 96-well 

plates containing 0.5 ml of YPD per well and cultivated at 30°C with 250 rpm shaking for 22 

hours. Then, 15 µl of cell cultures were transferred to a 96-well plate with 0.5 ml of PBS per 

well (phosphate-buffered saline) and samples were immediately analyzed on a BD Accuri C6 

flow cytometer connected to a HyperCyt autosampler (IntelliCyt Corp). A 488 nm laser was used 

for excitation and the YFP signal was acquired with a 530/30 optical filter. Each well was 
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sampled for 2 seconds, yielding fluorescence and cell size measurements for at least 5000 events 

per well. Flow cytometry data were analyzed using custom R scripts (Source Code 1) as 

described in Duveau et al. (2018). First, events that did not correspond to single cells were 

filtered out using flowClust clustering functions. Second, fluorescence intensity was scaled by 

cell size in several steps. For Figures A-1B-D, these values of fluorescence relative to cell size 

were directly used for subsequent steps of the analysis. For other figures, these values were 

transformed using a log-linear function to be linearly related with YFP abundance. 

Transformations of fluorescence values were performed using the relationship between 

fluorescence levels and YFP mRNA levels established in Duveau et al. (2018) from five strains 

carrying mutations in the promoter of the PTDH3-YFP reporter gene. The YFP mRNA levels 

quantified in these five strains are expected to be linearly related with YFP protein abundance 

based on a previous study that compared mRNA and protein levels for a similar fluorescent 

protein (GFP) across a broad range of expression levels (Kafri et al., 2016). For this reason and 

because mutations recovered in this study may alter YFP expression at the post-transcriptional 

level, the transformed values of fluorescence were considered to provide estimates of YFP 

abundance instead of mRNA levels. The median expression among all cells of each sample was 

then corrected to account for positional effects estimated from a linear model applied to the 

median expression of the 20 control samples on each plate. To correct for autofluorescence, the 

mean of median expression measured among all replicate populations of the non-fluorescent 

strain was then subtracted from the median expression of each sample. Finally, a relative 

measure of expression was calculated by dividing the median expression of each sample by the 

mean of the median expression among replicates of the reference strain. Samples for which the 

relative expression differed from the median expression among replicate populations by more 
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than five times the median absolute deviation measured among replicate populations were 

considered as outliers and ignored. Figures show the mean relative expression among replicate 

populations of each genotype. Permutation tests used to compare the expression level of each 

single site mutant to the expression level of the EMS mutant carrying the same mutation are 

described in the legend of Figure A-8A. 

Two-level permutation tests 

We developed a permutation-based approach to determine which EMS mutant strains 

from Metzger et al. (2016) showed a significant change in YFP expression relative to their 

progenitor strain. This permutation approach was motivated by the fact that Student tests and 

Mann-Whitney-Wilcoxon tests applied to these data appeared to be overpowered. Indeed, the 

flow cytometry assay from Metzger et al. (2016) included 146 instances of the progenitor strain 

YPW1139 that were placed at random plate positions and with fluorescence measured in four 

replicate populations for each position. When comparing the mean expression of the four 

replicate populations of YPW1139 grown at a given plate position to the mean expression of all 

other replicate populations of YPW1139, the P-value was below 0.05 in 25.3% of cases when 

using Student tests and in 13.7% of cases when using Mann-Whitney-Wilcoxon tests. The fact 

that more than 5% of P-values were below 0.05 indicated that the tests were overpowered, which 

was because expression differences between YPW1139 populations grown at different plate 

positions were in average larger than expression differences between replicate populations grown 

at the same position. For this reason, we compared the expression of each mutant strain to the 

expression of the 146 x 4 populations of the YPW1139 progenitor strain using permutation tests 

with two levels of resampling as described below. In these tests, we compared 10,000 times the 

expression levels of each tested strain measured in quadruplicates to the expression levels of 
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YPW1139 measured in quadruplicates at a randomly selected plate position among the 146 

available positions (a new position was picked at each iteration). For each iteration of the 

comparison, we calculated the difference D between 1) the absolute difference observed between 

the mean expression of the tested strain and the mean expression of YPW1139 and 2) a 

randomized absolute difference of mean expression between two sets of 4 expression values 

obtained by random permutation of the 4 expression values measured for the tested strain and of 

the 4 expression values measured for YPW1139 at the selected plate position. Finally, for each 

tested strain the proportion of D values that were negative (after excluding D values equal to 

zero) corresponded to the P-value of the permutation test. When we applied this test to 

YPW1139 as a tested strain, we found that the P-value was below 0.05 for 6.1% of the 146 plate 

positions containing YPW1139, indicating that the permutation test was not overpowered. 

BSA-Seq procedure 

To identify mutations associated with fluorescence levels in EMS-treated mutants, we 

used bulk-segregant analysis followed by Illumina sequencing (BSA-Seq). BSA-Seq data 

corresponding to the 6 mutants from Gruber et al. (2012) were collected together with the BSA-

Seq dataset published in Duveau et al. (2014). For the other 76 mutants (from Metzger et al., 

2016), BSA-Seq data were collected in this study in several batches (see Supplementary File 13) 

using the experimental approach described in Duveau et al. (2014) (with few modifications). 

First, each EMS-treated mutant (MAT𝛼 ura3d0 ho::PTDH3-YFP ho::KanMX) was crossed to the 

mapping strain YPW1240 (MATa ura3d0 ho::PTDH3-YFP ho::NatMX4 mata2::yEmRFP-

HygMX) that contained the FASTER MT system from Chin et al. (2012) used to tag diploid and 

MATa cells with a fluorescent reporter. Crosses were performed on YPD agar plates and replica-

plated on YPD + G418 + Nat medium (YPD agar with 350 mg/L geneticin (G418) and 100 mg/L 
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Nourseothricin) to select diploid hybrids. After growth, cells were streaked on another YPD + 

G418 + Nat agar plate, one colony was patched on YPG agar for each mutant and the diploid 

strain was kept frozen at -80°C. Bulk segregant populations were then collected for batches of 8 

mutants in parallel as follows. Diploid strains were thawed and revived on YPG plates, grown 

for 12 hours at 30°C on GNA plates (50 g D-glucose, 30 g Difco nutrient broth, 10 g yeast 

extract and 20 g agar per liter) and sporulation was induced for 4 days at room temperature on 

KAc plates (10 g potassium acetate and 20 g agar per liter). For each mutant, we then isolated a 

large population of random spores (> 108 spores) by digesting tetrads with zymolyase, vortexing 

and sonicating samples in 0.02% triton-X (exactly as described in Duveau et al., 2014). ~3 x 105 

MAT𝛼 spores were sorted by FACS (BD FACSAria II) based on the absence of RFP 

fluorescence signal measured using a 561 nm laser and 582/15 optical filter. Spores were then 

resuspended in 2 ml of YPD medium. After 24 hours of growth at 30°C, 0.4 ml of cell culture 

was transferred to a 5 ml tube containing 2 ml of PBS. Three populations of 1.5 x 105 segregant 

cells were then collected by FACS: 1) a low fluorescence population of cells sorted among the 

2.5% of cells with lowest fluorescence levels (“low bulk”), 2) a high fluorescence population of 

cells sorted among the 2.5% of cells with highest fluorescence levels (“high bulk”) and 3) a 

control population of cells sorted regardless of their fluorescence levels. YFP signal was 

measured using a 488 nm laser and a 530/30 optical filter. To exclude budding cells and enrich 

for single cells, ~70% of all events were filtered out based on the area and width of the forward 

scatter signal prior to sorting. In addition, the median FSC.A (area of forward scatter, a proxy for 

cell size) was maintained to similar values in the low fluorescence bulk and in the high 

fluorescence bulk by drawing sorting gates that were parallel to the linear relationship between 

FSC.A and fluorescence intensity in the FACSDiva software. After sorting, cells were 
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resuspended in 1.6 ml of YPD medium and grown for 30 hours at 30°C. Each sample was then 

stored at -80°C in 15% glycerol in two separate tubes: one tube containing 1 ml of culture (for 

DNA extraction) and one tube containing 0.5 ml of culture (for long-term storage). Extraction of 

genomic DNA was performed for 24 samples in parallel using a Gentra Puregene Yeast/Bact kit 

(Qiagen). Then, DNA libraries were prepared from 1 ng of genomic DNA using Nextera XT 

DNA Library Prep kits (Illumina) for low fluorescence bulks and for high fluorescence bulks 

(control populations were not sequenced). Tagmentation was carried out at 55°C for 5 minutes. 

Dual indexing of the libraries was achieved using index adapters provided in the Nextera XT 

Index kit (index sequences used for each library are indicated in Supplementary File 14). Final 

library purification and size selection was achieved using Agencourt AMPure XP beads (30 µl of 

beads added to 50 µl of PCR-amplified libraries followed by ethanol washes and resuspension in 

50 µl of Tris-EDTA buffer). The average size of DNA fragments in the final libraries was 650 

bp, as quantified from a subset of samples using high sensitivity assays on a 2100 Bioanalyzer 

(Agilent). The concentration of all libraries was quantified with a Qubit 2.0 Fluorometer 

(Thermo Fisher Scientific) using dsDNA high sensitivity assays. Libraries to be sequenced in the 

same flow lane were pooled to equal concentration in a single tube and sequenced on a 

HiSeq4000 instrument (Illumina) at the University of Michigan Sequencing Core Facility (150-

bp paired-end sequencing). The 2 x 76 libraries were sequenced in 4 distinct sequencing runs 

(45300, 45301, 54374 and 54375) that included 36 to 54 samples (libraries sequenced in each 

run are indicated in Supplementary File 14). In addition, 4 control libraries were sequenced in 

run 45300, corresponding to genomic DNA from 1) YPW1139 progenitor strain, 2) YPW1240 

mapping strain, 3) a bulk of low fluorescence segregants from YPW1139 x YPW1240 cross and 
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4) a bulk of high fluorescence segregants from YPW1139 x YPW1240 cross. 18 libraries 

sequenced in run 54374 were not analyzed in this study. 

Analysis of BSA-Seq data 

Demultiplexing of sequencing reads and generation of FASTQ files were performed 

using Illumina bcl2fastq v1.8.4 for sequencing runs 45300 and 45301 and bcl2fastq2 v2.17 for 

runs 54374 and 54375. The next steps of the analysis were processed on the Flux cluster 

administered by the Advanced Research Computing Technology Services of the University of 

Michigan (script available in Source Code 4). First, low quality ends of reads were trimmed with 

sickle (https://github.com/najoshi/sickle) and adapter sequences were removed with cutadapt 

(Martin, 2011). Reads were then aligned to the S288c reference genome 

(https://www.yeastgenome.org/, R64-1-1 release to which we added the sequences corresponding 

to PTDH3-YFP, KanMX and NatMX4 transgenes, available in Supplementary File 12) using 

bowtie2 (Langmead & Salzberg, 2012) and overlaps between paired reads were clipped using 

clipOverlap in bamUtil (https://github.com/statgen/bamUtil). The sequencing depth at each 

position in the genome was determined using bedtools genomecov 

(https://github.com/arq5x/bedtools2). For variant calling, BAM files corresponding to the low 

fluorescence bulk and to the high fluorescence bulk of each mutant were processed together 

using freebayes (https://github.com/ekg/freebayes; Garrison & Marth, 2012) with options --

pooled-discrete --pooled-continuous. That way, sequencing data from both bulks were pooled to 

increase the sensitivity of variant calling and allele counts were reported separately for each 

bulk. To obtain a list of mutations present in each mutant strain, false positive calls in the VCF 

files generated by freebayes were then filtered out with the Bioconductor package 

VariantAnnotation in R (Source Code 2). Filtering was based on the values of several parameters 
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such as quality of genotype inference (QUAL > 200), mapping quality (MQM > 27), sequencing 

depth (DP > 20), counts of reference and alternate alleles (AO > 3 and RO > 3), frequency of the 

reference allele (FREQ.REF > 0.1), proportion of reference and alternate alleles supported by 

properly paired reads (PAIRED > 0.8 and PAIREDR > 0.8), probability to observe the alternate 

allele on both strands (SAP < 100) and at different positions of the reads (EPP < 50 and RPP < 

50). The values of these parameters were chosen to filter out a maximum number of calls while 

retaining 28 variants previously confirmed by Sanger sequencing. We then used likelihood ratio 

tests (G-tests) in R to determine for each variant site whether the frequency of the alternate allele 

(i.e. the mutation) was statistically different between the low fluorescence bulk and the high 

fluorescence bulk (Source Code 2). A point mutation was considered to be associated with 

fluorescence (directly or by linkage) if the P-value of the G-test was below 0.001, corresponding 

to a G value above 10.828. Since this G-test was performed for a total of 1819 mutations, we 

expected that 1.82 mutations would be associated with fluorescence due to type I error (false 

positives) at a P-value threshold of 0.001. This expected number of false positives was 

considered acceptable since it represented only 2.7% of all mutations that were associated with 

fluorescence. To determine if an aneuploidy was associated with fluorescence level, we 

compared the sequencing coverage of the aneuploid chromosome to genome-wide sequencing 

coverage in the low and high fluorescence bulks using G-tests. The G statistics was computed 

from the number of reads mapping to the aneuploid chromosome and the number of reads 

mapping to the rest of the genome in the low and high fluorescence bulks. Aneuploidies with G > 

10.828, which corresponds to P-value < 0.001, were considered to be present at statistically 

different frequencies in both bulks. A custom R script was used to annotate all mutations 

identified in BSA-Seq data (Source Code 3), retrieving information about the location of 
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mutations in intergenic, intronic or exonic regions, the name of genes affected by coding 

mutations or the name of neighboring genes in case of intergenic mutations and the expected 

impact on amino acid sequences (synonymous, nonsynonymous or nonsense mutation and 

identity of the new amino acid in case of a nonsynonymous mutation). 

Sanger sequencing of candidate genes 

As an alternative approach to BSA-Seq, additional mutations were identified by directly 

sequencing candidate genes in a subset of EMS-treated mutants (Supplementary File 4). More 

specifically, we sequenced the PTDH3-YFP transgene in 95 mutant strains from Metzger et al. 

(2016) that showed decreased fluorescence by more than 10% relative to the progenitor strain. 

We sequenced the ADE4 coding sequence in 14 mutants from Metzger et al. (2016) that were not 

included in the BSA-Seq assays and that showed increased fluorescence by more than 5% 

relative to the progenitor strain. Two of the sequenced mutants had a mutation in the ADE4 

coding sequence. We then sequenced the ADE5 coding sequence in the remaining 12 mutants 

and found a mutation in five of the sequenced mutants. We continued by sequencing the ADE6 

coding sequence in the remaining seven mutants. Five of the sequenced mutants had a single 

mutation and one mutant had two mutations in the ADE6 coding sequence. We sequenced the 

ADE8 coding sequence in the last mutant but we found no candidate mutation in this mutant. 

Finally, we sequenced the ADE2 coding sequence in two mutants that showed a reddish color 

when growing on YPD plates. For all genes, the sequenced region was amplified by PCR from 

cell lysates, PCR products were cleaned up using Exo-AP treatment (7.5 µl PCR product mixed 

with 0.5 µl Exonuclease-I (NEB), 0.5 µl Antarctic Phosphatase (NEB), 1 µl Antarctic 

Phosphastase buffer and 0.5 µl H2O incubated at 37°C for 15 minutes followed by 80°C for 15 

minutes) and Sanger sequencing was performed by the University of Michigan Sequencing Core 
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Facility. Oligonucleotides used for PCR amplification and sequencing are indicated in 

Supplementary File 14. 

Site-directed mutagenesis 

34 mutations identified by BSA-Seq and 11 mutations identified by sequencing candidate 

genes were introduced individually in the genome of the progenitor strain YPW1139 to quantify 

the effect of these mutations on fluorescence level. “Scarless” genome editing (i.e. without 

insertion of a selection marker) was achieved using either the delitto perfetto approach from 

Stuckey et al. (2011) (for 19 mutations) or CRISPR-Cas9 approaches derived from Laughery et 

al. (2015) (for 26 mutations). Compared to delitto perfetto, CRISPR-Cas9 is more efficient and it 

can be used to introduce mutations in essential genes. However, it requires specific sequences in 

the vicinity of the target mutation (see below). The technique used for the insertion of each 

mutation is indicated in Supplementary File 15. The sequences of oligonucleotides used for the 

insertion and the validation of each mutation can be found in Supplementary File 14.  

In the delitto perfetto approach, the target site was first replaced by a cassette containing the 

Ura3 and hphMX4 selection markers (pop-in) and then this cassette was swapped with the target 

mutation (pop-out). The Ura3-hphMX4 cassette was amplified from pCORE-UH plasmid using 

two oligonucleotides that contained at their 5’ end 20 nucleotides for PCR priming in pCORE-

UH and at their 3’ end 40 nucleotides corresponding to the sequences flanking the target site in 

the yeast genome (for homologous recombination). The amplicon was transformed into 

YPW1139 cells using a classic LiAc/polyethylene glycol heat shock protocol (Gietz & Schiestl, 

2007). Cells were then plated on synthetic complete medium lacking uracil (SC-Ura) and 

incubated for two days at 30°C. Colonies were replica-plated on YPD + Hygromycin B (300 

mg/l) plates. A dozen [Ura+ Hyg+] colonies were streaked on SC-Ura plates to remove residual 
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parental cells and the resulting colonies were patched on YPG plates to counterselect petite cells. 

Cell patches were then screened by PCR to confirm the proper insertion of Ura3-hphMX4 at the 

target site. One positive clone was grown in YPD and stored at -80°C in 15% glycerol. For the 

pop-out step, a genomic region of ~240 bp centered on the mutation was amplified from the 

EMS-treated mutant containing the desired mutation. The amplicon was transformed into the 

strain with Ura3-hphMX4 inserted at the target site. Cells were plated on a synthetic complete 

medium containing 0.9 g/l of 5-fluoroorotic acid (SC + 5-FOA) to counterselect cells expressing 

Ura3. After growth, a dozen [Ura-] colonies were streaked on SC + 5-FOA plates and one 

colony from each streak was patched on a YPG plate. Cell patches were screened by PCR using 

oligonucleotides that flanked the sequence of the transformed region and amplicons of expected 

size (~350 bp) were sequenced to confirm the insertion of the desired mutation and the absence 

of PCR-induced mutations. When possible two independent clones were stored at -80°C in 15% 

glycerol, but in some cases only one positive clone could be retrieved and stored. 

 A “one-step” CRISPR-Cas9 approach was used to insert mutations impairing a NGG or 

CCN motif in the genome (22 mutations), which corresponds to the protospacer adjacent motif 

(PAM) targeted by Cas9. First, a DNA fragment containing the 20 bp sequence upstream of the 

target PAM in the yeast genome was cloned between SwaI and BclI restriction sites in the 

pML104 plasmid. This DNA fragment was obtained by hybridizing two oligonucleotides 

designed as described in Laughery et al. 2015. The resulting plasmid contained cassettes for 

expression of Ura3, Cas9 and a guide RNA targeted to the mutation site in yeast cells. In parallel, 

a repair fragment containing the mutation was obtained either by PCR amplification of a ~240 bp 

genomic region centered on the mutation in the EMS-treated mutant or by hybridization of two 

complementary 70-mer oligonucleotides containing the mutation and its flanking genomic 
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sequences. The Cas9/sgRNA plasmid and the repair fragments were transformed together (~150 

nmol of plasmid + 20 µmol of repair fragment) into the progenitor strain YPW1139 using 

LiAc/polyethylene glycol heat shock protocol (Gietz & Schiestl, 2007). Cells were then plated 

on SC-Ura medium and incubated at 30°C for 48 hours. This medium selected cells that both 

internalized the plasmid and integrated the desired mutation in their genome. Indeed, cells with 

the Cas9/sgRNA plasmid stop growing as long as their genomic DNA is cleaved by Cas9 but 

their growth can resume once the PAM sequence is impaired by the mutation, which is integrated 

into the genome via homologous recombination with the repair fragment (Laughery et al., 2015). 

A dozen [Ura+] colonies were then streaked on SC-Ura plates and one colony from each streak 

was patched on a YPG plate. Cell patches were screened by PCR using oligonucleotides that 

flanked the mutation site and amplicons of expected size (~350 bp) were sequenced to confirm 

the insertion of the desired mutation and the absence of secondary mutations. Then, one or two 

positive clones were patched on SC + 5-FOA to counterselect the Cas9/sgRNA plasmid, grown 

in YPD and stored at -80°C in 15% glycerol. 

A “two-steps” CRISPR-Cas9 approach was used to insert mutations located near but 

outside a PAM sequence (4 mutations). Each step was performed as described above for the 

“one-step” CRISPR-Cas9 approach. In the first step, Cas9 was targeted by the sgRNA to a PAM 

sequence (the initial PAM) located close to the mutation site (up to 20 bp). The repair fragment 

contained two synonymous mutations that were not the target mutation: one mutation that 

impaired the initial PAM and one mutation that introduced a new PAM as close as possible to 

the target site. This repair fragment was obtained by hybridization of two complementary 90-mer 

oligonucleotides and transformed into YPW1139. In the second step, Cas9 was targeted to the 

new PAM. The repair fragment contained three mutations: two mutations that reverted the 
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mutations introduced in the first step and the target mutation. This repair fragment was obtained 

by hybridization of two complementary 90-mer oligonucleotides and transformed into the strain 

obtained in the first step. Positive clones were sequenced to confirm the insertion of the target 

mutation and the absence of other mutations. 

 We used CRISPR/Cas9-guided allele replacement to introduce individual mutations in 

five codons of the RAP1 coding sequence that encode for amino acids predicted to make direct 

contact with DNA when RAP1 binds to DNA (Konig et al., 1996). For each codon, we tried to 

insert one synonymous mutation, one nonsynonymous mutation predicted to have a weak impact 

on RAP1 protein structure and one nonsynonymous mutation predicted to have a strong impact 

on RAP1 protein structure based on amino acid exchangeability scores from Yampolsky & 

Stoltzfus (2005) (see Supplementary File 8 for the list of mutations). Each mutation was 

introduced in the genome of strain YPW2706. This strain is derived from YPW1139 and 

contains two identical sgRNA target sites upstream and downstream of the RAP1 gene (see 

below for details on YPW2706 construction). Therefore, we could use a single Cas9/sgRNA 

plasmid to excise the entire RAP1 gene in YPW2706 by targeting Cas9 to both ends of the gene. 

We used gene SOEing (Splicing by Overlap Extension) to generate repair fragments 

corresponding to the RAP1 gene (promoter and coding sequence) with each target mutation. 

First, a left fragment of RAP1 was amplified from YPW1139 genomic DNA using a forward 20-

mer oligonucleotide priming upstream of the RAP1 promoter and a reverse 60-mer 

oligonucleotide containing the target mutation and the surrounding RAP1 sequence. In parallel, a 

right fragment of RAP1 overlapping with the right fragment was amplified from YPW1139 

genomic DNA using a forward 60-mer oligonucleotide complementary to the reverse 

oligonucleotide used to amplify the left fragment and a reverse 20-mer oligonucleotide priming 
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in RAP1 5’UTR sequence. Then, equimolar amounts of the left and right fragments were mixed 

in a PCR reaction and 25 cycles of PCR were performed to fuse both fragments. Finally, the 

resulting product was further amplified using two 90-mer oligonucleotides with homology to the 

sequence upstream of RAP1 promoter and to the RAP1 5’UTR but without the sgRNA target 

sequences. Consequently, transformation of the repair fragment together with the Cas9/sgRNA 

plasmid in YPW2706 cells was expected to replace the wild type allele of RAP1 by an allele 

containing the target mutation in RAP1 coding sequence and without the two flanking sgRNA 

target sites. For each of the 15 target mutations, we sequenced the RAP1 promoter and coding 

sequence in 10 independent clones obtained after transformation. All synonymous mutations 

were retrieved in several clones, while several of the nonsynonymous mutations were not found 

in any clone, suggesting they were lethal (Supplementary File 8). 

RAP1 and GCR1 mutagenesis using error-prone PCR 

We used a mutagenic PCR approach to efficiently generate hundreds of mutants with 

random mutations in the RAP1 gene (promoter and coding sequence) or in the second exon of 

GCR1 (representing 99.7% of GCR1 coding sequence). DNA fragments obtained from the 

mutagenic PCR were introduced in the yeast genome using CRISPR/Cas9-guided allele 

replacement as described above. The sequences of all oligonucleotides used for RAP1 and GCR1 

mutagenesis can be found in Supplementary File 14. 

First, we constructed two yeast strains for which the RAP1 gene (strain YPW2706) or the 

second exon of GCR1 (strain YPW3082) were flanked by identical sgRNA target sites and PAM 

sequences. To generate strain YPW2706, we first identified a sgRNA target site located 

downstream of the RAP1 coding sequence (41 bp after the stop codon in the 5’UTR) in the 

S288c genome. Then, we inserted the 23 bp sequence corresponding to this sgRNA target site 
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and PAM upstream of the RAP1 promoter (immediately after PPN2 stop codon) in strain 

YPW1139 using the delitto perfetto approach (as described above). To generate strain 

YPW3082, we first identified a sgRNA target site located at the end of the GCR1 intron (22 bp 

upstream of exon 2) in the S288c genome. Then, we inserted the 23 bp sequence corresponding 

to this sgRNA target site and PAM immediately after the GCR1 stop codon in strain YPW1139 

using the delitto perfetto approach (as described above). 

Second, we constructed plasmid pPW437 by cloning the 20mer guide sequence directed 

to RAP1 in pML104 as described in Laughery et al. 2015 and we constructed plasmid pPW438 

by cloning the 20mer guide sequence directed to GCR1 in pML104 as described in Laughery et 

al. 2015. These two sgRNA/Cas9 plasmids can be used, respectively, to excise the RAP1 gene or 

GCR1 exon 2 from the genomes of YPW2706 and YPW3082. 

Third, we generated repair fragments with random mutations in RAP1 or GCR1 genes 

using error-prone PCR. We first amplified each gene from 2 ng of YPW1139 genomic DNA 

using a high-fidelity polymerase (KAPA HiFi DNA polymerase) and 30 cycles of PCR. PCR 

products were purified with the Wizard SV Gel and PCR Clean-Up System (Promega) and 

quantified with a Qubit 2.0 Fluorometer (Thermo Fisher Scientific) using dsDNA broad range 

assays. 2 ng of purified PCR products were used as template for a first round of mutagenic PCR 

and mixed with 25 µl of DreamTaq Master Mix 2x (ThermoFisher Scientific), 2.5 µl of forward 

and reverse primers at 10 µM, 5 µl of 1 mM dATP and 5 µl of 1 mM dTTP in a final volume of 

50 µl. The imbalance of dNTP concentrations (0.3 µM dATP, 0.2 µM dCTP, 0.2 µM dGTP and 

0.3 µM dTTP) was done to bias the mutagenesis toward misincorporation of dATP and dTTP. 

For RAP1 mutagenesis, the forward oligonucleotide primed upstream of the RAP1 promoter (in 

PPN2 coding sequence) and the reverse oligonucleotide primed in the RAP1 terminator and 
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contained a mutation in the PAM adjacent to the sgRNA target site. For GCR1 mutagenesis, the 

forward oligonucleotide primed at the end of the GCR1 intron and contained a mutation in the 

PAM adjacent to the sgRNA target site and the reverse primer primed in the GCR1 terminator. 

The PCR program was 95°C for 3 minutes followed by 32 cycles with 95°C for 30 seconds, 

52°C for 30 seconds, 72°C for 2 minutes and a final extension at 72°C for 5 minutes. For RAP1 

mutagenesis, the product of the first mutagenic PCR was diluted by a factor of 33 and used as 

template for a second round of mutagenic PCR (1.5 µl of product in a 50 µl reaction) similar to 

the first round but with only 10 cycles of amplification. For GCR1 mutagenesis, the product of 

the first mutagenic PCR was diluted by a factor of 23 and used as template for a second round of 

mutagenic PCR (2.2 µl of product in a 50 µl reaction) with 35 cycles of amplification. Using this 

protocol, we expected to obtain on average 1.6 mutations per fragment for RAP1 mutagenesis 

and 1.8 mutations per fragment for GCR1 mutagenesis (see below for calculations of these 

estimates). 

pPW437 was transformed with RAP1 repair fragments into YPW2706 and pPW438 was 

transformed with GCR1 repair fragments into YPW3082 as described above for CRISPR/Cas9 

site directed mutagenesis. To select cells that replaced the wild type alleles with alleles 

containing random mutations, transformed cells were plated on SC-Ura and incubated at 30°C 

for 48 hours. To confirm the success of each mutagenesis and to estimate actual mutation rates, 

we then sequenced the RAP1 genes in 27 random colonies from the RAP1 mutagenesis and we 

sequenced the second exon of GCR1 in 18 random colonies from the GCR1 mutagenesis. Next, 

500 colonies from RAP1 mutagenesis and 300 colonies from GCR1 mutagenesis were streaked 

onto SC-Ura plates. After growth, one colony from each streak was patched on YPG and grown 

four days at 30°C. Then, patches were replica-plated with velvets onto SC + 5-FOA to eliminate 
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sgRNA/Cas9 plasmids. Finally, 488 clones from RAP1 mutagenesis and 355 clones from GCR1 

mutagenesis were arrayed in 96-well plates containing 0.5 ml of YPD (same plate design as used 

for the flow cytometry assays) and grown overnight at 30°C. 0.2 ml of cell culture from each 

well was then mixed with 46 µl of 80% glycerol in 96-well plates and stored at -80°C. The 

fluorescence of these strains was quantified by flow cytometry as described above to assess the 

impact of RAP1 and GCR1 mutations on PTDH3-YFP expression (expression data for each mutant 

can be found in Supplementary File 16). 

In our mutagenesis approach, we introduced a mutation that impaired the target PAM 

sequence in all RAP1 and GCR1 mutants. To determine the effect of this mutation alone, we 

generated strains YPW2701 and YPW2732 that carried the PAM mutation in the RAP1 

terminator or in the GCR1 intron, respectively, without any other mutation in RAP1 or GCR1. 

The fluorescence level of these two strains was not significantly different from the fluorescence 

level of the progenitor strain YPW1139 in flow cytometry assays. 

Estimation of RAP1 and GCR1 mutation rates 

 The expected number of mutations per PCR amplicon (Nmut) depends on the error rate 

of the Taq polymerase (), on the number of DNA duplications (D) and on the length of the 

amplicon (L): Nmut=DL. The published error rate for a classic polymerase similar to DreamTaq 

is ~3 x 10-5 errors per nucleotide per duplication (McInerney et al., 2014). Amplicon length was 

3057 bp for RAP1 mutagenesis and 2520 pb for GCR1 mutagenesis. The number of duplications 

of PCR templates was calculated from the amounts of double stranded DNA quantified using 

Qubit 2.0 dsDNA assays before (I) and after (O) each mutagenic PCR reaction as follows: 

D=lnOIln 2. For the first round of RAP1 mutagenesis, D=ln65501.93ln 2 =11.7. For the second 

round of RAP1 mutagenesis, D=ln300068.1ln 2 =5.5. Therefore, the total number of duplications 
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was 17.2 and the expected number of mutations per amplicon Nmut was 1.6 on average. For the 

first round of GCR1 mutagenesis, D=ln68702.15ln 2 =11.6. For the second round of GCR1 

mutagenesis, D=ln65351.65ln 2 =12.0. Therefore, the total number of duplications was 23.6 and 

the expected number of mutations per amplicon Nmut was 1.8 on average. 

Effects of mutations in purine biosynthesis genes on expression from different promoters 

We compared the individual effects of three mutations in the purine biosynthesis pathway 

(ADE2-C1477a, ADE5-G1715a and ADE6-G3327a) on YFP expression driven by four different 

yeast promoters (PTDH3, PRNR1, PSTM1 and PGPD1). Each mutation was introduced individually in 

the genomes of four parental strains described in Hodgins-Davis et al. (2019) carrying either 

PTDH3-YFP (YPW1139), PRNR1-YFP (YPW3758), PSTM1-YFP (YPW3764) or PGPD1-YFP 

(YPW3757) reporter gene at the ho locus. Site-directed mutagenesis was performed as described 

in the corresponding section (see above). The fluorescence of the four parental strains, of a non-

fluorescent strain (YPW978) and of the 12 mutant strains (4 reporter genes x 3 mutations) was 

quantified using a Sony MA-900 flow cytometer (the BD Accuri C6 instrument used for other 

fluorescence assays was not available due to Covid-19 shutdown) in three replicate experiments 

performed on different days. For each experiment, all strains were grown in parallel in culture 

tubes containing 5 ml of YPD and incubated at 30°C for 16 hours. Each sample was diluted to 1-

2 x 107 cells/mL in PBS prior to measurement. At least 5 x 104 events were recorded for each 

sample using a 488 nm laser for YFP excitation and a 525/50 optical filter for the acquisition of 

fluorescence. At least 5 x 104 events were recorded for each sample. Flow cytometry data were 

then processed in R using functions from the FlowCore package and custom scripts available in 

Source Code 1. After log-transformation of flow data, events considered to correspond to single 

cells were selected on the basis of their forward scatter height and width (FSC-H and FSC-W). 
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Fluorescence values of single cells were then normalized to account for differences in cell size. 

Finally, the median fluorescence among cells was computed for each sample and averaged across 

replicates of each genotype. 

Statistical comparisons of trans-regulatory and nonregulatory mutations 

We established a set of 69 trans-regulatory mutations that included 52 mutations with a 

P-value below 0.01 in the G-tests comparing the frequencies of mutant and reference alleles in 

low and high fluorescence bulks (see above) as well as 17 mutations identified by Sanger 

sequencing in the coding sequence of purine biosynthesis genes. In parallel, we established a set 

of 1766 nonregulatory mutations regarding PTDH3-YFP expression that included mutations with a 

P-value above 0.01 in the G-tests comparing the frequencies of mutant and reference alleles in 

low and high fluorescence bulks (see above) and mutations that did not affect PTDH3-YFP 

expression in single-site mutants. We performed statistical analysis to compare properties of 

trans-regulatory and nonregulatory mutations using RStudio v1.2.5019 (R scripts are in Source 

Code 2). We used G-tests (likelihood.ratio function in Deducer package) to compare the 

following properties between trans-regulatory and nonregulatory mutations: i) the frequency of 

G.C to A:T transitions, ii) the frequency of indels, iii) the frequency of aneuploidies, iv) the 

distribution of mutations among chromosomes, v) the frequency of mutations in coding, intronic 

and intergenic sequences, vi) the frequency of synonymous, nonsynonymous and nonsense 

changes among coding mutations, vii) the frequency of coding mutations in transcription factors, 

viii) the frequency of coding mutations in the predicted TDH3 regulatory network (see below), 

ix) the proportion of mutations in eQTL regions (see below). We used resampling tests to 

compare the frequencies of different amino acid changes caused by trans-regulatory and 

nonregulatory mutations in coding sequences. We computed for each possible amino acid change 
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the observed absolute difference between i) the proportion of coding trans-regulatory mutations 

causing the amino acid change and ii) the proportion of nonregulatory mutations causing the 

amino acid change. Then, we computed similar absolute differences for 10,000 randomly 

permuted sets of trans-regulatory and nonregulatory mutations. The P-value for each amino acid 

change was calculated as the proportion of resampled absolute differences greater or equal to the 

observed absolute difference.  

TDH3 regulatory network 

The network of potential TDH3 regulators shown on Figure A-14 was established using 

data available in July 2019 on the YEASTRACT (www.yeastract.com) repository of regulatory 

associations between transcription factors and target genes in Saccharomyces cerevisiae 

(Teixeira et al., 2018). We used the tool “Regulation Matrix” to obtain three matrices in which 

rows corresponded to the 220 transcription factor genes in YEASTRACT and columns 

corresponded to the 6886 yeast target genes included in the database. In the first matrix obtained 

using the option “Only DNA binding evidence”, an element had a value of 1 if the transcription 

factor at the corresponding row was reported in the literature to bind to the promoter of the target 

gene at the corresponding column and a value of 0 otherwise. The two other matrices were 

obtained using the option “Only Expression evidence” with either “TF acting as activator” or 

“TF acting as inhibitor”. An element had a value of 1 only in the “TF acting as activator” matrix 

if perturbation of the transcription factor at the corresponding row was reported to increase 

expression of the target gene at the corresponding column. An element had a value of 1 only in 

the “TF acting as inhibitor” matrix if perturbation of the transcription factor at the corresponding 

row was reported to decrease expression of the target gene at the corresponding column. An 

element had a value of 1 in both matrices if perturbation of the transcription factor at the 
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corresponding row was reported to affect expression of the target gene at the corresponding 

column in an undetermined direction. Finally, an element had a value of 0 in both matrices if 

perturbation of the transcription factor at the corresponding row was not reported to alter 

expression of the target gene at the corresponding column in the literature. We then used a 

custom R script (Source Code 2) to generate a smaller matrix that only contained first level and 

second level regulators of TDH3 and TDH3 itself. A transcription factor was considered to be a 

first level regulator of TDH3 if a regulatory association with TDH3 was supported both by DNA 

binding evidence and expression evidence. A transcription factor was considered to be a second 

level regulator of TDH3 if a regulatory association with a first level regulator of TDH3 was 

supported both by DNA binding evidence and expression evidence. The network shown on 

Figure A-14 was drawn using Adobe Illustrator based on regulatory interactions included in the 

matrix of TDH3 regulators (in Supplementary File 12). To determine whether mutations in the 

TDH3 regulatory network constituted a significant mutational source of regulatory variation 

affecting PTDH3 activity, we compared the proportions of trans-regulatory and non-regulatory 

mutations that were located in a TDH3 regulator gene (first or second level) using a G-test 

(likelihood.ratio function in R package Deducer).  

Competitive fitness assays 

We performed competitive growth assays to quantify the fitness of 62 strains with 

random mutations in the second exon of GCR1. These 62 strains corresponded to all GCR1 

mutants that showed a significant decrease of PTDH3-YFP expression as quantified by flow 

cytometry as well as GCR1 mutants for which GCR1 exon 2 was sequenced and the location of 

mutations was known. The 62 strains were thawed on YPG plates as well as reference strains 

YPW1139 and YPW2732 and strain YPW1182 that expressed a GFP (Green Fluorescent 
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Protein) reporter instead of YFP. After three days of incubation at 30°C, strains were arrayed in 

four replicate 96-well plates containing 0.5 ml of YPG per well. In parallel, the [GFP+] strain 

YPW1182 was also arrayed in four replicate 96-well plates. The eight plates were incubated on a 

wheel at 30°C for 32 hours. We then measured the optical density at 620 nm of all samples using 

a Sunrise plate reader (Tecan) and calculated the average cell density for each plate. Samples 

were then transferred to 1.2 ml of YPD in 96-well plates to reach an average cell density of 106 

cells/ml for each plate. 21.25 µl of samples from plates containing [YFP+] strains were mixed 

with 3.75 µl of [GFP+] samples in four 96-well plates containing 0.45 ml of YPD per well. The 

reason why [YFP+] and [GFP+] strains were mixed to a 17:3 ratio is because we anticipated that 

some of the GCR1 mutants may grow slower than the [GFP+] competitor in YPD. Samples were 

then grown on a wheel at 30°C for 10 hours and the optical density was measured again after 

growth to estimate the average number of generations for each plate. The ratio of [YFP+] and 

[GFP+] cells in each sample was quantified by flow cytometry before and after the 10 hours of 

growth. Samples were analyzed on a BD Accuri C6 flow cytometer with a 488 nm laser used for 

excitation and two different optical filters (510/10 and 585/40) used to separate YFP and GFP 

signals. FCS data were analyzed with custom R scripts using flowCore and flowClust packages 

(Source Code 1) as described in Duveau et al. (2018). First, we filtered out artifactual events 

with extreme values of forward scatter or fluorescence intensity. Then, for each sample we 

identified two clusters of events corresponding to [YFP+] and [GFP+] cells using a principal 

component analysis on the logarithms of FL1.H and FL2.H (height of the fluorescence signal 

captured through the 510/10 and 585/40 filters, respectively). Indeed, [YFP+] cells tend to have 

lower FL1.H value and higher FL2.H value than [GFP+] cells and these two parameters are 

positively correlated. The competitive fitness of [YFP+] cells relative to [GFP+] cells was 
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calculated as the exponential of the slope of the linear regression of logeYFPGFPon the number 

of generations of growth (where YFP corresponds to the number of [YFP+] cells and GFP 

corresponds to the number of [GFP+] cells). We then divided the fitness of each sample by the 

mean fitness among all replicates of the reference strain YPW1139 to obtain a fitness value 

relative to YPW1139. The fitness of each strain was calculated as the mean relative fitness 

among the four replicate populations for that strain. These fitness data can be found in 

Supplementary File 16.  

Gene ontology (GO) analysis 

GO term analyses were performed on www.pantherdb.org website in June 2020 (Mi et 

al., 2019). In “Gene List Analysis”, we used “Statistical overrepresentation test” on a query list 

corresponding to the 42 genes affected by trans-regulatory coding mutations. GO enrichment 

was determined based on a reference list of the 1251 genes affected by non-regulatory coding 

mutations using Fisher’s exact tests. Four separate analyses were performed for GO biological 

processes, GO molecular functions, GO cellular components and PANTHER pathways. GO 

terms that are significantly enriched in the list of trans-regulatory mutations (mutations 

associated with fluorescence level) relative to non-regulatory mutations (mutations not 

associated with fluorescence level) at P < 0.05 are listed in Supplementary File 9.  

Enrichment of mutations in eQTL regions 

Genomic regions containing expression quantitative trait loci (eQTL) associated with 

PTDH3-YFP expression variation in three different crosses (BYxYPS1000, BYxSK1 and 

BYxM22) were obtained from Table S11 in Metzger & Wittkopp (2019). A custom R script was 

used to determine the number of trans-regulatory and non-regulatory mutations located inside 
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and outside these eQTL intervals (Source Code 2). G-tests were performed to determine whether 

the proportion of trans-regulatory mutations in eQTL intervals was statistically different from 

the proportion of non-regulatory mutations in the same eQTL intervals. 

Data archiving 

De-multiplexed sequencing data are available in FASTQ format from NCBI Sequence 

Read Archive (https://www.ncbi.nlm.nih.gov/sra) under BioProject number PRJNA706682. 

Flow cytometry data (FCS files) are available on the Flow Repository 

(https://flowrepository.org/) under the following experiments ID: FR-FCM-Z3WV for the 

secondary screen of fluorescence in EMS mutants shown in Figure A-2E, FR-FCM-Z3JY for the 

quantifications of fluorescence in single site mutants and in the corresponding EMS mutants 

(Figure A-3E-G), FR-FCM-Z3J2 for the quantifications of fluorescence in RAP1 mutant strains 

(Figure A-15E), FR-FCM-Z3J3 for the quantifications of fluorescence in GCR1 mutant strains 

(Figure A-15F-G) and FR-FCM-Z3J5 for the quantifications of fitness in the same GCR1 

mutants strains (Figure A-15G).  
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Figures 

 
Figure A-1: Mutant strains analyzed with altered expression of a PTDH3-YFP reporter gene. 

(A) Summary of the three previously published collections of S. cerevisiae mutants obtained by 
ethyl methanesulfonate (EMS) mutagenesis of a haploid strain expressing a yellow fluorescent 
protein (YFP) under control of the TDH3 promoter. *One mutant is included in both columns 
because it was analyzed both by BSA-Seq and Sanger sequencing. (B-D) Previously published 
fluorescence levels (x-axis) and statistical significance of the difference in median fluorescence 
between each mutant and the un-mutagenized progenitor strain (y-axis) are shown for mutants 
analyzed in (B) Gruber et al. (2012) and (C,D) Metzger et al. (2016). (B) Collection of 1064 
mutants from Gruber et al. (2012) enriched for mutations causing large fluorescence changes. P-
values were computed using Z-tests in this study, based on one measure of fluorescence for each 
mutant and 30 measures of fluorescence for the progenitor strain. (C) Collection of 211 mutants 
from Metzger et al. (2016) enriched for mutations causing large fluorescence changes. (D) 
Collection of 1498 mutants from Metzger et al. (2016) obtained irrespective of their fluorescence 
levels (unenriched mutants). (E) A new fluorescence dataset for 197 unenriched mutants from 
Metzger et al. (2016) (blue in panel D) that were reanalyzed in a 2nd screen as part of this study. 
(C-E) 4 replicate populations were analyzed for each mutant. Error bars show 95% confidence 
intervals of fluorescence levels measured among these replicates. P-values were obtained using 
the permutation tests described in Methods. (B-E) Mutants analyzed by BSA-Seq are highlighted 
in red. All of these mutants showed fluorescence changes greater than 0.01 (vertical dotted lines) 
and P-value below 0.05 (horizontal dotted lines); percentages of all mutants that met these 
selection criteria in each collection are also shown. Mutants selected for Sanger sequencing of 
the ADE4, ADE5, and/or ADE6 candidate genes are highlighted in green. The mutant analyzed 
with both BSA-seq and Sanger sequencing is both red and green in panel C). Two mutants 
selected for Sanger sequencing of the ADE2 gene are highlighted in purple, one in D and one in 
E.  
  



 195 

 
 

 
Figure A-2: Diagram showing the number of mutant strains and mutations considered at each step of the study. 
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Figure A-3: Genetic mapping and functional testing of trans-regulatory mutations affecting PTDH3-YFP 
expression. 
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(A-C) Overview of the BSA-Seq approach. (A) Crossing scheme used to map mutations in each 
EMS mutant strain by crossing to an un-mutagenized strain expressing PTDH3-YFP. Stars indicate 
hypothetical mutations. (B) Isolation of two bulks of haploid segregants with high and low 
fluorescence levels (see Methods). (C) Estimation of allele frequencies in each bulk using high-
throughput sequencing. A mutation without effect on fluorescence is found at similar frequencies 
in the two bulks (white stars). A mutation affecting fluorescence or genetically linked to a 
mutation affecting fluorescence is found at different frequencies between the two bulks (red 
stars). (D) Type of mutations identified in BSA-Seq data for the 76 mutants from Metzger et al. 
(2016). (E) Median expression of PTDH3-YFP is shown for the wild-type (WT) progenitor strain 
(black), for 5 EMS mutants (brown) with two linked mutations associated with fluorescence in 
BSA-Seq data and for 10 single-site mutants (turquoise) carrying one of the two linked mutations 
in the 5 EMS mutants. Single-site mutants are grouped in pairs next to the EMS mutant carrying 
the same mutations and are named after the gene that they affect. Expression levels are expressed 
relative to the wild-type progenitor strain. For each strain, dots represent the median expression 
measured for each replicate population and tick marks represent the mean of median expression 
from replicate populations. (F) Effects of mutations associated with fluorescence in BSA-Seq 
experiments tested in single-site mutants. X-axis: Effect of each mutation on expression 
measured in a single site mutant and relative to the wild-type progenitor strain. Error bars are 
95% confidence intervals obtained from at least 4 replicate populations. Y-axis: G statistics of 
the tests used to compare the frequencies of each mutation between the two bulks in BSA-Seq 
experiments, with a negative sign if the mutation was more frequent in the low fluorescence bulk 
and a positive sign if the mutation was more frequent in the high fluorescence bulk. One single-
site mutant (NAP1, red) showed no significant change in expression relative to the wild-type 
progenitor strain (t-test, P-value > 0.05); the mutation it carries is therefore considered to be a 
false positive in the BSA-seq data. For two other single-site mutants (ATP23 and IRA2, green), 
the expression changes were not in the same direction as predicted by the signed G-values. (G) 
PTDH3-YFP expression levels in single-site mutants and in EMS mutants sharing the same 
mutation. Data points represent median expression levels of 40 EMS mutants (x-axis) and 40 
single-site mutants (y-axis) measured by flow cytometry in four replicate populations. Circles: 
mutations identified by BSA-Seq. Triangles: mutations identified by sequencing candidate genes. 
Error bars: 95% confidence intervals of expression levels obtained from replicate populations. 
Data points are colored based on the P-values of permutation tests used to assess the statistical 
significance of expression differences between each single site mutant and the EMS mutant 
carrying the same mutation (see Figure 2 - figure supplement 5 for details). The light blue area 
represents the 95% confidence interval of expression differences between genetically identical 
samples across the whole range of median expression values. This confidence interval was 
calculated from a null distribution described in Figure 2 - figure supplement 5A. (E-G) 
Expression levels are expressed on a scale linearly related to YFP mRNA levels and relative to 
the median expression of the wild-type progenitor strain (see Methods). 
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Figure A-4: Number of mutations per strain identified from BSA-Seq data. 

Data from 76 EMS mutants from Metzger et al. (2016) are shown. Vertical dotted line: mean 
number of mutations per strain (23.9). Blue dots and line: Poisson distribution with λ = 23.9 and 
k = 76 representing the expected numbers of mutations per line if mutations had the same 
probability of occurring in all mutant lines. 
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Figure A-5: Magnitude of expression changes in EMS mutants depending on the number of mutations associated 
with fluorescence in BSA-Seq experiments. 

Individual data points represent absolute differences between the median expression levels of 
EMS mutants and of the un-mutagenized progenitor strain averaged among four replicate 
populations. Mutations that were associated with fluorescence only because of genetic linkage 
(i.e., without additional evidence of affecting expression) were not counted (see Supplementary 
File 4). Blue dots: mutants with decreased expression relative to the progenitor strain. Red dots: 
mutants with increased expression relative to the progenitor strain. Using Mann-Whitney-
Wilcoxon tests, the magnitude of expression changes was found to be significantly lower for 
mutants without any mutation associated with fluorescence than for mutants with 1 (P = 5.3 x 10-

5) or 2 (P = 0.018) mutations associated with fluorescence. 
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Figure A-6: Relationship between the number of mutations per EMS mutant strain and the absolute expression 
change relative to the progenitor strain. 

This relationship is shown for EMS mutants without any mutation associated with fluorescence 
in BSA-Seq data (green dots and green regression line) as well as for EMS mutants with at least 
one mutation associated with fluorescence in BSA-Seq data (gray dots and gray regression line). 
Mutations that were associated with fluorescence only because of genetic linkage and without 
other evidence of affecting expression were excluded (see Supplementary File 4). F-tests were 
used to assess the statistical significance of linear regressions. A significant relationship was 
observed between the number of mutations per mutant strain and the absolute expression change 
only when no mutation was associated with fluorescence (r2 = 0.127, P-value = 0.03). This 
observation supports the hypothesis that several mutations with small effects could collectively 
contribute to the expression change observed in mutants for which no mutation was associated 
with fluorescence. The small effects of these mutations would explain why they were not 
associated with fluorescence in the BSA-Seq analyses. 
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Figure A-7: Effects of individual mutations in purine biosynthesis genes on YFP expression levels differ among 
promoters. 

Each dot indicates the median fluorescence level of at least 5 x 104 cells for each genotype 
averaged across 3 experimental replicates. Error bars represent median absolute deviation across 
replicates. Dots are grouped along the x-axis based on the yeast promoter used to drive YFP 
expression (PGPD1, PRNR1, PSTM1 and PTDH3), with “None” corresponding to the autofluorescence 
measured in a strain without a fluorescent reporter gene. The color of each dot indicates which 
mutation was introduced in one of the genes involved in de novo purine synthesis (ADE2, ADE5 
or ADE6), with the specific mutation introduced indicated in the key. The goal of this experiment 
was to determine whether the regulatory mutations identified in purine synthesis genes altered 
PTDH3-YFP expression at the transcriptional or post-transcriptional level. If the mutations acted 
post-transcriptionally, their effect on fluorescence level should be the same among strains with 
different promoters driving YFP expression because they all produce the same YFP transcript. 
However, we observed that the mutations in purine synthesis genes increased fluorescence level 
when YFP expression was driven by the TDH3 or the GPD1 promoter but not when YFP 
expression was driven by the RNR1 or the STM1 promoter, indicating that the effects of these 
mutations on YFP expression were promoter specific.  
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Figure A-8: Factors contributing to expression differences observed between EMS and single-site mutants. 
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(A) Distribution of absolute expression differences observed between EMS and single-site 
mutants (bars). To assess the statistical significance of these expression differences, we estimated 
the magnitude of expression differences expected to arise by chance between genetically 
identical strains grown at different positions of a 96-well plate (red line). This null distribution 
was obtained from the differences in expression measured for 10,440 pairs of the un-
mutagenized progenitor strain grown at different well positions in four replicate populations. We 
next randomly permuted 105 times the expression values between i) each pair of EMS and 
single-site mutants and ii) random pairs of the progenitor strain to calculate the one-sided p-value 
for each pair of mutants (i.e. the proportion of randomized expression differences greater than 
the observed expression difference). After Benjamini-Hochberg correction for multiple testing, 
we found that the expression difference between the single-site mutant and the EMS mutant 
carrying the same mutation was statistically significant (adjusted p-value < 0.05) for 14 out of 
the 40 pairs of mutants (35%, red and blue bars), but highly significant (adjusted p-value < 0.01) 
for only 1 pair (2.5%, red bar). Because mutant strains were exposed to the same micro-
environmental and technical variation as the control samples used to establish the null 
distribution, these sources of variation are unlikely to explain the significant differences of 
expression observed between EMS and single-site mutants. Panels B-F test three other 
hypotheses to explain expression differences observed between single-site and EMS mutants. (B) 
Hypothesis 1: expression differences between EMS and single-site mutants are explained by 
differences in expression noise (i.e. the variability of expression observed among genetically 
identical cells grown in the same environment) among mutants. To test this hypothesis, we 
compared the expression noise measured by flow cytometry for each EMS mutant (x-axis) to the 
absolute difference of median expression levels between this EMS mutant and the corresponding 
single-site mutant (y-axis). We observed no significant correlation between the two parameters (r 
= 0.06, P-value = 0.71), indicating that expression noise is unlikely to explain expression 
differences between EMS and single-site mutants. Expression noise was calculated for each 
sample as the standard deviation of expression among cells divided by the median expression 
and it is reported as the average value among 4 replicate populations relative to the expression 
noise of the wild-type progenitor strain. Dot colors: P-values as shown in panel A. Dot shapes: 
circles represent mutations identified by BSA-seq; triangles represent mutations identified by 
sequencing candidate genes. Error bars: 95% confidence intervals calculated from 4 replicate 
populations. (C-D) Hypothesis 2: expression differences between EMS and single-site mutants 
are explained by additional mutations present in the EMS mutants. (C) Testing effects of 
additional mutations associated with fluorescence: boxplot comparing the magnitude of 
expression differences when only one mutation was associated with fluorescence and when more 
than one mutation was associated with fluorescence in BSA-Seq experiments. The fact that no 
statistical difference was observed between the two classes (Mann-Whitney-Wilcoxon test, P = 
0.192) suggests that expression differences between EMS and single-site mutants were not likely 
to be caused by additional mutations associated with fluorescence in the BSA-Seq data. (D) 
Testing effects of additional mutations with statistical support for an association with 
fluorescence below the significance threshold. Expression difference between EMS and single-
site mutants (x-axis) was compared to the highest G-value that was below our significance 
threshold for considering a mutation to be associated with fluorescence in the BSA-Seq data 
from each mutant (y-axis). A significant correlation was observed between the two parameters 
(Pearson’s r = 0.48; P = 0.02), suggesting that some mutations with associations below our 
detection threshold in the BSA-Seq experiments might contribute to expression differences 
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observed between EMS and single-site mutants. Dots represent individual pairs of EMS and 
single-site mutants sharing the same mutation (with random jitter). The red line represents the 
linear regression of the y-axis parameter on the x-axis parameter. (E-F) Hypothesis 3: expression 
differences between EMS and single-site mutants are explained by secondary mutation(s) or 
epigenetic changes that occurred during construction of single-site mutants. To test this 
hypothesis, we isolated two independent clones for 26 single-site mutants after transformation of 
the progenitor strain and measured the expression difference between the two clones. (E) A 
positive correlation was observed between the expression difference between EMS and single-
site mutants (x-axis) and the expression difference between the two independent clones for each 
single-site mutant (y-axis). This positive correlation indicates that mutations with larger 
expression differences between the single-site and EMS mutants tended to also show larger 
expression differences between independent transformants. Dot colors: P-values as shown in 
panel A. (F) Boxplot also showed that the average magnitude of expression differences between 
independent clones was higher for single site mutants with a statistically significant expression 
difference between the single-site and EMS mutant sharing the same mutation (Mann-Whitney-
Wilcoxon test, P = 0.008). Results from E and F suggest that secondary mutation(s) and/or 
epigenetic changes that unintentionally occurred in some of the single-site mutant clones likely 
contributed to expression differences between some EMS and single-site mutants. It is important 
to emphasize, however, that these expression differences were small in magnitude and that 
overall the expression level of single-site mutants was strongly correlated with the expression 
level of EMS mutants (Figure 3). 
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Figure A-9: Contrasting properties of trans-regulatory and non-regulatory mutations. 

(A) Proportions of different types of mutations in a set of 1766 non-regulatory mutations (blue) 
and in a set of 69 trans-regulatory mutations (orange). Numbers of mutations are indicated above 
bars. (B) Distributions of non-regulatory and trans-regulatory point mutations along the yeast 
genome. 1766 non-regulatory mutations are shown in blue, 44 trans-regulatory mutations that 
were identified from the collections of unenriched mutants in Metzger et al. (2016) are shown in 
red and 22 trans-regulatory mutations that were identified from the collections of mutants 
enriched for large expression changes in Gruber et al. (2012) and in Metzger et al. (2016) are 
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shown in green. (C) Proportions of non-regulatory (left) and trans-regulatory (right) mutations 
affecting either coding sequences, introns or intergenic regions. (D) Proportions of coding non-
regulatory (left) and coding trans-regulatory (right) mutations that either introduce an early stop 
codon (nonsense), that substitute one amino acid for another (nonsynonymous) or that do not 
change the amino acid sequence (synonymous). (E) Frequency of all amino acid changes 
induced by trans-regulatory mutations as compared to non-regulatory mutations. Each entry of 
the table represents the difference of frequency (percentage) between non-regulatory and trans-
regulatory mutations that are changing the amino acid shown on the y-axis into the amino acid 
shown on the x-axis. For instance, the -6 on the first row indicates that the proportion of 
mutations changing an Alanine into a Threonine is 6% lower among trans-regulatory mutations 
than among non-regulatory mutations. Shades of red: amino acid changes underrepresented in 
the set of trans-regulatory mutations. Shades of green: amino acid changes overrepresented in 
the set of trans-regulatory mutations. White: amino acid changes equally represented in the 
trans-regulatory and non-regulatory sets of mutations. Grey: amino acid changes not observed in 
the sets of trans-regulatory and non-regulatory mutations. (B-E) The three aneuploidies were 
excluded for these plots. (D,E) Non-coding mutations were excluded for these plots. 
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Figure A-10: Contrasting properties of non-regulatory and trans-regulatory mutations identified by BSA-Seq and of 
trans-regulatory mutations identified by Sanger sequencing of candidate genes. 

(A) Proportions of different types of mutations observed among 1766 non-regulatory mutations 
(blue), among 52 trans-regulatory mutations identified by BSA-Seq (red) and among 17 trans-
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regulatory mutations identified by Sanger sequencing of candidate genes. Numbers of mutations 
are indicated above bars. (B) Distributions of non-regulatory and trans-regulatory point 
mutations along the yeast genome. 1766 non-regulatory mutations are shown in blue, 49 trans-
regulatory mutations that were identified by BSA-Seq are shown in red and 17 trans-regulatory 
mutations that were identified by Sanger sequencing are shown in green. (C) Proportions of non-
regulatory mutations (left), trans-regulatory mutations identified by BSA-Seq (upper right) and 
trans-regulatory mutations identified by Sanger sequencing (bottom right) that affect either 
coding sequences, introns or intergenic regions. (D) Proportions of coding non-regulatory 
mutations (left), coding trans-regulatory mutations identified by BSA-Seq (upper right) and 
coding trans-regulatory mutations identified by Sanger sequencing (bottom right) that either 
introduce an early stop codon (nonsense), that substitute one amino acid for another 
(nonsynonymous) or that do not change the amino acid sequence (synonymous). (E) Frequency 
of all amino acid changes induced by trans-regulatory mutations identified by BSA-Seq as 
compared to non-regulatory mutations. Each entry of the table represents the difference of 
frequency (percentage) between non-regulatory and trans-regulatory mutations that are changing 
the amino acid shown on the y-axis into the amino acid shown on the x-axis. Shades of red: 
amino acid changes underrepresented in the set of trans-regulatory mutations identified by BSA-
Seq. Shades of green: amino acid changes overrepresented in the set of trans-regulatory 
mutations identified by BSA-Seq. White: amino acid changes equally represented in the trans-
regulatory and non-regulatory sets of mutations. Grey: amino acid changes not observed in the 
sets of trans-regulatory and non-regulatory mutations. (B-E) The three aneuploidies were 
excluded for these plots. (D,E) Non-coding mutations were excluded for these plots. 
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Figure A-11: Distributions of trans-regulatory and non-regulatory mutations among chromosomes. 

1766 non-regulatory mutations are shown in blue and 69 trans-regulatory mutations are shown in 
orange, among which 52 mutations were identified by BSA-Seq (shown in red) and 17 mutations 
were identified by Sanger sequencing of candidate genes (shown in green). Trans-regulatory 
mutations were significantly enriched on chromosome VII that contained the purine biosynthesis 
genes ADE5 and ADE6 in which several mutations were identified (24.3% of trans-regulatory 
mutations located on chromosome VII vs 9.3% of non-regulatory mutations; G-test, P = 3.4 x 10-

4). Trans-regulatory mutations were also enriched on chromosome XIII that contained the purine 
synthesis gene ADE4, although this enrichment was not statistically significant (13.0% of trans-
regulatory mutations located on chromosome XIII vs 7.8% of non-regulatory mutations; G-test, 
P = 0.15). 
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Figure A-12: Statistical significance of the enrichment and depletion of amino acid changes induced by trans-
regulatory mutations. 

Permutations tests were used to assess the statistical significance of the frequency differences 
between non-regulatory and trans-regulatory mutations shown on Figure 3E. Each number 
represents the negative logarithm (base-10) of the P-value obtained using a permutation test to 
compare the frequency of changing the amino acid on the y-axis to the amino acid shown on the 
x-axis between non-regulatory and trans-regulatory mutations. Green color intensity scales with 
the negative logarithm of P-values. White: amino acid changes equally represented in the trans-
regulatory and non-regulatory sets of mutations. Grey: amino acid changes not observed in the 
sets of trans-regulatory and non-regulatory mutations. 
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Figure A-13: Statistical significance of the enrichment and depletion of amino acid changes induced by trans-
regulatory mutations identified by BSA-Seq. 

Permutations tests were used to assess the statistical significance of the frequency differences 
between non-regulatory and trans-regulatory mutations shown on Figure 3 - figure supplement 
1E. Each number represents the negative logarithm (base-10) of the P-value obtained using a 
permutation test to compare the frequency of changing the amino acid on the y-axis to the amino 
acid shown on the x-axis between non-regulatory and trans-regulatory mutations. Green color 
intensity scales with the negative logarithm of P-values. White: amino acid changes equally 
represented in the trans-regulatory and non-regulatory sets of mutations. Grey: amino acid 
changes not observed in the sets of trans-regulatory and non-regulatory mutations. 
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Figure A-14: Mutations mapping to a predicted TDH3 regulatory network. 

The network of inferred interactions between TDH3 and transcription factors regulating its 
expression was established using the YEASTRACT repository (Teixeira et al., 2018). First level 
regulators (dark grey boxes) are transcription factors with evidence of binding to the TDH3 
promoter and regulating its expression. Second level regulators (light grey boxes) are 
transcription factors with evidence of binding to the promoter of at least one first level regulator 
and regulating its expression. Green arrows: evidence for activation of expression. Red arrows: 
evidence for inhibition of expression. Black arrows: unknown direction of regulation. Non-
regulatory and trans-regulatory mutations identified in the network are represented by blue and 
orange stars, respectively, near the affected genes. ROX1, inferred to be a third level regulator, is 
also shown because a trans-regulatory mutation was identified in its coding sequence.  
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Figure A-15:  Impact of mutations in two direct regulators of the TDH3 promoter. 

(A) Schematics of the PTDH3-YFP reporter gene with locations of three known binding sites for 
transcription factors Rap1p (purple) and Gcr1p (green) shown in the TDH3 promoter. (B) 
Regions of RAP1 (purple) and GCR1 (green) genes that were subjected to random mutagenesis 
using error-prone PCR. 470 RAP1 mutants and 220 GCR1 mutants were obtained by integration 
of random PCR fragments at the native RAP1 or GCR1 loci using CRISPR/Cas9 allelic 
replacement. (C-D) Distributions of the number of mutations per strain identified by Sanger 
sequencing the mutated regions of (C) RAP1 in 27 strains or (D) GCR1 in 18 strains. These data 
are shown in histograms. Blue curves: Poisson distribution with the same mean as observed in 
data. Red dotted line: Mean number of mutations among sequenced strains. (E-F) Distributions 
of PTDH3-YFP expression changes relative to the un-mutagenized reporter strain measured in four 
replicate samples for (E) the 470 RAP1 mutants or (F) the 220 GCR1 mutants. Fluorescence 
measures were transformed to be linearly related with YFP mRNA levels (see Methods). Red 
bars: Mutants with significant decrease in median expression greater than 3% relative to the un-
mutagenized strain (permutation test, P < 0.05). Blue bars: Mutants with significant increase in 
median expression greater than 3% relative to the un-mutagenized strain (permutation test, P < 
0.05). Pie charts: Proportions of mutants with significant increase in expression (blue), 
significant decrease in expression (red) and no significant change in expression (gray) relative to 
the un-mutagenized strain. (G) Relationship between changes in PTDH3-YFP expression levels (x-
axis) and fitness (y-axis) measured in 62 GCR1 mutants. Expression changes and fitness are both 
expressed relative to the un-mutagenized strain. Gray dotted lines: Expression change and fitness 
of the un-mutagenized strain. Error bars: 95% confidence intervals of expression changes and 
fitness measures obtained from four replicate populations of each mutant. The black dotted line 
represents a LOESS regression of fitness on median expression with a smoothing parameter of 1 
and 95% confidence intervals of the estimates shown as a gray shaded area. 
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Figure A-16: Properties of genes with coding mutations altering PTDH3-YFP expression level. 
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(A) Proportion of genes with one or more mutations identified among EMS mutants. Mutations 
in intergenic regions were excluded from this analysis. Orange bars include genes harboring one 
or more of the 65 trans-regulatory mutations identified in coding sequences. Blue bars include 
genes harboring one or more of 65 non-regulatory mutations randomly chosen among the set of 
1095 non-regulatory mutations observed in coding sequences. The number of genes hit by 1 to 8 
mutations is indicated above the corresponding bar. For blue bars, this number represents the 
mean number of genes obtained from 1000 random sets of 65 non-regulatory mutations. The 
names of genes with at least 2 trans-regulatory mutations identified among mutants are indicated 
above the bars. FTR1 and CCC2 are involved in iron homeostasis, ADE2,4,5,6 are involved in de 
novo purine biosynthesis, NAM7 is involved in nonsense mediated mRNA decay, CHD1 is 
involved in chromatin regulation and TYE7 encodes a transcription factor regulating TDH3 
expression. (B) Summary of gene ontology (GO) enrichment analysis performed with 
PANTHER tool (http://www.pantherdb.org/). Fisher’s exact tests were used to evaluate the 
overrepresentation of GO terms among the 42 genes affected by one or more of the 66 trans-
regulatory mutations in coding sequences relative to the 1043 genes affected by one or more of 
the 1251 non-regulatory mutations in coding sequences. The descriptions shown on the left 
correspond to GO terms with a P value < 0.05 (left bars), a fold-enrichment > 3 (right bars) and 
that are not parents to other GO terms in the ontology hierarchy (i.e. GO terms that are the most 
specific). A more complete list of enriched GO terms can be found in Supplementary File 8. 
Shades of gray represent different categories of GO terms (from darkest to lightest: biological 
processes, molecular functions and cellular components) or PANTHER pathways (lightest gray). 
Fold-enrichment was calculated as the observed number of genes with a particular GO term in 
the set of genes affected by trans-regulatory mutations (bold numbers on the right) divided by an 
expected number of genes obtained from the number of genes with the same GO term in the set 
of genes affected by non-regulatory mutations (regular numbers on the right). Four groups of GO 
terms and pathways involved in similar processes are represented by colored areas: chromatin 
(pink), metabolism (orange), transcription (green) and iron homeostasis (blue). 
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Figure A-17: Overrepresentation of trans-regulatory mutations in eQTLs regions. 

(A) Overlap of 66 trans-regulatory point mutations and 317 eQTL regions along the yeast 
genome. eQTL regions were identified by BSA-Seq in Metzger and Wittkopp 2019 from three 
crosses of a laboratory strain (BY) to each of three strains expressing PTDH3-YFP in the genetic 
background of different S. cerevisiae isolates: SK1 (eQTL regions represented by blue bars), 
YPS1000 (eQTL regions represented by yellow bars) and M22 (eQTL regions represented by red 
bars). Triangles indicate the genomic locations of trans-regulatory mutations, with open triangles 
representing mutations identified in mutants from the unenriched collection and filled triangles 
representing mutations identified in mutants enriched for large effects. Triangles are colored 
depending on the overlap between mutations and eQTL regions: black if the mutation is outside 
of any eQTL region, blue if the mutation lies in an eQTL region only identified from SK1xBY, 
yellow if the mutation lies in an eQTL region only identified from YPS1000xBY, red if the 
mutation lies in an eQTL region only identified from M22xBY, green if the mutation lies in two 
overlapping eQTL regions identified from SK1xBY and YPS1000xBY, purple if the mutation 
lies in two overlapping eQTL regions identified from SK1xBY and M22xBY, orange if the 
mutation lies in two overlapping eQTL regions identified from M22xBY and YPS1000xBY and 
brown if the mutation lies in three overlapping eQTL regions identified from the three crosses. 
(B) Proportions of non-regulatory and trans-regulatory mutations located in eQTL regions. Black 
bars: proportions of sites among the 12.07 Mb yeast genome. Blue bars: proportions of the 1759 
non-regulatory point mutations. Orange bars: proportions of the 66 trans-regulatory mutations 
(excluding aneuploidies). Red bars: proportions of the 44 trans-regulatory mutations identified in 
mutants from the unenriched collection. Green bars: proportions of the 22 trans-regulatory 
mutations identified in mutants enriched for large effects. The proportions of non-regulatory and 
trans-regulatory mutations in eQTL regions were compared using G-tests (***: P < 0.001, **: 
0.001 < P < 0.01, *: 0.01 < P < 0.05, ns: P > 0.05). 
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Figure A-18: Proportions of different categories of non-regulatory mutations and trans-regulatory mutations 
located in eQTLs regions. 

Black bars: proportions of all sites among the 12.07 Mb yeast genome. Medium blue bars: 
proportions of the 1759 non-regulatory point mutations. Light blue bars: proportions of non-
regulatory mutations at sites for which the total sequencing depth was below the median 
sequencing depth of the corresponding library in BSA-Seq data. Dark blue bars: proportions of 
non-regulatory mutations at sites for which the total sequencing depth was equal or above the 
median sequencing depth of the corresponding library in BSA-Seq data. Orange bars: 
proportions of the 66 trans-regulatory mutations (excluding aneuploidies). Red bars: proportions 
of the 49 trans-regulatory mutations identified by BSA-Seq. Green bars: proportions of the 17 
trans-regulatory mutations identified by Sanger sequencing of candidate genes. The proportions 
of non-regulatory and trans-regulatory mutations in eQTL regions were compared using G-tests 
(***: P < 0.001, **: 0.001 < P < 0.01, *: 0.01 < P < 0.05, ns: P > 0.05). 
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Supplementary Data 

All supplementary data files are available at eLife online: https://elifesciences.org/articles/67806 
 
 
SupplementaryFiles.zip. Compressed folder containing Supplementary Files 1-16. 

Supplementary File 1. Sequencing depth in BSA-seq data. 

Supplementary File 2. List of all mutations identified by BSA-Seq or Sanger sequencing in this 

study. 

Supplementary File 3. Statistical associations between aneuploidies and fluorescence level. 

Supplementary File 4. Linked mutations associated with fluorescence level in BSA-Seq 

experiments. 

Supplementary File 5. Mutations identified by Sanger sequencing of candidate genes. 

Supplementary File 6. Mutations tested in single-site mutants. 

Supplementary File 7. Mutations associated with fluorescence level in BSA-Seq experiments. 

Supplementary File 8. Targeted mutagenesis of RAP1 residues making direct contact with 

DNA. 

Supplementary File 9. List of GO terms overrepresented in genes hit by causative mutations 

relative to genes hit by neutral mutations. 

Supplementary File 10. Mutations located in the coding sequence of glucose signaling genes.  

Supplementary File 11. Trans-regulatory effects of mutations in purine biosynthesis genes or 

iron homeostasis genes. 

Supplementary File 12. Files used as inputs for analyses performed with the PBS script (Source 

Code 4) and R scripts (Source Code 1-3). 

Supplementary File 13. List of DNA libraries grouped by sequencing runs. 

Supplementary File 14. List of oligonucleotides used in this study. 

Supplementary File 15. Construction of single-site mutant strains. 

Supplementary File 16. Phenotypes of RAP1 mutants (expression) and GCR1 mutants 

(expression and fitness). 

Source Code 1. R scripts used for the analysis of flow cytometry data. 

Source Code 2. R scripts used for the analysis of BSA-Seq data and for comparing the 

properties of trans-regulatory and non-regulatory mutations. 

Source Code 3. R script used to annotate variants identified in BSA-Seq data. 
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Source Code 4. PBS script used to process FASTQ files. 

SourceData.bz2. Compressed folder including 34 Source Data files in .txt format that contain 

quantitative data displayed on all figures. 

 
 

 
 

 

 
 

  
 

 
 

 

 

 

 
 

 
 

 

 

 
 

 


