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ABSTRACT

Electric machines can be found in a variety of industrial applications, including

renewable energy, transportation, and military systems. Among electric machines,

Permanent Magnet Synchronous Machines (PMSMs), such as Surface-Mount Perma-

nent Magnet (SMPM) and Interior Permanent Magnet (IPM) machines, have been

preferred for high-performance applications due to their high torque density, high

power density, and potential for precise control and high efficiency over a wide oper-

ating range. However, PMSMs can experience magnetic, electrical, and mechanical

faults, compromising the system performance and safety.

Fault diagnosis and condition monitoring techniques aim to identify abnormal

conditions and track the health status during operation. In particular, if the ma-

chine’s health condition is continuously monitored, faults can be recognized at early

stages, and corrective actions can be implemented. Model-based techniques use un-

usual changes in state variables, parameters, and outputs to monitor the machine’s

health and determine whether the machine is experiencing a fault. Online parame-

ter identification offers continuous monitoring of health conditions through parameter

variation during operation. Moreover, if the parameters have physical meaning, health

conditions can be tracked and diagnosed more straightforwardly. However, in some

cases, faults and operating conditions might have similar effects on the parameters.

Additionally, each fault causes different imbalances in the PMSM dynamics that stan-

dard models do not capture. Furthermore, parameter identification has an inherent

implementation challenge, since accurate estimation requires persistently exciting in-

puts which may conflict with control objectives and compromise control performance.

This dissertation presents research that seeks to address open issues regarding the ap-

plication of parameter identification to fault diagnosis and condition monitoring of

SMPM machines.

The first part of this dissertation addresses the incorporation of operational con-

straints into the Simultaneous Identification and Control (SIC) formulation for SMPM

machines. Specifically, a SIC methodology that explicitly considers the voltage and

current inverter limits for SMPM machines is presented. The current and voltage

xxi



constraints are derived by mapping three-phase voltage and current constraints into

their two-phase equivalents. These constraints are incorporated into a SIC formula-

tion that consists of an adaptive current regulator and a Receding Horizon Adaptive

Input Design (RHAID). The SIC formulation utilizes the quadrature-axis current for

torque production, while the direct-axis current is used to inject the excitation re-

quired for accurate convergence. The inverter constraints are incorporated in the

RHAID, which minimizes losses while maximizing the excitation characteristics of

the reference direct current. Accurate torque regulation is performed through the

adaptive current regulator. Simulations demonstrate the effectiveness of the SIC for-

mulation on constraint enforcement at different operating conditions.

The rest of this dissertation studies the modeling and parameter identification

for fault diagnosis and condition monitoring of SMPM machines. First, lumped-

parameter models are formulated to capture the distinctive dynamic features of

SMPM machines under demagnetization, eccentricity, and inter-turn short conditions.

In addition to the standard model parameters, these parameterizations incorporate

parameters that capture specific oscillations produced by the different faults. Based

on these models, parameter identification strategies are formulated for detecting de-

magnetization, eccentricity, and inter-turn short. The inputs are designed to guar-

antee sufficient conditions for accurate parameter convergence while avoiding control

perturbations. Afterward, a parameter identification strategy for comprehensive fault

detection is formulated by incorporating the estimators for demagnetization, eccen-

tricity, and inter-turn short into a sole strategy. Simulation and co-simulation results

demonstrate the effectiveness of the proposed parameter estimators for recognizing

the different fault conditions.
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CHAPTER I

Introduction

1.1 Motivation and Overview

Electric machines can be found in a wide range of industrial applications, in-

cluding renewable energy, transportation, and military systems. The popularity of

electric machines has considerably increased over time, as many applications have

progressively trended towards “more electric” systems. For instance, aircraft and

ships have been moving into the so-called “more electric aircraft” and “all-electric

ship” concepts, in which electrical systems are preferred over others (e.g., mechani-

cal, hydraulic, pneumatic), seeking improved efficiency and reliability [2–4]. Similarly,

in the auto industry, the trend has been toward Electric Vehicles (EVs) and Hybrid

Electric Vehicles (HEVs) through the years, driven by higher fuel costs, environmental

concerns, and government mandates [5, 6].

Among all electric machines, Permanent Magnet Synchronous Machines (PMSMs),

such as Surface-Mount Permanent Magnet (SMPM) and Interior Permanent Mag-

net (IPM) machines, have been preferred for high-performance applications due to

their high torque density, high power density, and potential for precise control and

high efficiency over a wide operating range. For example, PMSMs can be found in

industrial robots such as Yamaha’s SCARA robots, which are involved in processes

that require high precision [7]. Similarly, PMSMs are also employed as part of the

thrust reverser in aircraft and the electric propulsion system in HEVs and EVs, in

which requirements include high efficiency, reliability, fast response times, and precise

regulation [8,9]. In many of these applications, a sudden machine failure can have ma-

jor effects on the overall system performance and availability. In fact, consequences

can go from the interruption of critical services and costly maintenance to even, in

some cases, loss of life.
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The faults that PMSMs can experience can be classified into magnetic, electri-

cal, and mechanical faults [10], as shown in Fig. 1.1. Magnetic faults are related to

Permanent Magnet (PM) demagnetization faults, which can occur due to thermal

stress, electrical faults, environmental factors (e.g., oxidation, corrosion), and rotor

faults (e.g., damaged/broken rotor magnets) [11]. Electrical faults are associated with

stator winding and electric drive faults resulting from overloading, manufacturing de-

fects, high-temperature operation, and transient high voltages. Mechanical faults

refer to bearing failure and eccentricity faults caused by metal fatigue, unbalanced

stress, improper installation, and environmental factors [12]. All three types of faults

compromise the system’s performance and safety, as they can result in reduced torque

per ampere, increased torque pulsations, increased noise, increased vibrations, unbal-

anced voltages, unbalanced currents, increased losses, and reduced efficiency [13].

PMSM

Magnetic faults Electrical faults Mechanical faults

Demagnetization 
faults

Stator faults
• Winding faults
• External faults 

(Drive)

Eccentricity faults
Bearing faults

Figure 1.1: Fault categories for PMSMs.

Fault diagnosis and condition monitoring techniques aim to recognize abnormal

conditions and track the health status during operation [14]. By continuously moni-

toring the machine’s health condition, machine faults can be detected at their early

stages, and corrective steps can be taken before the fault is fully developed. The main-

tenance of electric machines can be performed using breakdown-, fixed-time interval-,

and condition-based strategies [15]. In many of the electric motor-driven applications

mentioned above, breakdown maintenance (i.e., “run it until it breaks then replace

it” rule) is not an option since machine failure compromises the entire system’s op-

erability [15]. In fixed-time interval-based maintenance, the machine has scheduled

maintenance at fixed time periods. However, planned maintenance might be ineffec-

tive, as some components might not have a predictable time to failure. With health

monitoring, machine maintenance can be carried out in a condition-based manner,

allowing better outage scheduling with lower downtime and replacement costs [15].
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Moreover, while the machine is still in operation, the control strategy can use the

health information to adapt its strategy to continue operation and maintain perfor-

mance while minimizing further machine damage [16–18].

The problem of diagnosing and monitoring the PMSM’s health has been widely

studied, and comprehensive reviews are presented in [11,12,19,20]. In the literature,

fault diagnosis and condition monitoring strategies have been proposed based on mea-

sured signals and dynamic models [14]. In signal-based techniques, particular features

(e.g., mean values, frequencies) from the measured signals, such as current [21–30],

voltage [22, 31–34], flux [35, 36], torque [17, 26], and vibrations [30, 37, 38], are ex-

tracted and compared against a preset combination, a.k.a. signal signature, which

relates to the fault. The Fast Fourier Transform (FFT), Short-Time Fourier Trans-

form (STFT), wavelet transform, and Cohen-class-based time-frequency analysis are

some of the methods that have been used to extract the fault features [20]. The

main drawback of signal-based techniques is the computational burden associated

with the processing techniques for applications in which the motor operates under

non-stationary conditions [39]. Moreover, in some cases, additional sensors are re-

quired to implement the fault diagnosis and condition monitoring strategies. The

Motor Current Signature Analysis (MCSA) has been the most popular in practical

applications among all signal-based techniques since it provides continuous monitor-

ing without additional sensors [39]. However, the currents may be easily affected by

current control loops in electric drive systems, and, hence, the effects of faults on

the currents can be distorted and diminished [29]. Moreover, the current frequency

spectrum under partial PM demagnetization, eccentricity, and supply/load unbalance

have similar sideband frequency patterns, complicating fault classification [39,40].

In model-based techniques, unusual changes in state variables, model parameters,

and outputs are used to monitor the machine’s health and determine whether the ma-

chine is experiencing a fault [39–48]. In order to ensure the robustness and reliability

of these model-based fault diagnosis and condition monitoring approaches, model un-

certainties and parameter variations have to be considered [47]. The disadvantages

of model-based techniques include the requirement for knowledge regarding machine

parameters and different models for each fault. Precisely, each fault causes different

unbalanced dynamics which standard machine models do not capture. Among all

model-based strategies, online parameter identification offers continuous monitoring

of health conditions through parameter variations during operation. The main advan-

tage of using online parameter identification is that health conditions can be tracked

and diagnosed more straightforwardly if the parameters have physical meaning [14].
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However, fault diagnosis and condition monitoring through parameter identification

require a way to distinguish the root cause of the variation, as faults and operat-

ing conditions might affect the parameters similarly in some cases. Under normal

operation, the parameters of PMSMs can vary due to temperature, skin effect, and

magnetic saturation [49]. Additionally, parameter identification-based strategies face

the challenge that each fault causes different imbalances in the PMSM, and standard

models do not hold anymore. Researchers have proposed parameter identification-

based fault diagnosis and condition monitoring strategies for PMSMs based on model

parameterizations that capture healthy [40–46] and faulty [40, 48] operating condi-

tions. In healthy-model-based strategies [40–46], fault diagnosis is still challenging as

parameters can also be affected by operating conditions. Regarding strategies based

on models for faulty conditions [40, 48], their application is limited to a particular

fault.

Besides the aforementioned difficulties, parameter identification has an intrinsic

implementation challenge as it requires persistently exciting inputs for estimation

accuracy, which may conflict with control objectives and, therefore, compromise con-

trol performance. The control objectives typically involve tracking a set-point or

trajectory, which does not necessarily produce persistently exciting inputs [50]. This

trade-off between parameter identification and control for PMSMs has been addressed

in the literature by exploiting actuation redundancy [50–53]. Specifically, in [50–53],

the excitation required for accurate parameter estimation was constrained to the

“null-space” so that sufficiently rich signals are injected without affecting the output

regulation. Regarding parameter identification-based condition monitoring and fault

diagnosis strategies, the inclusion of Simultaneous Identification and Control (SIC)

methodologies, such as [50–53], ensures active monitoring and detection without con-

trol perturbations.

In this dissertation, we present research that seeks to address open issues regarding

the application of parameter identification to fault diagnosis and condition monitor-

ing of PMSMs. The first part of this dissertation investigates the incorporation of

operational constraints to the SIC problem. Precisely, the proposed SIC methodology

consists of an adaptive current regulator, which achieves accurate torque regulation,

and an optimization-based adaptive input design, which determines the reference cur-

rent trajectories that minimize losses and maximize excitation characteristics while

considering the inverter’s voltage and current limits. The rest of this dissertation

covers research that studies the application of parameter identification for fault di-

agnosis and condition monitoring through modeling, analysis, and simulation. More
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specifically, models and parameter identification strategies are developed for SMPM

machines under demagnetization, eccentricity, and Inter-Turn Short (ITS) conditions.

The models are devised to capture the essential dynamic behavior of SMPM machines

under different faults. Based on these models, fault-related parameters are defined,

and new parameterizations are formulated for parameter identification. Note that

the inputs are designed for SIC. Thus, sufficient conditions for accurate parameter

convergence are actively guaranteed while minimizing disturbances in the control

performance.

1.2 Background

1.2.1 Background on PMSMs under Fault Conditions

As mention in Section 1.1, PMSMs can experience a variety of faults. In this dis-

sertation, the fault conditions of interest are PM demagnetization, rotor eccentricity,

and ITS in the stator windings. This section briefly describes these three PMSM

fault conditions, including their causes and consequences as well as their detection,

monitoring, and mitigation strategies in the existing literature.

1.2.1.1 Permanent Magnet (PM) Demagnetization Condition

Demagnetization refers to the irreversible reduction of the flux linkage produced by

a PM. In an electric machine, the PMs are susceptible to irreversible demagnetization

when exposed to thermal stresses, electrical faults (e.g., demagnetizing fields produced

by large currents in an ITS), environmental factors (e.g., oxidation, corrosion), and

unbalanced loads [54]. In the event that the PMs are irreversibly demagnetized, their

flux decreases and, in some cases, becomes unbalanced, causing significant vibration

and noise as well as overall performance deterioration [54,55].

Fig. 1.2 illustrates how external demagnetizing currents and the magnet’s temper-

ature can affect a magnet’s B-H curve. Note that, in Fig. 1.2, only the second quadrant

of the B-H curve is shown as it is the most important one for understanding the de-

magnetization process. The second quadrant of the B-H curve for different materials

can be found in [56]. Modern materials, such as neodymium (NdFeB) [19, 57, 58],

have a linear demagnetization curve that sharply drops once approaching the knee

point (Hk), as the one presented in Fig. 1.2(a). In a PMSM, the magnet’s operating

point corresponds to the intersection between the load line and the B-H curve. While

the magnet’s operating point stays within the linear region, the demagnetization is
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reversible. However, if the magnet’s operating point goes beyond the knee point (Hk),

the magnet is irreversibly demagnetized, as it will follow another recoil line in which

the remanent flux density (Brr) is smaller than the original (Br). Regarding the effect

of temperature on a magnet’s B-H curve, increased temperatures facilitate demagne-

tization since a lower field intensity is required to reach the knee point [19,57,58], as

shown in Fig. 1.2(b).

(a)

B

H Hk

Br

Brr

Demagnetization
due to current

Recoil line

Airgap Line

Load Line
(Linear Region)

Load Line
(Demagnetization Region)

Knee

(b)

B

H Hk(T1) Hk(T2)

T1 < T2

Br(T1)

Br(T2)

1

Figure 1.2: Second Quadrant of magnet’s B-H curve: (a) effect of demagnetizing
current, and (b) effect of temperature.

For PMSMs, demagnetization can occur evenly or unevenly in all magnets or

specific ones, and, hence the dynamic response can be affected in different ways.

When all magnets are evenly demagnetized, the PM flux reduces and, therefore, the

torque for a given current decreases. However, no additional harmonics are expected

since the rotor flux remains balanced. In the case that the magnets are unevenly

demagnetized, the PM flux linkage becomes unbalanced. As a result, in addition to

a decreasing torque for a given current, the system experiences additional noise and

vibrations caused by the added harmonics in the rotor flux. A variety of studies have

been conducted for the detection of PM demagnetization at an early stage so that

performance degradation, maintenance and downtime costs, and safety hazards can

be avoided [17, 19, 21, 31, 32, 35, 41–46, 54, 55, 58–67]. In the literature, researchers

have studied the demagnetization mechanism [19,54], established models for PMSMs

under magnet demagnetization [58–64], and proposed condition monitoring and fault

diagnosis techniques [17, 21,31,32,35,40–46,64–67].

Regarding modeling, a comprehensive literature review on PMSMs with PM de-
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magnetization can be found in [19]. Several approaches for modeling PM demag-

netization have been proposed such as Finite Element Analysis (FEA) models [58],

Magnetic Equivalent Circuit (MEC) models [59, 60], and lumped-parameter mod-

els [61]. The authors of [58] proposed a linear model that handles the demagnetization

curve and temperature dependence of demagnetization to be used as part of the FEA

simulation model of PMSMs. In [60], a MEC model was formulated and employed

to investigate the impact of the motor topology on magnet defect fault signatures.

Specifically, the authors studied frequency-based fault signatures on the stator Elec-

tromotive Force (EMF) and current waveforms. A three-phase lumped-parameter

model for SMPM machines, in which the back-EMF captures the spatial disposition

of the windings and magnets, was presented in [61].

The problem of diagnosing and monitoring the PMSM’s magnet health has been

widely investigated, and a comprehensive review is presented in [65]. Specific features

from measured signals such as current [21], voltage [31–34], flux [35], and torque [17],

have been extracted and compared against a signal signature, that is expected to cor-

respond to PM demagnetization. In [31,32], the zero-sequence voltage component was

used for online monitoring of the PMs. In [35], search coils were installed to measure

the magnetic flux around the stator, and the fundamental frequency component from

the measured voltages was utilized for detecting demagnetization, winding short cir-

cuit, and eccentricities. The authors of [17] proposed an online PM demagnetization

fault detection strategy for IPM machines based on the torque ripple discrepancy.

In terms of model-based approaches, unusual variations in model parameters have

been used to determine that the machine has a fault [41–46]. In [41], the authors

proposed a demagnetization fault diagnosis strategy for IPM machines using the

direct- and quadrature-axis inductances estimated from a MEC model. In [40,42,43],

the authors detected rotor faults in an SMPM machine by estimating the direct-

axis PM flux linkage in the rotor reference frame. However, their estimators require

known stator resistance and inductances, which might affect accuracy. In [44, 45],

the authors proposed parameter estimators for stator resistance and PM flux linkage

monitoring based on adaline neural networks. The authors of [46] proposed a PM flux-

linkage estimator based on a speed harmonic model and harmonic current injection.

In [44–46], the tracking performance of the parameter estimators was validated using

a healthy PMSM, as abnormal parameter deviations can indicate faults. However, for

these parameter estimators, the tracking performance under magnet demagnetization

was not presented.
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1.2.1.2 Eccentricity Condition

When the rotor and stator are misaligned, the motor operates under eccentricity

condition. Some of the causes include inaccurate manufacturing, improper alignment

of the rotor or stator during commisioning, and bearing wear or misalignment. Under

eccentricity conditions, the airgap between the stator and the rotor is nonuniform,

causing vibrations and unbalanced magnetic forces commonly known as Unbalanced

Magnetic Pull (UMP). These undesired vibrations and UMP produce additional

mechanical stress in the machine and can result in performance degradation as well as

reduced operating lifetime. Moreover, if the machine experiences severe eccentricity,

the rotor and stator can potentially rub, leading to severe damages [36].

(a)

Os

Os = Or = Oωr

(b)

Os

Oωr

Os 6= Or

Oωr = Or

(c)

Oωr

Or

Os 6= Or

Oωr = Os

(d)

Os Oωr
Or

Os 6= Or 6= Oωr

1

Figure 1.3: Center of the stator, rotor, and rotation under: (a) healthy, (b) static
eccentricity, (c) dynamic eccentricity, and (d) mixed eccentricity condi-
tions.

As shown in Fig. 1.3, a machine can experience three types of eccentricity: static,

dynamic, and mixed eccentricity. The type of eccentricity that the machine expe-

riences depends on whether the center of the stator, the center of the rotor, and

the center of rotation coincide. Note that, in Fig. 1.3, the center of stator, rotor,

and rotation are denoted by Os, Or, and Oωr , respectively. In a healthy machine

(Fig. 1.3(a)), all three centers coincide. However, when the machine is under Static

Eccentricity (SE) (Fig. 1.3(b)), the center of the rotor and rotation coincide, but

they are off from the center of the stator. Similarly, when the machine experiences

Dynamic Eccentricity (DE)(Fig. 1.3(c)), the center of the stator is the same as the

center of rotation; however, they differ from the center of the rotor. Mixed Eccentric-

ity (ME) occurs when the machine experiences both static and dynamic eccentricities

in which case none of the three centers coincide as shown in Fig. 1.3(d). Note that, in

practice, even newly manufactured motors have some level of ME due to the inherent
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tolerances in the manufacturing and assembling processes.

In the literature, researchers have analyzed the performance [26], established mod-

els [23, 26, 68–70], and proposed condition monitoring and fault diagnosis techniques

for PMSMs under eccentricity [23–26, 33, 35–40]. The dynamic response of PMSMs

under eccentricity has been capture through FEA models [25, 26], MEC models [68],

and lumped-parameter models [23,69,70]. In [25,26], a PMSM under SE, DE, and ME

was modeled using a time stepping finite element method, including the non-uniform

permeance of the air gap and nonlinear characteristics of the magnet material. In [68],

a MEC model with saturation was proposed for an IPM machine under SE. The au-

thors of [70] presented a lumped-parameter model for radial force and torque based

on permeance functions. In the two-phase equivalent model from [69], the effect of

SE on a line-start PMSM was captured using Modified Winding Function (MWF)

theory for the inductance calculations; however, the eccentricity effect on the PM flux

linkages was neglected. In [23], the authors proposed a model for the PMSMs electric

dynamics in which they modeled the PMs as fictitious coils and captured the effects

of eccentricity on the inductances by using MWF theory.

Detection of eccentricity is currently done using online and offline approaches. In

terms of signal-based methodologies, specific features from signals, including current

[23–26], voltage [33, 34], flux [35, 36], vibrations [37, 38], and torque [26] have been

used for monitoring and detecting eccentrities. The effects of SE, DE, and ME on the

stator current spectrum for PMSMs were studied in [23–26]. In [24], the configuration

impacts (i.e., SMPM and IPM) on eccentricity fault detection through a particular

current frequency pattern were studied. The type and degree of eccentricity were

predicted in [25] using support vector machine as a classifier. In [33], the change in

the commanded d- and q-axis voltages were used for fault detection and separation

of PMSMs under steady-state conditions for SE, demagnetization, and ITS. The

authors of [34] proposed a detection and identification method for IPM machines

under demagnetization, ITS, and SE based on the variation in the load angle. In [36],

the authors proposed an online detection strategy for PMSM under SE, DE, and ME

based on analog hall-effect field sensors. Radial force and UMP under static and

dynamic eccentricities were studied in [38] for vibration-based monitoring.

In terms of model-based approaches, unusual variations in model parameters have

been used to determine that the machine is under eccentricity fault [39, 40]. The

author from [39] proposed a standstill detection method for IPM machines using the

equivalent d-axis inductance as the indicator. In [40], the authors proposed an online

detection method for IPM machines for diagnosing and distinguishing between ec-
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centricity and partial demagnetization based on the high-frequency d-axis inductance

and rotor flux. In this methodology, inductance variations are used for eccentric-

ity detection, and the d-axis inductance and rotor flux are estimated by injecting a

high-frequency voltage in the d-axis and assuming a known resistance value.

1.2.1.3 Inter-Turn Short (ITS) Condition

An ITS refers to insulation failure between contiguous turns in a winding. The

insulation gradually deteriorates as part of the motor’s natural aging process; however,

its wear and tear can be exacerbated due to overloads, manufacturing defects, thermal

stresses, voltage stresses, and vibration-caused rubbing [20]. If not detected, the ITS

rapidly spreads and escalates up to a phase-to-phase or phase-to-ground short circuit.

Moreover, in PMSMs, stator short-circuit faults are particularly dangerous since this

fault can produce a magnetic field intensity that can irreversibly demagnetize the

magnets [20].

The coil insulation gradually loses its insulating characteristics and is usually

modeled with an additional resistance shorting the affected turns [16, 71–73]. The

decrease in the insulation-failure resistance indicates the degradation of the insulation

material. Note that an insulation-failure resistance equal to zero corresponds to

a perfect short, which is never reached in practice by an ITS [71]. A variety of

studies including the effects of this insulation-failure resistance on the fault severity

[16], modeling of PMSMs under ITS [16, 71–76], and condition monitoring and fault

diagnosis techniques [27–30,30,33–35,47,48] have been conducted. A comprehensive

literature review with the recent advances in modeling and online detection strategies

for stator ITS can be found in [20]. Similarly, in [77], a review on ITS indexes based

on current, voltage, torque, flux, and other electrical signals for PMSMs is presented.

Numerous works on modeling PMSMs under ITS have been proposed including

FEA models [74], MEC models [75], and lumped parameter models [16, 71–73, 76].

Using Ansys Maxwell, Ansys Simplorer, and Simulink, the authors of [74] simulated

a PMSM as part of an electric drive under ITS condition with FEA by reducing the

number of turns in a phase. In [16], the authors presented an FEA-based equiva-

lent model, in which the shorted turns are modeled as a separate winding. In [72],

a dynamic model for PMSMs with an ITS fault that takes into account the fault

percentage and the number of poles is proposed. The authors of [73] proposed a two-

phase equivalent parametric model for SMPM machines in the rotor reference frame

in which the spatial harmonics are taken into account. Dynamic models for SMPM

and IPM machines under ITS condition by separating the dynamics into the positive
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and negative sequences were proposed in [71, 76]. Specifically, in [76], a two-phase

equivalent model for IPM machine under ITS is formulated in the positive and neg-

ative sequence synchronous reference frames while taking into account the windings’

series-parallel connections.

In terms of detection and monitoring strategies for ITS conditions, signal-based

methodologies employed specific features from measured signals, such as current [27–

30], voltage [33, 34], flux [35], and vibrations [30]. The authors of [27] proposed a

current-based detection methodology using the Extended Park’s Vector approach, in

which the ITS signature is the ratio between the component at twice the fundamental

frequency and the one at the fundamental frequency. In [29], the authors proposed

an ITS indicator based on the difference between the stator currents’ fundamental

component and a frequency-tracking algorithm to extract it. In [34], a detection

and identification method for demagnetization, ITS, and SE in IPM machines was

proposed based on the variation in the voltage angle. The authors of [30] proposed

an ITS detection strategy based on both stator current and vibration signals using

an improved wavelet package transform.

Regarding model-based approaches, unusual variations in state variables and model

parameters have been used to determine whether the machine is experiencing an

ITS [47, 48]. The authors of [47] proposed the ITS detection through a residual cur-

rent vector given by the difference between the measured stator currents and the ones

estimated by a state observer. In [48], the authors proposed an online parameter es-

timator to determine the healthy turns ratio based on a searching algorithm with the

dynamic model from [76], assuming a perfect short.

1.2.2 Research Gaps

This research aims to address the application of parameter identification to fault

diagnosis and condition monitoring of PMSMs through modeling, analysis, and sim-

ulation. In the literature, researchers have proposed parameter identification-based

condition monitoring and fault detection strategies for PMSMs [40, 42–46, 48]; how-

ever, the existing literature solely focuses on estimating particular parameters to

detect specific faults, which limits the fault-related information. This dissertation

seeks to formulate comprehensive condition monitoring and fault detection method-

ologies of PMSMs based on simultaneous identification and control. Specifically, the

goal is to develop methodologies for detecting different faults using a multi-parameter

identification approach without compromising the control performance. The issues

that will be addressed in this dissertation are summarized as follows:
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1.2.2.1 Lumped-parameter models for analysis and fault-detection design

of SMPM machines under fault conditions

Several models that capture the SMPM machine response under fault conditions

have been proposed in the literature. However, the application of these models to

parameter identification is not straightforward. Mathematical models provide the

platform to investigate a system response under fault conditions while avoiding the

costs and difficulties associated with replicating faults through special experimental

setups. Models can be utilized to design, analyze, and validate fault diagnosis and

condition monitoring techniques. As mentioned earlier, several approaches for mod-

eling PMSMs under fault conditions have been proposed, including FEA, MEC, and

lumped-parameter models. FEA models are preferred in terms of accuracy; however,

they are computationally expensive. MEC models are more computationally efficient

than FEA models and reasonably accurate, yet their computational cost can still

be significant for real-time applications. Both FEA and MEC can be classified as

detailed models and are typically adopted for performance verification [78]. While

lumped-parameter models are not as accurate as FEA and MEC models, they are

simple, which can be advantageous in terms of conceptual understanding. Moreover,

lumped-parameter models are compact and can be used to design real-time fault de-

tection and condition monitoring techniques. To this end, in this dissertation, we

focus on the application of lumped-parameter models to condition monitoring and

fault diagnosis.

Several lumped-parameter models for PMSMs under fault conditions have been

proposed, including three-phase models [16, 23, 61], two-phase equivalent models in

the stationary reference frame [72], two-phase equivalent models in the rotor refer-

ence frame [69,70,73], and two-phase equivalent models in the positive and negative

sequence synchronous reference frames [71,76]. While the machine model can be ex-

pressed in any of these equivalent forms, some models have advantages over the others.

Three-phase models capture the behavior of the physical PMSMs, and, hence, faults

can be easily incorporated. However, three-phase models are not straightforward in

terms of analysis and control, and equivalent two-phase models are preferred, given

their conceptual advantages. Moreover, the equivalent two-phase model representa-

tion in certain rotating reference frames is often more beneficial.

Under normal conditions, the standard machine model typically used for control

design is the two-phase model in the rotor reference frame. In this standard machine

model, the two-phase variables become constant under steady-state conditions, and

parameters are constant. Unfortunately, under fault conditions, the machine becomes
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unbalanced, and the standard model is no longer valid. Still, representing the dynam-

ics under fault conditions using the equivalent two-phase model in the rotor reference

frame is favorable. In this equivalent representation, the lack of symmetry caused

by the fault corresponds to additional frequency dynamics distinguished from the

healthy constant dynamics under steady-state. Moreover, if the equivalent two-phase

model in the rotor reference frame is used for model-based condition monitoring and

fault detection, the standard model is the baseline.

Researchers have proposed explicit equivalent two-phase models in the rotor refer-

ence frame for eccentricity and ITS in the literature [69,73]. In terms of eccentricity,

a two-phase equivalent model for a line-start PMSM under SE in the rotor reference

frame is proposed [69]. However, the effect of SE on a line-start PMSM was solely

captured in the inductances, neglecting its additional effect on the PM flux linkages.

Regarding ITS condition, a two-phase equivalent parametric model for SMPM ma-

chines in the rotor reference frame in which the spatial harmonics are taken into

account was proposed in [73]. However, the complexity of this model hinders its ap-

plication to fault-detection strategies. While existing literature proposed equivalent

two-phase models of PMSMs for fault conditions in the rotor reference frame, its

application for condition monitoring and fault detection strategies requires further

parameterization efforts. In other words, in the literature, the models do not have an

appropriate parameterization for a straightforward formulation of multi-parameter

identification strategies. In particular, the literature lacks simple parameterizations,

in which specific parameters are formulated to capture the dynamic asymmetries

caused by the faults. These simple parameterizations are crucial for implementing

parameter identification-based fault detection, as the proposed parameters will carry

physical meaning. The literature also lacks an explicit equivalent two-phase model

for PMSMs under PM demagnetization.

1.2.2.2 Model parameterization and estimator formulation for fault de-

tection and condition monitoring of SMPM machines

While online parameter identification is a mature field of study, its application

to fault detection and condition monitoring of SMPM machines still has work to

be done. Although there is previous work on this topic, most methodologies are

limited to one fault [48] or are sensitive to parameter variations due to operating

conditions [40,42–46]. Hence, the existing literature provides limited information for

fault diagnosis and condition monitoring.

The decrease in PM flux linkage has been used to detect demagnetization [40,42–
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46]; however, its value also reduces with increased temperature, which could lead to

false positives. In [40], in addition to using the rotor flux for detecting demagnetiza-

tion, estimation of the high-frequency d-axis inductance is used for eccentricity de-

tection. However, the high-frequency d-axis inductance is extracted from a frequency

spectrum analysis, which can be computationally expensive for variable-speed appli-

cations. In [48], the healthy (unshortened) turns ratio for the winding affected by ITS

is estimated based on a searching algorithm with the dynamic model from [76], as-

suming a perfect short. Unfortunately, the application of this online fault parameter

estimator is solely for detecting ITS. While the existing literature applies parameter

identification to condition monitoring and fault diagnosis, they focus on a small subset

of parameters, and, therefore, the fault-related information is limited. Increasing the

number of estimated parameters and, hence, the fault-related information contributes

to systematic and comprehensive monitoring and detection. Moreover, the integra-

tion of parameters that characterize the machine under healthy and faulty operation

allows tracking and separating parameter variations due to operating conditions and

faults. By including SIC, accurate parameter identification is guaranteed without

compromising the control objectives, which have not been incorporated in previous

condition monitoring and fault detection strategies.

1.2.3 Incorporation of operational constraints to SIC methodologies for

PMSMs

Researchers have proposed SIC strategies in which the over-actuated nature of

the PMSM is exploited to achieve identification and control objectives without com-

promise [50–53]. In [51], a robust adaptive torque controller for SMPM machines

was proposed. The persistently exciting signals required for accurate parameter con-

vergence were injected through the direct-axis current to avoid undesired ripple in

the generated torque. In [50], a Lyapunov-based adaptive controller for PMSMs was

designed to take advantage of over-actuation and simultaneously achieve parameter

identification and torque regulation. The authors from [52] proposed an optimization-

based SIC formulation for PMSM. A receding horizon control allocation was used to

determine the reference current trajectories fed into an adaptive current regulator.

The optimization included a metric that maximized the excitation characteristics of

the reference currents, based on the Fisher information matrix. To the best of the

author’s knowledge, no previous work on SIC of PMSMs has accurately characterized

operational limits and address them through control formulation and implementation.
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1.3 Contributions

This research aims to address the application of parameter identification for com-

prehensive fault diagnosis and condition monitoring of PMSMs. Although condition

monitoring and fault detection strategies for PMSMs through parameter identification

have been investigated in the past, this is the first attempt to develop methodolo-

gies for detecting different faults while balancing parameter identification and control

performance. In this sense, this work presents methodologies that exploit the sys-

tem’s model structure and self-excitation properties to achieve accurate identification

while avoiding undesired effects on the control performance. First, parametric mod-

els are derived for SMPM machines under different fault conditions. These models

seek to capture the essential SMPM machine behavior under the different faults and

include parameters that capture the fault imbalances. Afterward, based on these

models, parameter estimators are formulated for monitoring and detecting the dif-

ferent faults. The inputs are designed to guarantee sufficient conditions for accurate

parameter identification without affecting the control performance. After investigat-

ing the different faults separately, a parameter estimator is proposed that establishes a

more systematic and comprehensive fault diagnosis and condition monitoring strategy.

Specifically, this comprehensive parameter estimator is formulated by incorporating

all the previous parameter estimators into one strategy. The main contributions of

this research are summarized in the following:

• Procedures to create equivalent two-phase SMPM machine models in the ro-

tor reference frame with fault-related parameters for parameter identification-

based fault diagnosis and condition monitoring strategies [79]: This dissertation

presents procedures to create equivalent two-phase models in the rotor reference

frame for SMPM machines with fault-related parameters for monitoring and de-

tecting demagnetization, eccentricity, and inter-turn short conditions through

parameter identification. The two-phase equivalent models are formulated for

a four-pole three-phase SMPM machine with two coils per phase. However,

the procedures can be applied to analyze other SMPM machines with different

winding configurations and numbers of poles. The models assume that the ma-

chine has a smooth air gap, is balanced in construction, and is connected in an

ungrounded-wye configuration. In addition, the models are derived assuming

linear magnetics since magnetic saturation, eddy current, and hysteresis effect

are neglected. In terms of materials, the models assume that stator and rotor

irons have infinite permeability while the magnets and air have equal permeabil-
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ity. The derivations start with the formulation of the physical SMPM machine

model under the different fault conditions, as it is easier to incorporate the

faults. Afterward, these models are mapped into the rotor reference frame us-

ing the Clarke and Park transforms. FEA simulations are used to calibrate and

validate these models. These equivalent two-phase models are used to formulate

new models for parameter identification that capture the “essential” behavior

of SMPM machines under demagnetization, eccentricity, and inter-turn short

conditions. Specifically, the distinctive dynamic features generated by the differ-

ent faults are identified and further parameterized for parameter identification-

based fault diagnosis and condition monitoring strategies. Expressly, in addition

to the standard model parameters, these parameterizations include parameters

that capture the specific oscillations produced by demagnetization, eccentricity,

and inter-turn short. Under demagnetization, the fault-related parameter is the

asymmetry term that captures the oscillation at three times the electrical rotor

speed caused by uneven demagnetization between the north and south PM flux

linkages. Similarly, under eccentricity, the fault-related parameters capture the

oscillation at the rotor speed in the magnetic parameters caused by the ME air-

gap asymmetry. Under ITS, the fault-related parameters are meant to capture

the oscillations at twice the electrical rotor speed in the magnetic parameters

due to the ITS. Note that the model for ITS is approximate since the current

flowing through the shorted turns in the ITS coil is unknown. As will be seen,

these equivalent two-phase models with fault-specific parameters can be eas-

ily leveraged for fault diagnosis and condition monitoring as the fault-related

parameters become non-zero under the specific faults.

• Formulation of parameter identification strategies for fault diagnosis and con-

dition monitoring of SMPM machines based on proposed two-phase SMPM ma-

chine models [79]: Parameter identification strategies have been formulated for

monitoring and detecting demagnetization, eccentricity, and inter-turn short.

Specifically, these parameter estimators are formulated based on the previously

mentioned parameterizations, which include fault-related parameters. Through

PE analysis, the inputs are designed to guarantee sufficient conditions for ac-

curate parameter convergence while avoiding control perturbations. As will be

seen, the dynamics associated with the fault-related parameters are self-exciting.

Note that self-excitation is particularly convenient for the input design since it

contributes to the PE property. Simulation and co-simulation results demon-

strate the effectiveness of the proposed parameter estimators for monitoring
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and detecting the different fault conditions. The results include a parameter

estimator based on the standard SMPM machine model since it is used as a

baseline. Compared to the parameter estimator based on the standard model,

the proposed estimator offers additional fault-related information. While us-

ing the standard model parameters is problematic as their value is affected by

operating conditions, the fundamental component of the different fault-related

parameters is non-zero solely when the specific fault occurs. Moreover, the

gradual deviation from zero in the fault-related parameters is directly linked to

the progressive increase in the fault condition, advantageous for fault diagnosis

and condition monitoring.

• A comprehensive parameter identification strategy for fault diagnosis and con-

dition monitoring of SMPM machines under different faults: By combining

all the models developed for the different faults, a multi-parameter estima-

tor is proposed seeking a more systematic and comprehensive fault diagnosis

and condition monitoring strategy. Co-simulation results assess the monitoring

and detection capabilities of the proposed strategy under different conditions.

The results include single- and combined-fault conditions. A discussion on the

fault-related information under each condition is presented, including remarks

on cases with limited diagnosis.

• A simultaneous identification and torque control methodology for SMPM ma-

chines, including inverter current and voltage constraints [80]: This dissertation

will present an optimization-based SIC formulation for SMPM machines that

explicitly considers the voltage and current inverter limits. The formulation ex-

ploits over-actuation to fix control allocation. Specifically, persistency of excita-

tion and torque regulation are achieved through the direct- and quadrature-axis

currents, respectively. An optimization-based adaptive input design determines

the reference direct-axis current trajectories that minimize losses and maximize

the excitation characteristics while considering the voltage and current limi-

tations. The reference currents are fed in an adaptive current regulator for

torque control. Numerical simulations demonstrate the constraint enforcement

capability of the methodology.

1.4 Outline

The dissertation is organized as follows:
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In Chapter II, the fundamentals of electric machines and drives, as well as param-

eter identification theory, are presented. First, the theory regarding electric machines

and drives is discussed. Next, the reference frame transformations used for the analy-

sis of electric machines and drives are presented. Then, the basic theory for modeling

and analyzing SMPM machines, including flux-linkage/current relationships, stator

voltage, and torque equations, is discussed. Afterward, relevant theory of voltage

source inverters for AC motor control is presented, followed by theory on control of

AC machines and, specifically, SMPM machine drive systems. Finally, following the

electric machine and drives, the basics behind online parameter identification and

SIC methodologies are discussed.

In Chapter III, a SIC formulation for SMPM machines with voltage and current

inverter limits is presented. The SMPM machine dynamic model is first presented

and followed by the control objectives. Next, the current and voltage inverter con-

straints are formulated for an ideal voltage source inverter. Afterward, the control

algorithm, which consists of an adaptive current regulator and an optimization-based

adaptive input design, is presented. Finally, simulations demonstrate the SIC formu-

lation capabilities in terms of performance and constraint enforcement under different

operating conditions.

In Chapter IV, the modeling and identification for fault diagnosis and condi-

tion monitoring of SMPM machines under demagnetization conditions are studied.

Specifically, an equivalent two-phase model and an online parameter identification

strategy for a three-phase four-pole SMPM machine with two windings per phase

under the magnet demagnetization are presented. First, the equivalent two-phase

model is formulated by superimposing the flux produced by the individual magnets.

Then, FEA simulations are used to calibrate and validate the model for two SMPM

machine designs. Afterward, the parameter identification strategy for monitoring

and detecting demagnetization is formulated, including the linear parameterization,

parameter identification algorithm, and Persistency of Excitation (PE) analysis. In

this section, details on a parameter estimator based on the standard SMPM model

are also presented, as it will be used as a baseline. Later, the effectiveness of both

parameter estimators for monitoring and detecting demagnetization is assessed by

numerical simulations and co-simulation. Finally, fault-related information that can

be extracted from these estimators is discussed.

Chapter V investigates the modeling and identification for condition monitoring of

SMPM machines under eccentricity conditions. An equivalent two-phase parametric

model and an online parameter identification technique for monitoring SMPM ma-
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chines under eccentricity are presented for a three-phase four-pole SMPM machine

with two windings per phase. First, the equivalent two-phase dynamics under eccen-

tricity are formulated by modeling the expressions for the inductances and PM flux

linkages using MWF and Magnet Function (MF) theories. Then, FEA simulations

are used to calibrate and validate the model’s magnetic parameters for an SMPM

machine design. Following the modeling section, the parameter identification strat-

egy for monitoring and detecting eccentricity is formulated, including the parametric

model and sufficient conditions for accurate convergence. Afterward, the performance

of the proposed estimator and the standard-model-based parameter estimator from

Chapter IV are assessed through simulations and co-simulations. For both estimators,

the specific information for monitoring and detecting eccentricity conditions is dis-

cussed. This chapter ends with a discussion on the SMPM machine design limitations

for detecting eccentricity.

In Chapter VI, the modeling and identification for condition monitoring of SMPM

machines under ITS conditions are studied. Specifically, an equivalent two-phase

model and an online parameter identification strategy for a three-phase four-pole

SMPM machine with two windings in series per phase under the ITS are presented.

First, an equivalent two-phase parametric model is formulated by modeling the dif-

ferent coils separately and integrating them into the different phases based on the

winding connections. Afterward, the model’s magnetic parameters are calibrated and

validated against FEA simulations for an SMPM machine design. Then, the formula-

tion of the parameter identification strategy for monitoring and detecting ITS is pre-

sented. Simulation and co-simulation results prove the effectiveness of the proposed

parameter identification strategy over the standard-model-based estimator presented

in Chapter IV for monitoring and detecting ITS. Finally, remarks on the parameters

suitable for monitoring and detecting ITS are discussed.

Chapter VII investigates the application of parameter identification to fault di-

agnosis and condition monitoring of SMPM machines under demagnetization, ec-

centricity, and ITS. An approach based on parameter identification is presented for

monitoring and detecting the different faults. A parameter estimator is formulated

by combining the parameter estimators for demagnetization, eccentricity, and ITS.

Co-simulations are employed to assess the performance of the parameter identifica-

tion strategy for fault diagnosis and condition monitoring under the different fault

conditions.

Chapter VIII provides conclusions and makes suggestions for future research di-

rections.
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CHAPTER II

Fundamentals on Electric Machines and Drives,

and Parameter Identification Theories

2.1 Introduction

This chapter introduces relevant concepts on electric machines and drives the-

ory as well as parameter identification and Simultaneous Identification and Control

(SIC) strategies. First, the theory regarding electric machines and drives is discussed,

followed by reference frame transformations. Then, the relevant theory of SMPM ma-

chines and voltage source inverters are discussed. Afterward, the basics behind online

parameter identification and SIC methodologies are presented.

2.2 Three-Phase Electric Machines and Drives

Figure 2.1: Three-phase electric machine and drive system.
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An electric machine is an electromechanical energy converter that consists of sta-

tionary and rotating components, known as the stator and rotor, respectively. In

variable-speed applications, the electric machine is powered through a specialized cir-

cuit known as an electric drive consisting of power electronics, controller, and sensors,

as shown in Fig. 2.1. While this is physically a three-phase system, the analysis of

electric machines, as well as their control, is typically based on an equivalent two-

phase model as it has particular conceptual advantages over the original three-phase

model in terms of modeling and understanding the dynamic response of the electric

machine.

2.3 Relevant Reference Frame Transformations

The operating principle behind electric machines is the generation of a rotating

magnetic field on the rotor which imposes an electromagnetic torque. The equivalent

two-phase model is meant to generate the same magnetic field as the actual three-

phase machine would. The three-phase variables can be mapped into their two-phase

equivalents by using the Clarke transform [81], which is given by,xαxβ
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where T23 ∈ R3x3 is the Clarke transform, xa, xb, and xc are the three-phase vari-

ables, xα and xβ are the equivalent two-phase variables, and x0 is the zero-sequence

component, which is added as it allows complete analysis of the three-phase machine

variables through their two-phase equivalents. Similarly, the two-phase variables can

be mapped into their original three-phase variables by using the inverse Clarke trans-

form [81], T32 ∈ R3x3, which is given by,xaxb
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Note that the transformation has a scaling factor of 2/3 so that the peak values of

the three-phase and equivalent two-phase sinusoidal electrical variables are the same.

The previous equivalent two-phase variables are referenced to a Cartesian coordi-

nate system aligned with the direction of the magnetic fields generated by the stator
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windings of the equivalent two-phase machine, a.k.a, the stationary reference frame.

However, in the analysis of AC machines, other reference frames are often more ben-

eficial as two-phase variables become constant in these frames under steady-state

conditions. The equivalent two-phase variables can be mapped from the stationary

reference frame into a rotational reference frame, a.k.a. the synchronous reference

frame, by using the Park transform [82], which is given by,

~xsyn =

[
xsynd

xsynq

]
=

[
cos(θsyn) sin(θsyn)

− sin(θsyn) cos(θsyn)

][
xα

xβ

]
= e−Jθsyn~x, (2.3)

where (·)syn denotes that the variable is in the rotational reference frame, and J ∈ R2x2

is the counter-clockwise (CCW) rotation matrix, which is given by

J =

[
0 −1

1 0

]
. (2.4)

Likewise, the inverse Park transform maps the two-phase variables from rotational to

stationary reference frame, and is given by,

~x =

[
xα

xβ

]
=

[
cos(θsyn) − sin(θsyn)

sin(θsyn) cos(θsyn)

][
xsynd

xsynq

]
= eJθsyn~xsyn. (2.5)

2.4 Surface-Mount Permanent Magnet Machine Theory

As its name states, the Surface-Mount Permanent Magnet (SMPM) machine has

magnets attached to the rotor’s outer surface (e.g., see Fig. 2.2(a)). This design

provides the highest air gap flux density as the magnets directly face the air gap

without any other medium in between [56]. These machines can also achieve high

efficiencies since the magnets do not produce losses like field windings (resistive losses).

Based on its construction, SMPM machines have a relatively large gap between the

stator and rotor irons, and therefore a relatively small self-inductance [83].

In this section, the basic theory of SMPM machines is presented, including flux

linkage/current relationships, stator voltage, and electromagnetic torque equations.

The SMPM machine is analyzed under the following assumptions:

A. The machine has a smooth air gap (i.e., slot effects are not considered), is

balanced in construction, and is connected in an ungrounded-wye configuration.

B. Magnetic saturation, eddy current and hysteresis effects are neglected (i.e., lin-
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ear magnetics are assumed).

C. Stator and rotor irons have infinite permeability. The magnets and air have

equal permeability.

All three assumptions (A-C) are commonly used for control-oriented models [56].

Note that, regarding assumption B, the magnetics of an SMPM machine are typically

linear given the large effective air gap between stator and rotor irons. In terms of

assumption C, the permeability of most magnet materials (e.g., SmCo, NdFeB) is

close to that of free space, and the permeability of most iron alloys used in the stator

and rotor irons is much higher than that of free space. Note that all theory presented

assumes a normal (i.e., fault-free) SMPM machine. Fig. 2.2 shows an example of a

four-pole, three-phase, smooth-airgap SMPM machine and the equivalent two-pole,

two-phase, smooth-airgap SMPM machine that is typically used for analysis. Note

that in Fig. 2.2(b), the α−β coordinate system corresponds to the stationary reference

frame while the dr − qr coordinate system is the rotor reference frame, which rotates

in synchronism with the rotor.
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Figure 2.2: (a) Four-pole, three-phase, smooth-airgap SMPM machine, (b) Two-pole,
two-phase, smooth-air-gap SMPM machine.
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2.4.1 Flux-Linkage/Current Relationships

In an SMPM machine, the three-phase flux linkage/current relationships are given

by: λaλb
λc

 =

Ls Lm Lm

Lm Ls Lm

Lm Lm Ls


iaib
ic

+

λPM,a

λPM,b

λPM,c

 , (2.6)

with

Ls = Lg + Lσ,

Lm = −Lg
2
,

λPM,a = ΛPM cos(θre),

λPM,b = ΛPM cos(θre − 2π
3

),

λPM,c = ΛPM cos(θre + 2π
3

),

where the subscripts a, b, and c denote each of the three phases, Ls and Lm are the

stator self- and mutual inductances, Lg is the air-gap inductance, Lσ is the leakage

inductance, ΛPM is the PM flux linkage, λPM,a, λPM,b, and λPM,c are the PM flux

linkages with respect to windings a, b, and c, respectively, and θre is the electrical

rotor position, given by

θre = Np
2
θr, (2.7)

where θr is the angular rotor position and Np is the number of poles. Using the Clarke

transform (Eq. (2.2)), the flux linkage/current relationships can be mapped into their

two-phase equivalents in the stationary reference frame, which are given by:λαλβ
λ0

 =

L 0 0

0 L 0

0 0 Ls + 2Lm


iαiβ
i0

+ ΛPM

cos(θre)

sin(θre)

0

 , (2.8)

where L is the equivalent two-phase inductance, which is given by

L = Ls − Lm =
3

2
Lg + Lσ. (2.9)

For the SMPM machine, the rotor is spinning at the same velocity as the rotating

magnetic field, and, therefore, a rotating coordinate system, known as the rotor ref-

erence frame, is more beneficial for analysis and control purposes. Using the Park

transform (Eq. (2.3)), the electrical dynamics in the rotor reference frame are given
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by, [
λrd
λrq

]
=

[
L 0

0 L

][
ird
irq

]
+ ΛPM

[
1

0

]
. (2.10)

where the superscript (·)r denotes that the variable is in the rotor frame. Note that

the direct-axis of the rotor reference frame is aligned with the PM flux linkage vector,

and the reference frame rotates at the electrical rotor speed, ωre (ωre = Np
2
ωr, where

ωr is the mechanical rotor speed). Also, note that, in the model, the SMPM machine

is a non-salient pole (L = Lrd = Lrq) since the magnets are mounted on the rotor

surface, and their permeability is equal to that of the air (Assumption C).

2.4.2 Stator Voltage Equations

The three-phase electrical dynamics of an ungrounded, wye-connected SMPM

machine are given by [56]:vavb
vc

 =

R 0 0

0 R 0

0 0 R


iaib
ic

+

Ls Lm Lm

Lm Ls Lm

Lm Lm Ls

 d

dt

iaib
ic

+
d

dt

λPM,a

λPM,b

λPM,c

 , (2.11)

with

i0 =
1

3
(ia + ib + ic) = 0, (2.12)

where ix and vx are the three-phase currents and voltages (x = {a, b, c}), i0 is the

zero-sequence current component, and R is the stator winding resistance.

The electrical dynamics presented in Eq. (2.11) are typically analyzed using the

standard equivalent two-phase model in which the electrical dynamics are expressed

with respect to the rotor reference frame [56], as follows:

L
d~ir

dt
= −R~ir − ωreJ(L~ir + ~λrPM) + ~v r, (2.13)

with R = RI ∈ R2x2, L = LI ∈ R2x2, and ~λrPM =
[
ΛPM 0

]T
∈ R2, where ~ir

and ~vr are the equivalent two-phase current and voltage vectors (i.e., ~xr =
[
xrd xrq

]T
with x as the variable), I is the 2x2 identity matrix, L = Ls − Lm is the two-phase

equivalent stator winding self-inductance, ΛPM is the PM flux linkage, and J is the

counterclockwise ninety degree rotation matrix, defined in Eq. (2.4).
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2.4.3 Electromagnetic Torque

The three-phase electromagnetic torque is 3
2

times larger than its equivalent two-

phase value and can be determined through the differentiation of co-energy with

respect to the rotor angle as follows [1]:

τ3ph =
3

2
τ2ph =

3

2

∂W ′
fld

∂θr
(2.14)

where τ3ph and τ2ph are the three-phase and two-phase electromagnetic torques, and

W ′
fld is the co-energy which is given by

W ′
fld = W ′

fld0 +
1

2
L |~i |2 +~iᵀeJθre~λrPM , (2.15)

where W ′
fld0 is the co-energy due to the PMs themselves (i.e., with unexcited wind-

ings). Note that the co-energy due to the PMs is independent of the rotor angle if the

slot effects are neglected (Assumption A). Then, the torque is therefore given by [1]:

τ3ph =
3

2

∂W ′
fld

∂θr
=

3

2

∂W ′
fld

∂θre

dθre
dθr

=
3Np

4
~iᵀJ~λPM (2.16)

The cross-product operator is independent of the reference frame as it is based on

the magnitudes and angles between the two-phase vectors. Therefore, the last torque

expression can be written with respect to the rotor reference frame, in which case,

the electromagnetic torque is given by

τ3ph =
3Np

4
~ir

ᵀ
J~λrPM =

3Np

4
ΛPM i

r
q. (2.17)

2.5 Voltage Source Inverters for AC Motor Control

In AC motor drives, the power electronic circuitry is typically a three-phase Volt-

age Source Inverter (VSI), as shown in Fig. 2.3(a). The VSI supplies a Pulse-Width

Modulated version of the sinusoidal three-phase voltages calculated by the control

algorithm to the electric machine. This operation is achieved through semiconductor

transistors, such as MOSFETs and IGBTs, operating in “switch” mode. In switch-

mode operation, the VSI transistors achieve a considerable reduction of the converter

losses as they serve as switches. However, their operation generates Electromagnetic

Interference (EMI), which imposes constraints in the control as it can corrupt the

measurements and pollute the environment. Specifically, the Analog-to-Digital Con-
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verter (ADC) sampling has to be synchronized with the switching of the transistors

to avoid any spurious measurements.

(a) Transistor-based inverter (b) Ideal inverter
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Figure 2.3: Practical and ideal three-phase VSI.

In this section, the basic theory of three-phase VSI for AC machine control, in-

cluding VSI modeling for AC motor control design and space vector modulation as

PWM technique, is presented. The three-phase VSI is analyzed based on its ideal

model (see Fig. 2.3(b)), which neglects conduction and switching losses as well as

dead-time effects.

2.5.1 Modeling Voltage Source Inverters for AC Motor Control Design

As shown in Fig. 2.3(b), the VSI’s circuit consists of three half-bridges that share

the same input DC supply. In each phase, two possible states can be identified:

• State 1 (Hi): S+
x on and S−x off =⇒ vx = Vbus

• State 0 (Lo): S+
x off and S−x on =⇒ vx = 0

where the subscript x denotes each of the phases (i.e., a, b, c), vx is the VSI’s output

voltage for phase x, and Vbus is the input DC voltage. The desired voltage is achieved

in an average-value sense through Pulse Width Modulation (PWM); in other words,

by changing the duration of the VSI input voltage to the output. As a result, the

output voltage is a square wave with duty cycle D and switching period Tsw (Tsw =

tk − tk−1), as shown in Fig. 2.4.

For AC machine control design purposes, the VSI is modeled as an ideal “average-

value” VSI, which applies to the electric machine average-value voltages based on

the duty cycles. In this model, the main limitation is given by the two-time-scale

separation assumption, which assumes that the duty cycle changes relatively slowly
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Figure 2.4: Center-based PWM output waveform and average value for an ideal VSI
phase.

to such an extent that it is essentially constant during a single switching period [1].

A typical rule-of-thumb for the two-time-scale assumption to hold is that the time

constants associated with the control system response are at least 20 times larger

than that of the switching period [1]. For example, in an Electric Vehicle (EV), the

main traction drive typically has a switching cycle of approximately 10kHz, while

the control system time constant is established by the bandwidth of the regulator,

which is typically designed around 500Hz.

In terms of AC machine control implementation, VSI operation imposes some con-

straints as it is inherently a sampled-data system. In particular, sampling the currents

and encoder measurements has to be synchronized with a center-based PWM strat-

egy to avoid spurious measurements due to EMI generated during voltage transitions.

Therefore, the measurement sampling and duty cycle updates are performed in the

middle of the Hi or Lo states, and the sampling frequency is restricted to either one

or twice the switching frequency at most [56].

2.5.2 PWM technique: Space Vector Modulation

As mentioned above, the control of AC machines is typically based on the equiv-

alent two-phase model. However, these two-phase voltages have to be implemented

in an average-value sense to a three-phase system, in which the zero-sequence com-
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ponent is also present. For ungrounded wye-connected machines, the average-value

of the zero-sequence voltage does not affect the currents flowing through the machine

since a zero-sequence current cannot exist. Space Vector Modulation (SVM) is a

PWM technique that exploits this fact to increase the two-phase voltages that can

be applied to the machine by the three-phase inverter [1].

The idea behind SVM is to consider the output of all three phases simultaneously.

As mentioned before, in each phase, the output has two possible states (Hi and Lo),

which can be represented with a binary. Then, the three-phase output voltages with

respect to the negative terminal of the bus voltage can be expressed as follows [1]:Va−Vb−
Vc−

 = Vbus

SaSb
Sc

 , (2.18)

where Sx is a binary that is equal to one and zero for the Hi and Lo states, respectively.

Note that the three-phase inverter voltages with respect to the negative terminal of

the bus voltage relate to the three-phase machine voltages as follows:Va−Vb−
Vc−

 =

VaVb
Vc

+

Vn−Vn−

Vn−

 (2.19)

where Va, Vb, and Vc are the line-to-neutral three-phase machine voltages and Vn− is

the voltage between the machine’s neutral and the inverter’s negative terminal, which

is a zero sequence voltage. Using the Clarke Transform [81], the equivalent two-phase

voltages can be determined for all possible states (Sa, Sb, Sc), which are given by

Vα =
Vbus

3
(2Sa − Sb − Sc), (2.20)

Vβ =

√
3Vbus
3

(Sb − Sc). (2.21)

The resultant α − β values for the 8 possible combinations of the output states are

known as space vectors and are displayed in Fig 2.5(a). Inspection of Fig. 2.5(a)

shows that the output-state combinations corresponds to the center and vertices of

the hexagon, which can be divided in sectors (See Fig. 2.5(b)). Over one switching

period, the desired average-value voltage is generated by switching between the space

vectors that delimit the sector and zero space vectors (i.e., [111] or [000]). The interior

of the hexagon represents the feasible average-value voltages which can be achieved
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through SVM.
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Figure 2.5: (a) Region of feasible two-phase voltages for SVM, (b) Sectors of SVM
hexagon.

2.6 Control of AC Machine Drive Systems

Modern control of AC machines is typically done through Field-Oriented Control

(FOC) techniques, in which the actual control is performed in a rotating reference

frame in synchronism with the magnetic field (See Fig. 2.6). In these rotating reference

frames, the electrical variables become constant in steady-state, facilitating current

regulation through conventional control techniques (e.g., Proportional-Integral (PI)

control). Moreover, the electric machine dynamics and the electromagnetic torque

expression relating to electric variables are simplified, making them more suitable for

control purposes.

Regarding torque control of AC machines, it is typically done indirectly through

current regulation. Torque transducers are costly, and their calibration is sensitive

to environmental conditions, which can be problematic for field applications (e.g.,

electric vehicles). Since the torque produced by an electric machine is a direct function

of the currents, torque can be indirectly controlled through current regulation, which

is cheaper and easier to implement in practice.

In practice, the control algorithm is typically implemented in a microprocessor.

The sampled-data nature of the microprocessor used to execute the control algorithm

imposes a one-period delay, which is also illustrated in Fig. 2.7.
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Figure 2.6: Basic control structure for AC machines.
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Figure 2.7: Sampled-data nature of control implementation.
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2.6.1 Field-Oriented Control of SMPM Machine Drive Systems

The control algorithm for SMPM machines is typically implemented in the rotor

reference frame, in which the direct axis is aligned with the PM flux linkage, as shown

in Fig. 2.8. In this frame, the current regulator is designed based on the dynamics from

Eq. (2.13) and the electromagnetic torque from Eq. (2.17). As seen in Eq. (2.17), the

torque is solely a function of the quadrature-axis current and, hence, can be regulated

by applying the following command quadrature-axis current:

ĩrq =
4

3NpΛPM

τ̃3ph, (2.22)

where the tilde (̃·) denotes a reference signal. The direct-axis current is mainly used

for field weakening, and its command value is typically set based on the rotor speed

for this purpose. At low rotor speeds, the EMF is small, and the command direct-

axis current should be zero (minimum loss operating point). However, as the rotor

speed increases, the EMF increases, reaching the maximum available voltage. After

this point, a negative direct-axis current should be commanded to reduce the voltage

magnitude (i.e., field weakening). By doing so, rotor speed can be further increased

while staying within the voltage limits.
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Figure 2.8: Field-oriented current regulator for SMPM machine.

2.7 Online Parameter Identification

To capture the dynamic behavior of a system for the purpose of control design,

models require fairly accurate parameters. In some cases, these parameters can be
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measured or calculated based on laws of physics, laws of chemistry, material prop-

erties, and others [84]. However, in many cases, these parameters have to be de-

duced from experiments by observing the system’s dynamic response given certain

inputs [84]. When the plant parameters vary negligibly or in a specific manner, the

identification process may be performed “offline.” However, in many cases, the pa-

rameters vary due to several causes, such as operating conditions and aging, leaving

offline identification ineffective. By processing the input-output data during oper-

ation, online parameter identification techniques can provide continuous estimates

and, therefore, track their variations.

The design of an online parameter estimator requires the formulation of an ap-

propriate parameterization of the plant model, an adaptive law for parameter adjust-

ment, and a plant input design that guarantees accurate parameter convergence [84].

In terms of the parameterizations, linear parametric models are often used, which are

given by [84],

~z = Φᵀ~θ, (2.23)

where ~z is the observation (i.e., measurement), ~θ is the parameter vector, and Φ is

the regressor matrix. Depending on the application, ~z and ~θ are vectors or scalars

while Φ is a matrix or vector. Note that ~z and Φ consist of measurable signals

and might include time-derivatives of these measured signals. In order to avoid the

undesirable effects from these derivatives, time-derivatives of signals are typically

estimated through proper filtering [84]. The adaptive law is a dynamic estimation

procedure that leverages the update in the measured signals to generate updated pa-

rameter estimates [85]. The law design can be based on stability considerations (e.g.,

Lyapunov-based algorithms) or optimization techniques (e.g., least-squares, gradi-

ent, projection algorithms). In terms of the plant input, it should provide what the

adaptive law requires for accurate parameter convergence. Accurate convergence can

be achieved through the sufficient condition that the regressor is persistently excit-

ing, which is described in the following definitions for continuous- and discrete-time

systems:

Definition 2.1 (Persistence of Excitation (PE) for continuous-time signals [84]). A

piece wise continuous signal matrix Φ : R+ 7−→ Rn×m is persistently exciting in

Rn with a level of excitation α0 > 0 if there exist constants α1, T0 > 0 such that

α1I ≥
1

T0

t+T0∫
t

Φ(τ)Φᵀ(τ)dτ ≥ α0I, ∀t ≥ 0. (2.24)
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Definition 2.2 (PE for discrete-time signals [84]). A bounded signal matrix Φ[tk] is

said to be persistently exciting if there exists N > 0 and α0 > 0 such that

N∑
j=1

Φ[tk+j]Φ
ᵀ[tk+j] ≥ α0I, ∀tk ≥ t0. (2.25)

The PE property presented in Eq. (2.24) and (2.25) is a sufficient, but not nec-

essary, condition to guarantee that the estimated parameters converge to their true

values; additional details can be found in [84]. Based on Eq. (2.24), the regressor, Φ,

has to be designed so that the integral of the matrix Φ(τ)Φᵀ(τ) is uniformly positive

definite over any time interval [t, t+ T0]. For discrete-time systems, Eq. (2.25) shows

that the input has to be designed so that the summation of Φ[tj]Φ
ᵀ[tj] over a certain

interval is full rank. Hence, if identification is performed in discrete-time domain for

physical processes evolving in continuous-time domain, such as the electric machines,

the PE conditions depend not only on the signals but also the sampling frequency.

The sampling theorem gives a guideline so that the sampling does not result in

loss of information and is described as follows:

Theorem 2.3 (Shannon’s sampling theorem [86]). A time-varying signal e(t) whose

Fourier transform contains no frequency components greater than f0 Hertz is uniquely

determined by the values of e(t) at any set of sampling points spaced 1
2f0

seconds apart.

Therefore, the sampling frequency should be greater than twice the highest-

frequency component of significant amplitude of the signal being sampled in order to

maintain the PE properties of a continuous time-varying signal.

2.8 Simultaneous Identification and Control

The term SIC refers to control methodologies that seek to achieve certain con-

trol objectives while also guaranteeing sufficient conditions for accurate parameter

identification. Parameter identification can be used for control adaptation and other

secondary objectives (e.g., loss minimization, condition monitoring); however, in or-

der to be accurate, it requires persistently exciting inputs which may conflict with the

control objective (e.g., tracking a set-point or trajectory). Due to this trade-off, the

SIC problem is often approached through optimization-based design methodologies

such as Model Predictive Control (MPC) [87–90]. While this trade-off is unavoidable

for most cases, in over-actuated plants their additional degrees of freedom offer an
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opportunity to achieve identification and control objectives simultaneously without

compromise [50,52,91,92].

Systems that have strictly more inputs than outputs to be controlled are known

as over-actuated systems. Their additional inputs potentially offer an opportunity to

achieve the control objectives while guaranteeing persistent excitation, possibly with-

out compromising the control performance. Based on the fact that there is no unique

input vector that yields a particular output, the excitation can be constrained to the

system’s “null-space,” avoiding undesirable output perturbations [53]. An example of

an over-actuated system is the Permanent Magnet Synchronous Machine (PMSM),

which has effectively two inputs (i.e., equivalent two-phase voltages) and a single

regulated output (i.e., torque). In previous work, a few methodologies [50–52] have

exploited the over-actuated nature of the PMSMs to formulate SIC methodologies

without the aforementioned trade-off.
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CHAPTER III

Simultaneous Identification and Torque Control of

Surface-Mount Permanent Magnet Synchronous

Machines with Inverter Current and Voltage

Constraints

3.1 Introduction

Simultaneous Identification and Control (SIC) refers to control designs that ensure

sufficient conditions for accurate parameter identification while achieving a control

objective. In some applications, accurate knowledge of the system parameters is de-

sirable for control adaptation and secondary objectives such as condition monitoring.

However, to be accurate, parameter identification requires persistently exciting inputs

that may compromise the control objective (e.g., tracking a set-point or trajectory).

Because of this trade-off, the SIC problem is often addressed using optimization-based

design methodologies such as MPC [87–90]. While conflicts between the control and

identification objectives are inevitable in most cases, over-actuated plants have ad-

ditional degrees of freedom that can be exploited to achieve both objectives without

compromise simultaneously [50,52,91,92].

The PMSM is an example of an over-actuated system since it has effectively

two inputs (i.e., equivalent two-phase voltages) and a single regulated output (i.e.,

torque). PMSMs, such as SMPM and IPM, have been preferred for high-performance

applications due to their high torque density, high power density, and potential for

precise control and high efficiency over a wide operating range. However, the machine

parameters vary with temperature changes, skin effect, and saturation, and, hence,

the control performance can be negatively affected. A few methodologies [50–52] have

exploited the over-actuated nature of the PMSMs to formulate SIC methodologies
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without the trade-off mentioned above.

Operational constraints are inherent in PMSMs due to physical limitations as well

as safety and reliability considerations. In an electric drive, the voltages supplied by

the three-phase Voltage Source Inverter (VSI) are limited by the DC bus voltage and

the PWM technique. Commanding voltages outside the limits will lead to clipped

output voltages and deteriorated control performance. Furthermore, exceeding the

current limit will trip the over-current protection of the VSI.

This chapter investigates the incorporation of operational constraints to the SIC

formulation for SMPM machines. Specifically, an optimization-based SIC formulation

that explicitly considers the voltage and current inverter limits for SMPM machines

is presented1. First, the equivalent two-phase SMPM machine model is discussed.

Then, the control objectives for the SIC formulation are presented, including the

voltage and current limitations for the SMPM machine as a function of the speed.

Afterward, the current and voltage constraints for the SIC formulation are derived

by mapping three-phase voltage and current constraints into their two-phase equiva-

lents. Subsequently, the control algorithm is discussed, including an adaptive current

regulator and a Receding Horizon Adaptive Input Design (RHAID). The RHAID de-

termines the reference direct-axis current that minimizes losses and maximizes the

excitation characteristics while considering the voltage and current limitations. The

reference currents are then fed into an adaptive current regulator for torque control.

Following the control algorithm section, the constraint enforcement capability of the

methodology is demonstrated through numerical simulations.

3.2 SMPM Machine Model

Assuming that the direct-axis is aligned with the PM flux linkage, the electrical

dynamics in the rotor reference frame are given by

L
d~ir

dt
= −R~ir − ωreJ(L~ir + ~λrPM) + ~v r, (3.1)

with R = RI ∈ R2x2, L = LI ∈ R2x2, and ~λrPM =
[
ΛPM 0

]T
∈ R2, where the

superscript (·)r denotes that the variable is in the rotor reference frame,~i and ~v are the

1The information in this chapter is based on the conference paper [80]:
F. A. Pinto Delgado, D. M. Reed, H. F. Hofmann, and J. Sun, “Simultaneous Identification and
Torque Control of Surface-Mount Permanent Magnet Synchronous Machines with Inverter Cur-
rent and Voltage Constraints”, in 2018 IEEE Conference on Control Technology and Applications
(CCTA), IEEE, 8-2018, pp. 1185-1190.
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current and voltage vectors, I ∈ R2x2 is the identity matrix, R is the stator winding

resistance, L is the stator winding self-inductance, ΛPM is the PM flux linkage, ωre

is the electrical rotor speed (i.e., ωre = Np
2
ωr, where ωr is the mechanical rotor speed

and Np is the number of poles), and J is the counterclockwise (CCW) 90◦-rotation

matrix, defined in Eq. (2.4).

The three-phase electromagnetic torque is given by

τ3ph =
3Np

4
ΛPM i

r
q. (3.2)

3.3 Control Objectives

Since the SMPM machine is an over-actuated system, SIC can be achieved without

compromise. However, doing so while considering current and voltage constraints can

be challenging. The current and/or voltage limitations that might be encountered by

the SMPM machine will depend on the operating condition (i.e., torque/power and

speed).

If the SMPM machine is operating close to the limits (e.g., maximum power,

Pmax, condition), three regions can be identified, as shown in Fig. 3.1. At low speeds,

the system is current constrained since the EMF, which is proportional to speed

in steady-state, is small. At medium speeds, the system is both current-and-voltage-

constrained, and the voltage is kept within its limits by using field-weakening. Specif-

ically, negative direct current is commanded to cancel PM flux linkage and, hence,

reduce the EMF, while the quadrature current is adjusted accordingly to satisfy the

current limit. At high speeds, the behavior depends on whether or not the currents can

completely cancel the PM flux linkage. If the PM flux linkage cannot be completely

cancelled (Fig. 3.1(a)), the system continues to be current-and-voltage-constrained

until a maximum speed where the current is exclusively used for field-weakening (i.e.,

zero power operating point). If the PM flux linkage can be completely cancelled

out (Fig. 3.1(b)), the system becomes solely voltage-constrained and can operate at

arbitrarily high speed.

The control objective is to simultaneously achieve accurate torque regulation and

parameter identification over a wide range of operating conditions without exceeding

the voltage and current limits. This is approached through a controller which consists

of a RHAID and an adaptive current regulator.
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1

Figure 3.1: Maximum power of SMPM machine as function of rotor speed, in which
(a) Imax ≤ ΛPM

L
, (b) Imax >

ΛPM
L

(Additional details can be found in [1]).

3.4 Current and Voltage Constraint Formulation

In this section, the mathematical formulation of the voltage and current limitations

which are inherent in an electric drive assuming an ideal three-phase Voltage Source

Inverter (VSI) is presented. Fig. 3.2 shows an ideal VSI which applies to the machine

the voltages determined by the control algorithm in an average-value sense [83]. In

this work, SVM [83] is assumed as the PWM technique.

cba

S+
a S+

b S+
c

S−
a S−

b S−
c

Vbus

−

+

ia ib ic

va vb vc

+ + +

− − −

1

Figure 3.2: Ideal three-phase inverter.

3.4.1 Voltage Constraints

The VSI’s output voltage is a square wave with duty cycle D since each phase can

have two possible states:
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• State Sx = 0: S+
x “off”, S−x “on” =⇒ vx = 0

• State Sx = 1: S+
x “on”, S−x “off” =⇒ vx = Vbus

where the subscript (·)x denotes each phase (i.e., a, b, c). Then, by using the Clarke

transform [81], the equivalent two-phase voltages can be determined for all possible

states (Sa, Sb, Sc). The region of feasible average-value voltages is described by the

Space Vector Hexagon (SVH) [83] presented in Fig. 3.3(a), which can be represented

mathematically as

Ωv = {~v : Gv~v ≤ ~hv}, (3.3)

where

Gv =



0 1

0 −1

−
√

3 1√
3 1

−
√

3 −1√
3 −1


, ~hv = −



1

1

2

2

2

2


Vbus√

3
,

and ~v =
[
vα vβ

]T
is the equivalent two-phase stator voltage vector in the stationary

reference frame.

Imax−Imax

2√
3
Imax

− 2√
3
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iβ
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~ivβ
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(a) Space Vector Hexagon (b) Current Hexagon

2
3
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3
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Figure 3.3: Regions of: (a) feasible voltages, and (b) feasible currents.
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3.4.2 Current Constraints

The VSI is operating at its current limit when the maximum rated current, Imax,

is flowing through any of its phases. The three-phase line currents can be mapped into

their equivalent two-phase line currents (i.e., iα, iβ) by using the Clarke transform [81].

Assuming balanced three-phase operation, the feasible current region corresponds to

the Current Hexagon (CH) shown in Fig. 3.3(b) which can be characterized by:

Ωi = {~i : Gi
~i ≤ ~hi}, (3.4)

where

Gi =



1 0

−1 0

− 1√
3

1
1√
3

1

− 1√
3
−1

1√
3
−1


, ~hi = −



1

1
2√
3

2√
3

2√
3

2√
3


Imax.

3.5 Control Algorithm

The proposed SIC methodology, which is an extension of [52], uses an adaptive

input design and an adaptive current regulator, as shown in Fig. 3.4. In this method-

ology, while the reference quadrature current is set to achieve the desired torque, the

adaptive input design ensures persistency of excitation by generating an appropriate

reference direct current.
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Figure 3.4: Block diagram of the proposed SIC strategy.
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3.5.1 Adaptive Current Regulator

The controller is a projection-based adaptive current regulator consisting of feed-

forward, back-emf compensation, and proportional feedback,

~v r = R̂~̃i r + L̂
d~̃i r

dt
+ ωreJ(L̂~i r + ~̂λPM) + Kp~ei

r, (3.5)

with Kp = KpI and ~ei
r = ~̃ir −~ir, where the accent (̂·) denotes an estimated pa-

rameter, ~̃ir and d~̃ir

dt
are the filtered reference current vector and its derivative

(
i.e.,

~̃ir = {M(s)}~i∗r and d~̃ir

dt
= {sM(s)}~i∗r , where ~i∗

r
is the reference current vector, {·}

denotes a dynamic operator with transfer function “ · ”, and M(s) = λ
s+λ

)
, Kp is the

proportional feedback gain, and ~ei
r is the stator current error vector.

The adaptive law is based on the linear parameterization of the filtered SMPM

dynamics from Eq. (3.1):

~z = ΦT~θ, (3.6)

where ~z =
[
zd zq

]T
= {M(s)}~v r is the observation, ~θ =

[
R L ΛPM

]T
is the

parameter vector, and Φ is the regressor matrix, which is given by

ΦT =

[
~φd
T

~φq
T

]
= {M(s)}

[
ird ( d

dt
ird − ωreirq) 0

irq (ωrei
r
d + d

dt
irq) ωre

]
. (3.7)

Note that the signals have been filtered in order to avoid the derivatives of measured

signals in Φ or ~z.

While the control formulation and design are carried out with a continuous-time

model, parameter identification and update are performed at discrete time instants.

Capturing the discrete-time effects is crucial for accurate parameter identification.

The projection algorithm [93] aims to minimize the Euclidean norm between consec-

utive parameter estimates subject to the model in Eq. (3.6) and new measurements,

and its estimated parameters are given by,

~̂θ[k] = ~̂θ[k− 1] +
a ~φd[k]

(
zd[k]− ~φTd [k]~̂θ[k − 1]

)
c+ ~φTd [k] ~φd[k]

+
a ~φq[k]

(
zq[k]− ~φTq [k]~̂θ[k − 1]

)
c+ ~φTq [k] ~φq[k]

, (3.8)

where c > 0 is a small constant, 0 < a < 2 is the adaption gain, and k = 1, 2, ... is

the time index.
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3.5.2 Receding Horizon Adaptive Input Design (RHAID)

The Receding Horizon Adaptive Input Design (RHAID) determines the reference

direct current trajectory to minimize ohmic losses and maximize the level of excita-

tion. While the metric for minimizing losses is the weighted quadratic function of

the reference direct current, the level of PE is measured using the “D-optimality”

metric [94]:

JD = log(det(F )), (3.9)

where F is the Fisher information matrix [52],

F =
N∑
k=1

Φ(tk)Φ
T (tk), (3.10)

Φ(tk) is the regressor matrix at time tk, and N is the total number of observations

(i.e., measurements). Note that the D-optimality is a common optimization criterion

often used for “optimal experiment design” [95].

The dynamic model required to predict the future states of the system is formu-

lated using the Zero-Order Hold (ZOH) equivalent model of Eq. (3.1) given by,

~x[k + 1] = Âd~x[k] + Bd~u[k], (3.11)

where

Âd =


eÂTsw B̂(ωreJL̂−Kp) B̂(R̂ + Kp) B̂L̂

I 0 0 0

0 0 afI 0

0 0 0 afI

 ,

Bd =


0 0

0 0

0 bfI

λI −λI

 , ~x[k] =


~ir[k]

~ir[k − 1]

~̃ir[k]
d~̃ir

dt
[k]

 ,

~u[k] =

[
~ir

∗
[k + 1]

~ir
∗
[k]

]
, Â = L−1(R̂ + wreJL̂),
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B̂ = (eÂdTsw −I)Â−1L̂−1, λ > 0 is the parameter of the first-order filter (i.e.,M(s) =
λ
s+λ

), Tsw is the sampling period, and af and bf are the parameters of the ZOH

model of {M(s)}
(
i.e., M(z) =

bf
z−af

)
. Note that ~̃ir[k] and d~̃ir

dt
[k] are the outputs

from the ZOH model of {M(s)} and {sM(s)}, respectively. We need both ~ir[k] and

~ir[k−1] as states of ~x[k] to incorporate the effect of the switching-period delay between

measurement sampling and duty cycle updates (See Fig. 2.7).

Assuming that the estimated parameters, ~̂θ[k], the reference torque, τ ∗[k], and the

rotor electrical speed, ωre[k], are essentially constant over the prediction horizon, the

RHAID is formulated as the following,

min
ir

∗
d [k]

j+Nf−1∑
k=j

[(
ir

∗
d [k]

)2 − ρ · log(det(F (~x)))
]
,

subject to: ~x[k + 1] = Âd~x[k] + Bd~u[k],

F (~x) =

j+Nf−1∑
k=j−Npp

Φ(~x[k])Φ(~x[k])T ,

Gie
Jθre[k]̃~ir[k] ≤ ~hi ∀kε[j . . . j +Nf − 1],

Gve
Jθre[k]~vr[k] ≤ ~hv ∀kε[j . . . j +Nf − 1],

~ir
∗
[k] =

[
ir

∗
d [k]

ir
∗
q [k]

]
=

[
i∗
r

d [k]
4τ∗[k]

3P Λ̂PM

]
,

(3.12)

where ρ ≥ 0 is the weighting for the PE metric, Nf is the prediction horizon, Npp is the

number of past-data points required to achieve the persistently excited references (as

discussed in [52]), eJθre[k] is a matrix exponential, and θre[k] is the predicted electrical

rotor position at time tk, which is given by:

θre[k] = θre[j] +
[1

2
+ (k − j)

]
ωre[k]Tsw,∀k 6= j. (3.13)

Note that, in (3.12), the inverse Park transform [82] (i.e., eJθre[k]) is used since the

voltage and current constraints are formulated in the stationary reference frame. Also,

note that the inverter current and voltage constraints are convex as they are given

by linear functions.

44



3.6 Simulation Results

The constraint enforcement capability of the SIC algorithm is validated by numer-

ical simulations using Matlab/Simulink. The methodology is tested at three operat-

ing conditions: low speed (current-constrained), medium speed (current-and-voltage-

constrained), and high speed (voltage-constrained), representing the three limiting

regions previously discussed.

The simulations capture the sampled-data nature of a practical implementation by

modeling the controller (i.e., RHAID and adaptive current regulator) as a triggered

subsystem that runs at 10kHz, while the continuous-time SMPM dynamics are sim-

ulated with a fixed time step of 500ns using ode3. The RHAID formulation is solved

using the interior-point method in Matlab’s fmincon. A linear B-spline [87] is used to

approximate the reference direct current trajectory and reduce the dimension of the

optimization problem. An ideal “average-value” VSI is assumed, which applies to the

machine the average-value voltages based on the duty cycles determined by the SVM.

The initial parameter error is 20%. Table 3.1 presents the simulation parameters.

Table 3.1: SMPM machine, VSI, and control parameters for simulations.
Electrical Machine Parameters

R 436mΩ
L 2mH

ΛPM 12.579mV ·s
Np 10

VSI Parameters
Imax 7 A
Vbus 30 V

Control Design Parameters
Kp 8
a 0.005
c 1
ρ 1000
λ 600
Nf 50
Npp 60

3.6.1 Effects of PE Signal and Constraint Enforcement

In order to highlight the impact of the PE signal and constraint enforcement,

simulations at a current-constrained (low-speed) operating point (200RPM, 0.62N·m)
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with four different control settings are presented in Fig 3.5. Fig. 3.5(a) shows the

simulation without PE metric (ρ = 0) and without current/voltage constraints. The

plots reveal that the parameters converge to the wrong values, causing inaccurate

torque regulation. Fig. 3.5(b) shows that a similar result is obtained when the current

and voltage constraints are included. Fig. 3.5(c) shows the simulation with the PE

metric without considering current and voltage limits. In contrast to the previous

cases, accurate parameter convergence and torque regulation are achieved. However,

since the current limits were not considered, the constraints are violated.

Figure 3.5: Simulations at current-constrained (low-speed) operating point with four
different control settings: (a) with neither PE metric nor current/voltage
constraints, (b) without PE metric and with current/voltage constraints,
(c) with PE metric and without current/voltage constraints, and (d) with
PE metric and current/voltage constraints. In (c) and (d), the phase plots
are shown before and after the parameter errors are bounded within ±5%.
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3.6.2 Constraint enforcement in three operating conditions

Figs. 3.5(d) , 3.6, and 3.7 show the effectiveness of the proposed algorithm in the

following three conditions:

• Current constrained (Fig. 3.5(d)). The system operates at low-speed (0.62N ·m
at 200RPM). Inspection of the current phase plot reveals that the current

constraints are successfully enforced after the parameters converge. Note that,

while the direct current is modified to satisfy the constraints, the parameters

are still able to converge and accurate torque regulation is achieved.

• Voltage constrained (Fig. 3.6). The system operates at high-speed (0.2N ·m at

2000RPM). As before, the voltage constraints are effectively enforced after the

parameters converge. Note that the RHAID successfully deals with the voltage

limit by using field-weakening (i.e., the direct current has a negative average-

value). The torque ripple is caused by the discrete-time implementation.
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Figure 3.6: Simulation at voltage-constrained (high-speed) operating point.

• Current and voltage constrained (Fig. 3.7). The system operates at medium-

speed (0.6N ·m at 1300RPM). The voltage and current phase plots show that

the equivalent two-phase voltages and currents stay within their feasible regions.

Accurate torque regulation is achieved after the parameters converge to their

true values.
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Figure 3.7: Simulation at current-and-voltage-constrained (medium-speed) operating
point.
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Note that the phase plots in Figs. 3.5(c), 3.5(d), 3.6, and 3.7 are shown before

and after the parameter error is within ±5%.

Remark 3.1. Simulations show that occasional constraint violations can occur before

parameter convergence. This could be addressed by performing a parameter calibra-

tion before use, or tightening the constraints [90].

3.7 Summary

This chapter investigated the incorporation of operational constraints into the

SIC formulation for SMPM machines. Specifically, a SIC methodology that ex-

plicitly considers the voltage and current inverter limits for SMPM machines was

presented. First, the current and voltage constraints for the SIC formulation were

derived by mapping three-phase voltage and current constraints into their two-phase

equivalents. Note that the resultant feasible region for both variables corresponds

to hexagons. Afterward, these constraints were incorporated into a SIC formulation

that consisted of an adaptive current regulator and an RHAID. The SIC formula-

tion utilized the quadrature-axis current for torque production, while the direct-axis

current was used to inject the excitation required for accurate convergence. The in-

verter current and voltage constraints were included in the RHAID, which minimizes

losses while maximizing the excitation characteristics of the reference direct current

trajectories. Accurate torque regulation was achieved through the adaptive current

regulator. Simulations demonstrated the effectiveness of the SIC formulation on the

constraint enforcement at different operating conditions.
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CHAPTER IV

Modeling and Identification for Condition

Monitoring of Surface-Mount Permanent Magnet

Machines Under Magnet Demagnetization

4.1 Introduction

Among all components within a PMSM, the Permanent Magnets (PMs) are criti-

cally important due to their direct effect on torque production. However, the PMs are

susceptible to irreversible demagnetization when exposed to thermal stresses, electri-

cal faults (e.g., inter-turn short), environmental factors (e.g., oxidation, corrosion),

and unbalanced loads [54]. In the case that PMs are irreversibly demagnetized, their

flux reduces and, in some cases, becomes unbalanced, causing significant vibrations

and noise as well as overall performance deterioration [54,55].

This chapter investigates the application of parameter identification to fault diag-

nosis and condition monitoring of SMPM machines under demagnetization conditions.

Specifically, an equivalent two-phase model and an online parameter identification

strategy for a three-phase four-pole SMPM machine with two windings per phase

under the magnet demagnetization are presented. First, demagnetization is incorpo-

rated into the three-phase SMPM machine model by modeling the PM flux linkages

from each magnet separately. Then, the equivalent two-phase model is formulated by

mapping the three-phase dynamics into their two-phase equivalents, which are refer-

enced to the rotor reference frame. Afterward, based on FEA simulations, the model’s

PM flux linkage is calibrated and validated for a Distributed Winding (DW) and a

Concentrated Winding (CW) SMPM machine designs. Following the model valida-

tion, the parameter estimation strategy for fault detection and condition monitoring

is discussed. In this section, a parameter estimator based on the standard SMPM

dynamic model [80] is also presented as it is used as the baseline. Precisely, the linear
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parametric models, the parameter identification strategy, and the sufficient conditions

for accurate convergence are discussed for both estimators. Afterward, the perfor-

mance of both estimators is assessed through simulations and co-simulations. Finally,

remarks specific to the information for detecting demagnetization are discussed, and

a summary of the chapter is presented.

4.2 Modeling SMPM Machines with Magnet Demagnetiza-

tion

The general equation describing the three-phase electrical dynamics of an un-

grounded, wye-connected Surface-Mount Permanent Magnet (SMPM) machine is

given by [56]:vavb
vc

 =

R 0 0

0 R 0

0 0 R


iaib
ic

+

Ls Lm Lm

Lm Ls Lm

Lm Lm Ls

 d

dt

iaib
ic

+
d

dt

λPM,a

λPM,b

λPM,c

 , (4.1)

with

i0 =
1

3
(ia + ib + ic) = 0, (4.2)

where the subscripts a, b, and c denote each of the three phases, ix and vx are

the three-phase currents and voltages (x = {a, b, c}), i0 is the zero-sequence current

component, R is the stator winding resistance, Ls and Lm are the stator self and

mutual inductances, and λPM,x is the PM flux linkage with respect to phase x.

When the machine is operating under healthy conditions, the dynamics presented

in Eq. (4.1) are typically studied using the standard equivalent two-phase model. In

this model, the electrical dynamics are expressed with respect to a moving coordinate

system, known as the rotor reference frame, whose direct axis is aligned with the PM

flux linkage vector [56],

L
d~ir

dt
= −R~ir − ωreJ(L~ir + ~λrPM) + ~vr, (4.3)

and the three-phase electromagnetic torque is given by

τ3φ =
3Np

4
ΛPM i

r
q, (4.4)

with R = RI, L = LI, and ~λrPM =
[
ΛPM 0

]T
, where the superscript (·)r denotes
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that the variable is in the rotor frame, ~ir and ~vr are the equivalent two-phase current

and voltage vectors (i.e., ~xr =
[
xrd xrq

]T
with x as the variable), I is the 2x2 identity

matrix, L = Ls−Lm is the two-phase equivalent stator winding self-inductance, ΛPM

is the PM flux linkage, ωre is the electrical rotor speed (i.e., ωre = Np
2
ωr, where ωr is the

mechanical rotor speed and Np is the number of poles), and J is the counterclockwise

ninety degree rotation matrix (See Eq. (2.4)).

PM demagnetization in an SMPM machine can affect evenly or unevenly the dif-

ferent magnets. If all magnets are evenly demagnetized, the overall PM flux decreases,

and no additional harmonics develop as the rotor flux remains balanced. When the

magnets are unevenly demagnetized, the PM flux not only reduces but becomes un-

balanced. In terms of performance, the PM flux reduction causes a decrease in the

torque for a given current, while its imbalance generates additional harmonics that

result in added noise and vibrations. Under magnet demagnetization, the standard

model presented in Eqs. (4.3) and (4.4) is no longer valid unless all magnets are

evenly demagnetized. In this section, a control-oriented SMPM machine model that

can capture dynamic behavior under both healthy and demagnetized conditions is

derived for analysis and simulation purposes under the following assumptions:

A. The machine has a smooth air gap (i.e., slot effects are not considered), is

balanced in construction, and is connected in an ungrounded-wye configuration.

B. Magnetic saturation, eddy current, and hysteresis effects are neglected.

C. Stator and rotor irons have infinite permeability. The magnets and air have

equal permeability.

D. Individual magnets are uniformly demagnetized (i.e., uneven demagnetization

within an individual magnet is not considered).

The first three assumptions (A-C) are commonly used for control-oriented models [56]

while the last assumption (D) restricts the scope of the model to even and uneven

demagnetization affecting the magnets. From these assumptions, we point out for

assumption B that the magnetics of an SMPM machine are typically linear given

the large effective air gap between stator and rotor irons. We note that, regarding

assumption C, the permeability of most PM materials (e.g., SmCo, NdFeB) is close

to that of free space, and the permeability of most iron alloys used for the stator and

rotor irons is much higher than that of free space. Also, we emphasize that assumption

D is for analysis purposes, since the goal of the model is to capture asymmetries in
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the overall PM flux linkage. These asymmetries will happen regardless of whether

the individual magnets are evenly or unevenly demagnetized.

In the following analysis, the model is derived based on a four-pole three-phase

SMPM machine with two coils per phase, as shown in Fig. 4.1. Note that the analysis

can be applied to series- and parallel-connected windings and similar analysis can

be performed on other SMPM machines with different winding configurations and

numbers of poles. The model captures the decrease in the overall PM flux linkage,

which is always present regardless of the SMPM machine design. Moreover, the model

also captures the dynamics associated with additional harmonics in the PM flux

linkage due to demagnetization. However, as will be seen, these additional harmonics

in the PM flux linkage depend on the SMPM machine design. In this sense, analyzing

SMPM machines under magnet demagnetization has to be done on a case-by-case

basis since the dynamic behavior differs with different pole numbers and winding

configurations [60]. Regarding SMPM machines with parallel-connected windings, we

note that, under magnet demagnetization, the parallel-connected coils will experience

circulating currents when the magnets are unevenly demagnetized.

Figure 4.1: Cross-section of simplified three-phase four-pole SMPM machine with two
windings per phase.

4.2.1 Modeling Permanent Magnet Demagnetization

In this section, a simple equivalent two-phase parametric model that captures de-

magnetization affecting evenly and unevenly the PMs is formulated for a three-phase

four-pole SMPM machine with two windings per phase. The derivation starts with

the formulation of a three-phase SMPM machine model as it captures the behavior
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of the physical machine, making it easier to incorporate the fault. In the model,

magnet demagnetization is captured in the PM flux linkage. Using superposition, the

three-phase PM flux linkages are constructed from the individual contribution that

each magnet provides to the different coils in each phase. After deriving the three-

phase model, the equivalent two-phase model is formulated using the Clarke and Park

Transforms. In this equivalent two-phase dynamic model, two parameters are iden-

tified from the harmonic content in the PM flux linkages, which can be leveraged to

detect magnet demagnetization.

4.2.1.1 Three-phase SMPM machine model under PM demagnetization

A three-phase SMPM machine model under PM demagnetization is formulated

in this section. Specifically, in Eq. (4.1), demagnetization solely affects the three-

phase PM flux linkages. This section starts by constructing the three-phase PM flux

linkages from the individual contribution that each magnet provides to the different

coils in each phase so that demagnetization can be captured.

The net PM flux linkage in a coil corresponds to the superposition of the individual

contribution of each magnet to each coil, and is given by

λPM,xi =
4∑

k=1

λPMk,xi , (4.5)

where xi denotes the coil (e.g., a1, a2, b1, b2, c1, or c2), the subscript i denotes each

of the coils that form a phase, the subscript k denotes the magnet (e.g., 1, 2, 3, or 4),

λPM,xi corresponds to the net PM flux with respect to the winding xi, and λPMk,xi is

the flux linkage in winding xi due to magnet k.

The flux produced by each magnet linking the coils can be studied by inspection.

Based on assumptions C and D, the flux is assumed to cross the air gap uniformly

and radially. Therefore, two regions can be identified for the flux produced by a

magnet, as shown in Fig. 4.2. In the sector that corresponds to the magnet, the flux

radially crosses the air gap based on the magnet’s polarity. Similarly, the remainder

sector serves as the return, and, therefore, the magnet’s flux crosses the air gap in the

opposite direction based on the magnet’s polarity. In other words, the fluxes crossing

the air gap in both regions have opposite directions and sum to zero.

The flux linkage in each coil corresponds to the net flux crossing the air gap in

the coil’s sector. Three regions can be identified based on the magnet’s position with

respect to the coil, as the magnet can be fully inside, crossing, or entirely outside of
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Figure 4.2: Theoretical flux produced in the air gap by a magnet.

the coil sector. This can be approximated with a trapezoidal waveform, as shown in

Fig. 4.3. In order to facilitate analysis, it is helpful to express the PM flux linking a

coil in terms of its Fourier components. Using Fourier Series, the PM flux linking a

coil can be expressed as follows:

λPM,k,xi = ΛK

Nh∑
h=1

ah cos(h(θr + φPMk,xi)), (4.6)

where

ah =
4

πh2

(
Λin − Λout

β − α

)
sin

(
(α + β)h

2

)
sin

(
(β − α)h

2

)
, (4.7)

α is the position at which the magnet starts to leave the inside of the coil sector, β

is the position at which the whole magnet reaches the outside of the coil sector, Λin

is the net coil flux when the magnet is fully inside the coil region, Λout is the net coil

flux when the magnet is entirely outside the coil region, ah is the h-harmonic Fourier

coefficient of the flux linkage produced by a healthy magnet, Nh is the total number

of harmonics, φk,xi is the phase shift for the corresponding magnet and winding, and

ΛK ≤ 1 is the normalized flux amplitude produced by the magnet k. Note that

ΛK equal to unity represents a healthy magnet while ΛK less than unity captures a

demagnetized magnet.

Since the machine is balanced in construction, the net PM flux linkage with respect
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Figure 4.3: Trapezoidal approximation of the flux produced in a coil due to an indi-
vidual magnet (assuming φPMk,xi = 0).

to each phase is given by

λPM,x = K(λPM,x1 + λPM,x2), (4.8)

with

K =

1, if ix = ix1 = ix2 , and vx = vx1 + vx2 (for series connection)

1
2
, if vx = vx1 = vx2 , and ix = ix1 + ix2 (for parallel connection)

where ixi and vxi represent the current and voltage corresponding to the coil xi, and

K is a factor taking into account the series/parallel connections.

Considering that the magnets’ permeability is close to that of air (assumption

C), the magnets can be treated as air when calculating inductances, and, hence,

demagnetization does not affect inductances. Thus, the electrical three-phase SMPM

machine dynamics under magnet demagnetization can be described using Eq. (4.1)

with the demagnetization effect captured in the PM flux linkages as

λPM,a = 2K

Nh∑
h=1

a2h cos(hθre)
(

Λ13 − Λ24 cos(hπ)
))
, (4.9)

λPM,b = 2K

Nh∑
h=1

a2h cos
(
h
(
θre −

2π

3

))(
Λ13 − Λ24 cos(hπ)

))
, (4.10)
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λPM,c = 2K

Nh∑
h=1

a2h cos
(
h
(
θre +

2π

3

))(
Λ13 − Λ24 cos(hπ)

))
, (4.11)

where Λ13 = Λ1 + Λ3 and Λ24 = Λ2 + Λ4 correspond to the total normalized flux

produced by the north and south poles, respectively, and θre = Np
2
θr is the electrical

rotor position, with Np = 4 for a four-pole machine. Note that, for the four-pole

SMPM machine design, the PM flux linkage can solely have even harmonics, as shown

in Eqs. (4.9), (4.10), and (4.11).

Since the PM flux linkages are modeled separately (Eq. (4.6)), this model can

capture the operation of the SMPM machine under demagnetization affecting evenly

or unevenly the different magnets, as well as healthy conditions. Note that this

model can be easily implemented because all operating health conditions can be

achieved by modifying the corresponding PM flux amplitude(s) accordingly (i.e., Λk

with k = 1, 2, 3, 4). Moreover, while the winding configuration is required to formulate

the PM flux linkages, the resistance and inductance information for different windings

is not required. In other words, the resistance and inductance values used in the model

are those of the three-phase standard model (Eq. (4.1)).

4.2.1.2 Equivalent two-phase SMPM machine model under permanent

magnet demagnetization in the rotor reference frame

The three-phase electrical SMPM dynamics provide little information about the

fault and cannot be implemented in simulation unless a constraint that specifies the

phase configuration (i.e., delta or wye) is considered. Since the SMPM machine is

assumed to be ungrounded-wye connected, the Clarke Transform [81] can be used to

impose the zero current constraint (Eq. (4.2)) while mapping the three-phase variables

into their equivalent two-phase stationary (α−β) variables. Afterwards, by using the

Park Transform [82], these variables can be mapped to the aforementioned rotor

reference frame in which the electrical dynamics of the SMPM machine under PM

demagnetization are given by,[
vrd
vrq

]
=

[
R 0

0 R

][
ird
irq

]
+

[
L 0

0 L

]
d

dt

[
ird
irq

]
+

ωre

[
0 −L
L 0

][
ird
irq

]
+ ωre

[
−λrPM,q

λrPM,d

]
+
d

dt

[
λrPM,d

λrPM,q

]
,

(4.12)
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where

λrPM,d =
4K

3

Nh∑
h=1

a2h

((
1− cos

(2πh

3

))
cos(hθre) cos(θre)+

√
3 sin

(2πh

3

)
sin(hθre) sin(θre)

)(
Λ13 − Λ24 cos(hπ)

)
,

(4.13)

λrPM,q =
4K

3

Nh∑
h=1

a2h

(
−
(

1− cos
(2πh

3

))
cos(hθre) sin(θre)+

√
3 sin

(2πh

3

)
sin(hθre) cos(θre)

)(
Λ13 − Λ24 cos(hπ)

)
.

(4.14)

Equations (4.13) and (4.14) reveal that even harmonics that are multiples of three

cannot exist. Moreover, in the harmonic content, two types of terms can be identified

in which Λ13 and Λ24 either add or subtract. Therefore, some harmonics only exist

when the north and south poles are unevenly affected by demagnetization.

In the next section, the SMPM machine model under demagnetization is compared

against an FEA model. As will be seen, the winding configuration can affect the

harmonic content that the machine will experience under uneven demagnetization.

4.2.2 Calibration and Validation of Proposed Model

In this section, numerical simulations of the proposed SMPM model are presented

for a double-layer CW and a single-layer DW SMPM machine. The magnetic param-

eters are calibrated and validated using FEA simulations. The SMPM machines used

in the simulations are shown in Figs. 4.4 and 4.5, and their parameters are presented

in Table 4.1. The FEA simulations are performed using Maxwell, which is a commer-

cial simulation software from Ansoft Corporation. During these FEA simulations, the

SMPM machine operates at zero current and a constant speed of 1000RPM .

4.2.2.1 Calibration of Trapezoidal Approximation for PM Flux Linkage

In this section, the trapezoidal approximation presented in Eq. (4.6) is calibrated

based on the FEA simulation results of the four-pole CW and DW SMPM machines.

The trapezoidal approximation captures the flux linkage in a coil produced by one

magnet. Hence, for calibration purposes, the FEA simulation models all coils sepa-

rately and only one north magnet (PM1). Table 4.2 presents the calibrated parame-

ters for the trapezoidal approximation used with the CW and DW SMPM machines.
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Figure 4.4: Cross-section of double-
layer CW SMPM machine.

Figure 4.5: Cross-section of single-
layer DW SMPM machine.

Table 4.1: SMPM machine parameters for FEA simulations
Parameter Double-layer CW SMPM Single-layer DW SMPM

Number of poles 4 4
Number of slots 6 12

Conductors per slot 220 100
Parallel branches 1 1
Magnet material NdFe30 NdFe30

Steel type Iron Iron
Stacking factor 0.95 0.95

Stator outer diameter [mm] 180 180
Stator inner diameter [mm] 80 80
Rotor outer diameter [mm] 74 74

Magnet thickness [mm] 3 3
Magnet coverage coefficient 0.83 0.83

Machine length [mm] 80 80
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Figs. 4.6 and 4.7 show the results for the flux linkage in coil a1 produced by PM1 for

the CW and DW SMPM machines, respectively. As seen in the Figs. 4.6 and 4.7, the

trapezoidal function is calibrated to reasonably match the FEA results.

Table 4.2: Parameters for trapezoidal approximation
Parameter Double-layer CW SMPM Single-layer DW SMPM

Magnet coverage (γ) 74.7◦ 74.7◦

α 7.35◦ 7.65◦

β 67.35◦ 82.35◦

Λin −0.1407V · s −0.1519V · s
Λout 0.03699V · s 0.05073V · s

0 0.01 0.02 0.03 0.04 0.05 0.06
-0.15

-0.1

-0.05

0

0.05

FEA Model (5 Harmonics)

Figure 4.6: Flux linkage in coil a1 produced by PM1 for double-layer CW SMPM
machine.

0 0.01 0.02 0.03 0.04 0.05 0.06
-0.2

-0.1

0

0.1

FEA Model (5 Harmonics)

Figure 4.7: Flux linkage in coil a1 produced by PM1 for single-layer DW SMPM
machine.

4.2.2.2 Validation of PM Flux Linkage

Based on the previous calibration, the PM flux linkage expressions in Eq. (4.13)

and (4.14) are validated against FEA simulations. Figures 4.8 and 4.9 show the
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simulation results for the CW and DW SMPM machines, respectively. The equivalent

two-phase PM flux linkages under healthy and magnet demagnetization conditions

are presented for one mechanical period. Note that, under PM demagnetization, a

north pole is assumed completely demagnetized (i.e., Λ1 = 0).

Inspection of Figs. 4.8 and 4.9 reveal that the model matches the FEA results

with reasonable accuracy for both CW and DW cases. As seen in Figs. 4.8 and

4.9, the two-phase PM flux linkages behave similarly under healthy conditions for

the CW and DW SMPM machines. In contrast, the PM flux linkage decreases and

shows additional harmonics for the CW SMPM machine under PM demagnetization,

while the PM flux linkage solely reduces for the DW case. The reason behind their

difference is due to their winding configuration. The angular distance between the

centers of the two sides of a coil (a.k.a, coil span) is 90 degrees (180 electrical degrees)

for the DW and 60 degrees (120 electrical degrees) for the CW design, respectively.

Inspection of Eq. (4.7) reveals that the coefficients that are multiples of four become

zero when the machine has 180 electrical degrees between the two sides of its coils.

As a consequence, the DW SMPM machine does not present new harmonics under

demagnetization.

0 0.02 0.04 0.06
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0.3

0.4

0 0.02 0.04 0.06
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0.3

0.4

0 0.02 0.04 0.06
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0

0.05

0 0.02 0.04 0.06
-0.05

0
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Figure 4.8: Comparison of the proposed model and FEA results of the CW SMPM
machine for the PM flux linkage under healthy (left) and demagnetized
(right) conditions.
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Figure 4.9: Comparison of the proposed model and FEA results of the DW SMPM
machine for the PM flux linkage under healthy (left) and demagnetized
(right) conditions.

4.3 Parameter Identification for Fault Diagnosis and Condi-

tion Monitoring of SMPM Machines under Magnet De-

magnetization

This section presents a parameter estimator for fault detection based on the

model from Eq. (4.12). Additionally, an estimator based on the standard model

from Eq. (4.3) is presented as it will be used as the baseline. First, parameterizations

required to formulate the parameter estimators based on the standard and proposed

equivalent two-phase models are presented. In both cases, the parameter estimators

are based on a linear parameterization of the filtered SMPM machine dynamics, which

has the following form:

~z = ΦT~θ, (4.15)

where ~z is the observation (i.e., measurement), ~θ is the parameter vector, and Φ is the

regressor matrix. Specifically, a parameterization that includes a specific parameter

related to the demagnetization condition is formulated based on the SMPM machine

model presented in Eq. (4.12). Afterward, the parameter identification algorithm

used for both parameter estimators is presented. This section ends with an analysis

of the conditions in which the input signals ensure PE.
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4.3.1 Parametric Models

4.3.1.1 Parametric Model based on Standard Dynamics

The standard-model-based parameter estimator is formulated using the following

linear parameterization of the filtered SMPM dynamics from Eq. (4.3):

~z =
[
zd zq

]T
= {F(s)}

[
vrd vrq

]T
,

~θ =
[
R L ΛPM

]T
,

ΦT =

[
~φd
T

~φq
T

]
= {F(s)}

[
ird ( d

dt
ird − ωreirq) 0

irq (ωrei
r
d + d

dt
irq) ωre

]
,

(4.16)

where {·} denotes a dynamic operator with transfer function “·” and {F(s)} = γ
s+γ

is a first-order low-pass filter with γ > 0. Note that filtered signals are used in order

to avoid the derivatives appearing as signals in Φ.

4.3.1.2 Parametric Model for Fault Diagnosis and Condition Monitoring

of SMPM Machines under Magnet Demagnetization

The equivalent two-phase SMPM machine model in the rotor reference frame from

Eqs. (4.12), (4.13), and (4.14) captures the dynamic behavior under demagnetization

and healthy conditions. However, its application to fault diagnosis and condition mon-

itoring requires a more convenient parameterization. Demagnetization affects the PM

flux linkage by decreasing its amplitude and adding harmonic content. Specifically,

Eqs. (4.13) and (4.14) show that the north and south poles’ PM flux linkages either

add or subtract. The summation terms of the individual PM flux linkages directly

relate to the standard-model parameter that captures the overall PM flux linkage. Re-

garding condition monitoring and fault diagnosis, the decrease in this total PM flux

linkage indicates demagnetization. However, the total PM flux linkage also decreases

with increased PM temperature, and so a method to distinguish the root cause is

required. The subtraction terms between the north and south PM flux linkages refer

to demagnetization asymmetries. In other words, these subtraction terms capture

demagnetization in which the north and south magnets are unevenly demagnetized.

These subtraction terms can provide a useful indicator for demagnetization detection

and monitoring. While the individual PM flux linkages vary with PM temperature,

their subtraction is insensitive, assuming magnets share similar temperatures. Pa-

rameters that model both the overall PM flux linkage and the asymmetries between
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north and south PM flux linkages are of interest as they can be incorporated into a

parameter identification-based fault detection strategy.

By approximating the model dynamics from Eq. (4.12) with low-order harmonics

(i.e., second and fourth harmonics), the dynamics of the SMPM machine are reduced

to: [
vrd
vrq

]
=

[
R 0

0 R

][
ird
irq

]
+

[
L 0

0 L

]
d

dt

[
ird
irq

]
+ ωre

[
0 −L
L 0

][
ird
irq

]

+ωreΛPM

[
0

1

]
− 2ωre∆PM

[
sin(3θre)

cos(3θre)

]
,

(4.17)

where the PM flux linkage (ΛPM) and the asymmetry term (∆PM) are given by

ΛPM = 2a2K(Λ1 + Λ2 + Λ3 + Λ4),

∆PM = 2a4K(Λ1 − Λ2 + Λ3 − Λ4).

Note that this model can capture variations in the PM flux linkage using ΛPM and

asymmetries between the north and south PM flux linkages with the asymmetry term

∆PM .

Afterward, the linear parameterization of the proposed dynamics from Eq. (4.17)

utilized to formulate the parameter estimator is given by

~z =
[
zd zq

]T
= {F(s)}

[
vrd vrq

]T
,

~θ =
[
R L ΛPM ∆PM

]T
,

Φ =
[
~φd ~φq

]
,

~φd = {F(s)}


ird

( d
dt
ird − ωreirq)

0

−2ωre sin(3θre)

 , ~φq = {F(s)}


irq

(ωrei
r
d + d

dt
irq)

ωre

−2ωre cos(3θre)

 .
(4.18)

4.3.2 Parameter Identification Algorithm

The projection algorithm is employed to formulate the parameter estimators, as

accounting for discrete-time implementation effects is crucial for accuracy. This al-

gorithm [93] aims at minimizing the Euclidean norm between consecutive parameter

estimates subject to the model in Eq. (4.15), and the estimated parameters, ~θ, are
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derived as follows:

~̂θ[k] = ~̂θ[k − 1] +
a ~φd[k]

(
zd[k]− ~φTd [k]~̂θ[k − 1]

)
c+ ~φTd [k] ~φd[k]

+
a ~φq[k]

(
zq[k]− ~φTq [k]~̂θ[k − 1]

)
c+ ~φTq [k] ~φq[k]

, (4.19)

where c > 0 is a small constant to avoid division by zero, 0 < a < 2 is the adaptation

gain, and k = 1, 2, ... is the time index. We note that other algorithms (e.g., least-

squares) can be used for formulating the parameter estimator, and that the goal of

this work is to compare the performance of the models rather than different estimation

algorithms.

4.3.3 Persistently Exciting Inputs

This section investigates the sufficient conditions in which accurate parameter

estimation is achieved for the estimators based on the standard and demagnetization

models presented in Section 4.3.1. Since the parameter identification algorithm is

formulated in discrete time, the PE conditions should be studied using Definition 2.2.

However, a connection can be made between the continuous- and discrete-time PE

properties. Assuming the regressor is sampled with a frequency more than twice

the highest-frequency component (Theorem 2.3), the discrete- and continuous-time

regressors carry the same information. Hence, if the continuous-time signal is PE,

its discrete-time version is also PE. Based on this, the continuous-time definition of

persistent excitation presented in Section 2.7 (Definition 2.1) will be used to determine

the sufficient conditions for PE. Note that, in the case of the estimator based on the

standard model (Eq. (4.16)) and demagnetization model (Eq. (4.18)), the integral of

the matrix Φ(τ)Φᵀ(τ) can be written as:

1

T0

t+T0∫
t

Φ(τ)Φᵀ(τ)dτ =
1

T0

t+T0∫
t

~φd(τ)~φᵀ
d(τ)dτ +

1

T0

t+T0∫
t

~φq(τ)~φᵀ
q(τ)dτ. (4.20)

Therefore, a sufficient condition to guarantee that the estimated parameters converge

to their actual values is that ~φd, ~φq, or both are persistently exciting.

The torque and electrical rotor speed will be assumed constant to simplify the

analysis. These assumptions fairly represent a “worst-case” scenario as time-varying

torque and electrical rotor speed will produce additional excitation and, hence, help
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identification. Similarly, the analysis will utilize the healthy torque expression from

Eq. (4.4), as the torque under demagnetization can have additional harmonic con-

tent aiding the estimation. Based on Eq. (4.4), the torque is solely a function of

the quadrature-axis current. Hence, to avoid torque perturbations, the persistently

exciting input required for accurate parameter identification is injected through the

direct-axis current. A sinusoidal direct-axis current and a constant quadrature current

will be assumed, which are given by:

ird = A sin(ωt), (4.21)

irq = Iq, (4.22)

where A and ω are the amplitude and frequency of the injected PE signal, and Iq

is the corresponding quadrature-axis current that achieves the desired torque (i.e.,

Iq = 4τ
3NpΛPM

). Note that, in practice, these currents are implemented as the reference

signals (̃ird ,̃i
r
q) that the control algorithm aims to track. In the following analysis,

we assume a good control performance so that ird ≈ ĩrd, i
r
q ≈ ĩrq. Additionally, the

low-pass filter ({F(s)}) will be neglected in the analysis as it is only used to avoid

differentiation and has no effect on the results.

Remark 4.1. The parameter estimators can suffer convergence issues as orders of

magnitude typically separate the machine parameters, causing poor numerical condi-

tioning. Hence, for pre-conditioning purposes, the rows of the regressor matrix should

be normalized so that the peak values are all around unity. Note that this scaling

also affects the parameters.

4.3.3.1 Persistency of Excitation Analysis for Estimator based on Stan-

dard Dynamic Model

Based on the previous assumptions, the regressor of the standard-model-based

parameter estimator (Eq. (4.16)) is given by:

Φ(t) =

 A sin(ωt) Iq

Aω cos(ωt)− ωreIq Aωre sin(ωt)

0 ωre

 . (4.23)

Note that the regressor is periodic with period T = 2π
ω

. To obtain the conditions in

which the integral of the matrix Φ(τ)Φ(τ)ᵀ is uniformly positive definite, we calculate
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its determinant:

det

(
ω

2π

2π
ω∫

0

Φ(τ)Φ(τ)ᵀdτ

)
=
A2ω2

re

4

(
A2ω2 + ω2

re(A
2 + 2I2

q )
)
. (4.24)

Thus, Eq. (4.24) shows that the regressor, Φ(t), is persistently exciting if the following

conditions are guarateed:

1. The rotor speed is non-zero (i.e., ωr = ωre
2
6= 0).

2. At least one sinusoidal component is injected into the direct-axis current (i.e.,

A 6= 0).

4.3.3.2 Persistency of Excitation Analysis for Estimator based on Pro-

posed Dynamic Model

Similarly, based on the assumptions mentioned above, the estimator based on the

proposed dynamics (Eq. (4.18)) has the regressor given by:

Φ =


A sin(ωt) Iq

Aω cos(ωt)− ωreIq Aωre sin(ωt)

0 ωre

−2ωre sin(3ωret) −2ωre cos(3ωret)

 (4.25)

Note that, in this case, the regressor is a function of the excitation and (electrical)

rotor frequencies. Assuming that the regressor is periodic with T0 = 2π
ω0

, the integral

of the matrix Φ(τ)Φᵀ(τ) can be calculated using the interval [0, T0] as follows

1

T0

T0∫
0

Φ(τ)Φ(τ)ᵀdτ =


A2

2
+ I2

q 0 ωreIq 0

0 A2(ω2+ω2
re)

2
+ ω2

reI
2
q 0 0

ωreIq 0 ω2
re 0

0 0 0 4ω2
re

 . (4.26)

Afterward, the sufficient conditions for accurate identification are determined by cal-

culating the determinant, which is given by:

det

(
1

T0

T0∫
0

Φ(τ)Φ(τ)ᵀdτ

)
= A2ω4

re

(
A2ω2 + ω2

re(A
2 + 2I2

q )
)
. (4.27)
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Based on Eq. (4.27), the regressor, Φ, is persistently exciting if the following

conditions are met:

1. The rotor speed is non-zero (i.e., ωr = ωre
2
6= 0).

2. At least one sinusoidal component is injected into the direct-axis current (i.e.,

A 6= 0).

As seen in this analysis, the estimator based on the demagnetization model re-

quires the same excitation as the estimator based on the standard model. Typically,

adding more parameters implies the need for more excitation to guarantee accurate

convergence. However, for the estimator based on the demagnetization model, there

is no need for additional excitation as the regressor terms associated with the asym-

metry term are self-excited. Specifically, these regressor terms introduce sinusoids

with a frequency equal to three times the electrical rotor speed, as long as the SMPM

machine is spinning.

4.4 Simulation Results Assuming Linear Magnetics

The performance of the parameter estimators is evaluated by numerical simula-

tions conducted in Matlab/Simulink for the CW and DW SMPM machines presented

in Section 4.2.2 (Figs. 4.4 and 4.5). Both parameter estimators are investigated with

different gains while the SMPM machines operate under healthy and demagnetized

conditions using the model from Eq. (4.12). Under the demagnetized condition,

Magnet 1 is assumed to be 100% demagnetized (Λ1 = 0). In the simulations, the

parameters are estimated while the SMPM machines operate at different current lev-

els and a constant speed of 1000RPM . Proportional-Integral (PI) regulators with

cross-coupling compensation are used to regulate the two-phase currents in the rotor

reference frame. Since torque is solely a function of quadrature current (Eq. (4.4)),

a persistently exciting signal is injected in the direct axis to guarantee accurate pa-

rameter convergence [51,80], which is given by

ĩrd = 10 sin(2π40t), (4.28)

where the tilde (̃·) denotes a reference signal. The estimated parameters are assumed

to have an initial 20% deviation from the actual, healthy parameters.

In the simulations the discrete-time behavior of an actual practical implementation

is captured by modeling the PI-based controller and the parameter estimators with
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a triggered subsystem which operates at 10kHz, and the continuous-time SMPM

dynamics are captured with a fixed time step of 2µs using ode4. The command

voltages determined by the controller are converted into duty cycles using Space

Vector Modulation (SVM) [83]. The SMPM machines are assumed to be driven by

an ideal “average-value” Voltage-Source Inverter (VSI) which provides average-value

voltages to the machine based on duty cycles using SVM. Table 4.3 presents the

control, adaptation, and machine parameters.

Table 4.3: Control and adaptation parameters for simulation
Parameter DW SMPM Machine CW SMPM Machine

SMPM machine Parameters:
R 0.785Ω 0.919Ω
L 24.864mH 28.095mH

ΛPM 0.38175V · s 0.36142V · s
K 1 1

Control Parameters:
Kp 24.864 28.095
Ki 0.0785 0.0919
Vbus 480V 480V

Switching frequency (fsw) 10kHz 10kHz
Sampling frequency (fs) 10kHz 10kHz
Adaptation Parameters:

a 0.002/0.001/0.0005 0.002/0.001/0.0005
c 1 1

4.4.1 Performance of the Parameter Estimator Based on Standard Dy-

namic Model

In Figs. 4.10 and 4.11, the performance of the parameter estimator from Eq. (4.16)

under healthy and demagnetized conditions is presented for the DW and CW SMPM

machines, respectively. In the figures, note that the black dashed line corresponds to

the actual parameters. In the demagnetization case, the black dash line for the PM

flux linkage corresponds to average value of the actual PM flux linkage. Specifically,

under demagnetization, the PM flux linkage is reduced by 25% compared to the

healthy case.

Regarding the DW SMPM machine, the parameters converge to their actual values

for both healthy and demagnetized conditions. As shown in Fig. 4.10, the estimator

can track the 25% reduction in the PM flux linkage. Similar behavior is seen in both
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Figure 4.10: Simulation results of the parameter estimator based on the standard
dynamics for different adaptation gains when the DW SMPM machine
is operating under healthy (left) and demagnetized (right) conditions.
Note that the black dashed line corresponds to the actual parameters.
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Figure 4.11: Simulation results of the parameter estimator based on the standard
dynamics for different adaptation gains when the CW SMPM machine
is operating under healthy (left) and demagnetized (right) conditions.
Note that the black dashed line corresponds to the actual parameters.
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conditions as no additional harmonics are expected in the PM flux linkage under

demagnetization. Fig. 4.11 shows the simulation results for the CW SMPM machine.

In the case that the SMPM machine is healthy, the parameters converge to their

actual values. Regarding the unhealthy SMPM machine simulations, the parameter

estimator can also track the 25% decrease on the PM flux linkage. However, the

plots show a deviation in the estimated resistance from its actual value, which is

within 10% of error. For the simulated SMPM machine, the resistance represents

a considerably small portion of the voltage compared to the total voltage. This

fact makes the resistance prone to inaccuracies due to noise or unmodeled dynamics.

Regarding the simulation results under demagnetization, the resistance deviates from

its actual value due to unmodeled dynamics. Since demagnetization solely affects

Magnet 1, the PM flux reduction is accompanied by oscillations in both direct and

quadrature axes, which the model does not capture. Given that the resistance does

not contribute significantly to the voltage equation, a possible modification to the

presented estimator is to fix the resistance value and include it in the observation.

As a validation for the discrete PE analysis, Figs. 4.12, 4.13, 4.14, and 4.15 show

the condition number of the PE condition matrix (See Definition 2.2) for the DW and

CW SMPM machines. Note that the moving window (N) is given by 250 samples

(0.025s), corresponding to the injected PE signal period. As seen in Figs. 4.12 and

4.13, the condition number is not infinite, indicating that the system is persistently

excited. Figs. 4.14 and 4.15 show condition numbers of the PE condition matrix

for the DW and CW SMPM machines when the regressor is scaled, as previously

discussed in Remark 4.1. As shown in Figs. 4.14 and 4.15, scaling the regressor

successfully improves the condition number of the PE condition matrix.
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Figure 4.12: Condition number of the discrete-time PE condition matrix for the es-
timator based on the standard dynamics when the DW SMPM machine
is operating under healthy (left) and demagnetized (right) conditions.
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Figure 4.13: Condition number of the discrete-time PE condition matrix for the es-
timator based on the standard dynamics when the CW SMPM machine
is operating under healthy (left) and demagnetized (right) conditions.
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Figure 4.14: Condition number of the discrete-time PE condition matrix with scaled
regressor for the estimator based on the standard dynamics when the
DW SMPM machine is operating under healthy (left) and demagnetized
(right) conditions.
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Figure 4.15: Condition number of the discrete-time PE condition matrix with scaled
regressor for the estimator based on the standard dynamics when the
CW SMPM machine is operating under healthy (left) and demagnetized
(right) conditions.
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4.4.2 Performance of the Parameter Estimator Based on Proposed Dy-

namic Model

The performance of the parameter estimator from Eq. (4.18) under healthy and

demagnetized conditions for the DW and CW SMPM machines is shown in Figs.

4.16 and 4.17, respectively. Fig. 4.16 reveals that accurate parameter convergence

is achieved when the DW SMPM machine is operating under both healthy and de-

magnetized conditions. As expected from Section 4.2.2.2, the PM flux linkage does

not have additional harmonics under the demagnetization condition, and, hence, the

asymmetry term is zero.
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Figure 4.16: Simulation results of the parameter estimator based on the proposed
dynamics for different adaptation gains when the DW SMPM machine
is operating under healthy (left) and demagnetized (right) conditions.
Note that the black dashed line corresponds to the actual parameters.

Fig. 4.17 shows the simulation results for the CW SMPM machine. As shown

in Fig. 4.17, the parameters converge to their actual values under healthy and de-
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Figure 4.17: Simulation results of the parameter estimator based on the proposed
dynamics for different adaptation gains when the CW SMPM machine
is operating under healthy (left) and demagnetized (right) conditions.
Note that the black dashed line corresponds to the actual parameters.
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magnetized conditions. In contrast to the DW SMPM machine case, the CW SMPM

machine has additional harmonics in its PM flux linkage under demagnetization,

which causes a non-zero asymmetry term. Fig. 4.18 shows that the estimated PM

flux linkage and asymmetry term successfully reconstruct the PM flux linkage. In

addition, note that the resistance does not deviate from its actual value as in the

standard-model-based estimator results. The asymmetry term helps to reduce the

unmodeled dynamics and, therefore, alleviates the resistance from inaccuracies.
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Figure 4.18: Comparison between the model and estimated direct (left) and
quadrature-axis (right) PM flux linkage with the CW SMPM machine
operating under demagnetization. The PM flux linkage is reconstructed
based on the estimated parameters from the proposed-model-based pa-
rameter estimator for different adaptation gains.

In terms of the PE condition, Figs. 4.19, 4.20, 4.21, and 4.22 show the condition

number of the PE condition matrix for the DW and CW SMPM machines. The

moving window is given by 500 samples (0.05 s), corresponding to the regressor’s

period. In this case, the regressor period depends on the frequency of the injected PE

signal and the electrical rotor frequency (See Eq. (4.25)). Figs. 4.19 and 4.20 show

that the system is PE as the condition number for the PE condition matrix is not

infinite. As previously seen in the PE analysis, the parameter estimator based on the

demagnetization model can achieve sufficient conditions for accurate identification

with the same excitation as the estimator based on the standard model. Figs. 4.21,

and 4.22 show the condition numbers of the PE condition matrix for the DW and CW

SMPM machines when the regressor is scaled. Similar to the parameter estimator

based on the standard model, scaling the regressor improves the condition number of

the PE condition matrix.
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Figure 4.19: Condition number of the discrete-time PE condition matrix for the esti-
mator based on the proposed dynamics when the DW SMPM machine
is operating under healthy (left) and demagnetized (right) conditions.
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Figure 4.20: Condition number of the discrete-time PE condition matrix for the esti-
mator based on the proposed dynamics when the CW SMPM machine
is operating under healthy (left) and demagnetized (right) conditions.
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Figure 4.21: Condition number of the discrete-time PE condition matrix for the esti-
mator based on the proposed dynamics with scaled regressor when the
DW SMPM machine is operating under healthy (left) and demagnetized
(right) conditions.
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Figure 4.22: Condition number of the discrete-time PE condition matrix with scaled
regressor for the estimator based on the proposed dynamics when the
CW SMPM machine is operating under healthy (left) and demagnetized
(right) conditions.

Regarding the design of the parameter estimator, smaller adaptation gains are

preferable as the estimator acts as a filter under these conditions. The purpose of the

parameter estimator from Eq. (4.18) is to capture possible asymmetries between the

north and south poles, and it is based on an approximation of the model in Eq. (4.12).

In other words, there are still some unmodeled dynamics which will still appear in

the parameters as oscillations. By using smaller gains, the identification results are

more robust to these unmodeled dynamics and noises [84].

Note that, while the proposed model assumes uniform demagnetization within

individual poles (assumption D), the effectiveness of the parameter estimator based on

this proposed model for fault detection does not rely on this assumption. In practice,

an overall decrease in the individual magnet flux linkage is expected regardless of the

demagnetization scenarios.

4.5 Co-Simulation Results Considering Nonlinearities

The performance of the parameter estimators is validated through co-simulation,

as experimental results would require damaging an actual machine. In these co-

simulations, the FEA machine models are integrated with an electric drive. The

FEA-based SMPM machine models correspond to the DW and CW SMPM machine

models presented in Section 4.2.2 and are simulated in Maxwell. Note that the steel

type was modified from “Iron” to “M19”, which corresponds to a practical material

for electric machines. The B-H curve for “M19” is presented in Fig. 4.23. The co-

simulation interface and inverter model are implemented in Twin Builder, which is a
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commercial simulation software from Ansoft Corporation. The inverter is modeled as

an ideal “average-value” VSI. The control model is developed in Matlab/Simulink and

exported as a Twin Builder component. Specifically, PI regulators with cross-coupling

compensation are used to regulate the two-phase currents in the rotor reference frame.

Figure 4.23: B-H curve for M19 24G.

Similar to the simulations presented in the previous section (Section 4.4), the

parameters are estimated while the SMPM machines operate at different current levels

and a constant speed of 1000RPM . The PE signal required for accurate parameter

convergence is injected in the direct axis and given by:

ĩrd = 5 sin(2π40t). (4.29)

The estimated parameters are assumed to have an initial 20% deviation from the

linear parameters presented in Section 4.2.2.2. The FEA-based machine model as

well as the electric drive are executed at 10kHz.

4.5.1 Performance of Parameter Estimator Based on Standard Dynamic

Model

In Figs. 4.24 and 4.25, the co-simulation results for the standard-model-based pa-

rameter estimator are presented. Note that the black dashed line corresponds to the

average value of the actual parameters assuming linear magnetics from Section 4.2.2.2.

Fig. 4.24 presents the results for the DW SMPM machine under healthy and demag-

netized conditions. As seen in Fig. 4.24, the parameters have similar behavior under

both conditions as no new harmonics are expected under demagnetization. In addi-

tion, the magnetic parameters track the linear values for most of the current values.
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However, once the machine operates at higher currents, the magnetic parameters de-

crease, implying saturation. Under saturation, the magnetics are no longer linear,

and the resistance gets affected by these unmodeled dynamics. As mentioned above,

the resistance is prone to inaccuracies due to unmodeled dynamics since its voltage

drop is considerably small compared to the total voltage.
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Figure 4.24: Co-simulation results of the parameter estimator based on standard dy-
namics for different adaptation gains when the DW machine is operating
under healthy (left) and demagnetized (right) conditions. Note that the
black dashed line corresponds to the expected “linear” parameter value.

The co-simulation results of the parameter estimator based on standard dynamics

for the CW SMPM machine operating under healthy and demagnetized conditions are

presented in Fig. 4.25. Under healthy conditions, the estimated parameters match

their linear values for most current values, as seen in Fig. 4.25. However, under

demagnetization, the unmodeled dynamics cause the resistance to deviate within

10% from its actual value. In addition, similar to the DW SMPM machine results,

the estimated inductance and PM flux linkage slightly reduce at high currents, which
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Figure 4.25: Co-simulation results of the parameter estimator based on standard dy-
namics for different adaptation gains when the CW machine is operating
under healthy (left) and demagnetized (right) conditions. Note that the
black dashed line corresponds to the expected “linear” parameter value.
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indicates saturation.

These results indicate that the parameter estimator based on the standard equiv-

alent two-phase model provides some information for fault diagnosis and condition

monitoring of SMPM machines under magnet demagnetization. In terms of the fun-

damental component of the estimated PM flux linkage, its decrease can be used to

quantify the demagnetization. The main challenge of using this reduction as an in-

dicator is that, under healthy conditions, increasing PM temperature also causes a

decrease in the PM flux linkage, and so a method to distinguish the root cause is re-

quired. In terms of the CW SMPM machine, the resistance’s accuracy is affected by

the demagnetization fault. However, since the resistance is not used as an indicator

for demagnetization, it should not affect the detection and monitoring capabilities of

this parameter identification strategy.

4.5.2 Performance of Parameter Estimator Based on Proposed Dynamic

Model

The co-simulation results for the parameter estimator based on the proposed dy-

namics are presented in Figs. 4.26 and 4.27. Fig. 4.26 reveals that the parameters

converge to their actual values for the DW SMPM machine case. Under demagneti-

zation, the asymmetry term is zero, which is expected as no new harmonics should

exist. Similar to the standard-model-based simulations, saturation is observed for the

higher current region.

The co-simulation results of the proposed parameter identification strategy for

the CW SMPM machine are presented in Fig. 4.27. As in previous cases, a linear

region is identified in which the parameters converge to their actual linear values. As

the current increases, the magnetics reach saturation, at which point the magnetic

parameters slightly reduce. Under demagnetization, the asymmetry term is non-zero,

indicating asymmetric demagnetization between the north and south poles. Similar

to the simulation results, the inclusion of the asymmetry term helps the resistance

accuracy.

In terms of the information that can be extracted for fault diagnosis and condi-

tion monitoring of SMPM machines under magnet demagnetization, the parameter

estimator based on the proposed dynamics can provide more details when compared

to the standard-model-based estimator. Similar to the standard-model-based esti-

mator, the estimator based on the proposed dynamics can track variations of the

fundamental component of the PM flux linkage, which can be used as an indicator

for demagnetization. In addition, unlike the standard-model-based estimator, the
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Figure 4.26: Co-simulation results of the parameter estimator based on proposed dy-
namics for different adaptation gains when the DW machine is operating
under healthy (left) and demagnetized (right) conditions. Note that the
black dashed line corresponds to the expected “linear” parameter value.
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Figure 4.27: Co-simulation results of the parameter estimator based on proposed dy-
namics for different adaptation gains when the CW machine is operating
under healthy (left) and demagnetized (right) conditions. Note that the
black dashed line corresponds to the expected “linear” parameter value.
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added parameter ∆PM can provide useful information to distinguish between even

and uneven demagnetization among the magnets when there is an asymmetry be-

tween the north (Λ13) and south (Λ24) poles. Note that ∆PM can be potentially used

to overcome the difficulty mentioned above for fault detection and monitoring caused

by the dependency of the PM flux linkage on its temperature. The main limitation of

this approach is that when there is no asymmetry between the north and south poles

(i.e., Λ13 and Λ24 are identically demagnetized), ∆PM is equal to zero, and the only

information that can be used to monitor and detect demagnetization is the average

value of the PM flux linkage. Additionally, as seen in the DW SMPM machine results,

there can be machine designs with no new harmonics under demagnetization.

Regarding modeling, the equivalent two-phase model offers computational and

conceptual advantages for studying the demagnetization conditions compared with

the FEA model. In addition to the findings from the model validation section (Sec-

tion 4.2.2.2), comparing the co-simulation results and the simulation results suggests

that the proposed equivalent two-phase model properly captures the SMPM machine

behavior under demagnetization in the linear region. Note that the magnetics of

SMPM machines are typically linear given the large effective air gap between the sta-

tor and rotor irons. Therefore, the proposed equivalent two-phase model is a suitable

tool for studying the demagnetization conditions and can be used for initial control

development.

4.6 Summary

This chapter investigated the application of parameter identification to fault diag-

nosis and condition monitoring of SMPM machines under demagnetization conditions.

Specifically, an equivalent two-phase parametric model and an online parameter iden-

tification technique for a three-phase four-pole SMPM machine with two windings per

phase were formulated. Demagnetization mainly affects the PM flux linkage. So first,

the equivalent two-phase model was formulated by superposing the individual mag-

nets. Then, FEA simulations were used to calibrate and validate the model’s PM

flux linkage for DW and CW SMPM machine designs. Afterward, the formulation

of the parameter estimator based on the proposed model together with a parameter

estimator based on the standard model was discussed, including the parametric mod-

els, the parameter identification algorithm, and the sufficient conditions for accurate

convergence. Simulation and co-simulation results proved the effectiveness of the pro-

posed parameter identification strategy over the standard-model-based identification
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strategy for monitoring and detecting demagnetization. In addition, a comparison

between simulation and co-simulation results showed that the proposed model is a

suitable tool for studying the SMPM machine behavior under demagnetization in the

linear operating region. Finally, remarks on the information for detecting demagne-

tization were discussed.
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CHAPTER V

Modeling and Identification for Condition

Monitoring of Surface-Mount Permanent Magnet

Machines Under Eccentricity Condition

5.1 Introduction

In an SMPM machine, the stator and rotor are aligned so that the air-gap length

is symmetrical. However, the rotor and stator can experience misalignments due to

inaccurate manufacturing, improper alignment of the rotor or stator during commis-

sioning, and bearing wear or misalignment. If the rotor and stator are misaligned, the

air gap between the stator and rotor is non-uniform, in which case the SMPM machine

operates under eccentricity conditions. The non-uniform air gap due to eccentricity

generates vibrations and UMP, causing additional mechanical stress and performance

degradation in the SMPM machine. Furthermore, under severe eccentricity, the rotor

and stator can potentially rub, leading to severe damages.

This chapter studies modeling and parameter identification for fault diagnosis and

condition monitoring of SMPM machines under eccentricity conditions. Specifically,

an equivalent two-phase model and an online parameter identification strategy for

a three-phase four-pole SMPM machine with two windings in series per phase un-

der eccentricity conditions are presented. Eccentricity mainly affects the magnetic

parameters in the three-phase SMPM machine dynamics. So first, Modified Wind-

ing Function (MWF) and Magnet Function (MF) theories are used to determine the

expressions for the three-phase inductances and PM flux linkages under eccentricity.

Particularly, in MWF and MF theories, the effect of eccentricity on the magnetic pa-

rameters is captured in the air-gap function. Then, the equivalent two-phase model

is formulated by mapping the three-phase dynamics under eccentricity into their two-

phase equivalents, which are referenced to the rotor reference frame. Afterward, the
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model’s magnetic parameters are calibrated and validated against FEA simulations

for an SMPM machine design. Following the model validation, the parameter identi-

fication strategy for monitoring and detecting eccentricity is discussed, including the

parametric model and sufficient conditions for accurate convergence. Next, simula-

tion and co-simulation results are presented for the proposed parameter identification

strategy and the standard-model-based estimator presented in Section 4.3. For both

estimators, the specific information for monitoring and detecting eccentricity condi-

tions is discussed. Finally, comments on the SMPM machine design limitations for

detecting eccentricity are discussed, and a summary of the chapter is presented.

5.2 Modeling SMPM Machines with Eccentricity Condition

Under healthy conditions, the electrical dynamics are typically analyzed using the

standard equivalent two-phase model in which the electrical dynamics are expressed

with respect to the rotor reference frame [56], as previously presented in Eq. (4.3).

When the SMPM machine is operating under healthy conditions, the center of the

stator, rotor, and rotation coincide and, hence, the air-gap length is symmetrical.

Unfortunately, under eccentricity the air gap becomes asymmetrical and the stan-

dard model presented in Eq. (4.3) is no longer valid. In this section, a simple SMPM

machine model that captures the dynamic behavior under static, dynamic, and mixed

eccentricity conditions using the Modified Winding Function and Magnet Function

theories is derived for analysis and simulation purposes under the following assump-

tions:

A. The machine has a smooth air gap (i.e., slot effects are not considered), is

balanced in construction, and is connected in an ungrounded-wye configuration.

B. Magnetic saturation, eddy current, and hysteresis effects are neglected (i.e.,

linear magnetics are assumed).

C. Stator and rotor irons have infinite permeability. The magnets and air have

equal permeability.

All three assumptions (A-C) are commonly used for control-oriented models [56].

Note that, regarding assumption B, the magnetics of an SMPM machine are typically

linear given the large effective air gap between stator and rotor irons. In terms of

assumption C, the permeability of most PM materials (e.g., SmCo, NdFeB) is close

to that of free space, and the permeability of most iron alloys used in the stator and

rotor irons is much higher than that of free space.
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In the following analysis, the model is derived based on a four-pole three-phase

SMPM machine with two coils per phase, as shown in Fig. 4.1. As will be seen,

eccentricity affects all the Fourier components in the magnetic parameters. The

model captures the eccentricity based on the fundamental Fourier coefficient of the

magnetic parameters, which is always present regardless of the SMPM machine design.

Additional harmonics can be easily included based on the procedure that will be

presented. However, note that these additional harmonics will depend on the SMPM

machine design.

5.2.1 Modeling Eccentricity

Eccentricity mainly affects the magnetic components (i.e., inductances and PM

flux linkages) in the general three-phase dynamics of Eq. (4.1). Using MWF theory,

expressions for the stator winding magnetizing and mutual inductances under the

different eccentricity conditions can be calculated [96, 97]. Similarly, the MF the-

ory from [98] can be applied to determine the PM flux linkages under eccentricity

conditions.

This section presents a simple equivalent two-phase parametric model for a three-

phase four-pole SMPM machine with two windings in series per phase under eccentric-

ity conditions. The derivation starts with the air-gap function for SMPM machines

under eccentricity conditions. Afterward, the theory for calculating the magnetic

parameters using MWF and MF is presented. In these calculations, the inverse air-

gap function is used to capture the eccentricity conditions. Based on these magnetic

parameters, the three-phase and equivalent two-phase models for SMPM under eccen-

tricity conditions are formulated. FEA simulations are used to validate the proposed

two-phase equivalent model for SMPM machines in the rotor reference frame under

eccentricity conditions.

5.2.1.1 Air-gap Function and its Inverse under Eccentricity Conditions

In both MWF and MF approaches, the effects of eccentricity on the magnetic

components are captured in the air-gap function and its inverse. In Fig. 5.1, a stator

and rotor cross-section that shows the position of the center of stator (Os), rotor (Or)

and rotation (Oωr) with respect to the stator reference frame under healthy, SE, DE,

and ME conditions is presented. In general, the air-gap length is a function of φ, the

stator reference position, and θr, the rotor position. In healthy conditions, the center

of the rotor, stator, and rotation coincide as shown in Fig. 5.1(a), and, hence, the
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effective air-gap length (i.e., including magnet thickness) is symmetrical and given

by,

g(φ, θr) = g0, (5.1)

where g0 is the symmetrical air-gap length.

(a) Os = Or = Oωr

Os

(b) Os 6= Or, Oωr
= Or

Os

Oωr

α

(c) Os 6= Or, Oωr
= Os

Oωr

Or

θr

(d) Os 6= Or 6= Oωr

Os Oωr

Or

1

Figure 5.1: Center of stator, rotor and rotation under (a) healthy, (b) SE, (c) DE,
and (d) ME conditions. The coordinate system corresponds to the stator
reference frame.

Under Static Eccentricity (SE) condition (Fig. 5.1(b)), the center of the rotor and

rotation coincide, but they are displaced from the center of the stator. In this case,

the air-gap length is not uniformly distributed around the rotor, depends on φ and
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constants α, δs, and is given by

g(φ, θr) = g0(1− δs cos(φ− α)), (5.2)

where α is the angle between the vector OsOr and the horizontal axis, and δs is the

degree of static eccentricity [10], which is defined as

δs =
| OsOr |
g0

. (5.3)

Note that α is fixed for all rotor positions and, therefore, the air-gap length under

SE is time independent. When the machine is under Dynamic Eccentricity (DE), the

center of the stator coincides with the center of rotation; however, they differ from

the center of the rotor as shown in Fig. 5.1(c). Under this condition, the air-gap

length around the rotor is nonuniform and is given by

g(φ, θr) = g0(1− δd cos(φ− θr)), (5.4)

where δd is the degree of dynamic eccentricity [10], which is defined as

δd =
| OωrOr |

g0

. (5.5)

When the machine experiences some degree of SE and DE simultaneously, it operates

under the Mixed Eccentricity (ME) condition (Fig. 5.1(d)). In this case, the air-gap

function is given by the superposition of both SE and DE conditions [97]:

g(φ, θr) = g0(1− δs cos(φ− α)− δd cos(φ− θr)) = g0(1− δM cos(φ− αM)), (5.6)

where

δM =
√
δ2
s + δ2

d + 2δsδd cos(θr − α),

αM = arctan

(
δs sin(α) + δd sin(θr)

δs cos(α) + δd cos(θr)

)
.

Thus, the inverse air-gap function is given by

g−1(φ, θr) =
1

g0(1− δM cos(φ− αM))
, (5.7)
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Note that the air-gap function and its inverse presented in Eqs. (5.6) and (5.7) can

capture the air-gap length variations due to SE, DE, and ME by modifying accord-

ingly the degrees of static and dynamic eccentricity. Additionally, it should be noted

that, while slot effects were neglected in the previous analysis, they can be easily in-

corporated into the air-gap function and its inverse by modifying the healthy air-gap

length, g0, with

ge = kcg0, (5.8)

where kc is the Carter’s coefficient, and ge is the modified equivalent air gap which

allows one to model a slotted surface with an equivalent unslotted surface with the

same cross-section [99].

5.2.1.2 Magnetic Parameter Calculations using Modified Winding Func-

tion (MWF) and Magnet Function (MF) Theories

This section describes how to calculate inductances and PM flux linkages based on

MWF and MF theories. MWF theory provides a computationally efficient method to

estimate inductances based on the machine winding and the air-gap data [96]. Using

MWF theory, the magnetizing and mutual inductances can be calculated through the

following expressions [96]:

Lxx = µ0rl

2π∫
0

nx(φ, θr)Mx(φ, θr)g
−1(φ, θr)dφ, (5.9)

Lxy = µ0rl

2π∫
0

ny(φ, θr)Mx(φ, θr)g
−1(φ, θr)dφ, (5.10)

where µ0 is the magnetic constant (a.k.a., permeability of free space), r is the mean

radius, l is the machine axial length, nx(φ, θr) is the turns function for winding x,

and Mx(φ, θr) is the modified winding function for winding x given by,

Mx(φ, θr) = nx(φ, θr)− 〈Mx(φ, θr)〉, (5.11)

with the average component of the MWF given by,

〈Mx(φ, θr)〉 =
1

2π〈g−1(φ, θr)〉

2π∫
0

nx(φ, θr)g
−1(φ, θr)dφ.
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A detailed derivation and discussion about inductance calculations using MWF theory

can be found in [96, 100]. Note that, under the presence of non-uniform air gaps,

the reciprocity theorem holds for mutual inductances (i.e., Lxy = Lyx) (proof in

[96]). Also, note that MWF theory only calculates the inductance related to the flux

linkage involved in the electromagnetic torque generation, a.k.a, the magnetizing or

air-gap inductance. In order to determine the winding self-inductance, the leakage

inductance, which does not contribute to torque generation, has to be added to the

magnetizing inductance [99,100].

Similarly, using MF theory [98], the PM flux linkages can be calculated as:

λPM,x = µ0rl

2π∫
0

nx(φ, θr)Fmag(φ, θr)g
−1(φ, θr)dφ (5.12)

where Fmag(φ, θr), a.k.a the magnet function, is the air-gap MagnetoMotive Force

(MMF) produced by the magnets. In terms of analysis, it is useful to describe the turn,

magnet and inverse air-gap functions with a Fourier Series. Based on these Fourier

Series, general expressions for the inductances and PM flux linkages are provided in

the Appendix.

5.2.1.3 Three-phase SMPM Machine Model under Eccentricity Condi-

tions

A three-phase SMPM machine model under eccentricity conditions is formulated

in this section. By approximating the general expressions for the magnetic parameters

(Eqs. (5.44) and (5.45) in the Appendix) to their low-order harmonics, the electrical

three-phase SMPM dynamics under the eccentricity condition can be described using

Eq. (4.1) with the eccentricity capture in the inductances and PM flux linkages as

Ls = Lmag + Lσ ≈ πµ0rlA
2
1G0 + Lσ, (5.13)

Lm = Lab = Lbc = Lca ≈ −
πµ0rlA

2
1G0

2
, (5.14)

λPM,a ≈ πµ0rlA1F1G0 cos(2θr), (5.15)

λPM,b ≈ −πµ0rlA1F1G0 cos
(

2
(
θr +

π

6

))
, (5.16)

λPM,c ≈ −πµ0rlA1F1G0 cos
(

2
(
θr −

π

6

))
, (5.17)

where Lmag = Laa = Lbb = Lcc is the magnetizing inductance, Lσ is the leakage

inductance, F1 is the first-harmonic Fourier coefficient of the magnet function, A1 is
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the first-harmonic Fourier coefficient of the turns function, and G0 is the fundamental

Fourier coefficient of the inverse gap function (See Eqs. (5.41), (5.42), and (5.43) in

the Appendix).

5.2.1.4 Equivalent Two-phase SMPM Machine Model in the rotor refer-

ence frame under Eccentricity Conditions

For the three-phase SMPM machine model to provide information about the ec-

centricity fault and be implemented in simulation, a constraint that specifies the

winding configuration (i.e., wye or delta) has to be included. Since an ungrounded-

wye connected SMPM machine is assumed, the Clarke Transform [81], which maps

the three-phase variables into their equivalent two-phase stationary (α − β) vari-

ables, is used to enforce the zero current constraint from Eq. (2.12). After converting

the three-phase dynamics into two-phase stationary equivalent dynamics, they are

mapped into the rotor reference frame by using the Park Transform [82]. The equiv-

alent two-phase electrical dynamics of the SMPM machine under eccentricity in the

rotor reference frame are given by[
vrd
vrq

]
=

[
R 0

0 R

][
ird
irq

]
+

[
Lr 0

0 Lr

]
d

dt

[
ird
irq

]
+
d

dt

[
Lr 0

0 Lr

][
ird
irq

]
+

ωre

[
0 −Lr
Lr 0

][
ird
irq

]
+ ωre

[
0

λrPM

]
+
d

dt

[
λrPM

0

]
,

(5.18)

where

Lr = Ls − Lm =
3

2
πµ0rlA

2
1G0 + Lσ (5.19)

λrPM = πµ0rlA1F1G0 (5.20)

Equations (5.19) and (5.20) reveal that the variation in the equivalent two-phase

inductance and PM flux linkage under eccentricity with respect to the healthy ones

are driven by the air-gap asymmetry with the term,

G0 =
1

g0

√
1− δ2

M

. (5.21)

Based on this term, the equivalent two-phase inductance and PM flux linkage are

expected to increase under SE and DE. In the case of ME, the increment will vary

with the rotor position, as shown in Fig. 5.2.
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Figure 5.2: Normalized ME air-gap asymmetry term for different degrees of SE and
DE with α = 0.

5.2.2 Calibration and Validation of Proposed Model

In this section, numerical simulations of the proposed SMPM machine model are

presented. The magnetic parameters are calibrated and validated using the dimen-

sions of the SMPM machine and FEA simulations. Note that, under ME condition,

the rotor is assumed to have degrees of 21.5% for SE and 23.15% for DE. The SMPM

machine used in the simulations is shown in Figs. 5.3 and 5.4, and its parameters are

presented in Table 5.1.

Figure 5.3: Cross-section of SMPM
machine without ME in
Maxwell.

Figure 5.4: Cross-section of SMPM
machine with ME in
Maxwell.
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Table 5.1: SMPM machine parameters for simulation.
Parameter Value

Number of poles 4
Number of slots 12

Conductors per slot 100
Parallel branches 1
Magnet material NdFe30

Steel type Iron
Stacking factor 0.95

Stator outer diameter [mm] 180
Stator inner diameter [mm] 80
Rotor outer diameter [mm] 74

Magnet thickness [mm] 3
Magnet coverage coefficient 0.83

Machine length [mm] 80

5.2.2.1 Calibration of Magnetic Parameters

The magnetic parameters are calibrated based on the dimensions of the four-

pole SMPM machine. The slot effects are taken into account by using the Carter

coefficient [99]:

kc =
τs

τs − b0 + 4g
π

ln
(

1 + π
4
b0
g

) . (5.22)

Similarly, the leakage inductance is assumed to be solely the slot leakage which is

calculated with the method from [99]. Assuming that all conductors in a slot are

series connected and approximating the slot to a rectangle (Fig. 5.5), the phase slot

inductance is given by [99]

Lslot = 4N2
t leP , (5.23)

where le is the effective length and P is the slot leakage permeance, which are given

by,

le = l + 2ge, (5.24)

P = µ0

(
d0

b0

+
d2

bs
+
d3

3bs
+

d1

bs − b0

log

(
bs
b0

))
. (5.25)
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Figure 5.5: Slot dimensions for slot leakage inductance calculation.

5.2.2.2 Validation of Magnetic Parameters

FEA simulations are used to validate the magnetic parameters. The FEA simu-

lations are performed using Maxwell from Ansoft Corporation. The SMPM machine

operates at zero current and a constant speed of 1000 RPM . Note that, for the PM

flux linkage, the shape is determined based on the dimensions (i.e., normalized PM

flux linkage); however, the amplitude is calculated using the healthy case from FEA

simulations. Another approach is to scale the magnet function using an open circuit

test, as presented by [98].

Fig. 5.6 shows the equivalent two-phase magnetic parameters under healthy and

ME conditions for one mechanical period. Note that the equivalent direct- and

quadrature-axis inductances calculated using FEA simulations are slightly different

since the permeability of the magnet lightly differs from the one of the air. Also, we

point out that the ripple in the magnetic parameters calculated through FEA sim-

ulations is due to the slot harmonics which were neglected in the model derivation.

The magnetic values calculated by the model and the FEA simulation are compared

using the Mean Relative Error (MRE), which is given by

MRE =
K∑
k=1

| mk − dk |
nk〈dk〉

, (5.26)
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Figure 5.6: Comparison of the proposed model and FEA results for the magnetic
parameters under healthy (left) and ME (right) conditions.

where mk is the model prediction, dk is the data (i.e., FEA data), nk is the number

of data points, and 〈dk〉 is the average of all data points, which is given by,

〈dk〉 =
1

nk

K∑
k=1

dk.

Table 5.2 presents a summary of the MREs for healthy and eccentric conditions.

As shown in Table 5.2, the inductance is calculated approximately within a 10% MRE.

Note that, while there is a 10% error in the inductances, it is a constant difference,

mainly due to the leakage inductance approximation. In the case of the PM flux

linkage, the MRE is considerably smaller (0.64%). Note that the main goal of the

model is to capture the “essential” behavior of the eccentricity fault. In other words,

the model seeks to capture the distinctive features of the eccentricity fault rather

than details. In the healthy case, inductance and PM flux linkage are expected to

be essentially constant, and the model captures them. Similarly, in the ME case,

the characteristic feature is the oscillation at the rotor speed and the increase in the

magnetic parameters, also captured by the model. Note that the model captures the

eccentricity based on the fundamental Fourier coefficient of the magnetic parameters,

always present regardless of the SMPM machine design.
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Table 5.2: MREs under healthy and ME conditions
Parameter MRE (Healthy) MRE (Eccentric)

Lr 9.64% 9.63%
λrPM N/A 0.64%

5.3 Parameter Identification for Fault Diagnosis and Condi-

tion Monitoring of SMPM Machines under Eccentricity

In this section, a parameter identification strategy for ME detection is presented.

First, a parameterization which includes ME specific parameters is formulated based

on the SMPM machine model under ME presented in Eq. (5.18). Note that the lin-

ear parameterization required to formulate the parameter estimators follows the form

presented in Eq. (4.15). Afterwards, the input design, which guarantees sufficient

conditions for accurate parameter convergence, is presented. Specifically, the condi-

tions in which the input signals ensure the PE property are studied. The projection

algorithm is used as the parameter identification algorithm, details of which can be

found in the previous chapter (see Section 4.3.2).

5.3.1 Parametric Model for Fault Diagnosis and Condition Monitoring of

SMPM Machines under Eccentricity

Under ME, the magnetic parameters vary with respect to the healthy ones due

to the ME air-gap asymmetry (Eq. (5.21)). As shown in Fig. (5.2), the ME air-gap

asymmetry increases the magnetic parameters with the main frequency corresponding

to the rotor speed. This variation in the magnetic parameters can be approximately

modeled as a sinusoid, in which case, the parameters are given by

Lr ≈ L0 + L1 sin θr + L2 cos θr, (5.27)

λrPM ≈ Λ0 + Λ1 sin θr + Λ2 cos θr. (5.28)

Note that, for the inductance (Eq. (5.19)), the leakage term is absorbed by the con-

stant component in Eq. (5.27).

By approximating the magnetic parameters with Eqs. (5.27) and (5.28), the linear
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parameterization of the filtered dynamic model from Eq. (5.18) is given by,

~z =
[
zd zq

]T
= {F(s)}

[
vrd vrq

]T
,

~θ =
[
R L0 Λ0 LME1 LME2 ΛME1 ΛME2

]T
,

ΦT =

[
~φd
T

~φq
T

]
= {F(s)}



ird irq

( d
dt
ird − ωreirq) (ωrei

r
d + d

dt
irq)

0 ωre
d(ird sin θr)

dt
− ωreirq sin θr

d(irq sin θr)

dt
+ ωrei

r
d sin θr

d(ird cos θr)

dt
− ωreirq cos θr

d(irq cos θr)

dt
+ ωrei

r
d cos θr

ωr cos θr ωre sin θr

−ωr sin θr ωre cos θr


.

(5.29)

5.3.2 Persistently Exciting Inputs

In this section, sufficient conditions for accurate parameter estimation are studied

for the estimator based on the ME model, presented in Section 5.3.1. Similar to the

analysis presented in Chapter IV, the definition of persistent excitation presented

in Section 2.7 (Definition 2.1) will be used to determine the sufficient conditions

for PE. The following analysis assumes that the regressor is sampled with a fre-

quency more than twice the highest-frequency component (Theorem 2.3) so that the

discrete- and continuous-time regressors carry the same information. Therefore, if the

continuous-time signal is PE, its discrete-time version is also PE. Additionally, the

torque and rotor electrical speed are assumed constant. Similarly, since the healthy

torque (Eq. (4.4)) is solely a function of the quadrature-axis current, the persistently

exciting input required for accurate parameter identification will be injected through

the direct-axis current. Therefore, a sinusoidal direct-axis current and a constant

quadrature current will be assumed, which are given by:

ird = A sin(ωt),

irq = Iq,

where A and ω are the amplitude and frequency of the injected PE signal, and Iq

is the corresponding quadrature-axis current that achieves the desired torque (i.e.,

Iq = 4τ
3NpΛPM

). In the regressor, the low-pass filter ({F(s)}) will be neglected as it

has no effect on the results.
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5.3.2.1 Persistency of Excitation Analysis for Estimator based on Pro-

posed Dynamic Model

Based on the previous assumptions, the regressor of the estimator based on pro-

posed dynamic model (Eq. (5.29)) is given by:

~φd =



A sin(ωt)

Aω cos(ωt)− ωreIq
0

Aω cos(ωt) sin(ωrt) + Aωr sin(ωt) cos(ωrt)− ωreIq sin(ωrt)

Aω cos(ωt) cos(ωrt)− Aωr sin(ωt) sin(ωrt)− ωreIq cos(ωrt)

ωr cos(ωrt)

−ωr sin(ωrt)


, (5.30)

~φq =



Iq

Aωre sin(ωt)

ωre

Iqωr cos(ωrt) + ωreA sin(ωt) sin(ωrt)

−Iqωr sin(ωrt) + ωreA sin(ωt) cos(ωrt)

ωre sin(ωrt)

ωre cos(ωrt)


. (5.31)

In this case, note that the regressor is a function of the excitation, electrical rotor,

and rotor frequencies. Assuming that the regressor is periodic with T0 = 2π
ω0

, it can

be shown that:

det

(
1

T0

T0∫
0

Φ(τ)Φ(τ)ᵀdτ

)
=

A2ω6
re

65536

(
A2ω2 + ω2

re(A
2 + 2I2

q )
)

(20A2ω2 + ω2
re(25A2 + 18I2

q ))2 (5.32)

Equation (5.32) shows that the regressor, Φ, is persistently exciting if:

1. The rotor speed is non-zero (i.e., ωr = ωre
2

= 0).

2. At least one sinusoidal component is injected into the direct-axis current (i.e.,

A 6= 0).

This analysis shows that the estimator based on the ME model requires the same

excitation as the estimator based on the standard model. Similar to the estimator for
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demagnetization presented in Chapter IV, the additional parameters for ME detection

are self-excited.

5.4 Simulation Results Assuming Linear Magnetics

The performance of the parameter estimator presented in Eq. (5.29) is assessed

by numerical simulations in Matlab/Simulink. The standard-model-based parameter

estimator (Eq. (4.16)) presented in Section 4.3.1.1 will be used as the baseline. Both

parameter estimators are evaluated with different gains while the SMPM machine

operates at different current levels and a constant speed of 1000 RPM . PI regulators

with cross-coupling compensation are used to regulate the two-phase currents in the

rotor reference frame. The persistently exciting signal required for accurate parameter

estimation is injected in the direct-axis current, as follows:

ĩrd = 10 sin(2π40t), (5.33)

where the tilde (̃·) denotes a control reference signal.

The controller and parameter estimators are simulated with a triggered subsys-

tem switching at 10kHz to capture the discrete-time practical implementation. The

continuous-time SMPM dynamics are simulated with a fixed time step of 2 µs us-

ing ode4. The command voltages from the controller are converted into duty cycles

using SVM [83]. Based on the duty cycle calculation, an ideal “average-value” VSI

provides average-value voltages to the SMPM machine. An initial deviation of 20%

is assumed in the estimated parameters with respect to the healthy ones. Table 5.3

presents the machine, fault, control, and adaptation parameters for the simulations.

The SMPM machine used in the simulations corresponds to the one in Section 5.2.2,

which is shown in Fig. 5.3. Note that the SMPM machine’s magnetic parameters are

calculated using Eqs. (5.19) and (5.20) and the dimensions from Table 5.1.

5.4.1 Parameter Estimator Based on Standard Dynamic Model

In Fig. 5.7, the performance of the parameter estimator from Eq. (4.16) under

healthy and eccentricity conditions is presented. Under healthy conditions, the es-

timated parameters converge to their true values. In terms of the simulation under

eccentricity condition, the parameter estimator successfully tracks the average-value

variations in the magnetic parameters. Specifically, the average inductance increases

by 2.99%, while the average PM flux linkage increments by 5.52% compared to the
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Table 5.3: Machine, control, and adaptation parameters for simulation
Description Value

SMPM Machine Parameters:
R 0.785Ω
Np 4

Eccentricity Parameters:
δs 21.5%
δd 23.15%
α 0

Control Parameters:
Kp 27.26
Ki 0.0785

Switching frequency (fsw) 10kHz
Sampling frequency (fs) 10kHz

Adaptation Parameters:
a 0.004/0.002/0.001
c 1

healthy case. However, the estimated parameters have noticeable oscillations that

worsen as the adaptation gain increases due to unmodeled dynamics. In addition to

an increased average value, the magnetic parameters experience oscillations which the

parameter estimator is attempting to track. Unfortunately, as shown in Fig. 5.8, the

parameter estimator is not fast enough for this purpose, even with higher adaptation

gains.

The condition number of the PE condition matrix is presented in Figs. 5.9 and

5.10, as a validation for the discrete PE analysis. Note that the moving window

corresponds to the period of the injected PE signal and is given by 250 samples

(0.025 s). As seen in Fig. 5.9, the condition number of the PE condition matrix is not

infinite, and, hence, the system is persistently excited. Fig. 5.10 shows the condition

number of the PE matrix when the regressor is scaled, as previously discussed in

Remark 4.1. As shown in Figs. 5.10, scaling the regressor improves the condition

number of the PE condition matrix.

5.4.2 Parameter Estimator Based on Proposed Dynamic Model

The performance of the parameter estimator from Eq. (5.29) under healthy and

eccentricity conditions is presented in Fig. 5.11. For the simulation under healthy con-

ditions, the parameters achieve accurate convergence. Furthermore, the parameters

related to ME are zero, which indicates that the SMPM machine is not experiencing
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Figure 5.7: Simulation results of the parameter estimator based on the standard dy-
namics for different adaptation gains when the machine is operating un-
der healthy (left) and eccentricity (right) conditions. The black dash line
refers to the average true parameters.
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Figure 5.8: Comparison between the model magnetic parameters (black lines) and
estimated parameters from the parameter estimator based on standard
dynamics for different adaptation gains with the SMPM machine operat-
ing under ME conditions.

0 5 10 15 20
0

2

4

6

8
10

5

0 5 10 15 20
0

2

4

6

8
10

5

Figure 5.9: Condition number of the discrete PE condition matrix for the estimator
based on the standard dynamics when the SMPM machine is operating
under healthy (left) and ME (right) conditions.
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Figure 5.10: Condition number of the discrete PE condition matrix with scaled regres-
sor for the estimator based on the standard dynamics when the SMPM
machine is operating under healthy (left) and ME (right) conditions.

ME. Under eccentricity conditions, the estimated resistance, average inductance, and

average PM flux linkage converge to their actual values. The parameters related to

ME are non-zero, indicating that the SMPM is operating under ME conditions. More-

over, the estimated ME asymmetry parameters successfully reconstruct the frequency

of interest, as shown in Fig. 5.12. Unlike the standard-model-based parameter estima-

tor, the parameters are tracked without significant oscillations for all three adaptation

gains under the eccentricity case.

In terms of the PE condition, Figs. 5.13 and 5.14 show the condition number

of the PE condition for the proposed estimator. The moving window (N) is given

by 3000 samples (0.3 s), corresponding to the regressor’s period. Note that the

regressor’s period depends on the frequency of the injected PE signal and the electrical

rotor frequency (See Eqs. (5.30) and (5.31)). The system is persistently excited as

the condition number is not infinite, as shown in Fig. 5.13. Hence, the parameter

estimator based on the eccentricity model can achieve sufficient conditions for accurate

identification with the same excitation as the estimator based on the standard model.

Fig. 5.14 shows the condition numbers of the PE condition matrix with the scaled

regressor. Similar to the parameter estimator based on the standard model, scaling

the regressor improves the condition number of the PE condition matrix.

Regarding the estimator design, smaller adaptation gains are preferable since the

estimator acts as a filter under these conditions. The parameter estimator from

Eq. (5.29) is based on an approximation of Eq. (5.18) and captures average-value

variations and the main oscillation caused by the air-gap asymmetry. However, there

are still some unmodeled dynamics that will affect the parameters as oscillations.

With lower adaptation gains, the estimated parameters are more robust to these
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Figure 5.11: Simulation results of the proposed-model-based parameter estimator
with different adaptation gains with the SMPM machine under healthy
(left) and eccentricity (right) conditions. The black dash line corre-
sponds to the actual parameters.
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Figure 5.12: Comparison between the model and estimated magnetic parameters with
the SMPM machine operating under ME conditions. The magnetic pa-
rameters are reconstructed based on the estimated parameters from the
proposed parameter estimator for different adaptation gains.
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Figure 5.13: Condition number of the discrete PE condition matrix for the estimator
based on the proposed dynamics when the SMPM machine is operating
under healthy (left) and ME (right) conditions.
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Figure 5.14: Condition number of the discrete PE condition matrix for the estimator
based on the proposed dynamics with scaled regressor when the SMPM
machine is operating under healthy (left) and ME (right) conditions.
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unmodeled dynamics and noises [84].

5.5 Co-simulation Results Considering Nonlinearities

In this section, the effectiveness of the parameter estimators for eccentricity detec-

tion is validated through co-simulations. The co-simulations are implemented using

Twin Builder, which allows integrating an FEA-based machine model with an electric

drive. The FEA-based SMPM machine model corresponds to the SMPM machine

presented in Section 5.2.2 and is developed and simulated in Maxwell. In the co-

simulations, the steel type is changed to “M19” (See Fig. 4.23), which is a typical

material for electric machines. The electric drive model, as well as the co-simulation

interface, are implemented in Twin Builder. The inverter model corresponds to the

“average-value” VSI. The PI regulators with cross-coupling compensation used for

current regulation are developed in Matlab/Simulink and integrated as a Twin Builder

component.

The FEA-based machine model and electric drive are executed at 10kHz. The

estimated parameters have an initial 20% deviation from the linear parameters pre-

sented in Section 5.2.2.2. The command current that is injected for PE purposes is

given by:

ĩrd = 5 sin(2π40t). (5.34)

5.5.1 Performance of Parameter Estimator Based on Standard Dynamic

Model

In Fig. 5.15, the co-simulation results for the standard-model-based parameter

estimator are presented. Note that the black dashed line corresponds to the aver-

age value of the actual parameters assuming linear magnetics, as presented in Sec-

tion 5.2.2.2. Regarding the co-simulation under healthy conditions, the parameters

track the linear values for most current values. When the SMPM machine operates

at higher currents, the magnetic parameters decrease, indicating saturation. In addi-

tion, the resistance starts drifting away from its expected value. Since the resistance

drop is small compared to the total voltage, the estimated resistance is susceptible

to unmodeled dynamics. Specifically, under saturation the estimated resistance gets

affected by the magnetics as they are no longer linear. In terms of the ME results

presented in Fig. 5.15, the magnetic parameters track their linear values at low cur-

rent values and start decreasing for higher currents. Regarding the resistance, its

estimate is inaccurate and has perceptible oscillations caused by the unmodeled ME
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Figure 5.15: Co-simulation results of the parameter estimator based on the standard
dynamics for different adaptation gains when the machine is operating
under healthy (left) and eccentricity (right) conditions.

Based on these results, the standard-model-based parameter estimator can pro-

vide some information for fault diagnosis and condition monitoring of SMPM ma-

chines under ME conditions. In terms of the fundamental component of the magnetic

parameters, their increase indicates an increment in ME. The PM flux linkage is more

noticeably affected by eccentricity than the two-phase inductance, which is more suit-

able for monitoring and detection. In particular, the leakage term in the two-phase

inductance weakens the eccentricity effect as it increases the average value. The main

challenge of using these indicators is that, under healthy conditions, saturation and

varying PM temperature also affect the magnetic parameters. Aside from the param-

eters’ average value, the oscillations cannot be tracked by the parameter estimator

and are affected by the adaptation dynamics, and, hence, the information regarding
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the fault that can be extracted is unclear. Since no information can be extracted from

the oscillations, smaller adaptation gains are preferable as they mitigate the impact

of the unmodeled dynamics in the estimated parameters.

5.5.2 Performance of Parameter Estimator Based on Proposed Dynamic

Model

The co-simulation results for the parameter estimator based on the proposed dy-

namics are presented in Fig. 5.16. In both cases, the magnetic parameters follow the

linear values for most currents until they reach saturation and decrease. In addition,

the ME-related parameters successfully indicate ME conditions. The ME-related pa-

rameters are equal to zero under healthy conditions, while they are non-zero under

ME conditions. Since the air-gap asymmetry is approximately captured using the

ME-related parameters, the estimated resistance is solely affected by saturation.

This parameter estimator, based on the proposed dynamics, offers more details

than the standard-model-based estimator for fault diagnosis and condition monitoring

of SMPM machines under ME conditions. Similar to the standard-model-based esti-

mator, the proposed-model-based estimator can track the fundamental component of

the magnetic parameters, which can be used as an indicator of ME. The ME-related

parameters provide an additional indicator for the proposed model-based estimator as

they capture the oscillation caused by the air-gap asymmetry. When there is no ME,

the ME-related parameters are equal to zero. Similarly, under ME, these parameters

become non-zero, indicating that the SMPM machine is operating under ME condi-

tions. Therefore, these parameters can be potentially used to overcome the difficulties

mentioned above for monitoring and detecting ME due to saturation and varying PM

temperature. In practice, all SMPM machines have some level of ME due to the in-

herent tolerances in the manufacturing and assembling processes. Hence, ME-related

parameters are expected to be close to zero under healthy conditions. Since eccen-

tricity gradually increases through time, the ME-related parameters can be used to

monitor this progression, and a threshold can be established for detection.

5.6 SMPM Design Limitations for Fault Detection

The SMPM machine design can affect the application of the presented approaches

for fault detection. The PMs limit the degree of eccentricity that the SMPM machine

can experience since they are located in the air gap. In the literature, SMPM ma-

chines with PMs that occupy approximately 50% to 90% of the air gap region can be
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Figure 5.16: Co-simulation results of the parameter estimator based on the proposed
dynamics for different adaptation gains when the machine is operating
under healthy (left) and eccentricity (right) conditions.
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found [101–104]. In the case that there is not much room for eccentricity, the mag-

netic parameters will still experience the average increase and asymmetry oscillation;

however, the effects will be subtle.

5.7 Summary

In this chapter, the application of parameter identification to fault diagnosis and

condition monitoring of SMPM machines under eccentricity conditions was investi-

gated. Specifically, an equivalent two-phase model and an online parameter identi-

fication strategy for a three-phase four-pole SMPM machine with two windings in

series per phase under eccentricity conditions are presented. Eccentricity mainly af-

fects the magnetic parameters. So first, the equivalent two-phase dynamics under

eccentricity were formulated by modeling the expressions for the inductances and

PM flux linkages using MWF and MF theories. Then, FEA simulations were used to

calibrate and validate the model’s magnetic parameters for an SMPM machine de-

sign. Afterward, the parameter identification strategy for detecting eccentricity was

formulated, including the parametric model and sufficient conditions for accurate con-

vergence. Subsequently, the performance of the proposed model-based estimator and

the standard-model-based parameter estimator from Section 4.3 were investigated

through simulations and co-simulations. Compared to the parameter estimator based

on the standard SMPM machine model, the parameter estimator based on the pro-

posed model provided additional insight, as its ME-specific parameters capture the

oscillations caused by the ME in the magnetic parameters. Moreover, the ME-related

parameters are a more suitable indicator for monitoring and detecting ME as they can

track a gradual increase in ME. In addition, a comparison between simulation and

co-simulation results showed that the proposed model is a suitable tool for studying

the SMPM machine behavior under ME in the linear operating region.
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5.8 Appendix

5.8.1 Turn Functions and MWFs for the Four-Pole, Three-Phase SMPM

Machine with Two Coils Per Phase

na(φ) = A0 +
∞∑
k=1

Ak cos(2kφ) (5.35)

nb(φ) = −A0 −
∞∑
k=1

Ak cos
(

2k
(
φ+

π

6

))
(5.36)

nc(φ) = −A0 −
∞∑
k=1

Ak cos
(

2k
(
φ− π

6

))
(5.37)

Ma(φ, θr) = − 1

2G0

∞∑
k=1

AkG2k cos(2kαM) +
∞∑
k=1

Ak cos(2kφ) (5.38)

Mb(φ, θr) =
1

2G0

∞∑
k=1

AkG2k cos
(

2k
(
αM +

π

6

))
−
∞∑
k=1

Ak cos
(

2k
(
φ+

π

6

))
(5.39)

Mc(φ, θr) =
1

2G0

∞∑
k=1

AkG2k cos
(

2k
(
αM −

π

6

))
−
∞∑
k=1

Ak cos
(

2k
(
φ− π

6

))
(5.40)

5.8.2 General Expressions for the Magnetic Parameters of the Four-Pole,

Three-Phase SMPM Machine with Two Coils Per Phase

In the case of the four-pole, three-phase SMPM machine with two coils per phase,

the general Fourier Series for turn, magnet and inverse air-gap functions are given by:

ny(φ) = A0 +
∞∑
k=1

Ak cos
(
2k(φ+ φy)

)
, (5.41)

Fmag(θr) =
∞∑
k=1

Fk cos
(
2k(φ− θr)

)
− 1

2G0

∞∑
k=1

FnG2k cos(2k(αM − θr)), (5.42)

g−1(φ, θr) = G0 +
∞∑
k=1

Gk cos(k(φ− αM)), (5.43)
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where

G0 =
1

g0

√
1− δ2

M

,

Gk =
2

g0

√
1− δ2

M

[
1−

√
1− δ2

M

δM

]k
.

Note that the sign of ny(φ) depends on the phase (see Eqs. (5.35), (5.36), and

(5.37)). Using these Fourier Series expressions from Eqs. (5.41), (5.42) and (5.43),

the general expressions for the inductances and permanent magnet flux linkages from

Eqs. (5.9), (5.10) and (5.12) are given by,

Lxy = µ0πrl

(
G0

∞∑
k=1

A2
k cos

(
2k(φy − φx)

)
− 1

2

∞∑
k=1

∞∑
n=1

AkAnG2(k+n) cos
(
2(kφy − nφx + (n− k)αM)

)
+
∞∑
n=1
n>k

∞∑
k=1

AkAnG2(n−k) cos
(
(k + n)(φy − φx)

)
cos
(
(n− k)(φy + φx) + 2(n− k)αM

)
(5.44)

λPM,i = µ0πrl

(
G0

∞∑
k=1

AkFk cos
(
2k(φi + θr)

)
+

1

2

∞∑
k=1

∞∑
n=1

AkFn(G2(k−n) −G2(k+n)) cos
(
2(kφi + nθr + (k − n)αM)

)
+

1

2

∞∑
k=1

∞∑
n=1

AkFnG2(n−k) cos
(
2(kφi + nθr − (n− k)αM)

))
(5.45)

Note that Lxx corresponds to the case where x = y in Eq. (5.44).
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CHAPTER VI

Modeling and Identification for Condition

Monitoring of Surface-Mount Permanent Magnet

Machines Under Inter-turn Short Condition

6.1 Introduction

An Inter-Turn Short (ITS) occurs when the insulation fails between contiguous

turns in a winding. In an electric machine, insulation deterioration is a natural aging

process that happens gradually. However, overloads, manufacturing defects, thermal

stresses, voltage stresses, and vibration-caused rubbing exacerbate insulation wear

and tear [20]. Once the ITS occurs, the ITS produces additional heat, which helps its

propagation. Hence, the ITS rapidly expands and escalates up to a phase-to-phase

or phase-to-ground short circuit. In PMSMs, stator short-circuit faults can produce

a magnetic field intensity that irreversibly demagnetizes the magnets, making this

fault especially problematic [20].

This chapter studies the application of parameter identification to fault diagno-

sis and condition monitoring of SMPM machines under ITS conditions. Specifically,

an equivalent two-phase SMPM machine model and an online parameter identifica-

tion technique for a three-phase four-pole SMPM machine with two coils in series

per phase are formulated. An ITS refers to an insulation failure between contiguous

turns in a coil and is typically modeled with an additional resistance shorting the

affected turns. First, the SMPM machine model with ITS is formulated by mod-

eling all coils separately. Then, the three-phase SMPM machine model under ITS

is formulated by integrating the coils into the different phases based on the wind-

ing connections. Afterward, the equivalent two-phase dynamics are formulated by

mapping the three-phase variables into their two-phase equivalents, referenced to the

rotor reference frame. Subsequently, the model’s magnetic parameters are calibrated
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and validated against FEA simulations for an SMPM machine design. Following the

modeling section, a parameter identification strategy for monitoring and detecting

ITS condition is presented, including the linear parametric model and the sufficient

conditions for accurate convergence. Afterward, the effectiveness of the proposed pa-

rameter identification strategy for monitoring and detecting ITS is assessed through

simulations and co-simulations. Finally, remarks on the parameters’ applicability for

ITS detection are presented.

6.2 Modeling SMPM Machines with Inter-Turn Short Con-

dition

Under free-fault conditions, the standard equivalent two-phase model is typically

used to analyze the electrical dynamics, as previously presented in Eq. (4.3). However,

under ITS, the insulation fails between contiguous turns in a winding, and the model

from Eq. (4.3) is no longer valid. In this section, a simple SMPM machine model that

captures the behavior of the SMPM machine under ITS conditions is derived under

the following assumptions:

A. The machine has a smooth air gap (i.e., slot effects are not considered), is

balanced in construction, and is connected in an ungrounded-wye configuration.

B. Magnetic saturation, eddy current, and hysteresis effects are neglected (i.e.,

linear magnetics are assumed).

C. Stator and rotor irons have infinite permeability. The permanent magnets and

air have equal permeability.

The three assumptions (A-C) are commonly used for control-oriented models [56].

In terms of assumption B, the magnetics of an SMPM machine are roughly linear

since the effective air gap between the stator and rotor irons is large. Regarding

assumption C, most magnet materials (e.g., SmCo, NdFeB) have a permeability close

to that of free space, while most iron alloys used in the stator and rotor irons have a

permeability that is much higher than that of free space.

Modeling SMPM machines under ITS has to be done on a case-by-case basis,

since the dynamic behavior differs for different pole numbers, winding configurations,

and ITS fault location. In the following analysis, the model is derived based on a

four-pole, three-phase SMPM machine with two coils in series per phase, as shown

in Fig. 4.1. Note that the model assumes that the ITS occurs in phase A. Following

117



a similar analysis, SMPM machine models with ITS in phases B and C are derived,

presented in the Appendix.

6.2.1 Modeling Inter-Turn Short

An inter-turn short in a coil is typically modeled with an additional resistance

shorting the affected turns [16, 71–73], as shown in Fig. 6.1. The insulation-failure

resistance (Rf ) is meant to capture the degradation of the insulation material. The-

oretically, a perfect ITS corresponds to an insulation-failure resistance equal to zero;

however, a perfect short is an ideal that is never achieved in practice. In this sec-

tion, a two-phase equivalent model that captures ITS is formulated for a three-phase

four-pole SMPM machine with two coils in series per phase. The derivation starts

by modeling each coil from the different phases separately as the ITS fault can be

easily inserted. Then, based on this coil SMPM model and winding connections, the

three-phase model is formulated. Afterward, the equivalent two-phase dynamics are

formulated by mapping the three-phase variables into their two-phase equivalents,

referenced to the rotor reference frame.

Rf

(a) Healthy coil (b) Coil with ITS

i i = ih

if

iu

1

Figure 6.1: Coil model under healthy (left) and ITS (right) conditions.

6.2.1.1 Coil SMPM Machine Model under Inter-Turn Short Conditions

In this section, an SMPM machine model under ITS condition is formulated in

which all coils are modeled separately. Since the ITS is modeled as an insulation-

failure resistance shorting the affected turns (Fig. 6.1(b)), the electrical dynamics of

the coil with ITS are separated into the dynamics related to the healthy turns (i.e.,

non-shorted) and the dynamics related to the shorted turns. Then, assuming that
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the ITS occurs in coil a1, the general expression describing the electrical dynamics of

a four-pole three-phase SMPM machine with two coils per phase is given by



va1h
vb1

vc1

va2

vb2

vc2

va1u


=



Ra1h 0 0 0 0 0 0

0 Rb1 0 0 0 0 0

0 0 Rc1 0 0 0 0

0 0 0 Ra2 0 0 0

0 0 0 0 Rb2 0 0

0 0 0 0 0 Rc2 0

0 0 0 0 0 0 Ra1u





ia1h
ib1

ic2

ia2

ib2

ic2

ia1u


+
d

dt



λPM,a1h

λPM,b1

λPM,c1

λPM,a2

λPM,b2

λPM,c2

λPM,a1u


+



La1h La1hb1 La1hc1 La1ha2 La1hb2 La1hc2 La1ha1u

La1b1 Lb1 Lb1c1 Lb1a2 Lb1b2 Lb1c2 Lb1a1u

La1c1 Lb1c1 Lc1 Lc1a2 Lc1b2 Lc1c2 Lc1a1u

La1a2 Lb1a2 Lc1a2 La2 La2b2 La2c2 La2a1u

La1b2 Lb1b2 Lc1b2 La2b2 Lb2 Lb2c2 Lb2a1u

La1c2 Lb1c2 Lc1c2 La2c2 Lb2c2 Lc2 Lc2a1u

La1ha1u Lb1a1u Lc1a1u La2a1u Lb2a1u Lc2a1u La1u


d

dt



ia1h
ib1

ic2

ia2

ib2

ic2

ia1u


, (6.1)

where the subscript xi denotes the coil ith of phase x (e.g., a1, a2, b1, b2, c1, or c2),

Rxi is the resistance of coil xi, Lxi is the self-inductance of coil xi, Lxiyj is the mutual

inductance between coils xi and yj, λPM,xi is the PM flux linking coil xi, and a1h and

a1u denote the non-shorted and shorted parts of coil a1, respectively.

In terms of the resistances, their values can be linearly prorated based on the

three-phase resistance value and the number of shorted and non-shorted turns as

follows:

Rxi =
R

2
, (6.2)

Ra1h = µh
R

2
, (6.3)

Ra1u = µu
R

2
, (6.4)

where R is the stator winding resistance, and µh and µu are the per unit healthy (i.e.,
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non-shorted) and unhealthy (i.e., shorted) turns which are given by:

µh =
Nh

Nt

, (6.5)

µu =
Nu

Nt

, (6.6)

with Nt, Nh , and Nu as the total, healthy, and unhealthy number of turns in a coil.

Note that:

Nt = Nh +Nu,

1 = µh + µu.

Regarding the inductances, the magnetizing and mutual inductances under healthy

conditions can be calculated using winding function theory [96], and are given by:

Lmagxi =
µ0rl

g0

2π∫
0

nxi(φ)Nxi(φ)dφ =
πµ0rl

g0

K∑
k=1

A2
k, (6.7)

Lxiyj =
µ0rl

g0

2π∫
0

nyj(φ)Nxi(φ)dφ =
πµ0rl

g0

K∑
k=1

A2
k cos(k(φyj − φxi)), (6.8)

where µ0 is the magnetic constant (a.k.a., permeability of free space), r is the mean

radius, l is the machine axial length, nxj(φ) and Nxi(φ) are the turns and winding

function for coil xi, which are represented using Fourier Series as follows:

nxi(φ) = A0 +
K∑
k=1

Ak cos(k(φ+ φxi)),

Nxi(φ) =
K∑
k=1

Ak cos(k(φ+ φxi)).

The turns function for a distributed winding can be represented as a trapezoid, as

shown in Fig. 6.2. In this case, the kth Fourier coefficient of the turns function, nxi(φ),

is given by

Ak =
4Nt

πk2(β − α)
sin
((α + β)k

2

)
sin
((β − α)k

2

)
.

Then, the magnetizing and mutual inductances for the coil with the ITS can be
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nxi
(φ)

Nt

α−α β−β φ

1

Figure 6.2: Turn function for a coil assuming distributed winding and φxi = 0.

calculated by adjusting the number of turns in Eqs. (6.7) and (6.8) as follows:

Lmaga1h =
πµ0rlµ

2
h

g0

K∑
k=1

A2
k = µ2

hLmagxi , (6.9)

Lmaga1u =
πµ0rlµ

2
u

g0

K∑
k=1

A2
k = µ2

uLmagxi , (6.10)

La1ha1u =
πµ0rlµuµh

g0

K∑
k=1

A2
k = µuµhLmagxi , (6.11)

La1hyj =
πµ0rlµh
g0

K∑
k=1

A2
k cos(k(φyj − φa1)) = µhMa1yj , (6.12)

La1uyj =
πµ0rlµu
g0

K∑
k=1

A2
k cos(k(φyj − φa1)) = µuMa1yj . (6.13)

In order to determine the winding self-inductance, the leakage inductance, which

does not contribute to torque generation, has to be added to the magnetizing in-

ductance. In this analysis, the leakage inductance will be assumed to be solely the

slot leakage inductance and will be modeled using the theory previously presented in

Section 5.2.2.1. For the coil SMPM model, the coil slot inductance is given by:

Ll = 2N2
t leP , (6.14)
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where le is the effective length defined in Eq. (5.24) and P is the slot leakage permeance

defined in Eq. (5.25). Regarding the slot inductances for the coil with the ITS, they

will be approximated based on the number of turns as:

Llh ≈ 2N2
h leP = µ2

hLl, (6.15)

Llu ≈ 2N2
u leP = µ2

uLl. (6.16)

where Llh and Llu are the coil slot inductances for the healthy (non-shorted) and

unhealthy (shorted) turns in the coil with ITS. Note that, these slot inductances are

also affected by the location of the shorted turns, which is not taken into account in

Eqs. (6.15) or (6.16).

In terms of the PM flux linkages, the MF theory [98] can be used to determine the

relationship between the PM flux linking the different coils and the different phases.

Then, the PM flux linking the healthy coils as well as the healthy and unhealthy

turns in the coil with ITS are given by:

λPM,xi =
λPM,x

2
,

λPM,a1h =
µhλPM,a

2
,

λPM,a1u =
µuλPM,a

2
.

Note that a similar procedure can be followed to derive the SMPM machine model

with the ITS occurring in coils from phases B or C.

6.2.1.2 Three-phase SMPM Machine Model under Inter-Turn Short Con-

ditions

In this section, a three-phase SMPM machine model under ITS is derived based

on the coil SMPM machine model presented in Eq. (6.1). Since the coils in a phase

are connected in series, the coils’ voltages and currents relate as follows:
vah
vb

vc

vau

 =


va1h + va2

vb1 + vb2

vc1 + vc2

va1u

 ,
iaib
ic

 =

ia1hib1
ic1

 =

ia2ib2
ic2

 , iau = ia1u. (6.17)
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Then, the electrical dynamics of the four-pole, ungrounded-wye-connected SMPM

machine with two coils in series per phase under ITS are given by:
vah
vb

vc

vau

 =


(1+µh)R

2
0 0 0

0 R 0 0

0 0 R 0

0 0 0 µuR
2



ia

ib

ic

iau

+
d

dt


(1+µh)

2
λPM,a

λPM,b

λPM,c

µu
2
λPM,a



+


Lsh

µh+1
2
Lm

µh+1
2
Lm Lmhu

µh+1
2
Lm Ls Lm

µu
2
Lm

µh+1
2
Lm Lm Ls

µu
2
Lm

Lmhu
µu
2
Lm

µu
2
Lm Lsu

 d

dt


ia

ib

ic

iau

 , (6.18)

with

i0 =
1

3
(ia + ib + ic) = 0. (6.19)

where Ls is the three-phase self-inductance, Lsh is the self-inductance for the non-

shorted turns in the coils with ITS, Lsu is the self-inductance for the shorted turns in

the coil with ITS, Lm is the three-phase mutual inductance, and Lmhu is the mutual

inductance between the shorted and non-shorted turns in the coil with ITS. The

inductances presented in Eq. (6.18) are related to the ones from the coil SMPM

machine model (Eq. (6.1)) as follows:

Ls = Lmagx1 + Lmagx2 + 2Ll + 2Lx1x2 = 2(Lmagxi + Ll + Lx1x2),

Lsh = Lmaga1h + Llh + Lmaga2 + Ll + 2Lx1x2 = (µ2
h + 1)(Lmagxi + Ll) + 2µhLx1x2 ,

Lsu = Lmaga1u + Llu = µ2
u(Lmagxi + Ll),

Lm = Lx1y1 + Lx1y2 + Lx2y1 + Lx2y2 = 2(Lxiyi + Lxiyj),

Lmhu = La1ha1u + La2a1u = µuµhLmagxi + µuLx1x2 .

Equation (6.18) shows the three-phase SMPM model for an ITS occurring in coil

a1. Based on Eq. (6.17), it can be shown that the three-phase SMPM machine model

with an ITS in coil a2 will be identical to the one presented in Eq. (6.18). In other

words, the three-phase electrical dynamics do not distinguish in which of the phase’s

coils the ITS occurs.
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6.2.1.3 Equivalent two-phase SMPM machine model under inter-turn

short condition in the rotor reference frame

In this section, the three-phase dynamics presented in Eq. (6.18) are mapped

into their equivalent two-phase variables in the rotor reference frame. In previous

chapters, the Clarke transform was used to map the dynamics into their equivalent

two-phase stationary (α − β) variables while imposing the zero current constraint

(Eq. (6.19)). However, the model under ITS has an additional state to capture the

dynamics from the shorted turns. An orthonormal base can be formulated starting

with the zero-sequence constraint, which can be used to enforce the wye connection

between the phases and is given by

A23f =


1√
3

1√
3

1√
3

0
2√
6
− 1√

6
− 1√

6
0

0 1√
2
− 1√

2
0

0 0 0 1

 . (6.20)

Note that this transformation includes a normalized version of the Clarke transform

and an additional term for the shorted winding dynamics. Therefore, the Clarke

transform can be extended for ITS condition as follows:

T23f =


2√
3
− 1√

3
− 1√

3
0

0
√

3
3
−
√

3
3

0
1
3

1
3

1
3

0

0 0 0 1

 . (6.21)

Similarly, the two-phase stationary variables can be mapped into the three-phase

frame using the following extended inverse Clarke transform:

T23f
−1 = T32f =


1 0 1 0

−1
2

√
3

2
1 0

−1
2
−
√

3
2

1 0

0 0 0 1

 . (6.22)

Once the dynamics are mapped into their two-phase stationary equivalents, the Park

transform can be used to map these variables into the rotor reference frame. Under

ITS condition, the extended version of the Park transform and its inverse are given
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by:

Tdqf =

 cos(θre) sin(θre) 0

− sin(θre) cos(θre) 0

0 0 1

 ,Tdqf
−1 =

cos(θre) − sin(θre) 0

sin(θre) cos(θre) 0

0 0 1

 . (6.23)

By using the extended Clarke and Park transforms presented in Eqs. (6.21) and

(6.23), the two-phase dynamics of the SMPM machine under ITS are given by,

 v
r
d

vrq

vau

 = R

(1− µu
6 ) 0 0

0 (1− µu
6 ) 0

0 0 µu
2


 i

r
d

irq

iau

+
µuR

6

− cos(2θre) sin(2θre) 0

sin(2θre) cos(2θre) 0

0 0 0


 i

r
d

irq

iau



+ ωreΛPM

 0

(1− µu
6 )

0

+ ωreΛPM


µu sin(2θre)

6
µu cos(2θre)

6

−µu sin(θre)
2



+


2Ls+Lsh−(3−µu)Lm

3 0 0

0
2Ls+Lsh−(3−µu)Lm

3 0

0 0 Lau

 d

dt

 i
r
d

irq

iau



+


− (Ls−Lsh−µuLm) cos(2θre)

3

(Ls−Lsh−µuLm) sin(2θre)

3

2Lmhu−µuLm
3 cos(θre)

(Ls−Lsh−µuLm) sin(2θre)

3

(Ls−Lsh−µuLm) cos(2θre)

3 −2Lmhu−µuLm
3 sin(θre)

2Lmhu−µuLm
2 cos(θre) −2Lmhu−µuLm

2 sin(θre) 0

 d

dt

 i
r
d

irq

iau



+ ωre


0 −2Ls+Lsh−(3−µu)Lm

3 0
2Ls+Lsh−(3−µu)Lm

3 0 0

0 0 0


 i

r
d

irq

iau



+ ωre


(Ls−Lsh−µuLm) sin(2θre)

3

(Ls−Lsh−µuLm) cos(2θre)

3 0
(Ls−Lsh−µuLm) cos(2θre)

3 − (Ls−Lsh−µuLm) sin(2θre)

3 0

−(Lmhu − µuLm
2 ) sin(θre) −(Lmhu − µuLm

2 ) cos(θre) 0


 i

r
d

irq

iau

 . (6.24)

Inspection of Eq. (6.24) reveals that all parameters (i.e., resistance, inductance, and PM

flux linkage) reduce and have an oscillation at twice the electrical rotor speed under ITS

condition. In addition, note that the dynamics from the shorted turns affect the equivalent

two-phase dynamics as mutual inductances link them. Following a similar procedure, the

two-phase dynamics of the SMPM machine under ITS in phases B and C are presented in

the Appendix (See Eqs. (6.47) and (6.48)). Comparison between Eqs. (6.24), (6.47), and

(6.48) reveals that the two-phase electrical dynamics under ITS in phases A, B, and C have

identical effects on the parameters except for the oscillations at twice the electrical rotor

speed, which have a phase-shift depending on the phase.
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In the following section, the different components of the inductance matrix and PM

flux linkage are validated. Specifically, the magnetic parameters that are validated are the

equivalent magnetic parameters related to the direct and quadrature axes, which are given

by:

Lrd =
2Ls+Lsh−(3−µu)Lm

3 − (Ls−Lsh−µuLm) cos(2θre)

3 , (6.25)

Lrq =
2Ls+Lsh−(3−µu)Lm

3 +
(Ls−Lsh−µuLm) cos(2θre)

3 , (6.26)

M r
dq =

(Ls−Lsh−µuLm) sin(2θre)

3 , (6.27)

M r
dau =

2Lmhu−µuLm
3 cos(θre), (6.28)

M r
qau = −2Lmhu−µuLm

3 sin(θre), (6.29)

λrPMd = ΛPM (1− µu
6 )− µuΛPM cos(2θre)

6
, (6.30)

λrPMq =
µuΛPM sin(2θre)

6
, (6.31)

λrPMu =
µuΛPM cos(2θre)

2
. (6.32)

where λrPMd and λrPMq correspond to the PM flux linking the equivalent direct and quadrature-

axis windings in the rotor reference frame, λrPMu is the PM flux linking the shorted turns

in the coil with ITS, Lrd and Lrq are the direct- and quadrature-axis inductances in the

rotor reference frame, M r
dq is the mutual inductance between the equivalent direct- and

quadrature-axis windings, M r
dau

and M r
qau are the mutual inductances between the shorted

coil and the direct and quadrature windings, respectively.

6.2.2 Calibration and Validation of Proposed Model

In this section, the magnetic parameters are calibrated and validated using the dimen-

sions of the SMPM machine and FEA simulations. The FEA simulations are performed

using Maxwell from Ansoft Corporation. In the FEA simulations, the SMPM machine oper-

ates at zero current and a constant speed of 1000RPM . Under ITS, two cases are presented

in which coils a1 and b1 are assumed to have 5 shorted turns. The SMPM machine used

in the simulations is the one presented in Section 5.2.2 (See Fig. 5.3). Figs. 6.3 and 6.4

show the cross-section of the SMPM machine from Fig. 5.3 with the ITS in coils a1 and b1,

respectively. Additional details on the SMPM machine’s dimensions and materials used for

the FEA simulations can be found in Table 5.1 (Section 5.2.2).

6.2.2.1 Calibration of Magnetic Parameters

The magnetic parameters are calibrated based on the dimensions of the four-pole SMPM

machine and the healthy FEA simulation results. Following the procedure previously pre-
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Figure 6.3: Cross-section of SMPM
machine with ITS in coil
a1.

Figure 6.4: Cross-section of SMPM
machine with ITS in coil
b1.

sented in Section 5.2.2.1, the slot effects are taken into account in the inductance calcula-

tions using the Carter Coefficient, as presented in Eqs. (5.8) and (5.22). The slot leakage

inductance (Eq. (6.14)) is calculated by approximating the slot to a rectangle (Fig. 5.5). In

terms of the PM flux linkage, its value is adjusted based on the healthy case from the FEA

simulations. The left column of Figs. 6.5 and 6.6 show the calibrated inductances and PM

flux linkages against the healthy FEA simulation results.

6.2.2.2 Validation of Magnetic Parameters

Based on the previous calibration, the inductance and PM flux linkages are validated

against FEA simulations. Figs. 6.5 and 6.6 present the simulation results for the inductances

and PM flux linkages for one mechanical period, respectively. The healthy case in Fig. 6.5

reveals a constant difference between the inductances calculated by the proposed model

and the FEA results, which is carried over to the ITS case. This difference is mainly due

to the leakage inductance approximation and is within a 10% MRE for the direct- and

quadrature-axis inductances. In addition, Figs. 6.5 and 6.6 show a ripple in the magnetic

parameters calculated through FEA simulations, which is due to the slot harmonics. The

magnetic parameters calculated with the proposed model do not capture this ripple as the

slot harmonics were neglected in the derivation.

The model aims to capture the “essential” aspects of the SMPM machine dynamics

under ITS condition. In other words, the model is meant to capture the distinctive features

of the ITS fault rather than details. In the healthy case, the inductance and PM flux
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linkage are essentially constant, captured by the model. Similarly, under ITS conditions,

the two-phase magnetic parameters have an oscillation at twice the electrical rotor speed as

the distinctive feature, which the model also captures. Note that, in Figs. 6.5 and 6.6, the

ITS in phases A and B produce identical oscillations in the magnetic parameters but phase-

shifted, capture by the models presented in Eqs. (6.24) and (6.47). Regarding the magnetic

parameters related to the shorted turns, the model also captures their characteristic feature

corresponding to the oscillation at the electrical rotor speed.
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Figure 6.5: Comparison of the proposed model and FEA results for the inductances
under healthy condition (left) and ITS (µu = 5%) in phase A (center)
and phase B (right).
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Figure 6.6: Comparison of the proposed model and FEA results for the PM flux
linkage under healthy condition (left) and ITS (µu = 5%) in phase A
(center) and phase B (right).

129



6.2.3 Control-Oriented Model for Simulations

An SMPM machine drive system is physically a three-phase system. The SMPM ma-

chine is typically powered through a VSI, and therefore, the inputs to the SMPM machine

model corresponds to the three-phase VSI’s voltages. In order to be implementable in

simulations, the equations have to be written with respect to these three-phase voltages.

Unfortunately, in Eq. (6.18), the voltages in the phase that experiences ITS (i.e., vah and

vau) are unknown as they do not correspond to phase voltages. Since the phase voltage is

applied to the entire winding, it contains the non-shorted and shorted coil voltages, and is

given as follows:

va = vah + vau . (6.33)

Similarly, the unhealthy part of the winding is shorted by the insulation-failure resistance

(See Fig. 6.1(b)). Therefore, the voltage in the shorted coil is given by

Vau = Rf (ia − iau), (6.34)

where Rf corresponds to the insulation-failure resistance. By considering Eqs. (6.33) and

(6.34), the electrical dynamics presented in Eq. (6.18) can be modified as follows:


va

vb

vc

0

 =


(1+µh)R

2 0 0 µuR
2

0 R 0 0

0 0 R 0

−Rf 0 0 µuR
2 +Rf



ia

ib

ic

iau

+
d

dt


λPM,a

λPM,b

λPM,c

µu
2 λPM,a



+


Lsh + Lmhu Lm Lm Lmhu + Lsu
µh+1

2 Lm Ls Lm
µu
2 Lm

µh+1
2 Lm Lm Ls

µu
2 Lm

Lmhu
µu
2 Lm

µu
2 Lm Lsu

 d

dt


ia

ib

ic

iau

 . (6.35)

Then, this model can be easily simulated as part of an electric drive by mapping its variables

into the two-phase stationary frame by using the extended Clarke transform presented in

Eq. (6.21) so that the zero current constraint can be enforced (Eq. (6.19)).

6.3 Parameter Identification for Fault Diagnosis and Condi-

tion Monitoring of SMPM Machines under Inter-Turn

Short

This section presents a parameter identification strategy for monitoring and detecting

ITS. First, a linear parameterization that includes ITS-specific parameters is formulated

based on the SMPM machine model under ITS presented in Eq. (6.24). Note that this para-
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metric model is formulated to match the linear form presented in Eq. (4.15). Afterward,

the sufficient conditions in which the input signals guarantee accurate parameter conver-

gence are studied. The parameter identification algorithm corresponds to the projection

algorithm, whose details were previously presented in Section 4.3.2.

6.3.1 Parametric Model for Fault Diagnosis and Condition Monitoring of

SMPM Machines under Inter-turn Short

The equivalent two-phase SMPM machine model in the rotor reference frame presented

in Eq. (6.24) captures the dynamic behavior under the ITS condition. However, its appli-

cation to fault diagnosis and condition monitoring requires a more convenient parameteri-

zation based on the available signals. In an electric drive, the inputs to the controller are

the three-phase current, the mechanical speed, and the mechanical position, as presented

in Section 2.6. Hence, unfortunately, the current flowing through the shorted turns in the

ITS coil is unknown. As seen in Eq. (6.24), the dynamics from the shorted turns impact

the equivalent two-phase dynamics due to their shared mutual inductances, and, therefore,

a way to take into account their effect on the dynamics is required. Based on this, in order

to formulate the model for identification, the two-phase SMPM machine dynamics in the

rotor reference frame from Eq. (6.24) are rewritten as:[
vrd
vrq

]
= (1− µu

6 )R

[
1 0

0 1

][
ird
irq

]
+
µuR

6

[
− cos(2θre) sin(2θre)

sin(2θre) cos(2θre)

][
ird
irq

]

+ωre

[
0

ΛPM (1− µu
6 )

]
+
µuωreΛPM )

6

[
sin(2θre)

cos(2θre)

]
+

2Ls+Lah−(3−µu)Lm
3

[
1 0

0 1

]
d

dt

[
ird
irq

]

+ (Ls−Lah−µuLm)
3

[
− cos(2θre) sin(2θre)

sin(2θre) cos(2θre)

]
d

dt

[
ird
irq

]

+
(2Ls+Lah−(3−µu)Lm)ωre

3

[
0 −1

1 0

][
ird
irq

]

+
(Ls−Lah−µuLm)ωre

3

[
sin(2θre) − cos(2θre)

− cos(2θre) − sin(2θre)

][
ird
irq

]

+
2Lahau−µuLm

3

[
cos(θre)

− sin(θre)

]
diau
dt

,

(6.36)
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where the derivative of the current flowing through the shorted turns is given by:

diau
dt

=
1

Lau

(
vau −

µuR

2
iau +

µuΛPM
2

ωre sin(θre)

−
(
Lahau − µuLm

2

)(d(ird cos(θre))

dt
−
d(irq sin(θre))

dt

))
. (6.37)

In Eq. (6.37), the voltage produced by the shorted turns (i.e., vau) can be approximated

to zero, assuming that the short creates a preferable path for the current to flow (i.e.,

Rf � µuR
2 ). This assumption is a fair approximation since, intuitively, the voltage produced

by the shorted turns represents a small portion of the total voltage applied to the phase.

By substituting Eq. (6.37) into Eq. (6.36), the two-phase dynamics are given by:[
vrd
vrq

]
= (1− µu

6 )R

[
1 0

0 1

][
ird
irq

]
+
µuR

6

[
− cos(2θre) sin(2θre)

sin(2θre) cos(2θre)

][
ird
irq

]

+ωreΛPM

[
0

(1− µu
6 )

]
+
µuωreΛPM

6

[
sin(2θre)

cos(2θre)

]

−µuωreΛPM
(

2Lahau−µuLm
12Lau

)[0

1

]
+ µuωreΛPM

(
2Lahau−µuLm

12Lau

)[sin(2θre)

cos(2θre)

]

+
2Ls+Lah−(3−µu)Lm

3

[
1 0

0 1

]
d

dt

[
ird
irq

]
+
(

(2Lahau−µuLm)2

12Lau

)[−1 0

0 −1

]
d

dt

[
ird
irq

]

+ (Ls−Lah−µuLm)
3

[
− cos(2θre) sin(2θre)

sin(2θre) cos(2θre)

]
d

dt

[
ird
irq

]

+
(

(2Lahau−µuLm)2

12Lau

)[− cos(2θre) sin(2θre)

sin(2θre) cos(2θre)

]
d

dt

[
ird
irq

]

+ωre
2Ls+Lah−(3−µu)Lm

3

[
0 −1

1 0

][
ird
irq

]
+ ωre

(
(2Lahau−µuLm)2

12Lau

)[ 0 1

−1 0

][
ird
irq

]

+
(Ls−Lah−µuLm)

3 ωre

[
sin(2θre) cos(2θre)

cos(2θre) − sin(2θre)

][
ird
irq

]

+ωre

(
(2Lahau−µuLm)2

12Lau

)[sin(2θre) cos(2θre)

cos(2θre) − sin(2θre)

][
ird
irq

]

−2Lahau−µuLm
3

[
cos(θre)

− sin(θre)

]
µuRiau
2Lau

.

(6.38)

As seen in Eq. (6.38), the dynamics from the shorted turns presented in Eq. (6.37) alter the

values of the existing magnetic parameters. In other words, in the magnetic parameters,

their average component and their amplitude of the oscillation at twice the electrical rotor
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speed are affected by the dynamics from the shorted turns. However, there is still a term

related to the resistive drop in the shorted turns that has to be analyzed. For this purpose,

the dynamics of the shorted turns are transformed into the s-domain using the Laplace

transform as

Iau(s) ≈ 1

Lau

1

s+ µuR
2Lau

L
{
µuΛPM

2
ωre sin(θre)−

(
Lahau − µuLm

2

)(d(ird cos(θre))

dt
−
d(irq sin(θre))

dt

)}
,

(6.39)

where L{·} is the Laplace transform operator. Inspection of Eq. (6.39) reveals that the

term associated with the resistive drop in the shorted turns affects the magnetic parameters.

Specifically, a scaled and phase-shifted “version” of the terms associated with the PM flux

linkage and inductances in Eq. (6.39) will be introduced to the dynamics presented in

Eq. (6.38). Note that such scaling and phase-shifting depend on the short parameters.

Based on the previous analysis, a parameterization for the two-phase dynamics pre-

sented in Eq. (6.38) that captures the effect of the dynamics from the shorted turns while

considering the available signals for identification is given by:[
vrd
vrq

]
= R0

[
1 0

0 1

][
ird
irq

]
+RITS

[
− cos(2θre) sin(2θre)

sin(2θre) cos(2θre)

][
ird
irq

]

+Λ0

[
0

ωre

]
+ Λ1

[
ωre

0

]
+ ωreΛITS1

[
sin(2θre)

cos(2θre)

]
+ ωreΛITS2

[
cos(2θre)

− sin(2θre)

]

+L0

[
1 0

0 1

]
d

dt

[
ird
irq

]
+ ωreL0

[
0 −1

1 0

][
ird
irq

]
+ L1

[
0 1

1 0

]
d

dt

[
ird
irq

]
− ωreL1

[
1 0

0 1

][
ird
irq

]

+LITS1

[
− cos(2θre) sin(2θre)

sin(2θre) cos(2θre)

]
d

dt

[
ird
irq

]
+ ωreLITS1

[
sin(2θre) cos(2θre)

cos(2θre) − sin(2θre)

][
ird
irq

]

+LITS2

[
sin(2θre) cos(2θre)

cos(2θre) − sin(2θre)

]
d

dt

[
ird
irq

]
+ ωreLITS2

[
cos(2θre) − sin(2θre)

− sin(2θre) − cos(2θre)

][
ird
irq

]
.

(6.40)

The dynamics presented in Eq. (6.40) capture the impact that the dynamics associated

with the shorted turns have in the two-phase dynamics. The parameters L0, L1, Λ0, and

Λ1 capture the average component of the magnetic parameters, including the effect from

the shorted-turn dynamics. Specifically, the shorted-turn dynamics introduce phase-shifted

average-value magnetic parameters and, therefore, break the diagonality property of the

inductance matrix and the alignment of the PM flux linkage with the direct axis. Similarly,

the terms LITS1 , LITS2 , ΛITS1 , and ΛITS2 are meant to capture the oscillations at twice
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the electrical rotor speed in the magnetic parameters and their phase shift. Note that the

model presented in Eq. (6.40) captures any phase-shift in the magnetic parameters and,

therefore, the effect of the ITS in the two-phase dynamics no matter which phase is affected

by ITS. In other words, the model can be used for ITS faults occurring in any phase.

Among the ITS-specific parameters presented in the previous model, only some can

be leveraged for fault diagnosis and condition monitoring. In terms of the fundamental

components of the magnetic parameters (i.e., L1 and Λ1), their values can be used for

detection as they will be zero and non-zero under healthy and ITS conditions, respectively.

However, L1 and Λ1 can be non-zero under other circumstances, such as incorrect encoder

calibration, which can lead to a wrong diagnosis. In this sense, the terms associated with the

oscillations are more suitable for fault detection, as they capture the imbalance caused by

the ITS. Among all the parameters associated with the oscillations at the electrical rotor

speed, LITS1 , LITS2 , ΛITS1 , and ΛITS2 are the ones that will be estimated. Estimating

oscillations through RITS will be in vain since the resistance drop is considerably small

compared to the total voltage.

Based on the previous discussion, the linear parameterization for ITS detection is given

by,

~z =
[
zd zq

]T
= {F(s)}

[
vrd vrq

]T
,

~θ =
[
R L0 Λ0 LITS1 LITS2 ΛITS1 ΛITS2

]T
,

ΦT =

[
~φd
T

~φq
T

]
,

(6.41)

~φd = {F(s)}



ird
( ddt i

r
d − ωreirq)

0
d(irq sin(2θre)−ird cos(2θre))

dt − ωre(ird sin(2θre) + irq cos(2θre))
d(ird sin(2θre)+irq cos(2θre))

dt + ωre(i
r
q sin(2θre)− ird cos(2θre))

ωre sin(2θre)

ωre cos(2θre)


,

~φq = {F(s)}



irq

(ωrei
r
d + d

dt i
r
q)

ωre
d(ird sin(2θre)+irq cos(2θre))

dt + ωre(i
r
q sin(2θre)− ird cos(2θre))

d(ird cos(2θre)−irq sin(2θre))

dt + ωre(i
r
d sin(2θre) + irq cos(2θre))

ωre cos(2θre)

−ωre sin(2θre)


.
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6.3.2 Persistently Exciting Inputs

This section studies the sufficient conditions in which the estimator based on the ITS

model achieves accurate parameter estimation. Similar to Chapters IV and V, the sufficient

conditions for PE will be determined using the definition of persistent excitation presented

in Section 2.7 (Definition 2.1). In the following analysis, the sampling frequency is as-

sumed more than twice the regressor’s highest-frequency component. Based on Theorem

2.3, this assumption allows the discrete-time regressor to carry the same information as the

continuous-time regressor. In addition, the torque and rotor electrical speed are assumed

constant. The persistently exciting input required for accurate parameter identification will

be injected through the direct-axis current as the healthy torque (Eq. (4.4)) is solely a func-

tion of the quadrature-axis current. Hence, a sinusoidal direct-axis current and a constant

quadrature current will be assumed, which are given by:

ird = A sin(ωt),

irq = Iq,

where Iq is the corresponding quadrature-axis current that achieves the desired torque (i.e.,

Iq =
4τ3φ

3NpΛPM
). In the regressor, the low-pass filter ({F(s)}) will be neglected as it has no

effect on the results.

6.3.2.1 Persistency of Excitation Analysis for Estimator based on Pro-

posed Dynamic Model

Based on the previous assumptions, the regressor’s direct and quadrature components

for the estimator based on proposed dynamic model (Eq. (6.41)) are function of the excita-

tion and electrical rotor frequencies and are given by:

~φd =



A sin(ωt)

Aω cos(ωt)− ωreIq
0

Iqωre cos(2ωret) +Aωre sin(ωt) sin(2ωret)−Aω cos(ωt) cos(2ωret)

Aω cos(ωt) sin(2ωret) + ωreA sin(ωt) cos(2ωret)− ωreIq sin(2ωret)

ωre sin(2ωret)

ωre cos(2ωret)


, (6.42)
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~φq =



Iq

Aωre sin(ωt)

ωre

Aω cos(ωt) sin(2ωret) +Aωre sin(ωt) cos(2ωret)− ωreIq sin(2ωret)

Aω cos(ωt) cos(2ωret)−Aωre sin(ωt) sin(2ωret)− ωreIq cos(2ωret)

ωre cos(2ωret)

−ωre sin(2ωret)


. (6.43)

Assuming that the regressor is periodic with T0 = 2π
ω0

, it can be shown that:

det

(
1

T0

T0∫
0

Φ(τ)Φ(τ)ᵀdτ

)
=
A6ω6

re

16

(
A2ω2 + ω2

re(A
2 + 2I2

q )
)

(ω2 + ω2
re)

2 (6.44)

Based on the determinant presented in Eq. (6.44), the regressor, Φ, is persistently

exciting if:

1. The rotor speed is non-zero (i.e., Ωr = Ωre
2 = 0).

2. At least one sinusoidal component is injected into the direct-axis current (i.e., A 6= 0).

This analysis shows that the estimator based on the ITS model requires the same exci-

tation as the estimator based on the standard model. Similar to the estimators presented

in Chapters IV and V, the additional parameters for ITS have a self-excitation property,

which can be leveraged to guarantee sufficient conditions for accurate convergence.

6.4 Simulation Results Assuming Linear Magnetics

In this section, the performance of the parameter estimator presented in Eq. (6.41) is

assessed by numerical simulations in Matlab/Simulink. In addition, the standard-model-

based parameter estimator (Eq. (4.16)) presented in Section 4.3.1.1 is also evaluated for

comparison. In the simulations, the SMPM machine operates at different current levels and

a constant speed of 1000 RPM . Under ITS, two cases are presented in which coils a1 and

b1 are assumed to have 5 shorted turns. PI regulators with cross-coupling compensation

are used to regulate the two-phase currents in the rotor reference frame. Both parameter

estimators are evaluated with different gains, and the persistently exciting signal is injected

in the direct-axis current, as follows:

ĩrd = 10 sin(2π40t), (6.45)

where the tilde (̃·) denotes a control reference signal.
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The controller and parameter estimators are simulated with a triggered subsystem

switching at 10kHz to capture the discrete-time practical implementation. The continuous-

time SMPM dynamics are simulated with a fixed time step of 2 µs using ode4. The command

voltages from the controller are converted into duty cycles using SVM [83]. Based on the

duty cycle calculation, an ideal “average-value” VSI provides average-value voltages to the

SMPM machine. The estimated parameters have an initial deviation of 20% with respect

to their healthy ones. Table 6.1 presents the machine, fault, control, and adaptation pa-

rameters for the simulations. The SMPM machine used in the simulations corresponds to

the one in Section 6.2.2, shown in Figs. 6.3 and 6.4.

Table 6.1: Machine, ITS, control, and adaptation parameters for simulation
Description Value

SMPM Machine Parameters:
R 0.785Ω
Np 4

ITS Parameters:
µu 5%
µh 95%
Rf 0.001Ω

Control Parameters:
Kp 27.26
Ki 0.0785

Switching frequency (fsw) 10kHz
Sampling frequency (fs) 10kHz

Adaptation Parameters:
a 0.004/0.002/0.001
c 1

6.4.1 Parameter Estimator Based on Standard Dynamic Model

The simulation results for the parameter estimator based on the standard dynamic

model are presented in Fig. 6.7. Under healthy conditions, the estimated parameters con-

verge to their actual values. In terms of the simulation results under ITS conditions, all

parameters were expected to decrease in theory. However, the simulation results show that

the magnetic parameters slightly decrease while the resistance increases. Unfortunately,

their value is affected by the dynamics from the shorted turns. Specifically, as shown in

Eq. (6.40), the dynamics from the shorted turns break the diagonality of the inductance

matrix and the alignment of the PM flux with the direct axis. Note that the estimated

parameters have similar behavior when comparing the simulation results for ITS in phases

A and B. In addition to the effect of the shorted-turns dynamics on the fundamental value
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of the inductance and PM flux linkage, the ITS also introduces an oscillation at twice the

electrical rotor speed, which the identification model does not capture. In the simulation re-

sults, the resistance has noticeable oscillations that worsen as the adaptation gain increases.

Since the resistance represents a considerably small portion of the total voltage, its value is

prone to inaccuracies due to noise or unmodeled dynamics.
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Figure 6.7: Simulation results of the parameter estimator based on the standard dy-
namics for different adaptation gains when the machine is operating under
healthy and ITS conditions. The black dashed line refers to the average
healthy parameters.

As a validation for the discrete PE analysis, the condition number of the PE condition

matrix is presented in Figs. 6.8 and 6.9. Note that the moving window corresponds to the

period of the injected PE signal and is given by 250 samples (0.025 s). Fig. 6.8 shows that

the condition number of the PE condition matrix is not infinite, and, therefore, the inputs

are persistently exciting the system. Fig. 6.9 shows the condition number of the PE matrix

when the regressor is scaled, as previously discussed in Remark 4.1. As shown in Figs. 6.9,

scaling the regressor improves the condition number of the PE condition matrix.

6.4.2 Parameter Estimator Based on Proposed Dynamic Model

In Fig. 6.10, the results for the parameter estimator based on the proposed model are

presented. As can be seen in the left column of Fig. 6.10, the parameters converge to their

actual values under healthy conditions. Regarding the parameters associated with the ITS
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Figure 6.8: Condition number of the discrete PE condition matrix for the estimator
based on the standard dynamics when the SMPM machine is operating
under healthy (left) and ITS (right) conditions.
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Figure 6.9: Condition number of the discrete PE condition matrix with scaled regres-
sor for the estimator based on the standard dynamics when the SMPM
machine is operating under healthy (left) and ITS (right) conditions.
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condition, their values remain equal to zero, which indicates that the SMPM machine is not

experiencing any ITS. Under ITS condition, the resistance, inductance, and PM flux linkage

converge to values similar to those from the parameter estimator based on the standard

dynamic model. As mentioned before, the dynamics from the shorted turns break the

diagonality property of the inductance matrix and the alignment of the PM flux linkage with

the direct axis, which affects the fundamental component of the resistance, inductance, and

PM flux linkage. In terms of the ITS-specific parameters, their values are non-zero, which

indicates that the SMPM machine is operating under ITS condition. Note that ITS-specific

parameters have different values when comparing the simulation results for ITS in phases A

and B. Depending on which phase the ITS occurs, the oscillations at twice the electrical rotor

speed have a phase shift, resulting in different ITS-specific parameters for the identification

model (Eq. (6.40)). In addition, the resistance has considerably smaller oscillations than

those presented in the standard-model-based estimator results (Section 6.4.1). Thanks

to the added parameters associated with the ITS condition, the unmodeled dynamics are

reduced, alleviating the resistance from inaccuracies.

In terms of the PE condition, Figs. 6.11 and 6.12 show the condition number of the

PE condition for the proposed estimator. The moving window is given by 750 samples

(0.075 s), corresponding to the regressor’s period. Note that the regressor period depends

on the frequency of the injected PE signal and the electrical rotor frequency (See Eqs. (6.42)

and (6.43)). The inputs are persistently exciting as the condition number is not infinite,

as shown in Fig. 6.11. Therefore, the parameter estimator based on the inter-turn short

model can achieve sufficient conditions for accurate identification with the same excitation

as the estimator based on the standard model. In Fig. 6.12, the condition number of the PE

condition matrix with the scaled regressor is presented. Similar to the parameter estimator

based on the standard model, scaling the regressor improves the condition number of the

PE condition matrix.

6.5 Co-Simulation Results Considering Nonlinearities

In this section, co-simulations are used to validate the effectiveness of the parameter

estimators for ITS detection. The co-simulations consist of an FEA-based machine model

connected to an electric drive and are implemented using Twin Builder (a.k.a., Simplorer),

which is a simulation software from Ansoft. The FEA-based SMPM machine model cor-

responds to the SMPM machine presented in Section 6.2.2 and is simulated in Maxwell.

In the co-simulations, the steel type is changed to “M19” (See Fig. 4.23) for the stator

and rotor irons. The electric drive model, as well as the co-simulation interface, are imple-

mented in Twin Builder. The inverter model corresponds to the “average-value” VSI. The

PI regulators with cross-coupling compensation used for current regulation are developed
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Figure 6.10: Simulation results of the proposed-model-based parameter estimator
with different adaptation gains with the SMPM machine under healthy
and ITS conditions. The black dashed line corresponds to the actual
parameters.
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Figure 6.11: Condition number of the discrete PE condition matrix for the estimator
based on the proposed dynamics when the SMPM machine is operating
under healthy (left) and ITS (right) conditions.
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Figure 6.12: Condition number of the discrete PE condition matrix for the estimator
based on the proposed dynamics with scaled regressor when the SMPM
machine is operating under healthy (left) and ITS (right) conditions.
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in Matlab/Simulink and integrated as a Twin Builder component.

The FEA-based machine model and electric drive are executed at 10kHz. The esti-

mated parameters have an initial 20% deviation from the linear parameters presented in

Section 6.2.2.2. The command current that is injected for PE is given by:

ĩrd = 5 sin(2π40t). (6.46)

6.5.1 Performance of Parameter Estimator Based on Standard Dynamic

Model

The co-simulation results for the parameter estimator based on the standard dynamic

model are presented in Fig. 6.13. Note that the black dash line corresponds to the average

value of the actual parameters assuming linear magnetics. Under healthy conditions, the

estimated parameters match their linear values for most current values. Once the SMPM

machine operates at higher currents, the magnetic parameters start dropping, which indi-

cates saturation. Regarding the ITS condition, the resistance increases while the magnetic

parameters slightly decrease, similar to the simulation results presented in Section 6.4.1.

Note that the resistance value increases at high current values in the healthy and ITS cases.

Since the magnetics are no longer linear at high currents, the resistance is affected by these

unmodeled dynamics.

In terms of fault diagnosis and condition monitoring of SMPM machines under ITS, it is

questionable how reliable the parameters from the standard model are for this purpose. As

the resistance drop corresponds to a small portion of the total voltage, its value is susceptible

to deviations due to unmodeled dynamics. Moreover, as seen in Fig. 6.13, the resistance

behaves opposite to what was theoretically expected, and is affected by saturation. In

terms of the magnetic parameters, their slight decrease indicates ITS. However, as shown

in Fig. 6.13, their values also decrease due to saturation. In addition, the PM flux linkage

varies with temperature, which can also hinder the diagnosis.

6.5.2 Performance of Parameter Estimator Based on Proposed Dynamic

Model

In Fig. 6.14, the co-simulation results for the parameter estimator based on the proposed

dynamic model are presented. Note that the black dashed line corresponds to the average

value of the actual parameters assuming linear magnetics. Under healthy conditions, the

resistance, inductance, and PM flux linkage converge to their actual linear values for most

current levels. As the current increases, the magnetics reach saturation, and, therefore,

the magnetic parameters slightly reduce. Additionally, the parameters associated with the

ITS condition are equal to zero, indicating that the SMPM machine does not experience

any ITS. Under ITS condition, the ITS-specific parameters are non-zero, indicating that
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Figure 6.13: Co-simulation results of the parameter estimator based on the standard
dynamics for different adaptation gains when the machine is operating
under healthy and ITS conditions.

the SMPM machine has an ITS. Moreover, the ITS-specific parameters capture the phase

shift in the oscillations at twice the electrical rotor speed due to the fault location, as their

values are different for ITS in phases A and B. In addition, similar to the simulation results

presented in Section 6.4.2, the ITS-specific parameters that capture the ITS oscillations

alleviate the resistance from unmodeled dynamics. In terms of the resistance, inductance,

and PM flux linkage, their average values are affected by the shorted-turns dynamics similar

to the standard-model-based estimator results (See Section 6.5.1).

In terms of fault diagnosis and condition monitoring of SMPM machines under the ITS

condition, the parameter estimator based on the proposed dynamics offers more information

when compared with the standard-model-based estimator. The ITS-specific parameters in

the proposed dynamic model are zero and non-zero under healthy and ITS conditions,

respectively. Therefore, these additional parameters that capture the ITS oscillation can be

used for monitoring and detecting ITS. Moreover, since the ITS-specific parameters capture

the phase shift due to the fault location, they can potentially be used to detect the ITS

conditions and determine which phase is experiencing the ITS. In addition, the oscillations

at twice the electrical rotor speed increase with the number of shorted turns. Hence, the

ITS-specific parameters can be potentially used to track the progression of the ITS.
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Figure 6.14: Co-simulation results of the parameter estimator based on the proposed
dynamics for different adaptation gains when the machine is operating
under healthy and ITS conditions.
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6.6 Summary

In this chapter, the application of parameter identification to fault diagnosis and condi-

tion monitoring of SMPM machines under ITS conditions was investigated. Specifically, an

equivalent two-phase parametric model and an online parameter identification technique for

a three-phase four-pole SMPM machine with two coils in series per phase were formulated.

An ITS refers to an insulation failure between contiguous turns in a coil and is typically

modeled with an additional resistance shorting the affected turns. First, the equivalent two-

phase model was formulated by modeling the different coils separately and integrating them

into the different phases based on the winding connections. Afterward, FEA simulations

were used to calibrate and validate the model’s magnetic parameters. Then, a parameter

identification strategy for ITS detection was discussed. The linear parametric model was

formulated to include parameters related to ITS condition based on the proposed two-phase

model while considering the available signals. To identify the sufficient conditions for ac-

curate convergence, an analysis of the conditions in which the input signals ensure PE is

presented. Simulation and co-simulation results prove the effectiveness of the proposed pa-

rameter identification strategy for monitoring and detecting ITS. In addition, a comparison

between simulation and co-simulation results showed that the proposed model is a suitable

tool for studying the SMPM machine behavior under ITS in the linear operating region.

Finally, remarks on the parameters suitable for detecting ITS were discussed.
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6.7 Appendix

6.7.1 Equivalent Two-Phase SMPM Machine Model in the Rotor Refer-

ence Frame with Inter-Turn Short in Phase B
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6.7.2 Equivalent Two-Phase SMPM Machine Model in the Rotor Refer-

ence Frame with Inter-Turn Short in Phase C
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CHAPTER VII

Parameter Identification for Comprehensive

Condition Monitoring of Surface-Mount

Permanent Magnet Machines

7.1 Introduction

In Chapters IV, V, and VI, the application of parameter identification was in-

vestigated for a given fault condition. Specifically, equivalent two-phase models and

online parameter identification strategies were formulated for a three-phase four-pole

SMPM machine with two coils per phase under demagnetization, ME, and ITS con-

ditions. In the previous chapters, simulation and co-simulation results demonstrated

the effectiveness of the parameter identification strategies for monitoring and detect-

ing these faults. However, in practice, the SMPM machine can experience many

different faults, and the type of fault is unknown. Therefore, a more systematic and

comprehensive strategy for monitoring and detecting fault conditions is required.

This chapter investigates the application of parameter identification to fault di-

agnosis and condition monitoring of SMPM machines under demagnetization, ec-

centricity, and inter-turn short conditions. First, the approach is formulated by in-

corporating all the previous parameter estimators into a sole strategy. Afterward,

the effectiveness of the strategy for fault detection is assessed through co-simulation.

Note that the results include single and mixed fault conditions. Then, remarks on

the capabilities and limitations for detecting the different conditions are discussed.

Finally, this chapter concludes with a summary.
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7.2 Comprehensive Parameter Identification for Demagneti-

zation, ME, and ITS Detection

This section presents a monitoring and detection strategy based on the parame-

ter estimators for demagnetization, ME, and ITS presented in Chapters IV, V, and

VI. Fig. 7.1 shows the schematic diagram. First, a parameterization that includes

parameters associated with demagnetization, ME, and ITS is presented. Note that

the linear parameterization required to formulate the parameter estimator follows the

form presented in Eq. 4.15. Afterward, the input design, which guarantees sufficient

conditions for accurate parameter convergence, is presented. Specifically, the condi-

tions in which the input signals ensure PE are studied. The parameter identification

algorithm corresponds to the projection algorithm presented in Section 4.3.2.
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Figure 7.1: Schematic diagram of the comprehensive identification strategy for mon-
itoring and detecting demagnetization, ME, and ITS conditions.

7.2.1 Parametric Model for Comprehensive Fault Diagnosis and Condi-

tion Monitoring of SMPM Machines under Demagnetization, ME,

and ITS

In Chapters IV, V, and VI, the parameter estimators are intended to monitor

and detect a specific fault and have parameters related to such fault. Table 7.1

presents the relevant parameters for each fault condition. In the parameter identi-
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fication strategy for demagnetization, the fault-related parameter is the asymmetry

term that captures the oscillation at three times the electrical rotor speed caused by

uneven demagnetization between the north and south PM flux linkages. Similarly,

the parameter identification strategy for detecting ME has fault-related parameters

that capture the oscillation at the rotor speed in the magnetic parameters caused

by the ME air-gap asymmetry. In the parameter identification strategy for detect-

ing ITS, the fault-related parameters are meant to capture the oscillations at twice

the electrical rotor speed in the magnetic parameters due to the ITS. Note that de-

magnetization, eccentricity, and ITS conditions generate oscillations with different

frequencies (See Eqs. (4.17), (5.27), (5.28), and (6.40)). Hence, the fundamental

value of the parameters associated with a specific fault should be non-zero only when

such fault occurs. If the fault-related parameters do not match the fault condition,

the estimated parameters should solely experience oscillations due to the unmodeled

dynamics.

Table 7.1: Relevant parameters for Demagnetization, ME, and ITS.
Fault Relevant Parameters

Demagnetization ∆PM

ME LME1 , LME2 , ΛME1 , ΛME2

ITS LITS1 , LITS2 , ΛITS1 , ΛITS2

A possible approach for comprehensive identification could be running the three

estimators in parallel. However, a comparison between the proposed parameter es-

timators and the standard SMPM machine model shows that the regressor terms

associated with the resistance, inductance, and PM flux linkage are identical in all

cases. Therefore, the resistance, inductance, and PM flux linkage will be estimated

three times by running the three proposed estimators in parallel. While this is a valid

approach, having three estimates of the standard parameters adds a computational

burden. Instead, by leveraging the fact that all the estimators share these dynam-

ics, a single parameter identification strategy for the three fault conditions can be
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formulated as follows:
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[
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]
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where the direct- and quadrature-axis components of the regressor matrix are given

by,
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.

7.2.2 Persistently Exciting Inputs

This section analyzes the sufficient conditions in which the comprehensive param-

eter estimator achieves accurate convergence. Similar to Chapters IV, V, and VI,

the sufficient conditions for PE will be determined using the definition of persistent

excitation presented in Section 2.7 (Definition 2.1). The following analysis assumes

that the sampling frequency is more than twice the regressor’s highest-frequency com-

ponent. In addition, the torque and rotor electrical speed are assumed constant. The

persistently exciting input required for accurate parameter identification will be in-

jected through the direct-axis current as the healthy torque (Eq. (4.4)) is solely a

function of the quadrature-axis current. Therefore, a sinusoidal direct-axis current

and a constant quadrature current will be assumed, which are given by:

ird = A sin(ωt),

irq = Iq,

where Iq is the corresponding quadrature-axis current that achieves the desired torque

(i.e., Iq =
4τ3φ

3NpΛPM
). In the regressor, the low-pass filter ({F(s)}) will be neglected as

it has no effect on the results.

7.2.2.1 Persistency of Excitation Analysis for Estimator based on Pro-

posed Dynamic Model

Based on the previous assumptions, the regressor’s direct and quadrature compo-

nents for the estimator based on proposed dynamic model (Eq. (7.1)) are function of
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the excitation and electrical rotor frequencies and are given by:

~φd =



A sin(ωt)

Aω cos(ωt)− ωreIq
0

−2ωre sin(3ωret)

Aω cos(ωt) sin(ωrt) + Aωr sin(ωt) cos(ωrt)− ωreIq sin(ωrt)

Aω cos(ωt) cos(ωrt)− Aωr sin(ωt) sin(ωrt)− ωreIq cos(ωrt)

ωr cos(ωrt)

−ωr sin(ωrt)

Iqωre cos(2ωret) + Aωre sin(ωt) sin(2ωret)− Aω cos(ωt) cos(2ωret)

Aω cos(ωt) sin(2ωret) + ωreA sin(ωt) cos(2ωret)− ωreIq sin(2ωret)

ωre sin(2ωret)

ωre cos(2ωret)



, (7.2)

~φq =



Iq

Aωre sin(ωt)

ωre

−2ωre cos(3ωret)

Iqωr cos(ωrt) + ωreA sin(ωt) sin(ωrt)

−Iqωr sin(ωrt) + ωreA sin(ωt) cos(ωrt)

ωre sin(ωrt)

ωre cos(ωrt)

Aω cos(ωt) sin(2ωret) + Aωre sin(ωt) cos(2ωret)− ωreIq sin(2ωret)

Aω cos(ωt) cos(2ωret)− Aωre sin(ωt) sin(2ωret)− ωreIq cos(2ωret)

ωre cos(2ωret)

−ωre sin(2ωret)



. (7.3)

Assuming that the regressor is periodic with T0 = 2π
ω0

, it can be shown that:

det

(
1

T0

T0∫
0

Φ(τ)Φ(τ)ᵀdτ

)
=

A6ω12
re

65536

(
A2ω2 + ω2

re(A
2 + 2I2

q )
)

(ω2 + ω2
re)

2(20A2ω2 + ω2
re(25A2 + 18I2

q ))2 (7.4)

Based on the determinant presented in Eq. (7.4), the regressor, Φ, is persistently
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exciting if:

1. The rotor speed is non-zero (i.e., Ωr = Ωre
2

= 0).

2. At least one sinusoidal component is injected into the direct-axis current (i.e.,

A 6= 0).

This analysis shows that the comprehensive parameter estimator requires the same

excitation as the estimator based on the standard model. As previously discussed for

the estimators presented in Chapters IV, V, and VI, the fault-related parameters have

a self-excitation property, which can be leveraged to guarantee sufficient conditions

for accurate convergence without additional excitation.

7.3 Co-Simulation Results Considering Nonlinearities

The effectiveness of the strategy presented in Section 7.2 is assessed through co-

simulations. The estimator is evaluated with different gains while the SMPM machine

operates at different current levels and at a constant speed of 1000RPM . PI regu-

lators with cross-coupling compensation are used to regulate the two-phase currents

in the rotor reference frame. The co-simulations include single-fault and mixed-fault

cases for DW and CW machine designs (i.e., demagnetization, ME, ITS, demagneti-

zation+ME, demagnetization+ITS, and ME+ITS). Under demagnetization, magnet

1 is assumed to be completely demagnetized (Λ1 = 0). Similarly, the rotor is assumed

to have 21.5% of SE and 23.15% for DE under ME conditions. Under ITS condition,

the DW SMPM machine is assumed to have a short in coil a1 with µu = 5%, while

the CW SMPM machine has a short in coil b1 with µu = 4.5%.

The co-simulations integrate an FEA-based machine model with an electric drive

system. The FEA-based SMPM machines correspond to the DW and CW SMPM

machine models presented in Section 4.2.2 and are simulated in Maxwell. Note that

the stator and rotor irons are modeled using ”M19” as the steel type (See B-H curve in

Fig. 4.23). The co-simulation interface and inverter model are implemented in Twin

Builder from Ansoft Corporation. The inverter is modeled as an ideal “average-value”

VSI. The control model is created in Matlab/Simulink and exported as a Twin Builder

component.

The FEA-based machine model and electric drive are executed at 10kHz. The

estimated parameters start with an initial 20% deviation from the linear parameters

under healthy conditions. For PE purposes, the command direct-axis current is set
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to:

ĩrd = 5 sin(2π40t). (7.5)

7.3.1 Performance of the Comprehensive Identification Strategy for Com-

prehensive Detection Under Single Fault Conditions

Figures 7.2 and 7.3 present the co-simulation results for the comprehensive identi-

fication strategy when the DW and CW SMPM machine operate under demagnetiza-

tion, eccentricity, and ITS. Note that, in the figures, the black dashed line corresponds

to the parameters for a healthy SMPM machine. As shown in Figs. 7.2 and 7.3, under

demagnetization, the PM flux linkage is reduced by 25%, tracked by the parameter

estimator. Similarly, the estimated parameters track the increase in the inductance

and PM flux linkage under ME. When the SMPM machine experiences ITS, the esti-

mated magnetic parameters slightly decrease while the resistance increases. Note that

all parameters were theoretically expected to decrease; however, they are affected by

the dynamics from the short turns. Additionally, note that the magnetic parameters

reach saturation and decrease when the SMPM machine operates at higher currents

under the different fault conditions. As mentioned in previous chapters, under satu-

ration, the magnetics become nonlinear and affect the estimated resistance since it is

susceptible to unmodeled dynamics.

In terms of the fault-related parameters, they become non-zero for the specific

fault they are meant to monitor and detect. Under demagnetization, the fault-related

parameter is the asymmetry term that captures uneven demagnetization between the

north and south PM flux linkages. Note that this asymmetry term is solely non-

zero for demagnetization with the CW SMPM machine. As previously mentioned,

the DW SMPM machine does not produce additional harmonics due to its design.

Hence, for the DW design, demagnetization monitoring and detection relies only on

the PM flux linkage decrease. Under eccentricity, the fault-related parameters capture

the oscillation at the rotor speed in the magnetic parameters caused by the ME air-

gap asymmetry. As seen in Figs. 7.2 and 7.3, these ME-related parameters become

non-zero under eccentricity conditions for both SMPM machine designs. Under ITS

condition, the fault-related parameters are intended to capture the oscillations at

twice the electrical rotor speed in the magnetic parameters due to the ITS. As shown

in Figs. 7.2 and 7.3, the ITS-related parameters are non-zero under ITS and zero under

demagnetization and ME conditions. Therefore, the comprehensive identification

approach can be used for monitoring and detecting demagnetization, ME, and ITS

conditions.
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Figure 7.2: Co-simulation results of the comprehensive parameter strategy when the
DW SMPM machine is operating under demagnetization, ME, and ITS.
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Figure 7.3: Co-simulation results of the comprehensive parameter strategy when the
CW SMPM machine is operating under demagnetization, ME, and ITS.
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As a validation for the discrete PE analysis, the condition number of the PE

condition matrix is presented in Figs. 7.4, 7.5, 7.6 and 7.7. Note that the moving

window corresponds to the period of the injected PE signal and is given by 3000

samples (0.3 s). Figs. 7.4 and 7.5 show that the condition number of the PE condition

matrix is not infinite, and, therefore, the inputs are persistently exciting. Figs. 7.6

and 7.7 show the condition number of the PE matrix when the regressor is scaled,

as previously discussed in Remark 4.1. As shown in Figs. 7.6 and 7.7, scaling the

regressor improves the condition number of the PE condition matrix.
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Figure 7.4: Condition number of the discrete PE condition matrix for the compre-
hensive identification strategy when the DW SMPM machine is operating
under single fault conditions.
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Figure 7.5: Condition number of the discrete PE condition matrix for the compre-
hensive identification strategy when the CW SMPM machine is operating
under single fault conditions.

7.3.2 Performance of the Comprehensive Identification Strategy for Com-

prehensive Detection Under Mixed Fault Conditions

Figures 7.8 and 7.9 show the co-simulation results for the comprehensive identifi-

cation strategy when the DW and CW SMPM machines operate under mixed fault
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Figure 7.6: Condition number of the discrete PE condition matrix with scaled regres-
sor for the comprehensive identification strategy when the DW SMPM
machine is operating under single fault conditions.
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Figure 7.7: Condition number of the discrete PE condition matrix with scaled regres-
sor for the comprehensive identification strategy when the CW SMPM
machine is operating under single fault conditions.
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conditions. In the figures, the black dashed line corresponds to the linear parameters

under healthy conditions.

In the co-simulation results for the DW and CW SMPM machines operating under

demagnetization and ITS, the resistance increases while the inductance and PM flux

linkage decrease compared to the healthy values. When studied separately, demagne-

tization causes a reduction in the PM flux linkage while the ITS slightly decreases the

magnetic parameters and increases the resistance value. When the SMPM machine

operates under both faults, these parameters resemble the combined effects of demag-

netization and inter-turn short. Since the SMPM machine is under demagnetization

and ITS, only the fault-related parameters associated with these two faults should

be non-zero. As seen in Figs. 7.8 and 7.9, the asymmetry term associated with the

uneven demagnetization between the north and south poles is zero and non-zero for

the DW and CW SMPM machine, respectively. As mentioned before, this is a limi-

tation imposed by the DW design itself, as it does not produce additional harmonics

under uneven demagnetization. Regarding the ITS-related parameters, their value is

non-zero for both designs, indicating that the machine is experiencing ITS.

When the DW and CW SMPM machines operate under eccentricity and demag-

netization, the co-simulation results show that the inductance increases while the

PM flux linkage decreases. Separately, demagnetization causes a reduction in the PM

flux linkage while eccentricity slightly increases the inductance and PM flux linkage.

When the SMPM machine experiences simultaneously eccentricity and demagnetiza-

tion, these parameters show the resultant combination of both faults. Similarly, as

the SMPM machine is under demagnetization and eccentricity, the parameters related

to these faults should be non-zero. As shown in Figs. 7.8 and 7.9, the asymmetry

term that characterizes the uneven demagnetization between the north and south

poles is zero and non-zero for the DW and CW SMPM machine, respectively. The

DW design does not experience new harmonics under asymmetric demagnetization,

and, therefore, the asymmetry term cannot provide fault information. In addition,

the ME-related parameters are non-zero, showing that the machine is experiencing

eccentricity. Similarly, since the machine does not have an ITS, the ITS-related pa-

rameters remain zero.

In the co-simulation results for the DW and CW SMPM machines operating under

eccentricity and inter-turn short, the resistance and PM flux linkage increase while the

inductance reduces compared to the healthy values. Individually, eccentricity causes

a slight increase in the magnetic parameters, and the ITS decreases the magnetic

parameters and increases the resistance value. When the SMPM machine operates
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Figure 7.8: Co-simulation results of the comprehensive parameter strategy when the
DW SMPM machine is operating under mixed-fault conditions.
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Figure 7.9: Co-simulation results of the comprehensive parameter strategy when the
CW SMPM machine is operating under mixed-fault conditions.
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under eccentricity and ITS faults, the parameters display the resultant combination

of both faults. In addition, only the parameters related to eccentricity and ITS are

non-zero.

Figures 7.10, 7.11, 7.12, and 7.13 present the condition number of the PE condition

matrix for the DW and CW SMPM machines operating under mixed faults. Note

that the moving window corresponds to the period of the injected PE signal and is

given by 3000 samples (0.3 s). In Figs. 7.10 and 7.11, the condition number of the

PE condition matrix is not infinite, and, hence, the inputs are persistently exciting.

Figs. 7.12 and 7.13 show the condition number of the PE matrix when the regressor is

scaled. As shown in Figs. 7.12 and 7.13, scaling the regressor improves the condition

number of the PE condition matrix.
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Figure 7.10: Condition number of the discrete PE condition matrix for the compre-
hensive identification strategy when the DW SMPM machine is operat-
ing under mixed fault conditions.
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Figure 7.11: Condition number of the discrete PE condition matrix for the compre-
hensive identification strategy when the CW SMPM machine is operat-
ing under mixed fault conditions.

Overall, the co-simulation results show the promising aspects of the comprehen-

sive identification strategy for monitoring and detecting faults and its limitations.

As previously discussed, using the resistance, inductance, and PM flux linkage for
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Figure 7.12: Condition number of the discrete PE condition matrix with scaled regres-
sor for the comprehensive identification strategy when the DW SMPM
machine is operating under mixed fault conditions.
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Figure 7.13: Condition number of the discrete PE condition matrix with scaled regres-
sor for the comprehensive identification strategy when the CW SMPM
machine is operating under mixed fault conditions.
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detection is problematic as their value is affected by temperature, skin effect, and

saturation. Moreover, since the resistance represents a considerably small portion

of the total voltage, its estimated value is prone to inaccuracies. In contrast, the

parameters that capture the specific fault-related oscillations offer a more systematic

method for monitoring and detecting fault conditions. Demagnetization, eccentricity

and ITS conditions produce oscillations at different frequencies. Consequently, the

fundamental value of the fault-related parameters should be non-zero solely when

such fault occurs.

As seen in the co-simulation results for single fault conditions, the fundamental

component of the different fault-related parameters is non-zero solely when the specific

fault occurs. Still, note that, in particular, monitoring and detecting demagnetization

for the DW design is challenging as the asymmetry term for uneven demagnetization

does not provide information. Hence, in this specific case, the PM flux linkage de-

crease is the only indicator for monitoring and detecting demagnetization.

Regarding the co-simulation results for mixed fault conditions, fault-related pa-

rameters accurately monitor and detect the eccentricity and ITS condition (ME+ITS).

Similarly, the eccentricity and demagnetization condition is correctly identified for

the CW SMPM machine design. Unfortunately, the eccentricity and demagnetiza-

tion condition can be hard to distinguish from mere eccentricity for the DW design,

as the asymmetry term for demagnetization cannot provide information. In this case,

the decrease in the PM flux linkage is the sole indicator for demagnetization. The

demagnetization plus ITS condition is detected for the CW SMPM machine design;

however, the ME-related parameters that capture oscillations in the inductance are

slightly affected. In addition, for the DW design, demagnetization and ITS condition

can be difficult to distinguish from solely inter-turn short, as the DW design does not

produce new harmonics under demagnetization. As previously mentioned, for the DW

design, the decrease in the PM flux linkage is the only indicator for demagnetization.

7.4 Summary

This chapter investigated the application of parameter identification to fault diag-

nosis and condition monitoring of SMPM machines under demagnetization, ME, and

ITS fault conditions. Specifically, a strategy was presented for comprehensive moni-

toring and fault detection. First, the parameter identification strategy was formulated

by incorporating all the previous estimators into a single parameter estimator. Then,

the performance of the parameter identification strategy for monitoring and detect-
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ing fault conditions was assessed through co-simulations. The results included single

and mixed fault conditions. In the single fault conditions, the co-simulation results

demonstrated that the comprehensive approach could monitor and detect the differ-

ent faults. The co-simulation results for the mixed fault conditions showed that the

comprehensive approach could identify the different faults, except the demagnetiza-

tion plus ITS condition. In this case, in addition to detecting demagnetization and

ITS, the comprehensive estimator had non-zero ME-related inductance. The results

also showed that the DW SMPM machine design imposes difficulties in monitoring

and detecting demagnetization.
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CHAPTER VIII

Conclusions and Future Work

This dissertation presented research that seeks to address open issues regarding

the application of parameter identification to fault diagnosis and condition monitor-

ing of PMSMs. The first part of this dissertation investigated the incorporation of

operational constraints to the SIC problem. Specifically, an optimization-based SIC

formulation for SMPM machines that explicitly considers the voltage and current

inverter limits was presented in Chapter III. The rest of the dissertation covered

research related to the parameterization and parameter identification of SMPM ma-

chines for fault detection and condition monitoring. Control-oriented models and pa-

rameter identification strategies for monitoring and detecting demagnetization, ME,

and ITS were presented in Chapters IV, V, and VI, respectively. In Chapter VII, a

parameter estimator was formulated by combining the parameter estimators for de-

magnetization, ME, and ITS. Simulation and co-simulation results demonstrated the

effectiveness of the proposed estimators for fault detection and condition monitoring.

This chapter presents conclusions and potential directions for future work.

8.1 Conclusions

8.1.1 Control-oriented models for analysis and fault-detection algorithm

design of SMPM machines under fault conditions

Lumped-parameters models were formulated to capture the essential dynamic be-

havior of SMPM machines under demagnetization, ME, and ITS conditions. FEA

simulations validated the proposed models. Based on the proposed models, param-

eterizations that included specific parameters to capture the dynamic imbalances

caused by the faults were formulated. These parameterizations allowed straightfor-

ward implementation in parameter identification strategies. This section presents the
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main conclusions on this topic.

In Chapter IV, an equivalent two-phase SMPM machine model under demagneti-

zation was formulated for a three-phase four-pole SMPM machine with two windings

per phase. Demagnetization mainly affects the PM flux linkage. Hence, the equiva-

lent two-phase model was formulated by superimposing the PM flux linkage produced

by the individual magnets. This model can capture the operation of the SMPM ma-

chine under healthy conditions and demagnetization affecting evenly or unevenly the

different magnets. FEA simulations demonstrated that the model could capture the

PM flux linkage under healthy and demagnetized conditions with reasonable accuracy

when adequately calibrated. A comparison between simulation and co-simulation re-

sults showed that the proposed model is suitable for studying the SMPM machine

behavior under demagnetization in the linear operating region. In addition, a compar-

ison between the CW and DW SMPM machine results justifies the need for studying

demagnetization on a case-by-case basis. The PM flux linkage contained new har-

monics under demagnetization solely for the CW design studied in the simulation and

co-simulation results. For identification, a parameterization was formulated based on

this model, which included a parameter that captured the asymmetries between the

north and south PM flux linkages.

In Chapter V, an equivalent two-phase SMPM machine model under eccentric-

ity was formulated for a three-phase four-pole SMPM machine with two windings per

phase. Eccentricity mainly affects the magnetic parameters in the three-phase SMPM

machine dynamics. Thus, the equivalent two-phase dynamics under eccentricity were

formulated by modeling the expressions for the inductances and PM flux linkages

using MWF and MF theories. This model can capture SE, DE, and ME conditions

by modifying the static and dynamic eccentricity degrees accordingly. Note that the

model captures the effect of eccentricity on the fundamental Fourier coefficient of

the magnetic parameters, always present regardless of the SMPM machine design.

However, depending on the SMPM machine design, note that additional harmonics

might exist under eccentricity. These additional harmonics can be easily incorpo-

rated into the model following the procedure previously presented, but they have

to be determined on a case-by-case basis. FEA simulations demonstrated that the

model captures the essential behavior of the eccentricity fault. A parameterization for

identification was formulated based on this model, which included parameters that

captured the ME-related oscillation at the rotor speed in the magnetic parameters.

In Chapter VI, an equivalent two-phase SMPM machine model under ITS was

formulated for a three-phase four-pole SMPM machine with two windings in series
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per phase. The equivalent two-phase model was formulated by modeling the different

coils separately and integrating them into the different phases based on the winding

connections. In this model, the insulation failure between continuous turns was mod-

eled by an additional resistance shorting the affected turns. By phase-shifting the

oscillatory components, the model can capture ITS faults affecting any of the phases.

Since the effect of the ITS depends on the number of coils and winding connections,

modeling other winding topologies requires a case-by-case analysis. FEA simulations

showed that the model characterizes the essential behavior of the ITS fault. Based

on this model, a parameterization for identification was formulated for identification

purposes. Specifically, the linear parametric model included parameters related to

ITS condition based on the proposed two-phase model while considering the available

signals.

8.1.2 Application of parameter identification for fault detection of SMPM

machines under fault conditions

Parameter identification strategies for monitoring and detecting the different faults

were formulated based on the proposed lumped-parameter models. Specifically, these

parameter estimators incorporated parameters that capture the dynamic asymme-

tries caused by demagnetization, ME, and ITS. Additionally, through PE analysis,

the inputs were designed to guarantee sufficient conditions for accurate parameter

convergence while avoiding control perturbations. Simulation and co-simulation re-

sults demonstrated the effectiveness of the proposed parameter estimators for mon-

itoring and detecting the different fault conditions. This section presents the main

conclusions on this topic.

In Chapter IV, an online parameter identification technique for a three-phase

four-pole SMPM machine with two windings per phase under demagnetization was

formulated. Specifically, a parameterization was formulated based on the proposed

model, which included a parameter to capture the asymmetries between the north and

south PM flux linkages. This asymmetry term allows the monitoring and detection

of uneven demagnetization between the north and south poles. However, the main

limitation of this approach is that under even demagnetization, the only information

that can be used for monitoring and detection is the average value of the PM flux

linkage. Moreover, as seen in the simulation and co-simulation results, some SMPM

machine designs will not have additional harmonics under uneven demagnetization.

Thus, there will be cases in which the average value of the PM flux linkage is the only

fault indicator. In this sense, if no additional harmonics exist under uneven demag-
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netization, there is no way to discern between even and uneven demagnetization.

In Chapter V, an online parameter identification technique was formulated for

a three-phase four-pole SMPM machine with two windings per phase under ME.

Concretely, a parameterization was formulated based on the proposed ME model,

which included parameters that characterized the oscillations at the rotor speed in

the magnetic parameters. These asymmetry terms aid the monitoring and detection

of ME conditions. While DE and SE were discussed in Chapter V, solely ME exists in

practice as even newly manufactured motors have some level of ME due to the inherent

tolerances in the manufacturing and assembling processes. Therefore, the ME-related

parameters are suitable indicators for detection as they can track a gradual increase

in ME. Simulation and co-simulation results demonstrated the effectiveness of the

proposed parameter identification strategy for monitoring and detecting ME. The

main limitation for detection is given by the SMPM machine design, as the PMs

limit the degree of eccentricity.

In Chapter VI, an online parameter identification technique was formulated for

a three-phase four-pole SMPM machine with two windings in series per phase un-

der ITS. A parameterization was formulated based on the proposed ITS model and

available signals, which captured the oscillations at twice the electrical rotor speed in

the magnetic parameters. These ITS-related parameters allow the detection of ITS in

any of the three phases. Simulation and co-simulation results showed the effectiveness

of the proposed parameter identification strategy for monitoring and detecting ITS

conditions.

In Chapter VII, a comprehensive parameter identification strategy for fault diag-

nosis and condition monitoring was formulated by incorporating the estimators for

demagnetization, ME, and ITS into a single strategy. Expressly, all the fault-related

parameters were incorporated with the standard model parameters into a single model

for identification. Co-simulation results demonstrated the effectiveness of the param-

eter identification strategy for fault detection. The results included single and mixed

fault conditions. In the single fault conditions, the parameter identification strat-

egy was successful at monitoring and detecting the different faults. In addition, the

co-simulation results for the mixed fault conditions proved that the comprehensive

approach could uniquely detect the different faults, except the demagnetization plus

ITS condition. In this case, the comprehensive estimator could detect the demag-

netization and ITS; however, a non-zero ME-related inductance was also shown. In

addition, the comprehensive estimator shared the same difficulties for demagnetiza-

tion detection imposed by the DW design in Chapter IV.
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8.1.3 Incorporation of operational constraints to SIC methodologies for

SMPM machines

Chapter III presented a simultaneous identification and torque control methodol-

ogy for SMPM machines, including inverter current and voltage constraints. The cur-

rent and voltage constraints for the SIC formulation were derived by mapping three-

phase voltage and current constraints into their two-phase equivalents. Hexagons

described the resultant feasible region for both variables. These constraints were in-

corporated into a SIC formulation that included an adaptive current regulator and

an RHAID. The quadrature-axis current was set to achieve the desired torque, while

the direct-axis current was used to inject the excitation required for accurate conver-

gence. The inverter current and voltage constraints were incorporated as part of the

RHAID, which minimized losses and maximized the excitation characteristics of the

reference direct current trajectories. Accurate torque regulation was achieved through

the adaptive current regulator. Simulations demonstrated the effectiveness of the SIC

formulation on the constraint enforcement at different operating conditions. In par-

ticular, the simulation results showed that occasional constraint violations occurred

before parameters converged within 5% of error.

8.2 Future Work

The potential directions for future work are as follows:

8.2.1 Generalization of the Proposed Two-Phase Equivalent Models in

the Rotor Reference Frame for Parameter Identification-Based Fault

Diagnosis and Condition Monitoring Strategies

The two-phase equivalent models under demagnetization, eccentricity, and inter-

turn short were formulated for a four-pole three-phase SMPM machine with two coils

per phase. Based on the intuition and knowledge gained via these case studies, some

ideas on possible generalization are discussed.

In terms of demagnetization, the decrease in the overall PM flux linkage and the

asymmetry term were the two indicators for the four-pole three-phase SMPM ma-

chine with two coils per phase. The overall PM flux linkage will decrease regardless

of the winding configuration or number of poles, and, hence, it can be used as an

indicator for other SMPM machine designs. In addition, in the analysis presented for

the four-pole three-phase SMPM machine with two coils per phase, the asymmetry
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term captured the oscillation at three times the electrical rotor speed caused by un-

even demagnetization between the north and south PM flux linkages. As previously

shown for the SMPM machine designs studied, the additional harmonics under de-

magnetization depended on the winding design. For example, the DW design studied

did not have additional harmonics under demagnetization. However, in other SMPM

machine designs, if new harmonics exist under demagnetization, we believe one will

correspond to the asymmetry term. Still, a rigorous analysis should be performed to

confirm this.

Regarding eccentricity, the ME air-gap asymmetry produced an oscillation at

the rotor speed in the magnetic parameters for the four-pole three-phase SMPM

machine with two coils per phase. This oscillation is based on the fundamental

Fourier coefficient of the magnetic parameters, which is always present regardless of

the SMPM machine design. Hence, these fault-related parameters can be used for

SMPM machines with different winding configurations and number of poles.

The inter-turn short condition generated oscillations at twice the electrical rotor

speed for the four-pole three-phase SMPM machine with two coils in series per phase.

In this dissertation, an approximated model with parameters that captured these

oscillations was presented. While the severity of the inter-turn short depends on the

winding design, the oscillation at twice the electrical rotor speed should be present for

other machines designs. Note that this should be confirmed with a rigorous analysis.

In addition, note that the inter-turn short was studied only for series-connected coils.

Based on the procedure presented, the effect of inter-turn short for parallel-connected

windings should be studied.

The two-phase equivalent models for demagnetization, eccentricity, and inter-turn

short were formulated assuming an ungrounded-wye connected SMPM machine. The

effects of these faults on delta-connected SMPM machines should be investigated.

While the input and output behavior should be similar, a circulating zero-sequence

current should occur within the delta-connected windings.

8.2.2 Experimental Validation of Proposed Parameter Identification Strate-

gies for Fault Diagnosis and Condition Monitoring

In this dissertation, parameter identification strategies have been formulated for

monitoring and detecting demagnetization, eccentricity, and inter-turn short con-

ditions. The performance of the parameter estimators was validated through co-

simulation in which FEA machine models were integrated with an electric drive.

Additional validation can be performed in actual hardware with SMPM machines
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modified to replicate the fault conditions. For example, an uneven demagnetization

condition can be emulated by replacing one of the magnets with a dummy block of

similar shape and weight. This dummy block should be made from a material that

does not produce any flux linkage to capture demagnetization. Similarly, to avoid

mechanical unbalances, this dummy block should have a similar size and weight as

the original magnet. In terms of eccentricity, the bearings can be designed and ma-

chined to introduce ME [36]. Regarding ITS, the stator winding can be modified to

have intermediate taps for one coil. These intermediate taps can be used to insert

the ITS using a resistor [27].

8.2.3 Decision Making for Fault Detection: Threshold determination

In this dissertation, parameters that capture the phenomena generated by faults

were defined. Specifically, the gradual deviation from zero in these fault-related pa-

rameters is directly linked to a progressive increase in the fault condition, which can

be leveraged for fault diagnosis. However, in practice a threshold for detection is

required to distinguish between fault-free and faulty modes. The faults have different

levels of severity and should be diagnosed after a given value is exceeded. Moreover,

the threshold should be designed to avoid misdetection due to noise, unmodeled dy-

namics, and inherent tolerances in the manufacturing and assembling processes. Note

that the performance of the fault diagnosis strategy depends on this threshold, as a

trade-off for detection exists. Selecting a threshold that is too small will lead to a

high false-positive rate and a low true-negative rate. Similarly, a low true-positive

rate and a high false-negative rate will occur if the threshold is too large.

8.2.4 Integration of Thermal Models to the Proposed Parameter Identi-

fication Strategies

In addition to the fault-specific parameters, the standard machine parameters

carry information that can be used to monitor the different faults. However, the

standard parameters vary with operating conditions, hindering fault diagnosis and

condition monitoring application. Thermal models offer additional information that

can be used to differentiate whether faults or temperature changes are responsible for

parameter variations.

Demagnetization mainly affects the PM flux linkage. As presented in Chapter

IV, the fault-related parameter is the asymmetry term that captures the oscillations

in the PM flux linkage due to uneven demagnetization between the north and south
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poles. However, this parameter cannot provide information for even demagnetization.

Moreover, there are machine designs with no asymmetry under demagnetization,

such as the DW design presented in Chapter IV. In these cases, the decrease in the

PM flux linkage is the sole indicator for demagnetization. The main challenge of

using the PM flux linkage reduction as an indicator is that, under healthy conditions,

increasing PM temperature also causes a decrease in the PM flux linkage, and so a

method to distinguish the root cause is required. To distinguish the cause, the magnet

temperature can be measured (which is difficult) or estimated by incorporating a

thermal model, and a link between PM temperature and variations in the PM flux

linkage can be established.

8.2.5 Application of the Parameter-Identification-Based Strategies to Con-

trol

In practice, there are cases in which the machine has to maintain operation even

under fault conditions. In this dissertation, models in which parameters characterize

oscillations caused by the faults were formulated. While these models were devised

for parameter identification-based fault diagnosis and condition monitoring, the con-

trol strategy can utilize this information to adapt its strategy to continue operation

and maintain performance while minimizing further machine damage. As an example,

torque control is typically achieved through current regulation. Therefore, these mod-

els can be used to determine torque expressions under the different fault conditions

so that the reference currents can be adjusted to maintain the torque regulation per-

formance. Moreover, the torque capabilities can be derated based on the parameters

to mitigate the fault progression and further machine damage.

8.2.6 Prognosis of SMPM machines

Predicting when the system no longer meets satisfactory performance is crucial

when determining corrective measures. Prognosis analyzes the trend of machine per-

formance so that faults can be predicted and corrected before a failure occurs [105].

Hence, the strategy should be able to detect and continuously monitor any abnor-

malities. In addition, the strategy should effectively predict the remaining useful life

and possible failure modes of the machine [105].

This thesis presented parameters that capture demagnetization, eccentricity, and

inter-turn short effects on the electrical dynamics. Specifically, the fundamental value

of these fault-related parameters becomes non-zero when such a fault occurs. More-
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over, the deviation of fault-related parameters from their zero values captures the

gradual increase in the fault severity over time. Hence, these parameters can be used

to detect and continuously monitor the machine’s health and degradation.

Regarding the prediction of remaining useful life, a life prediction model is re-

quired. The fault-related parameters can be incorporated into a machine learning

strategy, which can use statistical and probabilistic techniques to learn and predict

from past data.

176



BIBLIOGRAPHY

177



BIBLIOGRAPHY

[1] H. Hofmann, “Electric machinery and drives,” lecture notes (EECS 419).

[2] A. Boglietti, A. Cavagnino, A. Tenconi, S. Vaschetto, and P. di Torino, “The
safety critical electric machines and drives in the more electric aircraft: A sur-
vey,” in 2009 35th Annual Conference of IEEE Industrial Electronics. IEEE,
2009, pp. 2587–2594.

[3] B. Sarlioglu and C. T. Morris, “More electric aircraft: Review, challenges,
and opportunities for commercial transport aircraft,” IEEE Transactions on
Transportation Electrification, vol. 1, no. 1, pp. 54–64, 2015.

[4] S. J. Dale, R. E. Hebner, and G. Sulligoi, “Electric ship technologies,” Proceed-
ings of the IEEE, vol. 103, no. 12, pp. 2225–2228, 2015.

[5] L. Situ, “Electric vehicle development: The past, present & future,” in 2009
3rd International Conference on Power Electronics Systems and Applications
(PESA), 2009, pp. 1–3.

[6] K. G. Høyer, “The history of alternative fuels in transportation: The case
of electric and hybrid cars,” Utilities Policy, vol. 16, no. 2, pp. 63 – 71,
2008, sustainable Energy and Transportation Systems. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957178707000768

[7] J. Staszak, K. Ludwinek, Z. Gawȩcki, J. Kurkiewicz, T. Bekier, and
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[37] F. Çıra, “Detection of eccentricity fault based on vibration in the pmsm,” Re-
sults in physics, vol. 10, pp. 760–765, 9/2018.

[38] B. Ebrahimi and J. Faiz, “Magnetic field and vibration monitoring in perma-
nent magnet synchronous motors under eccentricity fault,” IET electric power
applications, vol. 6, no. 1, pp. 35–45, 2012.

[39] J. Hong, S. B. Lee, C. Kral, and A. Haumer, “Detection of airgap eccentricity
for permanent magnet synchronous motors based on the d-axis inductance,”
IEEE Transactions on Power Electronics, vol. 27, no. 5, pp. 2605–2612, 2011.

[40] Z. Liu, J. Huang, and B. Li, “Diagnosing and distinguishing rotor eccentricity
from partial demagnetisation of interior pmsm based on fluctuation of high-
frequency d-axis inductance and rotor flux,” IET Electric Power Applications,
vol. 11, no. 7, pp. 1265–1275, 2017.

[41] S. Moon, J. Lee, H. Jeong, and S. W. Kim, “Demagnetization fault diagnosis of
a pmsm based on structure analysis of motor inductance,” IEEE transactions
on industrial electronics (1982), vol. 63, no. 6, pp. 3795–3803, 6/2016.

[42] J. Lee, Y.-J. Jeon, D.-c. Choi, S. Kim, and S. W. Kim, “Demagnetization fault
diagnosis method for pmsm of electric vehicle,” in IECON 2013-39th Annual
Conference of the IEEE Industrial Electronics Society. IEEE, 2013, pp. 2709–
2713.

[43] W. le Roux, R. Harley, and T. Habetler, “Detecting rotor faults in low power
permanent magnet synchronous machines,” IEEE Transactions on Power Elec-
tronics, vol. 22, no. 1, pp. 322–328, 1/2007.

181



[44] K. Liu, Z. Q. Zhu, and D. A. Stone, “Parameter estimation for condition moni-
toring of pmsm stator winding and rotor permanent magnets,” IEEE Transac-
tions on Industrial Electronics, vol. 60, no. 12, pp. 5902–5913, 12/2013.

[45] K. Liu and Z. Q. Zhu, “Position-offset-based parameter estimation using the
adaline nn for condition monitoring of permanent-magnet synchronous ma-
chines,” IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2372–
2383, 4/2015.

[46] G. Feng, C. Lai, K. Mukherjee, and N. C. Kar, “Online pmsm magnet flux-
linkage estimation for rotor magnet condition monitoring using measured speed
harmonics,” IEEE Transactions on Industry Applications, vol. 53, no. 3, pp.
2786–2794, 5/2017.

[47] M. A. Mazzoletti, G. R. Bossio, C. H. De Angelo, and D. R. Espinoza-Trejo, “A
model-based strategy for interturn short-circuit fault diagnosis in pmsm,” IEEE
Transactions on Industrial Electronics, vol. 64, no. 9, pp. 7218–7228, 2017.

[48] B.-G. Gu, “Study of ipmsm interturn faults part ii: Online fault parameter
estimation,” IEEE Transactions on Power Electronics, vol. 31, no. 10, pp. 7214–
7223, 2015.

[49] S. Underwood and I. Husain, “Online parameter estimation and adaptive con-
trol of permanent-magnet synchronous machines,” IEEE Transactions on In-
dustrial Electronics, vol. 57, no. 7, pp. 2435 – 2443, July 2010.

[50] D. M. Reed, J. Sun, and H. F. Hofmann, “Simultaneous identification and
adaptive torque control of permanent magnet synchronous machines,” IEEE
Transactions on Control Systems Technology, vol. 25, no. 4, pp. 1372–1383,
2017.

[51] D. M. Reed, J. Sun, and H. F. Hofmann, “A robust adaptive controller for
surface-mount permanent magnet synchronous machines,” in 2014 American
Control Conference, June 2014, pp. 5236–5241.

[52] D. M. Reed, J. Sun, and H. F. Hofmann, “A receding horizon approach to si-
multaneous identification and torque control of permanent magnet synchronous
machines,” in American Control Conference (ACC), July 2016, pp. 2211–2216.

[53] D. M. Reed, “Identification and adaptive control for high-performance ac drive
systems,” Ph.D. dissertation, University of Michigan, 2016.

[54] S. Ruoho, J. Kolehmainen, J. Ikaheimo, and A. Arkkio, “Interdependence of
demagnetization, loading, and temperature rise in a permanent-magnet syn-
chronous motor,” IEEE Transactions on Magnetics, vol. 46, no. 3, pp. 949–953,
3/2010.

182



[55] H. He, N. Zhou, and C. Sun, “Efficiency decrease estimation of a permanent
magnet synchronous machine with demagnetization faults,” Energy Procedia,
vol. 105, pp. 2718–2724, 5/2017.

[56] R. Krishnan, Permanent Magnet Synchronous and Brushless DC Motor Drives.
CRC Press, 19/12/2017.

[57] S. Hamidizadeh, N. Alatawneh, R. R. Chromik, and D. A. Lowther, “Compar-
ison of different demagnetization models of permanent magnet in machines for
electric vehicle application,” IEEE Transactions on Magnetics, vol. 52, no. 5,
pp. 1–4, 2016.

[58] P. Zhou, D. Lin, Y. Xiao, N. Lambert, and M. A. Rahman, “Temperature-
dependent demagnetization model of permanent magnets for finite element anal-
ysis,” IEEE Transactions on Magnetics, vol. 48, no. 2, pp. 1031–1034, 2/2012.

[59] S. Sharouni, P. Naderi, M. Hedayati, and P. Hajihosseini, “Demagnetization
fault detection by a novel and flexible modeling method for outer rotor perma-
nent magnet synchronous machine,” International Journal of Electrical Power
and Energy Systems, vol. 116, p. 105539, 3/2020.

[60] M. Zafarani, T. Goktas, B. Akin, and S. E. Fedigan, “An investigation of motor
topology impacts on magnet defect fault signatures,” IEEE Transactions on
Industrial Electronics, vol. 64, no. 1, pp. 32–42, 1/2017.

[61] E. Mazaheri-Tehrani, J. Faiz, M. Zafarani, and B. Akin, “A fast phase vari-
able abc model of brushless pm motors under demagnetization faults,” IEEE
Transactions on Industrial Electronics, vol. 66, no. 7, pp. 5070–5080, 7/2019.

[62] C. R. Ruschetti, C. J. Verucchi, G. R. Bossio, and G. O. Garcia, “A model for
permanent magnet synchronous machines with demagnetization faults,” IEEE
Latin America Transactions, vol. 11, no. 1, pp. 414–420, 2/2013.

[63] J. Farooq, A. Djerdir, and A. Miraoui, “Analytical modeling approach to detect
magnet defects in permanent-magnet brushless motors,” IEEE Transactions on
Magnetics, vol. 44, no. 12, pp. 4599–4604, 12/2008.

[64] M. Zafarani, T. Goktas, B. Akin, and S. E. Fedigan, “Modeling and dynamic
behavior analysis of magnet defect signatures in permanent magnet synchronous
motors,” IEEE Transactions on Industry Applications, vol. 52, no. 5, pp. 3753–
3762, 9/2016.

[65] S. Moosavi, A. Djerdir, Y. Amirat, and D. Khaburi, “Demagnetization fault
diagnosis in permanent magnet synchronous motors: A review of the state-of-
the-art,” Journal of Magnetism and Magnetic Materials, vol. 391, pp. 203–212,
1/10/2015.

183



[66] J.-R. Ruiz, J. Rosero, A. Espinosa, and L. Romeral, “Detection of demagne-
tization faults in permanent-magnet synchronous motors under nonstationary
conditions,” IEEE Transactions on Magnetics, vol. 45, no. 7, pp. 2961–2969,
7/2009.

[67] D. Torregrossa, A. Khoobroo, and B. Fahimi, “Prediction of acoustic noise
and torque pulsation in pm synchronous machines with static eccentricity and
partial demagnetization using field reconstruction method,” IEEE Transactions
on Industrial Electronics, vol. 59, no. 2, pp. 934–944, 2/2012.

[68] M. Zhang, A. Macdonald, K.-J. Tseng, and G. M. Burt, “Magnetic equivalent
circuit modeling for interior permanent magnet synchronous machine under
eccentricity fault,” in 2013 48th International Universities’ Power Engineering
Conference (UPEC). IEEE, 2013, pp. 1–6.

[69] I. Hussein, Z. Al-Hamouz, M. Abido, and A. Milhem, “On the mathemati-
cal modeling of line-start permanent magnet synchronous motors under static
eccentricity,” Energies, vol. 11, no. 1, p. 197, 2018.

[70] J.-P. Wang and D. K. Lieu, “Magnetic lumped parameter modeling of rotor ec-
centricity in brushless permanent-magnet motors,” IEEE transactions on mag-
netics, vol. 35, no. 5, pp. 4226–4231, 1999.

[71] I. Jeong, B. J. Hyon, and K. Nam, “Dynamic modeling and control for spmsms
with internal turn short fault,” IEEE Transactions on Power Electronics,
vol. 28, no. 7, pp. 3495–3508, 2012.

[72] B. Vaseghi, N. Takorabet, F. Meibody-Tabar, A. Djerdir, J. Farooq, and A. Mi-
raoui, “Modeling and characterizing the inter-turn short circuit fault in pmsm,”
in 2011 IEEE International Electric Machines & Drives Conference (IEMDC).
IEEE, 2011, pp. 551–556.

[73] L. Romeral, J. C. Urresty, J.-R. R. Ruiz, and A. G. Espinosa, “Modeling of
surface-mounted permanent magnet synchronous motors with stator winding
interturn faults,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5,
pp. 1576–1585, 2010.

[74] M. Fitouri, Y. Bensalem, and M. N. Abdelkrim, “Modeling and detection of the
short-circuit fault in pmsm using finite element analysis,” IFAC-PapersOnLine,
vol. 49, no. 12, pp. 1418–1423, 2016.

[75] J. Faiz, A. Exiri, and H. Nejadi-Koti, “Simulation of permanent magnet syn-
chronous motors under short circuit fault,” in 2016 18th Mediterranean Elec-
trotechnical Conference (MELECON). IEEE, 2016, pp. 1–6.

[76] B.-G. Gu, “Study of ipmsm interturn faults part i: Development and analysis
of models with series and parallel winding connections,” IEEE Transactions on
Power Electronics, vol. 31, no. 8, pp. 5931–5943, 2015.

184



[77] J. Faiz, H. Nejadi-Koti, and Z. Valipour, “Comprehensive review on inter-turn
fault indexes in permanent magnet motors,” IET Electric Power Applications,
vol. 11, no. 1, pp. 142–156, 2017.

[78] M. Lovera, Control-oriented modelling and identification: theory and practice.
IET, 2015, vol. 80.

[79] F. Pinto Delgado, Z. Song, H. F. Hofmann, and J. Sun, “Modeling and parame-
ter identification for condition monitoring of surface-mount permanent magnet
machines under magnet demagnetization,” in Dynamic Systems and Control
Conference, vol. 84270. American Society of Mechanical Engineers, 2020, p.
V001T21A002.

[80] F. A. Pinto Delgado, D. M. Reed, H. F. Hofmann, and J. Sun, “Simultane-
ous identification and torque control of surface-mount permanent magnet syn-
chronous machines with inverter current and voltage constraints,” in 2018 IEEE
Conference on Control Technology and Applications (CCTA). IEEE, 8/2018,
pp. 1185–1190.

[81] W. C. Duesterhoeft, M. W. Schulz, and E. Clarke, “Determination of instan-
taneous currents and voltages by means of alpha, beta, and zero components,”
Transactions of the American Institute of Electrical Engineers, vol. 70, pp.
1248–1255, 1951.

[82] R. H. Park, “Two-reaction theory of synchronous machines generalized method
of analysis-part i,” Transactions of the American Institute of Electrical Engi-
neers, vol. 48, no. 3, pp. 716–727, 7/1929.

[83] B. Bose, Modern Power Electronics and AC Drives. New Jersey: Prentice Hall
PTR, New Jersey, 2002.

[84] P. Ioannou and J. Sun, Robust Adaptive Control. New Jersey: Prentice Hall,
1996.

[85] G. Tao, Adaptive control design and analysis. John Wiley & Sons, 2003, vol. 37.

[86] C. L. Phillips, H. T. Nagle, and A. Chakrabortty, Digital control system analysis
and design, (Global Edition). Pearson Education Limited, 2015.

[87] I. Kolmanovsky and D. P. Filev, Optimal Finite and Receding Horizon Control
for Identification in Automotive Systems. London: Springer London, 2012, pp.
327–348.

[88] G. Marafioti, R. Bitmead, and M. Hovd, “Persistently exciting model predictive
control using fir models,” in International Conference Cybernetics and Infor-
matics, 2010.

185



[89] H. Genceli and M. Nikolaou, “New approach to constrained predictive control
with simultaneous model identification,” AIChE Journal, vol. 42, no. 10, pp.
2857–2868, 1996.

[90] A. Weiss and S. D. Cairano, “Robust dual control mpc with guaranteed con-
straint satisfaction,” in 53rd IEEE Conference on Decision and Control, Dec
2014, pp. 6713–6718.

[91] F. Leve and M. Jah, “Spacecraft actuator alignment determination through
null motion excitation,” in Proceedings of 62nd International Astronautical
Congress, 2011.

[92] A. Weiss, F. Leve, I. Kolmanovsky, and M. Jah, “Reaction wheel parameter
identification and control through receding horizon-based null motion excita-
tion,” in Bar-Itzhack Memorial Symposium, October 2012.

[93] G. Goodwin and K. Sin, Adaptive Filtering Prediction and Control, ser. Dover
Books on Electrical Engineering. Dover Publications, 2014.

[94] S. Silvey, Optimal Design, 1st ed. New York: Springer Netherlands, 1980.

[95] I. R. Manchester, “Input design for system identification via convex relaxation,”
in 49th IEEE Conference on Decision and Control (CDC). IEEE, 2010, pp.
2041–2046.

[96] H. A. Toliyat, S. Choi, H. Meshgin-Kelk, and S. Nandi, Electric machines:
modeling, condition monitoring, and fault diagnosis. CRC Press, 10/10/2012.

[97] S. Nandi, R. Bharadwaj, and H. Toliyat, “Mixed eccentricity in three phase in-
duction machines: analysis, simulation and experiments,” in Conference Record
of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting
(Cat. No.02CH37344), vol. 3. IEEE, 2002, p. 1525?1532 vol.3.

[98] S. Saied, K. Abbaszadeh, and A. Tenconi, “Improvement to winding function
theory for pm machine analysis,” in 2011 International Conference on Power
Engineering, Energy and Electrical Drives. IEEE, 5/2011, pp. 1–6.

[99] T. A. Lipo, Introduction to AC machine design. John Wiley & Sons, 2017.

[100] T. Lipo, Analysis of Synchronous Machines. CRC Press, 19/12/2017.

[101] F. Lin, S. Zuo, and W. Deng, “Impact of rotor eccentricity on electromagnetic
vibration and noise of permanent magnet synchronous motor,” Journal of Vi-
broengineering, vol. 20, no. 2, pp. 923–935, 2018.

[102] W. Tong, S. Li, X. Pan, S. Wu, and R. Tang, “Analytical model for cogging
torque calculation in surface-mounted permanent magnet motors with rotor
eccentricity and magnet defects,” IEEE Transactions on Energy Conversion,
vol. 35, no. 4, pp. 2191–2200, 2020.

186



[103] C. Schumann, T. Müller, E. Stein, and M. Pacas, “Analytical calculation of the
induced emf in pm-machines with arbitrary arranged surface mounted mag-
nets using the winding function theory,” in 2014 International Conference on
Electrical Machines (ICEM). IEEE, 2014, pp. 994–1000.

[104] H. Mahmoud and N. Bianchi, “Analytical comparison of synchronous reluctance
and surface permanent magnet machines with rotor eccentricity,” in 2015 IEEE
Energy Conversion Congress and Exposition (ECCE). IEEE, 2015, pp. 1765–
1772.

[105] O.-S. Yang and A. Widodo, Introduction of intelligent machine fault diagnosis
and prognosis. Nova Science Publishers, Incorporated, 2010.

187


