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ABSTRACT

The model of multi-agent dynamic systems has a wide range of applications in

numerous socioeconomic and engineering settings including spectrum markets, e-

commerce, transportation networks, power systems, among many others. In this

model, each agent takes actions over time to interact with the underlying system as

well as each other in order to achieve their respective objectives. In many applica-

tions of this model, agents have access to a huge amount of information that increases

over time. Determining solutions of such multi-agent dynamic games can be com-

plicated due to the huge domains of strategies. Meanwhile, agents have restrictions

on their computational power, communication capability, and time to make a deci-

sion, which prevent them from implementing complicated strategies. Therefore, it

is important to identify suitable compression schemes so that each agent can make

decisions based on a compressed version of their information instead of the full infor-

mation at equilibrium. However, compression of information can be a double-edged

sword. On one hand, it is appealing to practitioners as it allows agents to imple-

ment strategies efficiently. On the other hand, it can result in loss of some or all

equilibrium outcomes. In this thesis, we design and analyze information compression

schemes for multi-agent dynamic games. We aim to (i) enhance our understanding

on the types of compression schemes that preserve some or all equilibrium outcomes,

and (ii) identify compression schemes in specific game models. Our results highlight

the tension among information compression, preservation of equilibrium outcomes,

and applicability of sequential decomposition algorithms to find compression based

equilibrium.

To achieve our first goal, we provide sufficient conditions for information com-

pression schemes to be viable in general dynamic games. We provide two definitions

of information states which guarantee the existence of compression-based equilibria

and the preservation of the set of equilibrium payoffs respectively. Our results extend

the theory of information states in control theory literature to games. We also inves-

tigate a class of compression schemes where the common information of all agents are

compressed into beliefs. Through a few examples, we show that such compression

schemes can result in non-existence of compression-based equilibria. We also show

that even when such equilibria exist, they may not be obtained through sequential
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decomposition procedures.

To achieve our second goal, we analyze two special game models. First, we analyze

a stylized model of stochastic dynamic games among teams, where team members

communicate with each other about their information with a delay of d. In this

model, we identified two compression schemes: The first scheme compresses only the

private information, while the second scheme compresses both the common and pri-

vate information. We show that the first scheme preserves the set of Nash equilibria

payoffs, while the second scheme cannot guarantee the existence of equilibria. For the

second scheme, we developed a sequential decomposition procedure whose solution

(if it exists) is a compression based equilibrium. We identify some instances where

this procedure is guaranteed to have at least one solution. Secondly, we analyze

an information disclosure game among two players, where the principal sequentially

disclose information about the state of a dynamic system to the receiver. We identify

compression schemes for both players to play at equilibrium. We develop a sequen-

tial decomposition procedure to find such equilibria. We show that the sequential

decomposition procedure is guaranteed to have at least one solution.
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CHAPTER 1

Introduction

1.1 Motivation

Multi-agent dynamic systems appear in many engineering and socioeconomic

settings. In these systems, multiple agents/decision makers interact with the envi-

ronment or physical systems over time to achieve their long-term goals. Through

these interactions, the agents perform tasks such as detection, estimation, control,

and learning. The agents could either have conflicting goals, aligned goals, or par-

tially aligned goals. A wide variety of applications can be modeled as multi-agent

dynamic systems, with some illustrative engineering examples being sensor networks,

edge computing systems, transportation networks, human-robot interactions, smart

grid based power systems, and data centers. For example, in transportation net-

works, drivers receive traffic information from online map services and use this to

choose their route, with their actions then impacting future traffic conditions. The

multi-agent dynamic system model can also represent many socioeconomic settings,

such as stock markets, spectrum markets, and e-commerce. For example, in online

shopping platforms, sellers make decisions to list certain goods and set prices, and

buyers make decisions over time. After receiving the goods, buyers leave reviews

on the platform as information for future buyers. Sellers can also adjust the price

and quantity of goods based on buyers’ decisions and reviews. Such systems with

interdependent interactions between sets of agents naturally fit into the multi-agent

dynamic systems model.

There are several challenges in determining optimal solutions for agents involved

in such multi-agent systems: (a) The interactions of the agents with the system

can have complex effects on other agents and the underlying physical systems. (b)

Agents often need to make decisions based on partial, noisy, or delayed observations

of the environment instead of perfect observations. Furthermore, agents may not be

fully aware of the systems that they are controlling. Therefore, agents need to learn
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about all the unknowns in the system at the time of taking actions. (c) Following

the progress in technology and development of infrastructure, modern examples of

multi-agent systems typically involve a large number of agents, complex states, or

both. (d) Agents involved in multi-agent dynamic systems can have access to a huge

amount of data for decision making. However, despite the technological advances,

agents are still constrained by computational, memory, or communication related

resources. Moreover, agents typically need to make their decisions in real-time. Due

to these challenges, optimal solutions for these agents can be hard to determine or

even be intractable. Therefore, it is important to develop approaches to identify

easy-to-implement and efficient solutions that allow the agents to reach their goals.

1.1.1 Information Compression

In stochastic dynamic games, agents’ information about the system grows with

time. As a result, the space of strategies can be massive, hence creating a challenge

for determining equilibria. For certain classes of dynamic games, we aim to identify

appropriate compression of information for the agents so that they can base their

decisions on it, rather than the full information, at equilibrium. Such compressed

information based schemes are appealing to practitioners as memory and complexity

restrictions abound in real-world systems. However, compression of information,

in general, could result in loss of some or all equilibrium outcomes. Furthermore,

compression inherently results in moving away from full-recall which is a core feature

of much of the game theoretic literature on dynamic games. Therefore, a core theme

of this thesis is in developing an understanding of the type of information compression

schemes in terms of the equilibrium outcomes they facilitate.

Note that while we focus on information compression in this thesis, we consider

games with full recall instead of games where agents are restricted to compression-

based strategies. In other words, at equilibrium, we require each agent’s compression-

based strategy to be a best response among all strategies that are potentially based

on full-information, not just all compression-based strategies. This is for two rea-

sons: First, in real-world games, it can be hard for an agent to know exactly the

computational capability of their opponents. Secondly, agents could at some time

improve their computational capability by investing in new technologies. By con-

sidering compression-based equilibria in all strategies, one could ensure that the

resulting equilibria are robust to changes in each agent’s capability.

Loosely speaking, information compression schemes in dynamic games can be

characterized into two categories: the generic, or “strategy-independent”, compres-

sion schemes (i.e. compressing the full history into just the current state, or dis-

carding private information) that bear no relations to any specific strategy; and the
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“strategy-dependent” compression schemes (e.g. compression of information into a

strategy-dependent belief) which are designed for specific strategies. The two types

of compression schemes both have pros and cons: In general, strategy-dependent

schemes can compress information further than strategy-independent schemes. While

strategy-independent compression schemes can guarantee existence of equilibria un-

der mild assumptions, it is harder for strategy-dependent compression schemes to

guarantee existence of equilibria (see Chapter 2 and Chapter 3). In general, analyses

of the two types of schemes require different techniques. Another core theme of this

thesis is in understanding the similarities and differences between the two approaches

to information compression.

In short, our work focuses on the design and analysis of strategy-independent and

strategy-dependent information compression schemes for players involved in dynamic

games. This thesis has two goals: (i) to enhance our understanding of what makes a

compression scheme preserve some or all equilibrium outcomes in a general dynamic

game, and (ii) to identify compression schemes and develop procedures to determine

compression based equilibria in specific models of dynamic games. To achieve the

first goal, we identify sufficient conditions for strategy-independent compression of

information schemes to preserve some or all equilibrium payoff profiles. We then

examine the properties of belief-based equilibria, a concept that has received a lot of

attention in the literature of dynamic games, where information is compressed into

strategy-dependent beliefs. To achieve the second goal, we illustrate compression of

information and the corresponding equilibria in two specific contexts: dynamic games

among teams with delayed intra-team information sharing, and dynamic information

disclosure games. We achieve our goals mainly through exploring the applicability

and limitation of compression methods developed in control theory literature1.

The rest of the introduction is organized as follows: In order to better describe

our results and contributions, we first review some existing models and results for

multi-agent systems in Section 1.2. We then provide an overview of the thesis in

Section 1.3 and summarize our contributions in Section 1.4. Finally, we explain the

notation of this thesis in Section 1.5.

1.2 Relevant Literature

To analyze dynamic games in multi-agent dynamic systems, researchers have

brought inspiration from a broad range of literature. Besides the works on dynamic

games in the economics literature, researchers also brought techniques and insights

1Many of the same methods also appear in operation research, math, and computer science
literature.
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from single-agent or multi-agent control problems/decision processes in control the-

ory, mathematics, and operation research literature.

1.2.1 Single-Agent Control Problems

Single-agent control problems, where a single agent chooses strategies to opti-

mize her total reward in a dynamic system, have been been extensively studied in

control theory [46], operation research [76], computer science [82], and mathemat-

ics [7] literature. A widely used model for dynamic systems in single-agent control

problems is the model of controlled Markov chains. At each time, the agent either

perfectly or partially observes the current state of the system. It is usually assumed

that the agent has perfect recall, i.e. she remembers everything she knew in the past

and every action she took. If the agent can observe the current state perfectly at

each time, the problem is called a Markov Decision Process (MDP). Otherwise it is

called a Partially Observable Markov Decision Process (POMDP). It is well known

that in an MDP, the agent can choose a Markov strategy without lost of optimality;

a Markov strategy compresses her full information (which contains past and cur-

rent states and past actions) into only the current state. Furthermore, such optimal

Markov strategies can be found through a sequential decomposition procedure. It is

also well known that any POMDP can be transformed into an MDP with the belief

on the current state acting as the underlying state. As a result, in a POMDP, the

agent can choose a belief-based strategy without lost of optimality; a belief-based

strategy compresses her full information into the belief of the current state condi-

tioning on her information. Optimal belief-based strategies can also be determined

via a sequential decomposition procedure. For general single-agent control problem,

sufficient conditions that guarantee optimality of compression-based strategies have

been proposed [46][54][90]. In [54] and [90], the authors have formalized the notion of

information state for a single-agent control problem, where the problem can be trans-

formed into an equivalent MDP with the information state acting as the underlying

state.

1.2.2 Multi-Agent Control Problems

Decentralized/multi-agent control problems, or team problems, have been exten-

sively studied in the control theory and economics literature since the publication

of Radnar’s [77] seminal work on static teams [54]. In dynamic team problems,

multiple agents with aligned interests interact with the environment or physical sys-

tems over time. Researchers have developed various methodologies/approaches to

dynamic team problems to determine team optimal strategies or person-by-person
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optimal (PBPO) strategies, and to determine structural results/properties for the

above mentioned strategies. These methodologies include: (i) the person-by-person

approach [113, 110, 96, 69, 42, 99, 102, 97, 106, 107, 70, 98, 105, 103, 55] (ii) the

designer’s approach [112, 52] (iii) the coordinator’s approach [67, 68, 53, 94]. The

person-by-person approach has been used to determine qualitative/structural prop-

erties of team optimal or PBPO strategies. In this approach, the strategies of all

team members/agents except one, say agent i, are assumed to be arbitrary but fixed;

then the qualitative properties of agent i’s best response strategy are determined.

These properties are then valid for all possible (fixed) strategies of the other agents.

The designer’s approach investigates the decentralized control/team problem from

the point of view of a designer who knows the system model and the joint probability

distributions of the primitive random variables (the system’s initial state, the noise

driving the system, and the noise in the agents’ observations). The designer chooses

the strategies of all team members at time 0 by solving an open-loop stochastic con-

trol problem, where her decision at each time is the strategy/control law for all the

team members/agents. Applying stochastic control results, the designer can obtain

a dynamic programming decomposition. The methodology developed in this thesis

is partially inspired by the coordinator’s approach used in [67, 68, 94]. Similar to

the designer’s approach, the coordinator’s approach assumes that a fictitious agent,

called the coordinator, assigns instructions to agents. However, unlike the designer’s

approach, the coordinator is assumed to know the common information of all agents,

and assigns partial strategies (prescriptions) instead of full strategies to agents. The

partial strategies tell an agent how to utilize her private information to generate

actions. The problem is then transformed into a POMDP problem where the coordi-

nator is the sole decision maker. Both the designer’s approach and the coordinator’s

approach lead to the determination of globally optimal team strategy profiles. For a

more thorough discussion on old and new results in decentralized control problems,

readers can refer to [4] and [115].

1.2.3 Dynamic Games

Dynamic games refer to games where multiple players interact over time, while

the game may or may not have an underlying dynamic system. The first step towards

understanding the behavior of players in a dynamic game is to define a reasonable

concept of equilibrium, since the concept of Nash equilibrium can lead to non-credible

threats [72]. Researchers have proposed multiple refinements of Nash equilibrium

including trembling-hand equilibrium [87], Sequential Equilibrium (SE) [44], Perfect

Bayesian Equilibrium (PBE) [27][28][6][111].

Given the solution concepts, the other branch of research of dynamic games is on

5



solving or finding structural results under certain solution concept. This branch of

research roughly consists of two directions. One direction focuses on repeated games

or multi-stage games, where the instantaneous payoffs at each stage is only affected

by actions in this stage but not by the actions in the previous stages. In these games,

researchers investigated long term interactions among agents (e.g. punishment and

reward strategies) and characterized the set of equilibrium payoffs (e.g. see [56] or

[64] Chapter 7). The other direction focuses on games with an underlying dynamic

system, in other words, games where instantaneous payoffs can be affected by pre-

vious actions. In this more complicated setting, researchers attempted to develop

methodologies for the determination of equilibria with either a general structure or

a specialized structure.

Dynamic games with an underlying dynamic system have been studied in both

the economics and the control literature. Dynamic games with symmetric informa-

tion have been studied extensively [5, 26]. In [58], the authors propose the concept

of Markov Perfect Equilibrium (MPE) for the case where the state of the system

and agents’ actions are perfectly observable. The research on dynamic games with

asymmetric information can be classified into two categories: zero-sum games and

general (i.e. not necessarily zero-sum) games. Zero-sum games are analyzed in

[88, 61, 81, 89, 78, 79, 117, 29, 49, 15, 47, 41]. In these works, the authors take

advantage of many properties of zero-sum games, such as having a unique value

and the interchangeability of equilibrium strategies. These properties do not extend

to general non-zero-sum games. The literature on general dynamic games includes

[62, 59, 65, 33, 32, 73, 66, 74, 93, 92, 104]. In [66], the authors extend the MPE

concept in [58] to the case where the underlying dynamics is only partially observ-

able. Under the crucial assumption that the common information based (CIB) belief

is strategy-independent, the authors prove that there exist equilibria where agents

play CIB strategies, i.e. the agents choose their actions based on CIB belief and

private information instead of full information. Furthermore, such equilibria can be

found through a sequential decomposition procedure. In [74], the authors consider

a game model where, in contrast to [66], the CIB beliefs are strategy-dependent.

They propose the concept of Common Information Based Perfect Bayesian Equilib-

rium (CIB-PBE) as a solution concept for this game model and prove that CIB-PBE

can be found through a sequential decomposition whenever this decomposition has

a solution.
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1.3 Thesis Overview

With a brief review of the literature on teams and games in multi-agent dynamic

systems, we provide an overview of our results in this thesis.

1.3.1 Chapter 2: Strategy-Independent Information States in Dynamic
Games

Motivated by the work on information states for single-agent and multi-agent

control problems [54, 90], we define the notion of information states in dynamic games

in this chapter. Such a notion does not naturally extend from control problems to

games. Unlike in control problems, where the only goal is optimality, in games, a

compression scheme can be evaluated under two different criteria: (a) the existence of

compression-based equilibria, (b) the equivalence of compression-based equilibrium

payoffs and all equilibrium payoffs. On top of that, there are also multiple equilibrium

concepts for dynamic games.

In a general model of finite dynamic games, we investigate conditions that guar-

antee a strategy-independent compression scheme to meet the above criteria. We

achieve our goal by providing two definitions of information states, namely mutu-

ally sufficient information (MSI) and unilaterally sufficient information (USI). We

show that MSI and USI provide sufficient conditions for an information compression

scheme to be viable under the aforementioned criteria (a) and (b) respectively. We

show the result under two equilibrium concepts: Bayes-Nash Equilibrium (BNE) and

Sequential Equilibrium (SE) [44]. In contrast, we also show that our definition of USI

cannot guarantee the equivalence of compression-based weak Perfect Bayesian Equi-

librium (wPBE) [57] payoffs and all wPBE equilibrium payoffs. Finally, we identify

information states in special models of dynamic games in the literature.

1.3.2 Chapter 3: Belief Based Equilibrium in Dynamic Games

Following the work of Nayyar et al. [68] on decentralized stochastic control/team

problems, many works [66, 73, 74, 93, 92, 104] attempt to extend the result to

dynamic games. In these works, researchers attempt to consider a particular type

of compression scheme where the common information of all agents is compressed

into a common information based (CIB) belief. These works established backward

inductive procedures to find CIB belief based equilibria whenever such procedure

succeeds. However, with the exception of [66], these works do not establish the

existence of their respective compression-based equilibria. Since CIB beliefs are, in

general, strategy-dependent, the results from Chapter 2 do not apply.
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In order to illustrate the issues with these compression schemes, we define a

concept called belief-based equilibrium that captures the spirit of multiple concepts.

Through a series of examples that differ in many aspects (i.e. being zero-sum or not,

observability of actions), we show that belief-based equilibria do not always exist in

games, and the non-existence is not due to any specific aspect of the game except

information asymmetry. This is since in addition to choosing strategies to optimize

its own payoffs, an agent may also need to carefully calibrate its strategies based on

payoff irrelevant information in order to induce other agents to play their equilibrium

strategies; however, compression of common information into CIB beliefs can result

in loss of this crucial information. Furthermore, through another series of examples,

we show that even when belief-based equilibria exist it may not be obtained through

sequential decomposition.

1.3.3 Chapter 4: Dynamic Games among Teams with Delayed Intra-
Team Information Sharing

In many socioeconomic contexts, multiple groups/teams of agents interact with

an underlying system/environment. Each team decides on its joint strategy to op-

timize its long-term payoff. The underlying system also changes over time as a

result of the agents’ actions. In such settings, information asymmetry occurs both

across groups and within groups. Agents in the same team need to coordinate their

strategies to achieve the best expected payoff, taking this information asymmetry

into account. Examples of such settings include the DARPA Spectrum Challenge

[36], where competing teams of transceivers try to optimize their respective team’s

network throughput. Another example is that of competing fleets of automated cars

from different companies such as Uber and Lyft [35].

In this chapter, we study the impact of the compression of information on deci-

sion making for dynamic games among teams with an underlying dynamic system

where information asymmetry occurs both within teams and across teams. We con-

sider a stylized model of games among teams with asymmetric information. Each

team is associated with a controlled Markov chain, whose dynamics are influenced

by all players’ (including other teams’) actions. The state of each dynamical system

is assumed to be vector-valued, where each component represents an agent’s local

state. Agents communicate their local states within their respective teams with a

delay of d > 0, hence the information of members of the same team is asymmetric.

Since this communication only takes place within a team, information of members

of different teams is also asymmetric. We assume that all actions are public, i.e.,

observable by every agent in every team. We also assume the presence of public

noisy observations of the system’s state. As mentioned earlier, individuals within a
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team can jointly randomize to coordinate. We start by arguing that this is necessary

for (general) existence of equilibria. Combining the coordinator’s approach of [68]

and the methodology of [74], we then develop an approach to characterize a subset

of Nash equilibria where agents can use a compressed version of their information,

rather than full information, to make decisions. We identify two subclasses of such

strategies: sufficient private information based (SPIB) strategies, which only com-

press private information; and compressed information based (CIB) strategies, which

compress both common and private information. Neither classes of strategies features

full recall. Applying the result on unilaterally sufficient information in Chapter 2, we

showed that SPIB strategies based equilibria can attain all Nash equilibrium payoffs.

On the other hand, similar to the concept of belief-based equilibrium in Chapter 3,

CIB strategies based equilibrium may not exist. Furthermore, we propose a back-

ward inductive procedure, whose solution (if it exists) provides an equilibria in CIB

strategies. We also identify some cases where this procedure yields a solution. Fi-

nally, we show an additional result in a special case where further compression can be

achieved. The results highlight the tension among compression of information, exis-

tence of compressed information based equilibria, and the applicability of backward

inductive procedures for determining such equilibria.

1.3.4 Chapter 5: Dynamic Information Disclosure Games

In many modern engineering and social-economic problems, such as cyber-security,

transportation networks, and e-commerce, information asymmetry is an inevitable

aspect. Agents in these systems need to make decisions under limited information

about the system. Sometimes, agents can overcome (some of) the information asym-

metry by communicating with each other. However, when agents’ goals are not

aligned with each other, agents can be unwilling to share information since they do

not want to give up their information advantage. They may even have incentives to

share false information to confuse and mislead other agents. As a result, without any

rule/protocol in place, agents also have no good reason to believe in the information

that other agents share. Therefore, communications between agents with different

goals cannot be naturally established without rules/protocols that everyone respects,

and consequently all agents suffer from lack of information. For example, drug com-

panies are required by regulations to disclose their trial results truthfully. The public

can then trust the results and benefit from the drug. In turn, the drug companies

can make a profit. Without government regulations, drug companies and the public

will both suffer due to mistrust. In many real-world dynamic systems, information

exchange and decision making can happen repeatedly as the system/environment

changes over time. For example, public companies disclose information periodically
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which impacts stockholders’ decisions; COVID-19 vaccine producers conduct their

trials and release results sequentially which impacts the government’s purchasing

decisions; during an epidemic, health authorities update their recommendations on

the use of face masks over time according to changing levels of infections. Therefore,

in the face of information asymmetry, it is important to establish rules/protocols

to facilitate repeated information exchange among agents in multi-agent dynamic

systems.

If some rules/protocols do exist among the agents, one can establish information

exchange between agents with partially aligned goals to improve all agents’ utility. In

the existing literature, there are mainly two approaches, namely mechanism design

[63, 14, 108] and information design [40, 39, 8]. In both approaches, the under-

lying rule/protocol is based on the commitment of some agents: i.e. some agents

are required to announce their strategies and follow them through. Literature on

mechanism design and information design can be classified into two groups:(i) static

settings, i.e. both information sharing and decision making take place only once;

and (ii) dynamic settings, i.e. agents repeatedly exchange information and make

decisions over time on top of an ever changing environment/physical system. There

have been numerous works on dynamic mechanism design [9, 2, 75, 10]. In most of

the works on information design in dynamic settings, the receivers are assumed to

be myopic [50, 21, 25, 83, 80, 11, 12]. Dynamic information design problems have

also been studied under the name of Stackelberg games [51, 101, 100] where the

sender/leader commits to entire strategies.

Motivated by the applications and existing literature, in this chapter we consider

a dynamic information design problem where all players have long-term objectives

and the principal sequentially commits to her strategies instead of committing at the

beginning. In this problem, a game is played between a principal and a receiver on top

of a Markovian system controlled by the actions of the receiver. The principal cannot

directly observe the system state but can choose randomized experiments to partially

observe the system. The principal can share the details about the experiment to the

receiver in order to influence her action. We impose the truthful disclosure rule:

the principal is required to truthfully announce the manner and the result of the

experiment immediately after the experiment result is revealed. The receiver takes an

action based on the information she receives, which in turn influences the underlying

system. By applying ideas similar to [66], we show that there exist equilibria in

this game where both agents play canonical belief based (CBB) strategies, which use

a compressed version of their information, rather than full information, to choose

experiments (for the principal) or actions (for the receiver). We also provided a

backward inductive procedure to solve for an equilibria in CBB strategies.
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1.4 Summary of Contributions

• Chapter 2: In a general model of dynamic games, we define two concepts

of information states for dynamic games, namely mutually sufficient informa-

tion (MSI) and unilaterally sufficient information (USI), which provide suf-

ficient conditions for strategy-independent compression schemes to guarantee

the existence of compression-based equilibria and the preservation of equilib-

rium payoff profiles respectively. We show the results under two equilibrium

concepts: Bayes-Nash Equilibrium and sequential equilibrium. We provide an

example to show that USI cannot preserve all payoffs under some equilibrium

concepts such as weak perfect Bayesian equilibrium (wPBE). We also apply

these conditions to several special models to identify information compression

for the agents in those games. Our result can be seen as an extension of the

theory of information states [46, 54, 90] to dynamic games.

• Chapter 3: We investigate the concept of belief-based equilibria, which is

a general concept where common information of players are compressed into

beliefs. We show that belief-based equilibria may not necessarily exist in a vari-

ety of games. Furthermore, we show that sequential decomposition algorithms

for finding these equilibria may not yield solutions. The results highlight the

critical differences between single/multi-agent control problems and dynamic

games, as well as the differences between strategy-independent and strategy-

dependent compression schemes.

• Chapter 4: In a specialized model of games among teams with delayed intra-

team information sharing, we identify appropriate compression of information

for each agent. The compression is achieved in two steps: (i) the compres-

sion of team-private information; (ii) the compression of common information

that depends on the strategy of all agents. The compression steps induce two

special classes of strategies: (i) Sufficient Private Information Based (SPIB)

strategies, where agents only apply the first step of compression; and (ii) Com-

pressed Information Based (CIB) strategies, where agents apply both steps of

compression. We show that SPIB-strategy-based Nash equilibria always exist,

and the set of equilibrium payoff profiles of such equilibria is the same as that of

all Nash equilibria. We develop a sequential decomposition procedure to solve

for equilibria where agents play CIB strategies if a solution exists. We show

that CIB-strategy-based Nash equilibria do not always exist. We identify some

simple instances where CIB-strategy-based equilibria are guaranteed to exist.

In a special case of our model, we identify an additional step of compression

11



that preserves the set of equilibrium payoffs. Our main results illustrate the

ideas of Chapter 2 and Chapter 3 in a more specific game model, while our

result on the special case shows the limitations of the result in Chapter 2 in

compression of information for games of teams.

• Chapter 5: In an information disclosure game among a principal and a receiver

under the assumption of truthful disclosure, we identify strategy-independent

compression based strategies, called Canonical Belief Based (CBB) strategies,

for both players to play at equilibrium. We develop a sequential decomposition

procedure to find such strategies. We show that the sequential decomposition

procedure always has at least one solution.

1.5 Notation

Notation differs slightly from chapter to chapter. Appendices follow the notation

of their corresponding chapters. Besides definitions provided in individual chapters,

a list of symbols is also provided in Appendix F. The following are some notational

conventions we will follow throughout the thesis.

We will follow the notational convention of stochastic control literature (i.e. using

random variables to define the system, representing information as random variables,

using letter U to represent actions, etc.) instead of the convention of game theory

literature (i.e. game trees, nodes, information sets, etc.) unless otherwise specified.

We use capital letters to represent random variables, bold capital letters to denote

random vectors, and lower case letters to represent realizations. We use superscripts

to indicate agents, and subscripts to indicate time. We use i to represent a typical

player (with the exception of Chapter 4, where it refers to a team), and −i represents

all players (or teams for Chapter 4) other than i. We use t1 : t2 to indicate the

collection of timestamps (t1, t1 + 1, · · · , t2). For example, X1
5:8 stands for the random

vector (X1
5 , X

1
6 , X

1
7 , X

1
8 ). For random variables or random vectors represented by

Latin letters, we use the corresponding script capital letters to denote the space of

values these random vectors can take. For example, Hi
t denotes the space of values

the random vector H i
t can take. The products of sets in this chapter are Cartesian

products. We use P(·) and E[·] to denote probabilities and expectations, respectively.

We use ∆(Ω) to denote the set of probability distributions on a finite set Ω. For a

distribution ν ∈ ∆(Ω), we use supp(ν) to denote the support of ν. When writing

probabilities, we will omit the random variables when the lower case letters that

represent the realizations clearly indicate the random variable it represents. For

example, we will use P(yit|xt, ut) as a shorthand for P(Y i
t = yit|Xt = xt,Ut = ut).

When λ is a function from Ω1 to ∆(Ω2), with some abuse of notation we write
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λ(ω2|ω1) := (λ(ω1))(ω2) as if λ is a conditional distribution. We use 1A to denote

the indicator random variable of an event A.

In general, probability distributions of random variables in a dynamic system

are only well defined after a complete strategy profile is specified. We specify the

strategy profile that defines the distribution in superscripts, e.g. Pg(xit|h0
t ). When

the conditional probability is independent of a certain part of the strategy (git)(i,t)∈Ω,

we may omit this part of the strategy in the notation, e.g. Pg1:t−1(xt|y1:t−1, u1:t−1),

Pgi(xit|h0
t ) or P(xt+1|xt, ut). We say that a realization of some random vector (for

example h0
t ) is admissible under a partially specified strategy profile (for example

g−i) if the realization has strictly positive probability under some completion of the

partially specified strategy profile (In this example, that means Pgi,g−i(h0
t ) > 0 for

some gi). Whenever we write a conditional probability or conditional expectation,

we implicitly assume that the condition has non-zero probability under the specified

strategy profile. When only part of the strategy profile is specified in the superscript,

we implicitly assume that the condition is admissible under the specified partial

strategy profile.
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CHAPTER 2

Strategy-Independent Information States in

Dynamic Games

2.1 Introduction

Inspired by the existing literature on single-agent control problems (See Section

1.2.1), particularly the identification of information states for general single-agent

control problems in [54][90], in this chapter we define the notion of information states

for general multi-agent dynamic games. We aim to provide sufficient conditions for

compression schemes to be viable in a dynamic game.

In single-agent control problems, a compression scheme can be judged from two

aspects: (i) whether it allows the agent to control optimally; (ii) whether it facilitates

efficient algorithms (for example, dynamic programming based algorithms) to solve

for optimal compression-based strategies. However, in multi-agent dynamic games,

the concept of equilibrium replaces optimality as the goal: An agent needs to un-

derstand the game and carefully choose a strategy to maintain an equilibrium rather

than just forming an arbitrary best-response to others’ strategies. Requiring opti-

mality of compression-based strategies of each agent under other agent’s predicted

strategies is essential, but it is only the first step. It does not guarantee the existence

of compression-based equilibria (i.e. equilibria where agents use compression-based

strategies). Furthermore, for a given compression, even when compression-based

equilibria exist, they may not be able to achieve all the equilibrium payoff profiles un-

der general, non-compression-based strategies (see Example 2.1). (This phenomenon

has a parallel in pure strategies: Pure strategies are always sufficient for optimality

in single-agent control problems. In a multi-agent game, one can always form a best

response with a pure strategy to others’ strategies. However, a pure strategy Nash

Equilibrium may not exist in general. Even when it exists, it may not attain some

payoffs that are attainable under some mixed-strategy Nash Equilibrium.)

Therefore, in multi-agent dynamic games, a compression scheme can be judged
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from three different aspects: (i) whether it allows each individual agent to control op-

timally given other agent’s predicted strategies; (ii) whether any compression-based

equilibrium exist; (iii) whether compression-based equilibria can attain all equilib-

rium payoff profiles. The three aspects impose different requirements for a compres-

sion scheme. Finally, a compression scheme can also be judged from (iv) whether

it facilitates efficient algorithms to solve for compression-based equilibria. In this

chapter, we focus on the aspects listed in (ii)(iii). We introduce two notions of infor-

mation state, called mutually sufficient information (MSI) and unilaterally sufficient

information (USI) respectively, which provide sufficient conditions for existence of

compression-based equilibria and attainment of all equilibrium payoffs respectively.

As we have mentioned in Section 1.1 of Chapter 1, compression schemes can

be either strategy-independent or strategy-dependent. In this chapter, we focus on

strategy-independent schemes. In terms of strategy-dependent compression schemes,

we will study a particular class of strategy-dependent compression schemes in Chap-

ter 3, but extensive study of strategy-dependent compression schemes in dynamic

games is out of scope for this thesis.

Furthermore, in dynamic games, there are multiple concepts of equilibrium re-

finement in wide use due to different interpretations of sequential rationality (see

1.2.3). In this chapter, we will also analyze the conditions for compression schemes

to be viable under different equilibrium concepts.

The remainder of the chapter is organized as follows: In Section 2.2 we formulate

our game model. In Section 2.3.1 and Section 2.3.2 we introduce the notion of mu-

tually sufficient information and unilaterally sufficient information respectively. We

introduce our results in Section 2.4. We discuss our results in Section 2.5. Support-

ing results are provided in Appendix A while proof details are provided in Appendix

B.

2.2 Game Model

In this section we formulate a general model for a finite horizon dynamic game

with finitely many players.

Denote the set of players by I. Denote the set of timestamps by T = {1, 2, · · · , T}.
At time t, player i ∈ I learns new information Zi

t , then takes action U i
t , and obtain

instantaneous reward Ri
t. Player i may not necessarily observe the instantaneous

rewards Ri
t directly. Define Zt = (Zi

t)i∈I , Ut = (U i
t )i∈I , and Rt = (Ri

t)i∈I . There is

an underlying state variable Xt and

(Xt+1, Zt, Rt) = ft(Xt, Ut,Wt) t ∈ T ,
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where (ft)t∈T are fixed functions. X1 is a primitive random variable representing

the initial move of nature and initial information of the agents. H1 = (H i
1)i∈I is a

primitive random vector representing the initial information of the agents. X1 and

H1 can be correlated. (Wt)
T
t=1 are mutually independent primitive random variables

representing nature’s move. The vector (X1, H1) is assumed to be mutually indepen-

dent with W1,W2, · · · ,WT . The distributions of the primitive random variables are

common knowledge to all agents.

We assume perfect recall, i.e. the information player i has at time t is H i
t =

(H i
1, Z

i
1:t−1), and U i

t is measurable with respect to Zi
t . A behavioral strategy gi =

(git)t∈T of player i is a collection of functions git : Hi
t 7→ ∆(U it ). Under a behavioral

strategy profile g = (gi)i∈I , the total reward/payoff of player i in this game is given

by

J i(g) := Eg
[

T∑
t=1

Ri
t

]

In order to focus on the key ideas of the chapter without dealing with technical

difficulties, we assume that the states, actions, and information of all players all take

values in finite sets.

Assumption 2.1. Xt,Ut,Zt are finite sets. Ri
t is supported on [−1, 1].

Remark 2.1. This is not a restrictive model: By choosing appropriate state repre-

sentation Xt and instantaneous reward Rt, it can be used to model any finite-node

extensive form sequential game with perfect recall.

Remark 2.2. For a given finite-node extensive form sequential game with perfect

recall, there are multiple ways to formulate the game into our stochastic model (e.g.

separating simultaneous moves into multiple stages, define instantaneous rewards

in different ways, use different state representations). In general, the concepts of

information state we introduce in this chapter do depend on the specific formulation

of the game.

A behavioral strategy profile g is said to form a Bayes-Nash equilibrium (BNE) if

for any player i and any behavioral strategy g̃i of player i, we have J i(g) ≥ J i(g̃i, g−i).

We will also consider the concept of sequential equilibrium (SE) [44]. The follow-

ing is an alternative definition of SE in our model.

Definition 2.1 (Sequential Equilibrium). Let g = (gi)i∈I be a behavioral strategy

profile. Let K = (Ki
t)i∈I,t∈T be a collection of functions where Ki

t : Hi
t × U it 7→

[−T, T ]. The strategy profile g is said to be sequentially rational under K if for each
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i ∈ I, t ∈ T and each hit ∈ Hi
t,

supp(git(h
i
t)) ⊂ arg max

uit

Ki
t(h

i
t, u

i
t)

K is said to be fully consistent with g if there exist a sequence of behavioral

strategy and conjecture profiles (g(n), K(n))∞n=1 such that

(1) g(n) is fully mixed, i.e. every action is chosen with positive probability at every

information set.

(2) K(n) is consistent with g(n), i.e.,

K(n),i
τ (hiτ , u

i
τ ) = Eg(n)

[
T∑
t=τ

Ri
t

∣∣∣hiτ , uiτ
]
,

for each i ∈ I, τ ∈ T , hiτ ∈ Hi
τ , u

i
τ ∈ U iτ .

(3) (g(n), K(n))→ (g,K) as n→∞.

A tuple (g,K) is said to be a sequential equilibrium if g is sequentially rational under

K and K is fully consistent with g.

Interested readers may refer to Appendix A.2 to see the original and the alterna-

tive characterizations of sequential equilibria in our game model. In particular, we

show that Definition 2.1 is equivalent to the original definition of sequential equilib-

rium in [44].

Let Qi
t be a function of H i

t that can be sequentially updated, i.e. there exist

functions (ιit)t∈T such that

Qi
1 = ιi1(H i

1)

Qi
t = ιit(Q

i
t−1, Z

i
t−1) t ∈ T \{1}.

Let Qi = (Qi
t)t∈T We will refer to Qi as the compression of player i’s information

under ιi = (ιit)t∈T . A Qi-based (behavioral) strategy ρi = (ρit)t∈T is a collection

of functions ρit : Qit 7→ ∆(U it ). Let Q = (Qi)i∈I . A strategy profile where each

player i use a Qi-based strategy is called a Q-based strategy profile. If a Q-based

strategy profile forms an Bayes-Nash (resp. sequential) equilibrium, then it is called

a Q-based Bayes-Nash (resp. sequential) equilibrium. In this chapter, our goal is to

formulate sufficient conditions for Q = (Qi)i∈I (equivalently, for ι = (ιi)i∈I) such that

(i) Q-based equilibria exist; (ii) Q-based equilibria attain all equilibrium payoffs. The

results will be established under two equilibrium concepts: Bayes-Nash equilibrium

and sequential equilibrium.
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In the following sections, when referring to Qi
t, we will consider ιi to be fixed and

given, so that Qi
t is fixed given H i

t . As a result, the space of compressed information

Qit is a fixed, finite set. When we use qit to represent a realization of Qi
t, we assume

that it corresponds to the compression of H i
t = hit under the fixed ιi.

Notice that unlike the full information H i
t , one may not be able to recover Qi

t−1

from Qt, i.e. Qi-based behavioral strategies do not feature perfect recall. Therefore,

Qi-based (behavioral) strategies are not equivalent to mixed strategies supported

on the set of Qi-based pure strategies. This creates difficulty for analyzing Qi-based

strategies since the usual technique of using Kuhn’s Theorem [45] to transform mixed

strategies to behavioral strategies does not apply.

2.3 Two Definitions of Information State

Before we define the notion of information state in dynamic games, we first in-

troduce the notion of information state for one player when other player’s strategies

are fixed. The following definition is an extension of the definition of information

state in [90].

Definition 2.2. Let g−i be a behavioral strategy profile of players other than i and

J ⊂ I be a subset of players. We say that Qi is an information state under g−i if

there exist functions (P i,g−i

t )t∈T , (r
i,g−i

t )t∈T , where P i,g−i

t : Qit × U it 7→ ∆(Qit+1) and

ri,g
−i

t : Qit × U it 7→ [−1, 1], such that

(1) Pgi,g−i(qit+1|hit, uit) = P i,g−i

t (qit+1|qit, uit) for all t ∈ T \{T};

(2) Egi,g−i [Ri
t|hit, uit] = ri,g

−i

t (qit, u
i
t) for all t ∈ T

for all gi, and all (hit, u
i
t) admissible under (gi, g−i).

In the absence of other players, the above definition is exactly the same as the

definition of information state for player i’s control problem. When other players

are present, the parameters of player i’s control problem, in general, depend on the

strategy of other players. An information state under one strategy profile g−i may

not be an information state under a different strategy profile g̃−i.

2.3.1 Mutually Sufficient Information

Definition 2.3 (Mutually Sufficient Information). We say that Q = (Qi)i∈I is mu-

tually sufficient information (MSI) if for all players i ∈ I and all Q−i-based strategy

profiles ρ−i, Qi is an information state under ρ−i.
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In words, MSI represents mutually consistent compression of information in a

dynamic game: Player i could compress her information to Qi without loss of opti-

mality when other agents are compressing their information to Q−i. Note that MSI

is a condition imposed on the compression schemes of all players. It requires the

compression schemes of all players to be consistent with each other.

The following lemma provides a sufficient condition for a compression scheme to

yield mutually sufficient information.

Lemma 2.1. If for all i ∈ I and all Q−i-based strategy profiles ρ−i, there exist

functions (Φi,ρ−i

t )t∈T where Φi,ρ−i

t : Qit 7→ ∆(Xt ×Q−it ) such that

Pgi,ρ−i(xt, q−it |hit) = Φi,ρ−i

t (xt, q
−i
t |qit)

for all behavioral strategies gi, all t ∈ T , and all hit admissible under (gi, ρ−i), then

Q = (Qi)i∈I is mutually sufficient information.

In words, the condition of Lemma 2.1 means that Qi
t has the same predictive

power as H i
t in terms of forming a belief on the current state and other players’ com-

pressed information whenever other players are using compression-based strategies.

This belief is sufficient for player i to predict other player’s actions and future state

evolution. Since other players are using compression-based strategies, player i does

not have to form a belief on other player’s full information in order to predict other

players’ actions.

2.3.2 Unilaterally Sufficient Information

Definition 2.4 (Unilaterally Sufficient Information). We say that Qi is unilaterally

sufficient information (USI) for player i ∈ I if there exist functions (F i,gi

t )t∈T and

(Φi,g−i

t )t∈T where F i,gi

t : Qit 7→ ∆(Hi
t),Φ

i,g−i

t : Qit 7→ ∆(Xt ×H−it ) such that

(2.1) Pg(xt, ht|qit) = F i,gi

t (hit|qit)Φ
i,g−i

t (xt, h
−i
t |qit)1

for all behavioral strategy profiles g, all t ∈ T , and all qit admissible under g.

The definition of USI can be separated into two parts: The first part states

that the conditional distribution of H i
t , player i’s full information, given Qi

t, the

compressed information, does not depend on other players’ strategies. This is similar

1In the case where random vectors Xt, H
i
t and H−i

t share some common components, (2.1)
should be interpreted in the following way: xt, h

i
t and h−i

t are three separate realizations that are
not necessarily congruent with each other (i.e. they can disagree on their common parts). In the
case of incongruency, the left-hand side equals 0. The equation needs to be true for all combinations
of xt ∈ Xt, h

i
t ∈ Hi

t and h−i
t ∈ H−i

t .
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to the idea of sufficient statistics in statistics literature [43]: If player i would like

to use her “data” H i
t to estimate the “parameter” g−i, then Qi

t is the sufficient

statistic for this parameter estimation problem. The second part states that Qi
t has

the same predictive power as H i
t in terms of forming a belief on the current state and

other players’ full information. In contrast to the definition of mutually sufficient

information, if Qi is unilaterally sufficient information, then Qi is sufficient for player

i’s decision making regardless of whether other players are using any information

compression scheme.

2.3.3 Comparison

Using Lemma 2.1 it can be shown that ifQi is USI for each i ∈ I, thenQ = (Qi)i∈I

is MSI. The contrary is not true. In the following example we illustrate the difference

between MSI and USI.

Example 2.1. Consider a two stage stateless (i.e. Xt = ∅) game of two players:

Alice (A) moves first and Bob (B) moves afterwards. There is no initial information

(i.e. HA
1 = HB

1 = ∅).

At time t = 1, Alice chooses UA
1 ∈ {0, 1}. The instantaneous rewards of both

players are given by

RA
1 = UA

1 , R
B
1 = −UA

1

The new information of both Alice and Bob at time 1 is ZA
1 = ZB

1 = UA
1 , i.e.

Alice’s action is observed.

At time t = 2, Bob chooses UB
2 ∈ {−1, 1}. The instantaneous rewards of both

players are given by

RA
2 = UB

2 , R
B
2 = 0

Set QA
t = HA

t and QB
t = ∅ for both t ∈ {1, 2}. It can be shown that Q is mutually

sufficient information. However, QB is not unilaterally sufficient information: We

have Pg(hB2 |qB2 ) = Pg(uA1 ) = gA1 (uA1 |∅), while the definition of USI requires that

Pg(hB2 |qB2 ) = FB,gB

t (hB2 |qB2 ) for some function FB,gB

t that does not depend on gA.

In this example, Q-based BNEs exist: Alice plays UA
1 = 1 at time 1 and Bob

plays UB
2 = 1 irrespective of Alice’s action at time 1, for example. However, Q-based

BNEs cannot attain certain BNE payoff profiles. Consider the following BNE: Alice

plays UA
1 = 0 at time 1; Bob plays UB

2 = 1 if UA
1 = 0 and UB

2 = −1 if UA
1 = 1.

In this BNE, Bob’s total expected payoff is 0. However, in any Q-based BNE, Bob

plays the same mixed actions irrespective of Alice’s action at t = 1. Therefore Alice

would always play UA
1 = 1 in any Q-based BNE. As a result, Bob will have a total

expected payoff of −1 in any Q-based BNE.
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2.4 Information-State Based Equilibrium

In this section, we formulate our result on MSI and USI based equilibria for two

equilibrium concepts: Bayes-Nash equilibria and sequential equilibria. The proof

details are provided in Appendix B.2.

2.4.1 Information-State Based Bayes Nash Equilibrium

Theorem 2.3. If Q is mutually sufficient information, then there exists at least one

Q-based BNE.

The main idea for the proof of Theorem 2.3 is by defining a best-response corre-

spondence using the dynamic program for single-agent control problems.

Theorem 2.4. If Q = (Qi)i∈I where Qi is unilaterally sufficient information for

player i, then the set of Q-based BNE payoffs is the same as that of all BNE.

An intuition for Theorem 2.4 is that one can think of player i’s information outside

of the unilaterally sufficient information Qi
t as a private randomization device for

player i. When player i is using a strategy that depends on her information outside

of Qi
t, it is as if she is using a randomized Qi-based strategy. The main idea for the

proof of Theorem 2.4 is to show that for every BNE strategy profile g, player i can

switch to an “equivalent” Qi-based strategy ρi while maintaining the equilibrium

and payoffs.2 The theorem then follows from iteratively applying it to each player.

2.4.2 Information-State Based Sequential Equilibrium

Theorem 2.5. If Q is mutually sufficient information, then there exists at least one

Q-based sequential equilibrium.

The proof of Theorem 2.4.2 follows from the same construction of that of Theorem

2.3 with a more delicate argument for sequential rationality.

Theorem 2.6. If Q = (Qi)i∈I where Qi is unilaterally sufficient information for

player i, then the set of Q-based sequential equilibrium payoffs is the same as that of

all sequential equilibria.

The proof of Theorem 2.6 mostly follows the same ideas for Theorem 2.4: for

each sequential equilibrium strategy profile g, we construct an “equivalent” Qi-based

2Besides the connection of USI to sufficient statistics, the idea behind the construction of the
equivalent Qi-based strategy is also closely related to the idea of Rao–Blackwell estimator [43],
where a new estimator is obtained by taking the conditional expectation of the old estimator given
the sufficient statistics.
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strategy ρi for player i with similar construction as in Theorem 2.4. The critical

part is to show that ρi is still sequentially rational under the concept of sequential

equilibrium.

2.5 Discussion

In this section, we discuss our results. We first investigate the ability of USI

to preserve the set of equilibrium payoffs under some other choices of refinements

of BNE other than SE. We then identify MSI and USI in specific models in the

literature.

2.5.1 Other Equilibrium Concepts

In this section, we provide our reasoning for choosing the concept of sequential

equilibrium (instead of other refinements) in this chapter. First, we provide an

example to show that Theorem 2.6 is not true if we replace the concept of SE with the

concept of weak perfect Bayesian equilibrium (wPBE) [57], which is an equilibrium

refinement of Nash Equilibria that is weaker than SE.

The concept of wPBE is defined as follows: Let (g, µ) be an assessment, where g is

a behavioral strategy profile as specified in Section 2.2 and µ is a system of functions

representing player’s beliefs in the extensive-form game representation. (g, µ) is said

to be a weak perfect Bayesian equilibrium (wPBE) [57] if g is sequentially rational to

µ and µ satisfies Bayes rule with respect to g on the equilibrium path. The concept

of wPBE does not impose any restriction on beliefs off the equilibrium path.

Example 2.2. Consider a two stage game with two players: Bob (B) moves at time

1; Alice (A) and Bob moves simultaneously at time 2. Let XA
1 , X

B
1 be independent

uniform random variables on {−1,+1} representing the types of the players. The

state satisfies X1 = (XA
1 , X

B
1 ) and X2 = XB

1 . The set of actions are UB1 = {−1,+1},
UA2 = UB2 = {−1, 0,+1}. The information structure is given by

HA
1 = XA

1 , HB
1 = XB

1 ;

HA
2 = (XA

1 , U
B
1 ), HB

2 = (XB
1 , U

B
1 ),

i.e. types are private and actions are observable.

The instantaneous payoffs of Alice is given by

RA
1 =

−1 if UB
1 = −1

0 otherwise
, RA

2 =

1 if UA
2 = X2 or UA

2 = 0

0 otherwise
.
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The instantaneous payoffs of Bob is given by

RB
1 =

0.2 if UB
1 = −1

0 otherwise
, RB

2 =

−1 if UA
2 = UB

2

0 otherwise
.

Define QA
1 = XA

1 and QA
2 = UB

1 . It can be shown that QA is unilaterally sufficient

information for Alice.3 Set QB
t = HB

t , i.e. no compression for Bob’s information.

QB is trivially unilaterally sufficient information for Bob.

Proposition 2.1. In the game defined in Example 2.2, the set of Q-based wPBE

payoffs is a proper subset of that of all wPBE payoffs.

Note that since any wPBE is first and foremost a BNE, by Theorem 2.4, any

general strategy based wPBE payoff profile can be attained by a Q-based BNE.

However, Proposition 2.1 implies that there exists a wPBE payoff profile such that

none of its corresponding Q-based BNEs are wPBEs.

Q-based BNE = all BNE

all wPBE

Q-based wPBE

Q-based SE = all SE

Figure 2.1: A typical Venn diagram of set of payoff profiles for different equilibrium
concept when Q is unilaterally sufficient information.

Intuitively, the reason for some wPBE payoff profiles to be unachievable under

Q-based wPBE payoffs in this example can be explained as follows. The state XA
1 in

this game can be thought of as a private randomization device of Alice that is payoff

irrelevant (i.e. a private coin flip) that should not play a role in the outcome of the

game. However, under the concept of wPBE, the presence of XA
1 facilitates Alice

to implement off-equilibrium strategies that are otherwise not sequentially rational.

This is since for a fixed realization of UB
1 , two realizations of XA

1 give rise to two dif-

ferent information sets. Under the concept of wPBE, if the two information sets are

3In fact, this example can be seen as an instance of the model described in Example 2.6 which
we introduce later.
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both off equilibrium path, Alice is allowed to form different beliefs and hence justify

the use of different mixed actions under different realizations of XA
1 . Therefore, the

presence of XA
1 can expand Alice’s set of “justifiable” mixed actions off-equilibrium.

By restricting Alice to use QA-based strategies, i.e. choosing her mixed action not

depending on XA
1 , Alice loses the ability to use some mixed actions off-equilibrium

in a “justifiable” manner, hence losing her power to sustain certain equilibrium out-

comes. This phenomenon, however, does not happen under the concept of sequential

equilibrium, since SE (quite reasonably) would require Alice to use the same belief

on two information sets if they only differ in the realization of XA
1 .

With similar approaches, one can establish the analogue of Proposition 2.1 for the

perfect Bayesian equilibrium concept defined in [111] (which we refer to as “Watson’s

PBE”). Simply put, this is since the Watson’s PBE imposes conditions on the belief

update for each pair of successive information states in a separated manner. There

exist no restrictions across different pairs of successive information states. As a

result, for a fixed realization of UB
1 , Alice is allowed to form different beliefs under

two realizations of XA
1 just like wPBE as long as both beliefs are reasonable on their

own. In fact, in the proof of Proposition 2.1, the two off-equilibrium belief updates

both satisfy Watson’s condition of plain consistency [111].

Similar approaches to the proof of Proposition 2.1, however, does not apply to

the PBE concept defined with the independence property of conditional probability

systems specified in [6] (which we refer to as “Battigalli’s PBE”). In fact, Battigalli’s

PBE is equivalent to sequential equilibrium if the dynamic game consists of only

two strategic players [6]. We conjecture that if Q is USI, then the set of all Q-

based Battigalli’s PBE payoffs is the same as that of all Battigalli’s PBE payoffs.

However, establishing this result can be hard due to the complexity of Battigalli’s

conditions. Battigalli’s conditions are also formulated in terms of appraisals, which

makes it hard to apply stochastic control methods. On the other hand, alternative

characterizations of sequential equilibrium (see Appendix A.2) enable us to apply

stochastic control methods more naturally. For this reason, we choose to work with

the concept of sequential equilibrium in this chapter.

2.5.2 Applications

In this section, we identify MSI and USI in more specialized game models in

the literature. We recover some existing results using our framework, and we also

develop some new results.

Example 2.3. Consider stateless dynamic games with observable actions, i.e. Xt =

∅, H i
1 = ∅, Zi

t = Ut for all i ∈ I. One instance of such games is the class of repeated
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games. In this game, H i
t = U1:t−1 for all i ∈ I. Let (ι0t )t∈T be an arbitrary, common

update function and let Qi = Q0 be generated from (ι0t )t∈T . Then Q is mutually

sufficient information since Lemma 2.1 is trivially satisfied. As a result, Theorem 2.3

holds for Q, i.e. there exist at least one Q-based BNE.

However, in general, Q is not unilaterally sufficient information. To see that, one

can consider the case when player j 6= i is using a strategy that chooses different

mixed actions for different realizations of U1:t−1. In this case Pgi,g−i(q̃it+1|hit, uit) would

potentially depend on U1:t−1 as a whole. This means that Qi is not an information

state for player i under g−i, which violates Lemma B.1.

Furthermore for Q, the result of Theorem 2.4 does not necessarily hold, i.e. the

set of Q-based BNE payoffs may not be the same as that of all BNE. Example 2.1

can be used to show this.

Example 2.4. Maskin and Tirole’s [58] model is a special case of our dynamic

game model where Zi
t = (Xt+1, Ut), i.e. the (past and current) states and past

actions are observable. In this case, Q = (Qi
t)t∈T ,i∈I , Q

i
t = Xt is mutually sufficient

information; note that H i
t = (X1:t, U1:t−1). Consider a Q−i-based strategy profile ρ−i,

i.e. ρjt : Xt 7→ ∆(U jt ) for t ∈ T , j ∈ I\{i}. We have

Pgi,ρ−i(x̃t, q̃−it |hit) = Pgi,ρ−i(x̃t, q̃−it |x1:t, u1:t−1)

= 1{x̃t=xt}
∏
j 6=i

1{q̃jt=xt}

=: Φi,ρ−i

t (x̃t, q̃
−i
t |xt)

Hence Q is mutually sufficient information by Lemma 2.1. As a result, there

exists at least one Q-based BNE.

Similar to Example 2.3, in general, Q is not unilaterally sufficient information,

and the set of Q-based BNE payoffs may not be the same as that of all BNE. The

argument for both claims can be carried out in an analogous way to Example 2.3.

Example 2.5. The model of [66] is a special case of our dynamic model where the

following assumptions hold:

(1) The information of each agent i can be separated into the common information

H0
t and private information Lit, i.e. there exists a strategy-independent bijection

between H i
t and (H0

t , L
i
t) for all i ∈ I.

(2) The common information H0
t can be sequentially updated, i.e.

H0
t+1 = (H0

t , Z
0
t )

where Z0
t =

⋂
i∈I Z

i
t is the common part of the new information of all players at

time t.
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(3) The private information Lit can be sequentially updated, i.e. there exist functions

(ζ it)
T−1
t=0 such that

Lit+1 = ζ it(L
i
t, Z

i
t).

(4) (Strategy independence of beliefs) There exist a some function P 0
t such that

Pg(xt, lt|h0
t ) = P 0

t (xt, lt|h0
t )

for all behavioral strategy profiles g whenever Pg(h0
t ) > 0, where lt = (lit)i∈I .

In this model, if we set Qi
t = (Πt, L

i
t) where Πt ∈ ∆(Xt × St) is a function of H0

t

defined through

Πt(xt, lt) := P 0
t (xt, lt|H0

t ),

then Q = (Qi)i∈I is mutually sufficient information. First note that Qi
t can be

sequentially updated as Πt can be sequentially updated using Bayes rule. Then

Pgi,ρ−i(x̃t, l̃−it |hit) = Pgi,ρ−i(x̃t, l̃−it |h0
t , l

i
t)

=
Pgi,ρ−i(x̃t, lit, l̃−it )|h0

t )

Pgi,ρ−i(x̃t, lit|h0
t )

=
P 0
t (x̃t, (l

i
t, l̃
−i
t )|h0

t )∑
l̂−it
P 0
t (x̃t, (lit, l̂

−i
t )|h0

t )

=
πt(x̃t, (l

i
t, l̃
−i
t ))∑

l̂−it
πt(x̃t, (lit, l̂

−i
t ))

=: Φ̃i,ρ−i

t (x̃t, l̃
−i
t |qit)

for some function Φ̃i,ρ−i

t , where πt is the realization of Πt corresponding to H0
t = h0

t .

Note that Q−it is measurable with respect to (Qi
t, L
−i
t ), hence we conclude that

Pgi,ρ−i(x̃t, q̃−it |hit) =: Φi,ρ−i

t (x̃t, q̃
−i
t |qit)

for some function Φi,ρ−i

t . By Lemma 2.1 we conclude that Q is mutually sufficient

information. Therefore there exists at least one Q-based BNE.

Similar to Examples 2.3 and 2.4, in general, Q is not unilaterally sufficient infor-

mation, and the set of Q-based BNE payoffs may not be the same as that of all BNE.

The argument for both claims can be carried out in an analogous way to Examples

2.3 and 2.4.

Example 2.6. The following model is a variant of [74] and [104].
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• Each agent i is associated with a local state X i
t , and Xt = (X i

t)i∈I .

• Each agent i is associated with a local noise process W i
t , and Wt = (W i

t )i∈I .

• There is no initial information, i.e. H i
1 = ∅ for all i ∈ I.

• There is a public noisy observation Y i
t of the local state. The transitions,

observation processes, and reward generation processes satisfy the following:

(X i
t+1, Y

i
t ) = f it (X

i
t , Ut,W

i
t ) ∀i ∈ I

Ri
t = rit(Xt, Ut) ∀i ∈ I.

• The information player i has at time t is H i
t = (Y1:t−1, U1:t−1, X

i
1:t) for i ∈ I,

where Yt = (Y i
t )i∈I .

• All the primitive random variables, i.e. the random variables in the collection

(X i
1)i∈I ∪ (W i

t )i∈I,t∈T , are mutually independent.

Theorem 2.7. In the model of Example 2.6, Qi
t = (Y1:t−1, U1:t−1, X

i
t) is unilaterally

sufficient information.4

2.6 Conclusion

In this chapter, we investigated sufficient conditions for strategy-independent

compression schemes to be viable in dynamic games. Motivated by the literature on

information states for control problems [46, 54, 90], we provided two definitions of

information states for dynamic games, namely mutually sufficient information (MSI)

and unilaterally sufficient information (USI). While MSI guarantees the existence of

compression-based equilibria, USI guarantees that compression-based equilibria can

attain all equilibrium payoff profiles.

Our results in this chapter are restricted to finite horizon games with finite action

and state spaces. Therefore, one future direction stemming from this work is to

consider definitions of MSI and USI in infinite horizon games. Another direction is

to consider special classes of games with continuous action or state spaces.

In this chapter, we have only considered strategy-independent compression schemes.

In Chapter 3, we will investigate a class of strategy-dependent compression schemes

4Qi-based strategies in this setting are very closely related to the “strategies of type s” defined
in [104]. In [104], the authors showed that strategy profiles of type s can attain all equilibrium
payoffs attainable by general strategy profiles. However, the authors did not show that strategy
profiles of type s can do so while being an equilibrium.
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that also stem from the stochastic control literature. However, the schemes in Chap-

ter 3 cannot guarantee the existence of compression-based equilibria. This will pro-

vide a complement to the results in this chapter and highlights the difference between

strategy-independent and strategy-dependent compression schemes.
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CHAPTER 3

Belief Based Equilibrium in Dynamic Games

3.1 Introduction

In the control theory literature, it is well known that the Markovian belief state

forms an information state [46] for a single-agent POMDP problem. As a result,

an agent can compress her information into the belief state. This compression then

allows for a sequential decomposition procedure with the belief being the state to

solve for an optimal strategy. In [68], the authors extended the result of single-

agent POMDPs to decentralized control problems and showed that the common

information based (CIB) belief is an information state for such problems. Inspired

by [68], there have been a few works where the authors attempted to construct

a CIB-belief-based information state for dynamic games [66, 73, 74, 93, 92, 104].

These works introduced compression-based strategies where each player’s information

is compressed into CIB beliefs (along with some other quantities). These works

then derived sequential decomposition procedures to determine such compression

based equilibria. However, with the exception of [66], these works stopped short of

establishing general existence of such equilibria.

One may attempt to apply the results on mutually sufficient information of Chap-

ter 2 to establish existence of such equilibria. However, recall that in Chapter 2 we

considered strategy-independent compressions of information. In other words, we

considered class of strategies profiles with a fixed compression mapping that satisfies

some properties and we showed that there exists at least one BNE within this class.

This methodology, however, is insufficient for analyzing the existence of belief-based

equilibria, since CIB beliefs are, in general, strategy-dependent. This means that it

is usually not possible in general to construct a universal belief-based compression

for player i that yields an information state under all strategy profiles g−i (with

the exception of [66], where it is explicitly assumed that the CIB belief is strategy-

independent).
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In fact, in this chapter, we show that CIB-belief-based equilibria do not al-

ways exist in games where CIB beliefs are strategy dependent. Through a series

of counter-examples in different settings we show that such non-existence is a gen-

eral phenomenon rather than the consequence of any specific feature of the game

(e.g. being zero-sum or not, observability of actions, etc.) except information asym-

metry 1. We also show that in some instances where CIB-belief-based equilibria do

exist, such equilibria may not be obtained through standard application of sequen-

tial decomposition algorithms. The results in this chapter highlight the issues with

strategy-dependent compression of information in dynamic games, which stands in

contrast to strategy-independent compression schemes, as we have shown in Chapter

2. We would also like to note that while the concepts we consider are different from

the concept of Markov Sequential Equilbrium (MSE) in [59], their work conveys a

similar message as ours through their example on the non-existence of MSE.

The rest of Chapter 3 is organized as follows: We start by introducing a general

definition for CIB-belief-based Bayes-Nash equilibrium (belief-based equilibrium, or

BBE for short) in Section 3.2. This concept captures the spirit of multiple similar

concepts in the literature. In Section 3.3, we provide multiple examples and prove

that belief-based equilibria do not exist in those settings. Through another group

of examples, in Section 3.4 we also show that there are games where belief-based

equilibria exist but a sequential decomposition does not follow. We conclude in

Section 3.5. Proof details are provided in Appendix C.

3.2 Problem Formulation

3.2.1 Game Model

Consider the game model described in Example 2.5 without the assumption of

strategy independence of beliefs. To make this chapter self-contained, we restate

the model here: Denote the set of players by I. Denote the set of timestamps

by T = {1, 2, · · · , T}. At time t, player i ∈ I learns new information Zi
t , then

takes action U i
t , and obtain instantaneous reward Ri

t. Player i may not necessarily

observe the instantaneous rewards Ri
t directly. Define Zt = (Zi

t)i∈I , Ut = (U i
t )i∈I ,

and Rt = (Ri
t)i∈I . There is an underlying state variable Xt and

(Xt+1, Zt, Rt) = ft(Xt, Ut,Wt) t ∈ T ,

where (ft)t∈T are fixed functions. X1 is a primitive random variable representing

the initial move of nature and initial information of the agents. H1 = (H i
1)i∈I is a

1Games of symmetric information are special cases of [66]. As a result, CIB belief based equilibria
always exist in games of symmetric information.
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primitive random vector representing the initial information of the agents. X1 and

H1 can be correlated. (Wt)
T
t=1 are mutually independent primitive random variables

representing nature’s move. The vector (X1, H1) is assumed to be mutually indepen-

dent with W1,W2, · · · ,WT . The distributions of the primitive random variables are

common knowledge to all agents.

We assume perfect recall, i.e. the information player i has at time t is H i
t =

(H i
1, Z

i
1:t−1), and U i

t is measurable with respect to Zi
t . We also make the following

assumptions.

Assumption 3.1.

(1) The information of each agent i can be separated into the common informa-

tion H0
t and private information Lit, i.e. there exists a fixed (i.e. strategy-

independent) bijection between H i
t and (H0

t , L
i
t) for all i ∈ I and all t ∈ T .

(2) The common information H0
t can be sequentially updated, i.e. H0

t+1 = (H0
t , Z

0
t ),

where Z0
t is a random vector that can be expressed as a fixed functions of Zi

t for

each i ∈ I for all t ∈ T \{T}.

(3) The private information Lit can be sequentially updated, i.e. there exist fixed

(i.e. strategy-independent) functions (ζ it)
T−1
t=0 such that Lit+1 = ζ it(L

i
t, Z

i
t).

A behavioral strategy gi = (git)t∈T of player i is a collection of functions git : Hi
t 7→

∆(U it ). Under a behavioral strategy profile g = (gi)i∈I , the total reward/payoff of

player i in this game is given by

J i(g) := Eg
[

T∑
t=1

Ri
t

]

A behavioral strategy profile g is said to form a Bayes-Nash equilibrium (BNE) if

for any player i and any behavioral strategy g̃i of player i, we have J i(g) ≥ J i(g̃i, g−i).

3.2.2 Belief-Based Equilibria

Given a sequence of compression functions (ψt)t∈T , define

B1 = ψ1(H0
1 )

Bt = ψt(Bt−1, Z
0
t−1) t ∈ T \{1}.

We will refer to Bt as a compression of the common information under ψ = (ψt)
T−1
t=0 .

A common compression based strategy for player i is a strategy where player i makes

decisions based on (H0
t , L

i
t) through (Bt, L

i
t), i.e. a Qi-based strategy where Qi

t =
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(Bt, L
i
t). A common compression based strategy of player i can be described through

ψ and a collection of partial strategies ρi = (ρit)t∈T where ρit : Bt ×Lit 7→ ∆(U it ). We

say that a strategy git is generated from (ρ, ψ) if git(h
i
t) = ρit(bt, l

i
t) where bt is the

compression of h0
t under ψ.

Definition 3.1 (Consistency). Let ψ be compression functions that compress H0
t

into beliefs on Xt × Lt. The functions ψ are said to be consistent with common

compression based strategy profile ρ if

bt(xt, lt) = Pg1:t−1(xt, lt|h0
t )

for all t ∈ T , xt ∈ Xt, lt ∈ Lt whenever Pg1:t−1(h0
t ) > 0, where g1:t−1 is the compression

based strategy profile generated from (ρ1:t−1, ψ1:t−1).

Definition 3.2 (Belief-Based Equilibrium). A BNE strategy profile g is a Belief-

Based Equilibrium (BBE) if g is a compression based strategy profile generated from

some partial strategies ρ and update function ψ such that ψ is consistent with ρ.

Remark 3.1. For a given model, there can be multiple ways to choose the common

informationH0
t and private information Lit that satisfy Assumption 3.1. In particular,

Lit does not have to consist of strictly private information. The definition of belief-

based equilibrium is dependent on the specific formulation. For example, one can

always set H0
t = ∅ and Lit = H i

t . In this case, all BNEs are belief-based BNEs.

The concept of belief-based equilibrium is an umbrella concept aimed at cover-

ing a group of similar concepts in the literature. The concept of Structural Perfect

Bayesian Equilibrium (SPBE) defined in [104] forms a subclass of belief-based equi-

libria (i.e. all SPBEs are also BBEs). The CIB-PBE concept in [93] also forms a

subclass of belief-based equilibria. The solution concept in [74] does not exactly form

a subclass of belief-based equilibria due to the use of signaling-free beliefs. However,

the idea behind the solution concept of [74] still remains close to that of BBE.

3.3 Non-Existence of Belief-Based Equilibria: Examples

In this section we present examples of games where belief-based equilibria do

not exist. In order to show that the non-existence is not a result of certain specific

aspects of the game, we present examples that differ in many aspects: Example 3.1

is a non-zero-sum game while Examples 3.2 and 3.3 are zero-sum games. Example

3.1 features non-observable actions while Examples 3.2 and 3.3 feature observable

actions. Examples 3.1 and 3.2 feature non-zero instantaneous rewards in intermediate

stages (i.e. not the last stage) while there are no intermediate rewards in Example

3.3.
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All of the examples below feature two players whom we refer to as Alice (A)

and Bob (B). The initial states, initial information, and noises are assumed to be

selected by a non-strategic player called Nature (N). All examples have two stages

where at each stage only one player moves: Alice moves at t = 1 and Bob moves at

t = 2. When payoff vectors are presented in extensive form games, Alice’s payoff is

presented first.

Example 3.1. The initial state X1 is distributed uniformly at random on {−1,+1}.
We assume that HA

1 = HB
1 = X1, i.e. both players observes the state. At time

t = 1, Alice chooses UA
1 ∈ {−1, 1}, and the state transition is given by X2 = X1 ·UA

1 .

For time t = 2, we assume that HA
2 = (X1:2, U

A
1 ) and HB

2 = XA
1 (i.e. Bob cannot

observe Alice’s action). At time t = 2, Bob picks an action UB
2 ∈ {L,R}. Alice’s

instantaneous rewards are given by

RA
1 =

c if X1 = UA
1 = +1

0 otherwise
, RA

2 =


2 if X2 = +1, UB

2 = L

1 if X2 = −1, UB
2 = R

0 otherwise

where c ∈ (0, 1), while Bob’s instantaneous rewards are given by

RB
1 = 0, RB

2 =


1 if X2 = −1, UB

2 = L

1 if X2 = +1, UB
2 = R

0 otherwise

The above game can be represented in extensive form as in Figure 3.1.

N

Alice Alice

Bob Bob

(2, 0) (0, 1) (0, 1) (1, 0) (2 + c, 0) (c, 1) (0, 1) (1, 0)

−1 +1
[0.5] [0.5]

−1 +1 +1 −1

L R L R L R L R

Figure 3.1: Extensive form of the game in Example 3.1.

In order to define the concept of belief based equilibrium in this game, we specify

the common information H0
t and private information (LAt , L

B
t ) as follows:

H0
1 = X1, LA1 = LB1 = ∅
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H0
2 = X1, LA2 = X2, LB2 = ∅

Proposition 3.1. A belief-based equilibrium does not exist in the game of Example

3.1.

Example 3.2. The initial state X1 is distributed uniformly at random on {−1,+1}.
We assume that HA

1 = X1, H
B
1 = ∅, i.e. Alice knows the state and Bob does not.

At time t = 1, Alice chooses UA
1 ∈ {−1, 1}, and the state transition is given by

X2 = X1 · UA
1 . For time t = 2, we assume that HA

2 = (X1:2, U
A
1 ) and HB

2 = UA
1 ,

i.e. Bob can observe Alice’s action but not the state before or after Alice’s action.

At time t = 2, Bob picks an action UB
2 ∈ {U,D}. Alice’s instantaneous rewards are

given by

RA
1 =

c if UA
1 = +1

0 if UA
1 = −1

, RA
2 =


2 if X2 = +1, UB

2 = U

1 if X2 = −1, UB
2 = D

0 otherwise

where c ∈ (0, 1/3). The stage reward for Bob is RB
t = −RA

t for t = 1, 2.

The above game is a signaling game which can be represented in extensive form

as in Figure 3.2.

Alice

Alice

(1,−1)

(0, 0)

(0, 0)

(2,−2)

(c,−c)

(2 + c,−2− c)

(1 + c,−1− c)

(c,−c)

+1 [0.5]

N

−1 [0.5]

Bob Bob

−1

−1

+1

+1

D

U

D

U

D

U

D

U

Figure 3.2: Extensive form of the game in Example 3.2.

In order to define the concept of belief based equilibrium in this game, we specify

the common information H0
t and private information (LAt , L

B
t ) as follows:

H0
1 = ∅, LA1 = X1, LB1 = ∅

H0
2 = UA

1 , LA2 = X2, LB2 = ∅

Proposition 3.2. A belief-based equilibrium does not exist in the game of Example

3.2.
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Example 3.3. The initial state X1 is distributed uniformly at random on {−1,+1}.
We assume that HA

1 = X1, H
B
1 = ∅, i.e. Alice knows the state and Bob does

not. At time t = 1, Alice chooses UA
1 ∈ {−1, 1}, and the state transition is given

by X2 = X1 · UA
1 . Nature’s action W1 is also distributed on {−1,+1} with P(W1 =

−1) = c ∈ (0, 1
2
). W1 is independent from X1. A common observation Y1 is generated

by

Y1 =

1 if X1 = UA
1 = W1 = −1

0 otherwise

For time t = 2, we assume that HA
2 = (X1:2, Y1, U

A
1 ) and HB

2 = (Y1, U
A
1 ). At time

t = 2, Bob picks an action UB
2 ∈ {U,D}. Alice’s instantaneous rewards are given by

RA
1 = 0, RA

2 =


2 if X2 = +1, UB

2 = U

1 if X2 = −1, UB
2 = D

0 otherwise

The stage reward for Bob is RB
t = −RA

t for t = 1, 2.

The above game is equivalent to the following extensive form in Figure 3.3.

Bob

Alice

Alice

(1,−1)

(0, 0)

(0, 0)

(2,−2)

(0, 0)

(2,−2)

(0, 0)

(2,−2)

(1,−1)

(0, 0)

+1 [0.5]

N

−1 [0.5][1-c]

N

[c]

Bob
Bob

−1

−1

+1

+1

D

U

D

U

D

U

D

U

D

U

Figure 3.3: Extensive form of the game in Example 3.3.

In order to define the concept of belief based equilibrium in this game, we specify

the common information H0
t and private information (LAt , L

B
t ) as follows:

H0
1 = ∅, LA1 = X1, LB1 = ∅

H0
2 = (Y1, U

A
1 ), LA2 = X2, LB2 = ∅
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Proposition 3.3. A belief-based equilibrium does not exist in the game of Example

3.3.

Intuitively, the reason that a belief-based equilibrium does not exist in the above

examples is that at t = 2, a CIB-belief-based strategy requires Bob to choose his

action based only on a compressed version of his information rather than the full

information. This compression does not hurt Bob’s ability to form a best response.

However, in an equilibrium, Bob needs to carefully choose from the set of optimal re-

sponses to induce Alice to play the predicted mixed strategy. Being unable to choose

different actions under different histories due to information compression makes Bob

unable to sustain an equilibrium. In the above examples, as in the example in [59],

payoff irrelevant information plays an essential role in sustaining the equilibrium.

The above examples illustrate a key difference among games and single/multi-

agent control problems: In a POMDP, there always exist belief-based optimal strate-

gies. In multi-agent control problems, there always exist CIB-belief based optimal

strategies [68]. However, in dynamic games, it does not suffice for a player to just

choose an optimal strategy. A player needs to carefully choose one of his best re-

sponse strategies to create incentives for other players. This choice can depend on the

parameters of the game beyond the common information based belief. As a result,

CIB-belief based equilibria may not exist.

3.4 Infeasibility of Belief-Based Sequential Decomposition:
Examples

Inspired by the common information based sequential decomposition of team

problems [68], researchers attempted to develop similar sequential decomposition

procedures for dynamic games [74, 92, 104]. In these procedures, the games are

solved backward in time through stage problems, and each stage problem at time t

is defined through the CIB belief bt and the parameters of the game at or after time

t, where bt serves as a summarization of the past before time t. If the procedure

succeeds in finding a solution, then the solution forms a belief-based equilibrium.

In the previous section, we have provided some examples where the belief-based

equilibria do not exist. In this section, we will show that even when belief-based

equilibria exist, they may not be found through standard application of belief-based

sequential decomposition procedures. Specifically, there can be multiple solutions

to a stage problem, but not all of them constitute a solution to the whole game.

Furthermore, a right solution for the stage problem can only be selected using pa-

rameters unrelated to the stage game. We illustrate these issues in the following

examples.
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Example 3.4. Consider a 2-stage game as follows: The initial state X1 is empty. At

time t = 1, Alice picks an action UA
1 ∈ {−1,+1}. Nature’s action W1 is distributed

on {−1,+1} with P(W1 = +1) = c ∈ (0, 1). The state at time t = 2 satisfies

X2 =

0 if UA
1 = W1 = +1

UA
1 otherwise

A common observation Y1 is generated according to

Y1 =

1 if UA
1 = W1 = +1

0 otherwise

i.e. the players are informed whether X2 is zero or not. We assume that HA
2 =

(X2, Y1, U
A
1 ) and HB

2 = Y1. At time t = 2, Bob picks an action UB
2 ∈ {L,R}. The

instantaneous rewards of Alice are given by

RA
1 = 0, RA

2 =


2 if X2 = +1, UB

2 = L

1 if X2 = −1, UB
2 = R

0 otherwise

while Bob’s instantaneous rewards are given by

RB
1 = 0, RB

2 =


1 if X2 = −1, UB

2 = L

1 if X2 = +1, UB
2 = R

0 otherwise

The game can be represented in extensive form as in Figure 3.4.

Alice

N

(0, 0)

(2, 0) (0, 1) (0, 1) (1, 0)

+1

−1

[c] [1− c]

L R L R

Bob

Figure 3.4: Extensive form of the game in Example 3.4.

It can be shown that the unique Nash equilibrium of the game is as follows:

Alice picks UA
1 = +1 with probability 1

2−c ; When Y1 = 0, Bob picks UB
2 = L with
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probability 1
3−2c

. Setting H0
1 = ∅, LA1 = LB1 = ∅, H0

2 = Y1, L
A
2 = UA

1 , L
B
2 = ∅,

the unique Nash equilibrium of the game satisfies the definition of a belief-based

equilibrium.

Notice that at equilibrium, Bob’s randomization probability at t = 2 depends on

c, which is a parameter for the state transition and observations at t = 1. On the

equilibrium path, the common information based belief (the probability distribution

on Alice’s action given Y1 = 0) is the same (uniform on {−1, 1}) regardless of the

value of c. Suppose that we have a sequential decomposition procedure which first

determines the stage strategies at stage 2 in a stage problem. The stage problem

is parameterized by the common information based belief and the instantaneous

rewards at t = 2. We observe that the parameter c does not appear in the stage

problem at t = 2, while the only stage 2 equilibrium strategy of the game does

depend on c.

We also have an example of zero-sum game with observable actions where similar

issues occur.

Example 3.5. Consider a 2-stage game as in Example 3.2 except that we modify

the instantaneous reward RA
1 to

RA
1 =

c if UA
1 = X1

0 otherwise

where c ∈ (0, 1). We also modify RB
1 to RB

1 = −RA
1 accordingly. The game can be

represented in extensive form as in Figure 3.5.

Alice

Alice

(1,−1)

(0, 0)

(c,−c)

(2 + c,−2− c)

(c,−c)

(2 + c,−2− c)

(1,−1)

(0, 0)

+1 [0.5]

N

−1 [0.5]

Bob Bob

−1

−1

+1

+1

D

U

D

U

D

U

D

U

Figure 3.5: Extensive form of the game in Example 3.5.

Using the same technique for the proof of the claim in Proposition 3.2, one can

show that the only BNE of the above game is the following: Alice chooses UA
1 = x1
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with probability 1
3

when X1 = x1 (x1 ∈ {−1,+1}); Bob chooses UB
2 = U with

probability 1−c
3

regardless of his observations. One can show that the unique BNE of

the game satisfies the definition of a belief-based equilibrium with H0
t , Lt as specified

in Example 3.2.

At equilibrium, Bob’s randomization probability at t = 2 depends on c, which is

a parameter for the instantaneous reward at t = 1. The common information based

belief (the belief on X2 given UA
1 ) is the same (+1 with probability 1

3
) for any given

c. In a sequential decomposition procedure of this game, for example, that of [74]

and [104], the parameter c does not appear in the stage problem at t = 2, while the

only stage 2 equilibrium strategy of the game does depend on c.

In the above examples, when using a CIB-belief-based sequential decomposition

procedure to solve for an equilibrium, in order to choose the right solution for stage

2 among many possible solutions, one needs to consider parameters that appear in

stage 1. This, however, defeats the purpose of a sequential decomposition procedure,

which aims for solving smaller problems in isolation before solving larger problems.

The above examples again illustrate a key difference among games and single/multi-

agent control problems: In POMDPs, optimal strategies can always be found through

solving a dynamic programming backwards in time, where stage problems can be

solved in isolation with one another. In multi-agent control problems, optimal strate-

gies can be found through a belief-based sequential decomposition procedure similar

to POMDPs [68]. However, in dynamic games, a player needs to carefully choose

one of his best response strategies to create incentives for other players. This choice

can depend on the parameters of the game that are not captured by the common

information based belief. As a result, one needs to select the solution to a stage prob-

lem based on parameters of earlier stages, which complicates the time dependence

of stage problems in a sequential decomposition procedure.

3.5 Conclusion

In this chapter, we showed that unlike in decentralized or centralized control prob-

lems, compressing the common information into strategy-dependent CIB beliefs in

dynamic games can result in non-existence of equilibria. The result stands in contrast

to the results on mutually sufficient information in Chapter 2, especially Example

2.5, where the compression is strategy-independent. Furthermore, we showed that

even when belief-based equilibria exist, they may not necessarily be obtained though

standard application of sequential decomposition algorithms. The results highlight

critical structural differences between strategy-dependent and strategy-independent
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compression schemes in dynamic games, and difference between dynamic games and

single/multi-agent control problems.

On a final note, while having many issues, CIB belief based compression and

sequential decomposition algorithms can still have value to practitioners, since the

algorithms yield an equilibrium when they succeed in finding a solution. The sequen-

tial decomposition procedures can also serve as a starting point for similar procedures

where additional parameters are introduced to the stage game. For this reason, we

will still propose and analyze a concept similar to belief-based equilibrium in Chapter

4.
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CHAPTER 4

Dynamic Games among Teams with Delayed

Intra-Team Information Sharing

4.1 Introduction

Dynamic games with asymmetric information appears in many socioeconomic

settings and has many engineering applications (See Chapter 1). In many settings

of dynamic games, agents can form groups, or teams [16, 91]. The agents in the

same group share a common goal but may have different information available to

them. This information asymmetry among teammates appears in many engineering

applications. In most of these applications, the state of the system changes rapidly,

and agents have to make real-time decisions. Moreover, the communication between

agents is either costly, or restricted by bandwidth or delay. Examples of these set-

tings include competing fleets of automated cars from rival companies [35] and the

DARPA Spectrum Challenge [36]. In the DARPA Spectrum challenge setup, indi-

vidual transceivers work in teams to maximize the sum throughput of their networks.

Teams compete with other teams, and members of the same team need to coordi-

nate and evolve their responses over time. In these settings, agents in the same team

aim to choose their strategy jointly to achieve team optimality (i.e. to choose the

joint strategy profile that maximizes the expected utility of the team over all joint

strategy profiles) rather than just person-by-person optimality (PBPO) 1. We study

a stylized model of such settings in this chapter.

It is worth stating that the games among teams problems we focus on in this

chapter are different from cooperative games in economics research (e.g. see [64]

Chapters 8-10). In cooperative game theory, the goal is to study the group formation

process among agents with different objectives. In our setting, groups are assumed

to be fixed and given, and we focus instead on determining the optimal actions and

1A team strategy is person-by-person optimal (PBPO) when each team member’s strategy is an
optimal response given other team members’ strategy profile.
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payoffs for each group. A unilateral deviation in our problems means one or more

agents in one group deviates, but the community structure of the agents stays the

same.

The key challenges in the study of dynamic games among single agents with

asymmetric information are: (i) Due to signaling2 in many instances, an agent’s

assessment of the status of the game at time t, hence her strategy at time t, depends

on the strategies of agents who acted before her3. Therefore, we cannot obtain the

standard sequential decomposition (that sequentially determines the components of

an equilibrium strategy profile) of the kind provided by the dynamic programming

algorithm for centralized stochastic control (where the agent’s optimal strategy at

any time t does not depend on past strategies) [46]. (ii) The domain of the agents’

strategies increases with time, as the agents acquire information over time. Thus,

the computational complexity of the agents’ strategies increases with time.

To address these challenges, one can look for compression based strategies that

can be sequentially computed. This creates an additional challenge: compression

based strategies could restrict the agents’ ability to sustain all or some of the equi-

librium payoffs of the game, as illustrated in Chapter 2 and Chapter 3.

In games among teams we have the additional challenge of coordination within

asymmetrically informed team members so as to achieve team optimality instead of

person-by-person optimality.

In this chapter we propose a general approach to characterize a subset of equilib-

rium strategy profiles for a class of dynamic games among teams with the following

goals: (i) to determine appropriate compression of information for each agent to base

their decision on; (ii) to develop a sequential decomposition procedure for potentially

solving the game. In addition, we would like to determine sufficient conditions for

the existence of such equilibrium strategies. Our approach is inspired by existing

results on teams (see Section 1.2.2) and dynamic games (see Section 1.2.3) as well

as our results on information states for dynamic games in Chapter 2.

4.1.1 Related Literature

There have been numerous works on teams/decentralized control problems (see

Section 1.2.2) and dynamic games (see Section 1.2.3). We will mention our differences

with the existing literature in this section.

2In contrast to signaling in teams, signaling in games is complicated by the fact that agents have
diverging incentives.

3Example of such strategy dependencies appear in [38] and in [71] for team problems with non-
classical information structure. Since these strategy dependencies are solely due to the problem’s
information structure, they also appear in dynamic games with non-classical information structure
(see [41]).
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Since in our setup the system state is not perfectly observed, our model is dis-

tinctly different from that of [58]. Furthermore, in contrast to [66], the CIB belief in

our model is strategy-dependent. The closest work to ours in terms of both model

and approach is [74]. The game model of [74] has multiple features that prevent us

from directly applying their results in our analysis in Section 4.5. We will make a

more detailed comparison in Section 4.3. Our work is also close in spirit to [59]. In

[59], the authors extend their work in [58] by considering games where actions are

observable but each agent has a fixed, private utility type. They propose Markov Se-

quential Equilibrium (MSE) as a solution concept for these games, where the agents

choose their actions based on a compression of their information along with their

beliefs on the types of other agents. The authors show by example that MSE do not

necessarily exist. As an alternative to MSE they propose a new concept obtained

from limits of ε-MSE as ε goes to 0.

Unlike either team problems or dynamic games among individual agents, games

among teams (in particular, ones with an underlying dynamic system) have not

been systematically studied in the literature. There are only a few works on special

models of games among teams. In [24] and [116], the authors proposed algorithms

to compute equilibria for zero-sum multiplayer extensive form games, where a team

of players plays against an adversary. In [1] the authors provide an example of

a zero-sum game which involves a team. However the players in this team have

symmetrical information, hence the team is equivalent to an individual player with

vector-valued actions. In [65] the authors briefly extend their results in [66] to games

among teams for a specialized model where the CIB belief is strategy independent. In

both [16] and [91] the authors solve a two-team zero-sum linear quadratic stochastic

dynamic game. In [13] the authors formulate and solve a game between two teams of

mobile agents. The model and information structure of [13] are different from ours.

Additionally, games among teams have been the subject of empirical research (see,

for example, [18, 17]). In our work, we study analytically a model of non zero-sum

dynamic stochastic games among teams where the CIB belief is strategy dependent.

4.1.2 Contribution

In this chapter, we consider a model of dynamic games among teams with asym-

metric information. We assume that each team is associated with a dynamical system

that has Markovian dynamics driven by the actions of all agents of all teams. The

state of each dynamical system is assumed to be vector-valued, where each com-

ponent represents an agent’s local state. Agents can observe their own local states

perfectly and communicate them within their respective teams with a delay of d. All

actions are public, i.e., observable by every agent in every team. We also assume
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the presence of public noisy observations of the system’s state. The instantaneous

reward of a team depends on the states and actions of all teams. Our model is a

generalization of the model in [74] to competing teams.

Our contributions are as follows:

• We identify appropriate compression of information for each agent. The com-

pression is achieved in two steps: (i) the compression of team-private informa-

tion that depends only on the team strategy; (ii) the compression of common

information that depends on the strategy of all agents. The compression steps

induce two special classes of strategies: (i) Sufficient Private Information Based

(SPIB) strategies, where agents only apply the first step of compression; and

(ii) Compressed Information Based (CIB) strategies, where agents apply both

steps of compression.

• Applying the result on unilaterally sufficient information we developed in Chap-

ter 2, we show that SPIB-strategy-based Bayes-Nash equilibria always exist,

and the set of equilibrium payoff profiles of such equilibria is the same as that

of all Bayes-Nash equilibria.

• Inspired by existing works on CIB belief-based approaches, we develop a se-

quential decomposition procedure for the game where agents play CIB strate-

gies. We show that any solution of the sequential decomposition (if it exists)

forms a Bayes-Nash equilibrium of the game.

• Similar to Chapter 3, we show that CIB-strategy-based Nash equilibria do not

always exist. However, we also identify some simple instances where CIB-

strategy-based equilibria are guaranteed to exist.

• We show that in a special case of our model, further compression of informa-

tion can be achieved without loss of equilibrium outcomes. Unlike the result

on SPIB strategies, the additional result is not an application of the result on

unilaterally sufficient information we developed in Chapter 2. The result high-

lights the limitation of the application of Chapter 2 to dynamic games among

teams.

4.1.3 Organization

We organize the rest of the chapter as follows: In Section 4.2 we formally present

our model and problem. In Section 4.3 we transform the game among teams into an

equivalent game among coordinators where each coordinator represents a team. In
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Section 4.4 we introduce our first step of compression of information and SPIB strate-

gies. We show the equivalence of sets of payoff profiles between SPIB-strategy-based

equilibria and all Bayes-Nash equilibria. In Section 4.5 we introduce the second step

of compression and CIB strategies, and we provide a sequential decomposition pro-

cedure for the game. We also show the general non-existence of CIB-strategy-based

equilibria and provide some conditions for existence. We present some extensions

and special cases of our results in Section 4.6. Then we discuss our results in Section

4.7. We conclude in Section 4.8. Proof details are provided in Appendix D.

4.2 Problem Formulation

4.2.1 System Model and Information Structure

We consider a finite horizon dynamic game among finitely many teams each

consisting of a finite number of agents, where agents have asymmetric information.

Let I = {1, · · · , I} denote the set of teams and T = {1, · · · , T} denote the set of

time indices. We use a tuple (i, j) to indicate the j-th member of team i. For a

team i ∈ I, let Ni = {(i, 1), · · · , (i, Ni)} denote team i’s members. Let N =
⋃
i∈I Ni

denote the set of all agents. At each time t ∈ T , each agent (i, j) selects an action

U i,j
t ∈ U

i,j
t , where U i,jt denotes the action space of agent (i, j) at time t. Each team is

associated with a vector-valued dynamical system Xi
t = (X i,j

t )(i,j)∈Ni which evolves

according to

Xi
t+1 = f it (X

i
t,Ut,W

i,X
t ), i ∈ I,

where Ut = (Uk,j
t )(k,j)∈N , and (W i,X

t )i∈I,t∈T is the noise in the dynamical system.

We assume that X i,j
t ∈ X

i,j
t for (i, j) ∈ N and t ∈ T .

We assume that the actions of all agents are publicly observed. Further, at time

t, after all the agents take actions, a public observation of team i’s state is generated

according to

Y i
t = `it(X

i
t,Ut,W

i,Y
t ), i ∈ I,

where Y i
t ∈ Y it , and (W i,Y

t )i∈I,t∈T are the observation noises.

The order of events occuring between time steps t and t+1 is shown in the figure

below:

t

Xi
t U i,j

t Y i
t

t+ 1

Xi
t+1
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We assume that the functions (f it )i∈I,t∈T , (`
i
t)i∈I,t∈T are common knowledge among

all agents. We further assume that (Xi
1)i∈I , (W

i,X
t )i∈I,t∈T , and (W i,Y

t )i∈I,t∈T are mu-

tually independent primitive random variables whose distributions are also common

knowledge among all agents. As a result, the teams’ dynamics (Xi
t)t∈T , i ∈ I, are

conditionally independent given the actions, and the public observations of differ-

ent teams’ systems are conditionally independent given the states and actions of all

teams.

At each time t, the following information is available to all agents:

H0
t = (Y1:t−1,U1:t−1),

where Yt = (Y i
t )i∈I ,Ut = (U i,j

t )(i,j)∈N . We refer to H0
t as the common information

among teams.

We assume that each agent (i, j) observes her own state X i,j
t . Further, agents in

the same team share their states with each other with a time delay d ≥ 1. Thus, at

time t, all agents in team i have access to H i
t , given by

H i
t = (Y1:t−1,U1:t−1,X

i
1:t−d), i ∈ I.

We call H i
t the common information within team i.

Finally, the information available to agent (i, j) at time t, denoted by H i,j
t , is

H i,j
t = (Y1:t−1,U1:t−1,X

i
1:t−d, X

i,j
t−d+1:t), (i, j) ∈ N .

This model captures the hierarchy of information asymmetry among teams and

team members. It is an abstract representation of dynamic oligopoly games [73, 74]

where each member of the oligopoly is a team.

Remark 4.1. Our model also captures the scenarios where a team has only one mem-

ber. Such a team can be incorporated in our framework by adding a dummy agent

to it and assuming a suitable internal communication delay d. If all teams are single-

member teams, then d can be arbitrarily chosen.

To illustrate the key ideas of the chapter without dealing with the technical

difficulties arising from continuum spaces, we assume that all the system random

variables (i.e. all states, actions, and observations) take values in finite sets.

Assumption 4.1. X i,j
t ,Y it ,U

i,j
t are finite sets for all (i, j) ∈ N , t ∈ T .

4.2.2 Strategies and Reward Functions

For games among teams, there are three possible types of team strategies one

could consider: (1) pure strategies, i.e. deterministic strategies; and (2) randomized
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strategies where team members independently randomize; (3) randomized strategies

where team members jointly randomize.

A pure strategy profile of a team is defined to be a collection of functions µi =

(µi,jt )(i,j)∈Ni,t∈T , where µi,jt : Hi,j
t 7→ U i,jt . Define Mi,j

t as the space of functions

from Hi,j
t to U i,jt . Let Mi =

∏
t∈T
∏

(i,j)∈NiM
i,j
t . Any randomized strategy of

a team, either of type 2 or type 3, can be described by a mixed strategy σi ∈
∆(Mi). In particular, if team members independently randomize, the mixed strategy

σi being used to describe the strategy profile will be a product of measures on

Mi,j =
∏

t∈T M
i,j
t for (i, j) ∈ Ni.

Team i’s total reward under a pure strategy profile µ = (µi,jt )(i,j)∈N ,t∈T is

J i(µ) = Eµ
[∑
t∈T

rit(Xt,Ut)

]
,

where the functions (rit)i∈I,t∈T , r
i
t : Xt × Ut 7→ R, representing the instantaneous

rewards, are common knowledge among all agents. Team i’s total reward under

a mixed strategy profile σ = (σi)i∈I , σ
i ∈ ∆(Mi), is then an average of the total

rewards under pure strategy profiles, i.e.

J i(σ) =
∑
µ∈M

(∏
i∈I

σi(µi)

)
J i(µ).

Note that while members of the same team may jointly randomize their strategies,

the randomizations of different teams are independent of each other.

Remark 4.2. For convenience of notation and proofs, for t ∈ {−(d− 1), · · · ,−1, 0},
we define X i,j

t = U i,jt = Y it = {0} and rit(Xt,Ut) = 0 for all i ∈ I and (i, j) ∈ N .

4.2.3 Solution Concept

In this work, a team refers to a group of agents that have asymmetric information

and the same objective. Because of the shared objective, members of the same team

can jointly decide on the strategy to use before the start of the game for the collective

benefit of the team. Therefore, when considering an equilibrium concept, we should

consider team deviations rather than individual deviations, i.e. multiple members

of the same team may decide to change their strategies. We consider randomized

strategies where team members jointly randomize. To implement an arbitrary mixed

strategy, a team can jointly choose a random strategy profile out of the distribution

specified by the mixed strategy at the beginning of the game. Example 4.1 at the

end of this section illustrates why such strategies must be considered when we study

games among teams.

The above discussion motivates the definition of a Team Nash equilibrium.
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Definition 4.1 (Team Nash Equilibrium). A mixed strategy profile σ∗ = (σ∗i)i∈I , σ
∗i ∈

∆(Mi), is said to form a Team Nash Equilibrium (TNE) if for all i ∈ I,

J i(σ∗i, σ∗−i) ≥ J i(σ̃i, σ∗−i)

for any mixed strategy profile σ̃i ∈ ∆(Mi).

Since stochastic dynamic games among teams with asymmetric information is

a relatively new class of dynamic games, we start with the simplest equilibrium

concept, which is the Team Nash Equilibrium.

The primary objective of this chapter is to characterize compression-based sub-

classes of Team Nash Equilibria.

A Motivating Example The following example illustrates the importance of

considering jointly randomized mixed strategies when we study games among teams.

Similar to the role mixed strategies play in games among individual players, the space

of jointly randomized mixed strategies contains the minimum richness of strategies

that ensures an equilibrium exists in games among teams. In particular, if we restrict

the teams to use independently randomized strategies, i.e. type 1 and type 2 strate-

gies described in Section 4.2.2, then an equilibrium may not exist. This example is

similar to the examples in [24, 116, 1] in spirit, despite the fact that in our example

the players in the same team have asymmetric information.

Example 4.1 (Guessing Game). Consider a two-stage game (i.e. T = {1, 2}) of

two teams I = {A,B}, each consisting of two players. The set of all agents is given

by N = {(A, 1), (A, 2), (B, 1), (B, 2)}. Let XA
t = (XA,1

t , XA,2
t ) ∈ {−1, 1}2 and Team

B does not have a state, i.e. XB
t = ∅. Assume U i,jt = {−1, 1} for t = 1, i = A or

t = 2, i = B and U i,jt = ∅ otherwise, i.e. Team A moves at time 1, and Team B

moves at time 2. At time 1, XA,1
1 and XA,2

1 are independently uniformly distributed

on {−1, 1}. Team A’s system is assumed to be static, i.e. XA
2 = XA

1 .

The rewards of Team A are given by

rA1 (X1,U1) = 1{XA,1
1 UA,11 XA,2

1 UA,21 =−1},

rA2 (X2,U2) = −1{XA,1
2 =UB,12 } − 1{XA,2

2 =UB,22 },

and the rewards of Team B are given by

rB1 (X1,U1) = 0,

rB2 (X2,U2) = 1{XA,1
2 =UB,12 } + 1{XA,2

2 =UB,22 }.
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Assume that there are no additional common observations other than past ac-

tions, i.e. Yt = ∅. We set the delay d = 2, i.e. agent (A, 1) does not know XA,2
t

throughout the game and a similar property is true for agent (A, 2). In this game,

the task of Team A is to choose actions according to their states at t = 1 in order

to earn a positive reward, while not revealing too much information through their

actions to Team B. The task of Team B is to guess Team A’s state.

It can be verified (see Appendix D.1 for a detailed derivation) that if we re-

strict both teams to use independently randomized strategies (including deterministic

strategies), then there exist no equilibria. However, there does exist an equilibrium

where Team A randomizes in a correlated manner, specifically, the following strat-

egy profile σ∗: At t = 1, Team A plays γA = (γA,1, γA,2) with probability 1/2, and

γ̃A = (γ̃A,1, γ̃A,2) with probability 1/2, where

γA,1(xA,11 ) = xA,11 , γA,2(xA,21 ) = −xA,21 ,

γ̃A,1(xA,11 ) = −xA,11 , γ̃A,2(xA,21 ) = xA,21

and at t = 2, the two members of Team B choose independent and uniformly dis-

tributed actions on {−1, 1}, independent of their action and observation history. In

σ∗, each agent (A, j) chooses a uniform random action irrespective of their states.

It is important to have (A, 1) and (A, 2) choose these actions in a correlated way

to ensure that they obtain the full instantaneous reward while not revealing any

information.

4.3 Game among Coordinators

In this section we present a game among individual players that is equivalent to

the game among teams formulated in Section 4.2.

We view the members of a team as being coordinated by a fictitious coordinator

as in [68]: At each time t, team i’s coordinator instructs the members of team i how

to use their private information, H i,j
t \H i

t , based on H i
t and her past instructions up

to time t−1 (see [68]). Using this vantage point, we can view the game among teams

as a game among coordinators, where the coordinators’ actions are the instructions,

or prescriptions, provided to individual agents. Notice that unlike agents’ actions,

coordinators’ actions (prescriptions) are not publicly observed. To proceed further

we formally define coordinators’ actions and strategies, and prove Lemma 4.1.

Definition 4.2 (Prescription). Coordinator i’s prescriptions at time t is a collection

of functions γit = (γi,jt )(i,j)∈Ni where γi,jt : X i,j
t−d+1:t 7→ U

i,j
t .

Define Ai,jt to be the space of functions that map X i,j
t−d+1:t to U i,jt . Define Ait =∏

(i,j)∈Ni A
i,j
t .
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Definition 4.3 (Pure Coordination Strategy). Define the augmented team-common

information of team i to be H
i

t = (H i
t ,Γ

i
1:t−1), where Γi

1:t−1 are the past prescriptions

assigned by the coordinator of team i. A pure coordination strategy of team i is a

collection of mappings νi = (νit)t∈T where νit : Hi

t 7→ Ait.

Definition 4.4. We call two strategies gi, g̃i of team i payoff-equivalent if the two

strategies generate the same total expected reward for all agents under all pure team

strategy profiles µ−i of teams other than i, that is, Jk(gi, µ−i) = Jk(g̃i, µ−i) for all

k ∈ I and all µ−i ∈M−i.4

The next lemma establishes the equivalence between pure coordination strategies

and pure strategies of a team.

Lemma 4.1. For every pure strategy µi of team i, there exists a payoff-equivalent

pure coordination strategy νi and vice versa.

Based on the above lemma, we can immediately conclude that a mixed strategy

for a team is payoff-equivalent to a mixed coordination strategy (i.e. a distribution

on the space of pure coordination strategies). As a result, Team Nash equilibria, as

defined in Section 4.2.3, will be equivalent to Nash equilibria of coordinators, where

the coordinators can use mixed coordination strategies.

Therefore, we can transform the game among teams to a game among individual

players, where each player is a (team) coordinator whose actions are prescriptions.

Following the standard approach in game theory, we now consider behavioral strate-

gies of the individuals (i.e. the coordinators) in this lifted game since, unlike mixed

strategies, behavioral strategies allow for independent randomizations across time

and therefore better facilitate a sequential decomposition of the dynamic game.

Definition 4.5 (Behavioral Coordination Strategy). A behavioral coordination strat-

egy of team i is a collection of mappings gi = (git)t∈T where git : Hi

t 7→ ∆(Ait).

Given that the coordinators have perfect recall, that is, at any time t, the coor-

dinator remembers all her observations up to time t, and all her “actions” (prescrip-

tions) up to time t − 1, we can conclude from Kuhn’s theorem [45] that behavioral

coordination strategies are payoff-equivalent to mixed coordination strategies.

Lemma 4.2. For any mixed coordination strategy ς i of coordinator i, there exists a

payoff-equivalent behavioral coordination strategy gi and vice versa.

Based on this equivalence, we can first define Nash equilibria for the coordinator’s

game and then restate our objective from Section 4.2.3.

4We do not restrict the strategy types of gi and g̃i in Definition 4.4. In particular, each of gi

and g̃i could be a coordination strategy or a team strategy.
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Definition 4.6 (Coordinators’ Nash Equilibrium). For any behavioral coordination

strategy profile g, define

J i(g) = Eg
[∑
t∈T

rit(Xt,Ut)

]
.

A behavioral coordination strategy profile g∗ =(g∗it )i∈I,t∈T where g∗it : Hi

t 7→
∆(Ait) is said to form a Coordinator’s Nash Equilibrium (CNE) if for any i ∈ I,

J i(g∗i, g∗−i) ≥ J i(g̃i, g∗−i)

for any behavioral coordination strategy profile g̃i : Hi

t 7→ ∆(Ait).

In other words, a coordination strategy profile g forms a CNE if the behavioral

strategies of coordinators form a Bayes-Nash equilibrium in the game of coordinators.

Given that we have lifted the game among teams to a game among coordinators,

we adjust the terminology for the information structure accordingly. From now on,

we will refer to the common information among all teams (i.e. H0
t ) as simply the

common information, while the information that members of team i share but is

not known to other teams (i.e. H
i

t\H0
t = (Xi

1:t−d,Γ
i
1:t−1)) will be referred to as the

private information of coordinator i. The information that is private to an agent

(i.e. X i,j
t−d+1:t) will be referred to as hidden information since none of the coordinators

observe this information.

Remark 4.3. The game among coordinators we obtain has a few differences from the

game model in [74]:

• Actions in [74] are publicly observable. As mentioned before, in our game

among coordinators, the “actions” (prescriptions) of the coordinators are pri-

vate information.

• The local state X i
t in [74] is perfectly observable by player i without delay. In

our game among coordinators, at time t, a coordinator can only observe her

local state up to time t− d.

• The transitions of local states in [74] are conditionally independent given the

actions, i.e. P(xt+1|xt, ut) =
∏

i P(xit+1|xit, ut). In our game among coordina-

tors, transition of local states are not independent given the prescriptions.

• The public observations of local states in [74] are conditionally independent

given the local states and actions, i.e. P(yt|xt, ut) =
∏

i P(yit|xit, ut). In our game

among coordinators, public observations of local states are not independent

given the prescriptions and local states.
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Due to the above differences, we cannot directly apply the results of [74] to the

game of coordinators.

The following example illustrates how to visualize games among teams from the

coordinators’ viewpoint.

Example 4.2. Consider a variant of the Guessing Game in Example 4.1 with the

same system model and information structure but different action sets and reward

functions. In the new game, Team A moves at both t = 1 and t = 2, with UA,jt =

{−1, 1} for t = 1, 2 and j = 1, 2. Team B moves only at time t = 2 as in the original

game. The new reward functions are given by

rA1 (X1,U1) = 0,

rA2 (X2,U2) = 1{XA,2
2 =UA,12 ,XA,1

2 =UA,22 } + 1{XA
2 6=UB

2 },

rB1 (X1,U1) = 0,

rB2 (X2,U2) = 1{XA
2 =UB

2 }.

In this example, Team A’s task is to guess its own state after a round of publicly

observable communication while not leaking information to Team B.

A Team Nash equilibrium (σ∗A, σ∗B) of this game is as follows: Team A chooses

one of the four pure strategy profiles listed below with equal probability:

• µA,11 (xA,11 ) = −xA,11 , µA,21 (xA,21 ) = xA,21 ,

µA,12 (u1, x
A,1
1:2 ) = uA,21 , µA,22 (u1, x

A,2
1:2 ) = −uA,11 ;

• µA,11 (xA,11 ) = −xA,11 , µA,21 (xA,21 ) = −xA,21 ,

µA,12 (u1, x
A,1
1:2 ) = −uA,21 , µA,22 (u1, x

A,2
1:2 ) = −uA,11 ;

• µA,11 (xA,11 ) = xA,11 , µA,21 (xA,21 ) = xA,21 ,

µA,12 (u1, x
A,1
1:2 ) = uA,21 , µA,22 (u1, x

A,2
1:2 ) = uA,11 ;

• µA,11 (xA,11 ) = xA,11 , µA,21 (xA,21 ) = −xA,21 ,

µA,12 (u1, x
A,1
1:2 ) = −uA,21 , µA,22 (u1, x

A,2
1:2 ) = uA,11 ;

while Team B choose UB
2 uniformly at random independent of U1. In words, from

Team B’s point of view, Team A chooses UA
1 to be a uniform random vector inde-

pendent of XA
1 . However the randomization is done in a coordinated manner: Before

the game starts, both members of team A randomly draw a card from two cards,

where one card says “lie” and the other says “tell the truth.” Both players then tell

each other what card they have drawn before the game starts. At time t = 1, both

players in Team A play the strategy indicated by their cards. At time t = 2, Team A

can then perfectly recover XA
1 from UA

1 and the knowledge about the strategy being

used at t = 1.

52



Now we describe Team A’s equilibrium strategy by the equivalent coordinator A’s

behavioral strategy. Use ng to denote the prescription that maps −1 to 1 and 1 to

−1. Use id to denote the identity map prescription, i.e. the prescription that maps

−1 to −1 and 1 to 1. Use cpb to denote the constant prescription that always instruct

individuals to play b ∈ {−1, 1}. The mixed strategy profile σ∗A is equivalent to the

following behavioral coordination strategy: At time t = 1, gA1 (∅) ∈ ∆(AA,11 ×AA,21 )

satisfies

gA1 (∅)(γA,11 , γA,21 ) =
1

4
∀γA,11 , γA,21 ∈ {ng, id}.

At time t = 2, gA2 : UA,11 × UA,21 ×AA,11 ×AA,21 7→ ∆(AA,12 ×AA,22 ) is a deterministic

strategy that satisfies

gA2 (u1, u2,ng, id) = dm(cpu2 , cp−u1),

gA2 (u1, u2,ng,ng) = dm(cp−u2 , cp−u1),

gA2 (u1, u2, id, id) = dm(cpu2 , cpu1),

gA2 (u1, u2, id,ng) = dm(cp−u2 , cpu1),

where dm : AA,12 ×A
A,2
2 7→ ∆(AA,12 ×A

A,2
2 ) represents the delta measure. In words, the

coordinator of Team A randomly chooses one of all four possible prescription profiles

at time t = 1. At time t = 2, based on the observed action and the prescriptions

chosen before, the coordinator of Team A directly assign actions to agents to instruct

them to recover the state from the actions at t = 1. Note that the behavioral

coordination strategy at t = 2 depends explicitly on the past prescription ΓA
1 in

addition to the realization of past actions. This is because the coordinator needs to

remember not only the agents’ actions, but also the rationale behind those actions

in order to interpret the signals sent through the actions.

4.4 Compression of Private Information

In this section, we identify a compression of a coordinator’s private information

that is sufficient for decision-making for the game of coordinators formulated in Sec-

tion 4.3. We refer to this compression as the Sufficient Private Information (SPI). We

restrict attention to Sufficient Private Information Based (SPIB) strategies, where

coordinators choose prescriptions based on their sufficient private information along

with the common information. As a result, the coordinators do not need full recall to

play SPIB strategies. We show that there always exists a Coordinator’s Nash equi-

librium where coordinators play SPIB strategies, and the set of equilibrium payoffs

of such equilibria is the same as the set of equilibrium payoffs for CNE. Therefore,
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the restriction to SPIB strategies does not hurt the coordinators’ ability to achieve

any payoff profile that is achievable in a CNE.

We proceed as follows. We first present a preliminary result that plays an impor-

tant role in the subsequent analysis. We then introduce our results. We then formally

define Sufficient Private Information and Sufficient Private Information Based (SPIB)

strategies. Finally, we establish the payoff-equivalence between SPIB-strategy-based

equilibria and general behavioral coordination strategies based equilibria.

4.4.1 A Preliminary Result

We show that the states and prescriptions of different coordinators are condition-

ally independent given the common information.

Lemma 4.3 (Conditional Independence). Under any behavioral coordination strat-

egy profile g and for each time t ∈ T , (Xi
1:t,Γ

i
1:t)i∈I are conditionally independent

accross coordinators given the common information H0
t , i.e.

Pg(x1:t, γ1:t|h0
t ) =

∏
i∈I

Pg(xi1:t, γ
i
1:t|h0

t ) ∀h0
t ∈ H0

t .

Furthermore, Pg(xi1:t, γ
i
1:t|h0

t ) depends on g only through gi.

As a result of Lemma 4.3, coordinator i’s estimation of other coordinators’ state

and prescriptions is independent of her own strategy and private information. In

other words, while coordinator i has access to both the common information and her

private information, her belief on the other coordinators’ private information (history

of states and prescription) is solely based on the common information.

4.4.2 Sufficient Private Information and SPIB Strategy

We now identify a compressed version of private information that is sufficient for

decision-making.

Recall that coordinator i’s information at time t consists of (Y1:t−1,U1:t−1,X
i
1:t−d,Γ

i
1:t−1).

To choose her prescriptions at time t, coordinator i needs to estimate her hidden in-

formation (i.e. Xi
t−d+1:t). When d = 1, the belief on hidden information is simply

constructed using (Xi
t−1,Ut−1) and the knowledge of the transition probabilities of

the underlying system. However, when d > 1, more information in addition to

(Xi
t−d,Ut−d:t−1) is needed to form the belief.

To illustrate this, we start with the case d = 2. When d = 2, the belief of

coordinator i on her hidden information would depend on the last prescription Γi
t−1

in addition to (Xi
t−2,Ut−2:t−1). This is due to the signaling effect of the action Ui

t−1:

since coordinator i knows Ui
t−1, she can infer something about Xi

t−1 through the
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prescription used to produce these actions (recall that U i,j
t−1 = Γi,jt−1(X i,j

t−2:t−1) for

(i, j) ∈ Ni). Hence at time t, coordinator i needs to take Γi
t−1 into account when

forming her belief on the hidden information.

Furthermore, for d = 2, when making a decision at time t, coordinator i can use

a compressed version of the prescription Γi
t−1 instead of Γi

t−1 itself. This is because

at time t, coordinator i has learned Xi
t−2 that she didn’t know at time t − 1. The

coordinator can then focus on the following essential question: given the knowledge

of Xi
t−2, what is the relationship between Xi

t−1 and Ui
t−1?

Similarly, for a general d > 1, to estimate the hidden information, each coordi-

nator needs to utilize her past (d − 1) prescriptions. Again, a coordinator can use

a compressed version of the past (d − 1) prescriptions, since she can incorporate

the additional information she knows at time t that she did not know back when

the prescriptions were chosen. Each coordinator can now focus on the relationship

between the unknown states and the known actions, given what is already known.

This motivates the definition of (d− 1)-step partially realized prescriptions PRPs.

Definition 4.7. The (d − 1)-step partially realized prescriptions5 (PRPs) for coor-

dinator i at time t is a collection of functions Φi
t := (Φi,j

t−l,l)(i,j)∈Ni,1≤l≤d−1, where

Φi,j
t−l,l = Γi,jt−l(X

i,j
t−l−d+1:t−d, ·)

is a function from X i,j
t−d+1:t−l to U i,jt−l.

Remark 4.4. When d = 1, the (d− 1)-step PRP Φi
t is empty by definition.

PRPs have smaller dimension than prescriptions. To illustrate this point, consider

the case where d = 2: A prescription γi,jt−1 can be represented as a table, where the

rows represent xi,jt−2 ∈ X
i,j
t−2, the columns represent xi,jt−1 ∈ X

i,j
t−1, and the entries

represent the corresponding action ui,jt−1 = γi,jt−1(xi,jt−2:t−1) to take. On the other hand,

the 1-step partially realized prescription φi,jt = γi,jt−1(xi,jt−2, ·) can be represented by

one row of the table of γi,jt−1 chosen based on the realization of X i,j
t−2.

When d > 1, in addition to (Xi
t−d,Ut−d:t−1,Φ

i
t), coordinator i also needs to use

Y i
t−d+1:t−1 to form a belief on her hidden information since Y i

t−d+1:t−1 can provide

additional insight on Xi
t−d+1:t−1 that (Xi

t−d,Ut−d:t−1,Φ
i
t) cannot necessarily provide.

The belief coordinator i has on her hidden information is summarized in the following

lemma.

Lemma 4.4. Suppose that the behavioral coordination strategy profile g = (gi)i∈I is

being played. Then the conditional distribution of Xi
t−d+1:t given H

i

t under g can be

5The (d − 1)-step PRPs are the same as the partial functions defined in the second structural
result in [67].
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expressed as a fixed function of (Y i
t−d+1:t−1,Ut−d:t−1,X

i
t−d,Φ

i
t), i.e.

(4.1) Pg(xit−d+1:t|h
i

t) = P i
t (x

i
t−d+1:t|yit−d+1:t−1, ut−d:t−1, x

i
t−d, φ

i
t) ∀hit ∈ H

i

t

for some function P i
t that does not depend on g.

Remark 4.5. The above result can be interpreted in the following way: Xi
t−d is

perfectly observed, hence coordinator i can discard Xi
1:t−d−1 which are irrelevant

information due to the Markov property. Since Xi
t−d+1:t−1 are not perfectly observed

by coordinator i, every public observation and action based upon Xi
t−d+1:t−1 are

important to coordinator i since it can help in estimating the state Xi
t−d+1:t−1. Note

that Φi
t encodes the essential information coordinator i needs to remember at time

t about her previous signaling strategy: how does Xi
t−d+1:t−1 (unknown) map to

Ui
t−d+1:t−1 (known)? With this piece of information, coordinator i can fully interpret

the signals sent through Ui
t−d+1:t−1.

We now formally define the Sufficient Private Information (SPI) and SPIB strate-

gies which will be used in the rest of the chapter.

Definition 4.8 (Sufficient Private Information). For a given d > 0, the Sufficient

Private Information (SPI) for coordinator i at time t is defined as Sit = (Xi
t−d,Φ

i
t).

6

Definition 4.9 (Sufficient Private Information Based Strategy). A Sufficient Private

Information Based (SPIB) strategy for coordinator i is a collection of functions

ρi = (ρit)t∈T , ρ
i
t : H0

t × S it 7→ ∆(Ait).

It can be easily verified that Sit can be sequentially updated, i.e., there exists a

fixed, strategy-independent function ιit such that

(4.2) Sit+1 = ιit(S
i
t ,X

i
t−d+1,Γ

i
t).

Therefore, a coordinator does not need full recall to play an SPIB strategy.

An SPIB strategy profile ρ = (ρit)i∈I,t∈T , ρ
i
t : H0

t × S it 7→ ∆(Ait) is called a

Sufficient Private Information Based Coordinators’ Nash Equilibrium (SPIB-CNE)

if ρ, seen as a profile of behavioral coordination strategies, forms a Coordinator’s

Nash equilibrium (see definition 4.6).

Theorem 4.6. At least one SPIB-CNE exists for the game among coordinators.

Furthermore, the set of equilibrium payoff profiles of SPIB-CNEs is the same as the

set of equilibrium payoff profiles for CNEs.

6The compression of private information of coordinators in our model is closely related to
Tavafoghi et al.’s [94] sufficient information approach. One can show that our sufficient private
information Si

t = (Xi
t−d,Φ

i
t) satisfies the definition of sufficient private information (Definition 4)

in [94] (hence we choose to use the same terminology).
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The above result can be seen as an application of the theory of unilaterally

sufficient information (USI) we developed in Chapter 2. In fact, it can be shown

that (H0
t , S

i
t) is USI for coordinator i in the game of coordinators.

4.5 Compression of Common Information

The SPIB strategies defined in the previous section use sufficient private infor-

mation instead of the entire private information for each coordinator. If the sets

Xt,Yt,Ut are time-invariant, the set of possible values of sufficient private informa-

tion used in SPIB strategies is also time-invariant. However, the common information

still increases with time and this means that the domain of SPIB strategies keeps

increasing with time. In order to limit the growing domain of SPIB strategies, we in-

troduce a subclass of SPIB strategies, namely Compressed Information Based (CIB)

strategies, where the coordinators use a compressed version of common information

instead of the entire common information. We show that this new class of strategies

satisfies a key best-response/closedness property. Based on this property we pro-

vide a backward inductive procedure that identifies an equilibrium in this subclass

of strategies if each step of this procedure has a solution. While equilibria in CIB

strategies may not exist in general (see example in Section 4.5.5), we identify classes

of games among teams where such equilibria do exist.

4.5.1 Compressed Common Information and CIB Strategy

In decentralized control problems [68, 94] and games among individuals [74, 93],

agents can compress their common information into beliefs on hidden and (sufficient)

private information for the purpose of decision-making. Similarly, we would like

to consider a subclass of SPIB strategies where each coordinator compresses the

common information H0
t to a belief on sufficient private information and hidden

information, i.e. P(Xk
t−d:t = ·,Φk

t = ·|H0
t ) for k ∈ I. Due to Lemma 4.4, these

beliefs can be constructed from P(Xk
t−d = ·,Φk

t = ·|H0
t ) and (Y k

t−d+1:t−1,Ut−d:t−1).

Therefore, we will consider strategies where coordinators use common information

based beliefs on the sufficient private information Skt = (Xk
t−d,Φ

k
t )k∈I along with the

uncompressed values of (Yt−d+1:t−1,Ut−d:t−1), instead of the whole H0
t .

We formalize the above discussion in the rest of this subsection.

Definition 4.10 (Belief Generation System). A Belief Generation System for coordi-

nator i consists of a sequence of functions ψi = (ψi,kt )k∈I,t∈T where ψi,kt :
(∏

l∈I ∆(S lt)
)
×

Yt−d+1:t × Ut−d:t 7→ ∆(Skt+1)
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Coordinator i can use this system to generate common information based beliefs

Πi,k
t ∈ ∆(Skt ) for all k ∈ I as follows:

• Πi,k
1 is the prior distribution of (Xk

−(d−1),Φ
k
1), i.e. a measure which assigns

probability 1 to the event (Xk
−(d−1) = 0,Φk

1 = φ̂k1), where φ̂k1 is the PRP that

always produces actions uk,jt = 0 for all (k, j) ∈ Nk, t ≤ 0 (see Remark 4.2);

• Πi,k
t+1 = ψi,kt ((Πi,l

t )l∈I ,Yt−d+1:t,Ut−d:t), t ≥ 1.

Πi,k
t represents coordinator i’s subjective belief on coordinator k’s sufficient private

information Skt . These beliefs along with (Yt−d+1:t−1,Ut−d:t−1) will serve as coordi-

nator i’s compressed common information.

Definition 4.11 (Compressed Common Information). We define coordinator i’s

Compressed Common Information (CCI) at time t as

Bi
t =

((
Πi,l
t

)
l∈I

,Yt−d+1:t−1,Ut−d:t−1

)
,

where (Πi,l
t )l∈I are generated using the belief generation system defined in Definition

4.10. Note that when d = 1, we have Bi
t = ((Πi,l

t )l∈I ,Ut−1).

We can write the belief update using Bi
t as Πi,k

t+1 = ψi,kt (Bi
t,Yt,Ut). With a slight

abuse of notation, we use ψit to represent the collection (ψi,kt )k∈I and write the belief

updates collectively as (Πi,l
t+1)l∈I = ψit(B

i
t,Yt,Ut).

We now define a subclass of strategies where coordinator i uses her CCI instead

of the entire common information.

Definition 4.12 (Compressed Information Based Strategy). Let Bt =
(∏

k∈I ∆(Skt )
)
×

Yt−d+1:t−1×Ut−d:t−1. A Compressed Information Based (CIB) strategy for coordina-

tor i is a pair (λi, ψi), where λi = (λit)t∈T is a collection of functions λit : Bt × S it 7→
∆(Ait), and ψi = (ψi,kt )k∈I,t∈T , ψi,kt : Bt × Yt × Ut 7→ ∆(Skt+1) is a belief generation

system as defined in Definition 4.10.

Under a CIB strategy, coordinator i uses her belief generation system to compress

common information into beliefs and then uses these beliefs along with (Yt−d+1:t−1,Ut−d:t−1, S
i
t)

to select a randomized prescription. Thus, a CIB strategy (λi, ψi) is equivalent to

an SPIB-strategy

ρit(h
0
t , s

i
t) = λit

((
πi,kt

)
k∈I

, yt−d+1:t−1, ut−d:t−1, s
i
t

)
∀h0

t ∈ H0
t ,∀sit ∈ S it

where (πi,kt )k∈I is generated from h0
t through the belief generation system defined in

Definition 4.10.

58



Remark 4.7. One advantage of CIB strategies is that at each time coordinator i

only needs to use her current CCI rather than the full common information (i.e.

H0
t ) which increases with time. Thus, if the sets Xt,Yt,Ut are time-invariant, the

mappings λit, ψ
i
t in a CIB strategy have a time-invariant domain.

Remark 4.8. We have not imposed any restriction on the mapping ψit in coordinator

i’s belief generation system (see Definition 4.10). Intuitively, however, one can imag-

ine that coordinator i has some prediction about others’ strategies and is rationally

using her prediction about others’ strategies to update her beliefs through the map-

ping ψit. In the following discussion, our focus will be on such “rational” ψit where

the notion of rationality will be captured by Bayes’ rule.

We end this subsection by pointing out that coordinator i’s belief generated from

ψi can be grouped into two parts: (Πi,−i
t )t∈T and (Πi,i

t )t∈T . The first part represents

what coordinator i believes about other coordinators’ SPI. The second part represents

what coordinator i thinks is the other coordinators’ belief on her own SPI.

4.5.2 Consistency and Closedness of CIB Strategies

As mentioned before, our interest in CIB strategies is motivated by the common

information belief based strategies that appeared in the solution of decentralized

control problems [68, 94] or games among individuals [66, 74]. The common beliefs

used in these prior works are compatible with Bayes’ rule (i.e. the beliefs can be

obtained using Bayes’ rule along with the knowledge of the system model and the

strategies being used). Inspired by these observations, we are particularly interested

in CIB strategies where the belief generation system is compatible with Bayes’ rule,

i.e. the beliefs generated by coordinator i using ψi agree with those generated using

Bayes’ rule along with the knowledge of the system model and the strategies being

used.

In the following discussion, we identify a key property of such Bayes’ rule com-

patible CIB strategies. To do so, we use the following technical definition.

Definition 4.13 (Consistency). Given λit : Bt × S it 7→ ∆(Ait), a belief generation

function ψ∗,it : Bt×Yt×Ut 7→ ∆(S it+1) is said to be consistent with λit if the following

holds: For all bt = ((πlt)l∈I , yt−d+1:t−1, ut−d:t−1) ∈ Bt, ψ∗,it (bt, yt, ut) is equal to the

conditional distribution of Sit+1 given the event (Yt = yt,Ut = ut) found using Bayes

rule (whenever Bayes rule applies), assuming that yt−d+1:t−1 and ut−d:t−1 are the

realization of recent observations and actions, Sit has prior distribution πit, and given

Sit = sit, Γi
t has distribution λit(bt, s

i
t). That is,

(4.3) [ψ∗,it (bt, yt, ut)](s
i
t+1) =

Υi
t(bt, y

i
t, ut, s

i
t+1)∑

s̃it+1
Υi
t(bt, y

i
t, ut, s̃

i
t+1)
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whenever the denominator of (4.3) is non-zero, where

Υi
t(bt, y

i
t, ut, s

i
t+1)

:=
∑
s̃it

∑
x̃it−d+1:t

∑
γ̃it :γ̃

i
t(x̃

i
t−d+1:t)=u

i
t

[
P(yit|x̃it, ut)1{sit+1=ιit(s̃

i
t,x̃

i
t−d+1,γ̃

i
t)}×

× λit(γ̃it|bt, s̃it)P i
t (x̃

i
t−d+1:t|yit−d+1:t−1, ut−d:t−1, s̃

i
t)π

i
t(s̃

i
t)
]

for all

bt = ((πlt)l∈I , yt−d+1:t−1, ut−d:t−1) ∈ Bt, yit ∈ Y it , ut ∈ Ut, sit+1 ∈ S it+1,

ιit is defined in (4.2) and P i
t is as described in Lemma 4.4.

For any index set Ω ⊂ I × T We say that ψ∗,i = (ψ∗,it )(i,t)∈Ω is consistent with

λi = (λit)(i,t)∈Ω if ψ∗,it is consistent with λit for all (i, t) ∈ Ω.

A CIB strategy (λi, ψi) for coordinator i is said to be self-consistent if ψi,i is

consistent with λi. Since self-consistency can be viewed as Bayes’ rule compatibility,

the beliefs (Πi,i
t )t∈T represents true conditional distributions of coordinator i’s SPI

given the common information under a self-consistent strategy.

Lemma 4.5. Let (λi, ψi) be a self-consistent CIB strategy of coordinator i. Denote

the behavioral strategy generated from (λi, ψi) as gi. Let h0
t ∈ H0

t be admissible under

gi1:t−1, then

Pgi1:t−1(sit, x
i
t−d+1:t|h0

t ) = πi,it (sit)P
i
t (x

i
t−d+1:t|yit−d+1:t−1, ut−d:t−1, s

i
t)

∀sit ∈ S it ∀xit−d+1:t ∈ X i
t−d+1:t

where πi,it is the belief obtained using ψi under the realization h0
t of common infor-

mation and P i
t is as described in Lemma 4.4.

Now, consider a game with two coordinators: Suppose that coordinator 1 plays

a self-consistent CIB strategy with belief generation system ψ1. Since the belief

Π1,1
t generated from ψ1 is a true conditional distribution on coordinator 1’s SPI,

coordinator 2 can use Π1,1
t as her belief on coordinator 1’s SPI. Further, coordinator

2 can use ψ1 to compute coordinator 1’s belief about coordinator 2’s SPI. This

suggests that coordinator 2 should mimic coordinator 1’s belief generation system

when coordinator 1’s strategy is self-consistent. This observation, along with results

from Markov decision theory, lead to the following crucial best-response property of

CIB strategies.

Lemma 4.6 (Closedness of CIB strategies). Suppose that all coordinators other than

coordinator i are using self-consistent CIB strategies. Let (λk, ψk) be the CIB strategy
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of coordinator k ∈ I\{i}. Suppose that ψj = ψk for all j, k ∈ I\{i}. Then, a best-

response strategy for coordinator i is a CIB strategy with the same belief generation

system as the other coordinators.

4.5.3 Interpretation and Discussion of Consistency and Closedness Prop-
erty

Lemma 4.6 imposes two conditions on the CIB strategies of coordinators other

than i, namely (I) they are self-consistent, and (II) their belief generation systems are

identical. In order to illustrate the significance of both conditions, we first describe

how coordinator i could form her best response when all coordinators other than i

are playing some generic CIB strategies that are not necessarily self-consistent or do

not have an identical belief generation system.

The problem of finding coordinator i’s best response to others’ CIB strategies can

be thought of as a stochastic control problem with partial observation. This suggest

that in order to form a best response at time t, coordinator i needs to compute (or

form beliefs on) the data that coordinators −i’s CIB strategies use, i.e. the CCI and

the SPI of other coordinators. Coordinator i also needs to estimate all the hidden

information in order to evaluate the payoffs. Coordinator i’s estimation task can

be divided into three sub-tasks: (i) to form a belief on her own hidden information

Xi
t−d+1:t, (ii) to recover coordinators −i’s CCI (Bk

t )k∈I\{i}, and (iii) to form a belief

on coordinators −i’s SPI and hidden information X−it−d+1:t.

For the first sub-task, coordinator i can compute the belief through the function

P i
t defined in Lemma 4.4 using (Y i

t−d+1:t−1,Ut−d:t−1, S
i
t) , without using any belief gen-

eration system. For the second sub-task, recall that Bk
t includes (Y i

t−d+1:t−1,Ut−d:t−1),

which coordinator i already knows. Thus, to complete the second task, coordinator i

can simply use (ψk)k∈I\{i} and the common information H0
t to compute all the beliefs

in (Bk
t )k∈I\{i}. Condition (I), namely that the CIB strategies for coordinators other

than i are self-consistent, ensures that coordinator i can also accomplish the third

sub-task using the beliefs in (Bk
t )k∈I\{i} due to Lemma 4.5. By using self-consistent

CIB strategies, coordinators −i effectively “invite” coordinator i to use the same

belief generation system as −i.
Thus, all of coordinator i’s sub-tasks can be done if she keeps track of her own

Sit and the CCI (Bk
t )k∈I\{i} used by others. Therefore, coordinator i can form a

best response with a strategy that chooses prescriptions based on (Bk
t )k∈I\{i} and Sit

at time t. Condition (II), namely that the belief generation systems are identical,

ensures that Bk
t ’s are identical for all k ∈ I\{i} and hence the best response described

above becomes a CIB strategy with the same belief generation system as the one used

by all coordinators other than i.
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Remark 4.9. Note the CIB strategy that is a best-response strategy for coordinator

i in Lemma 4.6 may not necessarily be self-consistent. However, the equilibrium

strategies in a CIB-CNE (which we will introduce later) will be self-consistent for all

players.

4.5.4 Coordinators’ Nash Equilibrium in CIB Strategies and Sequential
Decomposition

The fact that one of coordinator i’s best responses to others using CIB strategies

(with identical and self-consistent belief generation systems) is itself a CIB strat-

egy (with the same belief generation system as others) suggests the possibility of a

Coordinators’ Nash equilibrium (CNE) where all coordinators are using CIB strate-

gies with identical and self-consistent belief generation systems. We refer to such a

CNE as a CIB-CNE. More formally, a CIB-CNE is a CIB strategy profile (λ∗i, ψi)i∈I

where (i) all coordinators have the same belief generation system, i.e., for all for all

i ∈ I, ψi = ψ∗ for some ψ∗, (ii) for each k ∈ I, ψ∗,k is consistent with λk, and

(iii) for each i ∈ I, the CIB strategy (λ∗i, ψi) is a best response for coordinator i to

(λ∗k, ψk)k∈I\{i}.

Notice that in a CIB-CNE all coordinators are using the same belief generation

system, hence the CCI Bi
t (as defined in Definition 4.11) is the same for all coordina-

tors. We denote the identical Bi
t for all coordinators by Bt. Furthermore, when all

coordinators other than i are using fixed CIB strategies, (Bt, S
i
t) can be viewed as an

information state for coordinator i’s stochastic control problem (see proof of Lemma

4.6 for details). Based on this observation, we introduce a backward inductive com-

putation procedure for determining CIB-CNEs where Bt is used as an information

state. Our procedure decomposes the game into a collection of one-stage games,

one for each time t and each realization of Bt. These one-stage games are used to

characterize a CIB-CNE in a backward inductive manner.

Definition 4.14 (Stage Game). Given the value functions Vt+1 = (V i
t+1)i∈I , where

V i
t+1 : Bt+1 × S it+1 7→ R, a realization of the compressed common information bt =

(πt, yt−d+1:t−1, ut−d:t−1) where πt = (πit)i∈I , π
i
t ∈ ∆(S it), and update functions ψ∗t =

(ψ∗,it )i∈I , ψ
∗,i
t : Bt × Yt × Ut 7→ ∆(S it+1), we define a stage game for the coordinators

dynamic game as follows:

Stage Game SGt(Vt+1, bt, ψ
∗
t ):

• There are I players, each representing a coordinator.

• (Vt+1, bt, ψ
∗
t ) are commonly known.

62



• Nature chooses the state of the world Θt, given by

(4.4) Θt := (St,Xt−d+1:t,W
Y
t ),

where St = (Skt )k∈I .
7

• Player i observes Sit = sit.

• Player i’s belief on Θt is given by

βit(θ̃t|sit) = 1{s̃it=sit}
∏
k 6=i

πkt (s̃kt )×

×
∏
k∈I

P k
t (x̃kt−d+1:t|ykt−d+1:t−1, ut−d:t−1, s̃

k
t )P(w̃k,Yt ),

∀θ̃t = (s̃t, x̃t−d+1:t, w̃
Y
t ) ∈ St ×Xt−d+1:t ×WY

t .(4.5)

where P k
t is the belief function defined in Eq. (4.1).

• Player i selects a prescription Γi
t ∈ Ait as her action.

• Player i has utility

Ki
t(Θt,Γt) = rit(Xt,Ut) + V i

t+1(Bt+1, S
i
t+1),(4.6)

where

Uk,j
t = Γk,jt (Xk,j

t ) ∀(k, j) ∈ N ,
Bt+1 = ((Πk

t+1)k∈I , (yt−d+2:t−1,Yt), (ut−d+1:t−1,Ut)),

Πk
t+1 = ψ∗,kt (bt,Yt,Ut) ∀k ∈ I,
Y k
t = `jt(X

k
t ,Ut,W

k,Y
t ) ∀k ∈ I,

Sit+1 = ιit(S
i
t ,X

i
t−d+1,Γ

i
t)

Given the stage game SGt(Vt+1, bt, ψ
∗
t ), we define two associated concepts:

Definition 4.15 (IBNE Correspondence). Given the value functions Vt+1 = (V i
t+1)i∈I ,

where V i
t+1 : Bt+1 × S it+1 7→ R and belief update functions ψ∗t = (ψ∗,it )i∈I , ψ

∗,i
t :

Bt × Yt × Ut 7→ ∆(S it+1), the Interim Bayesian Nash equilibrium correspondence

IBNEt(Vt+1, ψ
∗
t ) is defined as the set of all λt = (λit)i∈I , λ

i
t : Bt × S it 7→ ∆(Ait) such

that

λit(bt, s
i
t) ∈ arg max

η∈∆(Ait)

∑
θ̃t,γ̃t

[
η(γ̃it)K

i
t(θ̃t, γ̃t)β

i
t(θ̃t|sit)

∏
k 6=i

λkt (γ̃
k
t |bt, s̃kt )

]
7Since Xt,Ut,Yt are finite sets, one can assume that WY

t also takes finite values without loss of
generality.
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∀bt ∈ Bt, sit ∈ S it ,∀i ∈ I,

where βit and Ki
t are defined using (V i

t+1, bt, ψ
∗
t ) in (4.5) and (4.6) respectively.

Definition 4.16 (DP Operator). Given a value function V i
t+1 : Bt+1×S it+1 7→ R and

a CIB strategy profile (λ∗t , ψ
∗
t ) at time t, where λ∗t = (λ∗it )i∈I , λ

∗i
t : Bt × S it 7→ ∆(Ait)

and ψ∗t = (ψ∗,it )i∈I , ψ
∗,i
t : Bt×Yt×Ut 7→ ∆(S it+1), the dynamic programming operator

DPi
t defines the value function at time t through

[DPi
t(V

i
t+1, λ

∗
t , ψ

∗
t )](bt, s

i
t) :=

∑
θ̃t,γ̃t

Ki
t(θ̃t, γ̃t)β

i
t(θ̃t|sit)

∏
k∈I

λ∗kt (γ̃kt |bt, s̃kt ),

where βit and Ki
t are defined using (V i

t+1, bt, ψ
∗
t ) in (4.5) and (4.6) respectively.

Theorem 4.10 (Sequential Decomposition). Let (λ∗i, ψ∗)i∈I be a CIB strategy profile

with identical belief generation system ψ∗ for all i ∈ I. If this strategy profile satisfies

the dynamic program defined below:

V i
T+1(·, ·) = 0 ∀i ∈ I;

and for t ∈ T

λ∗t ∈ IBNEt(Vt+1, ψ
∗
t );(4.7)

ψ∗t is consistent with λ∗t ;(4.8)

V i
t := DPi

t(V
i
t+1, λ

∗
t , ψ

∗
t ) ∀i ∈ I,

then (λ∗i, ψ∗)i∈I forms a CIB-CNE.

Remark 4.11. Note that (4.7) and (4.8) can be verified for each realization bt ∈ Bt
separately, i.e., one can check that λ∗t (bt, ·) is an IBNE of the stage game game

SGt(Vt+1, bt, ψ
∗
t (bt, ·)), and that ψ∗t (bt, ·) is consistent with λ∗t (bt, ·) for each bt.

4.5.5 Non-Existence of CIB-CNE: Example

We have shown in Theorem 4.6 that an SPIB-CNE always exists. However, a

CIB-CNE does not necessarily exist, even when each team contains only one member

(i.e. in games among individuals). We present below one example where CIB-CNEs

do not exist. This example is a reformulation of Example 3.2 into the model of this

chapter.

Example 4.3. Consider a 3-stage (i.e. T = {1, 2, 3}) dynamic game with two

players: Alice (A) and Bob (B). Each player forms a one-person team. Let XA
t ∈

{−1, 1} and XB
t ≡ ∅, i.e. Bob is not associated with a state. Let Yt = ∅, i.e. there
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is no public observation of the states. The initial state XA
1 is uniformly distributed

on {−1, 1}. At t = 1, (a) Alice can choose an action UA
1 ∈ {−1, 1} and Bob has no

actions to take; (b) the next state is given by XA
2 = XA

1 · UA
1 ; (c) the instantaneous

reward is given by

rA1 (X1,U1) = −rB1 (X1,U1) = c · 1{UA1 =+1},

where c ∈ (0, 1
3
).

At t = 2, (a) neither player has any action to take; (b) the state at next time

is given by XA
3 = XA

2 ; (c) the instantaneous rewards are 0 for both players; (This

stage is a dummy stage inserted in the game to alter the definition of the CCI at the

beginning of the last stage.)

At t = 3, (a) Alice has no action to take, and Bob chooses UB
3 ∈ {U,D}; (b) The

instantaneous reward rA3 (X3,U3) for Alice is given by

rA3 (−1,U) = 0, rA3 (−1,D) = 1

rA3 (+1,U) = 2, rA3 (+1,D) = 0

and rB3 (X3,U3) = −rA3 (X3,U3).

In a game where each team contains only one person, we can assume the delay d

to be any number (see Remark 4.1). In the next proposition, we view Example 4.3

as a game among teams with internal delay d = 1.

Proposition 4.1. There exist no CIB-CNE in the game described in Example 4.3.

Remark 4.12. One can provide an example for non-existence of CIB-CNE for any

d > 0 by inserting d−1 additional dummy stages (analogous to stage 2) into Example

4.3, and viewing it as a game among teams with internal delay d.

4.5.6 Subclasses Where CIB-CNE Exists

In this section we present two subclasses of the dynamic games described in

Section 4.2 where CIB-CNEs exist.

Signaling-Neutral Teams In this subsection we consider d = 1. One subclass

of games where CIB-CNEs exist is when the teams are signaling-neutral. In these

games, the agents are indifferent in terms of signaling to other teams, i.e. revealing

more or less information about their private information to the other teams does not

affect their utility. (Note that agents can always actively reveal information to their

teammates through their actions.)

We shall now describe the game:
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Definition 4.17. A team i whose state Xi
t can be recovered from (Yi

t,Ut) (i.e. for

every fixed ut, `
i
t(x

i
t, ut,W

i,Y
t ) has disjoint support for different xit ∈ X i

t ) is called a

public team. Otherwise, it is called private team.

For a public team i, the private state Xi
t−1 is effectively part of the common

information of all members of all teams at time t.

Definition 4.18 (Information Dependency Graph). The information dependency

graph G of a dynamic game is a directed graph defined as follows: The vertices

represent the teams. A directed edge i ← j is present if either the state transition,

the observation, or the instantaneous reward of team i at some time t depends directly

on either the state or the actions of team j. In other words, there is no directed edge

from j to i if and only if Xi
t+1 = f it (X

i
t,U

−j
t ,W i,X

t ), Yi
t = `it(X

i
t,U

−j
t ,W i,Y

t ) and

rit(Xt,Ut) = rit(X
−j
t ,U−jt ) for some functions f it , `

i
t, r

i
t for all t. Self loops are not

considered in this graph.

Theorem 4.13. Let d = 1. If every strongly connected component of the information

dependency graph G of a dynamic game consists of either (I) a single team, or (II)

multiple public teams, then a CIB-CNE exists.

Remark 4.14. The precedence relation among teams considered in Theorem 4.13 is

similar to the s-partition of teams that was presented and analyzed in [114].

When the condition in Theorem 4.13 is satisfied, all teams will be neutral in

signaling: When a private team i sends information, this information is only useful

to those teams whose actions do not affect team i’s utility. Public players are always

neutral in signaling since their state history is publicly available.

Notice that in Example 4.3, Alice (as a one-person team) is a private team while

Bob is a public team. The instantaneous reward of Bob at t = 3 depends on Al-

ice’s state XA
2 , while Alice’s instantaneous reward at t = 3 depends on Bob’s action.

Hence, Alice and Bob form a strongly connected component in the information de-

pendency graph.

Signaling-Free Equilibria In this section, we introduce another class of games

where CIB-CNE exists. These games are games-among-teams extensions of Game

M defined in [74]. We present the result for a general d > 0.

Theorem 4.15. A dynamic game that satisfies all of the following conditions has a

CIB-CNE:

(i) States are uncontrolled, i.e. Xi
t+1 = f it (X

i
t,W

i,X
t ).
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(ii) Observations are uncontrolled, i.e. Y i
t = `it(X

i
t,W

i,Y
t ).

(iii) Instantaneous rewards of team i can be expressed as rit(X
−i
t ,Ut).

Proof. See Appendix D.3 for a direct proof. Alternatively, one can first assume

that the teams share information with a delay of d = 0, then we can view a team

as one individual since team members have the same information. One can then

apply results for Game M in [74] to obtain an equilibrium where each player/team

plays a public strategy (i.e. a strategy that does not use private information), in

particular, a strategy where actions are solely based on the common information

based belief. Since public strategies can also be played when d > 0, we conclude that

the equilibrium we obtained is also an equilibrium for the original game.

4.6 Additional Results

4.6.1 Refinement of Coordinator’s Nash Equilibria

In the game among coordinators, one can also consider Coordinators’ Sequential

Equilibrium (CSE) [44] as a refinement of CNE. Coordinator’s sequential equilibrium

provides a refinement of Coordinator’s Nash Equilibrium by ruling out equilibrium

outcomes that rely on non-credible threats [27].

We present the definition of coordinators’ sequential equilibrium as follows.8

Definition 4.19 (Coordinators’ SE). Let g denote a behavioral coordination strat-

egy profile of all coordinators and K = (Ki
t)i∈I,t∈T , K

i
t : Hi

t × Ait 7→ R denote a

system of conjectures on reward-to-go. The strategy profile g is said to be sequen-

tially rational under K if for each i ∈ I, t ∈ T and each h
i

t ∈ H
i

t,

supp(git(h
i

t)) ⊂ arg max
γit∈Ait

Ki
t(h

i

t, γ
i
t)

K is said to be fully consistent with g if there exist a sequence of behavioral

strategy and conjecture profiles (g(n), K(n))∞n=1 such that

(1) g(n) is fully mixed, i.e. every action is chosen with positive probability at every

information set.

(2) K(n) is consistent with g(n), i.e.,

K(n),i
τ (h

i

τ , γ
i
τ ) = Eg(n)

[
T∑
t=τ

rit(Xt,Ut)
∣∣∣hiτ , γiτ

]
,

8In Appendix A we introduce several alternative characterizations of sequential equilibrium for
the general model of Chapter 2. The game among coordinators introduced in this chapter can be
seen as a special instance of the general model of Chapter 2. Definition 4.19 is the direct application
of Definition A.4 to the game of coordinators.
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for each i ∈ I, τ ∈ T , hiτ ∈ H
i

τ , γ
i
τ ∈ Aiτ .

(3) (g(n), K(n))→ (g,K) as n→∞.

A tuple (g,K) is said to be an sequential equilibrium if g is sequentially rational

under K and K is fully consistent with g.

A sequential equilibrium (g,K) is called an SPIB-CSE if g is an SPIB-strategy

profile.

Theorem 4.16. SPIB-CSE exists in the game among coordinators. Furthermore,

the set of equilibrium payoff profiles of SPIB-CSE is the same as that of all CSE.

4.6.2 A Special Case

Consider a special case of the model in Section 4.2 where both the evolution and

the observations of the local states of each member of each team are conditionally

independent given the actions, i.e.

X i,j
t+1 = f i,jt (X i,j

t ,Ut,W
i,j
t ),

Yi
t = (Y i,j

t )(i,j)∈Ni

Y i,j
t = `i,jt (X i,j

t ,Ut,W
i,j,Y
t ),

where (W i,j,X
t ,W i,j,Y

t )t∈T ,(i,j)∈N are mutually independent primitive random vari-

ables.

In this case, we show that the independence among team members’ state dynamics

enables us to consider equilibria where the coordinators assign prescriptions that map

X i,j
t to U i,j

t (instead of mapping X i,j
t−d+1:t to U i,j

t ). This is because, given H i
t , the belief

of member (i, j) about her teammates’ states is independent of X i,j
t−d+1:t. In other

words, one can replace the hidden information Xi
t−d+1:t with the sufficient hidden

information Xi
t.

9

Definition 4.20 (Simple Prescriptions). A simple prescription for coordinator i at

time t is a collections of functions γ̄it = (γ̄i,jt )(i,j)∈Ni , γ̄
i,j
t : X i,j

t 7→ U
i,j
t .

Lemma 4.7. Let gi be a behavioral coordination strategy of coordinator i. Then

there exists a behavioral coordination strategy ḡi payoff-equivalent to gi such that ḡi

only assigns simple prescriptions.

9The compression of hidden information to sufficient hidden information is similar to the shed-
ding of irrelevant information in [53].
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Given the above result, one can restrict attention to sufficient hidden information

based strategies where each coordinator i assigns simple prescriptions based on H
i

t.

With this restriction, results analogous to that of Sections 4.4, Section 4.5, and

Section 4.6.1 can be derived considering similar compression of private and common

information.

Notice that unlike the result on SPIB strategies, the above result cannot be

obtained by applying the theory of unilaterally sufficient information in Chapter

2. In Lemma 4.7, we are reducing the space of “actions” instead of compressing

information for the game of coordinators (even through it is compressing information

in the view of the original game of teams). Our result hence exemplifies a limitation

of Chapter 2: It cannot be used for compression of hidden information in games of

teams.

4.7 Discussion

4.7.1 Implementation of Behavioral Coordination Strategies

One can interpret behavioral coordination strategies as strategies with coordi-

nated randomization, i.e., the strategies are randomized, but all the team members

know exactly how this randomization is done. We note that one can view the main

purpose of randomization as to “confuse” other teams. As such, it is best to use

coordinated randomization where every team member knows what partial mapping

their teammate is using; such coordinated randomization is superior to private and

independent randomization by each individual member in a team: This is because

individual randomization can create information that are unknown to teammates,

while the same “confusion” effect to other teams can be achieved with coordinated

randomization.

To implement behavioral coordination strategies, a team can utilize a correlation

device which generates a random seed at each time t. Then each member (i, j)

of the team i can choose an action based on H i,j
t and present and past random

seeds generated by the correlation device, or equivalently, choose an action based on

(H i,j
t ,Γ

i
1:t−1) and the current random seed, where Γi

1:t−1 is sequentially updated. If

the behavioral coordination strategy is an SPIB strategy, then member (i, j) needs

to use (H0
t ,X

i
t−d,Φ

i
t, X

i,j
t−d+1:t) and current random seed to chose an action, where Φi

t

are sequentially updated. If the behavioral coordination strategy is a CIB strategy,

then member (i, j) needs to sequentially update Bt in addition to Φi
t.

In the absence of correlation devices accessible at every time, a behavioral coor-

dination strategy can also be implemented as its equivalent mixed strategy (recall

Lemma 4.1 and Lemma 4.2): Before the beginning of the game, the team can jointly
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pick a strategy profile in Gi randomly, according to a distribution induced from the

behavioral coordination strategy.

4.7.2 Stage Game: IBNE vs BNE

One can observe that the belief of the agents defined in the stage game (Definition

4.14) can be seen as a conditional distribution derived from the common prior

βt(θ̃t) =
∏
k∈I

[
πkt (s̃kt )P

k
t (x̃kt |ykt−d+1:t−1, ut−d:t−1, s̃

k
t )P(w̃k,Yt )

]
.(4.9)

However, in the aforementioned stage game we focus on the beliefs of agents instead

of a common prior, and we use Interim Bayesian Nash equilibrium (IBNE) as the

equilibrium concept instead of BNE. This is because, unlike a standard Bayesian

game with a common prior, the true prior of the stage game is dependent on the

actual strategy played in previous stages. The prior βt described in (4.9) may not be

a true prior, since some coordinator i may have already deviated from the strategy

prediction which πit’s were relying on. However, coordinator i is always trying to

optimize her reward given (bt, s
i
t), no matter πit(s

i
t) = 0 or not. Hence in this stage

game, we must consider the player’s belief and strategy for all possible realizations sit
under any strategy profile, not just those with positive probability under the prior in

(4.9). The corresponding equilibrium concept is Interim Bayesian Nash Equilibrium

instead of Bayes-Nash equilibrium. IBNE strengthens BNE by requiring the strategy

of an agent to be optimal under all private information realizations, including those

with zero probability under the common prior.

4.7.3 Choice of Compressed Common Information

In decentralized control [68] and certain settings of games among individuals

[66, 74], a common information based belief Πt on the state is usually used as the

compression of common information. However, in our setting we use a subset of

actions and observations in addition to the CIB belief as the compressed common

information. We argue below that this is necessary for our setting.

To illustrate the point, consider the case d = 1 and assume that all coordinators

use the same belief generation system and hence the same CCI (denoted by B∗t ). An

alternative for the CCI B∗t = ((Π∗,it )i∈I ,Ut−1) is the CIB belief Π̃∗t = (Π̃∗,it )i∈I , Π̃
∗,i
t ∈

∆(X i
t−1:t) where Π̃∗,it represents the belief on Xi

t−1:t based on common information.

One might argue that we can use Π̃∗t instead of B∗t through the following argument:

After we transform the game into games among coordinators, because of the full recall

of coordinator i, coordinator i’s belief (on other coordinators’ private information

and all hidden information) is independent of her behavioral coordination strategy
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g̃i. Hence coordinator i can always form this belief as if she was using the strategy

prediction g∗i no matter what strategy she is actually using.

However this argument can run into technical problems: A crucial step for Lemma

4.6 is Eq. (D.11), which establishes that coordinator i’s belief can be expressed as a

function of (B∗t ,X
i
t−1) for any behavioral coordination strategy g̃i coordinator i might

use. To use Π̃∗t alone as the information state, one needs to argue that coordinator

i’s belief on her hidden information, P(X i
t = ·|xit−1, ut−1), can be computed solely

through (π̃∗,it , x
i
t−1) without using ut−1. Through belief independence of strategy, one

may argue that

P(xit|xit−1, ut−1) = Pg∗i,g∗−i(xit|xit−1, ut−1)

= Pg∗,i,g∗,−i(xit|xit−1, y1:t−1, u1:t−1)

=
Pg∗,i,g∗,−i(xit, xit−1|y1:t−1, u1:t−1)

Pg∗,i,g∗,−i(xit−1|y1:t−1, u1:t−1)

=
π̃∗,it (xit−1, x

i
t)∑

x̃it
π̃∗,it (xit−1, x̃

i
t)
.(4.10)

However, the above argument is not always valid. It is only valid when the

denominator of (4.10) is non-zero, but it can be zero. One simple example is the

following: Let x̂it−1 ∈ X i
t−1 be some fixed state and ûit−1 ∈ X i

t−1 be some fixed action

profile. Let Âit−1 be the set of prescriptions that maps x̂it−1 to ûit−1. Suppose that the

strategy prediction g∗i is a behavioral coordination strategy satisfying the following:

g∗it−1(h
i

t−1)(γit−1) = 0 ∀hit−1 ∈ H
i

t−1, γ
i
t−1 ∈ Âit−1,

i.e. under g∗i, coordinator i never assigns any prescription that maps x̂it−1 to ûit−1.

If π̃∗,it is consistent with the strategy prediction g∗i, then∑
x̃it

π̃∗,it (x̂it−1, x̃
i
t) = Pgi,g−i(x̂it−1|h0

t ) = 0

if uit−1 = ûit−1. When coordinator i uses a strategy g̃i such that Xi
t−1 = x̂it−1,U

i
t−1 =

ûit−1 could happen with non-zero probability, coordinator i cannot use π̃∗,it to form

her belief on her hidden information. This is contrary to what we need in Eq. (D.11)

in the proof of Lemma 4.6, which states that the belief function is compatible with

any behavioral coordination strategy g̃i.

4.8 Conclusion and Future Work

We studied a model of dynamic games among teams with asymmetric informa-

tion, where agents in each team share their observations with a delay of d. Each
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team is associated with a controlled Markov Chain whose dynamics are controlled

by the actions of all agents. We developed a general approach to characterize a

subset of Nash equilibria with the following feature: At each time, each agent can

make their decision based on a compressed version of their information, instead of

the full information. We identified two subclasses of strategies: sufficient private in-

formation based (SPIB) strategies, which only compresses private information, and

compressed information based (CIB) strategies, which compresses both common and

private information. We showed that SPIB-strategy-based equilibria always exist

and can attain all the payoff profiles of Nash Equilibria. On the other hand, CIB

strategy-based equilibria do not always exist. We developed a backward inductive

sequential procedure, whose solution (if it exists) is a CIB strategy-based equilib-

rium. We characterized certain game environments where the solution exists. Our

results exemplify the discord between compression of information, ability of com-

pression based strategies to sustain all or some of the equilibrium payoff profiles,

and backward inductive sequential computation of equilibria in stochastic dynamic

games.

Moving forward, there are a few research problems arising from this work: (i)

discovering broader conditions for the existence of CIB-CNE in the model of this

chapter; (ii) developing an efficient algorithm which solves the dynamic program of

CIB-CNE (when a solution exists); (iii) determining minimal additional information

needed to be added to the CCI such that CIB-CNE (under the new CCI) is guaran-

teed to attain some or all of the equilibrium payoff profiles; (iv) exploring compression

schemes that jointly compress common and private information [94]; (v) defining a

notion of ε-CIB-CNE, analyzing its existence, and developing sequential computa-

tion procedures to find them; (vi) characterizing compression-based subclasses of

equilibrium refinements for games among teams.

Other future research directions include identifying a suitable compression of

information and developing a sequential decomposition for other models of games

among teams, for example (i) games with continuous state and action spaces (e.g.

linear quadratic Gaussian settings), and (ii) general models with non-observable

actions.
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CHAPTER 5

Dynamic Information Disclosure Games

5.1 Introduction

In many modern engineering and socioeconomic problems, such as cyber-security,

transportation networks, and e-commerce, information asymmetry is an inevitable

aspect that crucially impacts decision making. In these systems, agents need to de-

cide on their actions under limited information about the system and each other. In

many situations, agents can overcome (some of) the information asymmetry by com-

municating with each other. However, agents can be unwilling to share information

when agents’ goals are not aligned with each other, since having some information

that another agent does not know can be an advantage. In general, communications

between agents with diverging incentives cannot be naturally established without

rules/protocols that everyone agrees upon, and all agents suffer due to the break-

down of the information exchange (see Section 1.3.4 for an example).

In the economics literature, there are mainly two approaches to the above prob-

lem, namely mechanism design [63] and information design [40]. In mechanism de-

sign, less informed agents can extract information from more informed agents by

committing to how they will use the collected information beforehand. While in

information design, more informed agents can partially disclose information to less

informed agents. The more informed agents commit on the manner in which they

partially disclose their information. In both approaches, all agents can benefit from

the information exchange. For both approaches, one can classify the pertinent lit-

erature into two groups: (i) static settings, where both information disclosure and

decision making take place only once; and (ii) dynamic settings, where agents re-

peatedly disclose information and take actions over time on top of an ever changing

environment/physical system. Mechanism design and information design for the dy-

namic settings are more challenging than the static settings since agents need to

anticipate future information disclosure when taking an action. Mechanism design
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in dynamic settings has been studied extensively in the literature [9, 2, 75, 10].

In most of the works on information design in dynamic settings, the receivers are

assumed to be myopic [50, 21, 25, 83, 80, 11, 12]. This assumption greatly sim-

plifies receivers’ decision making. There have also been a few papers studying

information design problems where all agents in the system have long-term goals

[51, 101, 100, 23, 48, 85, 84, 86, 60, 95, 22]. Those papers typically assume that the

principal commits to her strategy for the whole game before the game starts. How-

ever, this assumption can be inappropriate for many applications. If the protocol

gives more informed agents the power to commit to a strategy for the whole time

horizon at the beginning of time, then the more informed agent can implement pun-

ishment strategies by threatening to withhold information if less informed agents do

not obey their “instructions” (see Example 5.1). In other words, the informed agents

could abuse their commitment power, which is initially designed for the purpose of

efficient information disclosure, to implement otherwise non-credible threats. This

is not a desirable outcome in many applications. For example, online map services

should not threaten to withhold service if a driver refuses to take the recommended

route. Similarly, public health authorities may want to use persuasion instead of

threats to encourage mask wearing during an epidemic.

In this chapter, we focus on the dynamic information design problem. Specifically,

we consider a dynamic game between a principal and a receiver on top of a Markovian

system. Both the principal and the receiver have long-term objectives. The principal

cannot directly observe the system state but can choose randomized experiments to

partially observe the system. The principal can choose any experiment, but she must

announce the experimental setup and results truthfully. The receiver takes action

based on the information she receives, which in turn influences the underlying system.

We show that there exist equilibria to this game where both agents play canonical

belief based (CBB) strategies, which use a compressed version of their information,

rather than full information, to choose experiments (for the principal) or actions

(for the receiver). We also provide a backward inductive procedure for solving for

an equilibria in CBB strategies. We investigate examples of such games to provide

insight to CBB-strategy-based equilibria.

The rest of Chapter 5 is organized as follows: In Section 5.1.1, we provide an

example where a principal can abuse its commitment power. We formally formulate

the problem in Section 5.2. We provide some preliminary results in discrete geometry

in Section 5.3. In Section 5.4 we state our main results. In Section 5.5 we investigate

some examples. We discuss about potential extensions of our result in Section 5.6.

Finally, we conclude in Section 5.7.

74



5.1.1 A Motivating Example

The following is an example where the principal can commit to otherwise non-

credible threats if given the power to commit the strategy for the whole game before

the game starts.

Example 5.1. Consider a two-stage game of two players: Alice being the principal,

and Bob the agent/receiver. The state of the system at time t is Xt. The states are

uncontrolled, and X1, X2 are i.i.d. uniform random variables on {0, 1}. Alice can

observe Xt at time t while Bob cannot. At stage t, Alice transmits message Mt to

Bob and Bob takes an action Ut ∈ {a, b, c, d}. The instantaneous payoff for both

players are given by

rA1 (0, a) = 1, rA1 (0, b) = 1.01, rA1 (0, c) = rA1 (0, d) = −1000

rA1 (1, c) = 1, rA1 (1, d) = 1.01, rA1 (1, a) = rA1 (1, b) = −1000

rB1 (0, a) = 500, rB1 (0, b) = 1, rB1 (0, c) = rB1 (0, d) = −1000

rB1 (1, c) = 500, rB1 (1, d) = 1, rB1 (1, a) = rB1 (1, b) = −1000

and rA2 (·, ·) = rB2 (·, ·) = rA1 (·, ·).
Suppose that Alice has the power to commit to a strategy (g1, g2) at the beginning

of the game. Then an optimal strategy for Alice is as following: Fully reveal the state

at t = 1 (i.e. M1 = X1). If Bob plays a or c at t = 1, then transmit no information

at t = 2. If Bob plays b or d at t = 1, then fully reveal the state at t = 2.

Then, Bob’s best response is the following: At t = 1: play b if M1 = 0, and play

d if M1 = 1. At time t = 2: play a if M2 = 0, and play c if M2 = 1. Alice effectively

“threatened” Bob to comply to her interest at time t = 1 by not giving information

at time t = 2, even though their interests are aligned at t = 2. In fact, without

posing a threat to Bob at time 2, Alice cannot convince Bob to play b or d at time

1.

5.2 Problem Formulation

There are two players: Alice, the principal, and Bob, the agent. The two players

are playing a dynamic game consisting of T stages. The game has an underlying

dynamic system with state Xt. At each time t, Bob chooses an action Ut based on

the information he has. Then, the system transits to the next state according to

Xt+1 = ϕt(Xt, Ut,Wt), t = 1, 2, · · · , T − 1

where ϕt is a fixed function and (Wt)
T
t=1 are noises. We assume thatX1,W1,W2, · · · ,WT−1

are mutually independent primitive random variables. The functions (ϕt)
T−1
t=1 and the
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distribution of the primitive random variables X1,W1,W2, · · · ,WT−1 are common

knowledge to both Alice and Bob throughout the game.

In this game, we assume that Alice cannot observe the state Xt directly. In

order to learn Xt, she must conduct experiments. However these experiments are

required to be public: Both Alice and Bob know the settings and the outcome of

the experiments. Specifically, at each time t, Alice chooses a randomized experiment

(or a “signal” by the terminology of [30][31]) σt : Xt 7→ ∆(Mt) and announces the

mapping σt to Bob. A measurement result Mt is then realized, observed by both

Alice and Bob.

Assumption 5.1. Xt,Ut,Mt are finite sets. |Mt| is sufficiently large.

The ordering of events happening at time t is given as the following:

1. Alice commits to a signal σt and announces it to Bob.

2. The measurement result Mt is realized to both Alice and Bob.

3. Bob takes an action Ut.

4. Xt transits to next state.

Let St be the space of signals. Alice uses a (pure) strategy to choose her signal gAt :

S1:t−1×M1:t−1×U1:t−1 7→ St. For convenience, define HA
t = S1:t−1×M1:t−1×U1:t−1.

Bob uses a (pure) strategy gBt : S1:t×M1:t×U1:t−1 7→ Ut. For convenience, define

HB
t = S1:t ×M1:t × U1:t−1.

Alice would like to maximize JA(g) = Eg
[∑T

t=1 r
A
t (Xt, Ut)

]
. Bob would like

to maximize JB(g) = Eg
[∑T

t=1 r
B
t (Xt, Ut)

]
. The functions (rAt , r

B
t )Tt=1 are common

knowledge.

The belief of Alice at time t is a function µAt :M1:t−1×S1:t−1×U1:t−1 7→ ∆(X1:t).

The belief of Bob at time t (after knowing σt and observing Mt) is a function µBt :

M1:t × S1:t × U1:t−1 7→ ∆(X1:t).

Definition 5.1 (PBE). A Perfect Bayesian Equilibrium is a pair (g, µ), where

• g is sequentially rational given µ.

• µ can be updated using Bayes law whenever the denominator is non-zero.

Inspired by the “mechanism picking game” defined in [20], we call the above game

a signal picking game.
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5.3 Preliminary Results: Discrete Geometry

In this section, we introduce some notations and results of discrete geometry that

we will utilize for our main result. The notations in this section refer to abstract

mathematical objects and are independent of other sections and chapters. When we

refer to polytopes, we assume that they are compact convex subsets of Rd where

d < +∞.

Definition 5.2. Let f be a real-valued function on a polytope Ω. f is called a

(continuous) piecewise linear function there exist polytopes C1, · · · , Ck such that

• f is linear on each Cj for j = 1, · · · , k;

• C1 ∪ · · · ∪ Ck = Ω.

Remark 5.1. Continuity of functions that satisfy Definition 5.2 can be established

by the Pasting Lemma.

Lemma 5.1. Let Ω1,Ω2 be polytopes. Let ` : Ω1 7→ Ω2 be an affine function and

f : Ω2 7→ R be a piecewise linear function. Then the function f ◦ ` : Ω1 7→ R is

piecewise linear.

We introduce the notion of a triangulation.

Definition 5.3. [19] Let Ω be a finite dimensional polytope. A triangulation γ of

Ω is a finite collection of simplices (i.e. convex hulls of a finite, affinely independent

set of points) such that

(1) If a simplex C ∈ γ, then all faces of C are in γ.

(2) For any two simplices C1, C2 ∈ γ, C1 ∩ C2 is a (possibly empty) face of C1.

(3) The union of all simplices in γ equals Ω.

Figure 5.1: Left: 2-D Polytope Ω. Center: Visualization of a triangulation on Ω.
Right: This is not a triangulation.
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For a function f : Ω 7→ R and a triangulation γ, let I(f, γ) denote the linear

interpolation of f based on the triangulation γ, i.e.

I(f, γ) := α1f(ω1) + · · ·+ αkf(ωk)

if ω ∈ C where C ∈ γ is a simplex with vertices ω1, · · · , ωk, and ω = α1ω1+· · ·+αkωk
for some α1, · · · , αk ≥ 0 such that α1 + · · ·+ αk = 1.

Figure 5.2: Left: 2-D Visualization of a triangulation γ labeled with the values of a
function f on the vertices of γ. Right: 3-D plot of I(f, γ).

Lemma 5.2. For any real-valued function f on a polytope Ω, I(f, γ) is a well-defined,

continuous piecewise linear function.

For each ω ∈ Ω and triangulation γ, we have shown that there exists a unique way

to represent ω as a convex combination of the vertices of one simplex from γ. One

can treat this convex combination as a finite measure. Denote this finite measure by

C(ω, γ). Then we have I(f, γ)(ω) =
∫
f(·)dC(ω, γ).

Definition 5.4. Let f be a real-valued function on Ω. The concave closure cav(f)

of f is defined as a function h such that

h(ω) := sup{z : (ω, z) ∈ cvxg(f)} ∀ω ∈ Ω

where cvxg(f) ⊂ Ω× R is the convex hull of the graph of f .

For certain functions f , their concave closures can be represented as triangulation

based interpolations of the original function. Define the set of such triangulations as

arg cav(f), i.e.

arg cav(f) := {γ is a triangulation of Ω : I(f, γ)(ω) = cav(f)(ω) ∀ω ∈ Ω}.

The following lemma identifies a class of functions with the above property.

Lemma 5.3. Let f1, · · · , fk, g1, · · · , gk be continuous piecewise linear functions on a

polytope Ω. For ω ∈ Ω, define

Υ(ω) = arg max
j=1,··· ,k

fj(ω),
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Figure 5.3: Top-left: 3-D plot of a function f (an upper semi-continuous piece-
wise constant function taking values in {0, 1, 2}). Top-right: Concave closure of f .
Bottom-left and bottom-right: 2-D visualization of two different triangulations in
arg cav(f).

h(ω) = max
j∈Υ(ω)

gj(ω).

Then arg cav(h) is non-empty, i.e. there exists a triangulation γ of Ω such that the

concave closure of h is equal to I(h, γ).

5.4 Main Results

Due to the assumption that Alice must conduct public experiments, the signal

picking game is a game with symmetric information. (The principal’s advantages lies

in the fact that she has the power to determine what experiment to conduct.) As

a result, due to standard results on strategy-independence of beliefs [46], the beliefs

of both players in this game are strategy-independent, i.e. there is a canonical belief

system. We describe this belief system as follows.

Definition 5.5. Define the Bayesian update function ξt : ∆(Xt)×St×Mt 7→ ∆(Xt)
by

ξt(xt|πt, σt,mt) :=
πt(xt)σt(mt|xt)∑
x̃t
πt(x̃t)σt(mt|x̃t)

for all (πt, σt,mt) such that the denominator is non-zero.

Definition 5.6. The canonical belief system is a collection of functions (κAt , κ
B
t )t∈T , κ

i
t :

Hi
t 7→ ∆(Xt), i ∈ {A,B} defined recursively through the following: Denote πit =

κit(h
i
t), i ∈ {A,B}, t ∈ T .
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• πA1 := π̂, the prior distribution of X1;

• πBt := ξt(π
A
t , σt,mt);

• πAt+1 := `t(π
B
t , ut), where `t : ∆(Xt)× Ut 7→ ∆(Xt+1) is defined by

`t(πt, ut)(xt+1) :=
∑
x̃t

πt(x̃t)P(xt+1|x̃t, ut).

One subclass of strategies for both Alice and Bob is canonical belief based (CBB)

strategies, i.e. player i chooses their signal (or action) at time t based solely on

Πi
t = κit(H

i
t) instead of the full H i

t . Let λAt : ∆(Xt) 7→ St be the CBB strategy of

Alice and λBt : ∆(Xt) 7→ Ut be the CBB strategy of Bob. Saying that player i is

playing CBB strategy λit is equivalent to saying that they are playing the strategy

git(h
i
t) = λit(κ

i
t(h

i
t)) ∀hit ∈ Hi

t.

With some abuse of terminology, the CBB strategy profile λ = (λAt , λ
B
t )t∈T , λ

A
t :

∆(Xt) 7→ St, λBt : ∆(Xt) 7→ Ut is said to be form a PBE if the strategy profile g

induced from λ, along with some belief system µ, forms a PBE.

Definition 5.7. A signal σt ∈ St is said to induce a distribution η ∈ ∆f (∆(Xt))
(i.e. η is a distribution with finite support on the set of distributions ∆(Xt)) from

πt ∈ ∆(Xt) [40] if for all π̃t ∈ ∆(Xt),

η(π̃t) =
∑
m̃t

1{π̃t=ξt(πt,σt,m̃t)}
∑
x̃t

σt(m̃t|x̃t)πt(x̃t).

A distribution η is said to be inducible from πt if there exist some signal σt that

induces η from πt.

Remark 5.2. In [40], the authors showed that a distribution is η ∈ ∆f (∆(Xt)) is

inducible from πt if and only if πt is the center of mass of η.

We propose a backward induction procedure to find a PBE where both players

use CBB strategies.

Theorem 5.3. Let

V A
T+1(·) = V B

T+1(·) := 0

For each t = T, T − 1, · · · , 1 and πt ∈ ∆(Xt), define

q̂it(πt, ut) :=
∑
x̃t

rit(x̃t, ut)πt(x̃t) + V i
t+1(`t(πt, ut)) ∀i ∈ {A,B};(5.1a)
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Υt(πt) := arg max
ut

q̂Bt (πt, ut);(5.1b)

v̂At (πt) := max
ut∈Υ(πt)

q̂At (πt, ut);(5.1c)

v̂Bt (πt) := max
ut

q̂Bt (πt, ut);(5.1d)

γt ∈ arg cav(v̂At );(5.1e)

V i
t (πt) := I(v̂it, γt) ∀i ∈ {A,B}.(5.1f)

Let λ∗Bt (πt) be any ut ∈ Ut that attains the maximum in (5.1c). Let λ∗At (πt) be any

signal that induces C(πt, γt) from πt. Then the CBB strategies (λ∗A, λ∗B) form (the

strategy part of) a PBE, and V A
1 (π̂), V B

1 (π̂) are the equilibrium payoffs for Alice and

Bob respectively in this PBE, where π̂ is the prior distribution of the initial state X1.

The following lemma states that the sequential decomposition procedure de-

scribed in Theorem 5.3 is well defined and always has a solution.

Lemma 5.4. Eq. (5.1) in Theorem 5.3 is well defined for all t. As a result, there

always exists some CBB strategy profile (λ∗A, λ∗B) that satisfies the condition specified

in Theorem 5.3.

Proof. We will prove by induction on time t.

Induction Invariant: V A
t , V

B
t are well-defined continuous piecewise linear func-

tions.

Induction Base: The induction variant is clearly true for t = T + 1 since

V A
T+1, V

B
T+1 are constant functions.

Induction Step: Suppose that the induction invariant holds for t+ 1.

• Step 1: For each ut ∈ Ut, using the fact that `t(πt, ut) is affine in πt, apply

Lemma 5.1 to show that qAt , q
B
t are continuous piecewise linear functions in πt.

• Step 2: Apply Lemma 5.3 to conclude that γt is well-defined.

• Step 3: Apply Lemma 5.2 to conclude that V A
t , V

B
t are continuous piecewise

linear functions.

5.4.1 Extension

In many real-world settings, the receivers have the option to quit the game at

any time, which is not a feature of our model in Section 5.2. However, our model

and results can be extended to finite horizon games where the receiver can decide to

terminate the game at any time before time T .
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Proposition 5.1. Let U t ⊂ Ut be the set of actions that terminates the game at time

t. If we define V i
t , q

i
t, λ
∗i
t for each i ∈ {A,B}, t ∈ T as in (5.1) except that (5.1a) is

changed to

q̂it(πt, ut) :=
∑
x̃t

rit(x̃t, ut)πt(x̃t) +

V i
t+1(`t(πt, ut)) if ut 6∈ U t

0 if ut ∈ U t

for i ∈ {A,B}. Then the CBB strategies (λ∗A, λ∗B) forms (the strategy part of) a

PBE, and V A
1 (π̂), V B

1 (π̂) are the equilibrium payoff for Alice and Bob respectively in

this PBE.

5.5 Examples

We implement the sequential decomposition algorithm of Proposition 5.1 in MAT-

LAB for binary state spaces (i.e. |Xt| = 2) and we run the algorithms on several

examples of the signal picking game.

Example 5.2. Consider the quickest detection game defined in [22]. In this game,

the underlying state Xt is binary and uncontrolled, with Xt = {1, 2}. State 2 is an

absorbing state, i.e.

P(Xt+1 = 2 | Xt = 2) = 1

while the system could jump from state 1 to state 2 at any time with probability p,

i.e.

P(Xt+1 = 2 | Xt = 1) = p

where p ∈ (0, 1).

Bob would like to detect the jump from state 1 to state 2 as accurately as possible.

At each time he has two options: Ut = j stands for declaring state j for j = 1, 2.

The instantaneous reward of Bob is given by

rAt (Xt, Ut) =


−1 if Xt = 1, Ut = 2

−c if Xt = 2, Ut = 1

0 otherwise

where c ∈ (0, 1). Once Bob declares state 2, the game ends immediately.

Alice, the principal, would like Bob to stay in the system as long as possible. The

instantaneous reward for Alice is

rBt (Xt, Ut) =

1 if Ut = 1

0 otherwise
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Setting p = 0.2, c = 0.1, we obtained the qBt and V A
t functions specified in

Proposition 5.1 in Figure 5.4, 5.5, and 5.6. The horizontal axis represents πt(1). In

the figures for V A
t functions, the vertices of the triangulation γt are labeled. The

vertices represent the set of beliefs that Alice could induce, and they completely

describe Alice’s CBB strategy. If the vertex is labeled with red circles, Bob will take

action Ut = 1 at this posterior belief. If it is labeled with blue triangles, Bob will

take action Ut = 2 at this posterior belief.

From the figures, one can see that at any stage, there is only one possible belief

that Alice would induce which leads to Bob quitting the game (i.e. Ut = 2). This

is consistent with Alice’s objective of keeping Bob in the system. Just like in static

information design problems [40, 8], when it is better off for Bob to declare change,

i.e., quit, under the current belief, Alice would promise to tell Bob that the state is

2 with some probability p̃ when the state is indeed 2 and tell Bob nothing otherwise.

In doing so, Bob would believe that the state is 1 with a higher probability when

Alice does not tell Bob anything. Alice chooses p̃ just to the point where Bob is

willing to stay in the system [40].

When t is close to T , the end of the game, Alice would only prefer to declare

state 2 if she believes that πt(1) is very small. This is due to the fact that “false

alarms” are more costly than delayed detection in this game. When t is further away

from T , the threshold of πt(1) for Alice to declare state 2 becomes larger. This is

since that when the game is close to end, Bob has the “safe” option to declare state

1 (at a small cost) until the end to avoid false alarms (which is costly). However,

this option becomes less preferable as the gap between t and the end of the game

gets longer.

As t becomes further away from T , Alice’s value function seems to converge. This

is due to the fact that Bob has the option to quit the game and staying in the game

is costly in general.

Example 5.3. Consider a game between a principal and a detector. In this game,

the underlying state Xt is binary and uncontrolled, with Xt = {−1, 1}. At any time,

the system could jump to the other state with probability p, i.e.

P(Xt+1 = −j | Xt = j) = p ∀j ∈ {−1, 1}

where p ∈ (0, 1).

Bob has three actions: Ut = j stands for declaring state j for j = −1, 1. Both

Ut = −1 and Ut = +1 terminates the game. In addition, Bob can choose to wait at
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a cost with action Ut = 0. The instantaneous reward of Bob is given by

rAt (Xt, Ut) =


1 if Xt = Ut

−c if Ut = 0

0 otherwise

where c ∈ (0, 1).

Alice, the principal, would like Bob to stay in the system as long as possible. The

instantaneous reward for Alice is

rBt (Xt, Ut) =

1 if Ut = 0

0 otherwise

Setting p = 0.2, c = 0.1, we obtained the qBt and V A
t functions specified in

Proposition 5.1 in Figure 5.7, 5.8, and 5.9. The horizontal axis represents πt(−1).

The figures follows the same interpretation as the figures in Example 5.2. (The

markers for actions are different from previous figures, but they are self-explanatory.)

Different from Example 5.2, the value functions and CBB strategies at equilibrium

oscillate with a period of 6 (given p = 0.2, c = 0.1) instead of converging as t gets

further away from the horizon T .

5.6 Discussion

Naturally, one may consider extending the above result to two settings: (a) when

a public noisy observation of the state is available in addition to Alice’s signal, (b)

when there are multiple receivers. However, our result is immediately extendable to

neither settings. This is since the techniques we use in this chapter depend heavily on

the piecewise linear structure of q̂ and V -functions in (5.1) as well as the preservation

of this piecewise linear structure under backward induction. Specifically, when the

functions q̂At , q̂
B
t are piecewise linear, the concave closure of v̂At can be expressed

as a triangulation based interpolation (through Lemma 5.3), which in turn allows

us to apply the same triangulation to v̂Bt thus ensuring the continuity and piecewise

linearity of V B
t . However, this structure does not appear in general in the extensions.

We describe an attempt to extend Theorem 5.3 to settings (a) and (b) in the

most straightforward way. In the case of setting (a), one needs to change the belief

update in (5.1a) from `t(πt, ut) to some other update function that incorporates the

public observation. However, unlike `t(πt, ut), the new update function may not be

linear in πt. Therefore this procedure cannot preserve piecewise linear properties.

In the case of setting (b), ut will represent a vector of actions of all receivers, one

needs to change the definition of Υt(πt) in (5.1b) to be the set of all mixed strategy
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Nash Equilibrium action profiles of the following stage game: Receiver i chooses an

action in U it , and receives payoff q̂it(πt, ut). In this setting, Υt(πt) is a set of (product)

probability measures on Ut rather than a subset of Ut. The new v̂At function can then

be given by

v̂At (πt) = arg max
ηt∈Υt(πt)

∑
ũt

qAt (πt, ũt)ηt(ũt)

However, in this case, q̂t-functions being continuous piecewise linear functions is

not enough to ensure that the value function V A
t , the concave closure of v̂At , possesses

the same property. To see that, consider the following hypothetical example. Suppose

that there are two receivers: Bob and Caroline. Let UBt = UCt = {1, 2} = Xt = {1, 2}.
Let ω = πt(−1). All functions of πt can be expressed as a function of ω. Suppose

that

qBt (πt, ut) =

1 if uBt = uCt

0 otherwise
, qCt (πt, ut) =


ω + 1 if uBt = 1, uCt = 2

1 if uBt = 2, uCt = 1

0 otherwise

.

Then Υt(πt) will be a singleton set for every πt ∈ ∆(Xt), where the only element

is such that Bob plays action 1 with probability 1
2+ω

and Caroline plays her two

actions with equal probability. Now suppose that

qAt (πt, ut) =

ω uBt = 1

0 otherwise
.

Then we have v̂At (πt) = ω
2+ω

for ω ∈ [0, 1]. Observe that v̂At is a strictly concave

function. Hence the concave closure of v̂At is just v̂At itself, which is not piecewise

linear.

5.7 Conclusion

In this chapter, we formulated a dynamic information disclosure game, called the

signal picking game, where the principal sequentially commit to a signal/experiment

to communicate with the receiver. We showed that there exist equilibria where both

the principal and the receiver make decisions based on the canonical belief instead

of their respective full information. We also provided a sequential decomposition

procedure to find such equilibria.

Unlike the strategy-dependent CIB belief based sequential decomposition proce-

dures of [74, 93, 104] as well as Chapter 4, the sequential decomposition procedure

of Theorem 5.3 always has a solution. The main reason is that the CIB belief in the
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signal picking game is strategy-independent. The result in this chapter again illus-

trates the critical difference between strategy-dependent and strategy-independent

compression of information in dynamic games.

There are a few future research problems arising from this work. The first problem

is to extend our result to infinite horizon games. The second problem is to extend

our result to settings with multiple senders. Based on our observations in Section

5.5, another future problem is to find conditions that guarantees the convergence

of value functions and strategies for finite horizon games with quit options as the

horizon goes to infinity.
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Figure 5.4: The qBt and V A
t functions for Example 5.2 with p = 0.2, c = 0.1 at times

t = T : T − 5.
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Figure 5.5: The qBt and V A
t functions for Example 5.2 with p = 0.2, c = 0.1 at times

t = T − 6 : T − 11.
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Figure 5.6: The qBt and V A
t functions for Example 5.2 with p = 0.2, c = 0.1 at times

t = T − 12 : T − 17.
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Figure 5.7: The qBt and V A
t functions for Example 5.2 with p = 0.2, c = 0.1 at times

t = T : T − 5.
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Figure 5.8: The qBt and V A
t functions for Example 5.2 with p = 0.2, c = 0.1 at times

t = T − 6 : T − 11.
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Figure 5.9: The qBt and V A
t functions for Example 5.2 with p = 0.2, c = 0.1 at times

t = T − 12 : T − 17.
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CHAPTER 6

Conclusion

In this thesis, we designed and analyzed different compression schemes for multi-

agent dynamic games under various models. In addition to the conclusions for each

individual chapter (see Sections 2.6, 3.5, 4.8, and 5.7), we would like to provide a

few remarks on some high-level takeaways and long-term future research directions.

6.1 High-Level Takeaways

We would like the readers to take away the following ideas from this thesis.

• In modern applications of multi-agent dynamic games, players have access to

huge amount of information. As a result, the strategy spaces can be massive.

Compression of information is crucial for players to efficiently implement their

strategies. Compression of information can also allow researchers to focus on

a subset of equilibria and determine those equilibria more efficiently.

• In dynamic games, compression of information can result in loss of some or

all equilibrium payoff profiles. Our results in this thesis highlight the conflict

between compression of information, ability of compression based equilibria

to preserve some or all of the equilibrium payoff profiles, and applicability of

sequential decomposition procedures of equilibria in stochastic dynamic games.

• Some control theoretic information compression schemes can be extended to

stochastic dynamic games. However, one needs to handle the extension with ex-

tra care. This is since dynamic games can be more complicated than single/multi-

agent control problems: A player in a dynamic game needs to carefully choose

among her multiple best response strategies in order to sustain equilibria with

other players. As a result, parameters that are irrelevant for determining an

optimal solution in a stochastic control problem may be relevant in determining

an equilibrium in a dynamic game.
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• Strategy-independent and strategy-dependent compression schemes are drasti-

cally different in the results they yield and the techniques they require for their

analyses. In short, it is easier to guarantee existence of equilibria and develop

sequential decomposition procedures under strategy-independent compression

schemes. On the other hand, strategy-dependent compression schemes, such

as the CIB belief based schemes, may result in non-existence of equilibria and

non-feasibility of sequential decomposition procedures.

6.2 Future Research Directions

The future research directions stemming from this thesis can be roughly divided

into two categories: (i) to extend our understanding of the types of compression

schemes that are viable in general games (ii) to design compression schemes and

provide solutions to multi-agent dynamic games for practitioners. Of course, the two

directions are closely related to each other, since the relevance of dynamic games to

applications as well as the need for practical algorithms gives importance to funda-

mental understandings on compression of information. In the first category we have

the following research directions.

• Information state for preservation of specific subsets of equilibrium payoffs:

In Chapter 2 we provided two definitions of information states. While mutually

sufficient information guarantees existence of compression-based equilibria, it

does not imply any property of the payoff profiles of such equilibria in com-

parison to the payoff profiles of non-compression-based equilibria. Unilaterally

sufficient information guarantees the preservation of the set of all equilibrium

payoffs, however its conditions are strict. Therefore, one future research direc-

tion is to provide sufficient conditions that are stronger then MSI but weaker

then USI for compression-based equilibria to attain a certain subset of all equi-

librium payoffs (e.g. Pareto frontier).

• Information state for dynamic games among teams:

In Chapter 2, we provided two definitions of information states for dynamic

game among individuals. In Chapter 4, we illustrated that one can transform

games among teams into an equivalent game among individuals, called the

game among coordinators. Therefore, in general, by converting games among

teams to games among coordinators, one can apply the results of Chapter 2

to games among teams to identify some information compression schemes that

are viable. However, such information compression schemes are limited to the

compression of common information among members of the same team, since
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that is the full information of a team’s coordinator by construction. If one

would like to compress each team member’s private information (that some

of all of their teammates do not know) as well, new theory needs to be de-

veloped. (In Section 4.6.2 of Chapter 2, we developed one such compression

scheme for a specific model on an ad hoc basis.) Therefore, one future research

direction stemming from this thesis is to develop sufficient conditions on infor-

mation compression for players involved in games among teams that guarantee

existence of equilibria or preservation of equilibrium payoffs.

• Strategy-dependent information states for dynamic games:

We formulated two definitions of information states for strategy-independent

compression of information. However, the conditions can be restrictive. More-

over, strategy-independent compression schemes are limited in any dynamic

game. Therefore, there needs to be definitions of strategy-dependent infor-

mation states for dynamic games that guarantee existence of equilibria and

preservation of sets of equilibria payoffs. In this direction, new techniques will

be needed to handle compression mappings that map to uncountable spaces.

• Approximate information state for dynamic games:

Just like approximately optimal strategies in control problems, approximate

equilibria in dynamic games are worth considering when exact equilibria are

intractable. To accommodate that, one can define approximate information

states for dynamic games in a similar manner to the definition of approximate

information states for control problems [90].

• Information compression for correlated equilibria:

The concept of correlated equilibrium is introduced by Aumann [3] as a gener-

alization of Nash Equilibrium where players can base their decision on a private

observation of a public signal. As a result, players can obtain a larger set of

equilibrium payoff profiles than that of Nash equilibrium. In practice, corre-

lated equilibria can be implemented by introducing a trusted mediator into the

game to coordinate the agents’ actions. Researchers have been applying the

concept of correlated equilibrium to dynamic games (see, for example, [109]).

One future direction stemming out from this thesis is to understand the com-

pression of information in dynamic games for correlated equilibria, or any other

concepts involving a mediator/mechanism designer/principal in the game.

In the second category, we have the following directions to pursue.
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• Identification of instances where equilibria can be obtained from sequential

decomposition

In Chapter 3 we showed that belief-based equilibria may not exist in general,

and even when they exist, they may not be captured by a sequential decomposi-

tion algorithm. However, it is possible that in some special class of games, there

exist belief-based equilibria, and those equilibria can be found through some

sequential decomposition procedure. One future research direction is to iden-

tify such instances and develop efficient sequential decomposition algorithms

to solve for equilibria in those instances.

• Sequential decomposition procedures based on compression of common infor-

mation:

We have seen in Chapter 3 that the CIB belief could not facilitate a sequential

decomposition algorithm that guarantees the existence of a solution. This is

since players need to fine tune their randomization probabilities to calibrate

the incentive of other players. One future research direction is to design com-

pression schemes of common information that contains the CIB belief as well

as some parameters for incentive calibration, with the objective of establishing

a sequential decomposition algorithm based on such compression.

• Reinforcement learning for dynamic games:

Our dynamic games among teams results assume that the agents knows the

specification of the model. However, in many real-world scenarios, agents are

not fully aware of the specifics of the model. Agent oftentimes need to learn the

parameter of the model and make decisions at the same time. To accommodate

this need, we aim to develop approaches to dynamic games among teams where

agents can base their decisions solely on the data without the knowledge of the

model or with partial knowledge of the model. We aim to identify model

independent compression of information for the agents to base their decisions

on, and develop a sequential decomposition procedure based on it.
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[9] Dirk Bergemann and Juuso Välimäki. The dynamic pivot mechanism. Econo-
metrica, 78(2):771–789, 2010.
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[65] Ashutosh Nayyar and Tamer Başar. Dynamic stochastic games with asymmet-
ric information. In 2012 IEEE 51st IEEE Conference on Decision and Control
(CDC), pages 7145–7150. IEEE, 2012.

[66] Ashutosh Nayyar, Abhishek Gupta, Cedric Langbort, and Tamer Başar. Com-
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[78] Jérôme Renault. The value of Markov chain games with lack of information
on one side. Mathematics of Operations Research, 31(3):490–512, 2006.

[79] Jérôme Renault. The value of repeated games with an informed controller.
Mathematics of Operations Research, 37(1):154–179, 2012.
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[85] Muhammed O Sayin and Tamer Başar. Dynamic information disclosure for
deception. In 2018 IEEE Conference on Decision and Control (CDC), pages
1110–1117. IEEE, 2018.

[86] Muhammed O Sayin and Tamer Başar. On the optimality of linear signaling to
deceive Kalman filters over finite/infinite horizons. In International Conference
on Decision and Game Theory for Security, pages 459–478. Springer, 2019.

[87] Reinhard Selten. Reexamination of the perfectness concept for equilibrium
points in extensive games. International Journal of Game Theory, 4(1):25–55,
1975.

[88] Lloyd S Shapley. Stochastic games. Proceedings of the national academy of
sciences, 39(10):1095–1100, 1953.

[89] Sylvain Sorin. A first course on zero-sum repeated games, volume 37. Springer
Science & Business Media, 2002.

[90] Jayakumar Subramanian, Amit Sinha, Raihan Seraj, and Aditya Mahajan.
Approximate information state for approximate planning and reinforcement
learning in partially observed systems. arXiv preprint arXiv:2010.08843, 2020.

[91] Tyler Summers, Changyuan Li, and Maryam Kamgarpour. Information struc-
ture design in team decision problems. IFAC-PapersOnLine, 50(1):2530–2535,
2017.

[92] Hamidreza Tavafoghi. On design and analysis of cyber-physical systems with
strategic agents. PhD thesis, University of Michigan, Ann Arbor, 2017.

[93] Hamidreza Tavafoghi, Yi Ouyang, and Demosthenis Teneketzis. On stochastic
dynamic games with delayed sharing information structure. In 2016 IEEE 55th
Conference on Decision and Control (CDC), pages 7002–7009. IEEE, 2016.

[94] Hamidreza Tavafoghi, Yi Ouyang, and Demosthenis Teneketzis. A unified
approach to dynamic decision problems with asymmetric information: Non-
Strategic agents. IEEE Transactions on Automatic Control, March 2022. to
appear.

104



[95] Hamidreza Tavafoghi and Demosthenis Teneketzis. Informational incentives
for congestion games. In 2017 55th Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton), pages 1285–1292. IEEE, 2017.

[96] Demosthenis Teneketzis. On the structure of optimal real-time encoders and
decoders in noisy communication. IEEE Transactions on Information Theory,
52(9):4017–4035, 2006.

[97] Demosthenis Teneketzis and Yu-Chi Ho. The decentralized Wald problem.
Information and Computation, 73(1):23–44, 1987.

[98] Demosthenis Teneketzis and Pravin Varaiya. The decentralized quickest de-
tection problem. IEEE Transactions on Automatic Control, 29(7):641–644,
1984.

[99] Robert R Tenney and Nils R Sandell. Detection with distributed sensors. IEEE
Transactions on Aerospace and Electronic systems, AES-17(4):501–510, 1981.

[100] B. Tolwinski. Closed-loop Stackelberg solution to a multistage linear-quadratic
game. Journal of Optimization Theory and Applications, 34(4):485–501, 1981.

[101] B. Tolwinski. A Stackelberg equilibrium for continuous-time differential games.
In The 22nd IEEE Conference on Decision and Control, pages 675–681, 1983.

[102] John N Tsitsiklis. Decentralized detection. Advances in Statistical Signal Pro-
cessing, pages 297–344, 1993.

[103] Pravin Varaiya and Jean Walrand. Causal coding and control for Markov
chains. Systems & control letters, 3(4):189–192, 1983.

[104] Deepanshu Vasal, Abhinav Sinha, and Achilleas Anastasopoulos. A system-
atic process for evaluating structured perfect Bayesian equilibria in dynamic
games with asymmetric information. IEEE Transactions on Automatic Con-
trol, 64(1):81–96, 2019.

[105] Venugopal V Veeravalli. Decentralized quickest change detection. IEEE Trans-
actions on Information theory, 47(4):1657–1665, 2001.

[106] Venugopal V Veeravalli, Tamer Başar, and H Vincent Poor. Decentralized
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[115] Serdar Yüksel and Tamer Başar. Stochastic networked control systems: Sta-
bilization and optimization under information constraints. Springer Science &
Business Media, 2013.

[116] Youzhi Zhang and Bo An. Computing team-maxmin equilibria in zero-sum
multiplayer extensive-form games. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(02):2318–2325, 2020.
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APPENDIX A

Auxiliary Results for Dynamic Games

A.1 Information State of Single-Agent Control Problems

In this section we consider single-agent Markov Decision Problems and develop

auxiliary results. This section is a recap of [54] with more detailed results and proofs.

The notations used in this section is independent from Chapter 2.

Let Xt be a controlled Markov Chain controlled by action Ut with initial distri-

bution ν1 ∈ ∆(X1) and transition kernel P = (Pt)t∈T , Pt : Xt × Ut 7→ ∆(Xt+1). Let

r = (rt)t∈T , rt : Xt × Ut 7→ R be a collection of instantaneous reward functions. A

Markov Decision Problem is denoted by a tuple (ν1, P, r).

For a Markov strategy g = (gt)t∈T , gt : Xt 7→ ∆(Ut), we use Pg,ν1,P and Eg,ν1,P

to denote the probabilities of events and expectations of random variables under

the distribution specified by controlled Markov Chain (ν1, P ) and strategy g. When

(ν1, P ) is fixed and clear from the context, we use Pg and Eg respectively.

Define the total expected reward in the MDP (ν1, P, r) under strategy g by

J(g; ν1, P, r) := Eg,ν1,P
[

T∑
t=1

rt(Xt, Ut)

]

Define the value function and state-action quality function by

Vτ (xτ ;P, r) := max
gτ :T

Egτ :T ,P
[

T∑
t=τ

rt(Xt, Ut)|xτ

]
Kτ (xτ , uτ ;P, r) := rτ (xτ , uτ ) +

∑
x̃τ+1

Vτ+1(x̃τ+1)Pτ (x̃τ+1|xτ , uτ )

Definition A.1. Let Qt = κt(Xt) for some function κt. Qt is called an information

state for (P, r) if there exist functions PQ
t : Qt × Ut 7→ ∆(Qt+1), rQt : Qt × Ut 7→ R

such that [54]
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(1) Pt(qt+1|xt, ut) = PQ
t (qt+1|κt(xt), ut); and

(2) rt(xt, ut) = rQt (κt(xt), ut)

If Qt is an information state, then Qt is also a controlled Markov Chain with

initial distribution νQ1 ∈ ∆(Q1) and transition kernel PQ = (PQ
t )t∈T , where

νQ1 (q1) =
∑
x1

1{q1=κ1(x1)}ν1(x1)

The tuple (νQ1 , P
Q, rQ) defines a new MDP. For a Q-based strategy ρ = (ρt)t∈T , ρt :

Qt 7→ ∆(Ut), hence the J, V,K functions can be defined similarly for the new MDP.

We state the following standard result (see, for example, Section 2 of [90]).

Lemma A.1. Let Qt = κt(Xt) be an information state for (P, r). Then

(1) Vt(xt;P, r) = Vt(κt(xt);P
Q, rQ) for all xt

(2) Kt(xt, ut;P, r) = Kt(κt(xt), ut;P
Q, rQ) for all xt, ut.

Definition A.2. Let g be a Markov strategy, an S-based strategy ρ is said to be

associated with g if

ρt(qt) = Eg,ν1,P [gt(Xt)|qt](A.1)

whenever Pg,ν1,P (qt) > 0.

Lemma A.2 (Policy Equivalence Lemma). Let (ν1, P, r) be an MDP. Let Qt be an

information state for (P, r). Let an Q-based strategy ρ be associated with a Markov

strategy g, then

(1) Pg,ν1,P (qt) = Pρ,ν1,P (qt) for all qt ∈ Qt and t ∈ T ;

(2) J(g; ν1, P, r) = J(ρ; ν1, P, r).

Proof. In this proof all probabilities and expectations are assumed to be defined with

(ν1, P ). Let ρ be an information state based strategy that satisfies (A.1).

First, we have

Pg(ut|qt) = Eg[gt(ut|Xt)|qt] = ρt(ut|qt)(A.2)

for all qt such that Pg(qt) > 0.
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(1) Proof by induction:

Induction Base: We have Pg(q1) = Pρ(q1) since the distribution of Q1 = κ1(X1)

is strategy-independent.

Induction Step: Suppose that

Pg(qt) = Pρ(qt)(A.3)

for all qt ∈ Qt. We prove the result for time t + 1. Combining (A.2) and (A.3)

we have

Pg(qt+1) =
∑
q̃t,ũt

Pg(qt+1|q̃t, ũt)Pg(ũt|q̃t)Pg(q̃t)

=
∑
q̃t,ũt

PQ
t (qt+1|q̃t, ũt)ρt(ut|q̃t)Pρ(q̃t)

= Pρ(qt+1)

Therefore we have established the induction step.

(2) Using (A.2) along with the result of part (1), we obtain

Eg[rt(Xt, Ut)] = Eg[rQt (Qt, Ut)]

=
∑
q̃t,ũt

rQt (q̃t, ũt)Pg(ũt|q̃t)Pg(q̃t)

=
∑
q̃t,ũt

rQt (q̃t, ũt)ρt(ũt|q̃t)Pρ(q̃t)

= Eρ[rt(Xt, Ut)]

for each t ∈ T . The result then follows from linearity of expectation.

A.2 Alternative Characterizations of Sequential Equilibria

This section deals with the game model introduced in Section 2.2. We provide a

few alternative definitions of sequential equilibria that are equivalent to the original

one given by [44].1

Notice that fixing the behavioral strategies g−i of players other than player i,

player i’s best response problem (at every information set) can be considered as an

Markov Decision Process with state H i
t and action U i

t , where the transition kernels

1Alternative definitions of sequential equilibria with similar spirit are also provided in [34].
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and instantaneous reward functions depend on g−i. Inspired by this observation, we

introduce a alternative definition of sequential equilibrium for our model, where we

form conjectures of transition kernels and reward functions instead of forming beliefs

on nodes. This allows us for a more compact representation of the appraisals and

beliefs of players. We will later show that this alternative definition is equivalent to

the classical definition of sequential equilibrium in [44].

For player i ∈ I, let P i = (P i
t )t∈T \{T}, P

i
t : Hi

t×U it 7→ ∆(Z it) and ri = (rit)t∈T , r
i
t :

Hi
t×U it 7→ [−1, 1] be collections of functions that represent conjectures of transition

kernels and instantaneous reward functions. For a behavioral strategy profile gi,

define the reward-to-go function J it recursively through

J iT (giT ;hiT , P
i, ri) :=

∑
ũiT

riT (hiT , ũ
i
T )giT (ũiT |hiT );(A.4a)

J it (g
i
t:T ;hit, P

i, ri)(A.4b)

:=
∑
ũit

rit(hit, ũit) +
∑
z̃it

J it+1(git+1:T ; (hit, z̃
i
t), P

i, ri)P i
t (z̃

i
t|hit, ũit)

 git(ũit|hit)
Definition A.3 (Sequential Equilibrium). Let g = (gi)i∈I be a behavioral strategy

profile. Let (P, r) = (P i, ri)i∈I be a conjecture profile. g is said to be sequentially

rational under (P, r) if for each i ∈ I, t ∈ T and each hit ∈ Hi
t,

J it (g
i
t:T ;hit, P

i, ri) ≥ J it (g̃
i
t:T ;hit, P

i, ri)

for all behavioral strategies g̃it:T . (P, r) is said to be fully consistent with g if there

exist a sequence of behavioral strategy and conjecture profiles (g(n), P (n), r(n))∞n=1

such that

(1) g(n) is fully mixed, i.e. every action is chosen with positive probability at every

information set.

(2) For each i ∈ I, (P (n),i, r(n),i) is consistent with g(n),−i, i.e. for each i ∈ I, t ∈
T , hit ∈ Hi

t, u
i
t ∈ U it ,

P
(n),i
t (zit|hit, uit) = Pg(n),−i(zit|hit, uit),

r
(n),i
t (hit, u

i
t) = Eg(n),−i [Ri

t|hit, uit].

(3) (g(n), P (n), r(n))→ (g, P, r) as n→∞.

A triple (g, P, r) is said to be a sequential equilibrium if g is sequentially rational

under (P, r) and (P, r) is fully consistent with g.
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One can also form conjectures directly on the optimal reward-to-go given a state-

action pair (hit, u
i
t).

2

Definition A.4 (Sequential Equilibrium). Let g = (gi)i∈I be a behavioral strategy

profile. Let K = (Ki
t)i∈I,t∈T be a collection of functions where Ki

t : Hi
t × U it 7→

[−T, T ]. The strategy profile g is said to be sequentially rational under K if for each

i ∈ I, t ∈ T and each hit ∈ Hi
t,

supp(git(h
i
t)) ⊂ arg max

uit

Ki
t(h

i
t, u

i
t)

K is said to be fully consistent with g if there exist a sequence of behavioral

strategy and conjecture profiles (g(n), K(n))∞n=1 such that

(1) g(n) is fully mixed, i.e. every action is chosen with positive probability at every

information set.

(2) K(n) is consistent with g(n), i.e.,

K(n),i
τ (hiτ , u

i
τ ) = Eg(n)

[
T∑
t=τ

Ri
t

∣∣∣hiτ , uiτ
]
,

for each i ∈ I, τ ∈ T , hiτ ∈ Hi
τ , u

i
τ ∈ U iτ .

(3) (g(n), K(n))→ (g,K) as n→∞.

A tuple (g,K) is said to be a sequential equilibrium if g is sequentially rational under

K and K is fully consistent with g.

A slightly different definition is also equivalent:

Definition A.5 (Sequential Equilibrium). A tuple (g,K) is said to be a sequential

equilibrium if it satisfies Definition A.4 with condition (2) for full consistency replaced

by the following condition:

(2’) For each i, K(n),i is consistent with g(n),−i, i.e.

K(n),i
τ (hiτ , u

i
τ ) = Eg(n),−i [Ri

τ |hiτ , uiτ ] + max
g̃iτ+1:T

Eg̃iτ+1:T ,g
(n),−i

[
T∑

t=τ+1

Ri
t

∣∣∣hiτ , uiτ
]
,

for each τ ∈ T , hiτ ∈ Hi
τ , u

i
τ ∈ U iτ .

2This function is usually referred to as the “Q-function” in the control and the operations research
literature. To avoid collision of notations with Chapter 2 we will use K to denote Q-functions.
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We describe the definition of sequential equilibrium in our model. First, without

loss of generality, we can assume that Rt,Wt in the model of Chapter 2 are both

finite valued. To convert the game from a simultaneous move game to a sequential

game, we set I = {1, 2, · · · , I}. At time t = 0, nature takes action w0 = (x1, h1)

and the game enters t = 1. For each time t ∈ T , player 1 takes action u1
t first,

then followed by player 2 taking action u2
t and so on, while nature takes action wt

after player I takes action uIt . Let Γ be an extensive form game that describes the

game in Chapter 2. Let O be the set of nodes of Γ. O is a finite set since all action

sets (of players and nature) are finite valued. The information sets are labeled by

hit ∈ Hi
t as defined in Chapter 2. Let O[hit] ⊆ O denote this information set. Let

Oit :=
⋃
hit
O[hit]. Let OT+1 ⊆ O be the set of terminal nodes.

Given a terminal node oT+1, all the actions of players and nature throughout the

game is uniquely determined, hence the realizations of (Rt)t∈T defined in Chapter 2

are also uniquely determined. Let Λ = (Λi)i∈I , J
i : OT+1 7→ R be the mappings from

terminal nodes to total payoffs, i.e. Λi(oT+1) =
∑T

t=1 r
i
t, where rit is the realization

of Ri
t corresponding to oT+1. Also define Λi

τ (oT+1) =
∑T

t=τ r
i
t for each τ ∈ T .

Let Oi
t be a random variable with support on Oit that represents the node player

i is at before she takes action at time t. Let OT+1 be a random variable representing

the terminal node the game ends at. If we view (T × I) ∪ {T + 1} as a set of time

indices with lexicographic ordering, the random process (Oi
t)(t,i)∈T ×I ∪ (OT+1) is a

controlled Markov Chain controlled by action U i
t at time (t, i).

Definition A.6 (Sequential Equilibrium [44]). An assessment is a pair (g, µ), where

g is a behavioral strategy profile of players (excluding nature) as described in Chapter

2, and µ = (µit)t∈I,i∈I , µ
i
t : Hi

t 7→ ∆(Oit) is a belief system. g is said to be sequentially

rational given µ if

(A.5)
∑
oit

Egit:T ,g
>i
t ,g−it:T [Λi(OT+1)|oit]µit(oit|hit) ≥

∑
oit

Eg̃it:T ,g
>i
t ,g−it:T [Λi(OT+1)|oit]µit(oit|hit)

for all i ∈ I, t ∈ T , hit ∈ Hi
t, and all behavioral strategies g̃it:T . µ is said to be fully

consistent with g if there exist a sequence of assessments (g(n), µ(n))∞n=1 → (g, µ) such

that g(n) is a fully mixed strategy profile and

(1) g(n) is fully mixed.

(2) µ(n) is consistent with g(n), i.e. µ
(n),i
t (oit|hit) = Pg(n)(oit|hit) for all t ∈ T , i ∈ I, hit ∈

Hi
t, and oit ∈ Oit

(3) (g(n), µ(n))→ (g, µ) as n→∞.
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An assessment (g, µ) is said to be a sequential equilibrium if g is sequentially

rational given µ and µ is fully consistent with g.

Remark A.1. Since the instantaneous rewards Ri
1:t−1 has been realized at time t, re-

placing the total reward Λ with reward-to-go Λt in (A.5) would result in an equivalent

definition.

Theorem A.2. Definitions A.3, A.4, A.5, and A.6 are equivalent for strategy pro-

files.

Proof. (1) Classical SE (Definition A.6) ⇒ (P, r)-based SE (Definition A.3)

Let (g, µ) satisfy Definition A.6. Let (g(n), µ(n)) be a sequence of assessments

that satisfies condition (1)-(3) of fully consistency in Definition A.6.

Set P
(n),i
t (zit|hit, uit) = Pg(n)(zit|hit, uit) and r

(n),i
t (hit, u

i
t) = Eg(n) [Ri

t|hit, uit] for all

hit ∈ Hi
t, u

i
t ∈ U it . By construction of the game tree, there exist fixed functions

f i,Zt , f i,Rt , f j,i,Ht such that Zi
t = f i,Zt (Oi

t, U
>i
t ,Wt), R

i
t = f i,Rt (Oi

t, U
>i
t ,Wt), H

j
t =

f j,i,Ht (Oi
t). Since µ

(n),i
t (oit|hit) = Pg(n)(oit, hit) we have

P
(n),i
t (zit|hit, uit)

=
∑

s̃it,ũ
>i
t ,w̃t

1{zit=f
i,Z
t (s̃it,ũ

>i
t ,w̃t)}P(w̃t)

(
I∏

j=i+1

g
(n),j
t (ũjt |f

j,i,H
t (s̃it))

)
µ

(n)
t (s̃it|hit)

r
(n),i
t (hit, u

i
t)

=
∑

s̃it,ũ
>i
t ,w̃t

f i,Rt (s̃it, ũ
>i
t , w̃t)P(w̃t)

(
I∏

j=i+1

g
(n),j
t (ũjt |f

j,i,H
t (s̃it))

)
µ

(n)
t (s̃it|hit)

Therefore, as µ(n) → µ, g(n) → g, we have (P (n), r(n))→ (P, r) for some (P, r).

Let τ ∈ T and g̃iτ :T be an arbitrary strategy. First, observe that one can represent

the conditional reward-to-go Eg(n) [
∑T

t=τ R
i
t|hiτ ] using µ(n) or (P (n), r(n)). Hence

we have∑
oiτ

Eg̃iτ :T ,g
(n),>i
τ ,g

(n),−i
τ+1:T [Λi

τ (OT+1)|oiτ ]µ(n),i
τ (oiτ |τ it ) = J it (g̃

i
τ :T ;hiτ , P

(n),i, r(n),i)(A.6)

where J it is as defined in (A.4).

Observe that the left-hand side of (A.6) is continuous in (g
(n),>i
τ , g

(n),−i
τ+1:T , µ

(n),i
τ )

since it is a sum of products of components of (g
(n),>i
τ , g

(n),−i
τ+1:T , µ

(n),i
τ ). Also observe

that the right-hand side of (A.6) is continuous in (P (n),i, r(n),i) since it is a sum
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of products of components of (P (n),i, r(n),i) by the definition in (A.4). Therefore

by taking limit as n→∞, we conclude that

(A.7)
∑
oiτ

Eg̃iτ :T ,g−i [Λi
τ (OT+1)|oiτ ]µiτ (oiτ |hiτ ) = J iτ (g̃

i
τ :T ;hiτ , P

i, ri)

for all strategies g̃iτ :T . Using sequential rationality of g with respect to µ and

(A.7) we conclude that

J it (g
i
τ :T ;hiτ , P

i, ri) ≥ J it (g̃
i
τ :T ;hiτ , P

i, ri)

for all τ ∈ T , i ∈ I, hiτ ∈ Hi
τ , i.e. g is also sequentially rational given (P, r).

(2) (P, r)-based SE (Definition A.3) ⇒ K-based SE (Definition A.4)

Let (g, P, r) be a sequential equilibrium under Definition A.3 and let (g(n), P (n), r(n))

satisfies conditions (1)-(3) of full consistency in Definition A.3. Set

K(n),i
τ (hiτ , u

i
τ ) = Eg(n)

[
T∑
t=τ

Ri
t

∣∣∣hiτ , uiτ
]

for all τ ∈ T , i ∈ I, hiτ ∈ Hi
τ , u

i
τ ∈ U iτ . Then K(n),i satisfies the recurrence

relation

K
(n),i
T (hiT , u

i
T ) = r

(n),i
T (hiT , u

i
T ),

V
(n),i
t (hit) =

∑
ũit

K
(n),i
t (hit, ũ

i
t)g

(n),i
t (ũit|hit), ∀t ∈ T

K
(n),i
t (hit, u

i
t) = r

(n),i
t (hit, u

i
t)

+
∑
z̃it

V
(n),i
t+1 ((hit, z̃

i
t))P

(n),i
t (z̃it|hit, uit). ∀t ∈ T \{T}

Since (g(n), P (n), r(n)) → (g, P, r) as n → ∞, we have K(n) → K where K =

(Ki
t)t∈T ,i∈I satisfies

Ki
T (hiT , u

i
T ) = riT (hiT , u

i
T )(A.8a)

V i
t (hit) =

∑
ũit

Ki
t(h

i
t, ũ

i
t)g

i
t(ũ

i
t|hit) ∀t ∈ T(A.8b)

Ki
t(h

i
t, u

i
t) = rit(h

i
t, u

i
t)(A.8c)

+
∑
z̃it

V i
t+1((hit, z̃

i
t))P

i
t (z̃

i
t|hit, uit) ∀t ∈ T \{T}

Comparing (A.8) with (A.4) we have

V i
t (hit) = J it (g

i
t:T ;hit, P

i, ri)
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for all t ∈ T , i ∈ I, hiτ ∈ Hi
τ .

Let g̃it be a strategy such that ĝit(h
i
t) = η ∈ ∆(U it ) , then

J it ((g̃
i
t, g

i
t+1:T );hit, P

i, ri)

=
∑
ũt

rit(hit, ũit) +
∑
z̃it

J it+1(git+1:T ; (hit, z̃
i
t), P

i, ri)P i
t (z̃

i
t|hit, ũit)

 η(ũit)

=
∑
ũt

rit(hit, ũit) +
∑
z̃it

V i
t+1((hit, z̃

i
t))P

i
t (z̃

i
t|hit, ũit)

 η(ũit)

=
∑
ũt

Ki
t(h

i
t, û

i
t)η(ũit)

By sequential rationality of g to (P, r), we have

J it (g
i
t:T ;hit, P

i, ri) ≥ J it ((g̃
i
t, g

i
t+1:T );hit, P

i, ri),

which means that∑
ũt

Ki
t(h

i
t, ũ

i
t)g

i
t(ũ

i
t|hit) ≥

∑
ũt

Ki
t(h

i
t, ũ

i
t)η(ũit)

for all η ∈ ∆(U it ) for all t ∈ T , i ∈ I, hiτ ∈ Hi
τ . Hence g is sequentially rational

given K. Therefore (g,K) is a sequential equilibrium under Definition A.4.

(3) K-based SE (Definition A.4) ⇒ K-based SE (Definition A.5)

Let (g,K) be a sequential equilibrium under Definition A.4 and let (g(n), K(n))

satisfies conditions (1)-(3) of full consistency in Definition A.4. Then K(n),i

satisfies

K
(n),i
T (hiT , u

i
T ) = Eg(n),−i [Ri

T |hiT , uiT ],

V
(n),i
t (hit) =

∑
ũit

K
(n),i
t (hit, ũ

i
t)g

(n),i
t (ũit|hit), ∀t ∈ T

K
(n),i
t (hit, u

i
t) = Eg(n),−i [Ri

t|hit, uit]

+
∑
z̃it

V
(n),i
t+1 ((hit, z̃

i
t))Pg

(n),−i
(z̃it|hit, uit). ∀t ∈ T \{T}

and K(n) → K as n→∞. Set

K̂(n),i
τ (hiτ , u

i
τ ) = Eg(n),−i [Ri

τ |hiτ , uiτ ] + max
g̃iτ+1:T

Eg̃iτ+1:T ,g
(n),−i

[
T∑

t=τ+1

Ri
t

∣∣∣hiτ , uiτ
]
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for each τ ∈ T , hiτ ∈ Hi
τ , u

i
τ ∈ U iτ . Then K̂(n),i satisfies the recurrence relation

K̂
(n),i
T (hiT , u

i
T ) = Eg(n),−i [Ri

T |hiT , uiT ]

V̂
(n),i
t (hit) = max

ũit

K̂
(n),i
t (hit, ũ

i
t) ∀t ∈ T

K̂
(n),i
t (hit, u

i
t) = Eg(n),−i [Ri

t|hit, uit]

+
∑
z̃it

V̂
(n),i
t+1 ((hit, z̃

i
t))Pg

(n),−i
(z̃it|hit, uit) ∀t ∈ T \{T}

Claim: K̂
(n)
t → Ki

t as n→∞.

Given the claim, we have (g(n), K̂(n)) satisfying conditions (1)(2’)(3) of full con-

sistency in Definition A.5. Therefore (g,K) is also a sequential equilibrium under

Definition A.5 and we complete this part of the proof.

Proof of Claim: By induction on time t ∈ T .

Induction Base: Observe that K̂
(n)
T = K

(n)
T by construction. Since K

(n)
T → KT

we also have K̂
(n)
T → KT ,

Induction Step: Suppose that the result is true for time t. We prove it for

time t− 1.

By induction hypothesis and g(n) → g, we have

V̂
(n),i
t (hit) = max

ũit

K̂
(n),i
t (hit, ũ

i
t)

n→∞−−−→max
ũit

Ki
t(h

i
t, ũ

i
t)(A.9)

Since K(n) → K and g(n) → g, we have

V
(n),i
t (hit) =

∑
ũit

K
(n),i
t (hit, ũ

i
t)g

(n),i
t (ũit|hit)

n→∞−−−→
∑
ũit

Ki
t(h

i
t, ũ

i
t)g

i
t(ũ

i
t|hit) =: V i

t (hit)(A.10)

Since g is sequentially rational given K, we have∑
ũit

Ki
t(h

i
t, ũ

i
t)g

i
t(ũ

i
t|hit) = max

ũit

Ki
t(h

i
t, ũ

i
t)(A.11)

Combining (A.9)(A.10)(A.11) we have V̂
(n),i
t (hit)→ V i

t (hit) for all hit ∈ Hi
t. Since

Hi
t is a finite set, we have

max
h̃it

|V̂ (n),i
t (h̃it)− V

(n),i
t (h̃it)|

n→∞−−−→ 0
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We then have

|K̂(n),i
t−1 (hit, u

i
t)−K

(n),i
t−1 (hit, u

i
t)|

=

∣∣∣∣∣∣
∑
z̃it−1

[
V̂

(n),i
t ((hit−1, z̃

i
t−1))− V (n),i

t ((hit−1, z̃
i
t−1))

]
Pg

(n),−i
t−1 (z̃it−1|hit−1, u

i
t−1)

∣∣∣∣∣∣
≤ max

z̃it−1

|V̂ (n),i
t ((hit−1, z̃

i
t−1))− V (n),i

t ((hit−1, z̃
i
t−1))| n→∞−−−→ 0

Since K
(n),i
t−1 (hit, u

i
t) → Ki

t−1(hit, u
i
t), we have K̂

(n),i
t−1 (hit, u

i
t) → Ki

t−1(hit, u
i
t), estab-

lishing the induction step.

(4) K-based SE (Definition A.5) ⇒ Classical SE (Definition A.3)

Let (g,K) be a sequential equilibrium under Definition A.5 and let (g(n), K̂(n))

satisfies conditions (1)(2’)(3) of full consistency in Definition A.5.

Define the beliefs µ(n) on the nodes of the extended-form game Γ through µ(n)(oit|hit) =

Pg(n)(oit|hit). By taking subsequences, without lost of generality, assume that

µ(n) → µ.

Let ĝit be an arbitrary strategy, then∑
ũit

K̂
(n),i
t (hit, ũ

i
t)ĝ

i
t(ũ

i
t|hit)

= max
g̃it+1:T

∑
oit

Eĝit,g̃it+1:T ,g
(n),>i
t ,g

(n),−i
t+1:T [Λi

t(OT+1)|oit]µ
(n),i
t (oit|hit)

(A.12)

For each oit, Eg̃
≥i
t ,g̃t+1:T [Λi

t(Ot+1)|oit] is continuous in (g̃≥it , g̃t+1:T ) since it is the

sum of product of components of (g̃≥it , g̃t+1:T ). Therefore∑
oit

Eĝit,g̃it+1:T ,g
(n),>i
t ,g

(n),−i
t+1:T [Λi

t(Ot+1)|oit]µ
(n),i
t (oit|hit)

n→∞−−−→
∑
oit

Eĝit,g̃it+1:T ,g
>i
t ,g−it+1:T [Λi

t(Ot+1)|oit]µit(oit|hit)

for each behavioral straetegy g̃it+1:T . Applying Berge’s Maximum Theorem, tak-

ing the limit on both sides of (A.12), we obtain∑
ũit

Ki
t(h

i
t, ũ

i
t)ĝ

i
t(ũ

i
t|hit) = max

g̃it+1:T

∑
oit

Eĝit,g̃it+1:T ,g
>i
t ,g−it+1:T [Λi

t(OT+1)|oit]µit(oit|hit)

for all t ∈ T , i ∈ I, hit ∈ Hi
t, and all behavioral strategy ĝit.
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Sequential rationality of g to K means that

git ∈ arg max
ĝit

∑
ũit

Ki
t(h

i
t, ũ

i
t)ĝ

i
t(ũ

i
t|hit)

= arg max
ĝit

max
g̃it+1:T

∑
oit

Eĝit,g̃it+1:T ,g
>i
t ,g−it+1:T [Λi

t(OT+1)|oit]µit(oit|hit)

for all t ∈ T , i ∈ I, and all hit ∈ Hi
t.

Let rit be realizations of Ri
t under Oi

t = oit. We have Eĝit,g̃it+1:T ,g
>i
t ,g−it+1:T [Λi(OT+1)−

Λi
t(OT+1)|oit] =

∑t−1
τ=1 r

i
τ to be independent of the strategy profile. Therefore we

have

(A.13) git ∈ arg max
ĝit

max
g̃it+1:T

∑
oit

Eĝit,g̃it+1:T ,g
>i
t ,g−it+1:T [Λi(OT+1)|oit]µit(oit|hit)

Fix hiτ , the problem of optimizing

J iτ (g̃
i
τ :T ;hiτ , µ

i
τ ) :=

∑
oiτ

Eg̃iτ :T ,g>iτ ,g−iτ+1:T [Λi
τ (OT+1)|oiτ ]µiτ (oiτ |hiτ )

over all g̃iτ :T is a POMDP problem with

• Timestamps T̃ = {τ, τ + 1, · · · , T, T + 1};

• State process (Oi
t)
T
t=τ ∪ (OT+1), control actions (U i

t )
T
t=τ ;

• Initial state distribution µiτ (h
i
τ ) ∈ ∆(Oiτ );

• State transition kernel Pg>it ,g<it+1(oit+1|oit, uit) for t < T and Pg>iT (oT+1|oiT , uiT )

for t = T ;

• Observation history: (H i
t)
T
t=τ ;

• Instantaneous rewards are 0. Terminal reward is Λi(OT+1).

The belief µ is fully consistent with g by construction. From standard results

in game theory, we know that µit+1(hit+1) can be updated with Bayes rule from

µit(h
i
t) and g whenever applicable. Therefore, (µt)

T
t=τ represent the true beliefs of

the state given observations in the above POMDP problem. Therefore, through

standard control theory, (A.13) is a sufficient condition for git:T to be optimal for

the above POMDP problem, which means that g is sequentially rational given

µ.

Therefore we conclude that (g, µ) is a sequential equilibrium under Definition

A.3.
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APPENDIX B

Proofs for Chapter 2

B.1 Proofs for Section 2.3

Proof of Lemma 2.1. We have

Pgi,ρ−i(x̃t, ũ−it |hit) =
∑
h̃−it

Pgi,ρ−i(ũ−it |x̃t, h̃−it , hit, uit)Pg(x̃t, h̃−it |hit, uit)

=
∑
h̃−it

(∏
j 6=i

ρjt(ũ
j
t |q̃

j
t )

)
Pg(x̃t, h̃−it |hit)

=
∑
q̃−it

(∏
j 6=i

ρjt(ũ
j
t |q̃

j
t )

)
Pg(x̃t, q̃−it |hit)

=
∑
q̃−it

(∏
j 6=i

ρjt(ũ
j
t |q̃

j
t )

)
Φi,ρ−i

t (x̃t, q̃
−i
t |qit)

By the definition of the model, Zi
t = f i,Zt (Xt, Ut) for some fixed function f i,Zt .

Combining with the assumption that Qi
t+1 = ιit+1(Qi

t, Z
i
t) we obtain

Pg(qit|hit, uit)

=
∑
x̃t,ũ

−i
t

1{qit+1=ιit+1(qit,f
i,Z
t (x̃t,(ũ

−i
t ,uit)))}

Pg(x̃t, ũ−it |hit)

=
∑
x̃t,ũ

−i
t

1{qit+1=ιit+1(qit,f
i,Z
t (x̃t,(ũ

−i
t ,uit)))}

∑
q̃−it

(∏
j 6=i

ρjt(ũ
j
t |q̃

j
t )

)
Φi,ρ−i

t (x̃t, q̃
−i
t |qit)


=: P i,g−i

t (qit+1|qit, uit)

for some function P i,g−i

t .

120



Analogously, since Ri
t = f i,Rt (Xt, Ut) for some fixed function f i,Rt , we have

Eg[Ri
t|hit, uit] =

∑
x̃t,ũ

−i
t

E[Ri
t|x̃t, (uit, ũ−it )]

∑
q̃−it

(∏
j 6=i

ρjt(ũ
j
t |q̃

j
t )

)
Φi,ρ−i

t (x̃t, q̃
−i
t |qit)


=: ri,g

−i

t (qit, u
i
t)

for some function ri,g
−i

i . Hence we have shown part (1) of Definition 2.3.

B.2 Proofs for Section 2.4

Proof of Theorem 2.3. Fixing ρ−i, we first argue that Qi
t is a controlled Markov pro-

cess controlled by player i’s action U i
t .

From the definition of information state (Definition 2.2) we know that

Pg̃i,ρ−i(qit+1|hit, uit) = P i,ρ−i

t (qit+1|qit, uit)

Since (Qi
1:t, U

i
1:t) is a function of (H i

t , U
i
t ), by the smoothing property of condi-

tional probability we have

Pg̃i,ρ−i(qit+1|qi1:t, u
i
1:t) = P i,ρ−i

t (qit+1|qit, uit)

Therefore we have shown that Qi
t is a controlled Markov process controlled by

player i’s action U i
t .

From the definition of information state (Definition 2.2) we know that

Eg̃i,ρ−i
[
Ri
t|qit, uit

]
= ri,ρ

−i

t (qit, u
i
t)

for all (qit, u
i
t) admissible under (g̃i, ρ−i).

Therefore,

J i(g̃i, ρ−i) = Eg̃i,ρ−i
[

T∑
t=1

Ri
t

]
= Eg̃i,ρ−i

[
T∑
t=1

Eg̃i,ρ−i
[
Ri
t|Qi

t, U
i
t

]]

= Eg̃i,ρ−i
[

T∑
t=1

ri,ρ
−i

t (Qi
t, U

i
t )

]
By standard MDP theory, there existQi-based strategies ρi that maximize J i(g̃i, ρ−i)

over all behavioral strategies g̃i. Furthermore, optimal Qi-based strategies can be

found through dynamic programming.

For ε ≥ 0, let Pε,i denote the set of Qi-based strategies for coordinator i where

each action uit ∈ U it is chosen with probability at least ε at any information set. To

endow Pε,i with a topology, we consider it as a product of sets of distributions, i.e.

Pε,i =
∏
t∈T

∏
qit∈Qit

∆ε(U it )
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where

∆ε(U it ) = {η ∈ ∆(U it ) : η(uit) ≥ ε ∀uit ∈ U it}

Define Pε =
∏

i∈I Pε,i. The set of all Qi-based strategy profiles can be represented

by P0.

For the rest of the proof, assume that ε is small enough such that ∆ε(U it ) is

non-empty for all t ∈ T and i ∈ I. Also assume that ε > 0.

For each t ∈ T , i ∈ I and qit ∈ Qit, define the correspondence BRε,i
t [qit] : Pε,−i 7→

∆ε(U it ) sequentially through

Kε,i
T (qiT , u

i
T ; ρ−i) := ri,ρ

−i

T (qiT , u
i
T )(B.1a)

BRε,i
t [qit](ρ

−i) := arg max
η∈∆ε(Uit )

∑
ũit

Kε,i
t (qit, ũ

i
t; ρ
−i)η(ũit)(B.1b)

V ε,i
t (qit; ρ

−i) := max
η∈∆ε(Uit )

∑
ũit

Kε,i
t (qit, ũ

i
t; ρ
−i)η(ũit)(B.1c)

Kε,i
t−1(qit−1, u

i
t−1; ρ−i) := ri,ρ

−i

t−1 (qit−1, u
i
t−1)+(B.1d)

+
∑
qit∈Qit

V ε,i
t (qit; ρ

−i)P i,ρ−i

t−1 (qit|qit−1, u
i
t)

Define BRε : Pε 7→ Pε by

BRε(ρ) =
∏
i∈I

∏
t∈T

∏
qit∈Qit

BRε,i
t [qit](ρ

−i)

Claim:

(a) P i,ρ−i

t (qit+1|qit, uit) is continuous in ρ−i on Pε,−i for all t ∈ T and all qit+1 ∈
Qit+1, q

i
t ∈ Qit, uit ∈ U it .

(b) ri,ρ
−i

t (qit, u
i
t) is continuous in ρ−i on Pε,−i for all t ∈ T and all qit ∈ Qit, uit ∈ U it .

Given the claims we prove by induction that Kε,i
t (qit, u

i
t; ρ
−i) is continuous in ρ−i

on Pε,−i for each qit ∈ Qit, uit ∈ U it .
Induction Base: Kε,i

T (qiT , u
i
T ; ρ−i) is continuous in ρ−i on Pε,−i due to the claims.

Induction Step: Suppose that the induction hypothesis is true for t. Then

V ε,i
t (qit; ρ

−i) is continuous in ρ−i on Pε,−i due to Berge’s Maximum Theorem. Then,

Kε,i
t−1(qit−1, u

i
t−1; ρ−i) is continuous in ρ−i on Pε,−i due to the claims.

Applying Berge’s Maximum Theorem once again, we conclude that BRε,i
t [qit] is

upper hemicontinuous on Pε,−i. For each ρ−i ∈ Pε,−i, BRε,i
t [qit](ρ

−i) is non-empty

and convex since it is the solution set of a linear program.
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As a product of compact-valued upper hemicontinuous correspondences, BRε is

upper hemicontinuous. For each ρ ∈ Pε, BRε(ρ) is non-empty and convex. By

Kakutani’s fixed point theorem, BRε has a fixed point.

Let (εn)∞n=1 be a sequence such that εn > 0, εn → 0. Let ρ(n) be a fixed point of

BRεn . Then for each i ∈ I we have

ρ(n),i ∈ arg max
ρ̃i∈Pεn,i

J i(ρ̃i, ρ(n),−i)

Let ρ(∞) ∈ P0 be the limit of a sub-sequence of (ρ(n))∞n=1. Since J i(ρ) is continuous

in ρ on P0, and ε 7→ Pε,i is a continuous correspondence with compact, non-empty

value, by Berge’s Maximum Theorem, we conclude that for each i ∈ I

ρ(∞),i ∈ arg max
ρ̃i∈P0,i

J i(ρ̃i, ρ(∞),−i)

i.e. ρ(∞),i is optimal among Qi-based strategies in response to ρ(∞),−i. Recall that

we have shown that there exist Qi-based strategies ρi that maximizes J i(g̃i, ρ−i) over

all behavioral strategies g̃i. Therefore, we conclude that ρ(∞) forms a BNE, proving

the existence of Q-based BNE.

Proof of Claim: Let ĝi be a behavioral strategy where player i chooses actions

uniformly at random at every information set. For ρ−i ∈ Pε,−i, we have Pĝi,ρ−i(qit) > 0

for all qit ∈ Qit since (ĝi, ρ−i) is a strategy profile that always plays strictly mixed

actions. Therefore we have

P i,ρ−i

t (qit+1|qit, uit) = Pĝi,ρ−i(qit+1|qit, uit) =
Pĝi,ρ−i(qit+1, q

i
t, u

i
t)

Pĝi,ρ−i(qit, uit)
ri,ρ

−i

t (qit, u
i
t) = Eĝi,ρ−i [Ri

t|qit, uit]

=
∑

xt∈Xt,u−it ∈Ut

E[Ri
t|xt, ut]Pĝ

i,ρ−i(xt, u
−i
t |qit, uit)

where E[Ri
t|xt, ut] is independent of the strategy profile.

We know that both Pĝi,ρ−i(qit+1, q
i
t, u

i
t) and Pĝi,ρ−i(qit, uit) are sums of products of

components of ρ−i and ĝi, hence both are continuous in ρ−i. Therefore P i,ρ−i

t (zit|qit, uit)
is continuous in ρ−i on Pε,−i. The continuity of ri,ρ

−i

t (qit, u
i
t) in ρ−i on Pε,−i can be

shown with an analogous argument.

To establish the results for USI, we first extend Definition 2.2 to allow for different

instantaneous rewards to be considered.

Definition B.1. Let g−i be a behavioral strategy profile of players other than i

and J ⊂ I be a subset of players. We say that Qi is an information state under
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g−i for the payoffs of J if there exist functions (P i,g−i

t )t∈T , (r
j,g−i

t )j∈J ,t∈T , where

P i,g−i

t : Qit × U it 7→ ∆(Qit+1) and rj,g
−i

t : Qit × U it 7→ [−1, 1], such that

(1) Pgi,g−i(qit+1|hit, uit) = P i,g−i

t (qit+1|qit, uit) for all t ∈ T \{T};

(2) Egi,g−i [Rj
t |hit, uit] = rj,g

−i

t (qit, u
i
t) for all j ∈ J and all t ∈ T

for all gi, and all (hit, u
i
t) admissible under (gi, g−i).

Lemma B.1. If Qi is unilaterally sufficient information, then Qi is an information

state under g−i for the payoffs of I under all behavioral strategy profiles g−i.

Proof of Lemma B.1. Let Φi,g−i

t be as in the definition of unilaterally sufficient in-

formation, we have

Pg(xt, h−it |hit) = Φi,g−i

t (xt, h
−i
t |qit)

Hence

Pg(x̃t, ũ−it |hit) =
∑
h̃−it

Pg(ũ−it |x̃t, h̃−it , hit)Pg(x̃t, h̃−it |hit)

=
∑
h̃−it

(∏
j 6=i

gjt (ũ
j
t |h̃

j
t)

)
Φi,j,g−i

t (x̃t, h̃
−i
t |qit),

=: P̃ i,g−i

t (x̃t, ũ
−i
t |qit)

We know that Qi
t+1 = ξit(Xt, Ut, Q

i
t) for some function ξit independent of the

strategy profile g, hence

Pg(qit+1|hit, uit) =
∑
x̃t,ũ

−i
t

1{qit+1=ξit(x̃t,(u
i
t,ũ
−i
t ),qit)}

P̃ i,g−i

t (x̃t, ũ
−i
t |qit)

=: P i,g−i

t (qit+1|qit, uit).

Consider any j ∈ I. Since Rj
t is a (strategy-independent) function of (Xt, Ut,Wt),

E[Rj
t |xt, ut] is independent of g. Therefore

Eg[Rj
t |hit, uit] =

∑
x̃t,ũ

−i
t

E[Rj
t |x̃t, (uit, ũ−it )]P̃ i,g−i

t (x̃t, ũ
−i
t |qit)

=: rj,g
−i

t (qit, u
i
t).
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Lemma B.2. Let Qi be universally sufficient information. Then for every behavioral

strategy profile gi, if the Qi based strategy ρi is given by

ρit(u
i
t|qit) =

∑
h̃it∈Hit

git(u
i
t|h̃it)F

i,gi

t (h̃it|qit)

where F i,gi

t (h̃it|qit) is defined in Definition 2.4, then

J j(gi, g−i) = J j(ρi, g−i)

for all j ∈ I and all behavioral strategy profiles g−i of players other than i.

Proof of Lemma B.2. Let j ∈ I. Consider an MDP with state H i
t , action U i

t and

instantaneous reward r̃i,jt (hit, u
i
t) := Eg−i [Rj

t |hit, uit]. By Lemma B.1, Qi is an informa-

tion state (as defined in Definition A.1) for this MDP. Hence J j(gi, g−i) = J j(ρi, g−i)

follows from Lemma A.2.

The conditions we have for unilaterally sufficient information ensure that Qi is

simultaneously an information state for |I| MDPs, one associated with each player.

Lemma B.3. If Qi is unilaterally sufficient information for player i, then for any

BNE strategy profile g = (gi)i∈I there exists a Qi-based strategy ρi such that (ρi, g−i)

forms a BNE with the same expected payoff profile as g.

Proof of Lemma B.3. Let ρi be associated with gi as specified in Lemma B.2. Set

ḡ = (ρi, g−i). First, since J i(ρi, g−i) = J i(gi, g−i) and gi is a best response to g−i.

We have ρi also to be a best response to g−i.

Consider j 6= i. Let g̃j be an arbitrary behavioral strategy of player j. By using

Lemma B.2 twice we have

J j(ḡj, ḡ−j) = J j(ρi, g−i) = J j(g) ≥ J j(g̃j, g−j)

= J j(g̃j, (ρi, g−{i,j})) = J j(g̃j, ḡ−j)

Therefore ḡj is a best response to ḡ−j. We conclude that ḡ = (ρi, g−i) is also a

BNE.

Proof of Theorem 2.4. Given any BNE strategy profile g, applying Lemma B.3 iter-

atively for each i ∈ I, we obtain a Q-based BNE strategy profile ρ with the same

expected payoff profile as g. Therefore the set of Q-based BNE payoffs is the same

as that of all BNE.
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Proof of Theorem 2.5. Let (ρ(n))∞n=1 be a sequence of Q-based strategy profiles that

always assigns strictly mixed actions as constructed in the proof of Theorem 2.3. By

taking a sub-sequence, without loss of generality, assume that ρ(n) → ρ(∞) for some

Q-based strategy profile ρ(∞).

Let K(n) be conjectures of reward-to-go functions consistent (in the sense of

Definition A.4) with ρ(n), i.e.

K(n),i
τ (hit, u

i
t) := Eρ(n)

[
T∑
t=τ

Ri
t

∣∣∣hiτ , uiτ
]
.

Let K(∞) be the limit of a sub-sequence of (K(n))∞n=1 (such limit exists since the

range of each K
(n),i
τ is a compact set). We proceed to show that (ρ(∞), K(∞)) forms

a sequential equilibrium (as defined in Definition A.4). Note that by construction,

K(∞) is fully consistent with ρ(∞). We only need to show sequential rationality.

Claim: Let Kε,i
t be as defined in (B.1) in the proof of Theorem 2.3, then

K
(n),i
t (hit, u

i
t) = Kεn,i

t (qit, u
i
t; ρ

(n),−i)

for all i ∈ I, t ∈ T , hit ∈ Hi
t, and uit ∈ U it .

By construction in the proof of Theorem 2.3, ρ
(n),i
t (qit) ∈ BRεn,i

t [qit](ρ
(n),−i). Given

the claim, this means that

ρ
(n),i
t (qit) ∈ arg max

η∈∆εn (Uit )

∑
ũit

K
(n),i
t (hit, ũ

i
t)η(ũit)

for all i ∈ I, t ∈ T and hit ∈ Hi
t.

Applying Berge’s Maximum Theorem in a similar manner to the proof of Theorem

2.3 we obtain

ρ
(∞),i
t (qit) ∈ arg max

η∈∆(Uit )

∑
ũit

K
(∞),i
t (hit, ũ

i
t)η(ũit)

for all i ∈ I, t ∈ T and hit ∈ Hi
t.

Therefore, we have shown that ρ(∞) is sequentially rational under K(∞) and we

have completed the proof.

Proof of Claim: For clarity of exposition we drop the superscript (n) of ρ(n).

We know that K
(n),i
t satisfies the following equations:

K
(n),i
T (hiT , u

i
T ) = Eρ[Ri

T |hiT , uiT ]

V
(n),i
t (hit) :=

∑
ũit

K
(n),i
t (hit, ũ

i
t)ρ

i
t(ũ

i
t|qit)
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Ki
t−1(hit−1, u

i
t−1) := Eρ[Ri

t−1|hit−1, u
i
t−1] +

∑
h̃it∈Hit

V
(n),i
t (h̃it)Pρ(h̃it|hit−1, u

i
t)

Since Q is mutually sufficient information, we have

Pρ(qit+1|hit, uit) := P i,ρ−i

t (qit+1|qit, uit),

Eρ[Ri
t|hit, uit] := ri,ρ

−i

t (qit, u
i
t).

where P i,ρ−i

t and ri,ρ
−i

t are as specified in Definition 2.2.

Therefore, through an inductive argument, one can show then K
(n),i
t (hit, u

i
t) de-

pends on hit only through qit, and

K
(n),i
T (qiT , u

i
T ) = ri,ρ

−i

T (qiT , u
i
T )(B.2a)

V
(n),i
t (qit) :=

∑
ũit

Ki
t(q

i
t, ũ

i
t; ρ
−i)ρit(ũ

i
t|qit)(B.2b)

K
(n),i
t−1 (hit−1, u

i
t−1) := ri,ρ

−i

t−1 (qit−1, u
i
t−1) +

∑
q̃it∈Qit

V
(n),i
t (q̃it)P

i,ρ−i

t−1 (q̃it|qit−1, u
i
t)(B.2c)

The claim is then established by comparing (B.2) with (B.1), combining with the

fact that ρit(q
i
t) ∈ BRε,i

t [qit](ρ
−i).

Lemma B.4. Suppose that Qi is unilaterally sufficient information. Then

Pg(hit|h
j
t) = Pg(hit|qit)Pg(qit|h

j
t)

whenever Pg(qit) > 0,Pg(hjt) > 0.

Proof. From the definition of unilaterally sufficient information (Definition 2.4) we

have

Pg(h̃it, h̃
j
t |qit) = F i,gi

t (h̃it|qit)F
i,j,g−i

t (h̃jt |qit)

where

F i,j,g−i

t (hjt |qit) :=
∑

x̃t,h̃
−{i,j}
t

Φi,g−i

t (x̃t, (h
j
t , h
−{i,j}
t )|qit)

Therefore, we conclude that H i
t and Hj

t are conditionally independent given Qi
t.

Since Qi
t is measurable with respect to H i

t , we have

Pg(hit|h
j
t) = Pg(hit, qit|h

j
t) = Pg(hit|qit)Pg(qit|h

j
t)
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Lemma B.5. Suppose that Qi is unilaterally sufficient information for player i ∈ I.

Then there exist functions (Πj,i,g−{i,j}

t )j∈I\{i},t∈T , (ri,j,g
−{i,j}

t )j∈I\{i},t∈T , where Πi,j,g−{i,j}

t :

Qit ×H
j
t × U it × U

j
t 7→ ∆(Hj

t+1), ri,j,g
−{i,j}

t : Qit ×H
j
t × U it × U

j
t 7→ [−1, 1] such that

(1) Pg(h̃jt+1|hit, h
j
t , u

i
t, u

j
t) = Πj,i,g−{i,j}

t (h̃jt+1|qit, h
j
t , u

i
t, u

j
t) for all t ∈ T \{T};

(2) Eg[Rj
t |hit, h

j
t , u

i
t, u

j
t ] = ri,j,g

−{i,j}

t (qit, h
j
t , u

i
t, u

j
t) for all t ∈ T ;

for all j ∈ I\{i} and all behavioral strategy profiles g whenever the left-hand side

expressions are well-defined.

Proof of Lemma B.5. Let ĝk be some fixed, fully mixed behavioral strategy for player

k ∈ I.

Fix j 6= i. First,

Pg(xt, h−{i,j}t |hit, h
j
t) = Pĝ{i,j},g−{i,j}(xt, h−{i,j}t |hit, h

j
t)

=
Φ
i,(ĝj ,g−{i,j})
t (xt, h

−i
t |qit)∑

h̃
−{i,j}
t

Φ
i,(ĝj ,g−{i,j})
t (xt, (h̃

−{i,j}
t , hjt)|qit)

=: Φi,j,g−{i,j}

t (xt, h
−{i,j}
t |qit, h

j
t)

for any behavioral strategy profile g.

Therefore,

Pg(x̃t, ũ−{i,j}t |hit, h
j
t) =

∑
h̃
−{i,j}
t

Pg(ũ−{i,j}t |x̃t, h̃−{i,j}t , hit, h
j
t)Pg(x̃t, h̃

−{i,j}
t |hit, h

j
t)

=
∑
h̃
−{i,j}
t

 ∏
k∈I\{i,j}

gkt (ũkt |h̃kt )

Φi,j,g−{i,j}

t (x̃t, h̃
−{i,j}
t |qit, h

j
t)

=: P̃ i,j,g−{i,j}

t (x̃t, ũ
−i
t |qit, h

j
t)

for any behavioral strategy profile g.

We know that Hj
t+1 = ξjt (Xt, Ut, H

j
t ) for some function ξjt independent of the

strategy profile g, hence

Pg(h̃jt+1|hit, h
j
t , u

i
t, u

j
t)

=
∑

x̃t,ũ
−{i,j}
t

1{h̃jt+1=ξit(x̃t,(u
{i,j}
t ,ũ

−{i,j}
t ),hjt )}

P̃ i,j,g−{i,j}

t (x̃t, ũ
−{i,j}
t |qit, h

j
t)

=: Πj,i,g−{i,j}

t (h̃jt+1|qit, h
j
t , u

i
t, u

j
t),

establishing part (1) of Lemma B.5.
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Since E[Rj
t |xt, ut] is strategy-independent, for j ∈ I\{i},

Eg[Rj
t |hit, h

j
t , u

i
t, u

j
t ] =

∑
x̃t,ũ

−i
t

E[Rj
t |x̃t, (u

{i,j}
t , ũ

−{i,j}
t )]P̃ i,j,g−{i,j}

t (x̃t, ũ
−{i,j}
t |qit, h

j
t)

=: ri,j,g
−{i,j}

t (qit, h
j
t , u

i
t, u

j
t),

establishing part (2) of Lemma B.5.

Lemma B.6. Suppose that Qi is unilaterally sufficient information. Let g = (gj)j∈I

be a fully mixed behavioral strategy profile. Let a Qi-based strategy ρi be such that

(B.3) ρit(u
i
t|qit) =

∑
h̃it

git(u
i
t|h̃it)F

i,gi

t (h̃it|qit).

Then

(1) Pg(h̃jt+1|h
j
t , u

j
t) = Pρi,g−i(h̃jt+1|h

j
t , u

j
t) for all t ∈ T \{T};

(2) Eg[Rj
t |h

j
t , u

j
t ] = Eρi,g−i [Rj

t |h
j
t , u

j
t ] for all t ∈ T ;

for all j ∈ I\{i} and all hjt ∈ H
j
t , u

j
t ∈ U

j
t .

Proof. Fixing g−i, H i
t is a controlled Markov Chain controlled by U i

t and player i

faces a Markov Decision Problem. By Lemma B.1, Qi
t is an information state (as

defined in A.1) of this MDP. Therefore, by Lemma A.2 we have

(B.4) Pgi,g−i(qit) = Pρi,g−i(qit)

Furthermore,

Pgi,g−i(hjt |qit) =
∑

x̃t,h̃
−{i,j}
t

Φi,g−i

t (x̃t, (h
j
t , h
−{i,j}
t )|qit)

=: F i,j,g−i

t (hjt |qit),

Pgi,g−i(qit|h
j
t) =

Pgi,g−i(hjt |qit)Pg
i,g−i(qit)∑

q̃it
Pgi,g−i(hjt |q̃it)Pg

i,g−i(q̃it)

=
F i,j,g−i

t (hjt |qit)Pg
i,g−i(qit)∑

q̃it
F i,j,g−i

t (hjt |q̃it)Pg
i,g−i(q̃it)

(B.5)

Following a similar argument we have

Pρi,g−i(qit|h
j
t) =

F i,j,g−i

t (hjt |qit)Pρ
i,g−i(qit)∑

q̃it
F i,j,g−i

t (hjt |q̃it)Pρ
i,g−i(q̃it)

(B.6)
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Combining (B.4)(B.5)(B.6) we conclude that

Pgi,g−i(qit|h
j
t) = Pρi,g−i(qit|h

j
t)(B.7)

Using (B.3), Lemma B.4, and Lemma B.5 we have

Pg(h̃jt+1|h
j
t , u

j
t)

=
∑

h̃it:Pg(h̃it,h
j
t )>0

∑
ũit

Pg(h̃jt+1|h̃it, h
j
t , ũ

i
t, u

j
t)Pg(ũit|h̃it, h

j
t , u

j
t)Pg(h̃it|h

j
t , u

j
t)

=
∑
h̃it,ũ

i
t

Πj,i,g−{i,j}

t (h̃jt+1|q̃it, h
j
t , ũ

i
t, u

j
t)g

i
t(ũ

i
t|h̃it)Pg(h̃it|h

j
t)

=
∑
h̃it,ũ

i
t

Πj,i,g−{i,j}

t (h̃jt+1|q̃it, h
j
t , ũ

i
t, u

j
t)g

i
t(ũ

i
t|h̃it)Pg(h̃it|q̃it)Pg(q̃it|h

j
t)

=
∑
q̃it,ũ

i
t

Πj,i,g−{i,j}

t (h̃jt+1|q̃it, h
j
t , ũ

i
t, u

j
t)

∑
ĥit

git(ũ
i
t|ĥit)Pg(ĥit|q̃it)

Pg(q̃it|h
j
t)

=
∑
q̃it,ũ

i
t

Πj,i,g−{i,j}

t (h̃jt+1|q̃it, h
j
t , ũ

i
t, u

j
t)ρ

i
t(ũ

i
t|q̃it)Pg(q̃it|h

j
t)(B.8)

Following a similar argument, one can show that

Pρi,g−i(h̃jt+1|h
j
t , u

j
t)

=
∑
q̃it,ũ

i
t

Πj,i,g−{i,j}

t (h̃jt+1|q̃it, h
j
t , ũ

i
t, u

j
t)ρ

i
t(ũ

i
t|q̃it)Pρ

i,g−i(q̃it|h
j
t)(B.9)

Combining (B.7)(B.8)(B.9) we conclude that

Pg(h̃jt+1|h
j
t , u

j
t) = Pρi,g−i(h̃jt+1|h

j
t , u

j
t)

Following an analogous argument, one can show that

Eg[Rj
t |h

j
t , u

j
t ] =

∑
q̃it,ũ

i
t

ri,j,g
−{i,j}

t (q̃it, h
j
t , ũ

i
t, u

j
t)ρ

i
t(ũ

i
t|q̃it)Pg(q̃it|h

j
t)

Eρi,g−i [Rj
t |h

j
t , u

j
t ] =

∑
q̃it,ũ

i
t

ri,j,g
−{i,j}

t (q̃it, h
j
t , ũ

i
t, u

j
t)ρ

i
t(ũ

i
t|q̃it)Pρ

i,g−i(q̃it|h
j
t)

where ri,j,g
−{i,j}

t is defined in Lemma B.5.

Hence

Eg[Rj
t |h

j
t , u

j
t ] = Eρi,g−i [Rj

t |h
j
t , u

j
t ],

proving the lemma.
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Lemma B.7. Suppose that Qi is a information state under g−i for the payoff of

player i, where g−i is a fully mixed behavioral strategy profile. Define Ki
τ through

Ki
τ (h

i
τ , u

i
τ ) = Eg−i [Ri

τ |hiτ , uiτ ] + max
g̃iτ+1:T

Eg̃iτ+1:T ,g
−i

[
T∑

t=τ+1

Ri
t

∣∣∣hiτ , uiτ
]
.

Then there exist a function K̂i
τ : Qiτ × U iτ 7→ [−T, T ] such that

Ki
τ (h

i
τ , u

i
τ ) = K̂i

τ (q
i
τ , u

i
τ )

Proof. Fixing g−i, H i
t is a controlled Markov Chain controlled by U i

t . Qi
t is an

information state (as defined in A.1) of this Markov Chain. The lemma is then a

direct application of Lemma A.1.

Lemma B.8. Suppose that Qi is unilaterally sufficient information for player i.

Let g be (the strategy part of) a sequential equilibrium. Then there exist a Qi-based

strategy ρi such that (ρi, g−i) is a sequential equilibrium with the same expected payoff

profile as g.

Proof of Lemma B.8. Let (g,K) be a sequential equilibrium under Definition A.5.

Let (g(n), K(n)) be a sequence of strategy and conjecture profiles that satisfies con-

ditions (1)(2’)(3) of Definition A.5.

Set ρ(n),i through

ρ
(n),i
t (uit|qit) =

∑
h̃it

g
(n),i
t (uit|h̃it)F

i,g(n),i

t (h̃it|qit).

where F i,g(n),i

t is defined in Definition 2.4.

By replacing the sequence with one of its sub-sequences, without loss of generality,

assume that ρ(n),i → ρi for some ρi.

Denote ḡ(n) = (ρ(n),i, g(n),−i) and ḡ = (ρi, g−i). We have ḡ(n) → ḡ.

We proceed to show that (ḡ, K) is a sequential equilibrium. We only need to

show that ḡ is sequentially rational to K and (ḡ(n), K(n)) satisfies conditions (2’) of

Definition A.5, as conditions (1)(3) of Definition A.5 are clearly true. Since ḡ−i = g−i,

we automatically have ḡj to be sequentially rational given Kj for all j ∈ I\{i}, and

K(n),i to be consistent with ḡ(n),−i for each n. It suffices to establish

(i) ρi is sequentially rational with respect to Ki; and

(ii) K(n),j is consistent with ḡ(n),−j for each j ∈ I\{i}.
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To establish (i), we will use the previous lemmas to show that Ki
t(h

i
t, u

i
t) is a

function of (qit, u
i
t), and hence one can use an qit based strategy to optimize Ki

t .

Proof of (i): By construction,

ρ
(n),i
t (qit) =

∑
h̃it:q̃

i
t=q

i
t

g
(n),i
t (h̃it)η

(n)
t (h̃it|qit)

for some distribution η
(n)
t (qit) ∈ ∆(Hi

t). Let ηt(q
i
t) be an accumulation point of the

sequence [η
(n)
t (qit)]

∞
n=1. We have

ρit(q
i
t) =

∑
h̃it:q̃

i
t=q

i
t

git(h̃
i
t)ηt(h̃

i
t|qit).

As a result, we have

(B.10) supp(ρit(q
i
t)) ⊂

⋃
h̃it:q̃

i
t=q

i
t

supp(git(h̃
i
t)).

By Lemma B.1, Qi is an information state for the payoff of player i under g(n),−i.

Then by Lemma B.7 we have K
(n),i
t (hit, u

i
t) = K̂

(n),i
t (qit, u

i
t) for some function K̂

(n),i
t .

Since K(n),i → Ki, we have Ki
t(h

i
t, u

i
t) = K̂i

t(q
i
t, u

i
t) for some function K̂i. By sequen-

tial rationality we have

(B.11) supp(git(h̃
i
t)) ⊂ arg max

uit

K̂i
t(q

i
t, u

i
t)

for all h̃it whose corresponding compression q̃it satisfies q̃it = qit. Therefore, by (B.10)

and (B.11) we conclude that

supp(ρit(q
i
t)) ⊂ arg max

uit

K̂i
t(q

i
t, u

i
t),

establishing sequential rationality of ρi with respect to Ki.

To establish (ii), we will use the previous lemmas to show that when player i

switches her strategy from g(n),i to ρ(n),i, other players face the same control problem

at every information set. As a result, their K(n),j functions stays the same.

Proof of (ii): Consider player j 6= i. Through standard control theory, we

know that a collection of functions K̃j is consistent (in the sense of condition (2’) of

Definition A.5) with a fully mixed strategy profile g̃−j if and only if it satisfies the

following equations:

K̃j
T (hjT , u

j
T ) = Eg̃−j [Rj

T |h
j
T , u

j
T ]
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Ṽ j
t (hjt) = max

ũit

K̃i
t(h

i
t, ũ

i
t) ∀t ∈ T

K̃j
t (h

j
t , u

j
t) = Eg̃−j [Rj

t |h
j
t , u

j
t ] +

∑
h̃jt+1

Ṽ j
t+1(h̃jt+1)Pg̃−j(h̃jt+1|h

j
t , u

j
t)

∀t ∈ T \{T}

By Lemma B.6, we have

Pg(n),−j(h̃jt+1|h
j
t , u

j
t) = Pρ(n),i,g(n),−{i,j}(h̃jt+1|h

j
t , u

j
t),

Eg(n),−j [Rj
t |h

j
t , u

j
t ] = Eρ(n),i,g(n),−{i,j} [Rj

t |h
j
t , u

j
t ],

hence we conclude that K(n),j is also consistent with ḡ(n),−j = (ρ(n),i, g(n),−{i,j}).

We have shown that (ḡ, K) forms an sequential equilibrium.

By Lemma B.2, ḡ(n) yields the same expected payoff profile as g(n). Since the

expected payoff of each player is a continuous function of the behavioral strategy

profile, we conclude that ḡ yields the same expected payoff as g.

Proof of Theorem 2.6. Given any SE strategy profile g, applying Lemma B.8 iter-

atively for each i ∈ I, we obtain a Q-based SE strategy profile ρ with the same

expected payoff profile as g. Therefore the set of Q-based SE payoffs is the same as

that of all SE.

Proof of Proposition 2.1. Set gB1 to be the strategy of Bob where he always chooses

UB
1 = +1, and gA2 : XA

1 × UB1 7→ ∆(UA2 ) is given by

gA2 (xA1 , u
B
1 ) =

0 w.p. 1 if uB1 = +1

xA1 w.p. 2
3
, 0 w.p. 1

3
otherwise

and gB2 : XB
1 ×UB1 7→ ∆(UB2 ) is the strategy of Bob where he always chooses UB

2 = −1

irrespective of UB
1 .

The beliefs µB1 : XB
1 7→ ∆(XA

1 ), µA2 : XA
1 × UB1 7→ ∆(XB

1 ), and µB2 : XB
1 × UB1 7→

∆(XA
1 ) are given by

µB1 (xB1 ) = the prior of XA
1

µA2 (xA1 , u
B
1 ) =

−1 w.p. 1
2
, +1 w.p. 1

2
if uB1 = +1

xA1 w.p. 1 otherwise

µB2 (xB1 , u
B
1 ) = the prior of XA

1

One can verify that g is sequentially rational given µ, and µ is preconsistent [37]

with g, i.e. the beliefs can be updated with Bayes rule for consequtive information
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sets on and off-equilibrium path. In particular, (g, µ) is a wPBE.1 We will show that

no Q-based wPBE can attain the payoff profile of g.

Suppose that ρ = (ρA, ρB) is a Q-based weak PBE strategy profile. First, observe

that at t = 2, Alice can only choose her actions based on UB
1 according to the

definition of QA-based strategies. Let α, β ∈ ∆({−1, 0, 1}) be Alice’s mixed action

at time t = 2 under UA
2 = −1 and UA

2 = +1 respectively under strategy ρA. With

some abuse of notation, denote ρA = (α, β). There exists no belief system under

which Alice is indifferent between all of her three actions at time t = 2. Therefore,

no strictly mixed action at t = 2 would be sequentially rational. Therefore, sequential

rationally of ρA (with respect to some belief) implies that min{α(−1), α(0), α(+1)} =

min{β(−1), β(0), β(+1)} = 0.

To respond to ρA = (α, β), Bob can always maximizes his stage 2 instantaneous

reward to 0 by using a suitable response strategy. If Bob plays −1 at t = 1, his best

total payoff is given by 0.2; if Bob plays +1 at t = 1, his best total payoff is given by

0. Hence Bob strictly prefers −1 to +1. Therefore, in any best response (in terms

of total expected payoff) to Alice’s strategy ρA, Bob plays UB
1 = −1 irrespective of

his private type. Therefore, Alice has an instantaneous payoff of −1 at t = 1 and a

total payoff ≤ 0 under ρ, proving that the payoff profile of ρ is different from that of

g.

B.3 Proofs for Section 2.5

Lemma B.9. In the model of Example 2.6, there exists functions (ξg
i

t )gi∈Gi,i∈I , ξ
gi

t :

Y1:t−1 × U1:t−1 7→ ∆(X i
1:t) such that

Pg(x1:t|y1:t−1, u1:t−1) =
∏
i∈I

ξg
i

t (xi1:t|y1:t−1, u1:t−1)

for all strategy profiles g and all (y1:t−1, u1:t−1) admissible under g.

Proof of Lemma B.9. Denote H0
t = (Y1:t−1,U1:t−1). We prove the result by induc-

tion on time t.

Induction Base: The result is true for t = 1 since H0
1 = ∅ and the random

variables (X i
1)i∈I are assumed to be mutually independent.

Induction Step: Suppose that we have proved Lemma B.9 for time t. We then

prove the result for time t+ 1.

We have

Pg(x1:t+1, yt, ut|h0
t ) = Pg(xt+1, yt|x1:t, ut, h

0
t )Pg(ut|x1:t, h

0
t )Pg(x1:t|h0

t )

1It can also be shown that (g, µ) satisfies Watson’s [111] definition of a PBE. However, (g, µ) is
not a PBE in the sense of Fudenberg and Tirole [28], since µ violates their “no-signaling-what-you-
don’t-know” condition.
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=
∏
i∈I

(
P(xit+1, y

i
t|xit, ut)git(uit|xi1:t, h

0
t )ξ

gi

t (xi1:t|h0
t )
)

=:
∏
i∈I

νg
i

t (xi1:t+1, yt, ut, h
0
t ) =

∏
i∈I

νg
i

t (xi1:t+1, h
0
t+1)

Therefore

Pg(x1:t+1|h0
t+1) =

Pg(x1:t+1, yt, ut|h0
t )∑

ỹt,ũt
Pg(x̃1:t+1, yt, ut|h0

t+1)

=

∏
i∈I ν

gi

t (xi1:t+1, h
0
t+1)∑

x̃1:t+1

∏
i∈I ν

gi

t (x̃i1:t+1, h
0
t+1)

=

∏
i∈I ν

gi

t (xi1:t+1, h
0
t+1)∏

i∈I
∑

x̃i1:t+1
νg

i

t (x̃i1:t+1, h
0
t+1)

=
∏
i∈I

ξg
i

t+1(xi1:t+1|h0
t+1)

where

ξg
i

t+1(xi1:t+1|h0
t+1) =

νg
i

t (xi1:t+1, h
0
t+1)∑

x̃i1:t+1
νg

i

t (x̃i1:t+1, h
0
t+1)

,

establishing the induction step.

Proof of Theorem 2.7. Denote H0
t = (Y1:t−1,U1:t−1). Then Qi

t = (H0
t , X

i
t). Given

Lemma B.9, we have

Pg(xi1:t−1|qit) =
Pg(xi1:t|h0

t )

Pg(xit|h0
t )

=
ξg

i

t (xi1:t|h0
t )∑

x̃i1:t−1
ξg

i

t ((x̃i1:t−1, x
i
t)|h0

t )

=: F̃ i,gi

t (xi1:t−1|qit)

Since H i
t = (Qi

t, X
i
1:t−1), we conclude that

(B.12) Pg(h̃it|qit) = F i,gi

t (h̃it|qit)

for some function F i,gi

t .

Given Lemma B.9, we have

Pg(x̃−i1:t|hit) =
Pg(x̃−i1:t, x

i
1:t|h0

t )

Pg(xi1:t|h0
t )

=
∏
j 6=i

ξg
j

t (x̃j1:t|h0
t )

As a result, we have

Pg(x̃−i1:t, q̃
i
t|hit) = 1{q̃it=qit}

∏
j 6=i

ξg
j

t (xj1:t|h0
t )
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=: Φ̃i,g−i

t (x̃−i1:t|qit)

Since (Xt, H
−i
t ) is measurable with respect to (X−i1:t, Q

i
t), we conclude that

(B.13) Pg(x̃t, h̃−it |hit) = Φi,g−i

t (x̃t, h̃
−i
t |qit)

for some function Φi,g−i

t .

Combining (B.12) and (B.13) while using the fact that Qi
t is a function of H i

t , we

obtain

Pg(x̃t, h̃t|qit) = F i,gi

t (h̃it|qit)Φ
i,g−i

t (x̃t, h̃
−i
t |qit)

We conclude that Qi is unilaterally sufficient information.
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APPENDIX C

Proofs for Chapter 3

Proof of Proposition 3.1. We will characterize all the Bayes-Nash equilibria of Ex-

ample 3.1 in behavioral strategy profiles. Then we will show that none of the BNE

corresponds to a belief-based equilibrium.

Let α = (α1, α2) ∈ [0, 1]2 describe Alice’s behavioral strategy: α1 is the proba-

bility that Alice plays UA
1 = −1 given XA

1 = −1; α2 is the probability that Alice

plays UA
1 = +1 given XA

1 = +1. Let β = (β1, β2) ∈ [0, 1]2 denote Bob’s behavioral

strategy: β1 is the probability that Bob plays UB
2 = L when observing XA

1 = −1, β2

is the probability that Bob plays UB
2 = L when observing XA

1 = +1.

Claim:

α∗ =

(
1

2
,
1

2

)
, β∗ =

(
1

3
,
1− c

3

)
is the unique BNE of Example 3.1.

Given the claim, one can conclude that a CIB-CNE does not exist in this game:

Suppose that a strategy profile g generated from (ρ, ψ) forms a belief-based equi-

librium. B2 is a belief of X2 given H0
2 . Let b−2 , b

+
2 be the realization of B2 under

X1 = −1 and X1 = +1 respectively. We have ρA1 : X1 7→ ∆(UA1 ), ρB2 : B2 7→ ∆(UB2 ).

Then

α1 = ρA1 (−1| −1), α2 = ρA1 (+1|+1),

β1 = ρB2 (L|b−2 ), β2 = ρB2 (L|b+
2 ).

The consistency of ψ2 with respect to ρ1 implies that the measures b−2 , b
+
2 ∈ ∆({−1,+1})

satisfies

b−2 (+1) = α1, b+
2 (+1) = α2

If α∗ =
(

1
2
, 1

2

)
is a part of a belief-based equilibrium, then b−2 = b+

2 . Hence Bob’s

induced stage behavioral strategy β should satisfy β1 = β2. However β∗ =
(

1
3
, 1−c

3

)
.
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Therefore, (α∗, β∗) is not a belief-based equilibrium. We conclude that a belief-based

equilibrium does not exist in Example 3.1.

Proof of Claim: Since both players know X1, the game contains two subgames:

X1 = −1 and X1 = +1. Call the subgames Γ− and Γ+ respectively. Since both

subgames have strictly positive probability of being played, (α, β) is a BNE if and

only if it induces equilibria in both subgames.

Consider the subgame Γ+:

• Suppose that Bob plays L with probability 1, then Alice’s best response is

−1, then if Bob switches to R he will be strictly better off. Hence there is no

equilibrium (in the subgame Γ+) where Bob plays L with probability 1.

• Suppose that Bob plays R with probability 1, then Alice’s best response is

+1, then if Bob switches to L he will be strictly better off. Hence there is no

equilibrium (in the subgame Γ+) where Bob plays R with probability 1.

• Suppose that Bob plays a fully mixed strategy, then it means that Bob is

indifferent between his two actions. This means 1−α2 = α2, i.e. α2 = 1
2
. Thus

Alice is indifferent between her two actions. This means that (2 + c)β2 + c(1−
β2) = 1− β2, i.e. β2 = 1−c

3
.

Therefore the only equilibrium in the subgame Γ+ is α2 = 1
2
, β2 = 1−c

3
. Similar

argument shows that the only equilibrium in the subgame Γ− is α2 = 1
2
, β2 = 1

3
. We

conclude that α∗ =
(

1
2
, 1

2

)
, β∗ =

(
1
3
, 1−c

3

)
is the unique BNE of Example 3.1.

Proof of Proposition 3.2. Similar to the proof of Proposition 3.1, we first characterize

all the Bayes-Nash equilibria of Example 3.2 in behavioral strategy profiles. Then

we will show that none of the BNE corresponds to a belief-based equilibrium.

Let α = (α1, α2) ∈ [0, 1]2 describe Alice’s behavioral strategy: α1 is the proba-

bility that Alice plays UA
1 = −1 given XA

1 = −1; α2 is the probability that Alice

plays UA
1 = +1 given XA

1 = +1. Let β = (β1, β2) ∈ [0, 1]2 denote Bob’s behavioral

strategy: β1 is the probability that Bob plays UB
2 = U when observing UA

1 = −1, β2

is the probability that Bob plays UB
2 = U when observing UA

1 = +1.

Claim:

α∗ =

(
1

3
,
1

3

)
, β∗ =

(
1

3
+ c,

1

3
− c
)

is the unique BNE of Example 3.2.
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Given the claim, one can conclude that a CIB-CNE does not exist in this game:

Suppose that a strategy profile g generated from (ρ, ψ) forms a belief-based equi-

librium. B2 is a belief of X2 given H0
2 . Let b−2 , b

+
2 be the realization of B2 under

UA
1 = −1 and UA

1 = +1 respectively. We have ρA1 : X1 7→ ∆(UA1 ), ρB2 : B2 7→ ∆(UB2 ).

Then

α1 = ρA1 (−1| −1), α2 = ρA1 (+1|+1),

β1 = ρB2 (U|b−2 ), β2 = ρB2 (U|b+
2 ).

The consistency of ψ2 with respect to ρ1 implies that the measures b−2 , b
+
2 ∈ ∆({−1,+1})

satisfies

b−2 (+1) =
α1

α1 + 1− α2

if α 6= (0, 1)

b+
2 (+1) =

α2

α2 + 1− α1

if α 6= (1, 0)

If α∗ =
(

1
3
, 1

3

)
is a part of a belief-based equilibrium, then b−2 = b+

2 . Hence

Bob’s induced stage behavioral strategy β should satisfy β1 = β2. However β∗ =(
1
3

+ c, 1
3
− c
)
. Therefore, (α∗, β∗) is not a belief-based equilibrium. We conclude

that a belief-based equilibrium does not exist in Example 3.2.

Proof of Claim: Denote Alice’s total expected payoff to be J(α, β). Then

J(α, β)

=
1

2
c(1− α1 + α2) +

1

2
α1 · 2β1 +

1

2
(1− α1)(1− β2) +

1

2
(1− α2)(1− β1) +

1

2
α2 · 2β2

=
1

2
c(1− α1 + α2) +

1

2
(2− α1 − α2) +

1

2
(2α1 + α2 − 1)β1 +

1

2
(2α2 + α1 − 1)β2.

Define J∗(α) = minβ J(α, β). Alice plays α at some equilibrium if and only if α

maximizes J∗(α). We compute

J∗(α) =
1

2
c(1− α1 + α2) +

1

2
(2− α1 − α2)+

+
1

2
min{2α1 + α2 − 1, 0}+

1

2
min{α1 + 2α2 − 1, 0}

Since J∗(α) is a continuous piecewise linear function, the set of maximizers can

be found by comparing the values at the extreme points of the pieces. We have

J∗(0, 0) =
1

2
c+ 1− 1

2
− 1

2
=

1

2
c;

J∗
(

1

2
, 0

)
=

1

2
c · 1

2
+

1

2
· 3

2
+

1

2
· 0− 1

2
· 1

2
=

1

4
c+

1

2
;
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J∗
(

0,
1

2

)
=

1

2
c · 3

2
+

1

2
· 3

2
− 1

2
· 1

2
− 1

2
· 0 =

3

4
c+

1

2
;

J∗(1, 0) =
1

2
c · 0 +

1

2
· 1 +

1

2
· 0 +

1

2
· 0 =

1

2
;

J∗(0, 1) =
1

2
c · 2 +

1

2
· 1 +

1

2
· 0 +

1

2
· 0 = c+

1

2
;

J∗
(

1

3
,
1

3

)
=

1

2
c+

1

2
· 4

3
+

1

2
· 0 +

1

2
· 0 =

1

2
c+

2

3
;

J∗(1, 1) =
1

2
c+

1

2
· 0 +

1

2
· 0 +

1

2
· 0 =

1

2
c.

α1

α2

(1, 1)(0, 1)

(0, 0)
(1, 0)(1

2
, 0)

(0, 1
2
)

(1
3
, 1

3
)

Figure C.1: The pieces (polygons) for which J∗(α) is linear on. The extreme points
of the pieces are labeled.

Since c < 1
3
, we have (1

3
, 1

3
) to be the unique maximum among the extreme points.

Hence we have arg maxα J
∗(α) = {(1

3
, 1

3
)}, i.e. Alice always plays α∗ = (1

3
, 1

3
) in any

BNE of the game.

Now, consider Bob’s equilibrium strategy. β∗ is an equilibrium strategy of Bob

only if α∗ ∈ arg maxα J(α, β∗).

For each β, J(α, β) is a linear function of α and

∇αJ(α, β) =

(
−1

2
c− 1

2
+ β1 +

1

2
β2,

1

2
c− 1

2
+

1

2
β1 + β2

)
∀α ∈ (0, 1)2.

We need ∇αJ(α, β∗)
∣∣∣
α=α∗

= (0, 0). Hence

−1

2
c− 1

2
+ β∗1 +

1

2
β∗2 = 0;

1

2
c− 1

2
+

1

2
β∗1 + β∗2 = 0,

which implies that β∗ = (1
3

+ c, 1
3
− c), proving the claim.
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Proof of Proposition 3.3. Let α = (α1, α2) ∈ [0, 1]2 describe Alice’s behavioral strat-

egy: α1 is the probability that Alice plays UA
1 = −1 given XA

1 = −1; α2 is the

probability that Alice plays UA
1 = +1 given XA

1 = +1. Let β = (β1, β2) ∈ [0, 1]2

denote Bob’s behavioral strategy when Y1 = 0: β1 is the probability that Bob plays

UB
2 = U when observing Y1 = 0, UA

1 = −1, β2 is the probability that Bob plays

UB
2 = U when observing Y1 = 0, UA

1 = +1.

Claim: In Example 3.3 has a unique BNE. It satisfies

α∗ = β∗ =

(
1

3− 4c
,
1− 2c

3− 4c

)
Given the claim, one can conclude that a CIB-CNE does not exist in this game

in a similar way to the proof of Proposition 3.3.

Proof of Claim: The proof is similar to the proof of claim in Proposition 3.2.

Let β̂ ∈ [0, 1] denote the probability that Bob plays UB
2 = U when observing

Y1 = 0, UA
1 = −1.

Denote Alice’s total expected payoff by J(α, β, β̂). Then

J(α, β, β̂)

=
1

2
[2α1cβ̂ + 2α1(1− c)β1 + (1− α2)(1− β1) + (1− α1)(1− β2) + 2α2β2]

=
1

2
(2− α1 − α2) + α1cβ̂ +

1

2
[2(1− c)α1 + α2 − 1]β1 +

1

2
(α1 + 2α2 − 1)β2

Define J∗(α) = min(β,β̂) J(α, β, β̂), we have

J∗(α) =
1

2
(2− α1 − α2) +

1

2
min{2(1− c)α1 + α2 − 1, 0}+

1

2
min{α1 + 2α2 − 1, 0}

The set of equilibrium strategies for Alice is the set of maximizers of J∗(α). Since

J∗(α) is a piecewise linear function, we analyze the maximizer by computing J∗(α)

at extreme points of the pieces:

J∗(0, 0) =
1

2
· 2 +

1

2
(−1) +

1

2
(−1) = 0

J∗
(

1

2− 2c
, 0

)
=

1

2

(
2− 1

2− 2c

)
+

1

2

(
1

2− 2c
− 1

)
=

1

2

J∗
(

0,
1

2

)
=

1

2

(
2− 1

2

)
+

1

2

(
1

2
− 1

)
=

1

2

J∗ (1, 0) =
1

2
· 1 +

1

2
· 0 +

1

2
· 0 =

1

2

J∗ (0, 1) =
1

2
· 1 +

1

2
· 0 +

1

2
· 0 =

1

2
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J∗
(

1

3− 4c
,
1− 2c

3− 4c

)
=

1

2

(
2− 1

3− 4c
− 1− 2c

4c− 1

)
+

1

2
· 0 +

1

2
· 0

=
2− 3c

3− 4c

J∗ (1, 1) =
1

2
· 0 +

1

2
· 0 +

1

2
· 0 = 0

Since c < 1
2
, we have 2−3c

3−4c
> 1

2
. Therefore we conclude that arg maxα J

∗(α) =

{( 1
3−4c

, 1−2c
3−4c

)}. Hence Alice plays α∗ = ( 1
3−4c

, 1−2c
3−4c

) in all BNEs of the game.

Under α∗, the event Y1 = 1, UA
1 = −1 has positive probability. Hence Bob’s best

response to α∗ must satisfy β̂∗ = 0.

Bob’s strategy β∗ is an equilibrium strategy only if α∗ ∈ arg maxα J(α, β∗, β̂∗).

For each β, J(α, β, 0) is a linear function of α and

∇αJ(α, β, 0) =

(
−1

2
+ (1− c)β1 +

1

2
β2,−

1

2
+

1

2
β1 + β2

)
∀α ∈ (0, 1)2.

We need ∇αJ(α, β∗, 0)
∣∣∣
α=α∗

= (0, 0). Hence

−1

2
+ (1− c)β∗1 +

1

2
β∗2 = 0;

−1

2
+

1

2
β∗1 + β∗2 = 0,

which implies that β∗ = ( 1
3−4c

, 1−2c
3−4c

), proving the claim.
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APPENDIX D

Proofs for Chapter 4

D.1 Proofs for Sections 4.2 and 4.3

Proof of Claim in Example 4.1. Define two pure strategies µA and µ̃A of Team A as

follows:

µA,1(xA,11 ) = xA,11 , µA,2(xA,21 ) = −xA,21 ,

µ̃A,1(xA,11 ) = −xA,11 , µ̃A,2(xA,21 ) = xA,21 .

Now, assume that Team A and Team B are restricted to use independently ran-

domized strategies (type 2 strategies defined in Section 4.2.2). We will show in two

steps that there exist no equilibria within this class of strategies.

Step 1: If Team A and Team B’s type 2 strategies form an equilibrium, then

Team A is playing either µA or µ̃A.

Let αj(x) denote the probability that player (A, j) plays UA,j
1 = −x given XA,j

1 =

x. Define

ᾱj =
1

2
αj(−1) +

1

2
αj(+1),

i.e. the ex-ante probability that player (A, j) “lies”.

Then we have

E[rA1 (X1,U1)] = ᾱ1(1− ᾱ2) + ᾱ2(1− ᾱ1).

Under an equilibrium, Team B will optimally respond to Team A strategy’s de-

scribed through (α1, α2). We can find a lower bound of Team B’s reward by fixing a

strategy: Consider the “random guess” strategy of Team B, where each of (B, j) (for

j = 1, 2) chooses UB,j
2 uniformly at random irrespective of UA

1 and independent of

the other team member. Team B can thus guarantee an expected reward of 1
2

+ 1
2

= 1
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given any strategy of Team A. Since rA2 (X2,U2) = −rB2 (X2,U2), we conclude that

Team A’s total reward in an equilibrium is upper bounded by

ᾱ1(1− ᾱ2) + ᾱ2(1− ᾱ1)− 1 = −ᾱ1ᾱ2 − (1− ᾱ1)(1− ᾱ2) ≤ 0

Let σB denote the strategy of Team B. Let θj(u
1, u2) denote the probability that

player (B, j) plays UB,j
2 = −uj given UA,1

1 = u1, UA,2
1 = u2 (i.e. the probability that

player (B, j) believes that (A, j) was “lying” hence guesses the opposite of what was

signaled). If Team A plays µA, then the total reward of Team A is

JA(µA, σB) = 1− E[1− θ1(XA,1
1 ,−XA,2

1 ) + θ2(XA,1
1 ,−XA,2

1 )]

=
1

4

∑
x∈{−1,1}2

(−θ1(x) + θ2(x)).

If Team A plays µ̃A, then the total reward of Team A is

JA(µ̃A, σB) = 1− E[θ1(−XA,1
1 , XA,2

1 ) + 1− θ2(−XA,1
1 , XA,2

1 )]

=
1

4

∑
x∈{−1,1}2

(θ1(x)− θ2(x)).

Observe that JA(µA, σB)+JA(µ̃A, σB) = 0. Hence for any σB, either JA(µA, σB) ≥
0 or JA(µ̃A, σB) ≥ 0. In particular, we can conclude that Team A’s total reward is

at least 0 in any equilibrium.

We have established both an upper bound and lower bound for Team A’s total

reward in an equilibrium. Hence we must have

−ᾱ1ᾱ2 − (1− ᾱ1)(1− ᾱ2) = 0,

which implies ᾱ1 = 0, ᾱ2 = 1 or ᾱ1 = 1, ᾱ2 = 0. The former case corresponds to

Team A playing the pure strategy µA, and the latter to µ̃A.

Step 2: There does not exist equilibria where Team A plays µA or µ̃A.

Suppose that Team A plays µA. Then the only best response of Team B is to

play UB,1
2 = UA,1

1 , UB,2
2 = −UA,2

1 . Then, Team A’s total reward is JA(µA, σB) =

1− 1− 1 = −1. If Team A deviate to µ̃A, then Team A can obtain a total reward of

+1 (recall that JA(µA, σB) + JA(µ̃A, σB) = 0 for any σB). Hence Team A does not

play µA at equilibrium.

Similar arguments apply to µ̃A, which completes the proof.

Proof of Lemma 4.1. Given a pure strategy profile µi of team i, define a pure coor-

dination strategy profile νi by

νit(h
i
t, γ

i
1:t−1) = (µi,jt (hit, ·))(i,j)∈Ni ∀hit ∈ Hi

t, γ
i
1:t−1 ∈ Ai1:t−1.
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We first prove that for every pure strategy profile µi, there exist a payoff-equivalent

coordination strategy profile νi by coupling two systems. In one of the systems, we

assume that team i uses a pure strategy. In the other system, we assume that

team/coordinator i uses the corresponding pure coordination strategies. We assume

that all teams other than i use the same pure strategy profile µ−i = (µk)k∈I\{i} in both

systems. The realizations of primitive random variables (i.e. (X i
1)i∈I , (W

i,X
t ,W i,Y

t )i∈I,t∈T )

are assumed to be the same for two systems. We proceed to show that the realiza-

tions of all system variables (i.e. (Xt,Yt,Ut)t∈T ) will be the same for both systems.

As a result, the expected payoffs are the same for both systems.

We prove that the realizations of (Xt,Yt,Ut)t∈T are the same by induction on

time t.

Induction Base: At t = 1, the realizations of X1 are the same for two systems

by assumption. For the first system we have

U i,j
1 = µi,j1 (X i,j

1 ) ∀(i, j) ∈ Ni,

and for the second system we have

Γi
1 = νit(H

i
1) = (µi,jt (·))(i,j)∈Ni ,

U i,j
1 = Γi,j1 (X i,j

1 ) ∀(i, j) ∈ Ni,

which means that U i,j
1 = µi1(X i,j

1 ) also holds in the second system for all (i, j) ∈ Ni.
It is clear that U−i1 are the same for both systems since in both systems,

Uk,j
1 = µk,j1 (Xk,j

1 ) ∀(k, j) ∈ N\Ni.

We conclude that U1 are the same for both systems. Since (W k,Y
1 )k∈I are the

same for both systems, Y k
1 = `i1(Xk

1 ,U1,W
k,Y
1 ), k ∈ I are the same for both systems.

Induction Step: Suppose that Xτ ,Yτ ,Uτ are the same for both systems for all

τ < t. Now we prove it for t.

First, since the realizations of Xi
t−1,Ut−1,W

i,X
t−1 are the same for both systems

and

Xk
t = fkt (Xk

t−1,Ut−1,W
k,X
t−1 ) ∀k ∈ I,

Xt are the same for both systems.

Consider the actions taken by the members of team i at time t. For the first

system

U i,j
t = µi,jt (H i,j

t ) = µi,jt (H i
t , X

i,j
t−d+1:t) ∀(i, j) ∈ Ni.
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In the second system

Γi
t = νit(H

i
t) = (µi,jt (H i

t , ·))(i,j)∈Ni

U i,j
t = Γi,jt (X i,j

t−d+1:t) ∀(i, j) ∈ Ni,

which means that

U i,j
t = µi,jt (H i

t , X
i,j
t−d+1:t) ∀(i, j) ∈ Ni.

The actions taken by the members of other teams at time t are

Uk,j
t = µk,jt (Hk

t , X
k,j
t−d+1:t) ∀(k, j) ∈ N\Ni.

for both systems.

We conclude that Ut has the same realization for two systems since (Hk
t , X

k,j
t−d+1:t)k∈I

have the same realization by the induction hypothesis and the argument above. Since

(W i,Y
t )i∈I are the same for both systems, Y k

t = `kt (X
k
t ,Ut,W

k,Y
t ), k ∈ I are same for

both systems.

Therefore we have established the induction step, proving that µi and νi generate

the same realization of (Xt,Yt,Ut)t∈T under the same realization of the primitive

random variables. Therefore, νi is a payoff-equivalent pure coordination strategy

profile of µi.

To complete the other half of the proof, for each given coordination strategy νi

of team/coordinator i we define a pure team strategy µi = (µi,jt )(i,j)∈Ni,t∈T through

µi,jt (hi,jt ) = γi,jt (xi,jt−d+1:t) ∀hi,jt ∈ H
i,j
t ∀(i, j) ∈ Ni,

where γit = (γi,jt )(i,j)∈Ni is recursively defined by νi1:t and hit through

γit = νit(h
i
t, γ

i
1:t−1) ∀t ∈ T .

Then using an argument similar to the one for the proof of the first half we can

show that µi is payoff-equivalent to νi.

D.2 Proofs for Section 4.4

Proof of Lemma 4.3. Induction on time t.

Induction Base: At t = 1, we have Xk
1 to be independent for different k be-

cause of the assumption on primitive random variables. Furthermore, since Hk
1 is

a deterministic random vector (see Remark 4.2) and the randomization of different
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coordinators are independent, we conclude that (Xk
1,Γ

k
1) are mutually independent

for different k. The distribution of (Xk
1,Γ

k
1) depends on g only through gk.

Induction Step: Suppose that (Xk
1:t,Γ

k
1:t) are conditionally independent given

H0
t and Pg(Xk

1:t,Γ
k
1:t|H0

t ) depends on g only through gk. Now, we have

Pg(x1:t+1, γ1:t+1|h0
t+1)

= Pg(xt+1|h0
t+1, x1:t, γ1:t+1)Pg(γt+1|h0

t+1, x1:t, γ1:t)Pg(x1:t, γ1:t|h0
t+1)

=

(∏
k∈I

P(xkt+1|xkt , ut)gkt+1(γkt+1|h0
t+1, x

k
1:t−d+1, γ

k
1:t)

)
Pg(x1:t, γ1:t|h0

t+1).

We then claim that

Pg(x1:t, γ1:t, yt, ut|h0
t ) =

∏
k∈I

F k
t (xk1:t, γ

k
1:t, h

0
t+1)

where for each k ∈ I, F k
t is a function that depends only on gk.

To establish the claim we note that

Pg(x1:t, γ1:t, yt, ut|h0
t )

= Pg(yt, ut|h0
t , x1:t, γ1:t)Pg(x1:t, γ1:t|h0

t )

=

(∏
k∈I

P(ykt |xkt , ut)1{ukt=γkt (xkt−d+1:t)}

)
Pg(x1:t, γ1:t|h0

t )

=

(∏
k∈I

P(ykt |xkt , ut)1{ukt=γkt (xkt−d+1:t)}

)(∏
k∈I

Pgk(xk1:t, γ
k
1:t|h0

t )

)
=
∏
k∈I

F k
t (xk1:t, γ

k
1:t, h

0
t+1),

where in the third step we have used the induction hypothesis.

Given the claim, we have

Pg(x1:t, γ1:t|h0
t+1) =

Pg(x1:t, γ1:t, yt, ut|h0
t )∑

x̃1:t,γ̃1:t
Pg(x̃1:t, γ̃1:t, yt, ut|h0

t )

=

∏
k∈I F

k
t (xk1:t, γ

k
1:t, h

0
t+1)∑

x̃1:t,γ̃1:t

∏
k∈I F

k
t (x̃k1:t, γ̃

k
1:t, h

0
t+1)

=

∏
k∈I F

k
t (xk1:t, γ

k
1:t, h

0
t+1)∏

k∈I

(∑
x̃k1:t,γ̃

k
1:t
F k
t (x̃k1:t, γ̃

k
1:t, h

0
t+1)

)
=
∏
k∈I

(
F k
t (xk1:t, γ

k
1:t, h

0
t+1)∑

x̃k1:t,γ̃
k
1:t
F k
t (x̃k1:t, γ̃

k
1:t, h

0
t+1)

)

147



and then

Pg(x1:t+1, γ1:t+1|h0
t+1) =

∏
k∈I

Gk
t (x

k
1:t+1, γ

k
1:t+1, h

0
t+1),

where Gk
t is given by

Gk
t (x

k
1:t+1, γ

k
1:t+1, h

0
t+1) = P(xkt+1|xkt , ut)gkt+1(γkt+1|h0

t+1, x
k
1:t−d+1, γ

k
1:t)×

×
F k
t (xk1:t, γ

k
1:t, h

0
t+1)∑

x̃k1:t,γ̃
k
1:t
F k
t (x̃k1:t, γ̃

k
1:t, h

0
t+1)

.

One can check that Gk
t depends on g only through gk and∑

x̃k1:t+1,γ̃
k
1:t+1

Gk
t (x̃

k
1:t+1, γ̃

k
1:t+1, h

0
t+1) = 1,

therefore

Gk
t (x

k
1:t+1, γ

k
1:t+1, h

0
t+1) = Pgk(xk1:t+1, γ

k
1:t+1|h0

t+1).

Hence we establish the induction step.

Proof of Lemma 4.4. Assume that h
i

t ∈ H
i

t is admissible under g. From Lemma 4.3,

we know that Pg(xi1:t, γ
i
1:t|h0

t ) does not depend on g−i. As a conditional distribution

obtained from Pg(xi1:t, γ
i
1:t|h0

t ), Pg(xit−d+1:t|h
i

t) does not depend on g−i either.

Therefore, we can compute the belief of coordinator i by replacing g−i with ĝ−i,

which is an open-loop strategy profile that always generates the actions u−i1:t−1.

Pgi,g−i(xit−d+1:t|h
i

t) = Pgi,ĝ−i(xit−d+1:t|h
i

t).

Note that we always have Pgi,ĝ−i(hit) > 0 for all h
i

t admissible under g.

Furthermore, we can also introduce additional random variables into the condition

that are conditionally independent according to Lemma 4.3, i.e.

Pgi,ĝ−i(xit−d+1:t|h
i

t) = Pgi,ĝ−i(xit−d+1:t|h
i

t, x
−i
t−d:t),

where x−it−d:t ∈ X
−i
t−d:t is such that Pgi,ĝ−i(x−it−d:t|h

i

t) > 0.

Let τ = t− d+ 1. By Bayes’ rule

Pgi,ĝ−i(xiτ :t|h
i

t, x
−i
τ−1:t)

=
Pgi,ĝ−i(xτ :t, yτ :t−1, uτ :t−1, γ

i
τ :t−1|h∗iτ )∑

x̃iτ :t
Pgi,ĝ−i(x̃iτ :t, x

−i
τ :t, yτ :t−1, uτ :t−1, γiτ :t−1|h∗iτ )

,(D.1)
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where

h∗iτ = (y1:τ−1, u1:τ−1, x
i
1:τ−1, x

−i
τ−1, γ

i
1:τ−1).

We have

Pgi,ĝ−i(xτ :t, yτ :t−1, uτ :t−1, γ
i
τ :t−1|h∗iτ )

=
d−1∏
l=1

[
Pgi,ĝ−i(xt−l+1, yt−l|h∗iτ , xτ :t−l, yτ :t−l−1, uτ :t−l, γ

i
τ :t−l)×

× Pgi,ĝ−i(uit−l|h∗iτ , xτ :t−l, yτ :t−l−1, uτ :t−l−1, γ
i
τ :t−l)×

× Pgi,ĝ−i(γit−l|h∗iτ , xτ :t−l, yτ :t−l−1, uτ :t−l−1, γ
i
τ :t−l−1)

]
×

× Pgi,ĝ−i(xτ |h∗iτ ).(D.2)

The first three terms in the above product are

Pgi,ĝ−i(xt−l+1, yt−l|h∗iτ , xτ :t−l, yτ :t−l−1, uτ :t−l, γ
i
τ :t−l)

=
∏
k∈I

[P(xkt−l+1|xkt−l, ut−l)P(ykt−l|xkt−l, ut−l)],

Pgi,ĝ−i(uit−l|h∗iτ , xτ :t−l, yτ :t−l−1, uτ :t−l−1, γ
i
τ :t−l)

=
∏

(i,j)∈Ni

1{ui,jt−l=γ
i,j
t−l(x

i,j
t−l−d+1:t−l)}

=
∏

(i,j)∈Ni

1{ui,jt−l=φit−l,l(xiτ :t−l)}
,

Pgi,ĝ−i(γit−l|h∗iτ , xτ :t−l, yτ :t−l−1, uτ :t−l−1, γ
i
τ :t−l−1)

= git−l(γ
i
t−l|y1:t−l−1, u1:t−l−1, x

i
1:t−d−l, γ

i
1:t−l−1),(D.3)

respectively.

The last term satisfies

Pgi,ĝ−i(xτ |h∗iτ ) =
∏
k∈I

P(xkτ |xkτ−1, uτ−1).

Substituting (D.2) - (D.3) into (D.1) we obtain

Pgi,ĝ−i(xiτ :t|h
i

t, x
−i
τ−1:t) =

F i
t (x

i
τ :t, y

i
τ :t−1, uτ−1:t−1, x

i
τ−1, φ

i
t)∑

x̃iτ :t
F i
t (x̃

i
τ :t, y

i
τ :t−1, uτ−1:t−1, xiτ−1, φ

i
t)

where

F i
t (x

i
τ :t, y

i
τ :t−1, uτ−1:t−1, φ

i
t) := P(xiτ |xiτ−1, uτ−1)×
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×
d−1∏
l=1

P(xit−l+1|xit−l, ut−l)P(yit−l|xit−l, ut−l)
∏

(i,j)∈Ni

1{ui,jt−l=φ
i,j
t−l,l(x

i,j
τ :t−l)}


Therefore we have proved that

Pg(xit−d+1:t|h
i

t) = P i
t (x

i
t−d+1:t|yit−d+1:t−1, ut−d:t−1, x

i
t−d, φ

i
t)

:=
F i
t (x

i
t−d+1:t, y

i
t−d+1:t−1, ut−d:t−1, x

i
t−d, φ

i
t)∑

x̃it−d+1:t
F i
t (x̃

i
t−d+1:t, y

i
t−d+1:t−1, ut−d:t−1, xit−d, φ

i
t)

where P i
t is independent of g.

Proof of Theorem 4.6. We will show that Qi
t := (H0

t , S
i
t) satisfies the definition of

unilaterally sufficient information (Definition 2.4) for coordinator i in the game of

coordinators. Theorem 4.6 then follows from Theorem 2.4.

First, the game of coordinators can be formulated as an instance of the model in

Section 2.2 with:

• State at time t: Xt−d+1:t;

• Action of player i at time t: Γi
t;

• Instantaneous reward at time t for player i: Ri
t = rit(Xt,Ut).

• Information Increment at time t: Zi
t = (Yt,Ut,X

i
t−d+1,Γ

i
t)

First, through Lemma 4.3, we have

Pg(x̃1:t, γ̃1:t−1|h0
t , s

i
t)

= Pgi(x̃i1:t, γ̃
i
1:t−1|h0

t , s
i
t)Pg

−i
(x̃−i1:t, γ̃

−i
1:t−1|h0

t )

By Lemma 4.4, we have

Pgi(x̃i1:t, γ̃
i
1:t−1|h0

t , s
i
t)

= Pgi(x̃i1:t−d, γ̃
i
1:t−1|h0

t , s
i
t)P

i
t (x̃

i
t−d+1:t|h0

t , s
i
t)

Therefore,

Pg(x̃1:t, γ̃1:t−1|h0
t , s

i
t)

= Pgi(x̃i1:t−d, γ̃
i
1:t−1|h0

t , s
i
t)P

i
t (x̃

i
t−d+1:t|h0

t , s
i
t)Pg

−i
(x̃−i1:t, γ̃

−i
1:t−1|h0

t )

Let (h̃0,i
t )i∈I ⊂ H0

t be |I| possibly different realizations of the common information

H0
t . Let ĥit := (h̃0,i

t , x̃
i
1:t−d, γ̃

i
1:t−1). We conclude that

Pg(x̃t−d+1:t, (ĥ
i
t)i∈I |h0

t , s
i
t)
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= F i,gi

t (ĥit|h0
t , s

i
t)G

i,g−i

t (x̃t−d+1:t, ĥ
−i
t |h0

t , s
i
t)

for some function F i,gi

t and Gi,g−i

t whenever Pg(h0
t , s

i
t) > 0, where

F i,gi

t (ĥit|h0
t , s

i
t) = 1{h̃0,it =h0t }

Pgi(x̃i1:t−d, γ̃
i
1:t−1|h0

t , s
i
t)

Gi,g−i

t (x̃t−d+1:t, ĥ
−i
t |h0

t , s
i
t) =

(∏
k 6=i

1{h̃0,kt =h0t }

)
P i
t (x̃

i
t−d+1:t|h0

t , s
i
t)×

× Pg−i(x̃−i1:t, γ̃
−i
1:t−1|h0

t )

Therefore, we conclude that Qi
t = (H0

t , S
i
t) is unilaterally sufficient information

(as defined in Definition 2.4), proving the result.

D.3 Proofs for Section 4.5

Proof of Lemma 4.5. We will prove a stronger result.

Lemma D.1. Let (λ∗k, ψ∗) be a CIB strategy such that ψ∗,k is consistent with λ∗k.

Let g∗k be the behavioral strategy profile generated from (λ∗k, ψ∗). Let πkt represent

the belief on Skt generated by ψ∗ at time t based on h0
t . Let t < τ . Consider a

fixed h0
τ ∈ H0

τ and some g̃k1:t−1 (not necessarily equal to g∗k1:t−1). Assume that h0
τ is

admissible under (g̃k1:t−1, g
∗k
t:τ−1). Suppose that

Pg̃k1:t−1(skt , x
k
t−d+1:t|h0

t ) = πkt (skt )P
k
t (xkt−d+1:t|ykt−d+1:t−1, ut−d:t−1, s

k
t )

∀skt ∈ Skt ∀xkt−d+1:t ∈ X k
t−d+1:t.(D.4)

Then

Pg̃k1:t−1,g
∗k
t:τ−1(skτ , x

k
τ−d+1:τ |h0

τ ) = πkτ (skτ )P
k
τ (xkτ−d+1:τ |ykτ−d+1:τ−1, uτ−d:τ−1, s

k
τ )

∀skτ ∈ Skτ ∀xkτ−d+1:τ ∈ X k
τ−d+1:τ .

The assertion of Lemma 4.5 follows from Lemma D.1 and the fact that (D.4) is

true for t = 1.

Proof of Lemma D.1. We only need to prove the result for τ = t+ 1.

Since h0
t+1 is admissible under (g̃k1:t−1, g

∗k
t ), we have

(D.5) Pg̃k1:t−1,g
∗k
t ,ĝ−k1:t (h0

t+1) > 0

where ĝ−k1:t is the open-loop strategy where all coordinators except k choose prescrip-

tions that generate the actions u−k1:t .
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From Lemma 4.3 we know that Pg̃k1:t−1,g
∗k
t ,g−k(skt+1|h0

t+1) is independent of g−k.

Therefore

Pg̃k1:t−1,g
∗k
t (skt+1|h0

t+1) =
Pg̃k1:t−1,g

∗k
t ,ĝ−k1:t (skt+1, yt, ut|h0

t )∑
s̃kt+1

Pg̃k1:t−1,g
∗k
t ,ĝ−k1:t (s̃kt+1, yt, ut|h0

t )
,(D.6)

and the denominator of (D.6) is non-zero due to (D.5).

We have

Pg̃k1:t−1,g
∗k
t ,ĝ−k1:t (skt+1, yt, ut|h0

t )

=
∑
s̃kt

∑
x̃kt−d+1:t

∑
x̃−kt

∑
γ̃kt :γ̃kt (x̃kt−d+1:t)=u

k
t

[
P(ykt |x̃kt , ut)P(y−kt |x̃−kt , ut)×

× 1{skt+1=ιkt (s̃kt ,x̃
k
t−d+1,γ̃

k
t )}λ

∗k
t (γ̃kt |bt, s̃kt )Pg̃

k
1:t−1,g

∗k
t ,ĝ−k1:t (x̃kt−d+1:t, x̃

−k
t , s̃kt |h0

t )
]

=
∑
s̃kt

∑
x̃kt−d+1:t

∑
x̃−kt

∑
γ̃kt :γ̃kt (x̃kt−d+1:t)=u

k
t

[
P(ykt |x̃kt , ut)P(y−kt |x̃−kt , ut)×

× 1{skt+1=ιkt (s̃kt ,x̃
k
t−d+1,γ̃

k
t )}λ

∗k
t (γ̃kt |bt, s̃kt )Pg̃

k
1:t−1,g

∗k
t ,ĝ−k1:t (x̃kt−d+1:t, s̃

k
t |h0

t )×

× Pg̃k1:t−1,g
∗k
t ,ĝ−k1:t (x̃−kt |h0

t )
]

=

∑
x̃−kt

P(y−kt |x̃−kt , ut)Pg̃
k
1:t−1,g

∗k
t ,ĝ−k1:t (x̃−kt |h0

t )

×
×
∑
s̃kt

∑
x̃kt−d+1:t

∑
γ̃kt :γ̃kt (x̃kt−d+1:t)=u

k
t

[
P(ykt |x̃kt , ut)1{skt+1=ιkt (s̃kt ,x̃

k
t−d+1,γ̃

k
t )}×

× λ∗kt (γ̃kt |bt, s̃kt )Pg̃
k
1:t−1,g

∗k
t ,ĝ−k1:t (x̃kt−d+1:t, s̃

k
t |h0

t )
]
.(D.7)

where bt = (πt, yt−d+1:t−1, ut−d:t−1) and πt = (πlt)l∈I is generated from ψ∗.

Recall that we assume

Pg̃k1:t−1,g
∗k
t ,ĝ−k1:t (x̃kt−d+1:t, s̃

k
t |h0

t )

= πkt (s̃kt )P
k
t (x̃kt−d+1:t|ykt−d+1:t−1, ut−d:t−1, s̃

k
t ).(D.8)

Using (D.6), (D.7), and (D.8) we obtain

Pg̃k1:t−1,g
∗k
t (skt+1|h0

t+1) =
Υk
t (bt, y

k
t , ut, s

k
t+1)∑

s̃kt+1
Υk
t (bt, y

k
t , ut, s̃

k
t+1)

where

Υk
t (bt, y

k
t , ut, s

k
t+1)

=
∑
s̃kt

∑
x̃kt−d+1:t

∑
γ̃kt :γ̃kt (x̃kt−d+1:t)=u

k
t

[
P(ykt |x̃kt , ut)1{skt+1=ιkt (s̃kt ,x̃

k
t−d+1,γ̃

k
t )}×
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× λ∗kt (γ̃kt |bt, s̃kt )πkt (s̃kt )P
k
t (x̃kt−d+1:t|ykt−d+1:t−1, ut−d:t−1, s̃

k
t )
]
,

Therefore by the definition of consistency of ψ∗,k with respect to λ∗k, we conclude

that

Pg̃k1:t−1,g
∗k
t (skt+1|h0

t+1) = πkt+1(skt+1).

Now consider Pg̃k1:t−1,g
∗k
t (x̃kt−d+2:t+1, s

k
t+1|h0

t+1).

• If Pg̃k1:t−1,g
∗k
t (skt+1|h0

t+1) = 0 then we have πkt+1(skt+1) = 0 and

Pg̃k1:t−1,g
∗k
t (x̃kt−d+2:t+1, s

k
t+1|h0

t+1) = 0.

• If Pg̃k1:t−1,g
∗k
t (skt+1|h0

t+1) > 0 then

Pg̃k1:t−1,g
∗k
t (x̃kt−d+2:t+1, s

k
t+1|h0

t+1)

= Pg̃k1:t−1,g
∗k
t (x̃kt−d+1:t|h0

t+1, s
k
t+1)πkt+1(skt+1).

We have shown in Lemma 4.4 that

Pg̃k1:t−1,g
∗k
t (x̃kt−d+2:t+1|h

k

t+1)

= P k
t+1(x̃kt−d+2:t+1|ykt−d+2:t, ut−d+1:t, s

k
t+1)

and (h0
t+1, s

k
t+1) is a function of h

k

t+1. By the law of iterated expectation we

have

Pg̃k1:t−1,g
∗k
t ,ĝ−k1:t (x̃kt−d+2:t+1|h0

t+1, s
k
t+1)

= P k
t+1(x̃kt−d+2:t+1|ykt−d+2:t, ut−d+1:t, s

k
t+1).

We conclude that

Pg̃k1:t−1,g
∗k
t (x̃kt−d+2:t+1, s

k
t+1|h0

t+1)

= P k
t (x̃kt−d+2:t+1|ykt−d+2:t, ut−d+1:t, s

k
t+1)πkt+1(skt+1)

for all skt+1 ∈ Skt+1 and all xkt−d+2:t+1 ∈ X k
t−d+2:t+1.

Proof of Lemma 4.6. Let g−i denote the behavioral strategy profile of all coordina-

tors other than i generated from the CIB strategy profile (λk, ψk)k∈I\{i}. Let (h
i

t, γ
i
t)

be admissible under g−i.
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Let g̃i denote coordinator i’s behavioral coordination strategy. Because of Lemma

4.3 we have

Pg̃i,g−i(xt−d+1:t, γ
−i
t |h

i

t, γ
i
t)

= Pg̃i,g−i(xt−d+1:t, γ
−i
t |h0

t , x
i
1:t−d, γ

i
1:t)

= Pg̃i(xit−d+1:t|h0
t , x

i
1:t−d, γ

i
1:t)
∏
k 6=i

Pgk(xkt−d+1:t, γ
k
t |h0

t ).

We know that Γi
t and Xi

t−d+1:t are conditionally independent given H
i

t since Γi
t is

chosen as a randomized function of H
i

t at a time when Xi
t−d+1:t are already realized.

Therefore,

Pg̃i,g−i(xit−d+1:t|h0
t , x

i
1:t−d, γ

i
1:t) = Pg̃i,g−i(xit−d+1:t|h0

t , x
i
1:t−d, γ

i
1:t−1)

= P i
t (x

i
t−d:t|yit−d+1:t−1, ut−d:t−1, s

i
t),

where sit = (xit−d, φ
i
t) and P i

t is the belief function defined in Eq. (4.1).

We conclude that

Pg−i(xt−d+1:t, γ
−i
t |h

i

t, γ
i
t)

= P i
t (x

i
t−d:t|yit−d+1:t−1, ut−d:t−1, s

i
t)
∏
k 6=i

Pgk(xkt−d+1:t, γ
k
t |h0

t ).(D.9)

Since all coordinators other than coordinator i are using the same belief genera-

tion systems, we have Bj
t = Bk

t for j, k 6= i. Denote Bt = Bk
t for all k ∈ I\{i}. Let

bt =
((
π∗,kt

)
k∈I

, yt−d+1:t−1, ut−d:t−1

)
be a realization of Bt. Also define ψ∗ = ψk for

all k 6= i.

Consider k 6= i. Coordinator k’s strategy gk is a self-consistent CIB strategy.

We also have h0
t admissible under gk since (h

i

t, γ
i
t) is admissible under g−i. Hence

applying Lemma 4.5 we have

Pgk(s̃kt , xkt−d+1:t|h0
t ) = π∗,kt (s̃kt )P

k
t (xkt−d+1:t|ykt−d+1:t−1, ut−d:t−1, s̃

k
t )

Hence the second term of the right hand side of (D.9) satisfies

Pgk(xkt−d+1:t, γ
k
t |h0

t ) =
∑
s̃kt

Pgk(s̃kt , xkt−d+1:t, γ
k
t |h0

t )

=
∑
s̃kt

[
π∗,kt (s̃kt )P

k
t (xkt−d+1:t|ykt−d+1:t−1, ut−d:t−1, s̃

k
t )λ

k
t (γ

k
t |bt, s̃kt )

]
,(D.10)

where P k
t is the belief function defined in Eq. (4.1).
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Recall that bt =
((
π∗,kt

)
k∈I

, yt−d+1:t−1, ut−d:t−1

)
. From (D.9) and (D.10) We

conclude that

Pg−i(xt−d+1:t, γ
−i
t |h

i

t, γ
i
t) = F i

t (xt−d+1:t, γ
−i
t |bt, sit)

(D.11)

for some function F i
t for all (h

i

t, γ
i
t) admissible under g−i.

Consider the total reward of coordinator i. By the law of iterated expectation we

can write

J i(g̃i, g−i) = Eg̃i,g−i
[∑
t∈T

Eg−i [rit(Xt,Ut)|H
i

t,Γ
i
t]

]
.

For (h
i

t, γ
i
t) admissible under g−i,

Eg−i [rit(Xt,Ut)|h
i

t, γ
i
t]

=
∑

x̃t−d+1:t

∑
γ̃−it

rit(x̃t, (γ
i
t(x̃

i
t−d+1:t), γ̃

−i
t (x̃−it−d+1:t)))F

i
t (x̃t−d+1:t, γ̃

−i
t |bt, sit)

= rit(bt, s
i
t, γ

i
t),

for some function rit that depends on g−i (specifically, on λ−it ) but not on g̃i.

We claim that (Bt, S
i
t) is a controlled Markov process controlled by coordinator

i’s prescriptions, given that other coordinators are using the strategy profile g−i. Let

g̃i denote an arbitrary strategy for coordinator i (not necessarily a CIB strategy).

We need to prove that

Pg̃i,g−i(bt+1, s
i
t+1|b1:t, s

i
1:t, γ

i
1:t) = Ξi

t(bt+1, s
i
t|bt, sit, γit)

∀(b1:t, s
i
1:t, γ

i
1:t) s.t. Pg̃i,g−i(b1:t, s

i
1:t, γ

i
1:t) > 0

for some function Ξi
t independent of g̃i.

We know that

Bt+1 = (Πt+1,Yt−d+2:t,Ut−d+1:t),

Πt+1 = ψ∗t (Bt,Yt,Ut),

Y k
t = `kt (X

k
t ,Ut,W

k,Y
t ) ∀k ∈ I,

Uk,j
t = Γk,jt (Xk,j

t−d+1:t) ∀(k, j) ∈ N ,
Sit+1 = ιit(S

i
t ,X

i
t−d+1,Γ

i
t).

Hence (Bt+1, S
i
t) is a fixed function of (Bt, S

i
t ,Xt−d+1:t,Γt,W

Y
t ), where WY

t is

a primitive random vector independent of (B1:t, S
i
1:t,Γ

i
1:t,Xt−d+1:t). Therefore, it

suffices to prove that

Pg̃i,g−i(xt−d+1:t, γ
−i
t |b1:t, s

i
1:t, γ

i
1:t) = Ξi

t(xt−d+1:t, γ
−i
t |bt, sit, γit)
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for some function Ξi
t independent of g̃i.

(B1:t, S
i
1:t,Γ

i
1:t) is a function of (H

i

t,Γ
i
t). Therefore, by applying smoothing prop-

erty of conditional expectations to both sides of (D.11) we obtain

Pg̃i,g−i(xt−d+1:t, γ
−i
t |b1:t, s

i
1:t, γ

i
1:t) = F i

t (xt−d+1:t, γ
−i
t |bt, sit),

where we know that F i
t , as defined in (D.11), is independent of g̃i.

We conclude that coordinator i faces a Markov Decision Problem where the state

process is (Bt, S
i
t), the control action is Γi

t, and the total reward is

E

[∑
t∈T

rit(Bt, S
i
t ,Γ

i
t)

]
.

By standard MDP theory, coordinator i can form a best response by choosing Γi
t as

a function of (Bt, S
i
t).

Proof of Theorem 4.10. Let (λ∗, ψ∗) be a pair that solves the dynamic program de-

fined in the statement of the theorem. Let g∗k denote the behavioral coordination

strategy corresponding to (λ∗k, ψ∗) for k ∈ I. We only need to show the following:

Suppose that the coordinators other than coordinator i play g∗−i, then g∗i is a best

response to g∗−i.

Let h0
t ∈ H0

t be admissible under g∗−i. Then

Pg∗k(skt , xkt−d+1:t|h0
t ) = πkt (skt )P

k
t (xkt−d+1:t|ykt−d+1:t−1, ut−d:t−1, s

k
t )(D.12)

for all k 6= i by Lemma 4.5, where πkt is the belief generated by ψ∗ when h0
t occurs.

By Lemma 4.4 we also have

P(s̃it, x̃
i
t−d+1:t|h0

t , s
i
t) = P i

t (x̃
i
t−d+1:t|yit−d+1:t−1, ut−d:t−1, s̃

i
t)(D.13)

Combining (D.12) and (D.13), the belief for coordinator i defined in the stage

game according to Definition 4.14 satisfies

βit(θ̃t|sit)

= 1{s̃it=sit}
∏
k 6=i

πkt (s̃kt )

(∏
k∈I

P k
t (x̃kt−d+1:t|ykt−d+1:t−1, ut−d:t−1, s̃

k
t )

)
P(w̃Yt )

= P(s̃it, x̃
i
t−d+1:t|h0

t , s
i
t)

(∏
k 6=i

Pg∗k(s̃kt , x̃kt−d+1:t|h0
t )

)
P(w̃Yt )

= Pg∗−i(s̃t, x̃t−d+1:t|h0
t , s

i
t)P(w̃k,Yt ) = Pg∗−i(θ̃t|h0

t , s
i
t)
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for all (h0
t , s

i
t) admissible under g∗−i, i.e. the belief represents a true conditional

distribution. Since βit(·|sit) is a fixed function of (bt, s
i
t), by applying smoothing

property on both sides of the above equation we can obtain

βit(θ̃t|sit) = Pg∗−i(θ̃t|bt, sit).

for all (bt, s
i
t) admissible under g∗−i. 1

Then the interim expected utility considered in the definition of IBNE correspon-

dences (Definition 4.15) can be written as∑
θ̃t,γ̃t

η(γ̃it)K
i
t(θ̃t, γ̃t)β

i
t(θ̃t|xit−1)

∏
k 6=i

λ∗kt (γ̃kt |bt, s̃kt )

=
∑
γ̃it

η(γ̃it)Eg
∗−i
1:t [Ki

t(Θt,Γt)|bt, sit, γ̃it].

for all (bt, s
i
t) admissible under g∗−i.

The condition of Theorem 4.10 then implies

λ∗it (bt, s
i
t) ∈ arg max

η∈∆(Ait)

∑
γ̃t

η(γ̃it)Eg
∗−i [

rit(Xt,Ut) + V i
t+1(Bt+1, S

i
t+1)|bt, sit, γ̃it

]
;(D.14)

V i
t (bt, s

i
t) =

∑
γ̃it

[
λ∗it (γ̃it|bt, sit)Eg

∗−i
1:t [rit(Xt,Ut) + V i

t+1(Bt+1, S
i
t+1)|bt, sit, γ̃it]

]
(D.15)

for all (bt, s
i
t) admissible under g∗−i.

Recall that in the proof of Lemma 4.6, we have already proved that fixing

(λ∗−i, ψ∗), (Bt, S
i
t) is a controlled Markov process controlled by Γi

t. Hence (D.14)

and (D.15) show that λ∗it is a dynamic programming solution of the MDP with

instantaneous reward

rit(Bt, S
i
t ,Γ

i
t) := Eg∗−i [rit(Xt,Ut)|Bt, S

i
t ,Γ

i
t].

Therefore, λ∗i maximizes

Eλi,λ∗−i
[∑
t∈T

rit(Bt, S
i
t ,Γ

i
t)

]

over all λi = (λit)t∈T , λ
i
t : Bt × S it 7→ ∆(Ait).

1Note that Pg−i

(θ̃t|bt, sit) is different from βi
t(θ̃t|sit). Since Bt is just a compression of the common

information based on an predetermined update rule ψ, which may or may not be consistent with
the actually played strategy, Bt may not represent the true belief. Pg−i

(θ̃t|bt, sit) is the belief an
agent inferred from the event Bt = bt, S

i
t = sit. The agent knows that bt might not contain the

true belief, but it is useful anyway in inferring the true state. βi
t(θ̃t|sit) is a conditional distribution

computed with bt, pretending that bt contains the true belief.
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Notice that for any λi, if gi is the behavioral coordination strategy corresponding

to the CIB strategy (λi, ψ∗t ), then by Law of Iterated Expectation

Eλi,λ∗−i
[∑
t∈T

rit(Bt, S
i
t ,Γ

i
t)

]
= Egi,g∗−i

[∑
t∈T

rit(Xt,Ut)

]
.

Hence we know that g∗i maximizes

Egi,g∗−i
[∑
t∈T

rit(Xt,Ut)

]

over all gi generated from a CIB strategy with the belief generation system ψ∗.

By the closedness property of CIB strategies (Lemma 4.6), we conclude that g∗i

is a best response to g∗−i over all behavioral coordination strategies of coordinator

i, proving the result.

Proof of Proposition 4.1. Let α = (α1, α2) ∈ [0, 1]2 describe Alice’s behavioral strat-

egy: α1 is the probability that Alice plays UA
1 = −1 given XA

1 = −1; α2 is the

probability that Alice plays UA
1 = +1 given XA

1 = +1. Let β = (β1, β2) ∈ [0, 1]2

denote Bob’s behavioral strategy: β1 is the probability that Bob plays UB
3 = L when

observing UA
1 = −1, β2 is the probability that Bob plays UB

3 = U when observing

UA
1 = +1.

From Example 3.2 and the proof of Proposition 3.2 we know that

α∗ =

(
1

3
,
1

3

)
, β∗ =

(
1

3
+ c,

1

3
− c
)

is the unique BNE of Example 4.3.

Suppose that (λ∗, ψ∗) forms a CIB-CNE, Then by the definition of CIB strategies,

at t = 1 the team of Alice chooses a prescription (which maps XA
1 to UA1 ) based on no

information. At t = 3, the team of Bob chooses a prescription (which is equivalent to

an action since Bob has no state) based solely on B3. Define the induced behavioral

strategy of Alice and Bob through

α1 = λ∗A1 (id|∅) + λ∗A1 (cp−1|∅),

α2 = λ∗A1 (id|∅) + λ∗A1 (cp+1|∅),

β1 = λ∗B3 (up|b−3 ),

β2 = λ∗B3 (up|b+
3 ),

where b−3 and b+
3 are the CCI under belief generation system ψ∗ when UA

1 = −1

and UA
1 = +1 respectively. id is the prescription that chooses UA

1 = XA
1 ; for u ∈
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{−1,+1}, cpu is the prescription that chooses UA
1 = u irrespective of XA

1 ; up is

Bob’s prescription that chooses UB
3 = U.

The consistency of ψ∗1 with respect to λ∗1 implies that

Π2(−1) =
α1

α1 + 1− α2

if α 6= (0, 1), U1 = −1,

Π2(+1) =
α2

α2 + 1− α1

if α 6= (1, 0), U1 = +1,

The consistency of ψ∗2 with respect to λ∗2 implies that

Π3(+1) = Π2(UA
1 ).

If a CIB-CNE induces behavioral strategy α∗ =
(

1
3
, 1

3

)
, then the CIB belief Π3 ∈

∆(X2) will be the same for both U1 = +1 and U1 = −1 under any consistent belief

generation system ψ∗. Then B3 = (Π3, U2) will be the same for both U1 = +1

and U1 = −1 since U2 only takes one value. Hence Bob’s induced stage behavioral

strategy q should satisfy β1 = β2. However β∗1 6= β∗2 . Hence (α∗, β∗) cannot be

induced from any CIB-CNE.

Since the induced behavioral strategy of any CIB-CNE should form a BNE in the

game among individuals, we conclude that a CIB-CNE does not exist in Example

4.3.

Proof of Theorem 4.13. We use Theorem 4.10 to establish the existence of CIB-CNE:

We show that for each t there always exists a pair (λ∗t , ψ
∗
t ) such that λ∗t forms an

equilibrium at t given ψ∗t , and ψ∗t is consistent with λ∗t . We provide a constructive

proof of existence of CIB-CNE by proceeding backwards in time.

Since d = 1 we have Sit = Xi
t−1. The CCI consists of the beliefs along with Ut−1.

Consider the condensation of the information graph into a directed acyclic graph

(DAG) whose nodes are strongly connected components. Each node may contain

multiple teams. Consider one topological ordering of this DAG. Denote the nodes

by [1], [2], · · · ([j] is reachable from [k] only if k < j.) We use the notation X
[k]
t ,Π

[k]
t

to denote the vector of the system variables of the teams in a node. In particular,

following (4.4) in Definition 4.14, we define Θ
[k]
t = (X

[k]
t−1:t,W

[k],Y
t ). We also use [1 : k]

as a short hand for the set [1] ∪ [2] ∪ · · · ∪ [k]. Define B
[1:k]
t = (Π

[1:k]
t ,U

[1:k]
t−1 ). (Note

that the usage of superscript here is different from the CCI Bi
t defined in Definition

4.11.)

We construct the solution first backwards in time, then in the order of the node for

each stage. For this purpose, we an some induction invariant on the value functions

V i
t (as defined in Theorem 4.10) for the solution we are going to construct.

Induction Invariant: For each time t and each node index k,
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• V i
t (bt, x

i
t−1) depends on bt only through (b

[1:k−1]
t , uit−1) for all teams i ∈ [k],

if [k] consists of only one team. (With some abuse of notation, we write

V i
t (bt, x

i
t−1) = V i

t (b
[1:k−1]
t , uit−1, x

i
t−1) in this case.)

• V i
t (bt, x

i
t−1) depends on bt only through b

[1:k]
t for all teams i ∈ [k], if [k] consists

of multiple public teams. (We write V i
t (bt, x

i
t−1) = V i

t (b
[1:k]
t , xit−1) in this case.)

Induction Base: For t = T + 1 we have V i
T+1(·) ≡ 0 for all coordinators i ∈ I

hence the induction invariant is true.

Induction Step: Suppose that the induction invariant is true at time t + 1 for

all nodes. We construct the solution so that it is also true at time t.

To complete this step we provide a procedure to solve the stage game. We argue

that one can solve a series of optimization problems or finite games following the

topological order of the nodes through an inner induction step.

Inner Induction Step: Suppose that the first k− 1 nodes has been solved, and

the equilibrium strategy λ
∗[1:k−1]
t uses only b

[1:k−1]
t along with private information.

Suppose that the update rules ψ
∗,[1:k−1]
t have also been determined, and they use

only (b
[1:k−1]
t , y

[1:k−1]
t , u

[1:k−1]
t ). We now establish the same property for (λ

[k]
t , ψ

[k]
t ).

• If the k-th node contains a single coordinator i, the value to go is V i
t+1(B

[1:k−1]
t+1 ,Ui

t,X
i
t)

by the induction hypothesis. The instantaneous reward for a coordinator i in

the k-th node can be expressed by rit(X
[1:k]
t ,U

[1:k]
t ) by the information graph. In

the stage game, coordinator i chooses a prescription to maximize the expected

value of

Ki
t(b

[1:k−1]
t ,Θ

[1:k]
t ,Γ

[1:k]
t ) := rit(X

[1:k]
t ,U

[1:k]
t ) + V i

t+1(B
[1:k−1]
t+1 ,Ui

t,X
i
t),

where

B
[1:k−1]
t+1 = (Π

[1:k−1]
t+1 ,U

[1:k−1]
t ),

Πj
t+1 = ψ∗,jt (b

[1:k−1]
t ,Yj

t ,U
[1:k−1]
t ) ∀j ∈ [1 : k − 1],

Yj
t = `jt(X

j
t ,U

[1:k−1]
t ,Wj,Y

t ) ∀j ∈ [1 : k − 1],

Uj
t = Γj

t(X
j
t) ∀j ∈ [1 : k].

The expectation is computed using the belief βit (defined through Eq. (4.5) in

Definition 4.14) along with λ
∗[1:k−1]
t that has already been determined. It can

be written as ∑
θ̃t,γ̃

[1:k−1]
t

βit(θ̃t|xit−1)Ki
t(b

[1:k−1]
t , θ̃

[1:k]
t , (γ̃

[1:k−1]
t , γit))×
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×
∏

j∈[1:k−1]

λjt(γ̃
j
t |b

[1:k−1]
t , x̃jt−1)

=
∑

θ̃
[1:k]
t ,γ̃

[1:k−1]
t

1{x̃it−1=xit−1}P(w̃
[1:k],Y
t )×

×

 ∏
j∈[1:k−1]

πjt (x̃
j
t−1)P(x̃jt |x̃

j
t−1, u

[1:k−1]
t−1 )

×
×

 ∏
j∈[1:k−1]

λ∗jt (γ̃jt |b
[1:k−1]
t , xjt−1)

×
× P(x̃it|xit−1, u

[1:k]
t−1 )Ki

t(b
[1:k−1]
t , θ̃

[1:k]
t , (γ̃

[1:k]
t , γit)).

Therefore, the expected reward of coordinator i depends on bt through (b
[1:k−1]
t , uit−1).

Coordinator i can choose the optimal prescription based on (b
[1:k−1]
t , uit−1, x

i
t−1),

i.e. λ∗it (bt, x
i
t−1) = λ∗it (b

[1:k−1]
t , uit−1, x

i
t−1). We then have V i

t (bt, x
i
t−1) = V i

t (b
[1:k−1]
t , uit−1, x

i
t−1).

The update rule ψ
∗,[k]
t = ψ∗,it is then determined to be an arbitrary update rule

consistent with λ∗,it , which can be chosen as a function from B[1:k]
t ×Y [k]

t ×U
[1:k]
t

(instead of Bt × Y [k]
t × Ut) to Π

[k]
t+1.

• If the k-th node contains a group of public teams, then update rules ψ̂
∗,[k]
t are

fixed, irrespective of the stage game strategies, i.e. there exist a unique update

rule ψ̂∗,it that is compatible with any λ∗,it for a public team i. This update rule

is a map from Y [k]
t × U

[1:k]
t to a vector of delta measures on

∏
i∈[k] ∆(X i

t−1),

i.e. the map to recover X
[k]
t−1 from the observations (see Definition 4.17). The

function takes U
[1:k]
t as its argument due to the fact that the observations of

the k-th node depends on Ut only through U
[1:k]
t .

The value to go for each coordinator i can be expressed as V i
t+1(B

[1:k]
t ,Xi

t−1) by

induction hypothesis. The instantaneous reward can be written as rit(X
[1:k]
t ,U

[1:k]
t )

by the definition of the information dependency graph.

In the stage game, coordinator i in the k-th node chooses a distribution ηit on

prescriptions to maximize the expected value of

Ki
t(b

[1:k]
t ,Θ

[1:k]
t ,Γ

[1:k]
t )

:= rit(X
[1:k]
t ,U

[1:k]
t ) + V i

t+1(B
[1:k]
t+1 ,X

i
t),

where

B
[1:k]
t+1 = (Π

[1:k]
t+1 ,U

[1:k]
t ),

Πj
t+1 = ψ∗,jt (b

[1:k−1]
t ,Yj

t ,U
[1:k−1]
t ) ∀j ∈ [1 : k − 1],
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Π
[k]
t+1 = ψ̂

∗,[k]
t (b

[1:k]
t ,Y

[1:k]
t ,U

[1:k]
t ),

Yj
t = `jt(X

j
t ,U

[1:k]
t ,Wj,Y

t ) ∀j ∈ [1 : k],

Uj
t = Γj

t(X
j
t) ∀j ∈ [1 : k].

The expectation is taken with respect to the belief βit (defined through Eq.

(4.5) in Definition 4.14) and the strategy prediction λ
[1:k]
t . This expectation

can be written as∑
θ̃t,γ̃

[1:k]
t

βit(θ̃t|xit−1)Ki
t(b

[1:k]
t , θ̃

[1:k]
t , γ̃

[1:k]
t )ηit(γ̃

i
t)×

×
∏
j∈[1:k]
j 6=i

λjt(γ̃
j
t |b

[1:k−1]
t , x̃jt−1)

=
∑

θ̃
[1:k]
t ,γ̃

[1:k]
t

1{x̃it−1=xit−1}P(w̃
[1:k],Y
t )×

 ∏
j∈[1:k]
j 6=i

πjt (x̃
j
t−1)P(x̃jt |x̃

j
t−1, u

[1:k]
t−1 )λ∗jt (γ̃jt |b

[1:k]
t , x̃jt−1)

×
× P(x̃it|xit−1, u

[1:k]
t−1 )ηit(γ̃

i
t)K

i
t(b

[1:k]
t , θ̃

[1:k]
t , γ̃

[1:k]
t ),

which dependents only on bt only through b
[1:k]
t . Therefore, the stage game de-

fined in Definition 4.14 induces a finite game between the coordinators in the

k-th node (instead of all coordinators) with parameter (b
[1:k]
t , (ψ

∗,[1:k−1]
t , ψ̂

∗,[k]
t ))

(instead of (bt, ψt)), where λ
∗[1:k−1]
t has been fixed. Teams in the k-th node

form/play a stage game where the first k − 1 nodes act like nature, while

the coordinators after k-th node have no effect in the payoffs of the coordi-

nators in the k-th node. Hence, a coordinator i in the k-th node can based

their decision on (b
[1:k]
t , xit−1), i.e. λ∗it (bt, x

i
t−1) = λ∗it (b

[1:k]
t , xit−1). We also have

V i
t (bt, x

i
t−1) = V i

t (b
[1:k]
t , xit−1). The update rule is determined by ψ

∗,[k]
t = ψ̂

∗,[k]
t ,

which is guaranteed to be consistent with λ
∗[k]
t .

In summary, we determine (λ∗t , ψ
∗
t ) using a node-by-node approach. If the k-th

node consists of one team, then we first determine λ
∗[k]
t from an optimization problem

dependent on (λ
∗[1:k−1]
t , ψ

∗,[1:k−1]
t ), and then determine ψ

∗,[k]
t . If the k-th node consists

of multiple public players, then we first determine ψ
∗,[k]
t and then solve λ

∗[k]
t from a

finite game dependent on (λ
∗[1:k−1]
t , ψ

∗,[1:k]
t ). Hence we have constructed the solution

and established both inner and outer induction steps, proving the theorem.

Proof of Theorem 4.15. We prove the Theorem for d = 1. The proof idea for d > 1

is similar.
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We will prove a stronger result. For each Πi
t ∈ ∆(X i

t−1), define the corresponding

Π̂i
t ∈ ∆(Xt) by

Π
i

t(x
i
t) :=

∑
x̃it−1

Πi
t(x̃

i
t−1)P(xit|x̃it−1).

Define ψ̂it to be the signaling-free update function, i.e. the belief update function

such that

Πi
t+1(xit) = ψ̂it(Π

i

t,Y
i
t) =

Π
i

t(x
i
t)P(Yi

t|xit)∑
ỹit

Π
i

t(x
i
t)P(ỹit|xit)

.

Define open-loop prescriptions as the prescriptions that simply instruct members

of a team to take a certain action irrespective their private information. We will

show that there exist an equilibrium where each team plays a common information

based signaling-free (CIBSF) strategy, i.e. the common belief generation system

for all coordinators is given by the signaling-free update functions ψ̂, and coordina-

tor i chooses randomized open-loop prescriptions based on Πt = (Π
i

t)i∈I instead of

(Bt,X
i
t−1).

Induction Invariant: V i
t (Bt,X

i
t−1) = V i

t (Πt,X
i
t−1).

Induction Base: The induction variant is true for t = T + 1 since V i
T+1(·) ≡ 0

for all i ∈ I.

Induction Step: Suppose that the induction variant is true for t + 1, prove it

for time t.

Let ψ̂t be the signaling-free update rule. We solve the stage game SGt(Vt+1, ψ̂t, bt).

In the stage game, coordinator i chooses a prescription to maximize the expectation

of

rit(X
−i
t ,Ut) + V i

t+1(Πt+1,X
i
t),

where

Π
k

t+1(xkt+1) =
∑
x̃kt

Πk
t+1(x̃kt )P(xkt+1|x̃kt ) ∀xkt+1 ∈ X k

t+1,

Πk
t+1 = ψ̂kt (Π

k

t ,Y
k
t ) ∀k ∈ I,

Yk
t = `kt (X

k
t ,W

k,Y
t ) ∀k ∈ I,

Uk,j
t = Γk,jt (Xk,j

t ) ∀(k, j) ∈ N .

Since V i
t+1(Πt+1,X

i
t) does not depend on coordinator i’s prescriptions, coordina-

tor i only need to maximize the expectation of rit(X
−i
t ,Ut), which is∑

x̃−it−1:t,γ̃
−i
t

(∏
j 6=i

πjt (x̃
j
t−1)P(x̃jt |x̃

j
t−1)λjt(γ̃

j
t |bt, x̃

j
t−1)

)
rit(x̃

−i
t , (γ̃

−i
t (x̃−it ), γit(x

i
t))).
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Claim: In the stage game, if all coordinators −i use CIBSF strategy, then coor-

dinator i can respond with a CIBSF strategy.

Proof of Claim: Let ηkt : Π t 7→ ∆(Ukt ) be the CIBSF strategy of coordinator k 6= i.

Then coordinator i’s expected payoff given γit can be written as

∑
x̃−it−1:t,ũ

−i
t

(∏
j 6=i

πjt (x̃
j
t−1)P(x̃jt |x̃

j
t−1)ηjt (ũ

j
t |πt)

)
rit(x̃

−i
t , (ũ

−i
t , γ

i
t(x

i
t)))

=
∑

x̃−it ,ũ−it

∏
j 6=i

∑
x̃jt−1

πjt (x̃
j
t−1)P(x̃jt |x̃

j
t−1)

 ηjt (ũ
j
t |πt)

× rit(x̃−it , (ũ−it , γit(xit)))
=
∑

x̃−it ,ũ−it

(∏
j 6=i

πjt(x̃
j
t)η

j
t (ũ

j
t |πt)

)
rit(x̃

−i
t , (ũ

−i
t , γ

i
t(x

i
t)))

=: rit(πt, η
−i
t , γ

i
t(x

i
t)).

Hence coordinator i can respond with a prescription γit such that γit(x
i
t) = uit for

all xit, where

uit ∈ arg max
ũit

rit(πt, η
−i
t , ũ

i
t),

can be chosen based on (πt, η
−i
t ), proving the claim.

Given the claim, we conclude that there exist a stage game equilibrium where all

coordinators play CIBSF strategies: Define a new stage game where we restrict each

coordinator to CIBSF strategies. A best response in the restricted stage game will

be also a best response in the original stage game due to the claim. The restricted

game is a finite game (It is a game of symmetrical information with parameter πt

where coordinator i’s action is uit and its payoff is a function of πt and ut.) that

always has an equilibrium. The equilibrium strategy will be consistent with ψ̂t due

to Lemma D.2.

Lemma D.2. The signaling-free update rule ψ̂it is consistent with any λit : Bt ×
X i
t−1 7→ ∆(Ait) that corresponds to a CIBSF strategy at time t.

Proof. It follows from standard arguments related to strategy independence of belief

(See Chapter 6 of [46]).

Let η∗t = (η∗jt )j∈I , η
∗j
t : Π t 7→ ∆(U jt ) be a CIBSF strategy profile that is a stage

game equilibrium. Then the value function

V i
t (bt, x

i
t−1) =

(
max
ũit

rit(πt, η
∗−i
t , ũit)

)
+
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+
∑
x̃t,ỹt

V i
t+1(ψ̂t(πt, ỹt), x̃

i
t)P(ỹt|x̃t)P(x̃it|xit−1)π−it (x̃−it )

depends on (bt, x
i
t−1) only through (πt, x

i
t−1), establishing the induction step.

D.4 Proofs for Section 4.6

Proof of Lemma 4.7. In this appendix, when we specify a team’s strategy through

a profile of individual strategies, for example ϕi = (ϕi,l)(i,l)∈Ni , we assume that

members of team i apply these strategies independent of their teammates.

We first show three auxiliary results, Lemmas D.3 - D.5 that forms the basis of

our proof of Lemma 4.7.

Lemma D.3 (Conditional Independence among Teammates). Suppose that mem-

bers of team i use behavioral strategies ϕi = (ϕi,l)(i,l)∈Ni where ϕi,l = (ϕi,lt )t∈T , ϕ
i,l
t :

Hi,l
t 7→ ∆(U i,lt ). Suppose that all teams other than i use a behavioral coordination

strategy profile g−i. Then (Xi,l
t−d+1:t)(i,l)∈Ni are conditionally independent given the

common information H i
t . Furthermore, the conditional distribution of Xi,j

t−d+1:t given

H i
t depends on (ϕi, g−i) only through ϕi,j.

Lemma D.4. Let µi,j be a pure strategy of agent (i, j). Let ϕi,−jt = (ϕi,lt )(i,l)∈Ni\{(i,j)},t∈T , ϕ
i,l
t :

Hi,l
t 7→ ∆(U i,lt ) be behavioral strategies of all members of team i except (i, j). Then

there exist a behavioral strategy ϕ̄i,j = (ϕ̄i,jt )t∈T , ϕ̄
i,j
t : Hi

t × X
i,j
t 7→ ∆(U i,jt ) such that

(µi,j, ϕi,−j) is payoff-equivalent to (ϕ̄i,j, ϕi,−j).

Lemma D.5. Let µi be a pure strategy of team i. There exists a payoff-equivalent

behavioral strategy profile ḡi that only assigns simple prescriptions.

Based on Lemmas D.3 - D.5 we proceed to complete the proof of Lemma 4.7 via

the following steps.

1. Let σi be a payoff-equivalent mixed team strategy to gi. (See Section 4.3).

2. For each µi ∈ supp(σi), let ḡi[µi] be a payoff-equivalent behavioral strategy

profile ḡi that only assigns simple prescriptions (Lemma D.5)

3. Let ς̄ i[µi] be a payoff-equivalent mixed coordination strategy of ḡi[µi] con-

structed from Kuhn’s Theorem [45].

4. Define a new mixed coordination strategy ς̄ i by

ς̄ i =
∑

µi∈supp(σi)

σi(µi) · ς̄ i[µi].
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5. Let ḡi be a payoff-equivalent behavioral coordination strategy profile to ς̄ i con-

structed from Kuhn’s Theorem [45].

It is clear that ḡi will be payoff-equivalent to σi. Furthermore, ḡi always assigns

simple prescriptions since the construction in Kuhn’s Theorem does not change the

set of possible prescriptions.

Proof of Lemma D.3. Assume that hit is admissible under ϕi. Let gi be a behavioral

coordination strategy defined by

git(γ
i
t|h

i

t) =
∏

(i,j)∈Ni

∏
xi,jt−d+1:t

ϕi,jt (γi,jt (xi,jt−d+1:t)|h
i
t, x

i,j
t−d+1:t),

i.e. at time t, the coordinator generate independent prescriptions for each member of

the team. If we view the prescription Γi,jt as a table of actions, then it is determined

as follows: Each entry of the table is determined independently, where the entry

corresponding to xi,jt−d+1:t is randomly drawn with distribution ϕi,jt (hit, x
i,j
t−d+1:t).

Using arguments similar to those in the proof of Lemma 4.1 one can show that

(gi, g−i) and (ϕi, g−i) generate the same distributions of (Y1:t,U1:t,X1:t), hence

Pϕi,g−i(xit−d+1:t|hit) = Pgi,g−i(xit−d+1:t|hit)

By Lemma 4.3, we know that Pg(xi1:t, γ
i
1:t|h0

t ) does not depend on g−i. As a con-

ditional distribution obtained from Pg(xi1:t, γ
i
1:t|h0

t ), Pg(xit−d+1:t|hit) does not depend

on g−i either. Therefore, we have

Pgi,g−i(xit−d+1:t|hit) = Pgi,ĝ−i(xit−d+1:t|hit)

where ĝ−i is an open-loop strategy profile that always generates the actions u−i1:t−1.

Again, (gi, ĝ−i) and (ϕi, ĝ−i) generate the same distributions on (Y1:t,U1:t,X1:t),

hence

Pϕi,ĝ−i(xit−d+1:t|hit) = Pgi,ĝ−i(xit−d+1:t|hit)

We now have

Pϕi,g−i(xit−d+1:t|hit) = Pϕi,ĝ−i(xit−d+1:t|hit)

Due to Lemma 4.3, we also have

Pϕi,ĝ−i(xit−d+1:t|hit) = Pϕi,ĝ−i(xit−d+1:t|hit, x−it−d:t)

where x−it−d:t ∈ X
−i
t−d:t is such that Pϕi,ĝ−i(x−it−d:t|hit) > 0.
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Let τ = t− d+ 1. By Bayes’ rule,

Pϕi,ĝ−i(xiτ :t|hit, x−iτ−1:t)

=
Pϕi,ĝ−i(xτ :t, yτ :t−1, uτ :t−1|h0

τ , x1:τ−1, x
−i
τ−1)∑

x̃iτ :t
Pϕi,ĝ−i(x̃iτ :t, x

−i
τ :t, yτ :t−1, uτ :t−1|h0

τ , x1:τ−1, x
−i
τ−1)

(D.16)

We have

Pϕi,ĝ−i(xτ :t, yτ :t−1, uτ :t−1|h0
τ , x1:τ−1, x

−i
τ−1)

=
d−1∏
l=1

[
Pϕi,ĝ−i(xt−l+1, yt−l|y1:t−l−1, u1:t−l, x

i
1:t−l, x

−i
τ−1:t−l)

× Pϕi,ĝ−i(uit−l|y1:t−l−1, u1:t−l−1, x
i
1:t−l, x

−i
τ−1:t−l)

]
× Pϕi,ĝ−i(xτ |h0

τ , x1:τ−1, x
−i
τ−1)

=
d−1∏
l=1

[( ∏
(i,j)∈Ni

P(xi,jt−l+1|x
i,j
t−l, ut−l)P(yi,jt−l|x

i,j
t−l, ut−l)×

× ϕi,jt−l(u
i,j
t−l|h

i,j
t−l)
)
P(x−it−l+1|x

−i
t−l, ut−l)P(y−it−l|x

−i
t−l, ut−l)

]
×

 ∏
(i,j)∈Ni

P(xi,jτ |x
i,j
τ−1, uτ−1)

P(x−iτ |x−iτ−1, uτ−1)(D.17)

Substituting (D.17) into (D.16) we obtain

Pϕi,ĝ−i(xiτ :t|hit, x−iτ−1:t) =

∏
(i,j)∈Ni F

i,j
t (xi,jτ :t, h

i
t)∑

x̃iτ :t

∏
(i,j)∈Ni F

i,j
t (x̃i,jτ :t, h

i
t)

=
∏

(i,j)∈Ni

F i,j
t (xi,jτ :t, h

i
t)∑

x̃i,jτ :t
F i,j
t (x̃i,jτ :t, h

i
t)

where

F i,j
t (xi,jτ :t, h

i
t)

=
d−1∏
s=1

[
P(xi,jt−l+1|x

i,j
t−l, ut−l)P(yi,jt−l|x

i,j
t−l, ut−l)ϕ

i,j
t−l(u

i,j
t−l|h

i,j
t−l)
]
×

× P(xi,jτ |x
i,j
τ−1, uτ−1)

is a function that depends on ϕi,j but not ϕi,−j.

Therefore we have proved that

Pϕi,g−i(xiτ :t|hit) =
∏

(i,j)∈Ni

F i,j
t (xi,jτ :t, h

i
t)∑

x̃i,jτ :t
F i,j
t (x̃i,jτ :t, h

i
t)

(D.18)
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Marginaling (D.18) we have

Pϕi,g−i(xi,jτ :t|hit) =
F i,j
t (xi,jτ :t, h

i
t)∑

x̃i,jτ :t
F i,j
t (x̃i,jτ :t, h

i
t)

which depends on (ϕi, g−i) only through ϕi,j.

Hence we conclude that

Pϕi,g−i(xit−d+1:t|hit) =
∏

(i,j)∈Ni

Pϕi,g−i(xi,jt−d+1:t|h
i
t),

and Pϕi,g−i(xi,jt−d+1:t|hit) depends on (ϕi, g−i) only through ϕi,j.

Remark D.1. In general, the conditional independence among teammates is not true

when team members jointly randomize.

Proof of Lemma D.4. For notational convenience, define

Ht =
⋃
i∈I

H i
t = (Y1:t−1,U1:t−1,X1:t−d)

Due to Lemma D.3, Pϕi,g−i(x̃i,jt−d+1:t−1|hit, x
i,j
t ) depends on the strategy profile only

through ϕi,j.

Set

ϕi,jt (ui,jt |hit, x
i,j
t )

=
∑

x̃i,jt−d+1:t−1

1{ui,jt =µi,jt (hit,x̃
i,j
t−d+1:t−1,x

i,j
t )}P

µi,j(x̃i,jt−d+1:t−1|h
i
t, x

i,j
t )

for all (hit, x
i,j
t ) admissible under µi,j. Otherwise, ϕi,jt (hit, x

i,j
t ) is set arbitrarily.

Let µ−i be a pure team strategy profile of teams other than i. Let the superscript

−(i, j) denote all agents (of all teams) other than (i, j). We will prove by induction

that

(D.19) Pµi,j ,ϕ
i,−j
t ,µ−i(ut, xt, x

−(i,j)
t−d+1:t−1, ht) = Pϕi,j ,ϕ

i,−j
t ,µ−i(ut, xt, x

−(i,j)
t−d+1:t−1, ht)

Given (D.19), we have

Eµi,j ,ϕ
i,−j
t ,µ−i [rit(Xt,Ut)] = Eϕi,j ,ϕ

i,−j
t ,µ−i [rit(Xt,Ut)].

The result can then be established through linearity of expectation.

Induction Base: (D.19) is true for t = 1 since ϕi,j1 is the same strategy as µi,j1 .
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Induction Step: Suppose that (D.19) is true for time t − 1. Prove the result

for time t.

First,

Pµi,j ,ϕ
i,−j
t ,µ−i(ut, xt, x

−(i,j)
t−d+1:t−1, ht)

=
∑

x̃i,jt−d+1:t−1

Pµi,j ,ϕ
i,−j
t ,µ−i(ut|xt, x̃i,jt−d+1:t−1, x

−(i,j)
t−d+1:t−1, ht)×

× Pµi,j ,ϕ
i,−j
t ,µ−i(xt, x̃

i,j
t−d+1:t−1, x

−(i,j)
t−d+1:t−1, ht)

=
∑

x̃i,jt−d+1:t−1

1{ui,jt =µi,jt (h0t ,x̃
i,j
t−d+1:t−1,x

i,j
t )}

 ∏
(i,l)∈Ni\{(i,j)}

ϕi,lt (ui,lt |h
i,l
t )

×
×

 ∏
(k,j)∈N−i

1{uk,jt =µk,jt (hk,jt )}

Pµi,j ,ϕ
i,−j
t ,µ−i(xt, x̃

i,j
t−d+1:t−1, x

−(i,j)
t−d+1:t−1, ht)

= Gi,j
t ×

 ∏
(i,l)∈Ni\{(i,j)}

ϕi,lt (ui,lt |h
i,l
t )

 ∏
(k,j)∈N−i

1{uk,jt =µk,jt (hk,jt )}

×
× Pµi,j ,ϕ

i,−j
t ,µ−i(xt, x

−(i,j)
t−d+1:t−1, ht)

where

Gi,j
t :=

∑
x̃i,jt−d+1:t−1

[
1{ui,jt =µi,jt (h0t ,x̃

i,j
t−d+1:t−1,x

i,j
t )}×

×Pµi,j ,ϕ
i,−j
t ,µ−i(x̃i,jt−d+1:t−1|xt, x

−(i,j)
t−d+1:t−1, ht)

]
From Lemma 4.3 and Lemma D.3, we know that

Pµi,j ,ϕ
i,−j
t ,µ−i(x̃i,jt−d+1:t−1|xt, x

−(i,j)
t−d+1:t−1, ht) = Pµi,j(x̃i,jt−d+1:t−1|x

i,j
t , h

i
t)

for all (xi,jt , h
i
t) admissible under µi,j. Note that Pµi,j ,ϕ

i,−j
t ,µ−i(xt, x

−(i,j)
t−d+1:t−1, ht) = 0

for (xi,jt , h
i
t) not admissible under µi,j.

Hence we conclude that

Gi,j
t =

∑
x̃i,jt−d+1:t−1

1{ui,jt =µi,jt (h0t ,x̃
i,j
t−d+1:t−1,x

i,j
t )}P

µi,j(x̃i,jt−d+1:t−1|x
i,j
t , h

i
t)

= ϕ̄i,jt (ui,jt |hit, x
i,j
t )

and

Pµi,j ,ϕ
i,−j
t ,µ−i(ut, xt, x

−(i,j)
t−d+1:t−1, ht)
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= ϕ̄i,jt (ui,jt |hit, x
i,j
t )

 ∏
(i,l)∈Ni\{(i,j)}

ϕi,lt (ui,lt |h
i,l
t )

 ∏
(k,j)∈N−i

1{uk,jt =µk,jt (hk,jt )}

×
× Pµi,j ,ϕ

i,−j
t ,µ−i(xt, x

−(i,j)
t−d+1:t−1, ht)

Similarly, we have

Pϕ̄i,j ,ϕ
i,−j
t ,µ−i(ut, xt, x

−(i,j)
t−d+1:t−1, ht)

= ϕ̄i,jt (ui,jt |hit, x
i,j
t )

 ∏
(i,l)∈Ni\{(i,j)}

ϕi,lt (ui,lt |h
i,l
t )

 ∏
(k,j)∈N−i

1{uk,jt =µk,jt (hk,jt )}

×
× Pϕ̄i,j ,ϕ

i,−j
t ,µ−i(xt, x

−(i,j)
t−d+1:t−1, ht)

Hence it suffices to prove that

Pµi,j ,ϕ
i,−j
t ,µ−i(xt, x

−(i,j)
t−d+1:t−1, ht) = Pϕ̄i,j ,ϕ

i,−j
t ,µ−i(xt, x

−(i,j)
t−d+1:t−1, ht).

Given the induction hypothesis, it suffices to show that

Pµi,j ,ϕ
i,−j
t ,µ−i(xt, x

−(i,j)
t−d+1:t−1, ht|ut−1, xt−1, x

−(i,j)
t−d:t−2, ht−1)

= Pϕ̄i,j ,ϕ
i,−j
t ,µ−i(xt, x

−(i,j)
t−d+1:t−1, ht|ut−1, xt−1, x

−(i,j)
t−d:t−2, ht−1)

(D.20)

for all (xt−1, x
−(i,j)
t−d:t−2, ht−1) admissible under (µi,j, ϕi,−jt , µ−i) (or admissible under

(ϕ̄i,j, ϕi,−jt , µ−i), which is the same condition due to the induction hypothesis).

Since

Xk
t = fkt−1(Xk

t−1,Ut−1,W
k,X
t−1 ), k ∈ I

Ht = (Ht−1,Yt−1,Ut−1),

Yk
t−1 = `kt−1(Xk

t−1,Ut−1,W
k,Y
t−1 ), k ∈ I

we have (Xt,X
−(i,j)
t−d+1:t−1, Ht) to be a strategy-independent function of the random

vector (Ut−1,Xt−1,X
−(i,j)
t−d:t−2, Ht−1,W

X
t−1,W

Y
t−1), where (WX

t−1,W
Y
t−1) is a primitive

random vector independent of (Ut−1,Xt−1,X
−(i,j)
t−d:t−2, Ht−1). Therefore (D.20) is true

and we established the induction step.

Remark D.2. Fixing the strategy profile of all players other than (i, j). Team i’s

optimization problem can be seen as an MDP problem with state H i,j
t . One may

attempt to use the Policy Equivalence Lemma (Lemma A.2) in Appendix A to prove

Lemma 4.7 by arguing that (H i
t , X

i,j
t ) forms an information state (Definition A.1).

However, (H i
t , X

i,j
t ) is not an information state, since it is not sufficient for predict-

ing (H i
t+1, X

i,j
t+1) (since X i,j

t−d+1, as a part of H i
t+1, is contained in H i,j

t but not in

(H i
t , X

i,j
t )). Therefore, we have to prove Lemma 4.7 directly.
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Proof of Lemma D.5. Through iterative application of Lemma D.4, we conclude that

for every pure strategy µi, there exist a payoff-equivalent behavioral strategy profile

ϕ̄i = (ϕ̄i,jt )(i,j)∈Ni,t∈T , where ϕ̄i,jt : Hi
t ×X

i,j
t 7→ ∆(U i,jt ). Define ḡi by

ḡit(γ
i
t|hit) =


∏

(i,j)∈Ni

∏
xi,jt

ϕ̄i,jt (γi,jt (xi,jt )|hit, x
i,j
t ) γit ∈ Āit

0 otherwise

where Āit ⊂ Ait is the set of simple prescriptions. Then, using arguments similar to

those in the proof of Lemma 4.1 one can show that ḡi is payoff-equivalent to ϕ̄i, and

hence payoff-equivalent to µi.

Proof of Theorem 4.16. In the proof of Theorem 4.6, we reformulate the game among

coordinators in the model of Chapter 2 and show that Qi
t = (H0

t , S
i
t) is unilaterally

sufficient information. The result then follows from Theorem 2.6.
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APPENDIX E

Proofs for Chapter 5

E.1 Proofs for Section 5.3

Proof of Lemma 5.1. Let C1, · · · , Ck be polytopes such that (i) f is linear on each

of C1, · · · , Ck (ii) C1 ∪ · · · ∪ Ck = Ω2.

Since ` is an affine function, we have the pre-images Dj = `−1(Cj), j = 1, · · · , k
to be polytopes as well.

f ◦ ` is linear on each Dj (since it is the composition of two linear functions), and

D1 ∪ · · · ∪Dk = Ω1. We conclude that f ◦ ` is a piecewise linear function.

Prood of Lemma 5.2. First, for any ω, given a simplex C such that ω ∈ C, there is

a unique way to represent ω as a convex combination of vertices of C.

Suppose that ω is in both simplices C and C ′. Then ω is in C ∩ C ′, which is a

face of both C and C ′. Since C ∩ C ′ is a simplex, ω can be uniquely represented as

a convex combination of vertices of C ∩ C ′. Since the set of vertices of C ∩ C ′ is a

subset of the vertices of both C and C ′, we conclude that the above representation

is also the unique way of representing ω as a convex combination of vertices of C

(and of C ′). We conclude that for any ω, there is a unique way to represent ω as a

convex combination of vertices of any simplex in γ. Hence I(f, γ) is well defined.

For any simplex C ∈ γ, I(f, γ) is linear on C. Since the number of simplices in

γ is finite and their union is Ω, we conclude that I(f, γ) is a continuous piecewise

linear function on Ω.

Proof of Lemma 5.3. For j = 1, · · · , k, let Cj1, · · · , Cjmj be polytopes corresponding

to the piecewise linear function fj under Definition 5.2, i.e. fj is linear on each of

Cj1, · · · , Cjmj and Cj1 ∪ · · · ∪ Cjmj = Ω. Define

S = {C1i1 ∩ C2i2 ∩ · · · ∩ Ckik : 1 ≤ i1 ≤ m1, · · · , 1 ≤ ik ≤ mk}
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S is a finite collection of polytopes with all of f1, · · · , fk are linear on each element.

The union of S equals Ω. Define

Aj := {ω ∈ Ω : fj(ω) ≥ fj′(ω) ∀j′ = 1, · · · , k},
Sj = {F ∩ Aj : F ∈ S}.

Sj is the collection of subsets where fj is (one of) the maximum among f1, · · · , fk.
Sj is also a finite collection of polytopes, since each F ∩ Aj is a subset of F that

satisfy certain linear constraints.

Similarly, let Dj1, · · · , Djnj be polytopes corresponding to the piecewise linear

function gj. Define

Rj = {F ∩Dji : F ∈ Sj, 1 ≤ i ≤ nj}

For each polytope F ∈ Rj, gj is linear on F , and fj is (one of) the maximum

among f1, · · · , fk for all points in F . The union of Rj equals Aj.

Let P be the set of vertices of polytopes in R1∪· · ·∪Rk. P is a finite set. Define

B ⊂ Ω× R by B = {(ω, h(ω)) : ω ∈ P}. Let Z be the convex hull of B. We have Z
to be a polytope with its vertices contained in B.

Let ĥ be the concave closure of h. We will show that the function ĥ is repre-

sented by the upper face of Z. Then we obtain a triangulation of Ω by projecting a

triangulation of Z in a similar way to the construction of regular triangulations (see

Section 2.2 of [19]).

Step 1: Prove that ĥ(ω) = max{y : (ω, y) ∈ Z}.
Define h(ω) := max{y : (ω, y) ∈ Z}. h is a concave function.

It is clear that Z ⊂ cvxg(h), since B is a subset of the graph of h. Therefore

h(ω) ≤ ĥ(ω).

Consider any ω ∈ Ω. Let j∗ be such that j∗ ∈ Υ(ω) and h(ω) = gj∗(ω). Then

ω ∈ Aj∗ . We have ω ∈ F for some F ∈ Rj∗ . Let ω1, · · · , ωm ∈ P be the vertices of

F . We can write ω = α1ω1 + · · ·+αkωm for some α1, · · · , αm ≥ 0, α1 + · · ·+αm = 1.

Since gj∗ is linear on F we have

(E.1) h(ω) = gj∗(ω) = α1gj∗(ω1) + · · ·+ αkgj∗(ωm)

Since ω1, · · · , ωm ∈ F and F ⊂ Aj∗ . By definition, j∗ ∈ Υ(ωi) for all i = 1, · · · ,m.

Therefore gj∗(ωi) ≤ h(ωi) for all i = 1, · · · ,m. Consequently, combining (E.1) we

have

h(ω) ≤ α1h(ω1) + · · ·+ αkh(ωm)

Given that (ω, α1h(ω1) + · · ·+ αkh(ωk)) ∈ Z, we have

α1h(ω1) + · · ·+ αkh(ωk) ≤ h(ω)
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Hence h(ω) ≤ h(ω). Therefore, h is a concave function above h. Since the concave

closure ĥ(ω) is the smallest concave function above h, we conclude that ĥ(ω) ≤ h(ω)

for all ω ∈ Ω.

Therefore ĥ = h, completing the proof of Step 1.

Step 2: Construct the triangulation γ and show that ĥ = I(h, γ).

Let A ⊂ Ω × R be the graph of ĥ. A is also the union of upper faces of Z. Let

ϑ be a point set triangulation (as defined in Def. 2.2.1 in [19]) of the finite point set

B. (A point set triangulation of a finite set of points always exists. See Section 2.2.1

of [19].) Let ϑ̂ be the restriction of ϑ to A, i.e. ϑ̂ := {F : F ⊂ A, F ∈ ϑ}. It can be

shown that ϑ̂ is a simplicial complex (i.e. a polyhedral complex where all polytopes

are simplices. See Def. 2.1.5 in [19].) with vertices contained in A ∩ B.

Since A is the upper convex hull of Z, the projection map projΩ : Ω × R 7→
Ω, (ω, y) 7→ ω is a bijection between A and Ω. Let γ be the projection of ϑ̂ on to Ω,

i.e. γ = {projΩ(F ) : F ∈ ϑ̂}. We conclude that γ is a simplical complex that spans

Ω, i.e. a triangulation of Ω.

The inverse map proj−1
Ω : Ω 7→ A is a piecewise linear map that is linear on each

simplex in γ. Therefore we have ĥ(ω) = I(ĥ, γ)(ω) for all ω ∈ Ω. Since the vertices

of ϑ̂ are contained in both A and B, we have ĥ(ω) = h(ω) for each vertex ω of γ.

(Recall that B is a subset of the graph of h and A is the graph of ĥ.) Therefore we

have ĥ(ω) = I(h, γ)(ω) for all ω ∈ Ω.

E.2 Proofs for Section 5.4

Lemma E.1. There exist a belief system µ∗ = (µ∗A, µ∗B) such that (i) µ∗ is con-

sistent with any strategy profile (gA, gB); (ii) the canonical belief system κ is the

marginals of µ∗.

Proof of Lemma E.1. Define µ∗it : Hi
t 7→ ∆(X1:t) recursively through the following:

• µ∗A1 (hA1 ) := π̂.

• µ∗Bt (x1:t|hBt ) :=
µ∗At (x1:t|hAt )σt(mt|xt)∑
x̃1:t

µ∗At (x̃1:t|hAt )σt(mt|x̃t)

• µ∗At+1(x1:t+1|hAt+1) := µ∗Bt (x1:t|hBt )P(xt+1|xt, ut)

Through induction on t it is clear that κ is the marginal distribution derived from

µ∗.

It remains to show the consistency of µ∗ w.r.t. any strategy profile g = (gA, gB).

We will also show it via induction:
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• µ∗A1 is clearly consistent with any g since it is defined to be the prior distribution

of X1.

• Suppose that µ∗At is consistent with g. Then consider any hBt = (σ1:t,m1:t, u1:t−1) ∈
HB
t such that Pg(hBt ) > 0. Then we have Pg(hAt ) > 0, and µ∗At (x1:t|hAt ) =

Pg(x1:t|hAt ) follows by induction hypothesis. Therefore

Pg(x1:t|hBt ) = Pg(x1:t|σt,mt, h
A
t ) =

Pg(x1:t, σt,mt, h
A
t )

Pg(σt,mt, hAt )

=
Pg(x1:t, h

A
t )Pg(σt|x1:t, h

A
t )Pg(mt|σt, x1:t, h

A
t )∑

x̃1:t
Pg(x̃1:t, hAt )Pg(σt|x̃1:t, hAt )Pg(mt|σt, x̃1:t, hAt )

=
Pg(x1:t, h

A
t )gAt (σt|hAt )σt(mt|xt)∑

x̃1:t
Pg(x̃1:t, hAt )gAt (σt|hAt )σt(mt|x̃t)

=
Pg(x1:t, h

A
t )σt(mt|xt)∑

x̃1:t
Pg(x̃1:t, hAt )σt(mt|x̃t)

=
Pg(x1:t|hAt )σt(mt|xt)∑
x̃1:t

Pg(x̃1:t|hAt )σt(mt|x̃t)

=
µ∗At (x1:t|hAt )σt(mt|xt)∑
x̃1:t

µ∗At (x̃1:t|hAt )σt(mt|x̃t)
= µ∗Bt (x1:t|hBt )

which means that µ∗Bt is consistent with g.

• Suppose that µ∗Bt is consistent with g. Then consider any hAt+1 = (σ1:t,m1:t, u1:t) ∈
HA
t+1 such that Pg(hAt+1) > 0. Then we have Pg(hBt ) > 0, and µ∗Bt (x1:t|hBt ) =

Pg(x1:t|hBt ) follows by induction hypothesis. Then we have

Pg(x1:t+1|hAt+1) =
Pg(x1:t+1, h

A
t+1)

Pg(hAt+1)

=
Pg(x1:t, h

B
t )Pg(ut|x1:t, h

B
t )Pg(xt+1|x1:t, ut, h

B
t )∑

x̃1:t
Pg(x̃1:t, hBt )Pg(ut|x̃1:t, hBt )

=
Pg(x1:t, h

B
t )gBt (ut|hBt )P(xt+1|xt, ut)∑

x̃1:t
Pg(x̃1:t, hBt )gt(ut|hBt )

=
Pg(x1:t, h

B
t )∑

x̃1:t
Pg(x̃1:t, hBt )

· P(xt+1|xt, ut) = µ∗Bt (x1:t|hBt )P(xt+1|xt, ut)

= µ∗At (x1:t+1|hAt+1)

which means that µ∗At+1 is consistent with g.

Proof of Theorem 5.3. Let µ∗ be a belief system that satisfies Lemma E.1. It is

shown by Lemma E.1 that µ∗ is consistent with any strategy profile g. Hence to

show that λ∗ forms a CBB-PBE we only need to show sequential rationality.
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Step 1: Fixing Alice’s strategy to be λ∗A, show that λ∗Bτ :T is sequentially rational

at any hBτ ∈ HB
τ at any time τ , given the belief µ∗Bτ (hBτ ).

To prove Step 1, we argue that at hBτ , Bob is facing an MDP problem with state

process ΠB
t = κBt (HB

t ) and action Ut for t ≥ τ .

First, we can write

Eµ∗Bτ (hBτ ),λ∗At ,gBτ :T

[
∞∑
t=τ

rBt (Xt, Ut)

]

= Eµ∗Bτ (hBτ ),λ∗At ,gBτ :T

[
∞∑
t=τ

Eµ∗Bτ (hBτ ),λ∗At ,gBτ :T [rBt (Xt, Ut)|HB
t , Ut]

]
where for any hBt such that Pµ∗Bτ (hBτ ),λ∗At ,gBτ :T (hBt ) > 0 we have

Eµ∗Bτ (hBτ ),λ∗At ,gBτ :T [rBt (Xt, Ut)|hBt , ut]

=
∑
x̃1:t

rBt (x̃t, ut)Pµ
∗B
τ (hBτ ),λ∗At ,gBτ :T (x̃1:t|hBt )

=
∑
x̃t

rBt (x̃t, ut)π
B
t (x̃t) =: r̃Bt (πBt , ut)

where πBt := κBt (hBt ). The second equality is true due to Lemma E.1.

Therefore we can write

Eµ∗Bτ (hBτ ),λ∗At ,gBτ :T

[
∞∑
t=τ

rBt (Xt, Ut)

]
= Eµ∗Bτ (hBτ ),λ∗At ,gBτ :T

[
∞∑
t=τ

r̃Bt (ΠB
t , Ut)

]
.

We now show that ΠB
t is a controlled Markov Chain controlled by Ut. By Def-

inition 5.6, we have ΠB
t+1 = ξt+1(ΠA

t+1,Σt+1,Mt+1), where ΠA
t+1 = `t(Π

B
t , Ut),Σt+1 =

λ∗Bt+1(ΠA
t+1). Therefore we have

Pµ∗Bτ (hBτ ),λ∗At ,gBτ :T (πBt+1|hBt , ut)

=
∑
m̃t+1

1{πBt+1=ξt+1(πAt+1,σt+1,m̃t+1)}Pµ
∗B
τ (hBτ ),λ∗At ,gBτ :T (m̃t+1|hBt , ut)

=
∑
m̃t+1

1{πBt+1=ξt+1(πAt+1,σt+1,m̃t+1)}

∑
x̃t+1

σt+1(m̃t+1|x̃t+1)Pµ∗Bτ (hBτ ),λ∗At ,gBτ :T (x̃t+1|hAt+1)

=
∑
m̃t+1

1{πBt+1=ξt+1(πAt+1,σt+1,m̃t+1)}

∑
x̃t+1

σt+1(m̃t+1|x̃t+1)πAt+1(x̃t+1)

where πAt+1 = `t(π
B
t , ut), σt+1 = λ∗At+1(πAt+1). The last equality is true due to Lemma

E.1.

By construction, σt+1 = λ∗At+1(πAt+1) induces the distribution C(πAt+1, γt+1) from

πAt+1. This means that∑
m̃t+1

1{πBt+1=ξt+1(πAt+1,σt+1,m̃t+1)}

∑
x̃t+1

σt+1(m̃t+1|x̃t+1)πAt+1(x̃t+1)
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= C(πAt+1, γt+1)(πBt+1)

We conclude that

Pµ∗Bτ (hBτ ),λ∗At ,gBτ :T (πBt+1|hBt , ut) = C(`t(π
B
t , ut), γt+1)(πBt+1).

In particular, this means that the conditional distribution of ΠB
t+1 given all of

(ΠB
1:t, U

B
1:t) is dependent only on (ΠB

t , Ut), proving that ΠB
t is a controlled Markov

Chain controlled by Ut for t ≥ τ .

Therefore, at hBτ , Bob faces an MDP problem with state ΠB
t , action Ut, instanta-

neous reward r̃Bt (ΠB
t , Ut) and transition kernel P(πBt+1|πBt , ut) = C(`t(π

B
t , ut), γt+1)(πBt+1).

Now, by construction, we know that

v̂Bt (πBt ) = max
ut

[∑
x̃t

rBt (x̃t, ut)πt(x̃t) + V B
t+1(`t(πt, ut))

]

= max
ut

[
r̃Bt (πBt , ut) +

∫
v̂Bt+1(·)dC(`t(π

B
t , ut), γt+1)

]
(E.2)

and λ∗Bt (πBt ) attains the maximum in (E.2). Therefore λ∗Bτ :T solves the Bellman

equation for the MDP problem specified above, and hence is an optimal strategy.

Furthermore, V B
1 (π̂) =

∫
v̂B1 (·)dC(π̂, γt) is the optimal total expected payoff for Bob

when Alice plays λ∗A.

Step 2: Fixing Bob’s strategy to be λ∗B, show that λ∗Aτ :T is sequentially rational

at any hAτ ∈ HA
τ at any time τ , given the belief µ∗Aτ (hAτ ).

Similar to Step 1, we argue that at hAτ , Alice is facing an MDP problem with

state process ΠA
t = κAt (HA

t ) and action Σt for t ≥ τ .

First, we write

Eµ∗Aτ (hAτ ),gAτ :T ,λ
∗B
t

[
∞∑
t=τ

rAt (Xt, Ut)

]

= Eµ∗Aτ (hAτ ),gAτ :T ,λ
∗B
t

[
∞∑
t=τ

Eµ∗Aτ (hAτ ),gAτ :T ,λ
∗B
t [rAt (Xt, Ut)|HA

t ,Σt]

]

Given that Bob uses the CBB strategy λ∗B, we know that Ut = λ∗Bt (ΠB
t ) where

ΠB
t = ξt(Π

A
t ,Σt,Mt). For any hAt such that Pµ∗Aτ (hAτ ),gAτ :T ,λ

∗B
t (hAt ) > 0 we have

Eµ∗Aτ (hAτ ),gAτ :T ,λ
∗B
t [rAt (Xt, Ut)|hAt , σt]

=
∑
x̃t,m̃t

rAt (x̃t, λ
∗B
t (ξt(π

A
t , σt, m̃t)))Pµ

∗A
τ (hAτ ),gAτ :T ,λ

∗B
t (m̃t, x̃t|hAt , σt)

=
∑
x̃t,m̃t

rAt (x̃t, λ
∗B
t (ξt(π

A
t , σt, m̃t)))σt(m̃t|x̃t)Pµ

∗A
τ (hAτ ),gAτ :T ,λ

∗B
t (x̃t|hAt , σt)

177



=
∑
x̃t,m̃t

rAt (x̃t, λ
∗B
t (ξt(π

A
t , σt, m̃t)))σt(m̃t|x̃t)πAt (x̃t) =: r̃At (πAt , σt)

where πAt := κAt (hAt ). The third equality is true due to Lemma E.1.

Therefore we can write

Eµ∗Aτ (hAτ ),gAτ :T ,λ
∗B
t

[
∞∑
t=τ

rAt (Xt, Ut)

]
= Eµ∗Aτ (hAτ ),gAτ :T ,λ

∗B
t

[
∞∑
t=τ

r̃At (ΠA
t ,Σt)

]
.

We now show that ΠA
t is a controlled Markov process with action Σt: We know

that

ΠA
t+1 = `t(Π

B
t , U

B
t )

UB
t = λ∗Bt (ΠB

t )

ΠB
t = ξt(Π

A
t ,Σt,Mt).

Hence ΠA
t+1 is a function of ΠA

t ,Σt, and Mt. Furthermore,

Pµ∗Aτ (hAτ ),gAτ :T ,λ
∗B
t (mt|hAt , σt)

=
∑
x̃t

σt(mt|x̃t)Pµ
∗A
τ (hAτ ),gAτ :T ,λ

∗B
t (x̃t|hAt , σt)

=
∑
x̃t

σt(mt|x̃t)πAt (x̃t).

Therefore the conditional distribution of ΠA
t+1 given (HA

t ,Σt) depends only on (ΠA
t ,Σt),

proving that ΠA
t is a controlled Markov process. We conclude that at hAτ , Alice faces

an MDP problem with state ΠA
t , action Σt, and instantaneous reward r̃At (ΠA

t ,Σt) for

t ≥ τ .

Next we will show that λ∗Aτ :T is a dynamic programming solution of this MDP.

Induction Variant: V A
t , as defined in (5.1f), is the value function for this MDP.

Induction Step: Suppose that V A
t+1 is the value function for this MDP at time

t+ 1 and consider the stage optimization problem at πAt .

Note that the instantaneous cost can be written as

r̃At (πAt , σt) =
∑
x̃t,m̃t

rAt (x̃t, λ
∗B
t (ξt(π

A
t , σt, m̃t)))σt(m̃t|x̃t)πAt (x̃t)

=
∑
m̃t

[(∑
x̃t

rAt (x̃t, λ
∗B
t (ξt(π

A
t , σt, m̃t)))

σt(m̃t|x̃t)πAt (x̃t)∑
x̂t
σt(m̃t|x̂t)πAt (x̂t)

)
×

×

(∑
x̂t

σt(m̃t|x̂t)πAt (x̂t)

)]
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=
∑
m̃t

[(∑
x̃t

rAt (x̃t, λ
∗B
t (ξt(π

A
t , σt, m̃t)))ξt(π

A
t , σt, m̃t)(x̃t)

)
×

×

(∑
x̂t

σt(m̃t|x̂t)πAt (x̂t)

)]
= E

[∑
x̃t

rAt (x̃t, λ
∗B
t (ΠB

t ))ΠB
t (x̃t)

∣∣∣πAt , σt
]

where ΠB
t is a random distribution that follows the distribution induced by σt from

πAt .

Hence objective function for the stage optimization can be written as

Q̃A
t (πAt , σt) = r̃At (πAt , σt) + E[V A

t+1(ΠA
t+1)|πAt , σt]

= r̃At (πAt , σt) + E[V A
t+1(`t(Π

B
t , λ

∗B
t (ΠB

t )))|πAt , σt]
= E

[
ṽAt (ΠB

t )|πAt , σt
]

where

ṽAt (πt) :=
∑
x̃t

rAt (x̃t, λ
∗B
t (πt))πt(x̃t) + V A

t+1(`t(π
B
t , λ

∗B
t (πBt )))

By construction of λ∗Bt , we know that ṽAt = v̂At (defined in (5.1c)).

Therefore, the stage optimization problem can be reformulated as:

max
νt∈∆f (∆(Xt))

∫
v̂At (·)dνt

subject to νt is inducible from πAt

(SP)

and the optimal signal is any signal that induces an optimal distribution ν∗t of (SP)

from πAt .

By Kamenica and Gentzkow [40], we know that the optimal value of (SP) is given

by the concave closure of the function v̂At evaluated at πAt .

By construction, we have V A
t to be the concave closure of v̂At . Furthermore,

λ∗At (πAt ) is assumed to induce the distribution νt = C(πAt , γt), where we know that∫
v̂At (·)dC(πAt , γt) = V A

t (πAt ). Hence λ∗At (πAt ) is an optimal solution for the stage opti-

mization problem, and V A
t is the value function at time t, proving the induction step.

We conclude that λ∗Aτ :T is an optimal strategy for Alice at hAτ given the belief

system µτ (h
A
τ ) and Bob’s strategy λ∗B. Furthermore, V A

1 (π̂) is the optimal total

expected payoff for Alice when Bob plays λ∗A. Hence we have completed the proof

of sequential rationality.
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APPENDIX F

List of Symbols

In the following tables, we list the main symbols appeared in this thesis.

In all of the following symbols, subscript t indicates time. For example, Xt is the

state of the system at time t. Superscript i indicates a player in Chapters 2, 3, 5,

and it indicates a team in Chapter 4. Superscript i, j (like in X i,j) indicates the j-th

player of team i in Chapter 4.

Unless explicitly listed in the following table, a symbol with superscript has the

same interpretation as one without superscript. For example, Xt is listed in the

following table as a random variable representing the state of the system while X i
t is

not listed. X i
t is a random variable representing the state of the system associated

with player/team i.

Please also refer to Section 1.5 in Chapter 1 for explanations on notational con-

ventions.

F.1 Latin

Ait Space of prescriptions Chapter 4

Āit Space of simple prescriptions Chapter 4

Bt, bt,Bt Random variable/realization/space of compressed

common information

Chapters 3, 4

Bi
t, b

i
t Random variable/realization/space of compressed

common information under a specific belief gener-

ation system ψi

Chapter 4

C Triangulation-based convex combination operator Chapter 5

E Expectation Anywhere

ft System transition function Anywhere

Ft, Gt Generic function. Meaning depends on context Anywhere

git Behavioral strategy Chapters 2, 3
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Behavioral coordination strategy Chapter 4

H0
t , h

0
t ,H0

t Random variable/realization/space of the common

information among all players

Chapters 2, 3, 4

H i
t , h

i
t,Hi

t Random variable/realization/space of full informa-

tion available to player i

Anywhere

H i,j
t , h

i,j
t ,H

i,j
t Random variable/realization/space of full informa-

tion available to player (i, j)

Chapter 4

H
i

t, h
i

t,H
i

t Random variable/realization/space of full informa-

tion available to coordinator i

Chapter 4

I Number of players Chapter 2

Number of teams Chapter 4

i, j, k Index of a player Chapters 2, 3, 5

(i, j) The j-th player of team i Chapter 4

Number of teams Chapter 4

I Triangulation-based interpolation operator Chapter 5

I Set of players Chapter 2, 3

Set of teams Chapter 4

J it Total reward of player/team i at time t Anywhere

Ki
t State-action pair quality function (or Q-function) Anywhere

Lit, l
i
t,Lit Random variable/realization/space of the private

information

Chapters 2, 3

`it Observation function Chapter 4

`t Belief update operator after observing Bob’s action Chapter 5

Mt,mt,Mt Random variable/realization/space of Alice’s mes-

sage to Bob

Chapter 5

Mi
t Set of pure strategies Chapter 4

N Set of all players in all teams Chapter 4

Ni Set of players in team i Chapter 4

Ot, ot,Ot Random variable/realization/space for node on a

game tree

Appendix A.2

Pt Transition kernel of a controlled Markov Chain Appendix A.1

P i
t Transition kernel of compressed information Chapter 2

Conditional distribution of hidden information

given common information and sufficient private

information

Chapter 4

P Probability Anywhere

Qi
t, q

i
t,Qit Random variable/realization/space of compression

of information

Chapter 2
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q̂it State-action pair quality function (or Q-function) Chapter 5

Ri
t Random variable for instantaneous reward Chapters 2, 3

rit Instantaneous reward function Anywhere

Sit , s
i
t,S it Random variable/realization/space for sufficient

private information (SPI)

Chapter 4

St Space of signals/experiments Chapter 5

T Horizon of a finite game Anywhere

t Time index Anywhere

T Set of timestamps Anywhere

Ut, ut,Ut Random variable/realization/space for actions Anywhere

U i,j
t , u

i,j
t ,U

i,j
t Random variable/realization/space for actions of

player (i, j)

Chapter 4

V i
t Value function Anywhere

v̂it Intermediate value function Chapter 5

Wt, wt,Wt Random variable/realization/space of noises Anywhere

Xt, xt,Xt Random variable/realization/space of states of the

system

Anywhere

Y i
t , y

i
t,Y it Random variable/realization/space of noisy obser-

vations of the state of player/team i

Chapters 2, 4

Yt, yt,Yt Random vector/realization/space of states of noisy

observations of all states

Chapter 4

Zi
t , z

i
t,Z it Random variable/realization/space of information

increment of player i

Chapters 2, 3

F.2 Greek

βit Belief of coordinator i in the stage game Chapter 4

Γi
t, γ

i
t Random variable/realization of prescriptions Chapter 4

γit Realization of simple prescriptions Chapter 4

γt Triangulation in the sequential decomposition Chapter 5

∆ Space of distributions Anywhere

∆f Space of distributions with finite support Chapter 5

ζt Private information update function Chapters 2, 3

η Distribution. Meaning depends on context Anywhere

Θt, θt Random variable/realization of Nature’s action in the

stage game

Chapter 4

ιit Compression update function Chapter 2

Sufficient private information update function Chapter 4
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κt Compression function Anywhere

λit Compressed information based strategy Chapter 4

Canonical belief based strategy Chapter 5

µit Pure strategy of team i Chapter 4

Belief of player i Chapters 2, 5;

Appendix A.2

νt Pure coordination strategy of coordinator i Chapter 4

Distribution of the state Appendix A.1

ξt Generic function. Meaning depends on context Chapters 2, 4

Canonical belief update function given an experiment

and its result

Chapter 5

πt Common information based belief Chapters 3, 4

Canonical belief Chapter 5

πit Common information based belief generated through a

specific belief generation system ψi
Chapter 4

ρit Qi-based strategy Chapter 2

Sufficient private information based (SPIB) strategy Chapter 4

σi Mixed coordination strategy Chapter 4

Σt, σt Signal/randomized experiment Chapter 5

τ Time index Anywhere

Υt Intermediate function used in consistent belief update Chapter 4

Set of actions that maximizes Bob’s Q-function Chapter 5

Φi
t Function representing a conditional distribution Chapter 2

Φi
t, φ

i
t Random variable/realization of partially realized pre-

scriptions (PRP)

Chapter 4

ϕi,jt Behavioral strategy of player (i, j) Chapter 4

ψit Belief generation system Chapter 4
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