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Abstract 
 

As one of generation IV reactor designs, molten salt reactors (MSRs) with fuel dissolved in 

liquid salt are gaining increasing interest from the industry due to their excellent characteristics in 

sustainability, passive safety, and resource utilization. Most of the currently proposed MSR 

concepts with liquid fuel utilize flowing fuel. The design and safety analyses of flowing fuel MSRs 

require new modeling and simulation capabilities that can address the unique characteristics of 

flowing liquid fuel, which are different from conventional solid fuel reactors. The fuel salt 

circulates throughout the primary system, acting as fuel and coolant at the same time. Thus, part 

of the delayed neutron precursors generated in the core decay in positions of low importance or 

even out of the core. This changes the effective delayed neutron fraction and makes the dynamic 

behavior of MSRs different from solid fuel reactors. Furthermore, the neutronics and thermal 

hydraulics are strongly coupled due to the large thermal expansion of liquid fuel.  

Most of the available neutronics tools for the design and safety analysis of MSRs are based on 

various approximations tailored to a targeted system. Motivated by the need for a general 

neutronics analysis tool for application to fast and thermal MSRs, this thesis develops and 

implements new modeling capabilities for flowing fuel to the nodal transport code PROTEUS-

NODAL. The steady state solver has been extended to model the drift of the delayed neutron 

precursors, and new transient solvers have been developed for flowing fuel applications. A thermal 

hydraulics solver has also been developed and implemented to address the strong coupling of the 

neutronics and thermal hydraulics by considering the velocity, temperature, and density fields in 

the thermal feedback calculations. In order to perform efficient and practical transient analyses of 

MSRs, an adaptive time-step selection scheme has been developed based on control theory. In this 

scheme, the time-step size is varied based on the estimated local solution errors during the 

transient. This helps in reducing the computational inefficiency due to unnecessarily small time-

step size and avoiding the loss of accuracy that might be introduced due to a large time-step size. 

Additionally, MSR fuel cycle analysis capability has been implemented by considering online 

refueling of fuel salt and reprocessing to extract fission products. Utilizing the fuel cycle model, 
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fission products are categorized into a few decay heat precursor groups based on their chemical 

characteristics to include the decay heat in the transient and fuel cycle analyses, and a nuclide drift 

model has been added to consider the distribution of the fuel salt nuclides in the feedback model 

to simulate a hypothetical over-fueling of the fuel salt during normal operation.  

The developed capabilities have been verified using the Molten Salt Fast Reactor (MSFR) 

numerical benchmarks and validated against the available measured data of the Molten Salt 

Reactor Experiment (MSRE). The verification and validation test results demonstrate that these 

capabilities can model the relevant physics of flowing fuel MSRs accurately and efficiently. The 

developed code can be used for steady state, transient, and fuel cycle analyses of thermal and fast 

spectrums MSRs designs. 
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Chapter 1. Introduction 
 

 

The concept of the molten salt reactors (MSRs) with liquid fuel was introduced in 1945, by 

dissolving the fuel into a liquid salt such as molten fluoride and by circulating the salt throughout 

the primary loop in the reactor, utilizing the salt as fuel and coolant at the same time. The 

advantages of the molten salts over other coolants lie in the elimination of the high-pressure 

operation as in water and gaseous coolants, and chemically less reactive to water or air as in liquid 

metal coolants [1, 2]. However, the motion of the liquid fuel salt results in a partial release of the 

delayed fission neutrons outside the reactor core due to the decay of the fission products. The fuel 

motion and the decay process are reflected directly on the neutronics parameters, which will 

change the behavior of the reactor compared to the conventional solid fuel reactors. Also, refueling 

and reprocessing of the liquid fuel can be performed while the reactor is in operation. These 

phenomena of the liquid fuel must be addressed in performing neutronics analyses, which add 

more complications to the modeling and simulation tools compared to the solid fuel. 

The available tools for modeling and simulation of liquid fuel MSRs are focused on certain 

type of MSRs with several approximations. In order to provide accurate and efficient analysis 

capabilities for both fast and thermal spectrum MSRs, this thesis develops, verifies, and validates 

modeling and simulation capabilities for steady state and time-dependent neutronics analyses of 

MSRs with flowing fuel. The developed capabilities include steady state solvers for forward and 

adjoint equations, transient solvers with adaptive time-stepping scheme, nuclide depletion and fuel 

cycle analysis solver, and models for decay heat, thermal hydraulics, and thermal feedback to 

perform coupled neutronics and thermal hydraulics calculations. The developed capabilities are 

verified using numerical benchmarks of MSRs and validated against the available experimental 

data of liquid fuel MSRs. 

This chapter highlights the concept and development of liquid fuel MSRs, and briefly reviews 

the progress and development of the existing modeling tools for safety analysis of MSRs. Then, 
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the motivation and goals of the work of this thesis are presented. At the end of this chapter, the 

outline of this thesis is provided. 

1.1. MSRs Design and Development 

MSRs have several advantages over other reactors as homogeneous fuel composition, lower 

fissile inventories, low radiation damage, and no fuel fabrication or handling. Besides low-pressure 

operation, MSRs have large negative temperature and void coefficients of reactivity, and they 

passively reduce reactor power increase in the case of reactivity insertion accident. Also, if 

excessive temperatures are reached, the fuel salt in the primary system will be drained by gravity 

to a decay tank. Furthermore, the MSR can be configured in fast and thermal neutron spectrums 

depending on the use of a solid moderator with liquid fuel salt. In thermal spectrum MSR, the core 

is configured of un-cladded graphite channels allowing the fuel to flow through it for neutron 

moderation. However, there is a limitation on the operation of the graphite moderated reactors due 

to exposure of the graphite to the high neutron flux. In fast spectrum MSR, the fuel flows in the 

reactor region without passing through flow channels. In both designs, fuel reprocessing is required 

to remove gaseous fission products continuously from the fuel salt. Also, MSRs can be designed 

with single-fluid as in homogenous MSR or two-fluid as in heterogeneous MSR. In homogenous 

MSR, thorium can be dissolved with the fissile isotopes in a single fluid mixture. However, 

heterogeneous MSR would have fertile salt containing thorium that is separated from the fuel salt 

to be operated as a breeder reactor to produce 233U in the blanket region which is continuously 

extracted and transferred to the fuel salt in the primary system to compensate for the fuel burnup 

[1, 2, 3, 4, 5]. 

1.1.1. History and Current Designs 

The history of liquid fuel reactors dates back to the late 1940s when it was originally proposed 

at Oak Ridge National Laboratory (ORNL). The construction and operation of the Aircraft Reactor 

Experiment (ARE) in 1954 successfully demonstrated the MSR concept after 100 hours of 

operation until shutdown. It was realized that the crash of a nuclear-powered plane would have 

serious consequences [6]. In the 1960s, the Molten Salt Reactor Experiment (MSRE) was 

constructed and successfully operated [7, 8]. The main purpose of the MSRE was to demonstrate 

the practicality of the liquid fuel operation at high temperatures and to ensure the safety and 

reliability for developing a full-scale molten salt breeder reactor (MSBR), which was suspended 
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during the design stage. Figure 1.1 shows the reactor assemblies of the ARE and MSRE. In 1969, 

the MSRE was operated with 233U fuel which could be bred from thorium fuel salt demonstrating 

the visibility of MSBR, which was designed to operate with two salts mainly to breed 233U isotope 

from fertile thorium blanket. The MSRE program was terminated by the US government in favour 

of the development of the liquid metal fast breeder reactor concept to breed 239Pu from 238U instead 

of breeding 233U from 232Th as proposed in MSBR design [9, 10]. 

             

Figure 1.1. Reactor assemblies of ARE (left) [6] and MSRE (right) [10]. 

In the early 2000s, there was a renewed interest in the MSR concept, and it was selected as one 

of the Generation IV reactors [11]. However, different designs of MSRs are being developed 

considering flowing fuel in fast and thermal spectrums with closed fuel cycle, breeding 

capabilities, and multi-recycling of actinides. Other designs of MSRs utilize a once-through fuel 

cycle without online refueling. Also, some designs utilize static liquid fuel with online refueling 

to leverage the inherent safety aspects of the liquid fuel salt.  

In the Generation IV International Forum, liquid fueled MSR research and development have 

focused on fast spectrum MSR options for fissile breeding and transuranic (TRU) isotope burning, 

including the 1000 MWe MOlten-Salt Actinide Recycler and Transmuter (MOSART) in Russia 

[12] and the 1400 MWe thorium Molten Salt Fast Reactor (MSFR) in France [13, 14]. The MSFR 
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was designed to utilize the thorium fuel cycle with mixed lithium fluoride and actinide fluoride 

salt. A schematic diagram of the MSFR is provided in Fig. 1.2. In the U.S., Molten Chloride Faster 

Reactor (MCFR) design [15] was proposed by TerraPower which is similar to the MSFR concept. 

MCFR utilizes a fast spectrum with a continuous fueling process and fuel in form of molten 

chloride salts.  

  

Figure 1.2. Schematic diagram of MSFR [14]. 

A small modular Integral Molten Salt Reactor (IMSR) with 190 MWe is being designed by 

Terrestrial Energy [16] in Canada. The IMSR is based on the MSRE experiment with a 

reconfiguration and scale-up. The IMSR utilizes a thermal neutron spectrum with a hexagonal 

arrangement of solid graphite moderator. It utilizes a once-through uranium fuel cycle with the 

fuel dissolved in fluoride salt. It integrates the primary system components in a sealed, compact, 

and replaceable core vessel with a projected life of seven years. Also, the concept of using static 

or stable salt reactor (SSR) with fuel salt is filled in fuel rods and assemblies similar to 

conventional solid fuel designs was suggested by Moltex to utilize the inherent safety aspects of 

the liquid fuel salt while maintaining the design features of the traditional solid-fuel reactors [17]. 

The suggested design has a power of 320 MWe. The individual fuel tubes are vented to allow 

gaseous fission products to escape into the coolant salt. It requires online refueling of fuel 

assemblies with liquid salt to maintain continuous operation. 
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1.1.2. Analysis Tools Development 

As discussed in the previous subsection, several designs of MSRs are being developed and 

new modeling and simulation tools are required to perform design and safety analyses of the 

proposed MSR concepts to address their unique features and characteristics, which are different 

from conventional solid fuel reactors. The fuel salt circulates throughout the primary system, 

acting as fuel and coolant at the same time, and thus part of the delayed neutron precursors 

generated in the core decay in positions of low importance or even out of the core. This is reflected 

as reactivity losses due to the reduction of the effective delayed neutron fraction, which makes the 

dynamic behavior of MSRs different from solid fuel reactors. The heat generated by fission is 

deposited directly into the fuel salt and extracted from the fuel salt in the heat exchanger region. 

In thermal MSRs, a fraction of the heat is generated in the moderator due to photon interactions 

and neutron scattering. Also, part of the decay heat is generated in the outer loop mainly in the 

heat exchanger due to the flow of fuel salt. Figure 1.3 shows a representation of the flow of the 

fuel salt in the reactor core and the outer loop. Furthermore, the neutronics and thermal hydraulics 

are strongly coupled due to the liquid fuel and its motion in MSRs. Also, the online reprocessing 

and refueling of the fuel salt are required to perform fuel cycle analysis of MSRs. This increases 

the need for advanced design analysis capabilities for MSR applications. 

 

Figure 1.3. Flow of fuel salt in reactor core and outer loop of MSR. 

Over the years, various efforts were made to develop simulation tools for the coupled 

neutronics and thermal hydraulics analysis of flowing fuel MSRs, focused on certain types of 
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MSRs with various approximations. To assess the available dynamic simulation tools for MSRs, 

benchmark exercises were developed as well. A thermal-spectrum MSR benchmark was 

developed based on some of the MSRE experiments under the European MOST project [18]. Also, 

a fast-spectrum MSR benchmark was also defined under the Evaluation and Viability of Liquid 

fuel fast reactor system (EVOL) project for the pre-conceptual design and steady state analysis of 

the MSFR design [12].  

For the application to thermal spectrum MSRs, ORNL developed in the 1960s a modified point 

kinetics model for circulating fuel with a heat transfer model using a multi-node approach to 

perform dynamic analysis of the MSRE [19]. In the past 20 years, several efforts were dedicated 

to code development of diffusion and Monte Carlo codes, like the modified version of the 

MCNP4C code [20] which was used for steady state analysis of the MSRE [21]. Also, the Cinsf1D 

code [22] was developed for MSR analysis based on the two-group diffusion theory. For transient 

analysis, the quasi-static method was generalized for modeling the flowing fuel system in two-

dimensional (2D) cylindrical geometry [23]. For dynamic analysis, the DYN1D-MSR [24] and 

DYN3D-MSR [25] codes were developed based on a two-group nodal expansion method in 

hexagonal geometry for safety analysis of graphite-moderated MSRs. Similarly, the MOREL code 

[26, 27] is a recent code that was dedicated to the channel-type MSR analysis. Recently, nonlinear 

dynamic models were developed to perform dynamic analysis of the MSRE experiments [28] 

following the same approach of ORNL in the 1960s. Also, an open-source simulation tool Moltres 

[29] was developed for the simulation of MSRs by coupling neutronics and thermal hydraulics 

modules in the MOOSE framework [30]. More recently, a set of MSRE benchmarks were 

developed based on the initial zero-power criticality experiment [31] and the measured reactivity 

data [32] have been included in the International Reactor Physics Experiments Evaluation Project 

(IRPhEP) handbook. Also, the System Analysis Module (SAM) [33] was modified to model MSRs 

by including a delayed neutron precursor drift model and a modified point kinetics model for 

flowing fuel [34]. 

For fast-spectrum MSR applications, the SIMMER-III code [35] was modified for the analysis 

of the MOSART design, focused on the thermal hydraulics behavior of MSRs [36]. For the MSFR 

benchmark transient analysis, the Politecnico di Milano and the Delft University of Technology 

(TUDelft) performed a safety analysis through coupled neutronics and computational fluid 

dynamics (CFD) calculations in R-Z geometry [37]. Also, the Paul Scherrer Institute (PSI) coupled 
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the system analysis code TRACE [38] with the nodal neutronics code PARCS [39] to perform a 

similar analysis [40] utilizing a hexagonal geometry. To access multiphysics analysis codes for 

fast spectrum MSR applications, a numerical benchmark was developed within the SAMOFAR 

project [41]. Recently, the open-source CFD code OpenFOAM [42] was adopted in several 

multiphysics analysis codes for transient analysis of fast spectrum MSRs, like coupling the 

OpenFOAM toolkit with a one-group diffusion solver to perform MSFR transient analysis [43]. 

Also, a multiphysics code TANSY was developed by coupling the OpenFOAM toolkit and a 

multigroup diffusion solver and applied for transient analysis of MSFR [44]. 

In addition, many fuel cycle analysis codes have been developed to simulate the process of 

online reprocessing and refueling in MSRs. In most of these developed codes, the effects of the 

fuel flow and the thermal feedback were not considered in the performed analysis.  

1.2. Motivation  

Most of the available neutronics tools for design and safety analysis are developed for a certain 

type of MSRs and have limitations on applicability and require several approximations. Also, the 

availability of simulation tools that can be used to perform neutronics analyses, including steady 

state, transient, and fuel cycle analysis, using a single developed model is very limited. Motivated 

by the needs for accurate and efficient neutronics analyses tool for both fast and thermal spectrums 

MSRs and due to limitations of the current existing tools, new modeling and simulation capabilities 

for MSRs with liquid flowing fuel have been developed and implemented into the PROTEUS-

NODAL code, which is a three-dimensional (3D) variational nodal transport code based on a 

homogeneous assembly model for various nuclear reactor applications developed at Argonne 

National Laboratory (ANL) under the U.S. DOE’s Nuclear Energy Advanced Modeling and 

Simulation (NEAMS) program [45, 46].  

The steady state solvers have been extended to model flowing fuel the delayed neutron 

precursors drift. Also, transient solvers have been developed for flowing fuel applications with 

acceleration scheme and thermal feedback capability which includes thermal hydraulics models of 

the reactor and the outer loop, and models to functionalize cross sections for fast and thermal 

spectrum reactors [47, 48, 49, 50]. To improve the efficiency of the transient capabilities of MSRs 

and to reduce the total computational time without loss of accuracy, an adaptive time-stepping 

algorithm has been developed based on the control theory approach. The developed steady state 
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and transient analyses capabilities have been verified using the MSFR numerical benchmark [7] 

and validated against the measured data of the MSRE Experiment [13] which are the only source 

of experimental data for MSRs with flowing fuel [51, 52, 53].  

The main objective of this thesis is to develop neutronics analysis capabilities for steady state 

and time-dependent analyses of MSRs within a single tool. To fulfil this objective, a fuel cycle 

analysis capability has been developed to perform depletion calculations and to obtain fission 

products build-up in the fuel salt. A two-point depletion model considering the core and the outer 

loop regions has been developed with the capability of online refueling and reprocessing. In order 

to perform a more accurate and realistic analysis, the heat generated from the decay of the fission 

products and its contribution to steady state, transient, and fuel cycle analyses need to be 

considered. A decay heat model has been added considering the drift of the fuel to obtain the 

distribution of the decay heat precursors in the core and the fractional release of decay heat in the 

outer loop. Utilizing the added fuel cycle capability, a procedure to categorize fission products into 

a few decay heat precursor groups with unique decay constant and fraction is developed and 

applied considering fission products chemical characteristics and removal time during the fuel 

reprocessing. 

In real operation of MSRs with online refueling, fissile and fertile components are injected into 

the fuel salt in the outer loop while the reactor is operational. This will result in reactivity 

perturbations due to redistribution of the fuel salts nuclides in the core. An over-fueling of either 

of the components will induce reactivity insertion transient, and the reactor power and fuel salt 

temperature will change accordingly. In order to study this unique transient scenario, a nuclide 

drift model has been developed to consider the redistribution of the fuel salt nuclides in the core 

region to simulate over-fueling accident scenario. This will add an extra component to the feedback 

model by considering the distribution of the salt nuclides in the core in updating the cross sections 

along with the density and temperature distributions. In this way, a more realistic thermal feedback 

model of MSRs can be utilized for multiphysics analysis. 

1.3. Dissertation Layout 

This thesis consists of eight chapters and can be divided into three parts. The first part focuses 

on the steady state and transient analyses of MSRs with verification and validation tests. The 

second part is dedicated to improving the transient solution by providing an algorithm to select the 
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size of the time-step. The last part discusses the fuel cycle analysis of the MSRs and further 

improvements for more realistic analysis of MSRs.  

The mathematical foundation for steady state and transient analyses of the flowing fuel and the 

solution methodology are discussed in Chapter 2. First, the PROTEUS-NODAL methodology is 

discussed briefly. Then, the steady state solution scheme of the flowing fuel is discussed, along 

with the adjoint solution. This is followed by a discussion of the developed transient solvers based 

on the transient fixed source problem (TFSP) and the solution of the delayed neutron precursor 

concentration equations for stationary and flowing fuels with a discussion on the coarse mesh finite 

difference (CMFD) acceleration scheme. Then, a description of the implemented thermal feedback 

capabilities is provided, including thermal hydraulics solver, outer loop and heat exchanger 

models. Then, the cross sections functionalization for fast and thermal spectrum reactors are 

provided, along with the coupling scheme of the neutronics and thermal hydraulics solvers. 

Chapter 3 provides numerical verification results of the steady state and transient analysis 

capabilities discussed in Chapter 2 for fast and thermal spectrum reactors. Two problems are 

analyzed, the first problem is the MSFR benchmark problem, and the second problem is the MOST 

benchmark exercise. The MSFR benchmark problem contains steady state tests for the stationary 

fuel eigenvalue, temperature coefficients, kinetics parameters, and reactivity losses due to fuel salt 

drift. The transient problems have several unprotected transients categorized into three groups 

based on the driving force as reactivity-, flow-, and temperature- driven transients. The reactivity-

driven transients focused on the unprotected transient over power (UTOP) where sub-prompt and 

super-prompt reactivities are inserted. The flow-driven transients are related directly to the velocity 

of the fuel salt and its direct impact on the solution of the delayed neutron precursor equation and 

the thermal feedback, as in the unprotected pump over speed (UPOS) and unprotected loss of flow 

(ULOF) accidents. The temperature-driven transients are related to the inlet temperature of the 

fuel salt and the cooling rate at the heat exchanger and the secondary side, as in the unprotected 

loss of heat sink (ULOHS) and unprotected fuel salt over cooling (UFSOC) accidents. Also, the 

simplified problem of the MSRE experiment that was defined under MOST benchmark exercise 

is simulated. The MOST benchmark contains steady state tests for temperature coefficients and 

reactivity losses of the effective delayed neutron fraction. The transient problems include protected 

pump transients at low power and the natural circulation test. For both benchmark problems, 
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PROTEUS-NODAL results are presented in comparison with other reference solutions obtained 

from the open literature.  

Validation test results using the experimental data of the MSRE experiment are provided in 

Chapter 4. First, the geometry modeling and the multigroup cross sections generation procedure 

using Monte Carlo code OpenMC are discussed. Then the PROTEUS-NODAL model is verified 

against OpenMC results. The outer regions of the MSRE configuration beyond the reactor vessel 

are excluded from the model, instead, Albedo boundary conditions generated with OpenMC are 

employed at the outer surface of the reactor vessel in order to preserve the reaction rates and the 

total neutron leakage. Also, the OpenMC model is used to calculate the fractional heat generated 

in the graphite moderator due to neutron slowing down and gamma reactions. The experimental 

data are available for steady state experiments for control rod worth, temperature coefficients, and 

reactivity losses of the effective delayed neutron fraction. The transient experiments contain the 

unprotected pump start up and coast down and the natural circulation test. The simulation results 

in comparison to the measured values are presented using the developed model of the exact MSRE 

core.  

In Chapter 5, an adaptive time-stepping algorithm is developed to enhance the transient 

analyses of MSR based on the control theory approach. The developed approach and the 

implementation scheme are discussed first. Then, test results of the developed controller algorithm 

are presented using the MSFR benchmark and the MSRE experiment to ensure and verify its 

robustness and applicability for various types of transients including short-prompt and slow-long 

transients. This is followed by a parametric study with suggested ranges of the preselected 

controller parameters are provided. The same approach can be applied to the depletion analysis to 

determine the time-step size while maintaining an accurate solution. 

Fuel cycle analysis capabilities of MSRs with online reprocessing and refueling are discussed 

in Chapter 6. The modified nuclide depletion equation for flowing fuel with refueling and 

reprocessing is provided first. Then, the solution algorithms with fissile feed rate and criticality 

search option are discussed, followed by verification test results using the MSFR fuel cycle 

benchmark. Furthermore, the effects of considering fuel flow, coupling to thermal hydraulics, and 

decay heat on the calculated critical fissile feed rate and breeding ratio are investigated. In Chapter 

7, further improvements to the feedback model are added by considering the decay heat and the 

nuclide distribution in the transient analysis. A decay heat model with a description of the decay 
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heat calculation procedure is provided. Also, categorizing the decay heat into several precursor 

groups to be used in the decay heat model for neutronics analysis with simulation results for steady 

state and transient analysis are discussed. Finally, the results and conclusions of the work are 

summarized in Chapter 8, and potential topics for future research are mentioned.  
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Chapter 2. Theory and Methodology 
 

In a liquid fuel MSR, the fuel is dissolved into the liquid salt that is circulated throughout the 

whole primary system. Some of the delayed neutron precursors generated in the core may decay 

in a position of low importance or even out of the core, which will reduce the effective delayed 

neutron fraction of the reactor. As a result, the multiplication factor of MSR will be less than a 

reactor with conventional solid fuel when all the other conditions are the same. The movement of 

the liquid fuel and the subsequent decay of the delayed neutron precursors during the fuel motion 

need to be considered explicitly in modeling a liquid fuel MSR. This makes the existing neutronics 

tools for conventional stationary fuel reactors are not valid for the application of liquid fuel MSR 

with flowing fuel, which requires modification and development of the neutronics tools to consider 

the motion of the fuel salt in solving the delayed neutron precursor equations to account for their 

decay outside the core and their distribution in the core region for steady state and transient 

analyses, which is different from the stationary fuel. 

For flowing fuel, the time-dependent Boltzmann transport equation for the neutron flux and 

the delayed neutron precursor concentration equation in the multigroup form are given by 
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where 

r  = position vector. 

  = angular direction. 
t  = time variable. 

g = energy group index, 1, 2, ,g G= . 

gv
 

= neutron velocity. 

g   =  neutron angular scalar flux. 
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g  = neutron scalar flux. 

tg  = macroscopic total cross section. 

fg  = macroscopic fission cross section. 

sg g→
 

= macroscopic scattering cross section from group g’ to group g. 

kC  = concentration of delayed neutron precursor of family k. 

k  = delayed neutron precursor family index, 1, 2, ,k K= . 

k  
= decay constant of precursor family k. 

u   = velocity of fuel salt. 

pg  = fraction of prompt neutrons emitted into the energy group g. 

dkg  = fraction of delayed neutrons emitted into the energy group g from the 

precursor family k. 

p
 

= number of prompt neutrons per fission. 

dk
 

= number of delayed neutrons of precursor group 𝑘 per fission. 

1/ effk =  = eigenvalue of the problem. 

The term [ ( , ) ( , )]ku r t C r t  in Eq. (2.2) accounts for the drift of the fuel. In order to solve Eq. 

(2.2), it must be completed with a boundary condition along with the initial condition. Also, the 

eigenvalue is introduced in the above equations to make the time derivatives identically zero at the 

initial steady state condition in case the system is off critical.  

In order to model and simulate MSRs with flowing fuel, new modeling capabilities of flowing 

will be implemented into the PROTEUS-NODAL code [45, 46] which is a 3D variational neutron 

transport code based on a homogeneous assembly model of conventional solid fuel for various 

nuclear reactor applications that is being developed at ANL and it is applicable for stationary fuel 

only. The code has two solution options: the P1 solver based on the DIF3D-VARIANT 

methodology [55] and the simplified P3 (SP3) solver based on the triangle-based polynomial 

expansion nodal (TPEN) method for the radial direction and the one-dimensional nodal expansion 

method (NEM) for the axial direction [45, 56]. The P1 solver is applicable to Cartesian, triangular, 

and hexagonal geometry problems, while the SP3 solver is applicable to hexagonal geometry 

problems only. Recently, a new P1 solver for R-Z and R-θ-Z geometries has been developed based 

on the variational nodal method to apply the P1 solver to cylindrical geometry problems. In this 

study, the steady state solvers of the PROTEUS-NODAL code have been extended to model MSRs 

with flowing fuels by considering the delayed neutron precursors drift [47, 48]. Transient analysis 

capabilities for stationary and liquid fuels have been developed, which solve transient fixed source 
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problems (TFSPs) in all available reactor geometries of PROTEUS-NODAL. A Coarse Mesh 

Finite Difference Acceleration (CMFD) scheme has been implemented for steady state and 

transient solvers to enhance the calculation speed and reduce the computational time. In addition, 

a thermal hydraulics solver is implemented in the PROTEUS-NODAL code based on a parallel 

one-dimensional (1D) multi-channel model for the core and simple lumped parameter models for 

the components outside of the core region [49, 53]. 

In this chapter, the methodology of the PROTEUS-NODAL code for steady state analysis is 

first discussed. This is followed by a discussion on the steady state solution of precursor 

concentration equation for flowing fuel and its solution scheme for forward and adjoint analyses 

with the kinetics parameters evaluation method. Then the method to solve the TFSP for stationary 

fuel is discussed. This is followed by the discussion on the modified precursor concentration 

equation for flowing fuel and its solution scheme. The CMFD acceleration method for transient 

analyses, the thermal feedback models, including thermal hydraulics, primary loop, cross sections 

functionalization, and the coupling scheme of the neutronics and thermal hydraulics calculations 

are described in the subsequent subsections.  

2.1. PROTEUS-NODAL Methodologies 

In the PROTEUS-NODAL code, two solution methodologies are implemented: PN and 

simplified PN (SPN) approaches and both methods are applicable for stationary fuel only. The PN 

approach is identical to the methodology used in DIF3D-VARIANT [55, 57, 58] utilizing P1 

approximation and variational nodal methods. The P1 approximation can be derived from Eq. (2.1) 

since it is applicable for both stationary and flowing fuels, while Eq. (2.2) is applicable for flowing 

fuel and can be applied for stationary fuel if the precursors drift term is set to zero as discussed in 

the following derivation. Then, Eq. (2.1) can be transformed into an even parity form by splitting 

up the angular flux into even and odd parity components as 
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where the superscript + denotes even parity and – denotes odd parity. Introducing Eq. (2.5) into 
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Eq. (2.1) and evaluating it at +  and −  with the isotropic scattering assumption, a system of 

coupled time-dependent even- and odd-parity equations can be written as 

 ( , , )
1

( , ) ( , )( , , ) ( , , )g g tg g gr t r tt r r t t
v t

rq  + + +−
+ +   =


 , (2.6) 

 
1

( , , ) ( , , ) ( , ) ( , , ) 0g g tg gr t r t r t r t
v t

  − + −
 +  +  =


, (2.7) 

 
1 1

1

( , )1
( , ) ( , ) ( , ) ( , ) ( , )

4 4

1
( , ) ( , )

4

G G
pg

g sg g g p fg g

g g

K

dkg k k

k

t
q t t t t t

r
r

t C

r

r t

r r r

r


   

 

 


+

= =

   

 

=

=  + 

+

 



. (2.8) 

In order to simplify the solution scheme of the neutron flux equations, the time derivative of 

odd-parity flux is neglected, and the odd-parity flux component can be written in terms of the even-

parity flux component as  
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The basis of this approximation is derived from the approach used to solve the transient 

diffusion equation in which Fick’s Law is assumed to be valid under a transient condition with 

small perturbations and neglecting the time derivative of the current. This is a valid approximation 

since the current formulation focuses mainly on perturbations due to material temperature changes 

specifically the cross sections and density, or due to velocity perturbations. By substituting Eq. 

(2.9) into Eq. (2.6), a second-order equation for the time-dependent even-parity flux can be 

obtained as 

 
1 1

( , , ) ( , , ) ( , ) ( , , ) ( , )
( , )

g g tg g g

tg

r t r t r t r t q r t
v t r t

  + + + +
  −

 +   +  = 
   

, (2.10) 

This differential equation is accompanied with boundary conditions that constrain the angular 

flux along the boundary of the problem domain. The scalar flux can be written in terms of the 

even-parity flux and the net current in terms of the odd-parity flux as 

 
4

, ( , ,( ))g gr t r t d


  + =  , (2.11) 

 
4 4

1
, ( , , ) ( , , )

( ,
( )

)
g g g

tg

j dr t r t d r t
r t

 

 − +−
     


= =  . (2.12) 
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Integrating Eq. (2.10) over the angle and using the diffusion approximation, then the 

multigroup time-dependent diffusion equation derived from the even parity transport equation can 

be written as 

 
1

( , ) ( , ) ( , ) ( , ) ( , ) ( , )g g g tg g g

g

r t D r t r t r t r t q r t
v t

  


−  + =


, (2.13) 

where 

 
1 1 1

( , ) ( , ) ( , ) ( , ) ( , )( , ) ( , ) ( , )g

G K

pg p fg g dg kg k k

g k

G

g s g

g

q r t r t r t r r r r rt t t t C t     
=

  

 =



=

=  ++    . (2.14) 

The time-dependent delayed neutron precursor equation for stationary fuel can be obtained 

from Eq. (2.2) by setting the fuel velocity term to zero as  

 ( , ) ( , ) ( , ), 1,2, ,k k k kC r t C r t r t k K
t

 


+ = =


, (2.15) 

where k  the delayed neutron precursor generation rate of the delayed neutron precursor group k 

is given by  

 ' '

1

( , ) ( , ) ( , )
G

k dk fg g

g

r t r t r t  
=

=  . (2.16) 

In the steady state analysis of stationary fuel, both time derivatives in Eq. (2.13) and Eq. (2.15) 

are set to zero. Then, Eq. (2.15) is reduced to 

 ' '

1

( ) ( ) ( )
G

k k dk fg g

g

C r r r  
=

=  . (2.17) 

Since the delayed neutron precursors for stationary fuel decay at the same position as they are 

produced from fission, the prompt and delayed neutrons sources can be considered as a single 

source representing the total neutrons produced from fission. Thus, the fraction of the total fission 

neutrons g  emitted in group g  can defined in terms of the fractions of the prompt pg  and 

delayed dkg  neutrons emitted in group g  as 

 1 1 1

1

( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( )

G K G

pg p fg g dkg dk fg g

g k g

g G

fg g

g

r r r r r r

r

r r

     



 

   

 = = =

 

=

 + 

=



  


, (2.18) 

The steady state or time-independent multigroup diffusion equation for stationary fuel can be 

derived by setting the time derivatives in Eq. (2.13) to zero and using Eq. (2.17) for the delayed 
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neutron precursor source and the definition of the fraction of the total fission neutrons in Eq. (2.18) 

as 

 
1 1

( ) ( ) ( ) ( ( ) ( ) ( ) ( ) ( ))
G G

sg g g g fg g

g g

g g tg gD r r r r r r r r r   
= =

   

 

− =   +  +   . (2.19) 

2.1.1. Variational Nodal P1 Solver 

For the P1 approximation, the variational functional for an internal node v  can be written as 

 

( ) 

( )

2

,

,

1

[ , ] ( ) ( ) ( ) ( ) ( ) 2 ( ) ( )

ˆ2 ( ) ( , )

v g g g g r g g g g
v

N

g g

gF dV D r r r r r r S r

d d n r r 




    

 


−

=

=   + −

+    



 
, (2.20) 

where g  is the energy group index,   is the node surface index, N  is the number of surfaces, 

( )g r  is the zeroth moment of the even parity flux (i.e., the scalar flux), , ( )g r ,   is the first 

moment of the odd parity flux on surface  , and ( )gS r  is the isotropic source. The functional in 

Eq. (2.20) is defined for each node such that it is dependent only upon each node’s even parity 

zeroth moment flux g  and its odd parity boundary or interface flux g
−
. The change from g −

 to 

g
−
 was made to indicate that the odd parity flux along each node interface is unknown and that 

only the odd parity flux along the boundary of the problem domain is known via the boundary 

conditions [55, 57, 58]. Carrying out the angular integration in Eq. (2.20) yields 

 

( ) 
2

,

,

1

[ , ] ( ) ( ) ( ) ( ) ( ) 2 ( ) ( )

2 ( ) ( )

v g g g g g r g g g g
v

N

g g

F dV D r r r r r r S r

d r j r


 

     




=

=   + −

+ 




, (2.21) 

where , ( )gj r  is the net surface current normal to surface  . By determining orthogonal basis 

functions ( )if r  for each node and , ( )jh r  for each surface  , the scalar flux and the surface 

current can be expanded in terms of these basis functions as  

 ,

1

( ) ( )
VN

g i g i

i

r f r 
=

= , (2.22) 

 , , , ,

1

( ) ( )
sN

g j g j

j

j r h r  
=

= . (2.23) 
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The source term can also be expanded in terms of ( )if r  as 

 
,( ) ( )g i g i

i

S r f r s= . (2.24) 

The expansion coefficients can be written in a vector form as gξ , ,gχ , and gs , respectively. The 

first elements of gξ  and ,gχ  respectively represent the node-averaged scalar flux and the surface-

averaged current as 

 ,1 1

1 1
( ) ( ) ( )g g g g

v v
v v

dV r f r dV r
V V

   = = =  , (2.25) 

 , ,1 , 1 , ,

1 1
( ) ( ) ( )g g g gd j r h r d j r j   

 
 

 =  =  =
   , (2.26) 

where vV  is the volume of node v  and   is the area of surface  . Assuming constant cross 

sections in each node and using the expansions in Eq. (2.22) and Eq. (2.23), Eq. (2.21) can be 

rewritten with the summation convention rule as 

 
, , , , ,

, , , , , , ,

[ , ] ( ) ( ) ( ) ( )

2 ( ) ( ) 2 ( ) ( )

v g g g i g i j g j r g i g i j g j
v v

i g i j g j g j i g i j g j
v

F D dV f r f r dVf r f r

dVf r f r s d f r h r

 

 




     

   

=   +

− + 

 

 
, (2.27) 

where   sums over x, y, and z for Cartesian, hexagonal, and triangular geometries and over r, θ, 

and z for cylindrical geometries. By requiring the reduced functional in Eq. (2.27) be stationary 

with respect to the variation of scalar flux, gξ  can be obtained in terms of ,gχ , and gs . Projection 

of the node flux on a surface   yields the surface flux expansion coefficient vector ,gφ  in terms 

of gξ . To obtain a response matrix in conventional form, the node surface flux and total current 

on surface   can be obtained using the diffusion approximation as  

 , , ,2( )g g g  

+ −= +φ χ χ , (2.28) 

 , , ,g g g  

+ −= −χ χ χ , (2.29) 

where , , ,( 2 ) / 4g g g  

+ = +χ φ χ  and , , ,( 2 ) / 4g g g  

− = −χ φ χ  are the outgoing and incoming partial 

current moment vectors of surface  , respectively. By further defining the partial current vectors 

1, ,col[ , , ]g g N g

  =j χ χ  for each node, where “col” denotes a column vector, and by requiring the 
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surface current to be continuous across each interface, a system of equations for gξ and g


j  are 

obtained as 

 ( )g g g g g gξ H s C j j
+ −= − − , (2.30) 

 g g g g g

+ −= +j R j B s , (2.31) 

where gH , gC  , gB , and gR  are the response matrices. Eq. (2.30) and Eq. (2.31) are solved 

iteratively with the power iteration method. At each power iteration, the total fission neutron 

source is calculated using the scalar flux solution from the previous power iteration. Then, the 

response matrix equations for partial current vectors in Eq. (2.31) are solved iteratively. Once the 

partial current vectors are determined, the scalar flux vectors are updated using Eq. (2.30). This 

iteration continues until the solution converged within the specified error criteria.  

The basis functions for the within-node and surface flux distributions are obtained by 

orthogonalizing a set of monomials of local coordinate variables of which order is less than or 

equal to a user-specified value. The orthogonalization is performed using the Gram-Schmidt 

procedure. The resulting orthogonal basis functions ( )if r  for a node and , ( )jh r  for a surface   

can be written as 

 ( ) pqw p q w

i ip q w
f r C r z=   , (2.32a) 

 , ,( ) pq p q

j jp q
h r C   =  , (2.32b) 

where   and   are the local coordinate variables on surface  . In Cartesian, hexagonal, and 

triangular geometries, the coefficients in Eq. (2.32) are the same for all the nodes because they 

have translational symmetry. In cylindrical geometries, however, there is no translational 

symmetry in the radial direction, and thus the nodal basis functions and the surface basis functions 

are uniquely generated for each radial node [53]. 

2.1.2. Extension to Flowing Fuel 

For steady state analysis of stationary fuel, the neutron diffusion equation and the delayed 

neutron precursor equation were reduced into one equation with total fission neutron source 

utilizing the definition of the fraction of the total fission neutrons in Eq. (2.18), as shown in the 

previous section. However, the solution procedure is not valid for MSRs with flowing fuels. 

Instead, the delayed neutron precursor equations need to be solved explicitly to account for the 
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drift of the fuel salt in the core and the decay of the delayed neutron precursors in a different 

location than they were produced. By setting the time derivatives in Eq. (2.13) and Eq. (2.2) to 

zero and including a convection term to represent the drift of delayed neutron precursors for a 

given velocity field, the steady state neutron diffusion equation for flowing fuel can be written as 

 
1

1 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ), 1, 2, , ,

G

g g tg g sg g g

g

G K

pg p fg g dkg k k

g k

D r r r r r r

r r r r C r g G

  

    

 

=

 

= =

−  + = 

+  + =



 
 (2.33) 

 ' '

1

[ ( ) ( )] ( ) ( ) ( ), 1,2, ,
G

k k k dk fg g

g

u r C r C r r r k K   
=

 + =  = , (2.34) 

where the term [ ( ) ( )]ku r C r  accounts for the drift of the delayed neutron precursors, and ( )u r  

is the fuel salt velocity at position . In order to solve Eq. (2.34) simultaneously with Eq. (2.33), 

it should be accompanied with a boundary condition to preserve the total amount of the delayed 

neutron precursors and to account for the decay outside the core region. The inlet precursor 

concentrations are calculated by assuming that precursors leaving the core are uniformly mixed 

and flow back to the core region except for those that decay outside the core region. Thus, the 

boundary condition at the core inlet is evaluated as 

 

( , ) ( , )
( ,0)

( ,0)

k

out

in

k
A

k

A

dAu r H C r H e
C r

dAu r

 −

=



. (2.35) 

where the position vector r  is separated into the radial r  and axial z  variables, H  is the core 

height, inA  is the core inlet flow area, outA  is the core outlet flow area, and   is the time spent 

outside of the core by the precursors. For an axial velocity field, Eq. (2.34) can be solved 

analytically or numerically within each node. However, considering a general velocity field, Eq. 

(2.34) cannot be solved analytically, instead, it can be solved numerically using the upwind finite 

difference method (FDM) for spatial discretization as 

 
, , , 1, , 1, , , , , 1 , , 1

, ,

r ij k ij r i j k i j z ij k ij z i j k i j

k k ij k ij

i j

u C u C u C u C
C

r z
 

− − − −− −
+ + =

 
,  (2.36) 

 , , ,

1

G

k ij dk fg ij g ij

g

   

=

=  , (2.37) 

where ru  and zu , are the radial and axial components of the fuel salt velocity, respectively.  

1j j jz z z − = −  and 1i i ir r r− = −  are the axial and radial widths of node ij , respectively. i  and j , 

r
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are the radial and axial indexes of node ij , respectively.  At each power iteration, Eq. (2.36) is 

solved iteratively with the Gauss-Seidel method considering the axial and radial velocity fields. 

The main advantage of this scheme is it accounts for the radial flow between nodes by considering 

the radial and axial component of the velocity field. In this upwind FDM approach, the average 

delayed neutron precursor concentrations in a node are assumed to be equal to the outgoing delayed 

neutron precursor concentrations for that node. Considering an axial velocity field 

( ) ( ), zu r u r z e= , Eq. (2.34) is reduced to 

 [ ( , ) ( , )] [ ( , ) ( , )] ( , ), 1,2, ,
( , )

k
k k ku r z C r z u r z C r z r z k K

z u r z





+ = =


, (2.38) 

 
1

( , ) ( , ) ( , )
G

k dk fg g

g

r z r z r z   

=

=  . (2.39) 

In this form, Eq. (2.38) can be solved analytically for ( , )kC r z  in terms of the inlet precursor 

concentration and considering the intranodal flux distribution as 

 0 0

0

( , ) ( , )

0 0( , ) ( , ) ( , ) ( , ) ( , )

z z

k k
z z

dz dz
z

u r z u r z

k k k
z

u r z C r z u r z C r z e dz r z e
 

 

 
−

  
 = +  , (2.40) 

Therefore, the outgoing and average delayed neutron precursor concentrations of the thj  axial 

node can be obtained as 

 
1

( )/, 1

, , , 1 ( , )
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    , (2.42) 

where 

 
1 ( , )

i

j

zj

ij
z

ij

z dz
t

u u r z−


 = =  . (2.43) 

Also, Eq. (2.38) can be solved with FDM approach as  

 ( ), 1 , 1 ,

1
k ij ij j k ij k ij

ij j k

C u z C
u z




− −=  +
 +

. (2.44) 

The delayed neutron precursor distributions can be calculated for a given fission source 

distribution using Eq. (2.36) for a general velocity field or using Eq. (2.42) or Eq. (2.44) for an 

axial velocity field along with the boundary condition Eq. (2.35). Thus, the delayed neutron source 

is calculated, and the total fission neutron source can be obtained as a summation of prompt and 
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delayed fission neutron sources as 

 , , , , ,

1 1

G K

g ij pg ij p fg ij g ij dkg k k ij

g k

S C     

= =

=  +  . (2.45) 

At each power iteration, delayed neutron precursor concentrations are determined using the 

scalar flux solution from the previous iteration. Thus, the total fission neutron source is calculated 

from prompt and delayed fission neutron sources as in Eq. (2.45). Then, the response matrix 

equations for partial current vectors in Eq. (2.31) are solved iteratively using the updated fission 

source. The last step is to calculate the scalar flux vectors using Eq. (2.30) with updated partial 

current vectors and the updated fission source. This iteration scheme continues until the solution 

converged within the specified error criteria.  

2.1.3. Adjoint Flux Solution for Flowing Fuel 

In order to calculate kinetics parameters and delayed neutron losses of MSRs with flowing fuel 

accurately, a steady state adjoint flux calculation capability is added to PROTEUS-NODAL. As 

discussed in the previous section, the distribution of the delayed neutron precursor concentrations 

is very important in calculating the total neutron fission source of flowing fuel. The shifted delayed 

neutron precursor distribution and their decay outside the reactor core will result in significant 

losses of the delayed neutrons and as a result a smaller effective delayed neutron fraction. 

However, the definitions of the kinetic parameters for flowing fuel are defined by including the 

delayed neutron source from the decay of the precursors explicitly and using the adjoint solution 

will be used as an importance weighting function. 

For flowing fuel, the adjoint system of equations to the coupled steady state neutron diffusion 

equation and the delayed neutron precursor concentration equation as in Eq. (2.33) and Eq. (2.34) 

can be obtained as [59]  
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 (2.46) 

 
* * *[ ( ) ( )] ( ) ( ), 1,2, , ,k k k ku r C r C r r k K − + = =  (2.47) 

where 
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=
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The negative sign in the adjoint precursor convection term 
*[ ( ) ( )]ku r C r   in Eq. (2.47) is to make 

the bilinear concomitant term zero. Thus, an initial value problem becomes a final value problem, 

and Eq. (2.47) needs to be solved in the opposite direction (from the outlet to the inlet) with a 

boundary condition at the core outlet that can be represented as 
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( ,0) ( ,0)
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out
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k
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C r H
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 −

=



,  (2.49) 

where the position vector r  is separated into the radial and axial variables. Similar to the forward 

delayed precursor concentration equation in Eq. (2.34), the adjoint delayed precursor concentration 

equation in Eq. (2.47) can be solved numerically with the FDM approach for general or axial 

velocity fields or analytical for an axial velocity field. Considering a general velocity field with 

the FDM approach, Eq. (2.47) can be solved as 
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,  (2.50) 

 For an axial velocity field, the adjoint precursor concentration equation can be solved 

analytically in terms of the adjoint precursor concentration at the outlet as 
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or with FDM approach as 
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. (2.52) 

The solution procedure applied to determine the forward solution of the neutron scalar flux and 

the delayed neutron precursor concentration can be used to obtain the adjoint solution as discussed 

in the previous section. 

2.1.4. Evaluation of Kinetics Parameters 

Using the forward and adjoint flux solutions, the effective delayed neutron fraction and the 

prompt neutron generation time for circulating fuel can be calculated as [59, 60] 
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where the subscript i  denotes spatial nodes, and iV  is the volume of node i . The derivation of the 

kinetics parameters and point kinetics equations of flowing fuel is provided in Appendix B. In the 

denominator of Eq (2.53) and Eq. (2.54), the first term represents the total importance of prompt 

neutrons, and the second term represents the total importance of delayed neutrons. In MSRs, the 

delayed neutron production by precursor decay and the precursor production from fission should 

be differentiated since delayed neutron precursors move to other positions before they decay. 

For a stationary fuel, delayed neutron precursors decay at the same position where they are 

produced, and thus the number of delayed neutrons produced at a position is equal to the number 

of precursors produced by fission. Therefore, the total number of neutrons can be determined from 

the quasi-stationary total fission neutrons. As a result, the effective delayed neutron fraction and 

the prompt neutron generation time can be determined as 
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, (2.55) 
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. (2.56) 

The difference between the effective delayed neutron fraction values in Eq. (2.55) and Eq. 

(2.53) represents the reactivity loss due to the fuel drift as loss eff circ  = − . 

2.2. Transient Fixed Source Problem 

In this section, the formulation of the transient fixed source problem (TFSP) for stationary and 

flowing fuels is discussed, and the solution procedure with verification tests are provided for each 

case. 

2.2.1. Stationary Fuel  

For stationary fuel, the time-dependent multigroup neutron diffusion equation and the delayed 

neutron precursor concentration equations are defined in Eq. (2.13) and Eq. (2.15), respectively. 

Using the implicit Euler method, Eq. (2.13) can be temporarily discretized as 
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where 1n n nt t t − = −  is the time-step size of the thn  time point. By moving the time derivative term 

to the right-hand side, Eq. (2.57) can be written as a TFSP for given delayed neutron precursor 

concentrations as 
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The time dependency of the delayed neutron precursor concentration equations can be treated 

as an explicit unknown to be solved simultaneously with the flux equation. Applying temporal 

discretization to the delayed neutron precursor concentration will results into a linear system with 

an additional six unknowns in each node. Instead, the delayed neutron precursor concentration 

equations are typically solved by applying the second-order analytic integration method. Based on 

this approach, the delayed fission source distribution is assumed to have a quadratic shape on time 

using the delayed fission sources at the current and the two previous time points. Then, Eq. (2.15) 

can be integrated analytically as [39] 
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with 1 /n n nr t t−=   , the three parameters in Eq. (2.60) are given by  
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At each time point n , once the group source ( )n

g rq  in Eq. (2.59) is calculated, the solution 

for the group flux in Eq. (2.58) is obtained by solving the response matrix equations in Eq. (2.30) 

and Eq. (2.31) using the P1 steady state solver. Since the within-group flux is included in the group 

source in Eq. (2.58), a few inner iterations are required between Eq. (2.30) and Eq. (2.31).  
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The developed P1 transient solver in PROTEUS-NODAL for stationary fuel is first verified 

using the modified TWIGL benchmark problem with hexagonal geometry [46]. The Doppler 

feedback effects were taken into account using the provided sets of cross sections without invoking 

the thermal hydraulics calculations. Figure 2.1 compares the calculation results of the P1 solution 

with reference solution obtained from existing SP3 solver of PROTEUS-NODAL. The P1 solution 

agrees very well with the reference solution within 1% error which is related to the transport effect. 

As the diffusion approximation overestimates leakage in general, the P1 transient solver yields a 

1% smaller peak power than the SP3 solver.  

 

Figure 2.1. Power change with time for the modified TWIGL benchmark problem. 

Another transient test was performed for a fast spectrum problem with +100 pcm step reactivity 

insertion without thermal feedback. Figure 2.2 shows the power changes during 1.0 s for the 

positive reactivity insertion. The P1 transient solution agrees well with the reference transient result 

with about 1% difference is observed during the prompt jump period and the error remains within 

1.5% for the same reasoning as in the TWIGL benchmark. 
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Figure 2.2. Power comparison after the positive step reactivity insertion. 

2.2.2. Flowing Fuel  

For flowing fuel, the drift of delayed neutron precursors is included in the precursor balance 

equation in Eq. (2.2) as a convection term as 

 ( , ) [ ( , ) ( , )] ( , ) ( , )k k k k kC r t u r t C r t C r t r t
t

 


+ + =


, (2.62) 

where the delayed neutron source ( , )k r t  is provided in Eq. (2.16). The delayed neutron precursor 

concentrations equations are discretized using the backward Euler scheme for temporal 

discretization and the upwind FDM for spatial discretization as 
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For each time step, Eq. (2.63) is solved iteratively with the Gauss-Seidel method considering 

the axial and radial velocity fields. This scheme provides an unconditionally stable solution with 

no restrictions on the time step size, and it preserves the initial delayed neutron precursor 

concentrations since the equation is solved in the same way for both steady state and transient 

analyses. The inlet precursor concentrations are calculated by assuming that precursors leaving the 

core are uniformly mixed and flow back to the core except for those that decay outside the core. 

Thus, the boundary condition at the core inlet is evaluated as 
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The precursor concentration at the core outlet is assumed to be equal to the average precursor 

concentration of the last node in the core (upwind scheme) or it can be evaluated using the linear 

extrapolation of the last two nodes in the core. For a fast spectrum MSR with flowing fuel, it would 

be important to consider the radial velocity field as in Eq. (2.63) for transients in which the fuel 

velocity is decreasing as in the loss of flow accident scenario. However, in moderated MSRs, the 

fuel is flowing axially in channels, so Eq. (2.62) can be rewritten considering an axial velocity 

field ( ) ( ), zu r u r z e=  as  

 ( , , ) [ ( , , ) ( , , )] ( , , ) ( , , )k k k k kC r z t u r z t C r z t C r z t r z t
t z

 
 

+ + =
 

, (2.65) 

In order to solve Eq. (2.62), three different ways are investigated. The first approach is the 

FDM in which the delayed neutron precursor equation is discretized in both time and space in a 

similar way as in Eq. (2.63). The second approach is the analytical scheme which solves the partial 

differential equation (PDE) using the method of characteristics (MOC). The third approach is the 

semi-analytical scheme or the so-called method of lines (MoL). The basis of this method relies on 

converting the partial differential equation into an ordinary differential equation (ODE) and 

solving it using a proper ODE solver. Test results showed that only the FDM produces very stable 

and correct results of the null transient. The MOC and MoL solutions diverged from the steady 

state solution, although the power deviations were only fractions of a percent. Thus, only the FDM 

is discussed in this section. The MOC and MoL are summarized in Appendix A, along with some 

comparison of results. Applying the FDM approach with the backward Euler scheme for temporal 

discretization and the upwind finite difference scheme for spatial discretization, Eq. (2.65) 

becomes  
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Solving for ,

n

k ijC  yields 
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At each time step n, once the delayed neutron precursor concentrations are calculated using 

Eq. (2.63) for general velocity field or using Eq. (2.66) for an axial velocity field, the group source 

( )n

g rq  in Eq. (2.59) is obtained and the TFSP for flowing fuel can be formulated in similar way 
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as in stationary fuel. Then, the solution for the group flux in Eq. (2.58) is obtained by solving the 

response matrix equations in Eq. (2.30) and Eq. (2.31) using the P1 solver.  

In order to verify the transient solver of flowing fuel and the solution of the delayed neutron 

precursors concentration equations, transient tests were performed by inserting positive and 

negative reactivities through adjusting the fuel salt velocity in the core region. An increased fuel 

velocity as in pump startup transient increases the loss of delayed neutrons and thus decreases the 

reactivity. On the contrary, a decreased fuel velocity as in the pump coast down transient increases 

the reactivity due to a decreased loss of delayed neutrons. Figure 2.3 shows the power evolutions 

of the pump startup transients to different final velocities, and power evolutions of the pump coast 

down transients from different initial velocities. In the pump startup transient, the power decreases 

more rapidly with increasing the fuel salt velocity because of the increased delayed neutron losses 

with the increased fuel salt velocity. The oscillatory behavior of the power is due to the undecayed 

delayed neutron precursors decay in the core region. In the pump coast down transient, the power 

increases monotonically, and the rate of increase depends on the initial fuel salt velocity. 

   
Figure 2.3. Power evolution after the step increase (left) and step decrease (right) of the fuel 

velocity. 

Figure 2.4 shows the delayed neutron distribution in the core region for a pump startup transient 

during the first 10.0 s. The velocity was increased from zero to its final value exponentially with a 

time constant of 1.0 s and the total fuel salt transit time of 4.0 s. The power decreases initially due 

to the decay of the delayed neutron precursors outside the core region. Then the power increases 

at 3.0 s as the undecayed precursors come back and decay at the core region in oscillatory behavior.  
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t=0.0 s t=0.5 s t=1.0 s t=1.5 s 

    
t=2.0 s t=2.5 s t=3.0 s t=4.0 s 

    
t=5.0 s t=6.0 s t=7.0 s t=8.0 s 

  

 

 t=9.0 s t=10.0 s 

Figure 2.4 Delayed neutrons distribution in the core during pump-start-up transient. 

2.3. CMFD Acceleration 

The coarse mesh finite difference (CMFD) acceleration scheme has been implemented in the 

PROTEUS-NODAL code to reduce the computational time of the steady state and the transient 

analyses. The CMFD solver is implemented consistently with the steady state and transient solvers, 

and it is called at every power or outer iteration during the calculations. 
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2.3.1. Acceleration Scheme  

The CMFD acceleration method can be applied to the TFSP in a similar way as in the 

eigenvalue problem [54, 61]. In the CMFD acceleration method, the neutron flux preserving 

interfacial net currents determined from a higher-order calculation is sought for a given source 

from the previous time step. To preserve the net current, the current correction coefficients are 

obtained for all surfaces and groups as  
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where ,

n

g i uD →  is the coupling coefficient between nodes i and u of the conventional finite difference 

diffusion formulation. In the steady state analysis, the convergence rate is governed by the 

dominance ratio of the CMFD matrix. On the other hand, the convergence rate of the transient 

fixed source problem is governed by the spectral radius of the matrix, which is very close to unity 

for most of the transient cases and the solution will converge very slowly. In the implementation 

of CMFD acceleration for transient analysis, the CMFD linear system is formed by applying the 

TFSP with the scattering, the prompt fission, and the delayed neutron sources are moved to the 

left-hand side of the CMFD equation in each time step. The right-hand side of the CMFD equation 

has the fixed source terms, which consist of the previous time step contributions. Then, the 

following CMFD equations for the TFSP are constructed by moving all the terms containing 

quantities at the current time step to the left-hand side as 
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where iuA  is the area of the interface between nodes i and u, iV  is the volume of node i , and  
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For flowing fuel, the delayed neutron precursor concentration equation is solved with the FDM 

approach and not with the analytical integration method as for stationary fuel. Thus, the group 

sources can be written as 
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The entire linear system of equations for all energy groups is formed and the resulting fixed 

source problem is solved using the Krylov subspace (GMRES) method with no source iteration. 

After the execution of the CMFD acceleration, the scalar neutron flux is updated using the CMFD 

flux solution. In order to avoid any instabilities due to the CMFD acceleration, the under-relaxation 

scheme was added to the solution process of the CMFD acceleration. Then, the scalar flux of the 

nodal flux solution is updated as 

 ( ), , 1,1
nodal CMFD nod

m n m n

g al

m n

g g    −= + − , (2.73) 

where   is the relaxation parameter, and m   is the index for the outer iteration. For steady state 

calculations, the CMFD acceleration equation can be obtained directly from Eq. (2.69) by setting 

the discretized time derivatives to zero and moving the scattering and fission sources to the right-

hand side of the equation as 
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, (2.74) 

Equation (2.74) is solved is similar way as Eq. (2.69), and once the solution converged the nodal 

solution is updated accordingly. 

2.3.2. Performance Testing 

The performance of the CMFD acceleration was examined for steady state and transient 

calculations. For the steady state calculations, small and large fast spectrum problems were solved 

with and without the CMFD acceleration.  The results are summarized in Table 2.1 for the 

eigenvalue, the number of outer iterations, and the computational time. Also, Fig. 2.5 compares 

the fission source error with number of the outer iterations for small and large core problems. The 

results show that the CMFD acceleration significantly reduces the number of outer iterations for 

both problems. However, the total computational time is almost similar to that of the calculation 

without the CMFD acceleration since the mesh size of the CMFD and NODAL calculations are 

the same and the CMFD implementation requires a longer computational time than that of the 

NODAL calculations. 
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Table 2.1. Performance of CMFD for Eigenvalue Problems 

Problem Small Core Large Core 

No. Hexagonal Assemblies 19 625 

No. Energy Groups 9 33 

 w/o CMFD w/ CMFD w/o CMFD w/ CMFD 

Eigenvalue 1.000903 1.000903 1.022056 1.022056 

Total Time (s) 0.972 0.815 287.15 304.55 

Number of Outer Iterations 56 11 53 17 

 

 

Figure 2.5. Comparison of error reduction in fission source with and without CMFD for 

eigenvalue problems of small (left) and large (right) cores. 

For transient calculations, the modified TWIGL benchmark problem in hexagonal geometry 

was used to test the performance of the CMFD acceleration for transient analysis. The results of 

the test problem are presented in Fig. 2.6 by comparing the total computational time and number 

of outer iterations required for convergence at each time point. A significant reduction is achieved 

in both the number of outer iterations and the computational time, and the number of outer 

iterations is reduced by a factor of 20 to 60, and the computational time is reduced by a factor of 

40. The reason for this large computational gain for transient calculations is due to the fact that the 

entire CMFD linear system is solved only once without source iterations. 
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Figure 2.6. Comparison of the computational time (left) and the number of outer iterations (right) 

at each time step with and without CMFD for the modified TWIGL benchmark problem. 

Also, the quasi-static methods were implemented into the PROTEUS-NODAL code in a 

consistent way to the TFSP solver for stationary and flowing fuels to reduce the computational 

time without a significant loss of accuracy. The quasi-static methods could speed up the solution 

by 3 to 10 times for most of the studied cases, but it failed to reproduce the reference solution for 

transients with fuel salt velocity changes significantly as in pump startup or pump overspeed 

transients. For this reason, the quasi-static methods were not used for transient analysis in the 

following chapters. However, the derivation and the solution algorithms of the quasi-static 

methods are included in Appendix B for stationary and flowing fuels with some test results. 

2.4. Thermal Feedback Calculation 

In order to perform coupled neutronics and thermal hydraulics calculations for steady state and 

transient analyses, the reactivity feedbacks due to the fuel salt temperature and density changes, 

and due to the moderator temperature change in reactors with solid moderator need to be 

considered in updating the multigroup cross sections. To account for thermal feedback, a thermal 

hydraulics solver dedicated to MSRs has been implemented in PROTEUS-NODAL. In this solver, 

the core is represented with parallel 1D flow channels, and the components outside the core are 

represented by simple lumped parameter models. Considering the drift of the fuel salt, the decay 

heat is calculated by solving the decay heat equations similar to the delayed neutron precursor 

equations to account for the decay heat generated in the outer loop.  

The calculation scheme for thermal feedback has been developed for fast and thermal spectrum 
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reactor applications, where the multigroup cross sections are functionalized in terms of fuel salt 

and moderator temperatures. In the coupled neutronics and thermal hydraulics calculations, the 

calculated power from neutronics calculations is used to determine velocity, temperature, and 

density distributions of the core using the thermal hydraulics solver. Then the temperature and 

density distributions are used to update the cross sections in order to perform neutronics 

calculations and determine the new power distribution in the core. This section explains the 

coupled neutronics and thermal hydraulics calculation scheme to account for thermal feedback. 

The thermal hydraulics, primary loop, and decay heat models are discussed first. Then the cross 

section functionalization scheme for thermal feedback is discussed. In the end, the overall 

computational procedure of the coupled calculation for thermal feedback is presented.  

2.4.1. Thermal Hydraulics Model 

In order to account for thermal feedback effects, a single-phase, parallel-channel thermal 

hydraulics model has been implemented in PROTEUS-NODAL. In this model, the thermal 

hydraulic behaviour of the core is described by representing the core with 1D parallel channels. 

Ignoring the axial heat conduction and the shear forces due to velocity gradients in the fuel salt, 

the mass, momentum, and energy balance equations for 1D flow in a vertical channel can be 

written as [62]  
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where , , ,u h  and P  are the density, velocity, enthalpy, and pressure of the fuel salt, respectively, 

saltq  is the volumetric heat source produced in the fuel salt, and g  is the gravitational acceleration. 

A control volume approach was adopted for the spatial discretization of the flow equations. The 

spatially discretized equations provide a system of nonlinear ordinary differential equations. For 

the time discretization, a semi-implicit temporal difference scheme was employed, as in the 

RELAP-5 code [63]. This results in a system of linear equations for the time advanced pressures 

with a tri-diagonal coefficient matrix. This system of linear equations is solved by the forward 
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elimination and backward substitution algorithm. For reactors of closed flow channels, individual 

channel flows are determined to satisfy the equal pressure drop condition. For reactors with a solid 

moderator, the moderator temperature is calculated by solving the following heat conduction 

equation 

 ,

1
[ ( , , )] ( , , ) ( , , )m p m m m m mc T r z t k r T r z t q r z t

t r r r


   
= +    

, (2.78) 

where ,, ,m p m mc T  are the solid moderator density, specific heat, and temperature, respectively, 

mq  is the volumetric heat source generated in the solid moderator due to photon interactions and 

neutron scattering, and mk  is the heat conduction coefficient of the moderator. More details about 

the thermal hydraulics solver implemented in PROTEUS-NODAL can be found in Ref. [48, 50, 

64].  

2.4.2. Primary Loop Thermal Fluidic Model 

In the reactor system, the fuel salt exiting the core flows through the primary system before 

returning to the core inlet. To describe the core behavior during transients more accurately, the 

heat exchanger in the primary system is also included in the thermal hydraulics model of MSR. 

The heat exchanger has been modeled with a lumped parameter approach to simulate the heat 

removal by the intermediate loop, considering it as a single node. The fuel salt temperatures at the 

core inlet and outlet are directly coupled with the fuel salt temperatures at the heat exchanger outlet 

and inlet, respectively. The other components of the primary loop, such as primary pumps, inlet 

and outlet plenums, are not considered in this model. 

Assuming the material temperature variations in the heat exchanger during a transient are 

proportional to the steady state temperatures, the heat exchanger can be characterized by the 

average fuel salt temperature HXT , of which variation is determined by 

 ( )  HX HXHX
HX p inHX deo t cayu HX

dT
m c T T QQ

d
C

t
− += − , (2.79) 

where  

HHX X pmC c=  is the heat capacity of the heat exchanger,  

pc  is the specific heat of the fuel 

salt at the corresponding temperature, 
HXm  is the fuel salt mass flow rate, and HXm  is the mass of 

the heat exchanger. 
HX

inT  and 
HX

outT are the fuel salt temperatures at the inlet and outlet of the heat 

exchanger, respectively, 
decayQ  is the decay heat generated by the fuel salt in the heat exchanger, 
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and HXQ  is the heat removal rate by the intermediate fluid in the heat exchanger, and it can be 

written as 

 ( )HX HX IFQ UA T T= − , (2.80) 

where IFT  is the average intermediate fluid temperature, U  is the overall heat transfer coefficient 

from the fuel salt to the intermediate fluid, and A is total heat transfer area in the heat exchanger. 

Using the upwind scheme for spatial differencing with 
HX c

in outT T= , 
HX

out HXT T= , and 
c HX

in outT T= , and 

the explicit scheme for temporal differencing, the discretized equation for heat exchanger can be 

derived as 
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Equation (2.83) can be rearranged and combined with an initial condition as 
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2.4.3. Cross Section Functionalization  

For thermal feedback calculation, multigroup cross sections are functionalized in terms of fuel 

salt and moderator temperatures. Multigroup cross sections are prepared using the multigroup 

cross section generation code MC2-3 [65], or the Monte Carlo codes OpenMC [66] and Serpent 

[67]. MC2-3 code is dedicated to fast spectrum reactors and it cannot handle thermal spectrum 

reactors. Thus, it is used to generate cross sections for fast spectrum MSRs. On the other hand, the 

Monte Carlo codes are used for thermal spectrum MSRs since they can handle heterogeneous 

geometries easily, and the anisotropic scattering effect is not significant in thermal spectrum 

reactors since the higher order scattering cross section is weighted with scalar flux which can 

introduce a significant error in the eigenvalue. In PROTEUS-NODAL code the cross sections need 

to be provided in the format of the isotopic cross section dataset ISOTXS and the delayed neutron 

cross section dataset DLAYXS. The ISOTXS and DLAYXS datasets can be generated directly 

with MC2-3 code, while the utility code GenISOTXS [68] is used to convert the output tallies into 

the ISOTXS and DLAYXS datasets format when Monte Carlo codes are used to generate cross 
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sections. 

Cross sections are functionalized differently for fast and thermal spectrum MSRs. In a fast 

spectrum MSR, the reactivity feedback is due to the Doppler effects and the change of fuel density. 

In large fast reactors, the Doppler effects are approximately proportional to the inverse of the fuel 

temperature [69], and thus microscopic cross sections of an isotope i  can be represented as a linear 

function of the logarithm of temperature fT  as 

 , , 0 , 0( ) ( ) ln( / )g i f g i f g i f fT T T T  = + , (2.84) 

where 0fT  is a reference fuel temperature. After each thermal hydraulics calculation, the 

macroscopic cross sections for a fuel salt temperature fT  are updated as 
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where 0fT  is a temperature for reference fuel salt density  ,  flT  and fhT  are two fuel salt 

temperatures for which cross sections are prepared, and 
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In a thermal spectrum MSR, cross sections depend on the moderator temperature mT  as well 

as the fuel salt temperature fT . Based on the observation that the resonance integral in thermal 

reactors is approximately proportional to the square root of temperature [70], the microscopic cross 

sections of fuel isotopes are represented as a linear function of 1/2

fT . On the other hand, the 

moderator temperature dependency is represented as a linear function of mT . After each thermal 

hydraulics calculation, the macroscopic cross sections are updated as 
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where 

 
1/2 1/2 1/2 1/2( ) / ( ), 1 ,fl fh f fh fl fh flT T T T  = − − = −  (2.88a) 

 ( ) ( ) , 1 .ml mh m mh ml mh mlT T T T  = − − = −  (2.88b) 



 39 

2.4.4. Coupled Neutronics and Thermal Hydraulics Calculation 

The overall computational scheme of coupled neutronics and thermal hydraulics calculations 

for steady state and transient analyses is illustrated in Fig. 2.7. In the steady state calculations, the 

neutronics and thermal hydraulics equations are tightly coupled and solved iteratively until the 

power and temperature solutions converge. The initial power distribution in the core is determined 

with uniform temperature and velocity fields. At the end of each power iteration of the nodal 

calculation of PROTEUS-NODAL, thermal hydraulics calculations are performed to determine 

the fuel salt temperature, density, and velocity fields and the moderator temperature profile, if 

exists, using the updated power distribution. Then, the cross sections are updated using the 

calculated fuel salt and moderator temperature and density distributions. Using the updated cross 

sections and the salt velocity field, the nodal calculation is performed again. This process continues 

until the power and temperature distributions converge. 

 

Figure 2.7. Overall computational flow of coupled neutronics and thermal hydraulics 

calculations. 

In the transient calculations, the neutronics and thermal hydraulics calculations are performed 

once for each time step. At the beginning of a time step, the temperature and density distributions 
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at the previous time step are used to update cross sections. Using the updated cross sections and 

the velocity field, neutronics calculations are performed to calculate the power distribution. Using 

the updated power distribution, the thermal hydraulics calculations are performed to determine the 

new fuel salt temperature, density, and velocity fields, and the moderator temperature profile. 

Then, these updated temperature, density, and velocity distributions are used for the feedback 

calculations in the next time step until the end of the time steps is reached. 

2.5. Summary  

This chapter provided the mathematical foundation for steady state and transient analysis 

capabilities implemented in PROTEUS-NODAL code for MSRs applications with flowing fuel. 

New steady state and transient solvers were implemented into the PROTEUS-NODAL code to 

handle MSRs with liquid fuel. Several features were added to simulate flowing fuel including 

adjoint solution capability, kinetics parameters calculations, CMFD acceleration scheme, thermal 

hydraulics solver, heat exchanger model, and thermal feedback model to update cross sections and 

perform coupled calculations of the neutronics and thermal hydraulics calculations. The main 

focus was on solving the delayed neutron precursor equation with precursor drift term and 

incorporating its solution in the steady state and transient calculations.  

The solution of the time-dependent neutron diffusion equation was provided for stationary and 

flowing fuels using the TFSP formulation. Several methods were investigated for solving the 

delayed neutron precursor equations and the FDM was selected as it provides a very stable 

solution, and it can be extended to consider a general velocity field easily. Simple verification tests 

were performed for the developed neutronics steady state and transient solvers without thermal 

feedback to test the robustness of the solvers for various cases. The effect of changing the fuel salt 

velocity and accompanied delayed neutron losses on the reactor power was tested for different 

velocities and different decay times. Further verification tests are performed in the following 

chapter with widely used benchmarks to verify implemented steady state and transient analysis 

capabilities using fast and thermal spectrum MSRs. Also, validation tests are provided in Chapter 

4 using the available experimental results of the MSRE experiments. 
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Chapter 3. Verification Test Results 
 

The most important part of newly developed capabilities into software is to verify the 

implemented capabilities using existing benchmark problems or other code solutions and 

performing validation tests with available experimental data or analytical solutions if possible. 

This consists of several tasks starting with collecting data of the problem, developing 

computational models, and perform verification tests. To verify the newly implemented 

capabilities in the PROTEUS-NODAL code for MSRs with flowing fuel, two benchmark problems 

were analyzed considering fast and thermal spectrum reactors. The first benchmark is the MSFR, 

which is a fast spectrum reactor where the fuel flows in a tank or one large flow channel since 

there is no solid moderator. The second benchmark is the MOST exercise, which was developed 

based on the MSRE experiment with several design simplifications in order to develop a 

benchmark for the verification of neutronics codes for flowing fuel without involving the design 

complications of the MSRE. The MSRE is a thermal spectrum reactor where the fuel salt is flowing 

into solid moderator channels of graphite. While Chapter 4 presents validation results of the 

PROTEUS-NODAL code for the MSRE experiment. 

This section discusses the verification results of the steady state and transient solvers of 

PROTEUS-NODAL. The first part of this section discusses verification results of the MSFR 

benchmark problem, and the other part discusses the MOST benchmark exercise verification 

results. In each part, the problem specifications, the computational models, multigroup cross 

section generation, and the steady state and transient solutions in comparison with the other code 

solutions found in the open literature are presented. 

3.1. MSFR Benchmark  

In the Generation IV International Forum [11], liquid-fueled MSR research and development 

(R&D) has focused on fast-spectrum MSR options for fissile breeding and transuranic (TRU) 

isotope burning like the 1400 MWe MSFR. The MSFR design has a thermal power of 3000 MWth 

and utilizes a fast neutron spectrum based on the thorium fuel cycle.  
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3.1.1. Specifications of MSFR Benchmark  

The MSFR design utilizes a binary fluoride salt composed of LiF (77.5 molar %) and a heavy 

nuclei mixture (22.5 molar %) initially composed of fertile thorium and fissile material. The fuel 

salt is circulated in the core region and in the external loop, which consists of 16 branches each 

with the heat exchanger, pump, and associated instruments and pipes. The MSFR is operated 

between 650 °C and 750 °C with a circulation time of 4.0 s, which can be controlled based on the 

power level and the temperature rise in the core. The fuel salt temperature rise across the core 

region during normal operating conditions is fixed at 100 °C. Table 3.1 provides the main 

characteristics of the MSFR core and the thermo-physical properties for the fuel salt obtained from 

Ref. [12, 13].  

Table 3.1. Characteristics of Molten Salt Fast Reactor. 

Thermal/Electric Power 3,000 MWth/1,400 MWe 

Fuel Composition LiF-ThF4-
233UF4, LiF-ThF4-(TRU)F3 

Fuel Inlet/Outlet Temperature 650 ºC/750 ºC 

Core Height/Core Diameter 2.255 m/2.255 m 

Fuel Salt Volume 18 m3 

Total Fuel Salt Transit Time 4.0 s 

Flow Rate 4.5 m3/s 

Density [kg/m3] 4094 0.882 ( [K] 1008)T = −  −  

Kinematic Viscosity [m2/s] 8 3689/ [K]5.54 10 Te −=   

Dynamic Viscosity [Pa∙s] 
4 4 3689/ [K]2.268 4.886 10 ( [K] 1008) 10 TT e − − = −  −    

Thermal Conductivity [W/m∙K] 
50.928 8.397 10 [K]k T−= +   

Specific Heat [J/kg∙K] 1111 2.78 [K]pc T= − +  

As shown in Fig. 3.1, the active core has a cylindrical shape with the same height and diameter 

of 2.255 m to improve the breeding ratio and reduce neutron leakage. The total fuel salt volume is 

18 m3, half of which is in the active core. The radial reflector includes a fertile blanket of 50 cm 

thick to increase the breeding ratio and shield the external components, and it is filled with a fertile 

salt of LiF-ThF4. The walls of the blanket are surrounded by a 20 cm thick layer of B4C to enhance 

the shielding of the external components. The external core structures and the heat exchangers are 

protected by thick reflectors made of nickel-based alloys for corrosion resistance. Specifications 

of the MSFR benchmark are provided in Appendix C. 
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Figure 3.1. Vertical view of the MSFR core. 

3.1.2. Computational Models 

To perform steady state and transient analyses of the MSFR with PROTEUS-NODAL, 

multigroup cross sections need to be prepared using Monte Carlo codes or MC2-3 code and 

provided as input. Multigroup cross sections for MSFR were prepared as a function of the fuel salt 

temperature using the MC2-3 code with the ENDF/B-VII.0 data [71]. The fuel temperature 

considered for the feedback calculations ranges from 800 K to 1200 K. Microscopic cross sections 

for specified compositions were generated in 9 and 33 energy group structures and written in 

ISOTXS and DLAYXS datasets. The 33-group cross section set was used in steady state 

calculations. On the other hand, for transient calculations, the 9-group cross section set was used 

to reduce the computational time without a significant loss of solution accuracy. The energy group 

structures are provided in Table 3.2 and Table 3.3 for the 9-group and 33-group structures, 

respectively. 

Table 3.2. Upper Energy Boundaries of 9-Group Structure.  

Group Energy (eV) Group Energy (eV) Group Energy (eV) Group Energy (eV) 

1 1.419E+07 4 1.832E+05 6 9.119E+03 8 4.540E+02 

2 2.231E+06 5 4.087E+04 7 2.035E+03 9 5.044E+00 

3 8.209E+05       

The MSFR model in PROTEUS-NODAL was developed in R-Z geometry as shown in Fig. 3.2 

for radial and axial views. In the core region, the radial node size of ~15 cm and axial node size of 
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11.25 cm were used. The PROTEUS-NODAL model for MSFR was tested by comparing the 

solution against the R-Z geometry with the FDM solution of the DIF3D code [72] for stationary 

fuel using the same 33-group cross sections set generated for 233U fuel salt composition. The 

reference solution was obtained by DIF3D FDM solutions of 1 cm mesh size. The eigenvalue and 

power distribution of PROTEUS-NODAL agreed very well with the reference solution with an 

eigenvalue error of 1 pcm and the relative mean square error of nodal power was 0.051%.  

Table 3.3. Upper Energy Boundaries of 33-Group Structure.  

Group Energy (eV) Group Energy (eV) Group Energy (eV) Group Energy (eV) 

1 1.419E+07 10 1.832E+05 19 2.035E+03 28 2.260E+01 

2 1.000E+07 11 1.111E+05 20 1.234E+03 29 1.371E+01 

3 6.065E+06 12 6.738E+04 21 7.485E+02 30 8.315E+00 

4 3.679E+06 13 4.087E+04 22 4.540E+02 31 3.928E+00 

5 2.231E+06 14 2.479E+04 23 2.754E+02 32 5.316E-01 

6 1.353E+06 15 1.503E+04 24 1.670E+02 33 4.175E-01 

7 8.209E+05 16 9.119E+03 25 1.013E+02   

8 4.979E+05 17 5.531E+03 26 6.144E+01   

9 3.020E+05 18 3.355E+03 27 3.727E+01   

    

Figure 3.2. Planar (left) and axial (right) views of MSFR model in R-Z geometry. 

Thermal hydraulics calculations were performed using the thermal hydraulics solver of 

PROTEUS-NODAL by dividing the core into eight parallel annular channels. The radial cross 
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flow was neglected due to the limited capabilities of the thermal hydraulics solver, and a uniform 

inlet mass flow rate was used. The fuel temperature, density, and velocity distributions in the core 

region were determined from single-phase thermal hydraulics calculations. The heat removal rate 

by the intermediate loop was considered using a lumped parameter model for the heat exchanger. 

3.1.3. Static Analyses 

The steady state calculations of the MSFR benchmark problem were performed for a stationary 

fuel to determine the effective multiplication factor of the initial core composition, and the Doppler 

and fuel density coefficients. Then, the flowing fuel modeling capabilities of PROTEUS-NODAL 

were verified by calculating the kinetics parameters, the reactivity losses due to delayed neutron 

precursor drift, and its distribution in the core region. 

3.1.3.1. Reactivity Feedback Coefficients  

For a stationary fuel, to calculate the eigenvalue for a given initial core composition of 233U or 

TRU fuel salt, steady state calculations were performed for a uniform temperature distribution 

using the cross sections generated at an average core temperature of 973 K. Doppler and fuel 

density coefficients were calculated using temperature dependent cross sections. Table 3.4 

compares the multiplication factors of the 233U and TRU fuel cores from PROTEUS-NODAL 

calculations with the values reported in Ref. [13, 59]. The effective multiplication factor of MSFR 

is less than 1.0 for the 233U fuel core but larger than 1.0 for the TRU fuel core. For both the 233U 

and TRU fuel salt cores, the effective multiplication factor of PROTEUS-NODAL agrees well 

with the Serpent Monte Carlo solution of POLIMI obtained with the same ENDF/B-VII.0 data. It 

can be seen that different cross section libraries yield relatively large variations of the 

multiplication factor.  

Table 3.5 presents the reactivity feedback coefficients of 233U and TRU fuel cores. The Doppler 

coefficient was calculated for a fixed fuel salt density by changing the fuel salt temperature from 

923 K to 1023 K, which are the core inlet and outlet temperatures, respectively. The salt density 

feedback coefficient was calculated by the reactivity difference between the core inlet and outlet 

salt densities for a fixed temperature of 973 K. The Doppler coefficient of the 233U fuel core is 

about three times larger than that of the TRU fuel core. This is due to the higher 232Th concentration 

in the 233U fuel core. The salt density coefficient is slightly larger in the 233U fuel core than in the 

TRU fuel core, and thus the total feedback coefficient is about 80% higher in the 233U fuel core 
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than in the TRU fuel core. For both the 233U and TRU fuel cores, the Doppler and density 

coefficients calculated with PROTEUS-NODAL agree reasonably well with the POLIMI results 

obtained with the same ENDF/B-VII.0 data.  

Table 3.4. Comparison of Effective Multiplication Factors of MSFR.  

Institute POLITO POLIMI Purdue UM 

Code Serpent Serpent Serpent OpenMC DIF3D PROTEUS 

XS Generation     OpenMC MC2-3 

XS Library JEFF-3.1.1 JEFF-3.1 
ENDF/B-

VII.0 

ENDF/B-

VII.1 

ENDF/B-

VII.1 

ENDF/B-

VII.0 

No. of Groups     33 33 

keff 

233U Core 
0.99211 

±0.00011 

0.99406 

±0.00040 

0.98301 

±0.00041 
0.97749 0.97936 0.98366 

TRU Core 
1.02873 

±0.00012 

1.01651 

±0.00044 

1.01955 

±0.00045 
1.02334 1.02506 1.02238 

* POLITO (Politecnico di Torino), POLIMI (Politecnico di Milano), Purdue (Purdue University), UM (University 

of Michigan) 

Table 3.5. Reactivity Feedback Coefficients (pcm/K) of MSFR. 

Institute KI LPSC POLITO POLIMI Purdue UM 

Code MCNP-4B MCNP Serpent Serpent Serpent DIF3D PROTEUS 

XS Generation      OpenMC MC2-3 

XS Library 
ENDF/B-

VI 

ENDF/B-

VI 
JEFF-3.1.1 JEFF-3.1 

ENDF/B-

VII.0 

ENDF/B-

VII.1 

ENDF/B-

VII.0 

233U 

Core 

Doppler -4.7±0.2 -2.6±0.1 -3.15±0.05 -3.84±0.07 -3.73±0.07 -3.66 -4.36 

Density -2.8±0.2 -3.6±0.1 -3.42±0.02 -3.45±0.07 -3.55±0.07 -2.86 -3.32 

Total -7.5±0.2 -6.2±0.1 -6.57±0.06 -7.29±0.07 -7.28±0.07 -6.52 -7.68 

TRU 

Core 

Doppler -1.6±0.2 -1.5±0.1 -1.29±0.04 -1.64±0.06 -1.63±0.06 -1.73 -1.63 

Density -2.7±0.2 -2.2±0.1 -2.85±0.04 -2.92±0.06 -2.75±0.06 -2.73 -2.62 

Total -4.3±0.2 -3.7±0.1 -4.14±0.07 -4.56±0.06 -4.38±0.06 -4.46 -4.25 

* KI (The Kurchatov Institute), LPSC (Laboratory of Subatomic Physics and Cosmology), POLITO (Politecnico di 

Torino), POLIMI (Politecnico di Milano), Purdue (Purdue University), UM (University of Michigan) 

3.1.3.2. Reactivity Loss and Kinetics Parameters 

The capability of PROTEUS-NODAL to model delayed neutron precursor drift was tested 

using different combinations of the transit time in the core (i.e., fuel salt speed) and that in the 

external loop (i.e., decay time). It is expected that when all the other conditions are the same, the 

effective multiplication factor of the flowing fuel is smaller than that of the stationary fuel due to 

the decay of the delayed neutron precursors in the regions of less importance or outside the core. 
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This reduces the effective delayed neutron fraction of the core, which in turn decreases the 

effective multiplication factor. Figure 3.3 presents the reactivity loss of the TRU fuel core due to 

the fuel flow as a function of the transit time in the core for six different values of transit time in 

the external loop. The MSFR design has a primary loop circulation time of 4.0 s with 2.0 s in the 

core and 2.0 s in the external loop. For this reference transit time, the reactivity difference is about 

159 pcm, which is almost half of the effective delayed neutron fraction of the TRU fuel core (about 

300 pcm). As the transit time in the core increases with decreasing fuel salt speed, the effective 

multiplication factor increases, so the reactivity loss decreases, and the effective multiplication 

factor converges to the stationary fuel value as the speed of the fuel salt approaches zero. 

 

Figure 3.3. Reactivity losses of TRU fuel MSFR due to fuel flow. 

The adjoint flux solution capability implemented in PROTEUS-NODAL was verified by 

calculating the kinetics parameters of the MSFR benchmark problem and comparing them with 

the other code results. Table 3.6 compares the effective delayed neutron fractions of stationary and 

flowing fuel salts, and the prompt neutron generation time for the 233U and TRU fuel cores. The 

effective delayed neutron fraction of the flowing fuel salt is almost half of that of the stationary 

fuel salt. This is because the residence time of the fuel salt in the core equals the transit time of the 

fuel salt in the external loop. Both the effective delayed neutron fraction and the prompt neutron 

generation time calculated with PROTEUS-NODAL are consistent with other reported values. 
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Table 3.6. Calculated Kinetics Parameters of MSFR. 

Core Institute/Code XS library 
βeff 

(pcm) 

βcirc 

(pcm) 

𝛽𝑐𝑖𝑟𝑐
𝛽𝑒𝑓𝑓

 
βloss 

(pcm) 

𝛽𝑙𝑜𝑠𝑠
𝛽𝑒𝑓𝑓

 
Λ 

(μs) 

233U 

LPSC/MCNP ENDF/B-VI 320.0 169.5 0.529 150.5 0.470 1.200 

POLITO/Serpent JEFF-3.1.1 305.0 117.3 0.385 187.7 0.615 0.971 

POLIMI/Serpent JEFF-3.1 305.0 146.0 0.479 159.0 0.521 1.090 

TUDelft ENDF/B-VII 290.0 124.6 0.430 165.4 0.570 1.150 

Purdue/DIF3D ENDF/B-VII.1 318.8 142.1 0.446 176.7 0.554 – 

UM/PROTEUS ENDF/B-VII.0 317.7 141.2 0.444 176.6 0.556 1.103 

TRU 

LPSC/MCNP ENDF/B-VI 312.8 165.5 0.529 147.3 0.471 0.900 

POLITO/Serpent JEFF-3.1.1 301.0 – – – – 0.783 

POLIMI/Serpent JEFF-3.1 302.0 147.0 0.487 155.0 0.513 0.650 

Purdue/DIF3D ENDF/B-VII.1 298.8 138.5 0.464 160.3 0.536 – 

UM/PROTEUS ENDF/B-VII.0 294.6 135.0 1.464 159.6 0.542 0.623 

* LPSC (Laboratory of Subatomic Physics and Cosmology), POLITO (Politecnico di Torino), POLIMI (Politecnico 

di Milano), TUDelft (Technical University of Delft), Purdue (Purdue University), UM (University of Michigan) 

Figures 3.4 and 3.5 show the spatial distributions of six delayed neutron precursor 

concentrations in the TRU started MSFR for stationary and flowing fuels, respectively. For the 

flowing fuel, a uniform axial velocity field and complete mixing of fuel salt in the external loop 

were assumed with a fuel transit time of 4 seconds (2 s in the core and 2 s outside of the core). For 

the stationary fuel case, all the six distributions of precursor concentrations are symmetrical around 

the core mid-plane as the power distribution is. It is clearly seen that in the flowing fuel case, the 

high concentration region is shifted upward because of the upward fuel motion. The delayed 

neutron precursor groups of a small decay constant (large half-life) such as groups 1 and 2 show a 

larger shift since it takes a longer time to decay. On the other hand, the delayed neutron precursor 

groups of a large decay constant (small half-life) such as group 6 are less affected by the fuel flow 

and show a similar distribution to that in the stationary fuel. The motion of the delayed neutron 

precursors directly affects the delayed neutron distribution. The peak flux region of delayed 

neutrons is shifted upward, and a fraction of delayed neutrons is lost in the external loop. As a 

result, the effective delayed neutron fraction is reduced by about half in the flowing fuel case 

relative to the stationary fuel case. 
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Figure 3.4. Delayed neutron precursor concentration distributions in stationary TRU fuel (#/cm3). 

   

   

Figure 3.5. Delayed neutron precursor concentration distributions in flowing TRU fuel (#/cm3). 
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3.1.4. Transient Analyses 

The transient analyses of the MSFR benchmark problem were performed for of 233U fuel salt. 

Since no numerical reference solution was available, the transient solutions of PROTEUS-NODAL 

were compared with two plot solutions presented in the open literature as plots. One is the solution 

of the Paul Scherrer Institute (PSI), which was obtained by coupling the system analysis code 

TRACE with the nodal neutronics code PARCS [40]. The other is the solution of the Delft 

University of Technology (TUDelft) through coupled neutronics and computational fluid 

dynamics (CFD) calculations [37]. The analysis was focused on the unprotected transients where 

the reactor protection system is assumed to fail to respond. 

3.1.4.1. Reactivity Driven Transients 

In the unprotected transient over power (UTOP) scenario, a step insertion of positive reactivity 

and subsequent failure of the reactor protection system to shut down the reactor were assumed. A 

step reactivity was inserted by increasing fuel salt concentration while maintaining the nominal 

fuel salt flow in the core. Two UTOP transients were simulated for a sub-prompt critical reactivity 

insertion of 50 pcm and a super-prompt critical reactivity insertion of 200 pcm at full power. 

Figures 3.6 and 3.7 compare the PROTEUS-NODAL and TUDelft solutions for the time-

dependent core power and average temperature rise across the core. The sub-prompt critical 

transient results in Fig. 3.6 show that the power increases initially and attains its maximum (~1.5 

times of the nominal power) around 8.0 ms into the transient. The increased power raises the fuel 

salt temperature, which introduces a negative reactivity due to the Doppler effects and the reduced 

fuel salt density. Because of the negative reactivity feedback, the power starts to decrease at 8.0 

ms and approaches an asymptotic power at around 1.0 s. Around 3.0 s into the transient, the power 

experiences a step decrease again because of the heated fuel salt flowing back into the core.  

It can be seen that the power and temperature solutions of PROTEUS-NODAL agree well with 

the TUDelft solutions. However, the peak power predicted by PROTEUS-NODAL is slightly 

lower than the TUDelft solution. This can be attributed to the different feedback coefficients. As 

shown in Table 3.5, the total reactivity feedback coefficient of PROTEUS-NODAL is -7.68 pcm/K, 

while the TUDelft’s value is -6.79 pcm/K. The more negative reactivity feedback coefficient of 

PROTEUS-NODAL reduces the asymptotic core temperature rise by about 2.0 K. The super-

prompt critical transient results in Fig. 3.7 show qualitatively similar power and temperature 
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behaviors as in the sub-prompt critical transient, but the initial power burst is 54 times higher and 

~20 times narrower than that of the sub-prompt critical transient. The PROTEUS-NODAL results 

agree well with the reference TUDelft solutions, but the peak power is lower because of the more 

negative reactivity feedback coefficient. As discussed in Ref. [73], under the adiabatic 

approximation, the peak value and width of the power burst for a super-prompt critical transient 

can be estimated as 

 
Figure 3.6. Power and average core temperature rise for 50-pcm reactivity insertion at full power. 

 
Figure 3.7. Power and average core temperature rise for 200-pcm reactivity insertion at full 

power. 
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where mP  is the maximum power, t  is the power burst width,   is the inserted reactivity, and 

  is the energy feedback coefficient. Using the total feedback coefficient and fuel properties, the 

energy feedback coefficient was estimated to be 6 11.28 10  MJ− −  in PROTEUS-NODAL 

calculations and 6 11.15 10  MJ− −  in the TUDelft calculations. The estimated values of peak power 

and power burst width of PROTEUS-NODAL and TUDelft results are compared in Table 3.7. The 

calculated results are consistent with the analytically estimated values.   

Table 3.7 Maximum Power Estimation for Super Prompt Critical Case. 

 TUDelft PROTEUS-NODAL 

Energy feedback coefficient ( 1MJ− ) 61.15 10−  61.28 10−  

0/mP P
 

Code value 66 54 

Eq (3.1) 74 65 

t (ms) 
Code value 8.0 8.0 

Eq (3.2) 6.0 6.0 

The UTOP transients at zero power conditions were analyzed considering an initial power of 

0.01% of the nominal full power. Figures 3.8 and 3.9 show the power and temperature evolutions 

for a sub-prompt critical reactivity insertion of 50 pcm and a super-prompt critical reactivity 

insertion of 200 pcm, respectively. At low initial power, it takes a significant time to increase the 

power to heat the fuel salt, and thus thermal feedback is delayed significantly. The sub-prompt 

critical transient at zero power shows a somewhat different power evolution than at full power 

case. The power attains its maximum and then decreases to the asymptotic value after 400 s in the 

transient time. The peak power is about 58 times the initial value and occurs around 70.0 s. In the 

super-prompt critical transient, the power attains the peak value of about 2.6105 times the initial 

value at 0.04 s. The fuel transit time affects the core temperature change, being different from the 

super-prompt critical at the full power.   
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Figure 3.8. Power and average core temperature for 50 pcm insertions at zero power. 

 
Figure 3.9. Power and average core temperature for 200 pcm insertions at zero power. 

3.1.4.2. Flow Driven Transients 

The primary pump controls the mass flow rate of the fuel salt in the core, which can be 

considered as a reactivity control mechanism for the current design of the MSFR. It is important 

to analyze the fuel flow driven transients related to pump operation, such as pump over-speed and 

loss of flow transients that could happen due to malfunction of the pump control system. Increasing 

the fuel flow rate will result in more delayed neutron loss while decreasing the fuel salt flow rate 

will reduce the delayed neutron loss. At the full power operation, the flow rate change affects the 

reactivity more through the fuel temperature change than through the change in delayed neutron 

loss.  
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In the unprotected pump over speed (UPOS) transient scenario, the mass flow rate was 

increased by 50% of the nominal flow rate with a time constant of 5.0 s. Figure 3.10 compares the 

time-dependent power solution of PROTEUS-NODAL with the PARCS-TRACE and TUDelft 

solutions. The evolutions of fuel flow rate and average temperature rise across the core are shown 

in Fig. 3.11. As the flow rate increases, the loss of delayed neutrons increases, but the average 

temperature rise decreases. The positive reactivity introduced by the cold fuel salt flowing into the 

core is larger than the negative reactivity due to increased delayed neutron loss. The net positive 

effect increases the power level by ~22% of the full power.  

 

Figure 3.10. Power evolution during UPOS transient of MSFR at full power. 

 

Figure 3.11. Average core temperature rise during UPOS transient at full power. 
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At low power, the core temperature rise is small, and thus the effect of increased delayed 

neutron loss is larger than the effect of decreased average core temperature rise. As a result, the 

net reactivity introduced by the increased salt flow rate is negative. Figure 3.12 shows the power 

evolution for a UPOS transient at zero power. As the flow rate increases in the core, the power 

starts to decrease due to the increased delayed neutron loss while the average core temperature 

almost remains constant. Thermal feedback has no effect on the UPOS at zero power since the fuel 

temperature is unchanged. 

 
Figure 3.12. Power and average core temperature increase during UPOS transient at zero power. 

An unprotected loss of flow (ULOF) accident is initiated by a pump failure that reduces the 

mass flow rate of the fuel salt in the core. The ULOF transient was simulated by decreasing the 

mass flow rate exponentially from its nominal value with a time constant of 5.0 s. The reduction 

of the flow rate introduces positive reactivity through the decreased loss of delayed neutrons out 

of the core. At the same time, the decreased fuel flow rate increases the fuel temperature in the 

core region and hence introduces negative reactivity feedback. This negative temperature feedback 

is larger than the positive reactivity introduced by the reduced delayed neutron loss out of the core. 

As a result, the net reactivity effect of loss of flow is negative. Figure 3.13 compares the power 

evolution of PROTEUS-NODAL to those of PARCS-TRACE and TUDelft. The TUDelft power 

approaches an asymptotic value at ~18% of the nominal full power due to the natural circulation 

buildup. On the other hand, the PROTEUS-NODAL and PARCS-TRACE solutions do not reach 

an asymptotic level since the inlet fuel salt velocity instead of the pump head was set to decrease 

exponentially with a time constant of 5 seconds, which leads to a more rapid decrease of the 
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average inlet velocity and no natural circulation buildup. Figure 3.14 shows the mass flow rate and 

compares the average core temperature rises of PROTEUS-NODAL and PARCS-TRACE. A large 

difference in the core temperature rise between PROTEUS-NODAL and PARCS-TRACE, which 

can be attributed to the simple lumped parameter thermal hydraulics model used in PROTEUS-

NODAL to analyze the primary loop. 

 

Figure 3.13. Power evolution during ULOF transient of MSFR at full power. 

 

Figure 3.14. Average core temperature rise during ULOF transient at full power. 

The ULOF scenario at zero power condition was also investigated. As shown in Fig. 3.15, the 

ULOF at zero power shows a different power evolution from the ULOF transient at full power. In 

this case, the positive reactivity introduced by the reduced loss of delayed neutrons is larger than 
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the negative reactivity introduced by increased salt temperature. As a result, the power increases 

and reaches ~1.1% of the nominal full power around 40 s. The fuel salt temperature starts to 

increase at around 30 s and introduces negative thermal feedback. Around 40 s in the transient 

time, the negative temperature feedback overwhelms the positive reactivity introduced by the 

decreased loss of delayed neutrons out of the core, and hence the power starts to decrease. The 

power approaches an asymptotic power that is slightly higher than the initial power, and the 

positive reactivity inserted by the reduced delayed neutron loss is balanced by the negative 

feedback due to increased salt temperature. 

 

Figure 3.15. Power and average core temperature increase during ULOF transient at zero power. 

3.1.4.3. Temperature Driven Transients 

The temperature-driven transients resulted from changes in core inlet temperature are caused 

by a change in heat extraction rate in the heat exchanger. Decreasing the heat extraction rate or 

loss of heat sink will lead to an increase in core inlet temperature, and the increasing heat extraction 

rate or chilled inlet will lead to a decrease in core inlet temperature. Changes in inlet temperature 

have an immediate impact on reactivity. The unprotected loss of heat sink (ULOHS) or loss of 

cooling capabilities of the heat exchangers may happen due to the loss of flow or pump failure in 

the intermediate loop. The loss of cooling capabilities of the intermediate heat exchangers was 

assumed to follow an exponential decay with a time constant of 1.0 s, while the fuel flow in the 

core was maintained. As the heat removal rate decreases, the fuel salt temperature at the core inlet 

increases, and thus the core-averaged fuel salt temperature increases. The negative reactivity 

introduced by the increased fuel salt temperature makes the power decrease. The power results in 



 58 

Fig. 3.16 show that the PROTEUS-NODAL solution agrees well in the shape with the TUDelft 

and PARCS-TRACE solutions but shows about 1.0 s lag. This is due to the assumption used in the 

PROTEUS-NODAL calculation that the uncooled fuel salt reaches the core inlet 1.0 s after the 

transient started. Figure 3.17 compares the average core temperature rise calculated with 

PROTEUS-NODAL to the PARCS-TRACE solution. The average fuel salt temperature rise across 

the core region of PROTEUS-NODAL shows a good agreement in shape with the TRACE result. 

However, it shows an oscillatory behavior with a period corresponding to the fuel circulation time 

in the primary system. This is because the heat removal by the intermediate loop was not 

considered during this ULOHS transient analysis. 

 

Figure 3.16. Power evolution during ULOHS transient at full power. 

 

Figure 3.17. Average core temperature rise during ULOHS transient at full power. 
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An unprotected fuel salt over-cooling (UFSOC) or chilled inlet transient may happen due to the 

enhanced heat extraction capabilities in the intermediate heat exchanger, following 

depressurization of the steam generator or pump over-speed in the intermediate loop. The UFSOC 

transient was simulated by reducing the inlet temperature of the secondary coolant in the 

intermediate heat exchanger by 100 K exponentially with a time constant of 1.0 s while the flow 

rate was maintained at its nominal value. Such a decrease in the secondary coolant temperature 

will enhance the heat transfer rate between the fuel salt in the primary system and the coolant in 

the intermediate loop. This will lead to a decrease in the core inlet temperature, so the average fuel 

salt temperature in the core will decrease. As a result, the power will increase due to the positive 

reactivity inserted by the over-cooled fuel salt. Then the power will stabilize as the fuel salt is 

heated.  

Figure 3.18 compares the power evolution of PROTEUS-NODAL with the PARCS-TRACE 

and TUDelft solutions. The power solution of PROTEUS-NODAL is in between the two solutions. 

The power increases during the first 5 s, and then reaches an asymptotic value of about 170% of 

the nominal full power. The power evolution of this UFSOC transient is highly affected by the heat 

exchanger and intermediate loop models, in particular the overall heat transfer coefficient of the 

heat exchanger. Figure 3.19 shows the average temperature rise of fuel salt across the core, which 

shows similar behavior to the power. The asymptotic fuel temperature rise across the core is about 

70 K higher than the steady state core temperature rise of 100 K. 

 

Figure 3.18. Power evolution during UFSOC transient at full power. 
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Figure 3.19. Average core temperature rise during UFSOC transient at full power. 

3.2. MOST Benchmark Exercise 

The MOST benchmark exercise was defined to assess the available computational tools for 

simulating flowing fuel systems under the MOST project with the participation of several 

European institutes [18]. Static and transient problems were developed based on some of the 

MSRE experiments. However, several simplifications were made to the MSRE geometry to 

simplify the simulation and analysis. Specifically, the core configuration was developed by 

neglecting the control rods and the outside of the active core, including the core container, the 

downcomer, the reactor vessel, the gap between reactor vessel and insulator, the insulator, and the 

thermal shield. The participants analyzed the benchmark problems using the point-kinetics to 3-D 

dynamics models. In this section, the MOST benchmark is analyzed to develop appropriate MSRE 

core models and multigroup cross section generation procedure and to verify the PROTEUS-

NODAL code. The description of the MOST benchmark problem is first provided. Then, the 

PROTEUS-NODAL core models and the multigroup cross section generation with the Monte 

Carlo code OpenMC are discussed. The verification results for various steady state and transient 

problems are compared with the reported results in the open literature.  

3.2.1. Specification of MOST Benchmark 

The MOST project was started within the 5th European Framework Program to address the 

physical modeling issues of the molten salt reactors and to develop a benchmark exercise to assess 
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the adequateness of the computational tools available for flowing fuel system with reference to 

some of the experimental data from MSRE including steady state experiments to calculate the 

reactivity loss due to delayed neutron precursor drift and the fuel salt, graphite, and isothermal 

temperature coefficients of the MSRE. The transient experiments include the protected pump 

startup and coast down, and the natural circulation experiment [18]. 

The main difference of the MOST benchmark from the MSRE experiment is the 

simplifications that were adopted into the geometry of the MSRE core in order to simplify the 

analysis. The control rods and the outside of the active core, including the core container, the 

downcomer, the reactor vessel, the gap between reactor vessel and insulator, the insulator, and the 

thermal shield, were not considered in the defined model of the benchmark problem. The defined 

core model is limited up to the outer fuel regions of the MSRE core with a core diameter of 139.0 

cm and a height of 163.0 cm. The inner core region was specified by a regular lattice made of the 

square graphite stringers and the rectangular fuel salt channels with round corners in the sides of 

the stringers. Figure 3.20 shows the radial configuration of the core and a graphite stringer cell 

with four half channels of fuel salt of the defined core under the MOST project. Vacuum boundary 

conditions were specified on the outer surfaces of the cylindrical core. Furthermore, the core 

characteristics were defined based on the design data and reports, which are slightly different from 

the chosen values or measured data during the MSRE experiments. The main characteristics of the 

MOST benchmark are provided in Table 3.8. Specifications of the MSRE Experiment are provided 

in Appendix D [74, 75, 76, 77]. 

 

 

Figure 3.20. Radial core configuration of MOST benchmark (left) and a unit graphite stringer 

cell with four half channels of fuel salt (right). 
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Table 3.8. Main Characteristics of MOST Benchmark Problem. 

Thermal power 10 MWth 

Fuel composition LiF-BeF2-ZrF4-UF4  

Molar composition 235U (65.0%-29.1%-5.0%-0.9%) 

Fuel inlet/ Outlet temperature 908 K / 936 K 

Core height / Core diameter 1.63 m / 1.39 m 

Total fuel salt transit time 25.2 s 

Fuel salt density [kg/m3] ( )2263 0.4798 ( ) 923.0T K = −  −  

Fuel salt dynamic viscosity [Pa·s] 0.008268 =  

Fuel salt thermal conductivity [W/m·K] 1.4k =  

Fuel salt specific heat [J/kg·K] 1868.0pc =  

Graphite density [kg/m3] 1860.0g =  

Graphite thermal conductivity [W/m·K] 40.1gk =  

Graphite specific heat [J/kg·K] , 1757.3p gc =  

3.2.2. Core Model and Energy Group Structure 

To model heterogeneous geometry of the MSRE core and to account for the spectral changes 

in generating cross sections, the Monte Carlo code OpenMC was used to generate multigroup cross 

sections of the MOST benchmark and the MSRE experiment. Also, the developed models with 

OpenMC are used to verify the developed models with PROTEUS-NODAL for stationary fuel 

case. For the MOST benchmark problem, two PROTEUS-NODAL core models were developed 

in Cartesian and R-Z geometries and tested along with five energy group structures against the 

OpenMC Monte Carlo solution. Also, the OpenMC code was used to generate multigroup cross 

sections with ENDF/B-VII.1 data [82] at several energy group structures to determine adequate 

group structure to perform the analysis. The selected core model for the MOST benchmark and the 

selected energy group structure for multigroup cross section condensation for the analyses of the 

MSRE experiment are provided in Appendix E.  

In summary, the R-Z geometry model was selected to perform the analysis of the MOST 

exercise because it represents the outer regions of the core accurately so that the reaction rates are 

preserved. Also, an energy structure with a 16-group structure was selected to perform the analysis 

because it provided the smallest difference in eigenvalue and leakage fraction of the tested cases a 

detailed analysis is provided in Appendix E. 
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3.2.3. Static Analyses 

The static problems were solved with PROTEUS-NODAL, and the results were compared with 

the reported solutions in open literature by the participants in the MOST benchmark exercise. 

Specifically, the eigenvalue, the isothermal, fuel, and moderator temperature coefficients, and the 

reactivity loss due to fuel circulation were calculated without thermal feedback. The effective 

multiplication factor and the fuel salt, graphite moderator, and isothermal temperature coefficients 

for stationary fuel were calculated without thermal feedback. The multiplication factor was 

calculated at the core average temperature of 922 K since the core inlet temperature was 908 K 

and the core outlet temperature was 936 K during full power operation. The temperature 

coefficients were calculated by the least-square fitting of the reactivity calculated at the 

temperatures of 20 K interval from 860 K to 1000 K, as shown in Fig. 3.21. 

 
Figure 3.21. Reactivity feedback coefficients of MOST benchmark problem. 

Table 3.9 compares the multiplication factor and reactivity feedback coefficients results of 

PROTEUS-NODAL with those of the MOST benchmark participants [18] and the DYN3D [25] 

and MOREL [27] codes. The multiplication factor of PROTEUS-NODAL is in good agreement 

with other institute results. The fuel and isothermal temperature coefficients of PROTEUS-

NODAL are slightly smaller than the other institute values while the graphite temperature 

coefficient is slightly higher. The observed differences are mainly due to the different cross section 

libraries used in these analyses. This can be confirmed by the consistently good agreement of the 

PROTEUS-NODAL multiplication factors with the OpenMC results within 22 pcm at all 

temperatures, as shown in Table 3.10.  



 64 

Table 3.9. Reactivity Feedback Coefficients (pcm/K) of Stationary Fuel. 

Institute or 

Code 
k-eff 

Salt Temp. 

Coefficient 

Graphite Temp. 

Coefficient 

Isothermal Temp. 

Coefficient 

BUTE 1.05980 -6.2 -4.8 -11.0 

ENEA 1.07513 -6.8 -4.3 -11.1 

EDF 1.06752 -7.8 -4.6 -12.4 

FZR 1.06966 -6.9 -4.0 -10.9 

POLITO 1.07060 -6.3 -3.8 -10.1 

DYN3D 1.06161 -7.1 -4.5 -11.1 

MOREL 1.06643 -7.4 -4.5 -11.9 

PROTEUS 1.06232 -7.3 -4.9 -12.2 

Table 3.10. Comparison of Multiplication Factors at Different Temperatures. 

Temperature (K) OpenMC PROTEUS Diff. (pcm) 

860 1.07106 ± 0.00011 1.07095 -11.3 

880 1.06819 ± 0.00011 1.06810 -9.2 

900 1.06549 ± 0.00010 1.06528 -21.0 

908 1.06423 ± 0.00011 1.06418 -4.7 

922 1.06252 ± 0.00011 1.06232 -20.4 

936 1.06042 ± 0.00011 1.06037 -5.0 

960 1.05720 ± 0.00010 1.05712 -8.1 

980 1.05444 ± 0.00010 1.05437 -7.5 

1000 1.05180 ± 0.00011 1.05158 -22.0 

Table 3.11 compares the reactivity loss by fuel circulation of PROTEUS-NODAL with the 

results reported in the open literature. The reactivity loss of PROTEUS-NODAL is consistent with 

the MOREL code result, of which cross sections are based on the same ENDF/B-VII data. 

Table 3.11. Loss of Delayed Neutron Fractions of MOST Benchmark Problem. 

XS Library Institute/Code Total 
Delayed Neutron Precursor Family 

1 2 3 4 5 6 

JEF 

BUTE 224.0       

EDF 207.6 12.8 65.6 55.3 71.4 2.5 0.0 

ENEA 234.5 14.9 76.2 62.9 77.9 2.9 0.0 

FZK 258.3 16.4 83.0 68.3 85.8 4.5 0.3 

FZR 223.0 10.2 74.6 60.5 75.1 2.6 0.0 

POLITO 251.7 17.0 84.6 65.5 80.4 4.0 0.2 

ENDF 
MOREL 246.3 13.6 88.9 67.7 73.6 2.5 0.0 

PROTEUS 245.6 16.5 81.2 61.2 77.0 9.3 0.5 
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3.2.4.  Transient Analysis 

The transient problems of the MOST benchmark were solved with PROTEUS-NODAL, and 

the results were compared with the reported solutions in the open literature. The protected pump 

transient and natural circulation tests were analyzed. The pump transient tests were performed at 

constant low power to evaluate the effects of flow rate changes on the reactivity during pump 

startup and coast down transients. The natural circulation test was performed to determine the 

characteristics of the heat removal from the MSRE fuel system by natural convection of the 

primary fuel salt. 

3.2.4.1. Protected Pump Transient Tests 

In the protected pump transients of the 235U fueled MSRE, the reactor was operated at a low 

power level (~10 W), and the fuel flow rate in the primary loop was increased or decreased by 

adjusting the speed of the fuel pump. The control rod position was adjusted in order to maintain a 

constant power level by compensating for the reactivity loss or gain due to the change in the fuel 

velocity in the core and consequently due to the redistribution of delayed neutron precursors in the 

core and their decay outside the core. The recorded control rod position is provided in Ref. [77] as 

shown in Fig. 3.22. The recorded control rod positions were converted into reactivity using the 

integral control rod worth curves. Since this test was performed at very low power and thus there 

is no thermal feedback effect during this transient, the reactivity inserted by the control rod 

movement is equal to the reactivity change due to the flow perturbations. 

 

Figure 3.22. Control rod response to fuel pump start-up and coast-down [77].  
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PROTEUS-NODAL calculations were performed by providing the fuel flow rate and using 

uniform fuel temperature and velocity. The fuel flow rate was increased from zero to its nominal 

value in 10 seconds during the pump startup, and it was decreased from its nominal value to zero 

in 20 seconds during the pump coast down, as shown in Fig. 3.23. Constant power was maintained 

in PROTEUS-NODAL calculations by adjusting the neutron production source according to the 

calculated reactivity loss. The reactivity loss was calculated by taking the difference between the 

effective delayed neutron fractions of stationary and flowing fuel at each time step. 

 
Figure 3.23. MSRE fuel flow rates during protected pump startup and coast down transients. 

Figure 3.24 presents the reactivity compensations during the protected pump startup test of the 

MOST benchmark participants [18] and the comparison of the PROTEUS-NODAL reactivity 

compensation with the measured data [77] and the calculated values with the DYN3D [25] and 

MOREL [27] codes. During the protected pump startup test, the fuel starts to flow outside the core, 

which leads to reactivity loss because of the decay of delayed neutron precursors outside the core 

or at regions of lower importance. The reactivity loss increases with the increasing flow velocity. 

Oscillatory behavior is observed in the compensated reactivity because of recirculated precursors. 

The positive reactivity effect of the recirculated precursors entering the core is clearly seen 13 

seconds after pump start-up. The difference between the calculated reactivity loss of PROTEUS-

NODAL and the measurement can be attributed to the delay in the response of the reactor control 

system and the difference in the delayed neutron data. 
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Figure 3.24. Reactivity compensations during protected pump startup transient of MOST 

participants (left) [18] and PROTEUS-NODAL (right). 

Figure 3.25 shows the compensated reactivity plots for the protected pump coast down test. 

During the protected pump cost down transient, the reactivity increases because more precursors 

decay in the core region with decreasing fuel velocity. Therefore, the compensated reactivity 

continues to decrease and reaches zero when all the precursors decay in the core. It can be seen 

that PROTEUS-NODAL follows the measured data very well. 

  

Figure 3.25. Reactivity compensation during protected pump coast down transient of MOST 

participants (left) [18] and PROTEUS-NODAL (right). 
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3.2.4.2. Natural Circulation Test 

The natural circulation test of the MSRE with 233U fuel salt was also analyzed. The purpose of 

the natural circulation test was to determine the characteristics of heat removal from the MSRE 

fuel system by natural convection. At the beginning of the transient, the reactor was operated at 

low power of about 4.1 kW with a limited fuel flow rate. After that, the core inlet temperature was 

decreased by increasing the heat removal rate in the air radiator in the secondary loop for 6 hours. 

The reactor was controlled entirely by the inherent thermal feedback of the system during this 

transient and no adjustments were made to the control rods. In this test, there is no data recorded 

for the fuel salt inlet mass flow rate or the heat removal rate by the secondary loop. Therefore, the 

inlet mass flow rate of the fuel salt was deduced using the recorded data of power and core inlet 

and outlet temperatures and the transit time of the fuel salt in the core. The recorded data over the 

transient period is provided in Fig. 3.26 [83]. 

 
Figure 3.26. Recorded power and average inlet and outlet temperatures during natural circulation 

test of MSRE [83]. 

The natural circulation test was simulated with the PROTEUS-NODAL code. The core inlet 

temperature and the deduced inlet mass flow rate of the fuel salt were used as the boundary 

conditions for thermal hydraulics calculations during the transient period without considering the 

heat removal in the external loop. Figure 3.27 compares the calculated power history of 

PROTEUS-NODAL with the measured data [83] and the reported solutions in the open literature 

[18, 25, 27]. The PROTEUS-NODAL solution follows the measured power evolution very well. 
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The observed deviation at the beginning of the transient could be due to the assumed initial steady 

state conditions, which might not be true. In general, PROTEUS-NODAL is able to reproduce the 

measured power level during this long transient for a given inlet temperature and flow rate. 

  

Figure 3.27. Power evolutions during natural circulation test of MOST benchmark participants 

(left) [18] and PROTEUS-NODAL (right). 

 

3.3. Summary  

The implemented capabilities in the PROTEUS-NODAL code for flowing fuel analysis were 

verified by conducting code-to-code comparisons using the MSFR benchmark, which is a fast 

spectrum reactor, and using the MOST benchmark exercise, which is a thermal spectrum reactor. 

For the MSFR benchmark, steady state analysis was conducted based on the available information 

in the preliminary design report of MSFR and compared with other code solutions. The 

PROTEUS-NODAL results for the multiplication factor, critical composition, and reactivity 

coefficients agreed well with other code solutions obtained with the same evaluated nuclear data 

file. Also, various unprotected transient tests with thermal feedback were performed for the MSFR 

benchmark problem including UTOP, UPOS, ULOF, ULOHS, and UFSOC. The results were 

compared with the other code solutions found in the open literature. For all the transients 

considered, the time evolution of power and average core temperature generally agreed well in 

shape and magnitude with the reference results reported in other studies. However, some noticeable 

deviations were observed mainly because of the simple hydraulics model used in the calculations.  
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In the MOST benchmark, the defined core for MSRE was utilized to determine the required 

models for generating the multigroup cross sections using the Monte Carlo code OpenMC. The 

energy group structure and the number of energy groups were determined by achieving the best 

match for eigenvalue and leakage fraction compared to the OpenMC results. Also, verifications 

tests were performed for steady state and transient analysis including, reactivity feedback 

coefficients, reactivity losses due to delayed neutron precursor drift, protected pump startup and 

coast down transients, and natural circulation test. The PROTEUS-NODAL results show 

reasonable agreement with reference solutions that solved the MOST benchmark problem. 
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Chapter 4. Analyses of MSRE Experiments and Validation Results 

 

The Molten Salt Reactor Experiment (MSRE) provides the only source of experimental data 

that can be used to validate modeling and simulation tools for flowing fuel. The PROTEUS-

NODAL code was used to analyze the steady state and transient experiments of the MSRE. The 

computational models of the MSRE were developed for the exact core without the simplifications 

introduced in the MOST benchmark. After describing the main characteristics of the MSRE, the 

developed computational models using OpenMC and PROTEUS-NODAL and multigroup cross 

section generation procedure are discussed. Since the internal void region cannot be modeled by 

PROTEUS-NODAL, the outside of the reactor vessel that includes a large gap between the reactor 

vessel and the insulation liner was excluded by developing an albedo boundary condition to 

compensate for neutron reflection from the outer regions. Static and dynamic experiments of the 

MSRE were analyzed which includes experimental data for the control rod worth, the temperature 

feedback coefficients, and the reactivity loss due to fuel circulation. The transient experiments 

include the protected pump startup and coast down tests at zero power, and the natural convection 

test, which was inherently controlled by the thermal feedback of the system. 

4.1. Description of MSRE Configuration and Systems 

In the 1960s, the MSRE was constructed and successfully operated at the ORNL to be the first 

liquid fuel salt and graphite moderator reactor. Furthermore, it was the first reactor ever to be 

operated using 233U fuel. The main purpose of the MSRE was to demonstrate the practicality of 

the liquid fuel operation at high temperatures and ensure the safety and reliability for developing 

the full-scale MSBR project [7, 8]. Although the MSRE was operated for about 10 years, it 

provides the only source of experimental data for validating the developed simulating tools for 

flowing fuel reactors. 

The MSRE was built in 1964 with an 8 MWth power and utilizes a thermal neutron spectrum 

with liquid fuel salt flowing into graphite moderator channels. Although the MSRE was designed 

to be a 10 MWth reactor, it was discovered in the final stages that the heat extraction in the 

secondary system was smaller than expected, and the maximum power level was restricted to 8.0 
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MW as measured from heat balances. The operation of the MSRE was started in 1965 and 

continued until 1968, and it was fueled with 235U fuel (33% enriched) with the salt composition of 

LiF-BeF2-ZrF4-UF4 (65.0%-29.17%-5.0%-0.83%). It was designed to be operated between 908 K 

and 936 K, with a temperature rise of the salt by 28 K and the core average temperature of 922 K. 

In 1968, the fuel was replaced with 233U fuel (91% enriched) with a slightly different molar 

composition (64.5%-30.18%-5.19%-0.13%). Table 4.1 provides the main characteristics of the 

MSRE core and the thermos-physical properties for the fuel salt as obtained from Ref. [74, 75]. 

Specifications of the MSRE Experiment are provided in Appendix D. 

Table 4.1. Characteristics of Molten Salt Reactor Experiment. 

Thermal power 8 MWth 

Fuel composition LiF-BeF2-ZrF4-UF4  

Fuel inlet/ Outlet temperature 908 K / 936 K 

Core height / Core radius 1.66 m / 0.762 m 

Total fuel salt transit time 25.2 s 

Fuel salt density [kg/m3] ( )2322.7 0.502 [ ] 922T K = −  −
 

Fuel salt dynamic viscosity [Pa·s] 0.00785 =  

Fuel salt thermal conductivity [W/m·K] 1.44k =  

Fuel salt specific heat [J/kg·K] 1967.8pc =
 

Graphite density [kg/m3] 1874.16g =
 

Graphite thermal conductivity [W/m·K] 39.8gk =
 

Graphite specific heat [J/kg·K] , 1758.5p gc =
 

4.2. Computational Models 

This section presents the developed computational models with OpenMC and PROTEUS-

NODAL to analyze the MSRE experiments. OpenMC was used to generate the multigroup cross 

sections and albedo boundary conditions at the reactor vessel's outer surface. PROTEUS-NODAL 

was used for static and transient neutronics analyses of the MSRE.     

4.2.1. OpenMC Model 

A detailed 3-D OpenMC model was developed to generate region-dependent multigroup cross 

sections by considering the neutron spectral changes in the core and to verify the PROTEUS-

NODAL model for stationary fuel experiments. The simplifications introduced in the MOST 

benchmark were removed, and the control rods and the outside regions of the reactor core were 
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modeled explicitly. The outside of the core includes the core container, the downcomer, the reactor 

vessel, the air gap, the insulator, and the thermal shield, which reflect a significant fraction of 

leaking neutrons back to the core and thus affect the neutron flux distribution in the outer core 

region. Figure 4.1 shows the radial and axial representations of the core and the control region in 

the OpenMC model of MSRE. The OpenMC code was also employed to develop the albedo 

boundary condition at the outer surface of the reactor vessel, which is used in PROTEUS-NODAL 

calculations. Also, the OpenMC model is used to determine the fraction of the heat generated in 

the graphite moderator due to gamma heating and neutron slowing down by performing coupled 

neutron gamma calculations, which is used in the calculations of the thermal hydraulics solver of 

PROTEUS-NODAL to determine the temperature distribution in the graphite moderator. 

 

 

  
 

Radial Layout of Core Radial Layout of Control Region 

 

 

 
 

Axial Layout of Core Axial Layout of Control Region 

Figure 4.1. Developed OpenMC model for MSRE Analysis. 
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The multigroup cross sections of the MSRE were prepared as a function of the fuel salt and 

moderator temperatures using the OpenMC code with the ENDF/B-VII.1 data. The multigroup 

cross sections were generated at a specified temperature and material compositions and converted 

into the isotopic cross section dataset ISOTXS and the delayed neutron cross section dataset 

DLAYXS using the utility code GenISOTXS. The multigroup cross sections were generated with 

the 3-D full core model with the 16-group structure as discussed in Appendix E. The outer core 

regions (i.e., gap, insulator, and thermal shield) were included in this OpenMC model because they 

affect the eigenvalue and the neutron spectrum of the outer regions significantly due to neutron 

reflection. Region-dependent cross sections were generated by dividing the inside the reactor 

vessel into multiple regions in the radial and axial directions. Figure 4.2 shows the cross section 

tally regions. 

 

 

Figure 4.2. Radial (left) and axial (right) configurations of cross section tally regions. 

4.2.2. PROTEUS-NODAL Model 

The PROTEUS-NODAL models for the MSRE were developed in Cartesian and R-θ-Z 

geometries. The Cartesian model was included for comparison purposes, although it was found 

that the boundary perturbation affects the neutron leakage significantly and thus the eigenvalue. 

PROTEUS-NODAL is based on the variational nodal diffusion method, and it cannot model the 

large air gap between the reactor vessel and the thermal shield.  The PROTEUS-NODAL models 
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are limited to the reactor vessel region. However, the active core region is next to the reactor vessel 

in the MSRE, and more than 30% of neutrons leak out from the reactor vessel. Since the insulator 

and thermal shield are made of approximately 50% steel and 50% water, a large fraction of those 

leaking neutrons is thermalized in the thermal shield and insulator and reflected into the reactor 

vessel. In order to account for these reflected neutrons properly without including the regions 

beyond the reactor vessel, a multigroup albedo boundary condition at the outer surface of the 

reactor vessel was developed from a separate OpenMC calculation for the outer region of the 

reactor vessel.  

The thermal hydraulics calculations were performed using the thermal hydraulics solver of 

PROTEUS-NODAL. The moderator temperature and the fuel salt temperature, density, and 

velocity are calculated and used in the thermal feedback calculations. The core is represented by 

multiple parallel channels in the axial direction which are connected at the inlet and outlet. The 

mass flow rates of individual fuel channels are calculated using the equal pressure drop boundary 

conditions over all channels. The moderator temperature is calculated by considering the heat 

generation and radial heat conduction in graphite moderator and the heat transfer from graphite 

moderator to fuel salt. The fractional heat generation rate in graphite due to photon interactions 

and neutron scattering was determined from a coupled neutron and gamma transport calculation 

with OpenMC.  

Figure 4.3 shows the developed PROTEUS-NODAL models in Cartesian and R-θ-Z 

geometries for the MSRE core. The Cartesian geometry model can represent the fuel-graphite 

stringer accurately. However, the outer cylindrical regions (i.e., the unmoderated outer core, core 

container, down-comer, and reactor vessel) need to be homogenized and approximately 

represented in Cartesian nodes, which affects the neutron leakage significantly. On the other hand, 

the R-θ-Z geometry model needs additional homogenization in the inner core region and 

approximate representation of control rods although it can represent the outer core regions 

accurately without homogenization. 

The albedo boundary condition at the outer surface of the reactor vessel was developed as a 

multigroup response matrix to account for the reflection of the neutron slowed down in the thermal 

shield and insulator regions to the core region. The albedo boundary condition with the defined 

albedo response matrix can be written as  
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Figure 4.3. PROTEUS-NODAL models of MSRE core in Cartesian (left) and R-θ-Z (right) 

geometries. 
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With this boundary condition, the incoming partial currents (
gJ − ) at the outer boundary are 

determined by multiplying the albedo response matrix to the multigroup vector of calculated 

outgoing partial currents (
gJ + ). The elements gg   are constants depending on the composition and 

the geometry of the outer region to be represented by the albedo response matrix. 

The albedo response matrix was obtained from OpenMC Monte Carlo simulations for a 2-D 

model representing the outer core regions from the reactor vessel to the thermal shield of the MSRE 

as shown in Fig. 4.4. The columns of the albedo response matrix were determined by solving a 

fixed source problem for each energy group with a uniform mono-directional neutron source was 

specified on the inner surface of the reactor vessel and the incoming partial currents at the outer 

surface of the reactor vessel were tallied. The calculated 16-group albedo response matrix on the 

outer surface of the MSRE reactor vessel is given in Appendix F. 

For comparison purposes, a simplified albedo boundary condition was also examined by 

approximating the response matrix by a diagonal matrix as 
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With this approximation, the incoming partial current for each group is simply determined from 

the outgoing partial current of the same group only. By comparing Eq. (4.1) and (4.2), the 

following relation can be obtained 
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Figure 4.4. OpenMC model for driving albedo response matrix for MSRE ex-vessel regions. 

If the reflection is dominant to slowing down in the ex-vessel regions, 
g can be approximated 

by the diagonal elements gg  of the albedo response matrix. However, since the neutron slowing 

down in the thermal shield and insulator is significant, the group-wise albedo values g  depend 

on the outgoing partial currents and thus the problem to be solved, whereas the albedo response 

matrix in Eq. (4.1) depends on the ex-vessel regions only. The diagonal albedo matrix was 

calculated from OpenMC calculations with the full core model including the ex-vessel regions, as 

shown in Fig. 4.1, by tallying the outgoing and incoming partial currents on the outer surface of 

the reactor vessel. A set of 16-group albedo values were calculated for each of the radial, bottom, 

and top boundary surfaces. Appendix F provides the calculated diagonal albedo matrices of the 

235U and 233U fuel cores with control rods at the fully withdrawn position. It is noted that a few 

albedo values for the three lowest energy groups are greater than one. These unphysical values are 

due to the slowing down of leaked neutrons in the ex-vessel region.   

The PROTEUS-NODAL core models in Cartesian and R-θ-Z geometries and the albedo 

boundary conditions were assessed using steady state core configurations of the 235U and 233U fuel 
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cores of MSRE. The effects of the ex-core regions were also estimated by performing an additional 

OpenMC calculation without the ex-vessel regions. The exclusion of the ex-vessel regions 

increased the net leakage from the reactor vessel from 18.4% to 21.9% and thus reduced the 

multiplication factor from 1.04826 to 1.04255. The resulting effective multiplication factor and 

leakage fraction of PROTEUS-NODAL were compared with the reference results from the 

OpenMC full core model including the ex-vessel regions and the results are summarized in Table 

4.2. The Cartesian geometry model introduces a significant error in the leakage fraction because 

of the approximate representation of the radial boundary and the associate homogenization. For 

both albedo boundary conditions, the Cartesian geometry model underestimates the eigenvalue by 

~750 pcm for the 235U core and by ~1100 pcm for the 233U core. The leakage fraction error depends 

on the employed boundary condition. With the approximate diagonal albedo matrices generated 

separately for each of the 235U and 233U cores, the leakage fraction error is 8.9% for the 235U core 

and 8.5% for the 233U core. The full albedo response matrix reduces the leakage fraction error from 

8.9% to 4.4% for the 235U core and from 8.5% to 5.1% for the 233U core.      

Table 4.2. Comparison of Effective Multiplication Factor and Leakage Fraction of MSRE. 

Core Code 
Core 

Model 

Albedo 

Matrix 
k-eff 

Diff. 

(pcm) 

Leakage 

Fraction 
Diff. (%) 

235U 

OpenMC - - 1.04826 - 0.184 - 

PROTEUS

-NODAL 

Cartesian 
Diagonal 1.04076 -750.4 0.200 8.89 

Full 1.04107 -719.2 0.192 4.35 

R-θ-Z 
Diagonal 1.04801 -25.0 0.191 3.78 

Full 1.04818 -8.3 0.184 0.05 

233U 

OpenMC - - 1.07103 - 0.216 - 

PROTEUS

-NODAL 

Cartesian 
Diagonal 1.06020 -1082.5 0.234 8.54 

Full 1.06014 -1089.4 0.227 5.13 

R-θ-Z 
Diagonal 1.07200 97.1 0.221 2.62 

Full 1.07208 104.6 0.214 -0.55 

 

Even with the additional homogenization in the inner core region, the R-θ-Z geometry model 

yields very accurate eigenvalue results. The eigenvalue is underestimated by less than 25 pcm for 

the 235U core and overestimated by ~100 pcm for the 233U core. Both the full albedo response 

matrix and the approximate albedo matrix yield comparable eigenvalue results. However, for the 

leakage fraction, the approximate diagonal albedo matrices yield 3.8% error for the 235U core and 
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2.6% for the 233U core while the full albedo response matrix yields very accurate results within 1% 

error (0.05% for the 235U core and 0.55% for the 233U core). Based on these observations, the 

MSRE experiments were analyzed using the R-θ-Z geometry core model and the full albedo 

response matrix.  

4.3. Analysis of Static Experiments 

Validation tests of the PROTEUS-NODAL code were performed using the static experiments 

performed at the 235U and 233U cores of the MSRE. The experimental data were obtained from Ref. 

[8, 77, 83]. These data include the control rod worth, the isothermal temperature coefficient, and 

the reactivity loss due to fuel circulation in the 235U and 233U cores. The measured reactivity values 

have an uncertainty of 2% that is attributed mainly to the reactor period measurement, which has 

the most contribution to the experimental uncertainty [77]. 

4.3.1. Control Rod Worth  

The MSRE was designed to be operated with three control rods made from gadolinium in the 

form of Gd2O3-Al2O3 (70-30 wt.%) ceramic. The control rod worth was determined from the 

reactivity change caused by the control rod movement. In the experiment, the reactivity was 

calculated from the in-hour equation using the precalculated kinetics parameters and the inverse 

of the measured stable period of the reactor. The period measurements were generally made in 

pairs. The rod being calibrated was first adjusted to make the reactor critical at about 10.0 W. Then 

it was pulled a prescribed distance and held there until the power had increased by about two 

decades. Then, the rod was then inserted to bring the power back to 10.0 W, and the measurement 

was repeated. The stable period was determined by averaging the slopes of the two curves, which 

usually agreed within about 2%. The observed periods were generally in the range of 30 to 150 

seconds. The differential worth measurements were made with the fuel pump off, and theoretical 

corrections were applied to these measurements to account for the rod shadowing effect and put 

all the measurements relative to the initial critical concentration. In addition, the measurements 

were repeated while the fuel was circulating in the system, and the inverse of the measured period 

was used to calculate the reactivity using the modified in-hour equation for flowing fuel. Similar 

values of the control rod worth were obtained. However, the uncertainty in the calculated reactivity 

was higher because of the flow effect on the reactivity and the existence of the circulating gas [77, 

83].  
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The control rod worth for stationary fuel was calculated at a temperature of 922 K using the 

OpenMC and PROTEUS-NODAL codes. The worth of one, two, and three (bank) control rods 

were calculated at different uranium loadings by taking the reactivity difference of the desired 

control rods at fully withdrawn and fully inserted positions. Table 4.3 compares the calculated 

values of OpenMC and PROTEUS-NODAL with the measured values. The OpenMC results agree 

well with the measured values within one measurement uncertainty (1σ) except for the cases of 

control rod No. 1 (Cases 1 and 8), for which the deviation is between 1σ and 2σ. The PROTEUS-

NODAL results also show good agreement with the measurements within 2σ except for Cases 1 

and 8. The results of Cases 1 and 8 deviate from the measurements by 3.6σ and 6.6σ, respectively. 

Figure 4.5 compares the differential and integral worth of the control rod No. 1 (regulating rod) 

calculated with OpenMC and PROTEUS-NODAL with the measured data, respectively. The 

OpenMC results agree well with the measurements. However, the PROTEUS-NODAL results 

show larger deviations due to the homogenization error in the control rod region and the diffusion 

theory limitations.  

Table 4.3. Measured and Calculated Values (%∂k/k) of Control Rod Worth. 

4.3.2. Temperature Coefficients 

For the 235U fuel core, the effect of temperature on reactivity was measured in three separate 

experiments in which the electric heaters were adjusted to change the system temperature slowly 

while the critical position of the regulating rod was recorded. The experiment gave the isothermal 

temperature coefficient (ITC), which represents the sum of the fuel salt and the graphite 

temperature coefficients. The change in the critical position of the regulating control rod was 

Case Core 
Control 

Rods 

235U 

(kg) 
Measurement 

Calculation 

OpenMC PROTEUS 

1 

235U 

1 65.25 2.260 ± 0.064 2.291 ± 0.014 2.491 

2 

1 and 2 

67.94 4.099 ± 0.116 4.045 ± 0.014 3.928 

3 69.94 3.975 ± 0.112 3.946 ± 0.014 3.854 

4 71.71 4.075 ± 0.115 3.892 ± 0.013 4.071 

5 
Bank (1, 

2, and 3) 

67.94 5.596 ± 0.158 5.744 ± 0.014 5.497 

6 69.94 5.611 ± 0.159 5.607 ± 0.015 5.394 

7 71.71 5.570 ± 0.158 5.552 ± 0.014 5.674 

8 
233U 

1  2.580 ± 0.073 2.713 ± 0.015 3.064 

9 Bank  6.900 ± 0.195 6.776 ± 0.015 7.183 
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converted into reactivity using the control rod worth curves. The ITC was measured for three 235U 

loadings with a temperature range from 895 K to 936 K, and the ITC values were ranging from -

13.032 pcm/K to -13.41 pcm/K as shown in Fig. 4.6. The experiment at 71.7 kg loading shows a 

lower slope below about 895 K because of the increasing amount of helium bubbles in the 

circulating salt as the temperature was lowered, which reduces the amount of fuel salt in the core. 

Thus, the slope of the lower part of the curve was not considered in calculating the temperature 

feedback coefficient [77]. 

   

Figure 4.5. Differential (left) and integral (right) worth of control rod No. 1 of MSRE. 

The fuel salt temperature coefficient was measured by keeping the fuel salt in circulation and 

heating the stagnant coolant salt in the secondary loop. Then, the coolant pump was started, 

introducing a hot slug into the heat exchanger and subsequently into the core. The change in 

reactivity was attributed entirely to the change in temperature of the fuel and the fuel temperature 

coefficient was -8.46 ± 1.26 pcm/K. The graphite temperature coefficient was assumed to be equal 

to the difference between the ITC and the fuel salt temperature coefficient [77]. 

For the 233U fuel core, the effect of temperature on reactivity in the MSRE was measured three 

times by slowly changing the temperature from 908 K to 936 K. There was considerable variation 

found among the measured values in these experiments due to the presence of helium bubbles in 

the circulating fuel. In the first measurements, the fuel pump was operating to circulate the heated 

fuel salt throughout the core. Then, the pump was turned off to allow gas bubbles that were 
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circulating with the fuel salt to float up out of the core. The measured ITC with the pump off was 

-13.95 pcm/K and -12.42 pcm/K with the circulating fuel. The difference is due to a large amount 

of gas bubbles circulating with the salt, and the fact that the void fraction is increasing with 

decreasing temperature. The fuel salt density change due to the dependence of gas tends to offset 

the salt density change with temperature by reducing the magnitude of the reactivity effect.  

 
Figure 4.6. Effect of core temperature on reactivity [77]. 

In the second measurement, the ITC measurement was repeated. The results with the pump off 

were the same as the first measurement, but -13.32 pcm/K with the circulating fuel. In the third 

measurement, the ITC measurement was performed at a reduced fuel circulation rate without 

turning the pump turned off to reduce the void fraction in the fuel salt by allowing the gas bubbles 

to float up out of the core. The measured ITC value with the pump running at reduced speed was 

-15.3 pcm/K. This indicates that the effects of gas had not been eliminated in the first and second 

measurements by just stopping the pump. The ITC value of the third experiment was considered 

as the final measured value of the ITC. The individual contribution of the fuel salt to the overall 

temperature coefficient was not measured experimentally [83]. 

Using the OpenMC and PROTEUS-NODAL codes, the temperature coefficients of the 235U 

and 233U fuel cores were calculated. The temperature was varied between 850 K and 1000 K, and 

the temperature coefficients were determined by the linear regression of the reactivity changes 

with temperature, as shown in Fig. 4.7 for the 235U and 233U cores, respectively. The graphite 

temperature coefficient was determined from the difference between ITC and fuel temperature 

coefficient. 
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Figure 4.7. Reactivity feedback coefficients of 235U core (left) and 233U core (right) calculated 

with OpenMC. 

Table 4.4 compares the calculated temperature coefficients with the measured values. The 

PROTEUS-NODAL results agree very well with the OpenMC results for all temperature 

coefficients as expected. For the 235U fuel core, all the calculated temperature coefficients of 

PROTEUS-NODAL show good agreements with the measurements within 2.5 measurement 

uncertainties (2.5σ). The calculated ITC for the 233U fuel core with PROTEUS-NODAL also 

agrees with the measured value within 1.7σ.  

Table 4.4. Reactivity Feedback Coefficients (pcm/K) of MSRE. 

Core 
Temperature 

Coefficient 
235U (kg) Measurement 

Calculation 

OpenMC PROTEUS 

235U 

ITC 

67.86 -13.410 ± 0.379 -13.003 ± 0.500 -12.710 

69.85 -13.032 ± 0.369 -12.186 ± 0.525 -12.117 

71.71 -13.140 ± 0.372 -12.245 ± 0.488 -12.229 

Fuel 71.71 -8.460 ± 1.260 -7.358 ± 0.508 -7.251 

Graphite 71.71 -4.680 ± 1.314 -4.887 ± 0.733 -4.978 

233U 

ITC - -15.300 ± 0.433 -16.115 ± 0.505 -16.031 

Fuel -  -10.733 ± 0. 531 -10.506 

Graphite -  -5.382 ± 0.733 -5.525 

4.3.3. Reactivity Loss by Fuel Circulation 

In PROTEUS-NODAL, the reactivity loss by fuel circulation for MSRE was calculated by the 

difference of the effective delayed neutron fractions between stationary and flowing fuels. During 
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the zero-power experiment of the MSRE with 235U fuel salt, the critical rod position and period 

measurements were made after each addition of the fuel salt, with the fuel pump off and with the 

circulating fuel. The reactivity change between stationary and circulating fuels was measured to 

be 212.0 ± 4.0 pcm, which is caused by the loss in the delayed neutron fraction due to the 

circulation of the fuel salt. For the 233U fuel core, the effect of the fuel circulation on the reactivity 

was not measured [77, 83]. Table 4.5 presents the measured and calculated reactivity losses due to 

fuel circulation for the 235U and 233U cores. The PROTEUS-NODAL result for the 235U fuel core 

agrees reasonably well with the measured value with an error of 5.1%.  

Table 4.5. Loss of Delayed Neutron Fraction in Steady State Operation of MSRE. 

Core Measurement/Code Total 1 2 3 4 5 6 

235U 
Experiment 212.0       

PROTEUS 222.9 15.2 74.4 56.0 68.8 8.0 0.4 

233U 
Experiment -       

PROTEUS 110.4 16.1 40.4 24.6 26.8 2.5 0.1 

Table 4.6 compares the effective delayed neutron fraction of stationary and circulating fuels 

and the prompt neutron generation time calculated with PROTEUS-NODAL. The effective 

delayed neutron fraction of the 233U core is much lower than the 235U core since the delayed neutron 

fraction of the thermal fission of 233U is 270 pcm, while it is 650 pcm for 235U.  However, the 

fractional loss of delayed neutrons by fuel circulation is about 35% for both 235U and 233U cores 

since the flow rates are similar in both cores. 

Table 4.6. Calculated Kinetics Parameters of PROTEUS-NODAL. 

Core βeff (pcm) βcirc (pcm) βcirc/βeff βloss (pcm) βloss/βeff Λ (ms) 

235U 653.7 430.8 0.66 222.9 0.34 0.245 
233U 293.8 183.3 0.62 110.4 0.38 0.379 

The forward and adjoint delayed neutron precursor concentrations were calculated for the 

stationary and flowing 235U fuels. Figure 4.8 compares the axial distributions of precursor 

concentrations of the 235U core for stationary and flowing fuels. The precursor concentration of 

stationary fuel is symmetric about the core mid-plane for all the six precursor groups and shows a 

peak in the bottom and the top region because of the slowing down of fast neutrons leaking out of 

the core. On the other hand, for the flowing fuel, the distribution of the precursor concentration is 

almost uniform for the precursor group 1 because of its relatively long half-life, is top skewed for 
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precursor groups 2 to 5 due to the upward flow and is similar to the stationary fuel concentration 

for group 6 due to the short half-life. Because of the upward flow, flowing fuel shows a smaller 

peak in the bottom region but a larger peak in the top region than stationary fuel. Figure 4.9 

compares the axial distributions of adjoint precursor concentrations (i.e., the importance of 

precursor concentration to reactivity). The adjoint precursor concentrations of stationary fuel are 

also symmetric about the core mid-plane for all the six precursor groups, and they are similar to 

each other since the six delayed neutron spectra are similar. On the other hand, in flowing fuel, the 

axial distributions of adjoint precursor concentrations are bottom skewed because of their 

downward flow. The magnitude of adjoint precursor concentration increases with increasing 

precursor group number as the half-life decreases. It also shows a peak in the bottom and the top 

region due to the massive change in the fuel salt volume and flow rate. 

 
Figure 4.8. Axial distributions of delayed neutron precursor concentrations. 

 
Figure 4.9. Axial distributions of adjoint delayed neutron precursor concentrations. 
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4.3.4. Temperature Distribution 

The fuel salt temperature, density, and velocity distributions, and the graphite temperature 

distribution within the core were determined for the thermal feedback calculation. The thermal 

hydraulics calculations for the MSRE were performed using the thermal hydraulics solver of 

PROTEUS-NODAL. The core was divided into multiple parallel axial channels, which are 

connected at the inlet and outlet. The mass flow rates of individual fuel channels were calculated 

using the equal pressure drop boundary conditions over all channels.  

The moderator temperature was calculated by considering the heat generation and radial heat 

conduction in graphite moderator and the heat transfer from graphite moderator to fuel salt. The 

fractional heat generation rate in graphite due to photon interactions and neutron scattering was 

determined from a coupled neutron and gamma transport calculation with OpenMC. Unit cell and 

full core calculations were performed with and without gamma ray transport. Table 4.7 summarizes 

the resulting fractional heat deposits in the moderator. The full core model yields a slightly higher 

heating fraction in the moderator than the unit cell model since the photons and neutrons produced 

in the unmoderated top and bottom regions contribute to the heating in the moderator. The full core 

calculation with gamma transport yields a fractional heat deposit in graphite of 5.5%.  

Table 4.7. Fractional Heat Deposits in Moderator of MSRE Core. 

 

 

 

Figure 4.10 shows the distribution of heat deposit at the core mid-plane obtained from the 

coupled neutron and gamma transport calculation with OpenMC for the full core model. The heat 

deposit is the highest in the fuel salt channels in the central core region except for a few central 

channels around the control rods. Also, Fig. 4.10 shows the distributions of fractional heat deposits 

in fuel and moderator over energy groups. The fuel salt heating is mainly due to thermal fission 

and the graphite heating is mainly by the neutrons and photons around 1 MeV.  

Computational 

Model 

Fractional Heat Deposit in Graphite (%) 

No Gamma Transport Gamma Transport 

Unit Cell 1.182 ± 0.001 4.553 ± 0.001 

Core 1.836 ± 0.001 5.467 ± 0.001 
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Figure 4.10. Distribution of heat deposit rate (kW) at core mid-plane (left) and fractional heat 

deposits in fuel and moderator over energy groups (right). 

Figure 4.11 compares the axial temperature distributions of fuel and moderator in the hottest 

channel calculated using the thermal hydraulics solver of PROTEUS-NODAL and compared with 

the ORNL design calculation results [84]. It also presents the temperature field in the core obtained 

from PROTEUS-NODAL calculation. The temperature distributions of PROTEUS-NODAL agree 

well with the ORNL results for both fuel and graphite temperatures. The axial temperature 

distribution in graphite shows a slightly higher peak than the ORNL distribution. This might be 

due to the different graphite heating fractions used in the calculations. 

       

Figure 4.11. Comparison of axial temperature distributions in hottest channel (left) and 

PROTEUS-NODAL temperature field in core (right). 
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4.4. Protected Pump Transients 

In the protected pump transients of the 235U fueled MSRE, the reactor was operated at a low 

power level, and the fuel flow rate in the primary loop was increased or decreased by adjusting the 

speed of the fuel pump. The control rod position was adjusted to maintain a constant power level 

by compensating for the reactivity changes due to the redistribution of delayed neutron precursors. 

The recorded control rod positions were converted into reactivity using the integral control rod 

worth curves. The PROTEUS-NODAL calculation was performed for the specified fuel flow rate 

as a function of time under the assumption of uniform fuel temperature and velocity. The fuel flow 

rates in Fig. 3.23 were used as the PROTEUS-NODAL input data for pump startup and coast 

down, which were deduced from the coolant flow rate and the fuel and coolant pump speeds. The 

reactivity loss was calculated at each time step by the difference in the effective delayed neutron 

fraction between stationary and flowing fuels. Figure 4.12 compares the compensated reactivity 

transient calculated by PROTEUS-NODAL with the measured data for the protected pump startup 

and coast down.  

 
Figure 4.12. Compensated reactivity during protected pump startup and coast down transients. 

During the protected pump startup transient, the fuel starts to flow outside the core, which leads 

to reactivity loss because of the decay of delayed neutron precursors outside the core or at regions 

of lower importance. The reactivity loss increases with increasing flow velocity. Oscillatory 

behavior is observed in the compensated reactivity because of recirculated precursors. The positive 
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reactivity effect of the recirculated precursors entering the core is clearly seen 13 s after pump 

startup. The difference between the calculated reactivity loss of PROTEUS-NODAL and the 

measurement can be attributed to the delay in the response of the reactor control system and the 

difference in the delayed neutron data. During the protected pump cost down transient, the 

reactivity increases because more precursors decay in the core region with decreasing the fuel 

velocity. Therefore, the compensated reactivity continues to decrease and reaches almost zero 

when all the precursors decay in the core. It can be seen that the PROTEUS-NODAL solution 

follows the measured data very well. 

4.5. Natural Circulation Test 

The natural circulation test in the 233U fueled MSRE core was analyzed to validate the coupled 

neutronics and thermal hydraulics solvers of the PROTEUS-NODAL code. The purpose of the 

natural circulation test was to determine the characteristics of heat removal from the MSRE fuel 

system by natural convection. At the beginning of the transient, the reactor was operated at low 

power of about 4.1 kW with a limited fuel flow rate. After that, the core inlet temperature was 

decreased by increasing the heat removal rate in the air radiator of the secondary loop for six hours. 

The reactor was controlled entirely by the inherent thermal feedback of the system during this 

transient and no adjustments were made to the control rods. In this test, there is no data recorded 

for the fuel salt inlet mass flow rate or the heat removal rate by the secondary loop. Therefore, the 

inlet mass flow rate of the fuel salt was deduced using the recorded data of power and core inlet 

and outlet temperatures and the transit time of the fuel salt in the core. The recorded data over the 

transient period is provided in Fig. 4.13 [83]. 

The natural circulation test was simulated with the PROTEUSNODAL code by assuming that 

the reactor was in steady state conditions at 4.1 kW power. The core inlet temperature and the 

deduced inlet mass flow rate of the fuel salt were used as the boundary conditions for thermal 

hydraulics calculations during the transient period without considering the heat removal in the 

external loop. Figure 4.14 compares the calculated power evolution with the measured data. The 

PROTEUS-NODAL solution follows the measured power evolution very well. The observed 

deviation at the beginning of the transient could be due to the assumed initial steady state. This 

result indicates that PROTEUS-NODAL is able to reproduce the measured power level during this 

long transient for a given inlet temperature and flow rate. 
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Figure 4.13. Recorded power and temperatures during natural circulation test of MSRE [83]. 

 
Figure 4.14. Comparison of power evolution during natural circulation test of MSRE. 

4.6. Summary 

Validation tests of PROTEUS-NODAL were performed using the measurements in the 235U 

and 233U cores of the MSRE. The temperature coefficients, the reactivity loss by fuel circulation, 

the protected pump startup and coast down transients at zero power, and the natural circulation test 

of the MSRE were analyzed. The calculated temperature coefficients of PROTEUS-NODAL show 

good agreements with the measurements within 2.5σ (of measurement uncertainties) for the 235U 
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fuel core and 1.7σ for the 233U fuel core. The calculated reactivity loss due to fuel circulation for 

the 235U core agreed well with the measurement with an error of 5.1%. The analysis of the protected 

pump startup and coast down transients at zero power showed that the PROTEUS-NODAL 

calculation with a given inlet flow rate could follow the time-dependent reactivity change due to 

delayed neutron precursor drift. The analysis of the natural circulation test for six hours showed 

that the PROTEUS-NODAL code could reproduce the measured power evolution due to thermal 

feedback for given inlet temperature and flow rate. 
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Chapter 5. Adaptive Time Stepping for Transient Analyses 
 

 

In many transients, the power change rate varies significantly throughout a transient duration. 

For example, in an UTOP transient of the MSFR benchmark, the power increases rapidly to its 

peak value within 1.0 ms, decreases slowly and then remains almost constant. A small time-step 

size is necessary to represent the rapid initial transient accurately, but it becomes inefficient in 

modeling the slow transient in the later stage. Thus, the use of a fixed time-step size throughout 

the whole duration will yield a solution that is not sufficiently accurate or make the computation 

inefficient, especially for the multiphysics simulation with a coupled neutronics and thermal-

fluidic code system. In addition, for slow transients that last many hours such as the natural 

circulation experiment of the MSRE, an optimum time-step size is necessary to avoid an 

excessively large computational time while maintaining the desired accuracy, but it is not obvious 

to select an optimum time-step size. Therefore, adaptive time stepping is necessary to achieve 

computational accuracy and efficiency at the same time.     

Motivated by the needs for practical transient analyses of fast and thermal spectrum MSRs, an 

adaptive time-step selection scheme is developed based on the control theory. In this scheme, the 

time-step size is selected based on the estimated local solution errors during the transient. This will 

help in avoiding the loss of accuracy that might be introduced due to a large time-step size and in 

eliminating the computational inefficiency due to unnecessarily small time-step size. In addition, 

variation of time-step size might be necessary to obtain an accurate solution for nonlinearly 

coupled neutronics and thermal-fluidic simulation. Adaptive time-stepping has received much 

attention in various engineering fields in order to select an optimum time-step size within a 

specified solution error tolerance. The theory of automatic control is widely used for adaptive 

numerical time-stepping in solving ordinary differential equations (ODE's) by numerical 

integration methods to minimize the computational efforts while maintaining the accuracy of the 

solution. The efficiency of an adaptive time-stepping method depends on the discretization scheme 

and the problem properties. The basic idea of the control theory for adaptive time-stepping is to 

select the time-step size while monitoring the local error of the problem solution. The local error 
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is estimated and maintained within the specified accuracy requirement by selecting the next time-

step size according to a certain control algorithm. Adaptive time-stepping using control theory was 

studied and applied thoroughly in several engineering fields. Also, other adaptive schemes were 

applied in the field of nuclear reactor physics. These schemes are discussed very briefly in this 

section. 

The work of Soderlind and Gustafsson was focused on control theory applications to automate 

time-step size control techniques for numerical integration methods of ODE’s with explicit and 

implicit Runge-Kutta methods [85, 86, 87, 88, 89]. Additional applications of more advanced 

controllers and digital filters can be found in [90, 91 92]. Also, Ref. [93, 94] investigated the use 

of control strategies for time-step selection and convergence rate improvement of non-linear 

iterative processes in 2D coupled viscous flow and heat transfer by utilizing proportional integral 

derivative controllers to select the time-step size. More applications of the control theory for time-

step size control in other fields can be found in Ref. [95, 96]. Recently, the control theory was used 

in the field of reactor physics to determine the time-step size for nuclide depletion calculations and 

the quasi-static method. In Ref. [97], the control theory approach was adopted to determine the 

time-step size of nuclide depletion simulations for 2D lattices with strong absorbers, which require 

a small depletion step size. Another application was introduced in Ref. [98], where an adaptive 

selection of the time-step size was employed for the quasi-static method for the neutron transient 

analysis. A different approach was introduced in Ref. [99, 100, 101], where adaptive time-stepping 

schemes were suggested for the neutron diffusion equation as well as neutron transport equation 

by estimating the local truncation error from the second derivative of the neutron flux with a finite 

difference approach. A similar approach was adopted in Ref [102], where the alpha eigenvalue 

problem was used to estimate the second derivative of the neutron flux. Also, an adaptive time-

step approach was used in Ref. [103] for the quasi-static method and the neutron diffusion equation 

by doubling or halving the time-step size based on the estimated solution error. 

In this Chapter, the theory and the derivation of a time-step selection scheme based on the 

control theory are discussed first. Then, the adaptive time-step selection algorithm introduced in 

the PROTEUS-NODAL code for transient analysis of MSRs is presented. This is followed by 

application and numerical examples to test the robustness of the implemented algorithm using the 

previously analyzed transient scenarios of the MSFR benchmark and the MSRE experiment with 
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comments and suggestions on selecting the controller parameters implemented in PROTEUS-

NODAL. 

5.1. Truncation Error  

The implicit Euler method (backward differencing) is typically employed in discretizing the 

TFSP as discussed in Chapter 2. The truncation error can be derived by applying Taylor series 

expansion in time with backward differencing for the neutron scalar flux as 
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In Eq. (5.1) and Eq. (5.2), the position and energy dependency of the scalar flux are omitted for 

simplicity. By rearranging the terms of Eq. (5.2), the first derivative can be written with a backward 

difference formula as 
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where 1n n n nh t t t −=  = −  is the time-step size, and n  is the local truncation error. In Eq. (5.4), n  

is proportional to nh  and the second derivative of the scalar flux. Thus, as nh  goes to zero, the 

truncation error approaches zero. This indicates that using a very small time-step size will reduce 

the truncation error and the discretized solution approaches the true solution. Introducing the 

backward difference formula in Eq. (5.3) into the neutron diffusion equation in Eq. (2.13) and the 

delayed neutron precursors equations in Eq. (2.64) will lead to the following 
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The truncation errors introduced by the discretization of the time derivatives of the neutron 

flux and the delayed neutron precursor equations in Eq. (5.5) and Eq. (5.6) act as an artificial sink 

or source depending on the solution of the problem and the time-step size. This term needs to be 
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controlled and maintained as a constant small value for the whole simulation period of the transient 

in order to maintain an accurate solution and to avoid the buildup of the error and deviation from 

the true solution. The local error of the problem can be controlled by selecting a time-step size that 

ensures the local error is within a specified limit. From Eq. (5.4), the time-step size can be predicted 

if the second derivative of the scalar flux is known. An adaptive time-stepping approach can be 

derived to predict the time-step size by limiting the truncation error to be smaller than a 

prespecified error tolerance   as 

 n  . (5.7) 

Then, with the estimated second derivative of the scalar flux, the time-step size can be calculated 

by fulfilling the above criterion as  
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tt
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Eq. (5.8) raises two fundamental issues for the prediction of the time-step size regarding the 

stability and accuracy of the approach. The first one is how to estimate the second derivative 

accurately. The second one arises from the dependency of the second derivative on the space and 

energy, so constraint on the truncation error must be selected accordingly. References [99, 100, 

101] investigated the estimation of the second derivative and the selection of the constraint on the 

truncation error for neutron diffusion equation and point kinetics equation. Later in this Chapter, 

the selection of the tolerance level and estimating the second derivative will be discussed. 

5.2. Control Theory Approach 

The main objective of the control theory is to develop an algorithm governing the application 

of system inputs to drive the system to an optimal state while ensuring control stability level. In 

the following, the elementary local error control algorithm will be revisited. Then, the control 

theory terms are defined from a feedback control point of view for the discrete-time integral (I), 

proportional-integral (PI), and proportional-integral-derivative (PID) controllers [90, 91]. The step 

size selection can be considered as a control problem as in Fig. 5.1. An estimate of the local error 

is compared to a user-specified accuracy requirement, and the result is fed back and used to 

determine a new time-step size. In this way, the controller should keep the local error close to a 

specified tolerance level [87].  
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Figure 5.1. View of feedback control system for time-step size selection [87]. 

5.2.1. Basic Controllers 

For an approximate solution, there is a possibility of deviation of that solution from the true or 

the exact solution. This deviation is called the error which represents how the approximate solution 

fails to predict the true solution. As an example, consider an initial value problem as in Eq. (5.9) 

has a true solution Truey  and an approximate or numerical solution Numy  

 
0( ), (0) , 0

dy
f y y y t

dt
= =  . (5.9) 

The local error can be defined as the deviation of the numerical solution from the exact solution at 

a single time point n  as n Num True

n ne y y= − . The numerical solution converges to the true solution as 

the local error approaches zero. The global error is usually defined as the difference between true 

and numerical solutions after a certain time. In other words, the global error e  is the accumulation 

of the local error up to time t and can be written as 

  
1 1

N N
n Num True

n n

n n

e e y y
= =

= = −  . (5.10) 

If the numerical method used to obtain the approximate solution has a global order of accuracy p, 

then it is expected that the global error will equal the truncation error as ( )pe o h= . Suppose that 

the local error is ( )n qe o h= , where q is the order of the error estimate for all time points n, then 

for time T Nh=  one can write 
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1 1
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Eq. (5.11) gives the relationship between p  and q  as 1q p= + . This means that if the global 

order of accuracy is p, then the local error behaves as ( )1n pe o h += . In solving ODE, the local error 

introduced from discretizing the time component is accumulated into the global error as marching 

with time. It is hard to control the global error of the problem, but it is much easier to control the 

local error at each time step considering the appropriate time-step size. The local error is 

proportional to the time-step size as 1 1~n pe h+ + , and by expanding the local error in an asymptotic 

series [104], then one can write 

   ( )1 1 2n n p pe h o h+ + +=  + , (5.12) 

where n  is the principal error function at state point n and it depends on the solution. Similarly, 

an estimate for the local error 1ˆne + , which is the difference between the approximated solution and 

the reference discrete solution 1ˆ ny +  as 1 1 1ˆ ˆn n ne y y+ + += − , can be derived as 

   ( )ˆ ˆ1 1 2ˆˆn n p pe h o h+ + +=  + , (5.13) 

where the order p̂ p  is depending on the design objectives of the method. The accuracy of the 

approximated solution can be maintained by forcing the local error estimate to be always below a 

prespecified value or tolerance level as 1 1ˆ ˆn nr e tol+ +=  . This can be achieved by selecting a time-

step size that fulfills the above requirement. The elementary local error control algorithm predicts 

the time-step size can be derived as presented in Ref. [104, 105, 106] as 
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where   is the user-specified tolerance, and 1k p= +  is the order of the integration method. The 

derivation of this control algorithm is discussed in Ref. [91]. This scheme ensures that the 

estimated local error is close to the user-specified tolerance. The derivation of elementary 

controller assumes the local error varies asymptotically with the time-step size as 1 ˆˆn n kr h+ =  , 

and the norm of the principal error function varies slowly as 1ˆ ˆn n−   . In order to derive the 

discrete-time integral controller (I) with control theory, the elementary local error controller in Eq. 

(5.14) is rewritten as a linear difference equation as 

 ( ) ( ) ( ) ( )( )1

1

1
ˆlog log log log n

n nh h r
k

 +

+ = + − , (5.15) 



 98 

where the term ( ) ( )1ˆlog log nr +−  is called the control error, the factor 1/Ik k=  is the integral 

gain. The controller acts to make the local error estimate ( )1ˆlog nr +  equals the setpoint ( )log  , so 

that the control error vanishes, and only the control ( )log nh  will change. Solving Eq. (5.15) by 

taking the sum of all past control errors as 

 ( ) ( ) ( ) ( )( )0

1

ˆlog log log log
n

m

n I

m

h h k r
=

= + − . (5.16) 

In this integral control, the step size is obtained as a weighted sum of all past control errors. Under 

the assumption that 1 ˆˆn n kr h+ =   and the local error varies asymptotically with time step, then 

 ( ) ( ) ( )1 ˆˆlog log logn n

nr k h+ =  + . (5.17) 

Inserting Eq. (5.17) into Eq. (5.15) then  

 ( ) ( ) ( ) ( ) ( )( )1
ˆlog 1 log log log n

n I n Ih kk h k + = − + −  . (5.18) 

Thus, the root of the characteristic equation in Eq. (5.18) is 1 Iz kk= − . The integral gain Ik  is not 

determined by the asymptotic model of the process. It is a free design parameter used to achieve a 

good overall closed-loop dynamic behavior for process and controller together. In Ref. [90, 91], it 

is mentioned that the choice of Ikk is a tradeoff between response time and sensitivity; for an I 

controller to work well one must choose ( )0,1Ikk  . The controller behavior based on the choice 

of Ikk  can be summarized as 
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Therefore, a low gain controller ( )0,1Ikk   yields smoother step size sequences than the 

deadbeat control 1Ikk = . The general I controller [90, 91], can be written as 
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n nn
h h

r


+ +
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. (5.20) 

Comparing the elementary controller in Eq. (5.14) to the I controller in Eq. (5.20), the only 

change is the integral gain Ik  without violating the assumption of the asymptotic behavior of the 
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error model in order to achieve smoother step size sequences. By dividing the local error estimate 

by the prespecified tolerance level, Eq. (5.20) can be rewritten as  

 ( )
1

1 1
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n
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n n

n n
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h R h R
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−

+ +

+ = = . (5.21) 

The calculated time-step size with the I controller depends on the initial time-step size, the integral 

gain, and the tolerance level. It is very important to select these parameters carefully based on the 

expected outcome. Later in this Chapter, further analysis, and recommendation on the optimum 

values of these parameters will be provided depending on the transient that is being analyzed.   

5.2.2. Higher Order Controllers 

In control theory, it is common to use more advanced control structures to increase robustness 

and to improve control performance, namely the proportional-integral (PI), and proportional-

integral-derivative (PID). The PI controller adds an extra term proportional to the control error of 

the previous integral term called the proportional gain Pk . A relation for the PI controller can be 

derived in a similar way to the I controller as 

 ( ) ( )
( )
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1
ˆ ˆI P Pk k k

n n

n nh R R h
− +

+

+ = . (5.22) 

The proportional gain will have an important role in increasing or decreasing the time-step size 

based on the error behavior. The proportional gain accounts for error trends, if ˆ nR  is increasing, 

then, the ratio of the control error is less than 1, and this will result in a quicker step size reduction 

than the I controller. Also, a decreasing error leads to a faster step size increase. The integral and 

proportional gains need to be determined based on the required behavior.  

The PID controller adds an extra term that accounts for the derivative action of the previous 

errors rates of change to achieve faster response and allowing larger integral and proportional 

gains. The PID controller can be written like PI controller with the extra term accounts for the 

error rate of change as 
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ˆ ˆ ˆI P D P D Dk k k k k k

n n n

n nh R R R h
− + + + −

+ −
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where Dk  is the derivative gain. The PID controller combines the I and PI controllers and 

introduces an extra term to achieve a faster response to the system changes. In the following 

analysis, the PID controller is selected for the adaptive time-stepping algorithm.  
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5.3. Estimation of Local Error 

In order to predict the new time-step size using I, PI, or PID controllers as in Eq. (5.21), Eq. 

(5.22), or Eq. (5.23), the local error must be calculated. The local error estimate normalized by the 

tolerance level can be generalized from Eq. (5.13) as 

   ˆ1 11ˆ ˆn n p

q
R h



+ +=  . (5.24) 

The tolerance in Eq. (5.20) is a user-specified value, and it is a function of the parameters of 

the problem as the energy and space. To provide more freedom for the user, Eq. (5.24) can be 

normalized to the solution so that the tolerance value can be specified as a dimensionless 

parameter. Then, Eq. (5.24) can be written in a more generalized way as 
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In order to calculate the local error estimate, the principal error function needs to be estimated. 

In solving the time-dependent neutron diffusion equation, the neutron flux is discretized in time, 

and it is the most sensitive parameter to changes compared to the delayed neutron precursor 

concentration, the fuel salt temperature, and velocity. So, it should be used to estimate the principal 

error function. The local error is proportional to the time-step size and the principal error function 

as shown in Eq. (5.13). Also, Eq. (5.4) shows that the local error is proportional to the time-step 

size and the second derivative of the neutron flux. By comparing Eq. (5.4) and Eq. (5.13) and 

considering the second order of accuracy ( ˆ 1p = ), then the following relation can be derived as 
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Then, a relation of the principal error function in terms of the second derivative can be written as 
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The second derivative in Eq. (5.27) can be calculated using the finite difference approach as 
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Then, the local error estimate can be calculated as 
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An alternative way to calculate the second derivative is to assume the flux is varying 

exponentially in the time interval [ , ]n nt t−1  as ( ) 1( )

1( ) n nt t

nt t e
  −−

−= , then the second derivative can 

be obtained analytically as 
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, (5.30) 

where the inverse period n  is approximately determined using the flux solutions at nt −2  and nt −1  

as   
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Eq. (5.30) will always lead to a value greater or equal to zero. To avoid this situation, the second 

derivative is evaluated with the implicit Euler scheme as in Eq. (5.3), then calculating the first 

derivative analytically as 
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Then, the local error estimate can be calculated as 
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If the principal error function is slowly varying in time as assumed in Eq. (5.14), it can be 

approximated from the first derivative of the neutron flux in Eq. (5.3) with the first-order accuracy 

( ˆ 0p = ), and the local error estimate can be calculated as 
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At the beginning of the transient calculations, the initial time step must be specified, and after 

that, the I controller can be used to predict the step size of the next transient step. Once the size of 

the first step is determined, the procedure will continue until the end of the transient time using I, 

PI, or PID controllers. 

5.4. Time-Step Control Algorithm  

An adaptive time-step selection algorithm is implemented in the PROTEUS-NODAL code for 

transient analysis of the MSRs based on the control theory approach. The implemented scheme 

will help to avoid any instability issues that might be introduced due to a large time-step size and 
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to avoid any unnecessary calculations for a small time-step size, especially for coupled systems. 

Also, for multiphysics simulations with as loosely coupled physics, the coupled systems are 

nonlinear in time, and step size changes may be necessary to obtain an accurate coupled solution. 

This will help the user by eliminating the burden of prespecifying the time-step size without 

knowing many details of the nature of the transient.  

The implemented time-step selection algorithm can be summarized as in the following. The 

first step is to calculate the neutron flux and the delayed neutron precursor concentration at time 

step n using the updated cross sections and velocity field of the previous time step as in the time-

lagged approach or using the previous Picard iteration values. Then, the fuel salt temperature, 

density, and velocity fields are calculated with the thermal hydraulics solver using the latest power 

distribution. After that, the cross sections of the next time step or the next Picard iteration are 

updated using the fuel salt temperature and density distributions. Once the solution is converged, 

the local error estimates are calculated, and the next time-step size is calculated using I, PI, or PID 

controllers utilizing the values of the previous time-step size, prespecified tolerance, and controller 

gains values.  In the final step, the newly calculated time-step size should be maintained within 

certain limits specified by the user or due to limitations on the coupled codes system. To avoid 

solution instabilities, step size filters are applied, and the new time step will be checked if it 

satisfies these limits. Otherwise, the new time-step size will be adjusted accordingly and proceed 

to the next time step. Algorithm 5.1 provides the steps to select the time-step size with the PID 

controller. 

If the transient that is being analyzed has a massive change in the power at a certain time point 

due to quick insertion of reactivity due to a step movement of control rods or flow back of heated 

fuel to the core with higher temperature, Algorithm 5.1 might miscalculate the next time-step size 

because it is estimated from the previous time step solutions, which didn’t embrace the new change 

yet. A more effective algorithm for time-step size selection can be used that allows rejecting the 

predicted time-step size if the local error estimate is larger than the specified tolerance level. In 

this way, the predicted time-step size will be adjusted to fulfill the prespecified tolerance level or 

minimum time-step size. Algorithm 5.2 provides the steps to select the time-step size with the PID 

controller while allowing the rejection of time-step size to monitor the level of the local error. 

Although this algorithm is computationally more expensive than Algorithm 5.1, it ensures the 

accuracy level of the solution. The steps in Algorithm 5.2 are quite similar to the steps in Algorithm 
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5.1 except for step 5, which will check the local error estimate, adjust the time-step size, and repeat 

the calculations if necessary. 

Algorithm 5.1. Time-step size selection algorithm with PID controller. 

1. Calculate ( ), ,
n

C P with the previous time step ( )
1

,
n

u
−

  

2. Calculate ( ), ,
n

T u with the current time step power distribution ( )
n

P  

3. Update cross sections ( )
n

 using ( ),
n

T   

4. Calculate 1ˆ nR +  

5. Calculate the next time step 
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6. If ( )endt t= terminate calculations Else Go back to 1  

To explain the difference between the two adaptive time-stepping (ATS) algorithms, a 

reactivity insertion (RI) transient without thermal feedback was simulated for 0.2 s. In this 

transient, two step reactivities were inserted, one at time 0.0 s with +100 pcm, and the second at 

time 0.1 s with -100 pcm reactivity insertion. The reference solution was obtained with a pre-

defined or scheduled constant time-step size of 0.1 ms. Figure 5.2 compares the power change of 

the ATS solution algorithms and the reference solution. Figure 5.3 shows the time-step size change 

and local error variation during the transient. After 0.01 s, the power starts increasing 

monotonically due to the positive reactivity insertion. Both solution algorithms provided the same 

solution as the reference, and the predicted time-step size is the same. At time 0.1 s, negative 

reactivity was inserted, and a difference in the ATS solutions is observed.  

Algorithm 5.1 predicts the time-step size based on the behavior of the previous solution and it 

does not allow monitoring of the local error. As a result, the time-step size is miss predicted after 

insertion of the negative reactivity, and it leads to miscalculating the power as well. Algorithm 5.2 

allows monitoring of the local error by rejecting the predicted time-step size if it leads to an 

increase in the local error beyond the prespecified limit, and the time-step size will be reduced and 



 104 

repeat the solution until the criterion is met. It is clearly seen that the solution of Algorithm 5.2 

matches the reference solution all the time. The time-step size tends to increase as the rate of 

change in the power level is low, and it decreases as the rate of change in the power change is high. 

Algorithm 5.2 ensures the accuracy of the solution all the time, despite that it requires more 

calculations which will increase the computational time and reduce the speedup compared to 

Algorithm 5.1. In the remaining analysis in this chapter, Algorithm 5.2 will be used to perform the 

calculations, and its performance will be investigated for various transits of MSRs. 

Algorithm 5.2. Time-step size selection algorithm with PID controller and error monitoring. 

1. Calculate ( ), ,
n

C P with the previous time step ( )
1

,
n

u
−

  

2. Calculate ( ), ,
n

T u with the current time step power distribution ( )
n

P  

3. Update cross sections ( )
n

 using ( ),
n

T   

4. Calculate 1ˆ nR +  

5. If ( ) ( )( )1

min
ˆ 1.0n

nan hdR t+     then (Reject time step) 

  , 1, 1nt t h n n Nrej Nrej= − = − = +  
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6. Else (Calculate the next time step) 
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 End If 

7. If ( )endt t= terminate calculations Else Go back to 1  
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Figure 5.2. Comparison of ATS solution algorithm after step reactivity insertion transient without 

thermal feedback. 

   

Figure 5.3. Variation of time-step size (left) and local error (right) with ATS solution algorithm 

after step reactivity insertion without thermal feedback. 

5.4.1. Step Size Filters  

For coupled transient calculations of the MSR, digital filters were employed on the time-step 

size prediction to avoid any instabilities in the solution of the coupled solvers. The first filter is 

controlled by the user, and it allows to contain the time-step size within upper and lower limits to 

avoid undesired very large or very small time-step sizes as 

 1

min max

nt h t+    . (5.35) 

Another filter is applied to avoid a significant change in the time-step size of two successive 

time points in order to avoid a vast change in the time-step size at a single time point as 
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 10.5 2n n nh h h+  . (5.36) 

The last filter is applied for coupled calculations to ensure the stability of the solution by 

limiting the time-step size according to the change of fuel salt velocity within the axial distance of 

the node to satisfy the CFL (Courant Friedrichs Lewy) condition as 

 
1 1, 0.95n nn n

z z
h h

u u
+ +

 
 = . (5.37) 

An increase of the time-step size beyond this limit will introduce some discrepancies in the 

thermal hydraulics solver. The 0.95 is a safety factor, and it is introduced to make sure that the 

time-step size is less than the limit. If any of these conditions are met, the predicted time step will 

be adjusted to the minimum allowed limit on the time-step size. 

5.4.2. Coupling Scheme  

The transient solvers of PROTEUS-NODAL for neutronics and thermal hydraulics consist 

nonlinear system, and they were coupled by employing the operator splitting approach and 

utilizing the implicit Euler (backward differencing) scheme. Two coupling schemes were 

implemented in PROTEUS-NODAL, the time-lagged (TL) scheme and the Picard iteration (PI) 

scheme. In the time-lagged approach, the neutronics and thermal hydraulics calculations are 

performed once at each time step and marching forward until the end of the simulation time. An 

illustration of the time-lagged coupling scheme is shown in Fig. 5.4. First, the neutronics 

calculations are performed with updated the cross sections and the velocity field from the previous 

time-step to determine the power distribution in the core. Then, the thermal hydraulics calculations 

are performed to obtain the temperature, density, and velocity fields. Finally, the multigroup cross 

sections are updated using the temperature and density fields and move to the next time step.  

The Picard iteration coupling scheme was added to obtain a more accurate solution of the 

coupled physics, and it might allow a larger time step because of the reduced local error. In this 

scheme, the neutronics and thermal hydraulics are performed iteratively within a time step until 

the residual of the solution meets the convergence criterion. An illustration of the Picard iteration 

coupling scheme is shown in Fig. 5.5. At each time step, the neutronics and thermal hydraulics are 

performed at least twice, so that the latest updated cross sections are used for the power calculation, 

which is used in thermal hydraulics parameters calculations. 
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Figure 5.4. Time lagged coupling scheme implemented in PROTUES-NODAL. 

 

Figure 5.5. Picard iteration coupling scheme implemented in PROTUES-NODAL. 

The Picard iteration coupling scheme will ensure the accuracy of the solution of the coupled 

system if a large time-step size is used. However, the time-lagged approach provides a very quick 

solution, and it gives accurate results for most of the transients that were analyzed. In order to 

demonstrate this, two UTOP transients of the MSFR benchmark were simulated with 50 pcm and 

200 pcm reactivity insertions with both coupling schemes and using a constant time-step size of 

0.05 ms. Figure 5.6 compares the solution of the time-lagged scheme to the Picard iteration scheme 

for the 50 pcm reactivity insertion. For this case, the two solutions are matching very well with a 

difference of 0.05% for the whole transient duration.  
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Figure 5.6. Comparison of coupling schemes power evolution after 50 pcm reactivity insertion. 

On the contrary, for the 200 pcm reactivity insertion, a larger error can be seen at the peak 

region with about 2.0% as shown in Fig. 5.7. In this case, the time-lagged approach overestimates 

the peak power because of the lagged thermal feedback. However, the difference looks small, but 

the magnitude of the power is very large at the peak region. In the following analysis, the time-

lagged approach will be used since it provides accurate results if a small time-step size is used, 

and it reduces the computational time by at least a factor of 2 for the same time-step size.  

 

Figure 5.7. Comparison of coupling schemes power evolution after 200 pcm reactivity insertion. 
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5.4.3. Solution Assessment 

In order to assess the ATS solution of the simulated transients, the power was compared to the 

reference solution considering the maximum relative difference, the average relative difference or 

the root mean square value, and the integral of the difference. The numerical reference solution 

was obtained using a very small time-step size. For reactivity insertion transients like UTOP 

transient, the peak power relative difference and the time to the peak are more important quantities 

to assess the solution, so they were used in the comparison. These quantities are calculated as   

 

m m

ref

peak m

ref

P P

P


−
= , (5.38) 

 
( ) ( )

( )
max

ref

t

ref

P t P t
MAX

P t


−
= , (5.39) 

 
( ) ( )

( )

2

ref

rms

t ref

P t P t

P t


 −
=   

 
 , (5.40) 

 
( ) ( )

( )
int

0

1 T ref

ref

P t P t
dt

T P t


−
=  . (5.41) 

5.5. Numerical Results 

The adaptive time-step size selection algorithm implemented in the PROTEUS-NODAL code 

has been tested and verified considering a wide range of transient scenarios with thermal feedback. 

The transient scenarios are classified based on the rate at which the solution varies with time, and 

it includes rapid or prompt, moderate, and slow varying transients. The rapid or prompt transients 

focus on the reactivity insertion with and without thermal feedback, as in the UTOP transient. The 

moderate varying transients mainly focus on the transient scenarios with thermal feedback where 

the power varies at a mild rate, as in the pump-driven and temperature-driven transients that were 

analyzed for the MSFR benchmark, including UPOS, ULOF, UFSOC, and ULOHS. The last class 

is for very slow and long transient, as in the natural circulation test of the MSRE experiment, where 

varying the time-step size is very necessary to reduce the computational cost.  

Also, another category was analyzed considering localized transient scenarios as in the control 

rod withdrawal or fuel salt channel blockage in thermal spectrum MSRs such as the MSRE 

experiment. In this section, the verification test results are presented and compared to the reference 

solution obtained from PROTEUS-NODAL calculations with a very small time-step size. Also, 
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the savings in the computational cost and the speedup of calculations will be presented and 

recommended values for the controller initial time-step size, tolerance level, and integral, 

proportional, and derivative gains will be provided.     

5.5.1. Rapid Transients 

To test the robustness of the ATS solution algorithm implemented in PROTEUS-NODAL, the 

UTOP transients of the MSFR benchmark reactor were simulated. In Chapter 3, the UTOP 

transients with two step reactivity insertions were simulated for a sub-prompt critical with 50 pcm 

step reactivity insertion and super-prompt critical with 200 pcm reactivity insertion. In the 

following analysis, a parametric study was performed to test the ATS algorithm with different 

coupling schemes, the value of the integral, proportional, and derivative gains, and the level of the 

solution tolerance. Since these parameters are selected by the user, a recommended range for these 

parameters will be suggested to avoid any undesired instabilities in the solution. To assess the ATS 

algorithm solution, the reference solution of the simulated transients must be available. To provide 

an accurate assessment, the reference solution of the UTOP transients was obtained with a very 

small and constant time-step size. Figures 5.8 and 5.9 show the MSFR UTOP transient with 

positive 50 pcm and 200 pcm reactivity insertions with different constant time-step sizes. Also, 

Table 5.1 provides a comparison of the peak power value, time to peak power, and the solution 

error relative to the solution with the smallest time-step size considered as 0.05 ms.  

Table 5.1. Comparison of Time-step Size and Peak Power of MSFR UTOP Transients. 

Case Δt (ms) 
Peak Power 

(%FP) 

Time to Peak 

(ms) 

Error (%) 

Peak RMS Integral 

UTOP-50 

pcm 

0.05 1.514 5.55 - - - 

0.10 1.514 5.50 0.02 1.76 0.39 

0.50 1.514 6.00 0.00 5.31 0.44 

1.00 1.511 7.00 0.21 6.96 0.45 

5.00 1.504 10.00 0.65 6.12 0.50 

UTOP-200 

pcm 

0.05 44.681 6.15 - - - 

0.10 45.019 6.10 0.76 23.43 0.38 

0.50 48.261 5.50 8.01 109.04 1.21 

1.00 54.368 5.00 21.68 210.35 2.58 

 

For the 50 pcm reactivity insertion transient, as the time-step size increases, the peak power is 

slightly underestimated. As a result, the time to peak is delayed because of the delay in the 
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feedback response, also the relative error is increasing. However, the solution is almost the same 

for all time-step sizes for the remaining of the transient after the peak region (after 1.0 s).  For the 

200 pcm reactivity insertion transient an opposite behavior was observed as the time-step size 

increases, the peak power is overestimated because of the discretization error, and the time to peak 

is brought forward due to the advance on the thermal feedback response. Also, the relative error is 

increasing. However, the solution is almost the same for all time-step sizes for the remaining of 

the transient after the peak region (after 1.0 s). 

 
Figure 5.8. Power evolution after 50 pcm reactivity insertion with different time-step size. 

For both UTOP cases, a time-step size of 0.1 ms provides a reasonable solution compared to 

the 0.05 ms. Based on the above observations, it is recommended to use a time step in the range 

of 0.05 to 0.1 ms up to 1.0 s, and the step size can be increased after that up to 5.0 ms for a pre-

defined or scheduled time-step size. In the remaining analysis, the UTOP transient reference 

solution was obtained with a time-step size of 0.05 ms up to 1.0 s of the transient. Then, it was 

increased to 10.0 ms for the remaining of the transient since the power is varying slowly after the 

peak. The use of the ATS algorithm will eliminate the need for such calculations to determine the 

optimum time-step size. The performance of the ATS with different local error estimates, gain 

value, and tolerance level is investigated for the UTOP transients of the MSFR, as discussed in the 

following subsections. 
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Figure 5.9. Power evolution after 200 pcm reactivity insertion with different time-step size. 

5.5.1.1. Local Error Estimate  

The performance of the ATS solution algorithm with different local error estimates is 

investigated using the UTOP transients of the MSFR benchmark. The solution of the ATS for all 

the local error estimates was performed with an initial time-step size of 0.05 ms, gain value of 

0.05, and tolerance level of 1.0×10-3. Table 5.2 summarizes the UTOP transient results of the 

MSFR for the peak power, relative errors, computational time, and speedup ratio for the three local 

error estimates. Figure 5.10 shows the power evolution for 50 pcm reactivity insertions, while Fig. 

5.11 shows the time-step size change and the local error change during the transient, respectively. 

For both UTOP transients, smaller relative errors are observed with local error estimates obtained 

by the second derivative, while the first derivative shows larger relative errors. On the other hand, 

the computational time is reduced significantly for all local error estimates with more speedup was 

achieved with the second derivative for the local error estimates. 

For the 50 pcm reactivity insertion, the speedup is about 16 times for the first derivative, and 

about 24 times for the second derivative local error estimates. In Fig. 5.10, a small deviation in the 

power can be seen after the peak for the second derivative approach due to the larger predicted 

time-step size. Both the finite difference and exponential approximations show consistent results. 

In Fig. 5.11, the predicted time-step size with the second derivative approach is larger than the first 

derivative approach. Also, the total number of the time steps and the rejected steps is much smaller 

for the same controller parameters. This can be explained by the smaller value of the estimated 
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local error with the second derivative approach. This will result in a larger time-step size since the 

predicted time step is inversely proportional to the local error, as shown in Fig. 5.11. The 

oscillatory behavior of the estimated local error is due to thermal feedback changes and the fuel 

velocity change during the transient. However, the size of the predicted time-step size can be 

controlled by adjusting the tolerance level and the gain value. By reducing the values of the 

tolerance and the gain, a smaller time-step size is guaranteed. 

 
Figure 5.10. Power evolution in MSFR after 50 pcm RI with different error estimates. 

  
Figure 5.11. Step size change (left) and estimated local error (right) in MSFR after 50 pcm RI 

with different error estimates. 
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Figure 5.12 shows the power evolution for 200 pcm reactivity insertions, while Fig. 5.13 shows 

the time-step size change and the local error change during the transient, respectively. The speedup 

is about 8 times for the first derivative and about 16 times for the second derivative local error 

estimates, with a large reduction in the total number of time steps and the rejected steps due to the 

same reasoning of the smaller estimated local error by the second derivative approach. The peak 

power is slightly overestimated with an error of less than 0.8% from the second derivative 

approach. All three approaches have provided consistent results under the same conditions with a 

large reduction in the computational cost, and they can be used for predicting the time-step size 

accurately.  

 
Figure 5.12. Power evolution in MSFR after 200 pcm RI with different error estimates. 

   
Figure 5.13. Step size change(left) and estimated local error (right) in MSFR after 200 pcm RI 

with different error estimates. 
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Table 5.2. ATS Performance with Different Local Error Estimates of MSFR UTOP Transients. 

Case 
Local Error 

Estimate 

Peak 

Power 

(P/Po) 

Time to 

Peak 

(ms) 

Relative Error (%) No. Steps 
Comp. 

Time 
Speedup 

Peak RMS Integral Total Rejected 

50-pcm 

Reference 1.514 5.55 - - - 29900 - 1.000 - 

2nd FD 1.514 5.40 0.02 3.82 1.98 1252 14 0.042 24.09 

Exponential 1.514 5.73 0.01 4.17 2.11 1237 9 0.040 24.76 

1st FD 1.514 5.32 0.00 1.87 1.48 1726 38 0.060 16.65 

200-pcm 

Reference 44.682 6.15 - - - 29900 - 1.000 - 

2nd FD 45.015 6.11 0.75 9.52 3.31 1496 46 0.052 16.56 

Exponential 44.987 6.18 0.68 9.52 3.71 1504 44 0.053 16.18 

1st FD 44.682 6.15 0.00 2.64 1.18 2670 85 0.098 8.73 

 

5.5.1.2. Gain Value 

The gain value in the ATS controller plays an important role in increasing or decreasing the 

time-step size based on the ratio of the tolerance and the local error. Selecting the gain value 

influences how fast the time-step size will increase or decrease. Too small gain values will result 

in slow and steady control, while large values will result in fast and oscillatory control. It is 

important to provide a reasonable value of this parameter to reach an optimum control. The 

performance of the ATS solution algorithm considering different gain values is investigated using 

the UTOP transients of the MSFR benchmark. The solution of the ATS was performed with an 

initial time-step size of 0.05 ms, a tolerance level of 1.0×10-3, and the local error was estimated 

with the first derivative. Also, both the Picard iteration and the time-lagged coupling schemes were 

tested. Table 5.3 summarizes the UTOP transient results of the MSFR with 50 pcm reactivity 

insertion for the peak power, the relative errors, the computational time, and the speedup ratio for 

a gain value ranging between 0.01 and 0.5.  

Figure 5.14 shows the power evolution obtained with the time-lagged coupling scheme for 50 

pcm reactivity insertion, while Fig. 5.15 shows the power evolution obtained with the Picard 

iteration coupling scheme. For each coupling scheme, the ATS solution was compared with the 

reference solution obtained using the same coupling scheme. For both coupling approaches, the 

results are not so sensitive to the gain value, however, a large gain value, like 0.5, leads to an 

undesired solution at the peak region due to overestimated time-step size, as shown in Fig. 5.14 
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and Fig. 5.15. It is recommended to use a gain value in the range of 0.05 to 0.1 for such transient 

with both coupling schemes. 

Table 5.3. ATS Performance with Different Gain Level of MSFR UTOP-50 pcm Transient. 

Case Gain 

Peak 

Power 

(P/Po) 

Time to 

Peak 

(ms) 

Relative Error (%) No. Steps 
Comp.  

Time 
Speedup 

Peak RMS Integral Total Rejected 

Time-

Lagged 

Reference 1.514 5.55 - - - 29900 - 1.000 - 

0.01 1.514 5.50 0.00 1.30 1.10 2100 7 0.077 13.02 

0.05 1.514 5.32 0.00 1.92 1.45 1735 17 0.065 15.42 

0.10 1.514 5.30 0.01 2.05 1.57 1747 39 0.067 15.00 

0.50 1.517 19.56 0.17 6.56 2.01 1237 3 0.051 19.65 

Picard 

Iteration 

Reference 1.514 5.50 - - - 29900 - 1.000 - 

0.01 1.514 5.49 0.00 0.99 1.30 2227 28 0.107 9.37 

0.05 1.514 5.54 0.00 1.45 1.47 2086 172 0.102 9.78 

0.10 1.514 5.58 0.01 1.36 1.28 2133 415 0.114 8.79 

0.50 1.514 7.82 0.01 10.28 2.53 1475 289 0.094 10.60 

 

 

Figure 5.14. Power evolution after 50 pcm RI with TL scheme and different gain levels. 



 117 

 

Figure 5.15. Power evolution after 50 pcm RI with PI scheme and different gain levels. 

5.5.1.3. Tolerance Level  

The tolerance is a user-specified value, so it should be provided in advance. This value depends 

on the transient being simulated, for rapid varying transients such as UTOP, it is recommended to 

use a small tolerance to maintain the solution accuracy. But very small values will result in very 

slow performance while using a large value will result in an inaccurate solution specifically at the 

peak power region. The performance of the ATS solution algorithm considering different tolerance 

levels is investigated using the UTOP transients of the MSFR benchmark. The solution of the ATS 

was performed with an initial time-step size of 0.05 ms, a gain value of 0.05, and the local error 

was estimated with the first derivative. Also, both the Picard iteration and the time-lagged coupling 

schemes were tested. Table 5.4 summarizes the UTOP transient results of the MSFR with 200 pcm 

reactivity insertion for the peak power, relative errors, computational time, and speedup ratio for 

tolerance levels ranging between 1.0×10-3 and 1.0×10-1.  

Figure 5.16 shows the power evolution obtained with the time-lagged coupling scheme for 200 

pcm reactivity insertion, while Fig. 5.17 shows the power evolution obtained with the Picard 

iteration coupling scheme. For each coupling scheme, the ATS solution was compared with the 

reference solution obtained using the same coupling scheme. In the time-lagged coupling 

approach, as the tolerance level increases, the peak power is slightly overestimated, and the relative 

errors are increased due to the large predicted time-step size, which causes a lag in the thermal 

feedback. However, the Picard iteration coupling scheme leads to underestimation of the peak 
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power as the tolerance level is increased. This is because there is no delay of thermal feedback as 

in the time-lagged approach. A large tolerance level will result in more speedup of the solution but 

at the expanse of accuracy. It is recommended to use a tolerance level in the range of 1.0×10-3 and 

5.0×10-2 for such transient with both coupling schemes. 

Table 5.4. ATS Performance with Different Tolerance of MSFR UTOP-200 pcm Transient. 

Case Tolerance 

Peak 

Power 

(P/Po) 

Time to 

Peak 

(ms) 

Relative Error (%) No. Steps 
Comp. 

Time 
Speedup 

Peak RMS Integral Total Rejected 

Time-

Lagged 

Reference 44.682 6.15 - - - 29900 0 1.000 - 

1.00E-03 44.682 6.15 0.00 2.69 1.21 2721 40 0.122 8.22 

1.00E-02 44.708 6.23 0.06 7.78 3.71 1593 7 0.072 13.84 

1.00E-01 45.714 6.26 2.31 20.99 6.12 1253 1 0.046 21.92 

Picard 

Iteration 

Reference 43.927 6.15 - - - 29900 0 1.000 - 

1.00E-03 43.927 6.15 0.00 2.04 0.90 3323 386 0.259 3.87 

1.00E-02 43.897 6.15 0.07 5.69 2.64 1585 5 0.114 8.75 

1.00E-01 42.780 6.05 2.61 43.24 4.12 1258 1 0.071 14.16 

 

 

Figure 5.16. Power evolution after 200 pcm RI with TL scheme and different tolerance levels. 
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Figure 5.17. Power evolution after 200 pcm RI with PI scheme and different tolerance levels. 

5.5.2. Moderate Transients 

In this category, the transient is driven by the change in the fuel salt temperature due to the 

changes in heat removal rate at the heat exchanger, or the change in the fuel mass flow rate in the 

core due to changes or malfunction of the primary fuel salt pump. As discussed earlier in Chapter 

3 for the MSFR benchmark, the analyzed flow-driven transients include UPOS and ULOF, and 

the temperature-driven transients include UFSOC and ULOHS. These transients are less severe 

than the reactivity-driven transients, and they occur over a longer period of about 10.0 s to 100.0 

s compared to the UTOP transient where the power peaks within 5.0 ms. The selection of the 

optimum time step for such transients is also challenging, but since the rate of change of the power 

is much less than in the reactivity-driven transients, it is expected for the time-step size to be larger. 

Table 5.5 summarizes various transients results of the MSFR for the relative errors, the 

computational time, and the speedup ratio for the three local error estimates. The reference results 

were obtained with a constant time-step size of 5.0 ms. The solution of the ATS for all the local 

error estimates was performed with an initial time-step size of 5.0 ms, a gain value of 0.1, and a 

tolerance level of 5.0×10-3. All the three error estimates provided a consistent result, and the ATS 

solutions show a huge reduction of the total time steps number and the computational time about 

7 to 17 times compared to the reference solution. With selected gain and tolerance values, almost 

no steps were rejected for the second derivative approach, while the first derivative approach 
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requires a slightly longer time for the calculations, and more steps were rejected because the 

estimated error was slightly higher.  

Table 5.5. ATS Performance During Moderate Varying Transients of MSFR Benchmark. 

Case 
Local Error 

Estimate 

Relative Error (%) No. Steps 

Comp. Time  Speedup 
Max. RMS Integral Total Rejected 

UPOS 

Reference - - - 20000 
 

- 1.000 - 

2nd FD 0.55 2.14 2.30 2103 0 0.104 9.58 

Exponential 0.52 2.15 2.51 2105 0 0.107 9.37 

1st FD 0.56 2.48 2.19 2136 23 0.110 9.06 

ULOF 

Reference - - - 20000 
 

- 1.000 - 

2nd FD 0.62 9.41 24.49 1015 0 0.069 14.58 

Exponential 0.61 8.94 22.50 1051 0 0.074 13.54 

1st FD 0.66 7.77 15.07 1365 620 0.137 7.30 

UFSOC 

Reference - - - 20000 
 

- 1.000 - 

2nd FD 2.70 8.18 4.95 1127 0 0.059 17.05 

Exponential 1.60 4.75 3.44 1127 0 0.059 17.00 

1st FD 0.94 5.35 2.34 1223 25 0.070 14.19 

ULOHS 

Reference - - - 20000 
 

- 1.000 - 

2nd FD 6.80 144.55 407.48 1102 17 0.079 12.67 

Exponential 6.74 142.19 398.33 1088 0 0.078 12.85 

1st FD 5.77 123.29 318.51 1692 528 0.147 6.80 

The errors of the ULOF and ULOHS are slightly high because the power is decreased to a very 

low level and the difference from the reference tends to be magnified. However, this does not mean 

the solution of the ATS is wrong, but the relative difference is large compared to the power 

magnitude. The power evolution during ULOHS is shown in Fig. 5.18. It is clearly seen that the 

power agrees very well from all solutions all over the transient period. Figure 5.19 shows the 

variation of the time-step size over the transient period. At the beginning of the transient, small 

time-step size is required, but as the power becomes steadier, a larger time step is used. Also, Fig. 

5.19 shows the local error estimated by the three schemes. The estimated local error by the second 

derivative approach is much smaller than the estimated local error by the first derivative approach, 

which means a larger predicted time-step size. All these approaches can provide accurate results 

for this type of transient. 
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Figure 5.18. Power change during ULOHS transient with different error estimates. 

   

Figure 5.19. Time-step size change (left) and estimated local error (right) during ULOHS 

transient with different error estimates. 

5.5.3. Slow Transients 

For transients that happen over a long period of time, such as the natural circulation experiment 

of the MSRE, as discussed in Chapters 3 and 4, the power keeps varying slowly during the transient 

period. So, providing an optimum predefined time-step size to perform the calculations is very 

challenging. The ATS algorithm is very useful in such kind of transient, and it can reduce the 

computational time significantly by varying the time-step size as needed. To examine the 

performance of the ATS algorithm for slow varying transients, the natural circulation test of the 

MSRE experiment was analyzed.  
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Table 5.6 summarizes the natural circulation results of the MSRE for the peak power, the 

relative errors, the computational time, and the speedup ratio for the three local error estimates. 

The reference results were obtained with a constant time-step size of 0.1 s. The solution of the 

ATS for all the local error estimates was performed with an initial time-step size of 20.0 ms, a gain 

value of 0.2, and a tolerance level of 1.0×10-2. The peak power is 348.5 kW, and it happens at 

245.5 min of the transients. The relative error in the peak power is about 0.16% from all the three 

ATS approaches. A huge reduction in the computational time is gained with the ATS algorithm 

for such can kind of transients where the computational time is reduced from about 14 hours to 

less than an hour with speedup ratio of 20~25 times. The power change of the natural circulation 

test is compared with experimental data and the reference solution in Fig. 5.20. All three solutions 

provided consistent results, and they are validated against experimental data of the MSRE. Figure 

5.21 shows the variation of the time-step size over the transient period and the local error estimated 

by the three schemes. 

Table 5.6. ATS Performance During Natural Circulation Test of MSRE Experiment. 

Local Error 

Estimate 

Peak 

Power 

(kW) 

Time to 

Peak 

(min) 

Relative Error (%) No. Steps Comp. 

Time 
Speedup 

Peak RMS Integral Total Rejected 

Reference 348.5 245.5 - - - 108000 - 1.000 - 

2nd FD 349.0 244.3 0.16 29.45 0.40 3231 0 0.040 25.00 

Exponential 349.0 244.4 0.16 29.57 0.41 3233 0 0.041 24.51 

1st FD 349.0 244.3 0.15 48.46 0.39 3512 172 0.050 20.13 

 
Figure 5.20. Power change during natural circulation test of MSRE with different error estimates. 
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Figure 5.21. Time-step size change (left) and estimated local error (right) during natural 

circulation test of MSRE. 

5.5.4. Localized Transients 

 For further testing and verification of the ATS solution algorithm, the performance of the ATS 

is tested with transients that are initiated due to a local event, such as a step movement of a control 

rod, or a channel blockage in channel-type MSR like MSRE. In these transients, the main 

contribution to the solution error is related to the region where the transient initial event happened 

because of the significant change in the reaction rates or the temperature in that region. In the 

analysis presented in the previous sections of this Chapter, the local error was estimated with the 

L2 norm. However, for localized transient, it is more appropriate to use infinite norm which can 

represent the maximum solution error, which is expected to be at the initial event position. The 

infinite norm ( )L can be calculated as 
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In this section, two localized transients will be simulated for the MSRE experiment, which is 

a channel-type reactor. The first transient considered is the step withdrawal of the control rod, 

which will result in massive power and temperature changes at positions near that control rod. The 

second transient is the channel blockage transient, which might lead to a large increase in the 

temperature in that region. 

The control rod partial ejection or partial withdrawal was simulated for the MSRE experiment, 

where the reactor is operated at full power. Two cases were considered for this transient with step 
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withdrawal of the regulating rod of 10 cm and 20 cm. The withdrawal resulted in an insertion of a 

step reactivity of 240 pcm and 430 pcm, respectively. To examine the performance of the ATS 

algorithm for these localized transients, the control rod withdrawal of the MSRE experiment was 

analyzed for the two cases. Table 5.7 summarizes the results for the peak power, the relative errors, 

the computational time, and the speedup ratio for the L2 and L∞ norms. The reference results were 

obtained with a constant time-step size of 5.0 ms. The solution of the ATS was performed with an 

initial time-step size of 5.0 ms, a gain value of 0.1, and a tolerance level of 1.0×10-3. 

Table 5.7. ATS Performance for Localized Transients of MSRE Experiment. 

Case 

Local 

Error 

Estimate 

Peak 

Power 

(P/P0) 

Time to 

Peak 

(s) 

Relative Error (%) No. Steps 
Comp. 

Time  
Speedup 

Peak RMS Integral Total Rejected 

CR-

Withdraw 

(10 cm) 

Reference 3.57 2.67 - - - 50000 - 1.000 - 

L2 3.60 2.97 0.72 30.52 0.23 3454 743 0.246 4.06 

L∞ 3.60 2.85 0.57 28.79 0.22 3567 870 0.253 3.95 

CR-

Withdraw 

(20 cm) 

Reference 12.52 0.74 - - - 50000 - 1.000 - 

L2 12.53 0.76 0.05 55.26 0.34 5742 1500 0.353 2.83 

L∞ 12.53 0.74 0.04 49.10 0.30 6003 1674 0.368 2.72 

Channel 

Blockage 

Reference 1.21 78.95 - - - 25000 - 1.000 - 

L2 1.21 78.92 0.01 39.57 0.22 3043 1107 0.271 3.68 

L∞ 1.21 78.72 0.08 26.08 0.18 3283 1277 0.280 3.58 

 Figures 5.22 and 5.24 show the power evolution for the 10 cm and 20 cm withdrawal cases, 

respectively. Both L2 and L∞ norms provide consistent results with the reference solution, and the 

peak relative error is less than 0.8%. The solution speedup is about 3 to 4 times, and more speedup 

was achieved with L2 norm than L∞. This is because the predicted time-step size by the L2 is 

slightly larger than the predicted time-step size by L∞ norm as shown in Fig. 5.23 and Fig. 5.25 

for the time-step size of the 10 cm and 20 cm withdrawal cases, respectively. The reason for that 

is because the local error calculated with the L2 norm is smaller than the L∞ local error. Also, 

Figures 5.23 and 5.25 show the estimated local error by the L2 and the L∞ norms for the 10 cm 

and 20 cm withdrawal cases, respectively. Both error estimates used in the controller gave very 

accurate results with higher accuracy was obtained with the L∞ norm. In case of full ejection of 

the control rod, it will be necessary to use the L∞ norm for the local error estimation to maintain 

the accuracy of the solution. 
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Figure 5.22. Power evolution after 10 cm withdrawal of control rod of MSRE.  

   
Figure 5.23. Time-step size variation (left) and estimated local error (right) after 10 cm 

withdrawal of control rod of MSRE. 

The channel blockage and unblockage transients were simulated for the MSRE experiment at 

full power. This type of transient is very important in channel type MSR because the fuel salt flow 

rate at the blocked channel will be reduced significantly, and the fuel salt will become almost 

stagnant. As the fuel flow rate is reduced in the channel, the power will slightly increase because 

the losses in the delayed neutrons are reduced. Then, the power will decrease because of the 

negative thermal feedback due to the increased fuel salt and moderator temperatures. If the blocked 

channel is unblocked, the power will start increasing again until it returns to the initial power level 
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due to the positive reactivity introduced by the circulating fuel salt at lower temperature in the 

outer loop.  

 
Figure 5.24. Power evolution after 20 cm withdrawal of control rod of MSRE. 

  
Figure 5.25. Time-step size variation (left) and estimated local error (right) after 20 cm 

withdrawal of control rod of MSRE. 

This transient was simulated with PROTEUS-NODAL for the MSRE core assuming the 

central channels were completely blocked. After 50.0 s, it was assumed the channel was 

unblocked, and the transient was simulated up to 250.0 s. Table 5.7 summarizes the results of the 

channel blockage transient for the L2 and L∞ norms. The reference solution was obtained with a 

constant time step of 10.0 ms. The solution of the ATS was performed with an initial time-step 

size of 10.0 ms, a gain value of 0.1, and a tolerance level of 1.0×10-3.  
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Figure 5.26 shows the power change after the central channel is completely blocked at the 

beginning of the transient and assuming the reactor was operated steadily at full power before that. 

The power is decreasing until 50.0 s, where the channel was assumed to be unblocked, and the 

power starts increasing and peaks at 1.21 times of its steady state power. The oscillatory behavior 

of the power after 50.0 s is due to the heated fuel salt from the blocked channel is flowing back 

into the core. Both L2 and L∞ norms provide consistent results with the reference solution, and the 

peak relative error is less than 0.08%, and the peak magnitude and location are matched very well 

with the reference solution. The solution speedup is about 3.5 times, and more speedup was 

achieved with L2 norm than L∞ for the same reason as discussed in the control rod withdrawal 

transient. The predicted time-step size and the estimated local error by the L2 and L∞ norms are 

shown in Fig. 5.27. Both error estimates used in the controller gave very accurate results with 

higher accuracy was obtained with the L∞ norm. 

 

Figure 5.26. Power change after channel blockage and unblockage of MSRE. 

5.6. Summary 

An adaptive time-stepping solution algorithm was implemented in the PROTEUS-NODAL 

code for MSR transient analysis based on the control theory approach. The implemented algorithm 

was verified using the transient scenarios of the MSFR benchmark and validated with the natural 

circulation test of the MSRE experiment. The simulated transients were classified into three 

categories based on the rate of change of power with time. Another category was added for 

localized transients, where the transient is initiated due to a certain change at a certain position of 
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the reactor core. To test the performance of the ATS solution, it was compared with the reference 

solution that was obtained with a very fine time-step size. In all the simulated transients, the ATS 

solution shows a huge reduction in the computational time while ensuring the accuracy of the 

solution.  

  

Figure 5.27. Time-step size variation (left) and estimated local error (right) during channel 

blockage and unblockage of MSRE. 

A parametric study was performed on the controller parameters using the UTOP transient of 

the MSFR to determine the valid range of the gain and the solution tolerance, which are specified 

by the user. Very large gain or tolerance values might lead to a misprediction of the time-step size, 

and as a result inaccurate solution. Table 5.8 summarizes the recommended values of the controller 

parameters for each transient category. Also, various ways were used to estimate the local error of 

the solution, which is the most important parameter in predicting the time-step size. All the local 

error estimates provide a very accurate solution, and more speed up can be achieved with higher-

order local error estimates. For the slow varying transients like the natural circulation test of the 

MSRE, a massive reduction in the computational time was achieved with the ATS solutions with 

a speedup ratio of about 24. For localized transient, it is recommended to use the infinite norm, 

because it will represent the maximum change of the system instead of the average change, so 

more accurate solution can be guaranteed as the predicted time-step size is slightly smaller. The 

ATS solution algorithm can be used in other applications in the nuclear field, as in the depletion 

calculation. 
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Table 5.8. Recommended Values of ATS Controller Parameters.  

Parameter  
Transient Type 

Rapid Moderate Slow Localized 

Initial Step (ms) 0.05 5.0 20.0 5.0 

Tolerance 1.00E-03 5.00E-03 1.00E-02 1.00E-03 

Gain 0.05 0.1 0.2 0.1 
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Chapter 6. Fuel Cycle Analysis of MSRs 
 

 

During the operation of the liquid fuel molten salt reactors, the buildup of the fission products 

in the fuel salt as the fuel is burned out will reduce the efficiency of the reactor, and it may require 

a large amount of the fissile component of the fuel salt to compensate the negative reactivity 

introduced by the fission products. Also, the fuel salt volume will increase significantly. The 

fission products can be soluble in the salt or non-soluble as in the gaseous fission products and 

some elements could precipitate. These phenomena make online fuel reprocessing is essential for 

the operation of MSRs to extract the gaseous and non-soluble fission products from the fuel salt. 

Also, some MSR designs have no control rods as in the fast spectrum MSRs, and the reactor is 

being operated with almost zero excess reactivity. To maintain criticality during the reactor 

operation, online feeding of the fissile and fertile components of the fuel salt is required. Online 

chemical reprocessing is a unique feature of the liquid fuel MSRs that allows continuous 

monitoring and control of the salt molar composition. 

The fuel cycle analysis of the liquid fuel MSRs is slightly different from conventional reactors 

for many reasons. The drift of the fuel salt and its decay outside the core causes significant loss in 

the delayed neutron fraction, which should be considered in the depletion calculations of MSRs. 

Also, the continuous movement of the fuel salt in the reactor core and the outer loop makes the 

whole fuel salt almost exposed to the same average neutron flux. Since the fuel spent a significant 

amount of time outside the core without contributing to the power generation, so that amount of 

time should be considered in the fuel cycle analysis. The online chemical reprocessing of the fuel 

salt considering the refueling and fission products removal adds extra terms to the nuclide 

depletion equation of MSRs. Also, the thermal expansion and temperature feedback of the fuel salt 

have a non-negligible effect and coupled neutronics and thermal hydraulics are required for 

depletion calculations. Finally, the decay heat of the fuel salt has a large contribution to the total 

power generated by the fuel salt (about 4.0%), so it cannot be ignored since it will have a significant 

effect on the neutron flux normalization. 



 131 

The main objective of this thesis is to develop reliable, verified, and validated neutronics 

capabilities of liquid fuel MSRs to the PROTEUS-NODAL code to be used for the design and 

safety analysis of new MSRs designs. These capabilities include steady state, transient, and fuel 

cycle analysis capabilities. To fulfill this objective, the fuel cycle analysis capability was 

implemented in PROTEUS-NODAL, so that the same reactor model can be used to perform the 

required calculations within a single code. In this Chapter, the implemented fuel cycle analysis 

capabilities in PROTEUS-NODAL for liquid fuel MSRs are discussed first, including the drift of 

the fuel salt, thermal feedback, and online reprocessing. This is followed by verification tests for 

stationary fuel and compared to reference Monte Carlo solution. Then, an analysis of the MSFR 

benchmark problem is presented and compared to other reference solutions obtained from the open 

literature. Finally, a summary and future development and applications are provided. 

6.1. Introduction 

Over the past years, isotopic point depletion tools like ORIGEN [107, 108, 109] and CINDER 

[110] have been developed for a detailed analysis of the radioactivity properties of depleted fuel. 

Also, they have been coupled to Monte Carlo codes like MCNP for detailed depletion calculations 

[111, 112, 113]. Coupled Monte Carlo and depletion code systems have been developed for the 

analysis of advanced systems due to the ability to model complex geometries, and accurate 

representation of nuclear data and heterogeneity effect. However, these coupled systems require 

external scripts to link Monte Carlo codes and depletion solvers which can be challenging. 

Recently, Monte Carlo codes have incorporated a built-in depletion calculation capability as in 

MCNP6 [114], McCARD [115], OpenMC [66], and Serpent [67] codes. The REBUS-3 code [116] 

has been developed at Argonne National Laboratory for 3-D fuel cycle analysis fast spectrum 

reactors, and it utilizes DIF3D [56, 72], VARIANT [55, 56], or TWODANT [117] for region 

dependent flux calculations. These codes are dedicated to typical stationery fueled reactors which 

cannot be used directly for modeling flowing fuel MSRs because of the online refueling and 

reprocessing during the operation of the reactor.  

Several efforts were dedicated to the simulation of the MSR fuel cycle to address the unique 

characteristics of liquid fuel in the past few years. An MSR fuel cycle analysis code was developed 

by coupling MCNP code with the in-house depletion code REM, where the continuous removal of 

fission products was simulated as a fictitious decay [118]. Also, an extended version of the Serpent 

code [119] was developed for the MSRs fuel cycle analysis considering continuous removal and 
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external feeding with a reactivity control mechanism. A fuel cycle analysis procedure of MSRs 

was developed by directly modifying the fuel salt composition between two successive burnup 

steps based on SCALE/TRITON code [110, 121]. A similar MSR fuel cycle analysis procedure 

was adopted in other code systems which can be found in Ref. [13, 122, 123, 124]. Also, a modified 

version of the OpenMC code was developed by coupling OpenMC with an external code for MSR 

burnup calculations [125]. A code named FAMOS [59] was developed for MSR fuel cycle analysis 

by considering the reactor core and the external loop as two points instead of one point, and these 

two points were connected via inlet and outlet so that the transient times of the fuel salt in the core 

and the outer loop are considered properly. The last approach has been adopted in PROTEUS-

NODAL for MSR depletion calculation and fuel cycle analysis since it accounts for the time spent 

by the fuel salt in the core and the outer loop accurately. 

6.2. Depletion Calculation Method 

In depletion analysis, the calculation of nuclides concentrations changes is performed by 

neglecting the delayed neutron precursors and assuming that the rapidly saturating fission products 

are at equilibrium concentrations. Also, the neutron flux fluctuations arising from the transients of 

rapidly saturating fission products, such as xenon and samarium, are not considered in the reactor 

burnup analysis. Instead, the time derivative of the neutron flux is assumed zero, and prompt and 

delayed neutrons are combined for stationary fuel. So that, the neutron flux is calculated as a steady 

state. However, for flowing fuel MSRs, the prompt and delayed neutrons should be separated, and 

the delayed neutron precursor equation is solved along with the neutron flux equation to account 

for the effect of the fuel drift and decay in the outer loop. Also, online fuel feeding and reprocessing 

need to be considered in solving the nuclide depletion equation. In this section, the depletion 

equation for stationary and flowing fuels are presented along with the solution method.  

6.2.1. Depletion Equation for Stationary Fuel  

For stationary fuel, the change in the atom density of nuclide i  at position r  and time t  is 

determined by the transmutation equation, the so-called Bateman equation as 
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where  
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iN
 = Nuclide density of nuclide i. 

i

x
 = Microscopic cross section of reaction x. 

i

a  = Absorption microscopic cross section. 

x

ij
 

= Yield of nuclide i when nuclide j undergoes reaction x. 

ij
 = Yield fraction of nuclide i due to radioactive decay of isotope j. 

i  = Decay constant of nuclide i. 

The system of depletion equations for all nuclides can be written in operator form as 

 ( , ) ( , ) ( , )r t r t r t
t

N A N


=


, (6.2) 

where ( , )r tN  and ( , )r tA are the nuclide density vector and the nuclide transmutation matrix at 

position r  at time t , respectively. The nuclide transmutation matrix is defined as 
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A . (6.3) 

Integrating Eq. (6.2) over the reactor core or the material region that is being depleted, then, the 

following equation can be obtained 

 
d

dt

Ν
AΝ= , (6.4) 

where ( )tΝ  is the integral of the nuclide density vector over the region, and A  is the region 

averaged transmutation matrix of which elements can be written as 
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where 
i

x  is the region-averaged one-group cross section,   is the integrated flux in the region, 

and jN  is the integrated nuclide density in the region and can be defined as 
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6.2.2. Depletion Equation for Flowing Fuel 

For flowing fuel, the change in the atom density of nuclide i  at position r  and time t  is 

determined by modifying Eq. (6.1) to account for the nuclide drift in the core and external feeding 

without considering the fuel salt reprocessing process as 
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, (6.9) 

where u  is the fuel salt velocity and F  is the external nuclide feeding rate. The system of depletion 

equations for all nuclides can be written in operator form as 

  ( , ) ( ) ( , ) ( , ) ( , )r t u r r t r t r t
t


+ = +


N N A N F , (6.10) 

where the nuclide transmutation matrix ( , )r tA in Eq. (6.10) is defined in Eq. (6.3). Usually, in 

depletion analysis of MSRs, the reactor core and the external loop regions are considered as a one-

point since the fuel salt is assumed to be homogenous and uniformly mixed. However, the one-

point model doesn’t represent the inlet and outlet nuclide flow rates of the core accurately. In other 

words, the time spent by the fuel in the outer loop and the core region. 

In Ref. [59], an alternative approach was suggested by representing the core and the external 

loop regions as two separate points and connected through the inlet and outlet nuclide flow rates 

in the core region. This model can accurately represent the time spent by the fuel in the core and 

the external loop regions and it is adopted in the current implementation in PROTEUS-NODAL. 

By integrating Eq. (6.10) over the reactor core and the external loop respectively and using the 

divergence theorem, the following two points model can be obtained 
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where 
C ( )tΝ  and 

E ( )tN  are the integral of the nuclide density vector over the core and the external 

loop, respectively. 
CA  is the core averaged transmutation matrix as given in Eq. (6.5), and EA  is 

the external loop averaged transmutation matrix considering decay process only. Since the fuel 

reprocessing process is performed out of the core region, it can be simulated with the equivalent 

effective decay constant as discussed in Ref. [118], and it should be added into the external loop 
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averaged transmutation matrix 
EA . If the entire salt in the primary circuit system is reprocessed 

within the time rT , then the amount edN of element e  with total inventory 
eN  is extracted during 

dt  is proportional to the quantity e rN dt T  with extraction efficiency of e . Then, the reprocessing 

process of the element e  can be equivalent to an effective decay process with a decay constant  

e e rT =  [118], and it can be expressed as a decay relation as 

 
e e

e e e

r r
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N N
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= = . (6.12) 

The removal period r eT T =  usually represents the amount of time to completely remove the 

element e  from the whole primary system. In Eq. (6.11), inN  and outN  are the nuclide number 

vectors flowing from the external loop into the and from the core into the external loop per unit 

time, respectively. 
inN  and outN  are proportional to the inlet and outlet mass flow rate inm  and 

outm  of the core, respectively, because of the homogeneous fuel salt composition assumption. In 

steady state operation, the inlet and outlet mass flow rates are equal and can be denoted as m . 

Furthermore, the incoming and outgoing nuclide flow rates can be represented in terms of the time 

spent by the fuel salt in the external loop E  and the core C  as 
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where Em  and Cm  is the total fuel salt mass in the external loop and the core regions, 

respectively. Using Eq. (6.13) and Eq. (6.14) and considering fuel salt reprocessing as an effective 

decay in the external loop averaged transmutation matrix EA , Eq. (6.11) can be simplified as 
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where nI  is the identity matrix of size N . By denoting the total nuclide number vector, the 

transmutation matrix, and the feeding source vector as N , A , and F , respectively, Eq. (6.15) can 

be written in a compact form as 
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d

dt
N AN F= + . (6.16) 

Considering a constant external feeding, the inhomogeneous system of differential equations can 

be converted into a homogeneous system as 

 
d

dt
N AN= , (6.17) 

where N  vector and A  matrix are defined as 
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The two points model for MSR depletion calculations resulted in doubling the size of the 

nuclide transmutation matrix A  as 2 2N N . In MSR calculations, the number of the nuclide 

considered in the decay chain is quite large, and this will increase the computational time 

significantly, especially with criticality search.  

If the fuel salt is stationary as in certain designs of MSRs or there is no reprocessing, then the 

one-point model is a more valid and faster approach. Also, for flowing fuel MSR with the fuel salt 

spent almost the same time in the core and the external loop, the one-point model can provide 

accurate results as the two points model. The one-point model can be derived by integrating Eq. 

(6.10) over the total volume of the reactor core and the external loop, and considering the amount 

of the fuel salt that is being irradiated in the reactor core, the following nuclide transmutation 

matrix for the one-point model can be obtained as 
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The transmutation matrix presented in Eq. (6.19) represents the core and the external loop as one-

point. Factor   is the fraction of the fuel salt in the core to the whole system (core and external 

loop), and it is added to represent the amount of the fuel salt is being irradiated during the depletion 

calculations period. If the fuel reprocessing is considered, then, the effective decay process with a 

decay constant ( )1 e −  needs to be added to the nuclide transmutation matrix. The size of the 

nuclide transmutation matrix is N N  and considering the number of nuclides in the decay chain, 

which is more than a thousand nuclides, so solving a system with the above nuclide transmutation 

matrix is much faster. 
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6.2.3. Solution Method of Depletion Equation 

The solution of the homogeneous system of differential equations as in Eq. (6.4) or Eq. (6.17) 

can be solved formally using the matrix exponential function with a given initial nuclide vector, 

T

1(0) [ (0), , (0),1]nN N=N , as  

 ( ) exp( ) (0)t t=N A N . (6.20) 

For the computation of the matrix exponential in Eq. (6.20), there are many possible approaches 

in the literature from classical results in analysis, approximation theory, and matrix theory [126, 

127]. These methods can be categorized as series methods, ordinary differential equation methods, 

polynomial methods, and matrix decomposition methods. Among these various methods, the 

Taylor series or Padé approximation with a scaling and squaring algorithm is known to be one of 

the most effective methods [116, 128]. Recently, the Chebyshev rational approximation method 

(CRAM) [129, 130] is widely used to obtain matrix exponential as in Serpent and OpenMC Monte 

Carlo codes due to the fast and accurate solution of the matrix exponential for a large system of 

nuclides. Also, the Krylov subspace method is one of the most popular tools for solving large sets 

of linear and nonlinear equations and computing the exponential of a matrix with a large size 

because it does not involve a matrix-matrix multiplication or inversion. In PROTEUS-NODAL, 

the matrix exponential exp( )tA  is determined using the CRAM option of the open-source software 

package for computing matrix exponentials EXPOKIT [131], which is used in several studies for 

nuclide depletion calculations as in Ref. [59, 124]. 

6.3. Solution Approach for MSRs Depletion 

In PROTEUS-NODAL, the solution of the MSR depletion equations is obtained by decoupling 

the neutron flux equation and nuclide depletion equation at each time point. So, the neutron flux 

equations and the nuclide depletion equations are solved alternatively. Like coupling the 

neutronics and thermal hydraulics for transient analysis, several approaches can be adopted here 

starting from the time-lagged approach where each system of equations is solved once at each time 

point and marching with time, but this approach requires a small time-step size. Another approach 

is employing the Picard iteration scheme, where the system of equations is solved iteratively until 

a certain criterion is satisfied, which can be computationally expensive, especially for depletion 

calculations even it allows a larger time-step size. A more efficient method for depletion 

calculations is to use a predictor-corrector method that allows longer time steps than the time-
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lagged and shorter than Picard iteration so that it compromises the number of steady state 

calculations of the neutron flux. 

In the predictor-corrector approach, the total depletion period of length T  is divided into 

subintervals , 1, ,n tt n N = . Then, the nuclide depletion equations are solved using the solution 

of the neutron flux of the previous step 1n −  to obtain the predicted nuclide concentrations P
N . 

Using the predicted nuclide concentrations, the predicted neutron flux P is calculated. These two 

steps are called predictor step, and they are used to determine the correct solution. Algorithm 6.1 

describes the predictor-corrector steps implemented in PROTEUS-NODAL for depletion 

calculations. In the corrector step, the corrected nuclide concentrations n
N  are obtained using the 

average of the neutron flux   of the previous step and the predicted solution as 

  ( ) ( ) ( )( )11
, , ,

2

n Pr E r E r E  −= + . (6.21) 

Once the nuclide concentrations n
N  are calculated, the corrected neutron flux n  is calculated 

using the steady state solver, and it is stored for the next time step calculations. Figure 6.1 shows 

an illustration of the predictor-corrector coupling scheme of the nuclide depletion and the steady 

state solution of the neutron flux implemented in PROTEUS-NODAL. It should be mentioned that 

the steady state solver can invoke the neutronics solver along with the thermal hydraulics solver if 

the coupled calculations are required. The neutronics and thermal hydraulics solvers are tightly 

coupled, as discussed in Chapter 2. 

6.3.1. Criticality Search and Salt Control 

Some designs of MSRs have no control rods to control the reactor like fast spectrum reactors, 

instead, the reactor is being controlled by adjusting the flow rate across the core, and in case of an 

accident, the fuel salt will be drained to a decay tank usually lies below the reactor core. Such a 

control mechanism can be efficient for small and slow changes and if the reactor has almost no 

excess reactivity. In conventional nuclear reactors designs, the core has several neutron absorber 

rods to regulate the reactor and safely shut down the reactor for refueling or during accidents. The 

reactor has a large excess reactivity to allow operating the reactor for sufficiently enough time 

before refueling the core with new fuel. As the reactor fuel is burned out, the regulating control 

rods are withdrawn from the reactor core to compensate for fuel burnup, and to maintain criticality. 

However, this is not the case for MSRs with online refueling, where the reactor is maintained 
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critical by adding fissile material while the reactor is in operation. In ideal situations, this means 

that there is no need to shut down the reactor for refueling so that the reactor can be operated 

during the lifetime of the reactor continuously. 

Algorithm 6.1. Predictor-corrector solution algorithm. 

1. Perform nuclide depletion calculations to obtain P
N with the previous time step 1n −  

2. Update macroscopic cross sections P using P
N  

3. Perform steady state calculations to obtain the predicted P  

 If (Consider Thermal Feedback) then 

 
 

 
Perform neutron flux calculations to obtain P  

  Perform TH calculations to update ( ), ,
P

T u  

  Update cross sections ( )
P

 using ( ),
P

T   

 Else  

  Perform neutron flux calculations to obtain P  

 End If 

4. Calculate the averaged neutron flux ( )1 / 2n P  −= +  

5. Calculate corrected nuclide concentrations n
N using   

6. Perform steady state calculations to obtain the corrected n  

 If (Consider Thermal Feedback) then 

 
 

 
Perform neutron flux calculations to obtain n  

  Perform TH calculations to update ( ), ,
n

T u  

  Update cross sections ( )
n

 using ( ),
n

T   

 Else  

  Perform neutron flux calculations to obtain n  

 End If 

7. If ( )endt t= terminate calculations Else Go back to 1  

In order to maintain criticality for this type of MSRs, the feeding rate of the fissile isotopes 

must be determined. In PROTEUS-NODAL, the criticality is maintained through searching for the 

fissile material feeding rate F  by adopting the secant method, so that the targeted eigenvalue 

arg 1.0t et

effk =  is achieved within a user-specified tolerance (i.e., 10  pcm) after m criticality 

search iterations according to the following relation 

 ( ) ( )1 arg 1 arg 1

1

1m t et m m t et m m

eff eff eff effm m

eff eff

F k k F k k F
k k

+ − −

−
 = − − −
 −

. (6.22) 
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At the beginning of the depletion calculation of MSRs, the criticality searching process 

requires several iterations, and as the inventory of the fuel salt reaches equilibrium conditions the 

number of iterations will be reduced significantly since the fissile feeding rate will remain almost 

constant. Algorithm 6.2 describes the criticality search algorithm implemented in PROTEUS-

NODAL for MSRs depletion calculations. 

 
Figure 6.1. Illustration of predictor-corrector coupling scheme in PROTEUS-NODAL. 

As the fissile isotopes are being added to the fuel salt, the molar concentration of the fuel salt 

will be altered significantly, especially with the buildup of the fission products. The depleted fissile 

material in the fuel salt is being compensated by feeding fissile material externally and through 

the breeding of the fertile isotopes in the fuel salt. In most designs, the fed material will consist of 

fissile and fertile isotopes, and the fertile material is fed to ensure the ratio between the amount of 

the actinides (90 ≤ Z ≤ 99) and the amount of the other salt components such as Lithium (in LiF 

or LiCl salts) and fission products are maintained at the eutectic point. So, the fissile feed rate is 

determined according to Eq. (6.22), while the fertile feed rate is determined by satisfying the 

following condition 

 

99 99

90 1

z z

HM

Z Z

N N C
= =

=  , (6.23) 

where Z  is the atomic number of the element, and the constant HMC  is the total molar fraction of 

the heavy metal in the fuel salt. In Eq. (6.23), the salt carriers (like Fluoride or Chloride) are 

excluded from the denominator.  
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Algorithm 6.2. Criticality and fissile feeding rate search algorithm for MSR fuel cycle. 

1. If (Search for Criticality) then  

2.  Apply algorithm 6.1 to calculate nuclide concentrations n
N and 

m

effk  at the end of step 

3.  Do while 
target( & Max.Iter)m

eff effk k m   

 
 

 
 Adjust the feed rate of the fissile material mF  

   Apply salt control to maintain fuel salt molar composition 

   Apply algorithm 6.1 to calculate nuclide concentrations ,n m
N and 

m

effk  

   1m m= +  

  End Do 

4. Else  

  Apply algorithm 6.1 to calculate nuclide concentrations n
N and effk  at the end of step 

 End If 

5. If ( )endt t= terminate calculations Else Go back to 1 

As the fission products are building up in the fuel salt, they can be soluble and insoluble in the 

salt. The insoluble fission products are continuously removed from the salt, while the soluble 

fission products should replace other components of the salt. In the MSFR design, the initial fuel 

salt composition is LiF-UF4-ThF4. After irradiating the fuel salt, fission products and other heavy 

metals will be added to the initial composition. To maintain the fuel salt composition at the eutectic 

point, the Lithium concentration is continuously adjusted. In the salt control calculations in 

PROTEUS-NODAL, the Lithium concentration is modified according to the following relation 

 ( )0 0
1

I
l x jl

l a l lj j lj x j FP

j x

dN
dE N dE N N

dt
       

 

=

 
+ + = + − 

 
   , (6.24) 

where l  represents the nuclides of the element being modified (i.e., 6Li and 7Li), and FPN  is the 

concentration of the produced fission products, which can be expressed as  
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6.3.2. Neutron Flux Normalization 

One of the most significant points in depletion calculations is the neutron flux normalization, 

which affects the consumption of the fissile material in the core in order to maintain the desired 

power level. Different normalization will lead to a different consumption rate of the fissile nuclides 

or burnup. Usually, only the energy deposited from the fission reaction is considered in 
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normalizing the neutron flux, which will lead to over-depleting of burnable materials. The 

normalization factor f  of the neutron flux considering the energy deposited from fission reaction 

only can be given as 

 

( ),

, , , ,

1 1 1

( )
( )

( )
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i k

k f i i k f g g k
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P t
f t

V N t t  
= = =

=

  
 , (6.26) 

where ( )P t  is the reactor power output at time t , kV  is the volume of region k , and ,f i is the 

energy released per fission of isotope i . A more accurate expression can be obtained by 

considering the indirect components that contribute to the generated heat, such as the energy 

released due to the capture reaction ,c i . In this way, the energy released from fission and capture 

reactions contributes to total generated power, so the normalization factor of the neutron flux can 

be written as 
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Another important component is the released energy from the decay of the fission products, 

which contributes to about 5% to 7% of the rated power. At the beginning of the reactor operation 

or the depletion calculations with fresh fuel, the amount of the fission products is very small, and 

they start building up as the fuel is burning out. As a result, heat generated from the decay of the 

fission products starts building up until it reaches saturation level after ~100 days. In order to 

normalize the neutron flux accurately, the decay heat of the fission products must be subtracted 

from the total power due to fission deposited energy and capture released energy. Considering the 

decay heat dQ , the normalization factor of the neutron flux can be written as 
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The decay heat rate dQ  at time t  can be calculated from the energy released per decay as 

 ( ) ( ), ,

1 1

K Niso

d k d i i i k

k i
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=  , (6.29) 



 143 

where dq ,  , and N  are the energy released per decay, decay constant, and concentration of nuclide 

i , respectively. In PROTEUS-NODAL, the flux can be normalized using any of the normalization 

formulas in Eqs. (6.26), (6.27), or (6.28) based on the user specifications. Also, all the nuclides in 

the depletion chain are being tracked, which allows the calculation of the decay heat explicitly, as 

provided in Eq. (6.29). In MSRs with fuel reprocessing, some of the fission products are being 

extracted from the fuel salt, so that they don’t contribute to the generated decay heat by the fuel 

salt in the system, and they must be excluded from the total generated decay heat, as discussed 

later in this chapter. 

6.3.3. Nuclide Decay Chains 

Detailed depletion chain that contains 1356 nuclides of which 93 actinides and 1157 fission 

products are adopted from ENDF/B-VII.1 cross section data, which includes fundamental data for 

incident neutron, decay, and fission product yields. The current depletion chain used in the 

depletion model is adopted from the fast spectrum reactors depletion chain distributed with 

OpenMC code [66]. For each nuclide, the depletion chain file includes the possible transmutation 

reactions, the reaction Q value, and the daughter nuclides. Also, the decay modes, branching ratios, 

products, decay constants, and energy released per decay of each nuclide. For fissionable nuclides, 

the yield of the fission products based on the incident neutron energy is provided.  

In the implemented model for depletion calculations, all the nuclides in the depletion chain are 

tracked, which allows calculation of the decay heat explicitly based on the information provided 

in the depletion chain. In order to perform the depletion calculations, the multigroup cross sections 

are prepared using either OpenMC or MC2-3 in ISOTXS format so that the one group reaction 

rates required to construct the transmutation matrix (Capture, Fission, (n,p), (n,α), and (n,2n)) can 

be calculated along with multigroup neutron flux obtained from the steady state calculations. 

6.4. Numerical Results 

In this section, the developed depletion capabilities of PROTEUS-NODAL are verified and 

tested with stationary and flowing fuel problems and compared with the reference results. The first 

test is performed for stationary fuel case without considering online fuel reprocessing to verify the 

developed capabilities in comparison with depletion calculation results of the Monte Carlo code 

OpenMC. Then, the fuel cycle analysis of the MSFR benchmark is performed considering online 
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fuel reprocessing and refueling, and the solution of PROTEUS-NODAL is compared with the 

reference results obtained from the MSFR benchmark report [13]. 

6.4.1. Verification Test 

To verify the implemented depletion capabilities of PROTEUS-NODAL, a small artificial 

problem was developed with a fast spectrum and stationary fuel without considering online 

reprocessing or refueling in order to verify the results of the PROTEUS-NODAL against the 

OpenMC results. The fuel salt is composed of LiF-233UF4-ThF4 in a cylindrical core of 1.0 m3 

volume with reflective boundary conditions and 800 MW power. For this problem, burnup 

dependent cross sections were generated with OpenMC code for the same core configuration.  

In this problem, the fuel salt was depleted for 350 days, and the eigenvalue and important 

nuclide concentrations were compared at each depletion point. Figure 6.2 shows the eigenvalue 

results of the PROTEUS-NODAL and OpenMC codes. The difference in eigenvalue results is 

within 40 pcm for this simple test problem, and the eigenvalue decreased significantly during the 

first 50 days, and it decreases at a slower rate after that. This can be explained by breeding the 233U 

isotope from 232Th isotope according to the following process 

 232 1 233 233 233

90 0 90 91 9221.83 min 26.97day
Th n Th Pa U − −

+ ⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→ . (6.30) 

 
Figure 6.2. Eigenvalue change with time for stationary fuel test problem. 

The atomic concentrations calculated by PROTEUS-NODAL and OpenMC codes of the 232Th, 

233Pa, and 233U isotopes are shown in Fig. 6.3. The atomic concentration of the 232Th is decreased 
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linearly due to the large capture reaction of this isotope in the resonance region with a maximum 

relative difference from OpenMC of 0.012%. The atomic concentration of the 233U isotope is 

reduced significantly at the first 50 days and starts to increase again due to the decay of the 

accumulated 233Pa isotope. As shown in Eq. (6.30), the 232Th produces the 233Th isotope from 

neutron capture reaction, which decays into 233Pa isotope with a half-life of 21.83 minutes. The 

233Pa decays into 233U with a half-life of 26.97 days. The atomic concentration of the 233Pa isotope 

reaches saturation level within 100 days. While the concentration of the 233U continuous to build 

up. Compared to the OpenMC results, the maximum relative differences in the atomic 

concentrations calculated by PROTEUS-NODAL for the 233Pa and 233U isotopes are 0.17% and 

0.07%, respectively. The results of this test problem show the validity of the PROTEUS-NODAL 

depletion solver for performing depletion analysis and the selection of the fuel type was to test the 

developed solver for a problem composition similar to the MSFR benchmark, as discussed in the 

following subsection.  

 
Figure 6.3. Atom densities change of (a) 232Th (b) 233U and (c) 233Pa with time for stationary fuel 

test problem. 

(a) (b)

(c)
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6.4.2. MSFR Fuel Cycle Analysis 

The MSFR benchmark report [13] includes fuel cycle analysis of the 233U started core and the 

TRU started core along with the steady state analysis. The fuel cycle analysis focuses on the 

evolution of the heavy metal and fission products in the fuel salt over 200 years of operation of the 

fuel salt. The description of the MSFR benchmark is provided in Chapter 3 and the design 

specifications are provided in Appendix C. The specifications for the fuel salt reprocessing are 

provided in this subsection. 

The salt management combines a salt control unit, an online gaseous extraction system, and an 

offline lanthanide extraction component.  Figure 6.4 shows a schematic diagram of the online fuel 

salt reprocessing system in MSR. In the online gaseous extraction system, Helium bubbles are 

injected into the core to remove all non-soluble fission products (noble metals and gaseous fission 

products) with a removal period of 30 s. In the offline salt reprocessing component fraction of salt 

is periodically withdrawn and reprocessed to extract the lanthanides and soluble fission products. 

The reprocessing rate is 40 l/day which corresponds to reprocessing period of 450 days of the 

whole core considering 100% offline extraction efficiency. Also, Pa is extracted from the core and 

blanket and stored until the 233Pa decays to 233U that will be injected back into the core with the 

fresh fuel continuously to maintain criticality. Table 6.1 summarizes the elements that are being 

removed from the fuel salt and their removal frequencies from the core and the blanket regions. 

Table 6.1. Reprocessing Frequencies of Heavy Metal and Fission Products in MSFR. 

Removal Group Elements Region Removal Time 

Non-Soluble Fission 

Products 

H, He, N, O, Ne, Ar, Kr, Nb, Mo, Tc, 

Ru, Rh, Pd, Ag, Sb, Te, Xe, Rn 

Core 30 sec 

Blanket 30 sec 

Soluble Fission 

Products 

Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, 

Cd, In, Sn, I, Cs, Ba, La, Ce, Pr, Nd, 

Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, 

Yb 

Core 450 day 

Blanket 52.7 year 

Heavy Metal U, Pu, Np Blanket 192.5 day 

In PROTEUS-NODAL calculations for the MSFR fuel cycle analysis, the cross sections were 

prepared for 282 nuclides (58 actinides and 222 fission products) using OpenMC code and 

ENDF/B-VII.1 cross section data. For nuclides with no cross sections data, decay reactions were 

considered. A detailed depletion chain contains 1356 nuclides of which 93 actinides and 1157 

fission products were considered in the MSFR depletion calculations. The calculations were 
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performed for 233U and TRU cores to obtain the evolution of U, Pu, minor actinides, and fission 

products inventories as a function of the operation time. The feeding rate, the breeding ratio, and 

the breeding gain were calculated over 200 years of operation for the fuel salt in the core and the 

blanket regions with online reprocessing and feeding. At each time point, the feeding rate of the 

fissile material was searched in order to maintain criticality considering the flow of the fuel salt 

without thermal feedback.  

 
Figure 6.4. Reprocessing diagram of MSFR [3]. 

Figure 6.5 compares the evolution of the major heavy metal inventories in the MSFR for the 

233U and TRU started cores calculated by PROTEUS-NODAL with reference solution obtained 

from the MSFR design report. The results of the PROTEUS-NODAL of both MSFR cores are 

similar to the results obtained from the reference solution. Also, Fig 6.6 and Fig. 6.7 show the 

heavy meatal and fission products inventories for 200 years of operation as calculated by 

PROTEUS-NODAL and compared to the reference solution for 233U and TRU started cores, 

respectively. The differences in the PROTEUS-NODAL and the reference results are due to 

differences in the depletion chains and neutron cross section libraries used in the calculations. 

After 100 of operation, the heavy metal of both MSFR options reaches its equilibrium 

concentration except for Cm and Am concentrations, while the fission products reach equilibrium 

concentration after 5 years of operation with continuous removal of the soluble and non-soluble 

fission products. Although the initial fuel salt compositions of the 233U and TRU started MSFR are 
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different, they achieve similar fuel compositions after almost 150 years of operation with the same 

reprocessing scheme and the same feeding material. 

  

Figure 6.5. Time evolution of heavy element inventory for MSFR calculated by PROITEUS-

NODAL (right) and reference [13] (left). 

  
Figure 6.6. Time evolution of heavy element and fission products inventory for 233U started 

MSFR calculated by PROITEUS-NODAL (right) and reference [13] (left). 

The time evolution of the fission products in the 233U started MSFR calculated by PROTEUS-

NODAL and compared to other reference solutions is shown in Fig. 6.8. The PROTEUS-NODAL 

results agree very well with reference results and reach an equilibrium concentration of 600 kg 

after 5 years of operation. The discrepancies appear in the fission products concentrations because 
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of the differences in the employed simulation models, cross section data library, and depletion 

chain library used in the reference solution. 

  
Figure 6.7. Time evolution of heavy element and fission products inventory for TRU started 

MSFR calculated by PROITEUS-NODAL (right) and reference [13] (left). 

Figure 6.9 shows the feeding rate of the fissile and fertile components of the fuel salt for 233U 

and TRU started fuels along with eigenvalue at each time point. For both fuel salt options, the 

feeding rate of the fissile component is around 70 kg/year in order to maintain criticality. The high 

feeding rate at the beginning of the operation is due to the low breeding of the 233U of fresh fuel 

and the buildup of the fission products.  

 

Figure 6.8. Mass inventory of fission products in 233U started MSFR. 



 150 

  
Figure 6.9. Fissile and fertile materials feeding rates in 233U (left) and TRU (right) started MSFR 

calculated by PROTEUS-NODAL. 

For further verification of the developed MSR depletion capabilities of the PROTEUS-

NODAL code, the breeding ratio and the breeding gain of both MSFR core options are calculated 

and compared to the values reported in the MSFR design report. The breeding gain is defined in 

the MSFR design report as the ratio of the decay rate of the 233Pa to the total neutron fission and 

capture (absorption) rates of the 233U. Table 6.2 provides the calculated breeding ratio in 

comparison with other reference solutions. The calculated values with PROTEUS-NODAL are in 

good agreement with the values of other institutes using the same cross sections library. 

Table 6.2. Calculated Breeding Ratio of Both MSFR Options.  

 KI LPSC POLIMI POLIMI FAMOS PROTEUS 

XS ENDF/B-VI ENDF/B-VI JEFF-3.1 ENDF/B-VII ENDF/B-VII.1 
ENDF/B-

VII.1 

233U 1.07 1.13 1.112 1.039 1.044 1.052 

TRU 1.07 1.11 1.112 1.039 1.048 1.056 

The breeding gain is defined as the total balance of the 233U in the core and the blanket 

considering the amount extracted from the blanket and supplied into the core. Figure 6.10 shows 

the time evolution of the breeding gain for 233U started and TRU started MSFR. The breeding gain 

of the 233U started MSFR core reached equilibrium level after about 20 years of operation with a 

value close to 125 kg/year. While for the TRU started MSFR the breeding gain reaches the 

equilibrium level after 100 years of operations with a value of 140 kg/year.  
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In the TRU started MSFR, the initial breeding gain is significantly high because the produced 

233U is not used due to existed TRU fuel. As the TRU fuel is burned, the breeding gain is reduced 

significantly because the produced 233U is used to replace the burned TRU fuel. The main sources 

of the discrepancies among the results of the PROTEUS-NODAL and other participating institutes 

are due to the differences in the employed simulation models, cross section data library, and 

depletion chain library used in the reference solution. 

   

Figure 6.10. Time evolution of breeding gain of 233U (left) and TRU (right) started MSFR.  

In most fuel cycle analyses performed for the MSFR in the literature, the flow of the fuel in 

the core is not considered, instead, the fuel is assumed to be stationary, and the one-point depletion 

model is utilized as in several studies performed with Monte Carlo codes like Serpent and 

OpenMC. However, in order to achieve the same heavy metal time evolution, the fuel feeding rate 

and the breading ratio will be affected. As presented in Table 6.2, the differences in the breeding 

ratio are also related to several factors including the effects of the fuel flow, decay heat, and 

thermal feedback. It is worth mentioning that for the MSFR case, the time spent by the fuel in and 

out the core is 2.0 s each, so the use of the two points or one-point model makes almost no 

difference. However, for other reactor designs with different fuel residence times in the core and 

outer loop, both models will provide different results. 

To study the effect of the fuel flow, thermal feedback, and the decay heat on the fissile feeding 

rate and the breeding ratio, several calculations were performed with and without considering fuel 

flow, thermal feedback, and the decay heat for both MSFR cores. Table 6.3 summarizes the fissile 

feeding rate and the breeding ratio for several cases. For both MSFR cores, the fissile feeding rate 
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is slightly underestimated, and the breeding ratio is overestimated because of ignoring the effect 

of the fuel flow and delayed neutron losses.  

Table 6.3. Effect of TH Feedback and Decay Heat on Fissile Feeding Rate and Breeding Ratio.  

Case 
MSFR Core Flowing Fuel Decay Heat 

TH 

Feedback 
Fissile Feed 

Rate (kg/year) 

Breeding 

Ratio 
233U TRU w/o w/ w/o w/ w/o w/ 

1 x  x  x  x  71.16 1.055 

2 x   x x  x  75.46 1.052 

3 x   x  x x  70.93 1.053 

4 x   x x   x 81.87 1.047 

5 x   x  x  x 76.99 1.049 

6  x x  x  x  63.34 1.061 

7  x  x x  x  68.57 1.056 

8  x  x  x x  65.57 1.058 

9  x  x x   x 71.26 1.055 

10  x  x  x  x 65.33 1.058 

For 233U started core, considering the decay heat (~ 4.0% of the total power) in the neutron 

flux normalization results in reducing the fissile feeding rate and increasing the breading ratio due 

to the reduction of the consumption rate of the fissile material since the decay power contributes 

to a non-negligible amount of the total produced power. More details about the decay heat 

calculations are provided in the following Chapter. Also, considering the thermal feedback resulted 

in a reduction of the breeding ratio from 1.052 to 1.047 and increasing of the fissile material 

feeding rate by about 5.0 kg/year. This is due to the effect of the fuel temperature and density 

distributions on the feedback model and updating the cross sections. Similar behavior was 

observed for the TRU started core. Figure 6.11 shows the change of the breeding ratio with time 

over for several cases for the 233U started and TRU started cores. 

6.5. Summary 

Fuel cycle analysis capabilities of MSRs have been implemented in the PROTEUS-NODAL 

code for depletion and fuel cycle analysis of the liquid fuel MSRs. The new depletion capability 

utilizes the CRAM solver of the open-source toolkit EXPOKIT to solve the matrix exponential, 

and the predictor-corrector coupling scheme was utilized to couple the steady state solver and the 

depletion solver. The developed depletion capability has online reprocessing and salt control 

capabilities to maintain the heavy metal fraction in the fuel salt at a fixed level, and it allows online 

fuel salt refueling by searching for the feed rates of the fissile and fertile components of the fuel 
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salt in order to maintain criticality. The implemented capabilities were first verified against Monte 

Carlo code OpenMC for a stationary fuel problem, then, the fuel cycle analysis of the MSFR 

benchmark problem was performed with PROTEUS-NODAL and verified against the reference 

solutions obtained from the design report of the MSFR benchmark. Also, the effects of the drift of 

the fuel salt, the decay heat, and coupling with the thermal hydraulics on the fissile feeding rate 

and the breeding ratio were investigated. The results show that these parameters have a significant 

impact on the feeding rate of the fissile isotopes. The implemented depletion model is used to 

calculate the decay heat as a function of time after reactor shutdown is discussed in the following 

Chapter. Also, an adaptive time-stepping solution algorithm was implanted to predict the depletion 

time step size following a similar procedure utilized for the transient solver as provided by 

Appendix G. The solution algorithm helps to perform the depletion calculations based on a 

specified accuracy level without providing prescheduled time steps. 

   
Figure 6.11. Change of the breeding ratio with time for 233U (left) and TRU (right) started 

MSFR.  
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Chapter 7. Improved Feedback Model for MSRs 
 

In real operation of MSRs, it is important to consider the heat generated by the decay process 

of the fission products of liquid fuel or the decay heat in neutronics analyses since it is partially 

released in the reactor core region and the primary loop, since it contributes to a non-negligible 

amount of the total generated power. Because of the online reprocessing of the fuel salt, certain 

fission products are removed from the fuel salt, so they will not contribute to the total decay heat 

released in the system. After a normal reactor shutdown, most of the heat generated will be 

dispersed by continued circulation of the fuel and coolant salts. In the case of draining the fuel salt 

to a drain tank, the heat generated in the salt would be dissipated through the primary drain tank 

cooling system. However, it is important to calculate the decay heat released by the fission 

products that exist in the fuel salt for accurate calculations of the fuel burnup and the fissile feeding 

rate and a more realistic transient analysis. 

Also, during online refueling in MSRs, fissile and fertile components are injected into the fuel 

salt in the outer loop while the reactor is operational. This will result in reactivity perturbations 

due to redistribution of the fuel salts nuclides in the core. An over-fueling of either of the 

components will induce reactivity insertion transient or an over-fueling accident, and the reactor 

power and fuel salt temperature will change accordingly. In order to simulate this unique transient 

scenario, the redistribution of the fuel salt nuclides in the core region should be considered in the 

thermal feedback for updating the cross sections. In this way, a more realistic thermal feedback 

model of MSRs can be utilized for multiphysics analysis. 

The feedback model of MSRs implemented in PROTEUS-NODAL has two components, one 

is related to thermal changes of the fuel salt on the cross sections due to fuel temperature change 

and expansion of the fuel salt or density change. The other component is the fuel salt velocity, 

which affects the delayed neutron and decay heat precursors distributions in the core. Also, during 

online refueling, the distribution of the nuclides in the core region is governed by the fuel velocity, 

and the redistribution of the fuel salt nuclides in the core region should be included in the thermal 

feedback model. In this Chapter, further improvements are made for the feedback model of MSRs 
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considering the nuclide distribution and the decay heat as discussed in the following sections. 

Figure 7.1 shows the coupling scheme and the exchanged parameters between neutronics and 

thermal hydraulics solvers, and the thermal feedback model. 

 

Figure 7.1. Coupling scheme and feedback model for MSRs. 

7.1. Decay Heat Model  

In MSRs, part of decay heat is released outside the core, especially in the heat exchanger, and 

it should be considered in the power calculation. A decay heat model has been implemented into 

the PROTEUS-NODAL code, where the fission products are grouped into a few decay heat 

precursor groups DK , and for each group, the following decay heat equation is solved  

  
1
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G

k k k k k f fg g D

g
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 , (7.1) 

where kf , k , and kh  denote the decay heat fraction, the decay constant, and the product of the 

precursor concentration and energy release of decay heat group k, respectively, and f  is the 

recoverable energy per fission. Eq. (7.1) is solved using the FDM method in a similar way as the 

delayed neutron precursor equation. In the outer loop, there is no heat generated from fission, thus 

the decay heat in the outer loop and heat exchanger is calculated by solving Eq. (7.1) with zero 

volumetric heat source of the right-hand side of the equation. The total, fission, and decay heat 

sources in the core are calculated as 

 ( , ) ( , ) ( , )tot fiss decayQ r t Q r t Q r t= + , (7.2a) 
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In order to calculate the distribution and the amount of the heat generated by the decay of the 

fission products, the decay heat precursors need to be grouped with unique decay constants and 

fractions in a similar way as the delayed neutron precursors concentration. The delayed heat groups 

can be obtained by fitting the delayed energy release as a function of emission time. For LWRs, 

the 2014 ANS decay heat standard includes the time-dependent decay energy as exponential fit 

from the direct fission of four important fissile isotopes 235U, 238U, 239Pu, and 241Pu. The decay 

heat power is represented as a summation of 23 exponential terms [132]. In a similar way, the 

decay heat for MSRs can be represented with exponential fitting as a summation of K  exponential 

terms as 

 ( ) ( ), exp
K

decay d k k

k

Q t Q f t
=

= −0
1

, (7.3) 

where ( )decayQ t  is the decay heat generated at time t , 
,dQ 0

 is the decay heat generated during a 

steady state operation before shutdown the reactor, 
kf  and 

k  are the decay heat fraction and decay 

constant for group k , respectively. The decay heat fraction and decay constant for each group can 

be determined from exponential fitting of the decay heat curve after performing depletion 

calculations at full power for a sufficient amount of time, so that the decay heat reaches a saturation 

or equilibrium level. Then, shutdown conditions are imposed, and the decay heat is calculated. In 

PROTEUS-NODAL depletion calculations, all nuclides in the depletion chain are being tracked 

which allows calculation of the decay heat explicitly as expressed in Eq. (6.29). 

As an example, the decay heat calculation capability of the PROTEUS-NODAL code was 

tested using the MSFR benchmark for stationary fuel case and the results were compared to 

Serpent code results considering the same problem. Figure. 7.2 shows the decay heat as a fraction 

of the total power for 350.0 days of full-power operation, and 350.0 after the reactor was shut 

down. The results of PROTEUS-NODAL agree with Serpent results, and the decay heat reaches 

about 5.58% of the total generated power in the reactor core.  
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Figure 7.2. Decay heat power calculated by Serpent and PROTEUS-NODAL for MSFR. 

In the real operation of MSR, the removal of fission products during reprocessing of the fuel 

salt must be considered. In Table 6.1, the fission products for the MSFR case were classified 

soluble as non-soluble fission products with removal frequency of 450 days and 30 s, respectively. 

Figure. 7.3 shows the decay heat generated by the soluble and non-soluble fission products as a 

function of time. The soluble fission products account for 4.38% of the total power, while the 

soluble fission products account for 1.20% of the total power. The major element contribution to 

the decay heat is for Rb (0.597%), Y (0.550%), La (0.463%), Sr (0.384%), Cs (0.359%), Nb 

(0.342%), and Kr (0.315%). For the MSFR case, the thermal power of the reactor is 3000 MW, 

and the non-soluble fission products will contribute to 36 MW which is a huge amount of power 

and must be considered carefully in the handling of the fission products.  

 
Figure 7.3. Decay heat generated by soluble as non-soluble fission products after shutdown. 
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If the non-soluble fission products are completely removed through reprocessing, only the 

soluble fission products will account for the total decay heat. So, they must be eliminated from the 

decay heat calculations as they are continuously removed from the fuel salt. The total decay 

generated by the fission products considering different removal frequencies of the non-soluble 

fission products is provided in Fig. 7.4. As the non-soluble fission products are continuously 

removed from the fuel salt, their contribution to the total generated decay heat decreases 

significantly. In the design of the MSFR, the non-soluble fission products are removed from the 

fuel salt every 30.0 s, and the decay heat will contribute to about 4.05% of the total reactor power 

compared to 5.58% for the case without removal of the fission products.  

 
Figure 7.4. Total decay heat generated after shutdown considering different removal times of 

non-soluble fission products. 

To obtain the decay heat distribution in the core, the decay heat precursor equation must be 

solved as in Eq. (7.1). However, the solution of the decay heat precursor equation can be obtained 

in a similar way to the delayed neutron precursor equation using the  

FDM approach, yet the decay constants and the decay heat fractions for each group must be 

determined. For the MSFR case, the decay constants and the decay heat fractions were determined 

by exponential fitting of the decay heat curve after shutdown, as in shown Fig. 7.5, to represent 

the decay heat as a summation of 4 exponential terms, as described in Eq. (7.3). Table 7.1 provides 

the decay heat parameters of the 233U started MSFR. 

Table 7.1. Decay Heat Parameters of 233U started MSFR. 

Group 1 2 3 4 

f (%) 1.521 0.675 0.980 0.876 

λ (s-1) 1.312E-04 3.320E-03 2.546E-02 1.740E-01 
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Figure 7.5. Fitted decay heat curve after shutdown of MSFR case. 

7.1.1. Steady State 

The decay heat model of PROTEUS-NODAL was tested for steady state calculations without 

thermal feedback to determine the contribution of the decay heat to the total power. Figure 7.6 

shows the fraction of decay heat released as a function of the transit time in the core for different 

out-of-core transit times. The decay heat released in the core region increases as the fuel spends 

more time in the core region. It approaches the stationary fuel value as the in-core transit time 

increases. For the reference transit times of 2.0 s in the core region and 2.0 s out of the core region, 

the decay heat fraction in the core region is 2.1% of the total power, which is about half of the 

stationary fuel value of 4.05%. If the fuel exiting the core region re-enters the core region 

immediately, the decay heat fraction would be constant and equal to the stationary fuel value since 

all the fuel would decay in the core region. Figure 7.7 shows the total and decay power distributions 

in the core for the reference operating condition. As expected, the total power distribution is 

symmetrical around the core mid-plane while the decay heat is shifted upward.  

 
Figure 7.6. Fraction of decay heat release in core region of MSFR. 
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Figure 7.7. Total (left) and decay (right) power distributions in core region of MSFR. 

7.1.2. Transient 

From a safety analysis point of view, it is important to calculate the fuel salt temperature 

accurately to make sure that the fuel salt temperature will not exceed the design limits during a 

transient scenario. The increased fuel salt temperature will result in reducing the reactor power due 

to the negative feedback, as in transients with loss of cooling capability or loss of fuel salt flow 

like ULOHS and ULOF scenarios. The decay heat of the fission products in the fuel salt will lead 

to a further increase of the fuel salt temperature since it contributes to about 4% of the total power, 

and it is produced over a longer time period. In this section, the ULOHS and ULOF transients of 

MSFR are analyzed considering the decay heat in a similar way as discussed in Chapter 3 for 

MSFR benchmark analysis. Figure 7.8 shows the power evolution and the core average 

temperature during ULOHS transient with and without considering the decay heat in the MSFR 

benchmark. As the fuel temperature starts increasing due to cooling capability loss, the reactor 

power starts decreasing significantly. At the beginning of the transient, the case of the power with 

decay heat decreases at a higher rate due to the higher fuel average temperature. After 10 s, the 

power became higher than the case without decay heat because the undecayed fission products 

produce more heat, and the decay heat exceeds the prompt power after 40 s from the start of the 

transient, and it reaches 80% of the generated power after 100 s. Also, the average core temperature 

increases significantly compared to the case without decay heat, and it didn’t reach saturation in 
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100 s of the transient with about 100 K higher, and it reaches 1170 K at the end of the transient. 

This transient shows the importance of the decay heat during ULOHS and how it affects the power 

evolution and the average core temperature increase.   

   

Figure 7.8. Power (left) and average core temperature (right) evolutions during ULOHS 

considering decay heat in MSFR. 

The power evolution and core average temperature during the ULOF transient of the MSFR 

benchmark are shown in Fig. 7.9. As the fuel flow rate is reduced, positive reactivity is introduced 

due to the decreased loss of delayed neutrons out of the core. At the same time, the decreased fuel 

flow rate increases the fuel temperature in the core region, which introduces negative reactivity 

feedback. This negative temperature feedback is larger, and the reactor power starts decreasing. 

For the case with decay heat, the power decreases at a higher rate at the beginning due to higher 

fuel temperature. After 30 s, the generated power with decay heat becomes higher than the case 

without decay heat as the contribution of the decay heat to the total power increase and reaches 

35% of the total generated power after 100 s of the transient. Also, the core average temperature 

with decay heat case is 50 K higher than the case without decay heat, and it reaches about 1250 K 

after 100 s of the transient.  This transient shows that the decay heat is less significant in ULOF 

than in ULOHS transient. However, the core average temperature reaches a higher value, and the 

contribution of the decay heat is still important.   
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Figure 7.9. Power (left) and average core temperature (right) evolutions during ULOF 

considering decay heat in MSFR. 

Also, the UTOP transient of the MSFR benchmark with 50 pcm reactivity insertion was 

analyzed considering the decay heat, as shown in Fig. 7.10. For the case with decay heat, the peak 

power is smaller than the peak power without considering the decay heat with a relative difference 

of 1.5% because of the lagged decay heat. The lower peak power resulted in a slightly smaller core 

average temperature. After 1.0 s in the transient, the power agrees for both cases with a relative 

difference within 0.5%.  

   

Figure 7.10. Power (left) and average core temperature (right) evolutions during UTOP with 50 

pcm reactivity insertion considering decay heat in MSFR. 
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7.2. Nuclide Drift Model 

Online fuel reprocessing is a unique feature of MSRs with flowing fuel, where the fissile and 

fertile components of the fuel salt are being added, and the fission products are continuously being 

removed from the fuel salt to maintain criticality and monitor the heavy metal concentration. The 

addition of the fissile or fertile nuclides to the fuel salt in an operating reactor will results in 

reactivity perturbation due to the non-uniform distribution of the salt nuclides. These reactivity 

perturbations depend on the amount and the rate at which these nuclides are being added. Such 

kind of perturbations is very important for the safety analysis and operation of the reactor. Also, 

over-fueling accident scenario or unprotected fuel salt over-fueling (UFSOF) need to be analyzed 

to study the change in the reactor power during the transient. 

In order to simulate the over-fueling accident scenario, the distributions of the fuel nuclides in 

the core need to be considered in the feedback model to account for their drift and redistribution 

in the core. The following nuclide drift model has been added to the feedback model as 

 ( ) ( ) ( )( , ) [ , , ] , , 1,2,....,i i i isoN r t u r t N r t S r t i N
t


+ = =


, (7.4) 

where iN  is the atomic concentration of nuclide i , iS  is the source term that accounts for the 

addition of nuclide i . Eq. (7.4) is derived from the nuclide depletion equation of flowing fuel Eq. 

(6.9), however, the nuclides removals due to decay and burnup were omitted since they occur at a 

longer time span than the transient duration.  

The feedback model of MSRs implemented in PROTEUS-NODAL has two components, one 

is related to thermal changes of the fuel salt and affects the cross sections due to fuel temperature 

change and expansion of the fuel salt or density change. The other component is the fuel salt 

velocity field, which affects the delayed neutron and decay heat precursors distribution in the core. 

Eq. (7.4) will add an extra component to the feedback model of PROTEUS-NODAL that is related 

to the fuel salt velocity field, which will lead to changes in the fuel salt nuclide concentration, as 

a result, a change in the macroscopic cross sections of the fuel salt.  

7.2.1. Fissile Over-Fueling Transient 

An over-fueling accident is analyzed for 233U started MSFR by injecting fissile nuclide (233U) 

or fertile nuclide (232Th) into the core while the reactor is at normal operating conditions. Figure 

7.11 shows the power and core average temperature increase following the addition of 5.0 kg of 

233U to the fuel salt in a period of 1.0 s. The reactor power starts increasing due to the increased 
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fission induced by the added 233U as the fuel is flowing into the core. The reactor power increases 

to about 140.0% of the full power in about 1.0 s, and it starts decreasing as the fuel salt temperature 

increases in the core region. The core average temperature increases by about 12 °C, which will 

lead to a decrease in the reactor power beyond the steady state power level. As the unheated fuel 

salt and the portion of the fuel salt with added 233U starts flowing back to the core, the reactor 

power starts increasing again and reaches a lower peak of about 120.0% of the reactor full power. 

The fluctuations in the power and temperature continue to decrease as the fuel salt is uniformly 

mixed in the system and stabilizes at a higher power level than the steady state power level within 

50 s. The distribution of the 233U nuclide in the reactor core region during the first 10.0 s is provided 

in Fig. 7.12. At the beginning of the transient, the distribution follows the fuel salt density 

distribution with a higher concentration near the core inlet due to a lower temperature and higher 

salt density, while at the top of the core, lower concentration of the 233U is due to the higher 

temperature and lower density of the fuel salt. As the added 233U starts flowing in the core, the 

higher nuclide concentration region is shifted upward until the fuel salt is uniformly mixed, then 

the 233U nuclide distribution returns to a distribution similar to the initial state case as the power 

stabilizes at a new asymptotic level. 

 
Figure 7.11. Time evolution of power and temperature after refueling 5.0 kg of 233U in 1.0 s.  
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Figure 7.12. Distribution of 233U nuclide in MSFR core after over-fueling transient. 

The peak power magnitude and the frequency of the fluctuations depend on the amount of the 

added fuel salt and the rate at which the fuel salt is being added. To examine the effect of the added 

amount of the fuel salt on the magnitude of the peak power, three different amounts of the added 

233U during 1.0 s were simulated. Figure. 7.13 shows the power evolution after injecting 5.0, 10.0, 

and 15.0 kg of 233U nuclide into the reactor core during 1.0 s. The frequency of the power 

fluctuations is similar since it depends on the circulation time of the fuel salt in the whole system. 

However, the magnitude of the peak power reaches 140.0%, 180.0%, and 220.0% of the reactor 

full power for the added amount of 5.0, 10.0, 15.0 kg of 233U nuclide, respectively.  
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Figure 7.13. Power evolution after refueling different amounts of 233U in 1.0 s.  

The effect of the feeding rate on the peak reactor power is shown in Fig. 7.14 with the same 

amount of the 233U nuclide of 5.0 kg is added during different time periods of 0.1, 0.5, 1.0, and 2.0 

s. For the same amount of the added 233U, as the feeding rate increases, the peak power increases, 

and it occurs earlier with a higher frequency. The peak power ranges from 115.0% to 145.0% of 

the full power depending on the feeding rate. Eventually, the power will reach the same level at 

the end of the transient regardless of the feeding rate. 

 

Figure 7.14. Power evolution after refueling 5.0 kg of 233U nuclide at different rates. 
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7.2.2. Fertile Over-Fueling Transient  

As mentioned in the previous sections, the fuel addition will contain a fissile and fertile 

component of the fuel salt to maintain criticality and breeding fissile nuclide at the same time. 

Adding fertile nuclide such as 232Th into the fuel salts will results in an opposite scenario to that 

after adding fissile nuclide. Since the 232Th has a high neutron capture cross section and the 

breeding of the 233U (as described in Eq. 6.30) depends on the 232Th capture rate, adding 232Th to 

the fuel salt will increase the neutron capture rate, which will introduce a negative reactivity into 

the reactor core. As a result, the power will start decreasing which will lead to a decrease in the 

core average temperature of the fuel salt. As the 232Th nuclide leaves the reactor core, the decreased 

fuel salt temperature will result in positive feedback, and the power starts increasing again and 

heating the fuel salt. The power and temperature fluctuate as the 232Th, and the heated fuel slat 

reenters the core until it reaches a new level, as shown in Fig. 7.15, where a 100 kg of 232Th nuclide 

is injected into the core region in 1.0 s. The power decreases below 60.0% of the initial power, and 

the magnitude of the peak power and frequency of the fluctuations depends on the amount and the 

rate at which the fertile material is being fed to the fuel salt.  

 
Figure 7.15. Time evolution of power and temperature after refueling 100.0 kg of 232Th in 1.0 s. 

These unique types of transients are very important during the normal operation of MSRs with 

online refueling option. It is important to understand how the power and temperature behave 

following such type of transient, which will help in determining the amount and the rate at which 
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the fissile and fertile components of the fuel salt should be added. Knowing the feeding rate of the 

fissile and fertile material from depletion calculations of the fuel salt is affected by the performed 

calculations. In the previous Chapter, the calculated feeding rate is sensitive to thermal feedback, 

decay heat, and considering the drift of the fuel. Also, it is important to know that the fuel salt 

temperature is within the design limits. 

7.3. Summary 

In this Chapter, further improvements were made to the feedback model of MSRs by including 

the decay heat and the distribution of the fuel salt nuclides in the thermal hydraulics calculations 

and updating the cross sections. The decay heat was calculated as a function of time after reactor 

shutdown, and it was grouped into several decay heat groups with unique decay constant and decay 

heat fractions after considering the removal of non-soluble fission products from the fuel salt 

which contributes to about 1.2% of the total decay heat while the soluble fission products 

contribute to about 4.1%, and it was used in the depletion and transient analysis of MSFR to 

demonstrate its significance. Furthermore, a nuclide drift model was added to simulate an over-

fueling transient scenario, which is an important phenomenon related to the daily operation of 

MSRs with flowing fuel. The power excursion depends on the rate and the amount of the added 

fissile and fertile materials to the reactor core, and the simulation results suggest feeding the fissile 

and fertile nuclides at a low rate to avoid any fluctuations in the power of the reactor.  
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Chapter 8. Summary and Future Work 
 

The main objective of this thesis is to develop neutronics analysis capabilities to the 

PROTEUS-NODAL code for the application of MSRs with flowing fuel. In MSRs, the effect of 

the fuel salt drift in the core region and the decay of the delayed neutron precursors outside the 

core region resulted in a smaller eigenvalue than for stationary fuel case and a reduction in the 

effective delayed neutron fraction, which changes the dynamic behavior of the reactor. Also, the 

fuel salt is moving in the primary system of the reactor, and it is acting as a fuel and coolant at the 

same time resulted in strong coupling between the neutronics and thermal hydraulics. In order to 

account for these effects, the steady state solvers of the PROTEUS-NODAL code were extended 

to handle the flow of the fuel salt. Also, transient solvers were added to the PROTEUS-NODAL 

code with a thermal feedback model to consider the strong coupling between the neutronics and 

thermal hydraulics. To perform fuel cycle analysis of MSRs, a depletion solver was added with 

online reprocessing and refueling capabilities. Also, further improvements were made to the 

transient solver by adding an adaptive time stepping algorithm and including more physics in the 

feedback model by considering the decay heat and the nuclide distributions in the model. Several 

verification and validation tests of the implemented capabilities of PROTEUS-NODAL were 

performed to ensure that the steady state, transient, and depletion solvers can be used for the design 

and safety analysis of MSRs.  

8.1.  Summary 

The theoretical background and mathematical formulation of the solution methods 

implemented in PROTEUS-NODAL code for steady state and transient analyses of flowing fuel 

are provided in Chapter 2. The steady state solvers were extended for application for flowing fuel 

by solving the forward and adjoint delayed neutron precursor equations with the fuel drift term 

explicitly. The adjoint solution capability was added to calculate the reactor kinetics parameters of 

flowing fuel. Then, the solution of the time-dependent neutron diffusion equation was provided 

for stationary and flowing fuels using the TFSP formulation. The time-dependent delayed neutron 
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source was determined from the solution of the delayed neutron precursors equation, which was 

solved using the precursor integration method for stationary fuel, while for liquid fuel, several 

methods were investigated to obtain the solution of the resulting equations with fuel drift. The 

FDM was selected to solve the delayed neutron precursors equation because it provides a stable 

solution regardless of the time step size, and it can be applied for a general or an axial velocity 

field, which is important for fast spectrum reactors since there are no fuel channels. Also, the 

CMFD acceleration scheme was implemented for steady state and transient calculations, which 

reduced the computational time significantly, especially for transient problems. The thermal 

feedback capability was added to consider the strong coupling of the neutronics and thermal 

hydraulics. This includes steady state and transient thermal hydraulics solvers to calculate the fuel 

salt temperature, density and velocity fields, and the moderator temperature distribution. An outer 

loop model was added to consider the heat exchanger. The cross sections were functionalized 

differently for fast and thermal spectrum reactors considering the temperature and density of the 

fuel salt and the temperature of the solid moderator. The introduced coupling scheme for transient 

calculations was performed by operator splitting approach with loose coupling or time-lagged 

scheme. However, the neutronics and thermal hydraulics were tightly coupled in steady state 

calculations and solved iteratively until the power and temperature solutions were converged. 

Verification results of the developed capabilities were provided in Chapter 3 using two 

benchmark problems for fast and thermal spectrum MSRs. The first benchmark is the MSFR, 

which is a fast spectrum reactor based on the thorium fuel cycle with two fuel options utilizing the 

233U and TRU element as fissile material. The design report of the MSFR includes several steady 

state calculations results, which were used to verify the results of the PROTEUS-NODAL 

including eigenvalue, feedback coefficients, kinetics parameters, and losses in the delayed neutron 

fraction. However, for transient analysis, the PROTEUS-NODAL results were verified against the 

solutions of other institutes obtained from the open literature for several unprotected transients 

related to temperature, flow, or direct reactivity changes. The PROTEUS-NODAL results for 

steady state analysis were consistent with reference solutions. For time-dependent power and 

average temperature rise across the core generally agreed well in shape and magnitude with other 

reported solutions in the open literature. The second benchmark is the MOST exercise, which is a 

thermal spectrum reactor where the fuel is flowing into solid moderator channels of graphite, and 

it was developed based on the MSRE experiment with several design simplifications. The 
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PROTEUS-NODAL results were compared with other participants in the exercise, and the results 

agree very well with them. The main reason for analyzing the MOST benchmark is to establish a 

multigroup cross sections generation procedure for the MSRE analysis by determining the energy 

group structure and number of energy groups required for performing the validation tests of the 

MSRE experiment presented in Chapter 4 where the exact core of the MSRE was analyzed 

including the ex-core regions. Validation tests of PROTEUS-NODAL were performed using the 

measurements of the 235U and 233U cores of the MSRE. The temperature coefficients, the reactivity 

loss by fuel circulation, the protected pump startup, and coast down transients at zero power, and 

the natural circulation test of the MSRE were analyzed, and the results agreed very well with 

measurements. The analysis of the protected pump startup and coast down transients at zero power 

showed that the PROTEUS-NODAL calculation with a given inlet flow rate could follow the time-

dependent reactivity change due to delayed neutron precursor drift. The analysis of the natural 

circulation test showed that the PROTEUS-NODAL code could reproduce the measured power 

evolution due to thermal feedback for given inlet temperature and flow rate. The verification and 

validation results presented in Chapters 3 and 4 indicate that PROTEUS-NODAL can be used 

reliably for steady state and transient analyses of fast and thermal spectrums MSRs.  

Further improvements were incorporated into the transient solvers of the PROTEUS-NODAL 

code by implementing an adaptive time-stepping solution algorithm based on the control theory 

approach, as discussed in Chapter 5. Typically, during the transient simulation, prespecified or 

scheduled sizes of the time steps are provided at the beginning of the simulation. In this way, it is 

hard to vary the time-step size in advance without knowing the solution behavior over the transient 

period. Using a small time-step size will ensure the solution’s accuracy, but it will be 

computationally expensive. On the other hand, large time-step size will reduce the computational 

time at the expense of accuracy. The suggested adaptive time-stepping algorithm varies the time-

step size while maintaining the solution accuracy. This was achieved by monitoring the estimated 

local error of the solution and maintaining it below a prespecified limit. The implemented solution 

algorithm was tested using various types of transients using the MSFR benchmark and MSRE 

experiment, and the results were compared to the reference solution obtained with fine time-step 

size. Different local error estimates were tested, and other parameters of the algorithm like the 

tolerance level and the gain value were varied to test the robustness of the algorithm. In all the 

simulated transients, the ATS solution showed a vast reduction in the computational time while 
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ensuring the accuracy of the solution. At the end of the chapter, suggested ranges of the controller 

parameters were provided for different transient types.  

To perform fuel cycle analysis of MSRs, depletion calculations capability was added to 

PROTEUS-NODAL with online refueling and reprocessing, as presented in Chapter 6. The 

modified nuclide depletion equation for MSRs was introduced, and the solution scheme of the 

resulted system of equations was presented. Verification tests of the implemented capabilities were 

performed using the MSFR benchmark and compared to other reference solutions provided in the 

MSFR design report. Further analysis was performed to investigate the effects of the drift of the 

fuel salt, the decay heat, and coupling with the thermal hydraulics on the fissile feeding rate and 

the breeding ratio. In Chapter 7, the implemented feedback model was further improved by 

considering the decay heat and the distribution of the fuel salt nuclides in the model. First, the 

decay heat produced by the decay of the fission products was grouped into several decay precursor 

groups with decay constant and decay heat fractions after considering the removal of non-soluble 

fission products from the fuel salt. Then the decay heat distribution and its partial release in the 

core region were considered in the steady state and transient analyses, and the test results showed 

some differences in the power evolution and average core temperature increase. Also, an over-

fueling transient scenario in MSR was simulated by injecting fissile and fertile components of the 

fuel salt into the primary loop by utilizing a nuclide drift model that was developed to determine 

the nuclide distribution in the core region during the transient. The power excursion depends on 

the rate and the amount of the added fissile and fertile materials to the reactor core, and the 

simulation results indicate feeding the fissile and fertile material at a low rate to avoid any 

fluctuations in the power of the reactor.  

8.2. Contributions to MSRs Field 

This thesis presented the neutronics analyses capabilities developed for application to flowing 

fuel MSRs and implemented to PROTEUS-NODAL. These capabilities can be applied to thermal 

and fast spectrums reactors considering general or axial velocity fields. The verification and 

validation test results of the MSRs neutronics capabilities of the PROTEUS-NODAL code indicate 

that they can be used efficiently for steady state, transient, and fuel cycle calculations in order to 

perform design and safety analyses of flowing fuel MSRs.  
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The analyses and validation tests that were performed for the MSRE static and transient 

experiments provide very useful information for developing accurate models and multigroup cross 

sections generation. The accurate representation of the MSRE geometry by including the control 

rod and ex-vessel regions in the developed model with appropriate boundary conditions reflect 

their importance on the performed calculations compared to the results of the simplified 

benchmark developed for the MSRE core as discussed in Chapter 3. Also, the multigroup cross 

section generation procedure for the MSRE that was followed to determine the energy group 

structures, the number of energy groups, and the tally regions to account for spectral transition 

within the core provides very useful information that can be generalized for graphite moderated 

reactors with liquid fuel. The improved static and transient analyses results compared to the results 

of the simplified model of the MSRE show the importance of developing accurate models with 

appropriate multigroup cross-sections in simulating the experiments. 

The implemented adaptive time-stepping algorithm for transient analyses of MSRs with 

flowing fuel improved the efficiency of transient calculations. The test results show a vast 

reduction of the computational time while ensuring an accurate solution by maintaining the 

estimated local error of the solution below a prespecified tolerance level. This helps in avoiding 

unnecessarily small time-step size to ensure an accurate solution and thus improves the solution 

efficiency. Also, adjusting the time step size for the simulated transient in advance is very 

challenging, especially for long and slow transients like the natural circulation test of the MSRE. 

The suggested ranges of the controller parameters for different transient types provide very 

valuable information for using the adaptive time stepping algorithm efficiently. Also, the same 

adaptive time-stepping algorithm can be utilized for performing depletion calculation. 

Finally, the developed fuel cycle analysis capability can be utilized for calculating the decay 

heat generated by the fission products considering their chemical characteristics to account for the 

decay heat contribution in the performed analysis. Also, the calculation procedure of the decay 

heat parameters utilized for the MSFR benchmark can be followed for other types of MSRs.  

8.3. Future Work  

More accurate solution of the steady state and the transient analyses of MSRs can be achieved 

by coupling PROTEUS-NODAL to a thermal hydraulics analysis code for accurate modeling of 

the primary loop specifically the heat exchanger region to perform multiphysics simulations for 
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MSRs. PROTEUS-NODAL provides the basic environments to be coupled with other physics 

codes by allowing the exchange of coupling variables. Recently, PROTEUS-NODAL was coupled 

to the system analysis module SAM [42] under Moose framework [39] for steady state and 

transient analyses of MSRs, and preliminary results are presented in Ref. [50, 51, 52]. SAM was 

used to replace the thermal hydraulics solver of PROTEUS-NODAL to model the primary system 

of the simulated reactors accurately. The preliminary test results show that the coupled code system 

was able to perform transient analyses of MSRs successfully and allowing more realistic modeling 

of the heat exchanger and primary system and providing a general velocity field required for 

calculating the delayed neutron source in the MSFR case. Also, the adaptive time-stepping solution 

algorithm was utilized to predict the time-step size of PROTEUS-NODAL and SAM effectively, 

and the preliminary test results indicate that the algorithm can be applied to coupled multiphysics 

codes to determine the time-step size while ensuring the accuracy of the solution. 

Furthermore, it is suggested to couple PROTEUS-NODAL and SAM to a thermochemistry 

code to perform chemical analysis of the fuel salt for fuel cycle analysis. The coupling environment 

with other codes is already established and successfully tested between PROTEUS-NODAL and 

SAM and it can be easily extended to include other physics analysis tools. The chemical analysis 

of the fuel salt is important to determine the fuel salt molar composition required for neutronics 

calculations, as discussed for the nuclide drift model. Also, to determine the thermophysical 

properties of the fuel salt during operation, that is affected by gas bubbling and precipitation of 

certain fission products, which also affects the operation of the heat exchanger. In solid moderated 

MSR, like graphite as the MSRE experiment, it is important to determine the distribution of the 

short-lived and highly poisoning gaseous fission products like xenon in the core and their 

diffusivity in the graphite. The rates of diffusion from the salt to the graphite and to the gas bubbles 

in the salt need to be calculated. Previous studies [133] show that 10% of the produced noble gases 

would deposit on the graphite surface in the core, and 40% would deposit on metal surfaces in the 

circulation system, while 50% would enter the gas bubbles and be transported to the off-gas 

system. These important phenomena need to be addressed in performing advanced safety and 

design analysis of MSRs. 
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Appendix A.  Solution Methods for Delayed Neutron Precursor Equation of 

Flowing Fuel  

 

As mentioned in Chapter. 2, three different numerical methods were examined to solve the 

delayed neutron precursor equation for 1D axial flow: the method of characteristics (MOC), the 

method of lines (MoL), and the finite difference method (FDM). FDM was selected and 

implemented in PROTEUS-NODAL since it produces the null transient result correctly and it can 

be easily extended to multi-dimensional flows. The FDM method was discussed in Chapter 2, only 

the MOC and MoL are discussed in this Appendix, and the results for three transient scenarios are 

compared with the FDM solutions.  

A.1. Solution Methods for 1D Axial Flow 

A.1.1. Method of Characteristics 

Under the assumption that the fuel velocity is constant within a node, the precursor equation 

for 1D axial flow given in Eq. (2.68) can be solved analytically using the MOC approach. Along 

a characteristic line that can be represented by a parameter s, the terms including the temporal and 

spatial derivatives can be represented by the total derivative with respect to s. Denoting the 

precursor concentration of family k in a radial mesh i by ,k iC , its derivative with respect to s 

becomes 

 ( ) , ,

, ( ), ( )
k i k i

k i

C Cd dt dz
C z s t s

ds t ds z ds

 
= +

 
, (A.1) 

where i refers to the index for a radial mesh. Therefore, Eq. (2.68) can be written as an ordinary 

differential equation (ODE) as  

 
, , ,( ) ( ) ( )k i k k i k i

d
C s C s s

ds
 + = , (A.2) 

with the following auxiliary ODEs for the characteristic line 

 1, i

dt dz
u

ds ds
= = . (A.3) 
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The characteristic lines can be determined by solving Eq. (A.3) as 

 0

0i

t s t

z u s z

= +


= +
, (A.4) 

where t0  and z0  are the coordinates for the starting point where the initial or boundary condition 

is given. Along a characteristic line, the ODE in Eq. (A.2) can be solved as 

 
( )

, , ,
0

( ) (0) ( )k k
s

s s s

k i k i k iC s C e s e ds
  

− − − = +  . (A.5) 

In Eq. (A.5), , ,( ) ( , )k i k iC C z t= 0 00  is the initial or boundary condition given at the starting point of 

the characteristic line. For example, as illustrated in Fig. A.1, the precursor concentration in an 

axial node j  with an interval [ , ]j jz z−1  during a time interval [ , ]n nt t−1  can be obtained starting from 

the initial condition 
, ( )n

k ijC z−1 , j jz z z−  1  given at nt t −= 1  or the inlet boundary condition 
, ( )in

k ijC t , 

n nt t t−  1  given at jz z −= 1 .   

 

Figure A.1. Illustration of characteristic lines for precursor concentration calculation. 

Along a characteristic line starting from the line nt t −= 1 , ( )i n jz z u t t z− −= − − 0 1 1  and thus 

( ) /n j it t z z u− −−  −1 1 . On the other hand, along a characteristic line starting from the line jz z −= 1 , 

( ) /j i nt t z z u t− −= − − 0 1 1  and thus ( ) /n j it t z z u− −−  −1 1 . Therefore, the precursor concentration in the 

axial node j  during a time interval [ , ]n nt t−1  can be determined as 
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. (A.6) 

At each time node, the precursor concentrations at the outgoing surface of each node are 
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determined using Eq. (A.6). The precursor production and decay during the time interval 
nt  are 

evaluated along the characteristic line from a starting point 
n

startz  to an ending point at outz z= . For 

an ending point at outz z=  at nt t= , the starting point at nt t −= 1  can be determined as  

 
n

start out i nz z u t= −  . (A.7) 

The precursor concentration at the starting position is determined by the linear interpolation of 

precursor concentrations at the previous time node as 

 
1 1

, , ,( ) ( ) (1 ) ( )n n n

k i start k i in k i outC z C z C z − −= + − , (A.8) 

where inz  is the inlet coordinate of the node of interest and 

 ( ) / ( )n

out start out inz z z z = − − . (A.9) 

In order to evaluate the precursor generation rate in Eq. (A.6), the unknown flux at the current 

time node nt  is approximated by assuming the flux varies exponentially in the time interval [ , ]n nt t−1  

as 

 1( )1

, ,( , ) ( ) n nt tn

g ij g ijz t z e
  −−−= , (A.10) 

The inverse period n  is approximately determined using the power levels at nt −2  and nt −1  as   

 
1

1 2

1
ln n

n

n n

P

t P
 −

− −

=


. (A.11) 

Figure A.2 illustrates the method to calculate the precursor concentration at 
nt t=  on the outlet 

surface of node j  (i.e., at jz z= ). If the fuel salt moves through L  nodes during a time interval 

[ , ]n nt t−1 , then starting from the node ( )j L− −1 , the outgoing precursor concentrations of the nodes 

between 
n

startz  to jz  are calculated as 

, ,

, ,
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i j l i j l

z zz z

zu un n n

k i start k i j l j l startn z
i j ln
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u un
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C e z e
u

  

  







−

−
− −

−
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,

 (A.12) 

where ,

n

i ju  is the average fuel velocity during the time step [ , ]n nt t−1  in an axial node j  in a radial 
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mesh i , and the outgoing concentrations from a node are used as the incoming concentrations for 

the next node. With this method, the precursor concentrations at nt t=  are calculated using the 

precursor concentrations at nt t −= 1  and the precursor generation rates extrapolated from the power 

levels at the previous two time nodes. It was observed that this method could be unstable for low 

velocities with which the fuel salt can move only a small fraction of a node during a time interval.  

 

Figure A.2. Fuel salt path at each time step from a starting point to a node outlet. 

A.1.2. Method of Lines 

In this method, the precursor balance equation in Eq. (2.68) is solved semi-analytically by 

converting the PDE to a system of ODEs and solving the resulting system of ODEs using a proper 

ODE solver. This can be done by discretizing one of the derivatives of Eq. (2.68) and solving the 

system of ODEs for the remaining variable. The most important advantage of this MoL approach 

comes from the fact that ODE is generally simpler to solve than PDE, and the implicit methods 

can be used for discretization. In this study, the time derivative is discretized with the backward 

Euler (implicit) method as 

 

1

, ,

, 1

( ) ( )
( , ) ,

n n

k i k i

k i n n n

n

C z C z
C z t t t t

t t

−

−

−
=  = −

 
. (A.13) 

By inserting Eq. (A.13) into Eq. (2.86), the following equation can be obtained for each radial 

node i 

 1

, , , ,

1 1
[ ( ) ( )] ( ) ( ) ( )n n n n n

i k i k k i k i k i

n n

d
u z C z C z z C z

dz t t
  − 

+ + = + 
  

. (A.14) 

The total delayed neutron precursor source at the right-hand side is related to both the delayed 

neutron precursor source at the current time step and the delayed neutron precursor concentration 

at the previous time step. The time-dependent delayed precursor equation at each time step can be 

written in a more convenient form to solve as 
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 , , ,[ ( ) ( )] [ ( ) ( )] ( )
( )

n
n n n n nk
i k i i k i k in

i

d
u z C z u z C z Q z

dz u z


+ = , (A.15) 

where  

 
1

, , ,

1 1
, ( ) ( ) ( )n n n n

k k k i k i k i

n n

Q z z C z
t t

   −= + = +
 

. (A.16) 

Instead of using an ODE solver, Eq. (A.15) can be solved analytically for the delayed neutron 

precursor concentration in terms of the inlet precursor concentration and the precursor 

concentration at the previous time step as 

 0 0

0

( ) ( )

, 0 , 0 ,( ) ( ) ( ) ( ) ( )

z z
n n
k kn nz z

i i

dz dz
z

u z u zn n n n n

i k i i k i k i
z

u z C z e u z C z dz Q z e
 

 
−

 
  

 = + 
  . (A.17) 

Then, the outgoing and average precursor concentrations of an axial node j  at a time node n  

can be obtained as 

 ( )1 /, 1

, , , 1 , 1
n nn n
k j ijk ij

n n
z z uti j ijn n n

k ij k i j k ijn n n

ij ij k

u u
C e C Q e

u u





−− −− −

−
 = + −
  

, (A.18) 

 
, 1
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n n n n
k ij k ij
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k ij k i j k ijn n n n n n

ij k ij k k ij

u
C e C Q e

u t t

 

  

−  − −

−

     = − + − − 
      

. (A.19) 

The node-averaged precursor concentration in Eq. (A.19) depends on the fission rate at the end 

of a time step. In the MoL method, the fission rates are determined iteratively by coupling Eq. 

(A.19) with the TFSP at the end of a time step, while in the MOC approach, they were determined 

approximately with an assumed exponential flux shape with an inverse period determined by 

extrapolating the power levels of two previous time nodes. However, the time discretization error 

introduces some errors in the initial precursor concentrations, and this could lead to an instability 

issue. 

A.2. Comparison of Transient Solutions 

The accuracy of the three solution approaches, FDM, MOC, and MoL were examined by 

solving a null transient problem and the pump startup and coast down transient problems without 

thermal feedback. For the latter two transients, the fuel velocity was increased or decreased 

exponentially with a time constant of 1 s, and a fuel salt transient time of 4 s (2 s in the core and 2 

s outside of the core) was used. Fig. A.3 compares the power evolutions during the first 10 s 

obtained with the three solution methods for a null transient. It is clearly seen that the FDM is 
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stable and produces the steady state solution accurately. However, the MOC and MoL power 

solutions show diverging behaviors due to error accumulation, although the magnitudes are very 

small. The MoL power solution increases steadily while the MOC power solution decreases. It 

appears that these unstable behaviors are due to the approximations introduced in MOC and MoL 

that do not reproduce the initial steady state precursor concentrations. 

 
Figure A.3. Power evolution in null transient without thermal feedback. 

The power response to the change of the fuel salt flow rate due to the pump startup and pump 

coast down transients are shown in Fig. A.4 and Fig. A.5, respectively. The pump startup introduces 

a negative reactivity due to the increased delayed neutron fraction decaying outside of the core, 

and thus the power decreases with time in an oscillatory way, as shown in Fig. A.4. Relative to the 

FDM solution, the MOC and MoL solutions show oscillatory errors. The MOC solution error 

varies from about -6% to ~3%, but it can be seen that the amplitude decreases with time. The MoL 

solution error varies from about -3% to ~3%, and its amplitude initially increases but decreases 

after ~20 s. The pump coast down introduces a positive reactivity, and thus the power increases 

exponentially, as shown in Fig. A.5. It can be seen that both the MOC and MoL solution errors 

increase monotonically in the opposite direction as in the null transient case shown in Fig. A.3.    
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Figure A.4. Power evolution in pump start-up transient without thermal feedback. 

 

Figure A.5. Power evolution in pump coast-down transient without thermal feedback. 
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Appendix B.  Point Kinetics Equations for Molten Salt Reactors   

 

To reduce the computational time without a significant loss of accuracy, quasi-static solvers 

have been implemented in a consistent way to the TFSP solver for stationary and flowing fuels 

into the PROTEUS-NODAL code. This Appendix provides the derivation and the solution 

algorithms of the quasi-static solvers added for stationary and flowing fuels. However, these 

methods could speed up the solution by about 3 to 7 times for most of the studied cases, but it fails 

to reproduce the reference solution for transients with fuel salt velocity changes significantly, as 

in the pump startup transients and a step change in the fuel salt velocity.  

The time-dependent neutron flux and delayed neutron precursor equations for a molten salt 

reactor can be written in an operator form as 

 

( )p c

c c

F M D
v t

F M C
t

 
   − − −   

=      − +
   

0 0

1

0 , (B.1) 

where 0  is the initial eigenvalue introduced to make the time derivatives identically zero at the 

initial steady state condition that might be off critical and the other operators are defined as 

 ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )t sM D r E t r E t r E t r E t dE r E E t r E t     = −  + −  → , (B.2) 

 ( , , ) ( , , ) ( , , )p p p fF r E t dE r E t r E t     =  , (B.3) 

 1 ( , , ) ( , , ), , ( , , ) ( , , )
T

c d f dK fF dE r E t r E t dE r E t r E t          =  
   , (B.4) 

 1[ ( , ), , ( , )]T

KC C r t C r t= , (B.5) 

  1 1( , , ) , , ( , , )c d dK KD C r E t r E t C   = , (B.6) 

 1diag{ [ ( , )( )] , , [ ( , )( )] }c KM C u r t u r t C =   +   + . (B.7)
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B.1. Steady State Equations 

B.1.1.  Forward Equations 

At the initial steady state, the time derivatives become zero and thus Eq. (B.1) is reduced to 

 
( )p c

c c

F M D

F M C

   − 
=  

−   

00 0 0 0 0

0 0 0

0 , (B.8) 

where 

 0 0 0 0 0( , ) ( , ) ( , ) ( , ) ( , ) ( , )t sM D r E r E r E r E dE r E E r E     = −  + −  → , (B.9) 

 0 0 0( , ) ( , ) ( , )p p p fF r E dE r E r E     =  , (B.10) 

 0 0 1 0 0( , ) ( , ), , ( , ) ( , )
T

c d f dK fF dE r E r E dE r E r E          =  
   , (B.11) 

 0 10 0[ ( ), , ( )]T

KC C r C r= , (B.12) 

  0 0 1 1 0( , ) , , ( , )c d dK KD C r E r E C   = , (B.13) 

 0 0 0 1 0 0diag{ [ ( , ( )] , , [ ( )( )] }c KM C u r u r C =   +   + . (B.14) 

The second equation of Eq. (B.8) can be solved formally for the precursor concentration as 

 c cC M F −= 1
0 0 0 0 . (B.15) 

Using Eq. (B.15), the steady state flux equation can be rewritten as 

 ( )p c c cM F D M F F    −= + =1
0 0 0 0 0 0 0 0 0 0 0 , (B.16) 

where F0  is a quasi-stationary total fission operator. 

B.1.2.  Adjoint Equations 

The adjoint equations to the steady state flux and precursor concentration equations in Eq. 

(B.8) can be obtained as 

 

** * *

* * *

( )p c

c c

F M F

D M C

    −
=  

−     

00 0 0 0 0

0 0 0

0 , (B.17) 

where 

 
* * * * *

0 0 0 0 0( , ) ( , ) ( , ) ( , ) ( , ) ( , )t sM D r E r E r E r E dE r E E r E     = −  + −  → , (B.18) 

 
* * *

0 0 0( , ) ( , ) ( , )p p f pF r E dE r E r E     =   , (B.19) 

  * * *

0 0 1 1 0( , ) , , ( , ) ( , )
T

c d dK KD r E r E r E     = , (B.20) 

 
* * *

0 10 0[ ( ), , ( )]T

KC C r C r= , (B.21) 
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 * * *

0 0 1 0( , ), , ( , ) ( )
T

c d f dK fF C r E r E C r  =    , (B.22) 

 
* * *

0 0 1 0diag{ [ ( )( )] , , [ ( )( )] } ( )c KM C u r u r C r = −  + −  + . (B.23) 

As in the flux equation, the steady state adjoint flux equation can also be written as 

 
* * * * * * * * *[ ( ) ]p c c cM F F M D F    −= + =1
0 0 0 0 0 0 0 0 0 0 0 . (B.24) 

B.1.3. Stationary Fuel 

For a stationary fuel, the operator cM  is reduced to the following simple diagonal operator  

 1diag[ , , ]c KM  = . (B.25) 

Thus, the precursor concentration can be written in terms of the neutron flux as 

 ( , ) ( , ), , ( , ) ( , )
T

c c d f K dK fC M F dE r E r E dE r E r E      − − −      = =  
  

1 1 1
0 0 0 0 1 1 0 0 . (B.26) 

Similarly, the adjoint precursor concentration can be written in terms of the adjoint flux as  

  * * * *( , ), , ( , ) ( , )
T

c c d dKC M D r E r E r E   −= =1
0 0 0 1 0 . (B.27) 

Therefore, the flux and adjoint flux equations can be written as 

 ( )p c c cM F D M F F    −= + =1
0 0 0 0 0 0 0 0 0 0 , (B.28) 

 
* * * * * * * *( )p c c cM F F M D F    −= + =1
0 0 0 0 0 0 0 0 0 0 , (B.29) 

where the quasi-stationary total fission operator and its adjoint are given by 

 0 0 01
( , ) ( , ) ( , ) ( , ) ( , )

K

p f dk dk fk
F dE r E r E r E r E r E     

=
    =  + 
  , (B.30) 

 
* * *

0 0 01
( , ) ( , ) ( , ) ( , ) ( , )

K

p f dk dk fk
F dE r E r E r E r E r E     

=
    =  + 
  . (B.31) 

B.2. Quasi-Static Methods 

To reduce the computational time without a significant loss of accuracy, two improved quasi-

static solvers have been implemented in PROTEUS-NODAL in a consistent way to the TFSP 

solver for stationary and flowing fuels. The basic principle of quasi-static methods is to factorize 

the neutron flux into a shape and an amplitude function and take advantage of the fact that the flux 

shape varies more slowly than the amplitude during transient events.  

B.2.1. Stationary Fuel 

The quasi-static method can be applied to stationary fuel by deriving the exact point kinetics 

equations using the factorization method. Where the multi-group neutron flux is factored into a 

purely time-dependent amplitude function ( )p t  and a space-, energy- and time-dependent shape 

function ( , , )r E t as 
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 ( , , ) ( ) ( , , )r E t p t r E t = . (B.32) 

To make these factorizations unique, the time variation of the shape functions is constrained as 

 * *, ,v v K   − −= =1 1
0 0 0 0 , (B.33) 

where K0  is a constant. Multiplying the first equation of Eq. (B.1) by the initial adjoint flux and 

integrating over space and energy yields 

 
* * *, ( ) , ( ) ( ) ,p c

d
v p t F M p t D C

dt
     − = − +1
0 0 0 0 . (B.34) 

By dividing Eq. (B.34) by the importance-weighted quasi-stationary source of neutrons per 

unit amplitude  

 * * * * *( ) , , , , ,
( )

p d p dF t F F F F F
p t

          = + = + =
 0 0 0 0 0

1
, (B.35) 

Then, the following equation can be obtained 

 
( )

*( ) ( ) [ ( ) ( )] ( ) , c

d
t p t t t p t D C

dt F t
   = − + 0

1
, (B.36) 

where  
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, (B.37) 
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0

, (B.38) 
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( ) ( ) ,

dk d d

k

k k

F F F
t t

F t F t F

        
 

 
= = = = 

0 0 0 0 0 0

0

. (B.39) 

Defining importance-weighted reduced precursor concentration, which is defined relative to 

the initial fission source as 

 *( ) ,
( )

k dk kt C
F

  = 0

1

0
. (B.40) 

Therefore, Eq. (B.36) can be rewritten as 

 
( )

( )

( ) ( )
( ) ( ) ( )

( ) ( )

K

k k

k

Fd t t
p t p t t

dt t t F t

 
 

=

 −
= + 

  

1

0
, (B.41) 

or 

 
( ) ( )

( ) ( ) ( )
( ) ( )

K

k k

k

d t t
p t p t t

dt t

 
 

=

 −
= + 

  

1

1

0
. (B.42) 
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Multiplying the second equation of Eq. (B.1) by ( )( )/dk F 0 , taking the inner product with 

the initial adjoint flux vector yields 

 
( )

( )
( ) ( )( ) ( )k k k k

F td
t t t p t

dt F
   + =

0
. (B.43) 

Equations (B.42) and (B.43) are the set of point kinetics equations for the flux amplitude 

function ( )p t . These equations are solved over a fine time grid by discretizing them using the 

backward Euler scheme. 

B.2.1.1. Improved Quasi-Static Method (IQM) 

In the IQM, the amplitude function and its time derivative are obtained from the solution of 

the point kinetics equations, and the shape function equation can be defined and solved over a 

coarse time grid as 

 

( )p c

c c

p t
F M D

v t p

F M C p
t

 
      + − − −  

    = 
   − +   

 

0 0

1

0 . (B.44) 

Eq. (B.44) with the point kinetics equations Eq. (B.42) and (B.43) form a system of nonlinearly 

coupled equations and need to be solved iteratively applying the following procedure 

1) The initial steady state forward and adjoint flux equations are solved as a first step and the 

normalization factor is determined. 

2) The point kinetic parameters are computed and point kinetics equations are solved over fine 

time steps to obtain the amplitude function and its time derivative using previous time step 

shape function. 

3) The shape equations Eq. (B.44) are then solved for coarse time step using the updated amplitude 

function and its time derivative. 

4) The error on the normalization condition of the shape is evaluated as 

 

* * *

*

, , ,

,

n n n

n

v v v K

Kv


     


 

− + − − +

−

− −
= =

1 1 1 1 1
0 0 0 0

1
00

. (B.45) 

5) Steps 2 through 4 are repeated until the shape function converges within the specified error 

criteria. 

6) Once the shape function converges and the shape function is renormalized as below, and the 
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delayed neutron precursor concentrations are calculated with the updated neutron flux as 

 
*,

n n

n

K

v
 

 

+ +

− +
=1 10

1 1
0

, (B.46) 

 n n nP + + +=1 1 1 . (B.47) 

7) The above procedure (steps 2 through 6) is repeated until the end of the coarse time steps. 

B.2.1.2. Predictor Corrector Quasi-Static Method (PCQM) 

The predictor corrector method is easier to implement since it doesn’t require an iterative 

solution scheme which means it reduces the computational time. In this method, the shape function 

is predicted by solving time dependent neutron flux and precursor equations over coarse time steps. 

Then, with predicted flux the point kinetics parameters are evaluated, and the point kinetics 

equations are solved. With calculated amplitude function, the shape function is corrected. The 

solution procedure can be summarized as in the following steps: 

1) The initial steady state forward and adjoint flux equations and the normalization factor are 

solved as a first step. 

2) The neutron flux n +1 and delayed precursors concentrations 
n

kC +1
are evaluated over coarse 

time step as predicted values and to be corrected. The shape function can be obtained as 

 
*,

n n

n

K

v
 

 

+ +

− +
=1 10

1 1
0

. (B.48) 

3) The point kinetic parameters are computed and point kinetics equations are solved over fine 

time steps to obtain the amplitude function. 

4) Using the corrected amplitude function, the neutron flux is corrected, and the delayed neutron 

precursor concentrations are calculated with the corrected neutron flux as  

 n n nP + + +=1 1 1 . (B.49) 

5) The above procedure (steps 2 through 4) is repeated until the end of the coarse time steps. 

The IQM and PCQM solvers have been tested for step and ramp reactivity insertions for 

stationary fuel. Figure B.1 shows the results for 0.6$ and 1.2$ step reactivity insertions without 

thermal feedback and Fig. B.2 shows the results for ramp reactivity insertion with the same inserted 

reactivities over 0.01 s without thermal feedback. The results are compared to the reference 

solution that was obtained with the direct solution with a fine time-step size of 0.1 ms. The results 

of the IQM and PCQM were obtained with 1.0 ms and compared to the direct solution with the 
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same step size. The IQM and PCQM can reproduce the reference solution accurately with a larger 

time step size, while the solution of the direct method with a large time step deviates from the 

reference solution. Both methods reduced the computational time by about 3 times for the IQM 

and about 6 times for the PCQM.  

    
Figure B.1. Power evolution during step reactivity perturbation of 200 pcm (~0.6$) (left) and 350 

pcm (~1.2$) (right) for stationary fuel. 

 
Figure B.2. Power evolution during ramp reactivity perturbation of 200 pcm (~0.6 $) (left) and 

350 pcm (~1.2$) (right) for stationary fuel. 

B.2.2. Flowing Fuel 

As mentioned in the previous section the delayed neutron precursor equations for flowing are 

different than stationary fuel case, where an extra term appears in the equation to account for the 

precursor drift in the core. To apply the quasi-static method in solving the time-dependent neutron 
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diffusion equation of flowing fuel, the exact point kinetics equations must be derived in a different 

way than the stationary fuel case. The derivation of the exact point kinetics equations for flowing 

fuel starts by factoring the flux into a purely time-dependent amplitude function ( )p t  and a space-, 

energy- and time-dependent shape function ( , , )r E t , and factoring the delayed neutron precursor 

concentrations into a purely time-dependent amplitude function ( )t  and a space- and time-

dependent shape function ( , )kG r t  as 

 ( , , ) ( ) ( , , )r E t p t r E t = , (B.50) 

 ( , ) ( ) ( , )k kC r t t G r t= . (B.51) 

To make these factorizations unique, the time variation of the shape functions is constrained as 

 
*,v K − =1
0 0 , (B.52) 

 
*,C G G=0 0 , (B.53) 

where K0  and G0  are constants. Multiplying the first equation of Eq. (B.1) by the initial adjoint 

flux and integrating over space and energy yields 

 
* * *, ( ) , ( ) ( ) ,p c

d
v p t F M p t D C

dt
     − = − +1
0 0 0 0 , (B.54) 

Multiplying the second equation of Eq. (B.1) by the initial adjoint delayed neutron precursor 

concentrations and integrating over space and energy yields 

 
* * * *
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d
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Dividing Eq. (B.55) by 
*

, ,k kC G0 , then we get 
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where the importance-weighted quasi-stationary source of neutrons per unit amplitude is defined  
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By dividing Eq. (B.54) by the importance-weighted quasi-stationary source of neutrons per 

unit amplitude we obtain 

 ( )( ) ( ) [ ( ) ( )] ( ) ( )k k

k

d
t p t t t p t t t

dt
   = − +  , (B.62) 
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Then, Eq. (B.62) can be rewritten as 
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Eq. (B.62) and Eq. (B.56) are the exact point kinetics equations of flowing fuel. 

B.2.2.1. Improved Quasi-Static Method (IQM) 

In the IQM for flowing fuel, the amplitude functions of the neutron flux and the precursor 

concentrations and their time derivative are obtained from the solution of the point kinetics 

equations. Then, the shape function equations neutron flux and the precursor concentrations can 

be defined and solved over a coarse time grid as 
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Eq. (B.67) with the point kinetics equations Eq. (B.62) and (B.56) form a system of nonlinearly 
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coupled equations and need to be solved iteratively applying the following procedure 

1) The initial steady state forward and adjoint flux equations are solved for the neutron flux and 

precursor concentrations as a first step and the normalization factors are determined. 

2) The point kinetic parameters are computed for flowing fuel and point kinetics equations for 

flowing fuel are solved over fine time steps to obtain the amplitude functions of the neutron 

flux and the precursor concentrations and their time derivative using previous time step shape 

functions. 

3) The shape equations Eq. (B.67) are then solved for coarse time step using the amplitude 

functions of the neutron flux and the precursor concentrations and their time derivative. 

4) The errors on the normalization condition of the shape functions are evaluated as 
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5) Steps 2 through 4 are repeated until the shape functions of the neutron flux and the precursor 

concentrations converges within the specified error criteria. 

6) Once the shape functions converge, the shape functions are renormalized as 
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7) The above procedure (steps 2 through 6) is repeated until the end of the coarse time steps. 

B.2.2.2. Predictor Corrector Quasi-Static Method (PCQM) 

In this method, the shape functions of the neutron flux and the precursor concentrations are 

predicted by solving time-dependent neutron flux and precursor equations over coarse time steps. 

Then, using the predicted neutron flux and precursor concentrations, the point kinetics parameters 

are evaluated, and the point kinetics equations are solved. With calculated amplitude functions, the 

shape function of the neutron flux and the precursor concentrations are corrected. The solution 

procedure can be summarized as in the following steps 

1) The initial steady state forward and adjoint flux equations are solved for the neutron flux and 
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precursor concentrations as a first step and the normalization factors are determined. 

2) The neutron flux n +1 and delayed precursors concentrations 
n

kC +1
are evaluated over coarse 

time step as predicted values and to be corrected. The shape functions can be obtained as 
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3) The point kinetic parameters are computed and point kinetics equations are solved over fine 

time steps to obtain the amplitude functions of the neutron flux and precursor concentrations. 

4) Using the corrected amplitude functions, the neutron flux and precursor concentrations are 

corrected as 

 n n nP + + +=1 1 1 , (B.74) 

 n n nC G+ + +=1 1 1 . (B.75) 

5) The above procedure (steps 2 through 4) is repeated until the end of the coarse time steps. 

The IQM and PCQM solvers have been tested first for step and ramp reactivity insertions for 

flowing fuel in a similar way as for the stationary fuel. Figure B.3 shows the results for 0.67$ and 

1.15$ step reactivity insertions without thermal feedback, and Fig. B.4 shows the results for ramp 

reactivity insertion with the same inserted reactivities over 0.01 s without thermal feedback. The 

results are compared to the reference solution that was obtained with the direct solution of the 

flowing fuel equations with a fine time-step size of 0.1 ms. The results of the IQM and PCQM 

were obtained with 1.0 ms and compared to the direct solution with the same step size. The IQM 

and PCQM can reproduce the reference solution accurately with a larger time step size, while the 

solution of the direct method with a large time-step deviates from the reference solution. Both 

methods reduced the computational time by about 3.5 times for the IQM and about 6.5 times for 

the PCQM.  

The IQM and PCQM solvers of flowing fuel have been tested for step velocity change without 

thermal feedback. Figure B.5 shows the results of the power evolution with time after step fuel 

velocity reduction which acts as positive reactivity insertion due to the reduced losses of the 

delayed neutrons, and Fig. B.6 shows the results for fuel salt step velocity increase which acts as 

negative reactivity insertion due to the increased losses of the delayed neutrons. 
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For step reduction of the fuel salt velocity as shown in Fig. B.5, the IQM and PCQM solvers 

of flowing fuel are able to reproduce the reference solution accurately which was obtained from 

the direct solution of the flowing fuel equations with a small time-step size of 10.0 ms. The results 

of the IQM and PCQM were obtained with a time-step size ranging from 0.05 s to 0.5 s and 

compared to the direct solution with the same step size. Similar behavior was observed as the step 

reactivity insertion transients, the IQM and PCQM solutions can reproduce the reference solution 

accurately with a larger time step size, while the solution of the direct method with a large time-

step deviates from the reference solution. Both methods reduced the computational time by about 

7 times for the IQM and about 13 times for the PCQM. 

  
Figure B.3. Power evolution during step reactivity perturbation of 100 pcm (0.66 $) (left) and of 

170 pcm (1.15 $) (right) for flowing fuel. 

  
Figure B.4. Power evolution during ramp reactivity perturbation of 100 pcm (0.66 $) (left) and of 

170 pcm (1.15 $) (right) for flowing fuel. 
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For step increment of the fuel salt velocity, as shown in Fig. B.6, the IQM and PCQM solvers 

of flowing fuel are able to reproduce the reference solution for the first 1.0 s to 2.0 s, however as 

the undecayed fuel starts flowing back into the reactor core, all the IQM, PCQM, and direct 

solutions with a large time-step size of 0.1 s deviates from the reference solution which was 

obtained with a small time-step size of 10.0 ms. This is because of differences in the calculated 

inlet boundary condition with larger time-step size. Despite the difference being so large, the quasi-

static solvers were not used to perform the transient calculations for flowing fuel. The findings and 

the derivation of the methods are included in this Appendix for documentation.  

   
Figure B.5. Power evolution during step velocity perturbation (decreased) for flowing fuel for 

different time step size with direct solution (left) and PCQM (right). 

  

Figure B.6. Power evolution during step velocity perturbation (increased) for flowing fuel for 

different time step size with direct solution (left) and PCQM (right). 
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Appendix C.  Specifications of MSFR Benchmark   

 

Table C.1 provides the main characteristics of the MSFR core and the thermo-physical 

properties for the fuel salt obtained from Ref. [12, 13]. The fuel salt in its initial composition has 

a fissile element of either 233U or the transuranic (TRU) elements produced by PWRs. The 233U 

fuel salt is composed of LiF-ThF4-
233UF4, and the TRU fuel salt is composed of LiF-ThF4-(TRU)F3 

with a TRU mixture of Pu (87.5%), Np (6.3%), Am (5.3%), and Cm (0.9%). The initial fuel 

compositions of both options are provided in Table C.2, and the isotopic compositions of the TRU 

element are listed in Table C.3. 

Table C.1. Characteristics of Molten Salt Fast Reactor. 

Thermal/Electric Power 3,000 MWth/1,300 MWe 

Fuel Composition LiF-ThF4-
233UF4, LiF-ThF4-(TRU)F3 

Fuel Inlet/Outlet Temperature 650 ºC/750 ºC 

Core Height/Core Radius 2.255 m/1.1275 m 

Fuel Salt Volume 18 m3 

Total Fuel Salt Transit Time 4.0 s 

Flow Rate 4.5 m3/s 

Density [kg/m3] 4094 0.882 ( [K] 1008)T = −  −  

Kinematic Viscosity [m2/s] 8 3689/ [K]5.54 10 Te −=   

Dynamic Viscosity [Pa∙s] 
4 4 3689/ [K]2.268 4.886 10 ( [K] 1008) 10 TT e − − = −  −    

Thermal Conductivity [W/m∙K] 
50.928 8.397 10 [K]k T−= +   

Specific Heat [J/kg∙K] 1111 2.78 [K]pc T= − +  

Table C.2. Initial Composition of Fuel Salt of MSFR. 

233U started TRU started 

Element Mole fraction (%) Element Mole fraction (%) 

Th 19.985 Th 16.068 
233U 2.515 Pu 5.628 

  Np 0.405 

  Am 0.341 

  Cm 0.058 
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The MSFR utilizes 16 heat exchangers and 16 pumps. Each heat exchanger has the capability 

of extracting 187 MW during normal operation, and each pump provides a flow rate of about 0.28 

m3/s to maintain the temperature rise in the core. The heat exchanger considered in the following 

simulations consists of about 8000 tubes with a length of 2.0 m and an inner diameter of 0.4 cm, 

with a fuel salt volume of 0.203 m3. The inlet and outlet temperatures of the heat exchanger are 

750 °C and 650 °C, respectively. The MSFR design includes an intermediate circuit that is used to 

separate the radioactive fuel salt from the energy conversion system that uses FLiNaK as a coolant 

with a temperature of 550 °C. The heat exchanger is assumed to be of shell and tube type as the 

MSRE and MSBR designs developed at the ORNL. The temperature range of the MSFR design is 

between 838 K (the salt freezing point) and 1600 K (the melting point of the nickel alloy of the 

core structures). 

Table C.3. TRU-element Fuel Composition. 

Isotope Mole fraction (%) Isotope Mole fraction (%) 
238Pu 2.7 237Np 6.3 
239Pu 45.9 244Cm 0.8 
240Pu 21.5 245Cm 0.1 
241Pu 10.7 241Am 3.4 
242Pu 6.7 243Am 1.9 
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Appendix D.  Specifications of MSRE Experiment 

 

The operation of the MSRE was started in 1965 and continued until 1968, and it was fueled 

with 235U fuel (33% enriched) with salt composition of LiF-BeF2-ZrF4-UF4 (65.0%-29.17%-5.0%-

0.83%). It was designed to be operated between 908 K and 936 K, with a temperature rise of the 

salt by 28 K and the core average temperature of 922 K. In 1968, the fuel was replaced with 233U 

fuel (91% enriched) with a slightly different molar composition (64.5%-30.18%-5.19%-0.13%). 

Table D.1 provides the isotopic concentration of the MSRE fuel salts [75, 76]. 

Table D.1. Molar Composition of Fuel Salts. 

 235U Core 233U Core 

Molar 

composition 

LiF-BeF2-ZrF4-UF4 

(65.0%-29.17%-5.0%-0.83%) 

LiF-BeF2-ZrF4-UF4 

(64.5%-30.18%-5.19%-0.13%) 

Enrichment 33% 91.5% 

Isotope Atom Fraction (%) Atom Fraction (%) 

Li 2.62E-01 2.62E-01 

Be 1.19E-01 1.23E-01 

Zr 2.06E-02 2.11E-02 

F 5.95E-01 5.94E-01 
233U 

 
4.98E-04 

234U 
 

3.12E-05 
235U 1.09E-03 3.78E-06 
238U 2.22E-03 1.07E-06 

The MSRE reactor vessel has an inner diameter of 147.32 cm with a wall thickness of 2.54 cm. 

The core container is inside the vessel and has an inner diameter of 140.97 cm and a thickness of 

0.635 cm. The main function of the container is to support the graphite in the reactor. All salt-

containing components were made from nickel-alloy INOR-8 including the reactor vessel. The 

MSRE lattice is made of vertical graphite stringers with a 5.08 cm  5.08 cm cross section and 

166.37 cm long. The fuel salt flows through a rectangular channel (3.048 cm  1.016 cm with 

round corners of radius 0.508 cm) in the sides of the stringers with a total of 1140 fuel channels. 

The dimensions of the channel were chosen to prevent small objects from blocking the channels 
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and to obtain a nearly optimum fuel-to-graphite ratio in the core [78]. Fig. D.1 shows a schematic 

representation of the MSRE reactor vessel. 

The reactor vessel is installed in a thermal shield that reduces the radiation damage to the reactor 

containment vessel, serves as a biological shielding, and provides support for the reactor vessel. 

The shield is a water-cooled, steel- and water-filled container surrounding the reactor vessel. The 

thermal shield is 40.64 cm thick and contains approximately 50% steel and 50% water. The inside 

of the thermal shield is lined with high temperature insulation of 15.24 cm thickness. Figure D.2 

shows a representation of the outer vessel regions and the effective core region and the control rod 

movement level, and Table D.2 provides the material composition of the shield, insulator, and 

INOR [77, 78, 79]. 

 

Figure D.1. Schematic diagram of MSRE reactor vessel [78, 79]. 

The primary and secondary system’s layout of the MSRE is shown in Fig. D.3. The heated fuel 

salt from the core outlet was cooled through a shell-and-tube heat exchanger and recirculated by a 

centrifugal pump [77]. In the heat exchanger, the primary fuel salt flows through the shell side and 

the secondary coolant salt flows through the tube side. The coolant salt for the secondary system 

was molten LiF-BeF2 salt. The heat from the primary loop was removed to the secondary side 

through the heat exchanger and the radiator to the atmosphere [78].  
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Figure D.2. Representation of outer regions of MSRE core (left) and control rod level and 

effective core region of MSRE (right) [77]. 

 

Table D.2. Material Compositions of MSRE [78]. 

Thermal Shield (4.42 g/cm3) Insulation 

Component  Atom Fraction Component  Atom Fraction 

Fe 4.47E-01 Ca 1.05E-02 

K 1.49E-04 Fe 4.50E-02 

C 2.10E-02 Si 1.20E-01 

B-10 3.61E-06 Al-27 4.50E-02 

B-11 1.45E-05 H-1 3.00E-01 

N-14 9.48E-05 O-16 4.80E-01 

H-1 3.54E-01   

O-16 1.78E-01   

INOR-8 (8.775 g/cm3) Poison (5.873 g/cm3) 

Component  Atom Fraction Component  Atom Fraction 

Ni 7.10E-01 Gd 2.80E-01 

Mo 1.70E-01 Al-27 1.20E-01 

Cr 7.00E-02 O-16 6.00E-01 

Fe 5.00E-02   

The MSRE was designed to be operated with three control rods made from gadolinium in the 

form of Gd2O3-Al2O3 (70-30 wt.%) ceramic, with a density of 5.78 g/cm3. Each control rod is 

made of 38 elements for a total length of the poison section of 150.876 cm, with each element has 
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a 2.8956 cm outer diameter, 2.0066 cm inner diameter, and 3.96748 cm height. Figure D.4 shows 

a representation of the control rod lattice arrangement and element geometry [78]. 

 

Figure D.3. Layout of MSRE primary and secondary systems [78]. 

  

Figure D.4. Lattice arrangement of control rods (left) geometry and composition of the control 

rod element (right) (units in inch) [78]. 
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Appendix E.  Cross Sections Generation Procedure for MSRE Analysis 

 

To analyze the MOST benchmark problem with PROTEUS-NODAL, two core models were 

developed. One is a Cartesian geometry model, and the other is a cylindrical-z (R-Z) model. In the 

Cartesian geometry model, each graphite stringer and four half channels of fuel salt are 

homogenized into a square node with a side length of 5.08 cm. The Cartesian geometry model 

necessitates an approximate representation of the circular outer fuel region by a jagged shape. This 

approximate representation of the radial boundary involves artificial relocation of fuel and thus 

affects the neutron leakage. An R-Z model was developed in order to represent the outer core 

region of the core accurately, but this involves more homogenization in the inner core region. In 

the axial direction, the core was divided into 22 nodes. The vacuum (zero incoming current) 

boundary condition is applied to all the outer boundaries. 

In order to evaluate the two PROTEUS-NODAL core models, an OpenMC core model was 

developed for comparison. Also, the OpenMC core model is used for generating region-dependent 

multigroup cross sections by considering the spectral variation in the core, and for determining the 

fraction of heat generated in the graphite moderator due to gamma heating and neutron scattering. 

Fig. E.1 compares the radial configurations of the OpenMC model and the PROTEUS-NODAL 

core models in Cartesian and cylindrical geometries.  

E.1. Energy Group Structures 

To determine an adequate number of energy groups and group structure, the multigroup 

structures previously used for graphite moderated gas cooled reactors [80, 81] were examined with 

additional considerations to the neutron spectrum in MSRE and the broad resonances of salt 

nuclides. Five subsets of the WIMS-D 69 group structure [80], as provided in Table. E.1, were 

investigated. Fig. E.2 shows the neutron energy spectrum in the fuel salt and the selected five 

energy group structures. Fig. E.3 shows the total cross sections of the fuel salt nuclides along with 

the selected energy group structures. 

The two core models and five energy group structures were tested by comparing the eigenvalue 
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and the leakage fraction obtained from PROTEUS-NODAL calculations for the steady state 

MOST benchmark problem in Cartesian and R-Z geometries with the reference OpenMC results. 

The multigroup cross sections were prepared from the OpenMC simulations using the core model 

and the ENDF/B-VII.1 data [82]. 

  

 

Figure E.1. Radial configurations of MOST benchmark in (a) OpenMC model, (b) Cartesian 

model, and (c) R-Z model of PROTEUS-NODAL. 

Table E.2 compares the eigenvalues and leakage fractions of PROTEUS-NODAL calculations 

with different group structures. It can be clearly seen that except for the four-group case, the 

Cartesian geometry model significantly overestimates the neutron leakage and hence leads to a 

highly underestimated eigenvalue. For the four-energy group case, the leakage is highly 

underestimated, resulting in a highly overestimated eigenvalue. These results suggest that the 

artificial change in the surface area and the relocation of fuel salt in the outer fuel region due to 

the approximate representation of the cylindrical boundary introduces a significant change in the 

(a) (b) 

(c) 



 

 

203 

neutron leakage and subsequently in the eigenvalue. In order to reduce these errors due to the 

boundary perturbation, a large number of radial nodes need to be used, which increases the 

computational time significantly. 

Table E.1. Selected Energy Group Structures for MSRE Analysis.  

16-Groups 14-Groups 12-Groups 8-Groups 4-Groups 

2.000E+07 2.000E+07 2.000E+07 2.000E+07 2.000E+07 

3.679E+06 3.679E+06 3.679E+06 

1.353E+06 1.353E+06 1.353E+06 1.353E+06 

5.000E+05 5.000E+05 5.000E+05 

6.734E+04 6.734E+04 6.734E+04 6.734E+04 

9.118E+03 9.118E+03 9.118E+03 9.118E+03 9.118E+03 

1.487E+02 1.487E+02 1.487E+02 1.487E+02 

4.000E+00 4.000E+00 4.000E+00 4.000E+00 

1.300E+00 1.300E+00 

6.250E-01 6.250E-01 6.250E-01 6.250E-01 

4.000E-01 4.000E-01 4.000E-01 

2.500E-01 2.500E-01 

1.800E-01 

1.400E-01 1.400E-01 

8.000E-02 8.000E-02 8.000E-02 8.000E-02 8.000E-02 

4.200E-02 4.200E-02 4.200E-02 

1.000E-03 1.000E-03 1.000E-03 1.000E-03 1.000E-03 

 

Figure E.2. Neutron spectrum in fuel salt and selected energy group structures. 
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Figure E.3. Total cross sections of nuclides in MSRE fuel salt. 

Table E.2. Comparison of Eigenvalues and Leakage Fractions of PROTEUS-NODAL Obtained 

with Different Core Models and Group Structures. 

Code 
Core 

Model 

No. of 

Groups 

Multiplication 

Factor 

Diff. 

(pcm) 

Leakage 

Fraction 

Diff. 

(%) 

OpenMC -  1.06252 ± 0.00011 - 0.3362 - 

PROTEUS-

NODAL 

Cartesian 

16 1.05573 -679.2 0.3402 1.198 

14 1.05567 -685.5 0.3402 1.201 

12 1.05562 -689.7 0.3402 1.202 

8 1.05933 -319.1 0.3380 0.533 

4 1.07045 793.4 0.3313 -1.446 

R-Z 

16 1.06232 -20.4 0.3362 0.007 

14 1.06226 -26.5 0.3362 0.015 

12 1.06220 -32.0 0.3363 0.024 

8 1.06575 323.1 0.3341 -0.617 

4 1.07603 1350.6 0.3279 -2.483 

On the other hand, as shown in Fig. E.4, the eigenvalue and the leakage fraction of PROTEUS-

NODAL solutions obtained with the R-Z model converge monotonically to the reference OpenMC 

results as the number of energy groups increases. It can be clearly seen that the leakage fraction 

and eigenvalue almost converge to the OpenMC solutions when the number of energy groups is 

increased to 12. With the 16-group structure, the eigenvalue and leakage fraction errors are only 

20.4 pcm and 0.01%, respectively. Based on these results, the R-Z core model and the 16-group 

structure were selected for subsequent analyses of the MOST benchmark problems and the MSRE 

experiments. 
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Figure E.4. Trends of eigenvalue and leakage fraction errors of PROTEUS-NODAL obtained 

with R-Z geometry model.   

E.2. Multigroup Cross Section Generation Models 

Different OpenMC models for generating multigroup cross sections were investigated, 

including unit cell, simplified 2-D core, and 3-D full core models. Figure E.5 shows these OpenMC 

models used for multigroup cross section generation. The left two figures show the unit cell models 

with reflective boundary conditions. They were defined separately for the graphite-moderated 

inner fuel region and the unmoderated outer fuel region. The middle figure shows the radial layout 

of the 2-D and 3-D core models, and the right figure shows the axial layout of the 3-D core model. 

The 2-D core model is an axially extruded core of the radial layout with the vacuum boundary 

condition at the radial boundary and the reflective boundary conditions at the top and bottom 

boundaries. The core was divided into 3 radial regions as marked in the middle figure, and region-

dependent cross sections were generated for each region. In the 3-D core model, the vacuum 

boundary condition was applied to all outer boundaries. The core was divided into 11 regions as 

marked in the right figure, and region-dependent cross sections were generated for each region.  

Using these cross section generation models, different cross section sets were generated for the 

steady state MOST benchmark problem in the selected 16-group structure. With each cross section 

set, PROTEUS-NODAL calculations were performed for the steady state MOST benchmark 

problem in Cartesian and R-Z geometries and the resulting eigenvalue, leakage fraction, main 
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reaction rates, and axial and radial flux distributions were compared with the reference OpenMC 

solutions obtained with the as-built full core model.  

 

Inner Region Unit Cell 

 

Radial Layout of 2-D  

and 3-D Models 

 

Axial layout of 3-D Model 

 

Outer Region Unit Cell 

Figure E.5. OpenMC models for multigroup cross section generation. 

Table E.3 compares the eigenvalues and leakage fractions obtained with different core and 

cross section generation models. It is observed that with the Cartesian geometry core model, the 

cross section set obtained with unit-cell models yields better results than those obtained with the 

2-D and 3-D models. To examine these unexpected results, a reactivity error analysis was 

performed for the Cartesian geometry model. Table E.4 presents the reactivity errors due to 

reaction and leakage rate errors in three energy ranges. The results show large error cancelations 

in fission, absorption, and leakage rates among different energy ranges for the unit cell and 2-D 

models, which cannot capture the neutron spectral changes near the core periphery accurately. It 

appears that the cross section errors are canceled out by the boundary perturbation errors. On the 

other hand, in the case of the 3-D model, no significant error cancellation is observed since accurate 

region-dependent cross sections are prepared and thus the boundary perturbation becomes the 

dominant error source. As a result, the 3-D model yields larger errors than the unit cell and 2-D 

models. 
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Table E.3. Comparison of Eigenvalues and Leakage Fractions Obtained with Different Core and 

Cross Section Models. 

Code 
Core 

Model 

XS 

Model 

Multiplication 

Factor 

Diff. 

(pcm) 

Leakage 

Fraction 
Diff. (%) 

OpenMC - - 1.06252 ± 0.00011 - 0.3362 - 

PROTEUS-

NODAL 

Cartesian 

3-D 1.05573 -679.2 0.3402 1.198 

2-D 1.05828 -424.0 0.3392 0.889 

Unit Cell 1.06329 76.9 0.3367 0.149 

R-Z 

3-D 1.06232 -20.4 0.3362 0.007 

2-D 1.06487 235.3 0.3352 -0.294 

Unit Cell 1.06993 741.3 0.3327 -1.035 

Table E.4. Reactivity Errors (pcm) in Cartesian Geometry Core Due to Reaction and Leakage 

Rate Errors in Three Energy Ranges. 

XS 

Model 

Energy 

Range 

Reaction/Leakage 

Fission Absorption Leakage Scattering Sum 

3-D 

Fast 0.5 0.5 -304.7 4.6 -299.0 

Resonance -21.0 -37.1 -116.6 0.0 -174.7 

Thermal 20.5 12.6 -238.5 0.0 -205.4 

Total 0.0 -24.0 -659.7 4.6 -679.1 

2-D 

Fast 1.8 2.5 -358.9 -3.0 -357.6 

Resonance 190.5 138.0 202.2 0.0 530.7 

Thermal -192.3 -98.2 -306.8 0.0 -597.3 

Total 0.0 42.3 -463.5 -3.0 -424.2 

Unit Cell 

Fast 7.8 24.9 -179.3 -27.3 -174.0 

Resonance 238.4 234.9 401.2 0.0 874.5 

Thermal -246.2 -124.8 -252.9 0.0 -623.9 

Total 0.0 135.0 -31.1 -27.3 76.6 

In the R-Z core model, the cylindrical core boundary is represented accurately. Thus, the 

eigenvalue errors in Table E.3 are mainly due to the cross section error. The eigenvalue and leakage 

fraction obtained with the cross sections generated with the 3-D model agree well with the 

reference OpenMC results as expected. On the other hand, the cross sections prepared with the 

unit cell and 2-D models yield significantly underestimated leakage fraction and hence 

significantly overestimated eigenvalue. Table E.5 presents the results of reactivity error analysis. 
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It can be seen that the cross sections generated from the unit cell and 2-D models introduce 

significant errors in fission, absorption, and leakage terms. When the same cross section set 

prepared with the 3-D model is used, the Cartesian and the R-Z geometry results show almost the 

same errors in the fission, absorption, and scattering reaction components, but very different errors 

in the leakage component. These results also indicate that the boundary perturbation in the 

Cartesian geometry core model introduces a significant error in neutron leakage.   

Table E.5. Reactivity Errors (pcm) in R-Z Geometry Core Due to Reaction and Leakage Rate 

Errors in Three Energy Ranges. 

XS 

Model 

Energy 

Range 

Reaction/Leakage 

Fission Absorption Leakage Scattering  Sum 

3-D 

Fast -0.1 0.0 -132.7 6.0 -126.8 

Resonance -36.3 -34.0 67.3 0.0 -3.0 

Thermal 36.4 24.4 49.4 0.0 110.2 

Total 0.0 -9.6 -16.0 6.0 -19.6 

2-D 

Fast 1.2 2.0 -187.7 -2.1 -186.6 

Resonance 177.2 142.3 388.6 0.0 708.1 

Thermal -178.3 -87.3 -19.9 0.0 -285.5 

Total 0.0 57.0 181.0 -2.1 235.9 

Unit Cell 

Fast 7.1 24.3 -9.3 -26.1 -3.9 

Resonance 233.0 245.7 601.3 0.0 1079.9 

Thermal -240.1 -117.9 23.5 0.0 -334.6 

Total 0.0 152.0 615.4 -26.1 741.4 

Figures E.6 and E.7 respectively present the radial profiles at the core mid-plane and the axial 

profiles at the core center of the reference OpenMC flux and the PROTEUS-NODAL flux 

solutions in R-Z geometry obtained with the three different cross section sets. The PROTEUS-

NODAL flux solution obtained with the cross sections prepared with the 3-D model shows good 

agreement with the reference OpenMC flux distribution except for the radial periphery and top of 

the core. The cross section sets prepared with the unit cell and 2-D models introduce significantly 

larger errors in the flux solution than that prepared with the 3-D model. In particular, the axial 

profile shows large errors near the top of the core since the unit cell and 2-D model cannot capture 

the spectral transition effect in the unmoderated top region.  
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OpenMC Radial Flux (Rel. Unit) 3-D XS Model / Rel. Diff. (%) 

  

2-D XS Model / Rel. Diff. (%) Unit Cell XS Model / Rel. Diff. (%) 

Figure E.6. Comparison of radial profile at core mid-plane of OpenMC flux and PROTEUS-

NODAL solutions in R-Z geometry obtained with three cross section sets. 

Based on the above results, the 3-D model was selected for multigroup cross section 

generation. Region-dependent 16-group cross sections were generated as a function of the fuel salt 

and graphite temperatures. The resulting cross sections were written into the isotopic cross section 

dataset ISOTXS and the delayed neutron cross section dataset DLAYXS using a modified version 

of the utility code GenISOTXS [68] that can provide the DLAYXS cross section dataset. 
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OpenMC Axial Flux (Rel. Unit) 3-D XS Model / Rel. Diff. (%) 

  

2-D XS Model / Rel. Diff. (%) Unit Cell XS Model / Rel. Diff. (%) 

Figure E.7. Comparison of axial profile at core center of OpenMC flux and PROTEUS-NODAL 

solutions in R-Z geometry obtained with three cross section sets. 
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Appendix F.  Multigroup Albedo Response Matrix for MSRE Analysis 

 

Table F.1. 16-Group Albedo Response Matrix on Outer Surface of MSRE Reactor Vessel. 

βgg’ G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 

G1 2.77E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

G2 3.66E-02 5.92E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

G3 3.15E-02 4.25E-02 6.92E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

G4 2.94E-02 3.87E-02 5.51E-02 9.44E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

G5 1.47E-02 2.06E-02 2.99E-02 4.81E-02 7.04E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

G6 2.30E-02 3.31E-02 4.92E-02 8.22E-02 1.29E-01 1.47E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

G7 1.72E-02 2.44E-02 3.56E-02 5.68E-02 8.89E-02 1.18E-01 1.40E-01 4.67E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

G8 4.91E-03 6.89E-03 9.91E-03 1.52E-02 2.26E-02 2.98E-02 4.36E-02 5.63E-02 1.33E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

G9 3.09E-03 4.34E-03 6.15E-03 9.47E-03 1.39E-02 1.78E-02 2.65E-02 3.21E-02 4.41E-02 8.40E-04 4.33E-06 6.67E-07 3.33E-07 1.33E-06 1.00E-06 0.00E+00 

G10 1.84E-03 2.64E-03 3.68E-03 5.59E-03 8.15E-03 1.04E-02 1.55E-02 1.85E-02 2.30E-02 3.35E-02 1.80E-03 5.90E-05 2.63E-05 2.20E-05 1.83E-05 1.57E-05 

G11 2.01E-03 2.79E-03 3.95E-03 5.89E-03 8.60E-03 1.08E-02 1.61E-02 2.05E-02 2.08E-02 2.89E-02 3.56E-02 5.37E-03 1.06E-03 5.68E-04 4.35E-04 3.92E-04 

G12 1.59E-03 2.20E-03 3.05E-03 4.58E-03 6.56E-03 8.22E-03 1.20E-02 1.60E-02 1.67E-02 1.72E-02 2.39E-02 3.02E-02 1.07E-02 3.82E-03 2.39E-03 2.20E-03 

G13 1.49E-03 2.05E-03 2.92E-03 4.19E-03 5.90E-03 7.27E-03 1.06E-02 1.45E-02 1.56E-02 1.60E-02 1.72E-02 2.46E-02 2.75E-02 1.18E-02 6.31E-03 5.68E-03 

G14 4.79E-03 6.61E-03 9.08E-03 1.30E-02 1.79E-02 2.19E-02 3.06E-02 4.23E-02 4.64E-02 4.97E-02 5.19E-02 5.64E-02 6.70E-02 7.18E-02 4.74E-02 4.00E-02 

G15 6.53E-03 9.07E-03 1.25E-02 1.75E-02 2.39E-02 2.85E-02 3.97E-02 5.45E-02 6.10E-02 6.61E-02 7.05E-02 7.50E-02 7.89E-02 8.86E-02 1.04E-01 9.30E-02 

G16 7.47E-03 1.05E-02 1.43E-02 2.02E-02 2.77E-02 3.30E-02 4.54E-02 6.28E-02 7.14E-02 7.83E-02 8.44E-02 9.07E-02 9.60E-02 1.05E-01 1.24E-01 1.72E-01 
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Table F.2. Diagonal Albedo Matrices of 235U and 233U Fuel Cores of MSRE. 

Group No. 
Upper 

Energy 

235U Core 233U Core 

Radial bottom top Radial bottom top 

1 2.00E+07 2.11E-02 6.77E-03 2.31E-02 2.09E-02 6.51E-03 2.22E-02 

2 3.68E+06 6.32E-02 1.99E-02 7.10E-02 6.42E-02 1.92E-02 7.10E-02 

3 1.35E+06 1.13E-01 4.24E-02 1.20E-01 1.14E-01 4.17E-02 1.21E-01 

4 5.00E+05 1.81E-01 6.92E-02 1.87E-01 1.83E-01 6.74E-02 1.89E-01 

5 6.73E+04 2.13E-01 6.64E-02 1.83E-01 2.15E-01 6.57E-02 1.83E-01 

6 9.12E+03 3.16E-01 9.81E-02 2.87E-01 3.17E-01 9.69E-02 2.91E-01 

7 1.49E+02 5.17E-01 1.63E-01 5.38E-01 4.78E-01 1.48E-01 4.99E-01 

8 4.00E+00 5.74E-01 1.90E-01 6.70E-01 5.38E-01 1.74E-01 6.18E-01 

9 1.30E+00 5.89E-01 1.90E-01 6.88E-01 5.90E-01 1.91E-01 7.13E-01 

10 6.25E-01 5.53E-01 1.87E-01 6.97E-01 4.91E-01 1.68E-01 6.86E-01 

11 4.00E-01 5.15E-01 1.87E-01 7.22E-01 3.91E-01 1.45E-01 6.31E-01 

12 2.50E-01 5.77E-01 2.09E-01 7.90E-01 4.09E-01 1.51E-01 6.58E-01 

13 1.80E-01 7.32E-01 2.55E-01 8.92E-01 5.26E-01 1.89E-01 7.64E-01 

14 1.40E-01 1.17E+00 3.43E-01 1.12E+00 8.92E-01 2.77E-01 1.04E+00 

15 8.00E-02 2.00E+00 4.54E-01 1.40E+00 1.68E+00 4.15E-01 1.39E+00 

16 4.20E-02 3.17E+00 5.88E-01 1.66E+00 2.91E+00 5.71E-01 1.73E+00 
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Appendix G.  Adaptive Time Stepping for Depletion Calculations 

 

The adaptive time-stepping selection algorithm implemented in PROTEUS-NODAL for 

transient analysis was also utilized for depletion analysis to predict time step-size for depletion 

calculations of MSRs based on the control theory approach. The depletion the time-step size is 

predicted based on the estimated local error of the solution and maintained within a specified 

accuracy requirement or tolerance level using the control theory. The discrete-time integral (I), 

proportional-integral (PI), and proportional-integral-derivative (PID) controllers described in 

Chapter 5 can be utilized to predict the time-step size. The local error is estimated from the L2 

norm of the predicted 1/2( )nt +  and corrected 1( )nt +  solutions of the neutron flux as  

    1 1/21 2
1

1 2

( ) ( )
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( )

n nn

st

n

t t
R
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+ ++

+

−
= . (G.1) 

At the beginning of the depletion calculations the initial time-step size, the solution tolerance 

level, and the gain values must be specified as described for transient analysis. After that, the I 

controller can be used to predict the step size of the next depletion step. Once the size of the first 

step is determined the procedure will continue until the end of the depletion time. Algorithm G.1 

provides the adaptive time-stepping solution scheme of PROTEUS-NODAL for MSR depletion 

calculations.  

The adaptive time-stepping selection algorithm of MSR depletion calculations was tested using 

the MSFR benchmark problem without considering fuel salt reprocessing, and the depletion 

calculations were performed for 350 days. The reference solution was obtained by performing 

depletion calculation with a small time-step size of 1 day, with a total of 350 steps. The I controller 

was used to predict the time-step size. To test the performance of the solution algorithm, 27 cases 

were studied by changing the initial step-size between 0.5 to 5.0 days, the tolerance level between 

10-5 to 10-3, and the integral gain value between 0.02 and 0.2. Table G.1 provides the results of the 

tests problems sorted based on the number of the time steps and the speedup of the depletion 

calculations. The results show that the adaptive time-stepping algorithm could speed up the 
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calculations by about 3 to 30 times while maintaining the solution accuracy with a 4.6 maximum 

difference in the eigenvalue results at the end of the calculations. Cases 11, 14, and 17 uses the 

same initial step size of 1.0 days and a gain value of 0.05 while the tolerance level is ranging from 

10-5 to 10-3. These cases show that results even with a larger tolerance level a 15 times speedup 

could be achieved while maintaining the same accuracy level.  

Algorithm G.1. Adaptive time-stepping for MSR depletion calculations. 

1. 
Apply algorithm 6.1 or 6.2 to calculate neutron flux n ,  

nuclide concentrations n
N ,and effk  at the end of step. 

2. From the predicted and corrected solutions calculate 1ˆ nR +  

3. If ( ) ( )( )1

min
ˆ 1.0n

nan hdR t+     then (Reject time step) 

  , 1, 1nt t h n n Nrej Nrej= − = − = +  

   ( )( )1 min
ˆmax min 0.5 , / ,n n n nh h r h t +=   

  ( ) ( )
1

, , , ,
n n

C N C N 
−

=  

4. Else (Calculate the next time step) 
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 End If 

5. If ( )endt t= terminate calculations Else Go back to 1 

Figure G.1 shows the variation of the time step size for cases 11, 14, and 17 considering 

different tolerance levels and shows the variation of the time step size for cases 25, 26, and 27 

considering different gain values. For variant gain values, cases 25, 26, and 27 uses the same initial 

step size of 5.0 days and tolerance level of 10-5 while the gain value ranging between 0.02 and 0.2. 

A large gain value could result in a fluctuating behavior of the time step size because the predicted 

time step is too large, and it will increase the local error as for case 25. For the adaptive time-

stepping controller in depletion calculations of MSR, it is recommended to use an initial time-step 

size of 1.0 days, a tolerance of 10-4, and an integral gain of 0.05 to achieve a reasonable speedup 

without losing solution accuracy. 
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Table G.1. Sensitivity of Time-step Size to Change in Controller Parameters. 

Case 
Initial 

Step 

(days) 

Tolerance 
Integral 

Gain 

No. Time 

Steps 
Speedup 

keff Diff. 

(pcm)* 

Max. 

Step 

(days) 

Min. 

Step 

(days) 

Reference 1.0 - - 350 - - - - 

9 0.5 1.00E-05 0.02 104 3.3 0.1 11.4 0.5 

18 1.0 1.00E-05 0.02 93 3.7 0.1 11.4 1.0 

8 0.5 1.00E-05 0.05 76 4.5 0.1 16.9 0.5 

17 1.0 1.00E-05 0.05 71 5.0 0.0 17.0 0.9 

6 0.5 1.00E-04 0.02 64 5.6 0.1 19.9 0.5 

27 5.0 1.00E-05 0.02 58 5.9 1.2 11.4 3.7 

15 1.0 1.00E-04 0.02 57 6.3 0.1 20.3 1.0 

7 0.5 1.00E-05 0.2 55 6.3 0.0 31.4 0.4 

16 1.0 1.00E-05 0.2 54 6.7 0.2 33.0 0.7 

26 5.0 1.00E-05 0.05 54 6.7 1.3 17.2 2.8 

25 5.0 1.00E-05 0.2 50 7.1 1.4 28.6 1.8 

3 0.5 1.00E-03 0.02 45 7.7 0.1 27.9 0.5 

5 0.5 1.00E-04 0.05 41 8.3 0.1 34.2 0.5 

12 1.0 1.00E-03 0.02 40 9.1 0.2 28.5 1.0 

14 1.0 1.00E-04 0.05 38 9.1 0.1 34.1 1.0 

24 5.0 1.00E-04 0.02 37 9.1 1.3 21.0 4.9 

23 5.0 1.00E-04 0.05 28 12.5 1.2 33.1 4.7 

2 0.5 1.00E-03 0.05 27 12.5 -0.2 52.7 0.5 

21 5.0 1.00E-03 0.02 27 12.5 1.3 31.1 5.0 

11 1.0 1.00E-03 0.05 25 14.3 0.0 52.2 1.0 

4 0.5 1.00E-04 0.2 23 14.3 -0.1 45.7 0.5 

13 1.0 1.00E-04 0.2 22 16.7 -0.3 48.8 1.0 

22 5.0 1.00E-04 0.2 20 16.7 1.1 45.9 4.1 

20 5.0 1.00E-03 0.05 19 20.0 1.5 54.0 5.0 

1 0.5 1.00E-03 0.2 13 25.0 -4.6 106.8 0.5 

10 1.0 1.00E-03 0.2 12 33.3 -2.2 91.9 1.0 

19 5.0 1.00E-03 0.2 11 33.3 -3.2 106.9 5.0 

keff Difference = (kEOD - kRef_EOD) ×105, EOD: end of depletion time. 

  
Figure G.1. Variation of depletion time-step size with different tolerance levels (left) and 

different gain values (right). 
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