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Abstract 

Vehicle crashes are the leading cause of death and injury for teens. However, only a 

limited number of studies have assessed the drivers’ fatigue status and takeover behaviors during 

semi-automated driving, especially for young drivers. This study measured fatigue development 

and takeover behavior based on drivers’ ages, workload, and driving mode. A total of five 

research hypotheses were investigated in this study: First, young drivers might develop fatigue 

faster and more severely compared with adult drivers for both automated driving and manual 

driving. Second, young drivers’ fatigue development was expected to be more severe under 

manual high workload compared with manual low workload. Third, young drivers’ fatigue 

development was expected to be more severe under automated compared with manual driving. 

Fourth, young drivers’ fatigue development was expected to be more severe under automated 

low workload compared with automated high workload. Last, young drivers’ takeover 

performance was expected to be worse than that of adult drivers.  

Two studies were conducted to research the fatigue and takeover differences among 

young drivers and other driver groups. Study one was performed to understand if young drivers 

are different from adult new drivers in fatigue development and takeovers, 9 participants were 

recruited for the study. Study two performed statistical hypotheses testing between young drivers 

and adult drivers on fatigue development and takeover behaviors, 32 participants were recruited 

for the study. A 2 by 2 by 3 design with 2 levels of driving modes, 2 levels of workloads, and 3 

levels of participant groups was used for study one. A 2 by 2 by 2 design with 2 levels of driving 

modes, 2 levels of workloads, and 2 levels of participant groups was used for study two. 



 xiii 

Electroencephalography (EEG), heart rate variability (HRV), video recording, and perceived 

fatigue and discomfort questionnaires were used to measure the fatigue and takeover behavior in 

this study. Analysis of variance (ANOVA) and Kruskal-Wallis were used to test the hypotheses 

in this study. 

Study one found that adult new drivers are not significantly different from adult 

experienced drivers. They both develop fatigue more slowly and have better takeover 

performance compared with young drivers. Results from study two confirmed four out of five 

hypotheses: young drivers develop fatigue faster and more severely compared with adult drivers 

for both automated driving and manual driving; young drivers’ fatigue development was more 

severe under automated driving mode compared with manual driving mode; young drivers’ 

fatigue, especially mental fatigue was more severe under automated low workload compared 

with automated high workload; and young drivers’ takeover performance was worse than adult 

drivers.  

HRV data were not used to conclude this study since the breathing pattern may have an 

impact on HRV and cause inaccurate results. EEG data were used only for study one due to the 

difficulties in cleaning the equipment. Future works should focus on statistical tests on study one 

to confirm that adult new drivers were statistically different from young drivers in fatigue 

development and takeover performance. Participants should be guided on their breathing while 

they are driving in order to use the HRV analysis. Also, more participants could be recruited to 

perform factorial ANOVA to analyze the interactions between the main effects. 
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Chapter 1 Introduction 

1.1 Background 

Young drivers are frequently mentioned in driver behavior studies. They lack experience 

(Williams, 2003) and have a higher accident rate compared with adult drivers (McCartt et al., 

2009). Vehicle crashes are the leading cause of death and injury for teenagers: in 2015, 2,333 

teenagers in the United States ages 16–19 were killed and 235,845 were injured by vehicle 

crashes (WISQARS, 2015). Young drivers were 5 to 10 times more likely to have crashes and 

experience injuries compared with adult drivers (Bates et al., 2014). This evidence strongly 

supports the importance of understanding the crash factors among young drivers. 

Existing studies of crashes involving young drivers were focused on risky driving 

behaviors (Jonah, 1986), statistical reports on accident rates (Williams, 2006), the influence of 

passengers (Simons-Morton et al., 2005), and parents’ involvement (Simons-Morton & Ouimet, 

2006). For example, the crash and near-crash rates among young drivers increased while 

performing some secondary tasks, such as cell phone use (Siebe, 2014). Young drivers’ crash or 

near-crash rates were much higher when their passenger was young rather than adult (Simons-

Morton et al., 2011). A lower level of parental control was related to risky driving, traffic 

violations, and higher crash rates (Hartos et al., 2000).  

To understand why young drivers are more involved in risky behaviors and crashes, it is 

important to understand the crash factors among young drivers. Factors that cause young drivers’ 

crashes can be generally categorized into social/situational factors (e.g., passenger, phone use, 

fatigue, etc.) and exposure factors (e.g., time of day, environment) (Bates et al., 2014). Among 
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all factors, the study of fatigue has played an important role in preventing young drivers from 

crashing and getting injured since fatigued driving increases the risk of crash injury to car 

occupants for young drivers (Lam, 2003). Over half of the young drivers have reported driving 

while fatigued at least once a month, and 10% have reported driving while fatigued more than 

1/3 of the time (Harbeck & Glendon, 2013). Moreover, when young drivers were driving 

fatigued, they were less likely to pull over and rest compared with adult drivers (Watling, 2014). 

As one of the most important situational factors for young drivers’ crashes, fatigue needs to be 

studied to understand why and how young drivers are involved in more crashes than adult 

drivers. Adult drivers are less likely to be involved in crashes due to fatigue (McGwin. Jr & 

Brown, 1999), and thus a comparison between young and adult drivers could help us understand 

how age can affect fatigue while driving. Although fatigue is one of the most important crash 

factors, studies regarding young drivers’ fatigue are limited. Fatigue can either be reported by a 

survey (Meng et al., 2015) or detected through a driving fatigue detection system using methods 

such as EEG (Jap et al., 2009), electromyography (EMG), electrocardiography (ECG) (Fu & 

Wang, 2014), and eye tracking(Eriksson & Papanikotopoulos, 1997). Existing studies related to 

fatigue and young drivers’ crashes used only the reported fatigue after the driving or crash (Lam, 

2003; McGwin, Jr & Brown, 1999). However, a simple fatigue report is not able to provide 

detailed and dynamic fatigue patterns to understand the onset of fatigue and when the fatigue 

started getting worse. It is important to study the pattern of the fatigue such that the onset time 

and severity of the fatigue can be observed dynamically. To the author’s knowledge, no study 

has used a real-time fatigue detection system to investigate the pattern of fatigue development 

over time among young drivers under various driving conditions, and no studies have compared 

the fatigue of young drivers with that of other driver groups.  
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The impacts of both physical and mental fatigue among young drivers could become 

more pronounced with the development of new automated vehicle technology. Automated 

vehicles have attracted much attention these days. Many studies have been conducted to 

investigate drivers’ behavior under different levels of automated driving. Bao et al. (2020) found 

that advanced driving assistance systems (i.e., crash warning systems, including forward crash 

warning, lane drifting warning, lane change warning, and curve speed warning) could cause 

young drivers to have less pedal control (i.e., brake more aggressively) and larger deceleration 

value. Though young drivers’ performance has been studied under automated vehicle systems, to 

the best of the authors’ knowledge, no study has provided systematic assessments of young 

drivers’ fatigue development under automated vehicle driving.  

Many factors could contribute to young drivers’ fatigue development under automated 

driving, among which vigilance decrement plays an important role. Vigilance tasks are the tasks 

that require a person to maintain alertness for a long period of time to detect signals that are not 

frequent and predictable (Hancock, 2017; Warm et al., 2015). Vigilance decrement refers to the 

time-related decline in performance under vigilance tasks (Greenlee et al., 2018). Monitoring 

automated driving is a typical vigilance task since it requires drivers to remain alert and maintain 

focus to monitor the driving system for a long period of time in case any automated failure 

occurs. It has been confirmed that vigilance decrement has been observed during automated 

driving due to low task load and long duration of driving (Korber, et al., 2015; Miller et al., 

2015; Mkrtchyan et al., 2012). Moreover, vigilance decrement could be more severe among 

young drivers due to the correlation between age and vigilance hit rate (Surwillo & Quilter, 

1964). The vigilance hit rate is an inverted U shape in regard to age (Davies & Davies, 1975; D. 

R. Davies et al., 1984; Halperin et al., 1991; C. Lam & Beale, 1991; Seidel & Joschko, 1990), 
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where and young drivers might be more vulnerable to vigilance decrement when monitoring 

automated driving and more likely to develop fatigue faster than adult drivers. 

Another factor that contributes to fatigue development among young drivers under 

automated driving is the stress from system failure and bad performance on the takeover. 

Bainbridge (1983) mentioned that when operating an automated system, two tasks are required: 

monitoring the automated system when the system operates correctly and taking over the 

operation when the system is not operating correctly. During an automated driving task, drivers 

are required to monitor the vehicle status constantly in case any automated failure happens. A 

takeover is required when the automated driving system fails and the driver needs to take over 

control of the vehicle to prevent accidents. Young drivers’ brain function (specifically executive 

function) and driving skills are not fully developed, which could lead to bad performance on the 

takeover. Executive function (EF), referring to the process of cognitive control of several 

behaviors, which includes inhibition and working memory (Luna, 2009), is one of the brain 

functions that are not fully developed among young drivers and have an impact on takeover 

behavior. Although the EF could start developing at an early age, some EF is not fully developed 

until a person’s 20s (Dumontheil, 2016; Luna, 2009; Luna et al., 2004), especially their working 

memory and interference inhibition (Diamond, 2013; Huizinga et al., 2006). Low EF capacity 

could lead to poor distraction management and poor information update ability. For example, 

young drivers cannot update information at the moment and manage the many subtasks of 

driving as well as mature drivers, not considering that there are more additional secondary tasks 

in real-world driving (Walshe et al., 2017). When young drivers drive a level 2.5 automated 

driving vehicle, they might be more easily distracted due to low EF and fail to take over the 

automated driving system if any takeover is requested. Even though they can supervise level 2.5 
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automated vehicles with no distraction, they might still have takeover failure due to their limited 

updated information ability. Despite the fact that young drivers might safely and successfully 

regain driving control from a failed automated vehicle, the level of perceived stress and the 

corresponding fatigue development rate could be much higher for young drivers due to their 

immature EF. Thus, the stress from system failure and bad performance on takeover could 

increase the rate of fatigue development and even lead to crashes.  

Drivers’ driving skills will deteriorate if they have fewer non-automated driving 

experiences (Dragutinovic et al., 2005). If a driver does not drive manually for a long time, their 

driving skills will deteriorate, and their ability to handle an emergency when there is an 

automated failure may be reduced. So it is necessary for a driver to continue having opportunities 

to drive manually (Kyriakidis et al., 2019) so as to maintain their ability to handle an automated 

system failure. However, due to the rapid development of automated driving technology, more 

and more young drivers could start to experience automated driving without gaining enough 

manual driving experience after they obtain a driver’s license, which makes it riskier when a 

takeover is required due to automation failure. Due to the inexperience of young drivers, they 

might need extra effort to take over (Sun et al., 2014), which in turn will cause stress and fatigue 

for them. Overall, inexperience, immature EF, and stress could all lead to young drivers’ fatigue 

development, but it is unknown how young drivers develop fatigue under automated driving and 

how their fatigue patterns are different compared with those of adult drivers. Thus, researching 

how young drivers take over automated driving and how the takeover could affect fatigue 

development is very important.  

In addition, young drivers are more likely to have decision errors when involved in 

crashes when compared with adult drivers (Mcdonald et al., 2014). For monitoring a semi-
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automated driving car, decisions about whether they should take over, when to take over, and 

how to take over are important. Any error in those decisions could cause a fatal accident. Young 

drivers should be able to make the right decision about a takeover while operating an automated 

vehicle. Since young drivers have more decision errors, their takeover performance may be 

worse than that of adult drivers under automated driving and they may make more potentially 

fatal decisions. Even though young drivers may safely handle an automated failure and 

successfully take over, those automated failures may cause more stress for young drivers due to 

their low EF, their inexperience, and the decision errors they made. In addition, Matthews et al. 

(1996) found that even though a stressed driver may adapt as successfully as less stressed drivers 

when the demand for driving is high, the stressed driver may not perform well when the demand 

level is low. As monitoring the automated driving vehicle is not a high-demand task, young 

drivers may not perform well on monitoring automated driving when they are under stress.  

Workload can play an important role in fatigue development among young drivers. While 

young drivers are more vulnerable to vigilance decrement, raising the workload by using 

secondary tasks such as reading or watching a video could reduce the possibility of getting 

drowsy for the drivers (Miller et al., 2015). In addition, Matthews et al. (1996) found that even 

though a stressed driver might adapt as successfully as less stressed drivers when the demand for 

driving is high, a stressed driver may not perform well when the demand level is low. When the 

demand level is low, stressed drivers are more easily distracted by stressors and in turn have bad 

performance. As overseeing the automated driving vehicle alone is not a high-demand task, 

young drivers who suffer stress from inexperience and system failure might not perform well 

since they are distracted by thinking about their inexperience and the possible system failures 

they might have. The bad performance might further feed back into their stress and induce 
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fatigue. When the workload is higher, young drivers might adapt better to the driving and in turn 

be less fatigued. 

1.2 Research Problem and Aims 

The research problem is how young drivers will develop fatigue during semi-automated 

driving compared with non-automated driving under different workloads and how they will take 

over during automated driving. Therefore, the specific aims of this study are to: 

• Understand young drivers’ fatigue development under non-automated and semi-

automated driving.  

• Understand young drivers’ fatigue development under different workloads. 

• Understand the difference in fatigue development between young drivers and adult 

drivers.  

• Understand the difference in young drivers’ behavior between non-automated and semi-

automated driving.  

• Understand the differences in takeover behavior between young drivers and adult drivers. 

1.3 Hypotheses  

To understand the above problems, young drivers’ fatigue development under manual 

driving and level 2.5 automated driving with high and low workloads was studied. Young drivers 

could perceive a higher level of tension when they were driving (Taubman-Ben-Ari, 2010), 

which could quicken the development of fatigue (Bansevicius et al., 1997). As mentioned 

previously, young drivers might also face bigger challenges while handling automated failures 

and near-crash situations compared with experienced drivers, which could cause stress and faster 

fatigue development. Young drivers might be more vulnerable to vigilance decrement when 

monitoring automated driving and be more likely to develop fatigue faster than adult drivers, 
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especially when the workload is low in automated driving. Moreover, young drivers will get 

more distracted during automated driving, and when they need to take over the automated 

system, they will perform worse than adult drivers. Therefore, five research hypotheses were 

investigated in this study:  

 First, young drivers might develop fatigue faster and more severely compared with adult 

drivers for both automated driving and manual driving.  

 Second, young drivers’ fatigue development was expected to be more severe under 

manual high workload compared with manual low workload.  

 Third, young drivers’ fatigue development was expected to be more severe under 

automated compared with manual driving.  

 Fourth, young drivers’ fatigue development was expected to be more severe under 

automated low workload compared with automated high workload.  

 Last, young drivers’ takeover performance was expected to be worse than adult drivers.  
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Chapter 2 Literature Review 

2.1 Automated Driving and Takeover 

Research about automated cars has been under way since the 1920s (Kröger, 2016). 

Research on automated vehicles increased in the 1980s. For example, Kanade et al. (1986) 

proposed a project about the construction of automated vehicles, the perception system, the path 

planning system, the topological and obstacle map use, the system architecture of the automated 

vehicle, and the utilization of parallel computer architecture. Since the 1980s, more and more 

research and companies have been involved in the development of automated vehicles. As of 

2020, twenty-nine states in the US have enacted legislation about automated driving. 

The Society of Automotive Engineers has defined automated driving in 6 levels (SAE, 

2018). SAE levels 0 to 2 are the features that can support drivers but cannot perform automated 

driving, while SAE levels 3 to 5 are the levels that have automated driving features. SAE level 0 

is the lowest level, which means that the vehicle provides features that are limited, including 

providing warnings and assistance for the driver. Examples of SAE level 0 automated actions are 

automatic emergency braking, blind spot warning, lane departure warning, etc. The SAE level 1 

automated vehicle can provide the steering, braking, or acceleration assistance for the driver; for 

example, the lane centering system or adaptive cruise control system. SAE level 2 is the last of 

the driver support levels; this level of automated driving can provide better steering, braking, and 

acceleration support to the driver. While SAE level 1 can provide either the lane centering or the 

adaptive cruise control functions for the driver, SAE level 2 automated driving can provide the 

lane centering and adaptive cruise functions at the same time. While at SAE level 0 to level 2, 
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drivers still need to drive while the automated function is engaged, SAE level 3 to level 5 do not 

require the driver to drive the vehicle when the automated function is engaged. The SAE level 3 

and level 4 automated vehicles can drive the vehicle under limited conditions but will not operate 

automatedly if the conditions are not met. The difference between level 3 and level 4 is in the 

takeovers. Level 3 still needs the drivers to supervise the automated driving, and when automated 

driving is requested, drivers still need to take over control of the vehicle. SAE level 4 will not 

request the driver to take over the driving at all. An example of SAE level 3 is the traffic jam 

chauffeur, and an example of SAE level 4 is the local driverless taxi. SAE level 5 is considered 

as fully automated, and the feature can operate under any condition and does not need the driver 

to take over the driving at all. 

 
Figure 1. SAE Automated Levels. From SAE J3016 Levels of Driving Automation, by SAE International. 

Https://Www.Sae.Org/Binaries/Content/Assets/Cm/Content/Blog/Sae-J3016-Visual-Chart_5.3.21.Pdf. 
Copyright 2021 by SAE International. 

 
In this paper, the automated scenario is defined as SAE level2.5 automated driving: the 

vehicle will have automated driving features that include more than lane centering and adaptive 

cruise function. However, drivers are still responsible for supervising the vehicle and are 

responsible for takeover if they feel the automated driving feature is making a mistake and is not 

safe. When the takeover is required, multiple human information processing stages are involved 

(B. Zhang et al., 2019). Drivers need first to perceive the visual or auditory cues of the scenario 

(Gold et al., 2016). Once the visual or auditory stimuli are received, the driver will have to 
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process the information and then select the action they need to take (Zeeb et al., 2015). Once the 

driver has understanding of the situation and made the decision of what action to take, they will 

carry out the action by repositioning their hands and feet back on the pedals and steering wheel 

and then braking or steering the vehicle (B. Zhang et al., 2019). Response time is frequently used 

to measure the takeover of automated vehicles (Gold et al., 2013). Kerschbaum et al. (2015) used 

the hand movement response time to test the performance of a newly designed steering wheel on 

the takeover request. Vogelpohl et al. (2018) used the mirror check response time to measure the 

takeover performance of distracted drivers. Petermeijer et al. (2017) used the lane changing 

response time to measure the effectiveness of the vibrotactile warning signal on takeover 

performance. Other than the response time, the correct response rate (Petermeijer et al., 2017) 

and the takeover success rate are also used to measure the performance of the takeover behaviors 

(Sanghavi et al., 2021). 

2.2 Young Drivers  

There is no universal definition of the age range for young drivers. Some studies have a 

wider range, from 16-25-year-olds, while other studies focus on only a smaller range, from either 

16 to 20 or 18 to 25 (Jonah, 1986). For example, Pelz & Schuman (1971) used 16–24 as the 

range for young drivers and Stewart & Sanderson (1984) used a range of 16 to 19 to study young 

drivers’ driving risks. In recent studies, Mohamed & Bromfield (2017) used a range of 18 to 24 

to study young drivers’ driving behavior and attitude, while Simons-Morton et al. (2012) studied 

only drivers at 16 years old for the peer influence on driving behavior. These diversities in the 

definition of young drivers could lead to different research focuses and types of study (Jonah, 

1986). Pelz & Schuman (1971) found that young drivers will have a peak of accidents while they 

are aged 18 and 19. Stewart & Sanderson (1984) found that the risk of accidents for young 
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drivers aged between 16 and 19 will be twice as high as for adult drivers. Males (2009) studied 

all the crash reports from 1994 to 2007 and found that drivers aged between 16 and 19 have the 

highest fatal crash rate compared with any other age group. Thus, in this study, young drivers 

will be defined as drivers between 16 and 19 years old. 

It is known that young drivers are overrepresented in car accidents. They tend to drive 

more riskily than adult drivers. Multiple factors can contribute to young drivers’ risky driving. 

Speeding is one of the most studied factors for young drivers. Wasielewski (1984) found that 

driving speed is negatively related to the driver’s age, and that young drivers, under 21 years old, 

drive 7 km/h faster than older drivers. Harrington & McBride (1970) found that young drivers 

received more speeding tickets than older drivers for the same amount of driving distance. Risk 

perception could be another reason for young drivers being over-involved in accidents. Young 

drivers tend to underestimate traffic risk and the negative outcomes from traffic, which can lead 

to an accident (Brown & Groeger, 1988). Young drivers’ decision making could be heavily 

impacted by their peers and involved in risky driving as well (Aldridge et al., 1999). Moreover, 

young drivers are less concerned about impaired driving (Wilson, 1984). Although driving under 

the influence of substances and alcohol has been studied the most for impaired driving among 

young drivers, fatigue could impair the driving ability for young drivers and cause accidents as 

well. 

2.3 Fatigue 

Fatigue is considered as the state between awake and sleeping that could lead to sleep if 

not interrupted (Lal & Craig, 2001). If a person is fatigued, their work efficiency and their 

willingness to work are reduced (Brown, 1994; Grandjean, 1979). In general, fatigue can be 

classified as physical fatigue and mental fatigue. 
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Physical fatigue normally refers to muscular fatigue, which is the phenomenon of 

reduced muscle performance and slower and weaker muscle contraction. Muscles can produce 

movement, maintain posture and body position, stabilize joints, and generate heat for the body. A 

muscle contains thousands of muscle fibers, connective tissues, blood vessels, and nerve fibers. 

Figure 2 shows the anatomy of a muscle fiber. 

 
Figure 2. Muscle Fiber Anatomy (Biga et al., n.d.) 

 
As shown in Figure 2, each muscle fiber has a bundle of myofibrils in it. In a myofibril, 

there are two types of myofilaments, thick and thin, which are the basic contraction unit. Based 

on the type of myofilament the myofibril has, a myofibril could have an I band and an A band. 

Each I band has a midline interruption called a Z disc, and the area between two Z discs is a 

sarcomere. Muscle contraction occurs when the sarcomere shortens due to thick and thin 

myofilaments sliding past each other and overlapping. Each muscle fiber is connected by a motor 

neuron, which can give the muscle signals to contract. When an action potential arrives at the 

neuromuscular junction, ACh is released and binds to the receptors, which opens the sodium ion 

channels and causes the action potential in the sarcolemma, which releases calcium, sustained by 
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adenosine triphosphate (ATP), and initiates contraction. The amount of ATP stored in muscle is 

very low and muscles need to break down glucose to generate more ATP to perform 

contractions. During the process of breaking down the glucose into ATP, lactic acid, carbon 

dioxide, and water will be produced as well. While a muscle is stressed, lactic acid and carbon 

dioxide increase and the muscle tissue becomes more acidic, which breaks the muscle 

metabolism and leads to lower muscle performance (Grandjean, 1979). When the muscle is 

fatigued, the contractions will be weaker and slower, the electromyogram (EMG) signal will 

decrease in frequency, the duration of sustained isometric exertions and endurance time will 

shorten, and there will be muscular tremor and localized pain (Basmajian & De Luca, 1985). 

Mental fatigue can be defined as feelings of indolence and unwillingness to perform any 

kind of activity (Grandjean, 1979). It is a psychological state caused by prolonged demand for 

cognitive activities (Boksem & Tops, 2008). Mental fatigue can lead to impaired cognitive and 

behavioral performance (Boksem et al., 2005; Lorist et al., 2005). When a person is mentally 

fatigued, it is hard for them to focus, plan, ignore irrelevant information, and correct their 

mistakes (Boksem et al., 2005, 2006; van der Linden et al., 2003; van der Linden & Eling, 2006). 

However, mental fatigue is more complex than physical fatigue since it involves different 

dimensions such as mood, information processing, and behavior (Hancock & Desmond, 2001). 

Mental fatigue can be explained by a dual regulation system (Ishii et al., 2014). There are two 

systems in control of the cognitive task: the facilitation system and the inhibition system. The 

facilitation system can improve cognitive task performance, while the inhibition system can 

impair cognitive task performance. The facilitation system includes the thalamic-frontal loop, 

which is the loop between the limbic system, basal ganglia, thalamus, and frontal cortex. When 

the mental workload increases, the facilitation system will be activated and therefore 
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performance will be improved. On the other hand, the inhibition system, which includes the 

insular cortex and posterior cingulate cortex, will impair performance while it is activated. 

Cognitive task performance is regulated by these two systems. Repeat and prolonged mental 

workload can break the metabolic balance and cause insufficient activation of the facilitation 

system, overaction of inhibition system, or both, which results in decreased cognitive task 

performance and fatigue. However, environmental factors can affect fatigue development as 

well, for example, motivation. Motivation is part of the cause of mental fatigue (Chaudhuri & 

Behan, 2000). When a person perceives that they did not get enough reward for the amount of 

effort they put in for a task, they will feel fatigue (Tops et al., 2004).   

Prolonged driving can cause both physical fatigue and mental fatigue. Williamson et al. 

(1996) defined driving fatigue as a state of reduced mental alertness and impaired cognitive and 

psychomotor tasks for drivers such that the driver has an impaired ability to drive. Nilsson et al. 

(1997) found that fatigue is responsible for the majority of driving errors. Horne & Reyner 

(1995) also found that fatigue is a major reason for accidents during monotonous driving 

conditions. Seen et al. (2010) also found that prolonged driving can significantly induce fatigue 

and increase the risk of accidents. Driving fatigue has been observed after 60 minutes of driving 

(Skipper & Wierwille, 1986). Overall, prolonged driving could cause both mental and physical 

fatigue, which could impair the driver’s ability to drive and potentially cause an accident. It is 

important to understand fatigue development among drivers and especially among young drivers 

in order to understand why they are more involved in accidents and how to prevent accidents 

from happening. 
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2.4 Fatigue Measurement 

There are four types of objective approaches that can detect driver fatigue (Kong et al., 

2015). Physiological signals, such as EEG (Cao et al., 2014; Gharagozlou et al., 2015; Jap et al., 

2009), ECG (Burton et al., 2010; Byeon et al., 2006; Egelund, 1982; Fu & Wang, 2014), 

electrooculography (EOG) (Eriksson & Papanikotopoulos, 1997, 1997; Y.-F. Zhang et al., 2015), 

and EMG (Bansevicius et al., 1997; Cifrek et al., 2009; Fu & Wang, 2014; Troiano et al., 2008), 

have good performance however, all the physiological methods need high-accuracy devices to 

acquire a clean signal for fatigue detection. The second type of fatigue detecting method is based 

on the driver’s behavior, for example, steering wheel control (Jung et al., 2014; Krajewski et al., 

2009; Li et al., 2017). Vehicle states can also reflect the fatigue of the drivers, for example, lane 

information (Qiong Wang et al., 2006; Sparrow et al., 2016; Wong et al., 1996), which can 

reflect the steering wheel control and pedal control and in turn reflect the fatigue. The last type of 

method to detect fatigue is the driver’s physiological reaction, for example, yawning or other 

facial expressions (Abtahi et al., 2011; Fan et al., 2007; Saradadevi & Bajaj, 2008, 2008). On top 

of the objective approaches, subjective ratings on fatigue can also reflect fatigue among drivers 

(Di Stasi et al., 2012; Lees et al., 2018; Y.-F. Zhang et al., 2015).  

EEG is considered one of the most reliable measures to detect mental fatigue and 

drowsiness (Artaud et al., 1995; Erwin et al., 1973; Volow & Erwin, 1973). EEG can measure 

the electrical activity in the human brain from the scalp. Most electrical activity collected by the 

EEG is generated by pyramidal neurons. The EEG will record the summation of inhibitory and 

excitatory postsynaptic potentials from groups of pyramidal cells near the recording electrode 

(Fisch & Spehlmann, 1991). The cortical neurons and cortical-to-subcortical connections are 

systematically interconnected. The activities reflected on the EEG represent the communications 
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between the cortex and the subcortical structures. Once the cortex has a task, the electrical 

activities of the cortex will desynchronize. Lower amplitude and faster electrical activities will 

be presented until the task is completed and the cortex returns to a resting state (St. Louis & 

Frey, 2016). 

The international 10-20 system is one of the most-used methods to locate the scalp 

electrodes and collect the EEG data for sleep studies and laboratory research. The 10-20 system 

uses the bony landmarks on the head to create lines, and the electrodes are placed at intervals of 

10 or 20 percent of the total length of these lines. In the system, electrodes placed on the scalp 

are identified by a letter and number to represent the location of each electrode on the head: Fp 

for frontopolar; F for frontal; C for central; T for temporal; P for parietal; O for occipital; and A 

for prominent bone process (behind the outer ear). When the location of the electrode is on the 

left hemisphere, an odd number will be used after the letter, and when the electrode is on the 

right hemisphere, an even number will be used after the letter. A lower case “z” represents the 

midline of the scalp. Figure 3 shows an example of a 10-20 EEG system (St. Louis & Frey, 

2016).  

 
Figure 3. 10-20 EEG System 
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EEG data collected from the system can be filtered and transformed on different 

frequency bands. Four bands were important for mental fatigue detection: delta activity (0.5–

4HZ), theta frequency (4–7HZ), alpha waves (8–13HZ), and beta waves (13–30 Hz). Changes in 

different bands can reflect different mental stages, for example, alertness, drowsiness, or sleep. 

When an individual is drowsy, they will have less muscle movement, fewer eye blinks, and rapid 

lateral eye movement, which will lead to a slow frequency rate of 0.25 to 1.0 Hz in the frontal 

and lateral frontal channel. When a person gets more drowsy, slower and synchronous 

frequencies of theta and delta activities will merge. 

Normally, alpha band activities occur during the awake and relaxed stage, and the theta 

band will replace the alpha at the onset of sleep (Grandjean, 1988). Lal & Craig (2001) found 

that delta waves have been shown during the transition from being awake to drowsiness. The 

beta band, on the other hand, reflects the increase of alertness and arousal (Grandjean, 1988). On 

top of the single-band activities, an increase of (alpha+theta)/beta, and a decrease of theta/alpha 

were found to be positively related to the development of mental fatigue as well (Lal & Craig, 

2001; Cao et al., 2014). 

Another way to evaluate fatigue is through the measurement of ECG. By analyzing the 

heart rate (HR) and performing HRV analysis, the mental state can be reflected. HR can be used 

to indicate fatigue status. It is well known that the HR will decrease at the initial stage of sleep 

(Jones, 1990). This decrease is found while the driver is driving while sleepy as well (Jo et al., 

2019). Riemersma et al. (1977) found that the HR will decrease when a person is fatigued. Jo et 

al. (2019) found that the HR will have a 9% decrease when the driver is driving while sleepy 

compared with their regular driving. 
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HRV measures are a sensitive indicator of fatigue (Egelund, 1982). Byeon et al. (2006) 

have stated that HRV analysis can be used to detect drowsiness status. A drop of measured 

SDNN indicates potential fatigue development since less variability between heartbeats is 

observed as a result of fatigue (Malik, 1996). The LF/HF decreased when the subjects were 

mentally fatigued (Byeon et al., 2006). HRV can measure and reflect the autonomic activity of 

the body that can describe the mental state of humans (Malik, 1996).  

The human nervous system includes the central nervous system (brain and spinal cord) 

and the peripheral nervous system (connected to the central nervous system). The peripheral 

nervous system can be further divided into two subsystems: the somatic nervous system and the 

autonomic nervous system (Mai & Paxinos, 2012). The autonomic nervous system, including the 

sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS), can regulate 

bodily functions and control the fight-or-flight reaction (Jänig, 1989). Figure 4 shows the human 

nervous system. 

 
Figure 4. Human Nervous Systems 

 
The two branches of the autonomic nervous system have opposite functions. While the 

SNS is responsible for the fight-flight system, the PNS is responsible for getting the human body 
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to the rest state (Jänig, 1989). When a stressor shows up, the SNS will send signals to the body to 

prepare for reaction, which is called the fight-flight reaction. While an individual is in this 

reactive state, the body will react faster and better, but the immune system and digestive system, 

which are not necessary for the fight-flight reaction, will be suppressed. When the events that 

triggered the fight-flight reaction are over, the PNS will be active and send signals for the body 

to return to the baseline and rest state. Since the SNS activates when the body is in a fight-flight 

state, an individual will be more alert and awake when the SNS is dominant. On the other hand, 

when the activity in PNS is increased, the body is under the recovery stage from the fight-flight 

reaction and will be more fatigued. Such activities between the SNS and PNS can be reflected by 

the heart signals due to the heart-brain communication, as shown in Figure 5. The SNS can 

indirectly communicate with the heart through the spinal cord and extrinsic cardiac ganglia while 

the vagus nerve (parasympathetic) contains afferent fibers flowing to the brain that are connected 

to the medulla (Rollin McCraty et al., 2001). 

 
Figure 5. Heart-Brian Communication Pathways. From Science of the Heart, Exploring the Role of the 
Heart in Human Performance, by Rollin McCraty, Atkinson, M., & Tomasino, D, 2001, Boulder Creek, 

CA: Heart Math Research Center, Institute of HeartMath. Copyright 2012 by Institute of HeartMath. 
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HRV, the measure of the beat-to-beat changes of human heartbeats, can reflect the 

interplay between the SNS and PNS (Cygankiewicz & Zareba, 2013) and in turn reflect the 

fatigue state. Shaffer et al. (2014) found that the beat-to-beat interval will be shorter while the 

SNS is dominant and be longer while the PNS is dominant. Different methods can be used to 

analyze the HRV. Time domain analysis, frequency domain analysis, rhythm pattern analysis, 

and nonlinear methods are the four major methods used to analyze the HRV(Camm et al., 1996). 

All those methods are based on the measure of the time elapsed between two successive R-waves 

of the QRS signal on the electrocardiogram (RR interval/NN interval). Figure 6 shows an 

example of the QRS graph of the heart rate. 

Figure 6. ECG QRS Graph and RR Interval 
 

Standard deviation of normal to normal (SDNN) is one example of time domain 

measurements. It is the standard deviation of the NN intervals of the heartbeat. When an 

individual is healthy and at a better state, they will have a more irregular pattern between their 

intervals. On the other hand, when an individual is not healthy or is in a fatigued state, their 

heartbeats will be more similar to each other and have a less irregular pattern between the 

intervals. Thus, when a person is fatigued or in a poor mental state, their SNDD will decrease 

(Burton et al., 2010). pNN50 is another time domain analysis of the HRV measure, which is the 

R R 

Q Q S S 

P P 
T T 

RR interval 



 22

percentage of absolute differences in successive NN values > 50 ms (Bigger et al., 1988). Similar 

to the SDNN, reduced pNN50 could also reflect mental fatigue (Huang et al., 2018). 

HRV can be analyzed by frequency domain analysis as well, which counts the number of 

the RR intervals that match different frequency bands. Three bands are normally used for 

frequency domain analysis: high frequency (HF), which is from 0.15 to 0.4 Hz; low frequency 

(LF), which is from 0.04 to 0.15 Hz; and very low frequency (VLF), which is from 0 to 0.04 Hz. 

The ratio of LF to HF power is a commonly used HRV frequency domain analysis that can 

estimate the ratio between the SNS and PNS activity (Shaffer et al., 2014). When the SNS is 

dominant, the LF power will increase, and when the PNS is dominant, the HF will increase. 

Egelund (1982) found that a decreased LF/HF ratio can reflect the fatigue of a person. 

Other than objective measurements, fatigue can be measured by a self-reported 

questionnaire for various settings and scenarios (Ferentinos et al., 2010). In general, fatigue self-

report measurement can be classified on a unidimensional or multidimensional scale. 

Unidimensional scales normally yield a single score and are more brief and simple to use, while 

multidimensional scales are more detailed and can identify the underlying aspects of fatigue 

(Dittner et al., 2004). Examples of unidimensional scales include the brief fatigue inventory 

(Mendoza et al., 1999), fatigue severity scale (Krupp, 1989), FACT-F subscale (Yellen et al., 

1997), and global vigour and affect (Monk, 1989). Examples of multidimensional scales are 

checklist individual strength (Vercoulen et al., 1994), fatigue assessment instrument (Schwartz et 

al., 1993), fatigue impact scale (Fisk et al., 1994), and fatigue questionnaire (Chalder et al., 

1993). Although most of these fatigue scales are well validated, none of them targets driving 

fatigue. For example, the brief fatigue inventory was more used on cancer patients (Wang et al., 

2001) and the fatigue severity scale was more used on patients with Parkinson’s disease (Abe et 
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al., 2000), sleep disorders (Lichstein et al., 1997), or brain injuries (LaChapelle & Finlayson, 

1998). For current study, a multidimensional fatigue scale developed by Åhsberg et al. (1997) to 

target occupational work subjective fatigue could be used to measure driving fatigue. In this 

scale, five dimensions were found to measure fatigue, including lack of energy, physical 

exertion, physical discomfort, lack of motivation, and sleepiness. More detailed factors, such as 

sleepiness and drowsiness under the sleepiness dimension, were used to measure fatigue with an 

11-grade scale from 0 to 10. Both mental and physical fatigue from driving can be evaluated by 

using this fatigue scale (Åhsberg et al., 1997).   
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Chapter 3 Research Design and Methods 

Two studies were conducted to understand fatigue development and takeover behaviors 

among young drivers and other driver groups. The same devices and procedures were used for 

the two studies, with different participants and measurements. 

3.1 Participants 

Three groups of participants were recruited for the study: young driver, adult new driver, 

and adult experienced driver groups. A young driver was defined as a driver who was 16 to 19 

years old (Pelz & Schuman, 1971; Stewart & Sanderson, 1984), while an adult driver was 

defined as a driver who was older than 21 years of age. People between the ages of 19 and 21 

were not recruited for this study, and were excluded to reduce the similarity between the two test 

groups. An adult new driver was defined as an adult driver who had gotten their driver’s license 

within 3 years and did not have extensive exposure to driving before they started training to get 

the license. A driver was also defined as new/inexperienced if they had not conducted any 

driving task within the past 6 months. 

The constraints on participants for all three groups were the following: The participants 

were required be older than 16 years old; the participants had to have valid driver 

licenses/permits with no accidents for the last three months; the participants should not have had 

any injury or illness, like spinal or lower back injuries or pain; the participants should not have 

had implanted electrical devices, such as cardiac or bone stimulators; the participants should not 

have had any motion sickness from interacting with a driving simulator that could interfere with 

their performance in the simulated driving; the participants should not have had any caffeine 
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withdrawal symptoms. Upon arrival in the laboratory, all the participants were required to read 

and sign an informed consent approved by the University of Michigan Institutional Review 

Boards with study ID HUM00143933. 

3.2 Devices 

This study used a high-fidelity modular driving simulator from Realtime Technologies, 

FAAC Inc, MI, as shown in Figure 7, for the participants to perform the driving task.  

 
Figure 7. Driving Simulator Setup 

 
To collect ECG data, a portable heart rate sensor (H10, Polar, Kempele, Finland) was 

used. An application generated by Elite HRV, Inc., North Carolina, was used to collect and 

process the ECG data. The raw data output of the ECG was the RR intervals. All ECG data were 

processed and calculated in the Elite HRV app.  

As illustrated in Figure 8, a 14-channel dry EEG headset (Emotiv EPOC+, Emotiv Inc., 

CA) was used to collect the EEG data. The raw data output was the micro voltage on each 

channel with a sampling rate of 128 Hz.  
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Figure 8. Illustration of EEG Setup 

 
Two cameras (GoPro HERO4, GoPro Inc., CA) were used to collect the video recording 

of the driving. One camera was set on the dashboard to record the driver’s eye movements and 

facial expressions. The second camera was set at the left behind the driver to record the overall 

scenario and driver behaviors. 

3.3 Workloads 

The workload was estimated in this study using a combination of weather, road 

condition, secondary task, and near-crash scenarios. The weather conditions can significantly 

influence the mental workloads during driving (Hu et al., 2011), which were generally higher in 

bad weather and more prominent among inexperienced drivers (Patten et al., 2006). Thus, bad 

weather conditions were used for the high-workload condition. In addition, reduced visibility 

decreased the estimation of safety margins and increased workload (Hoogendoorn et al., 2011; 

Waard et al., 2008). A foggy driving condition was included as a cause of the high workload in 

this study.  

Road conditions, such as city roads and highway roads, can have different impacts on 

drivers’ mental workloads (Sugiono et al., 2017). More complex road conditions can lead to a 

higher mental workload due to the drivers needing to be more careful to evaluate the traffic and 
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speed of surrounding vehicles (Cantin et al., 2009). Three types of road conditions were used for 

the high and low workloads. The city road had two lanes in each direction, traffic lights, 

pedestrians, buildings, and shops on the side of the road. The freeway road had one lane in each 

direction, no traffic lights, and no pedestrians or buildings on the side. The rural road had two 

lanes in each direction, with traffic lights but no pedestrians or buildings on the side. Figure 9 

shows an example of each type of road. 

 
9.a. City Road   9.b. Freeway Road  9.c. Rural Road 

Figure 9. Road Examples 
 

The city road was used for the high-workload map since it was more complex, and a mix 

of all three types of the road was used for the low-workload map. Both maps were closed loops, 

as shown in Figure 10.  

 
10. a. High Workload Map  10. b. Low Workload Map 

Figure 10. Maps Used for High Workload and Low Workload 
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The Society of Automotive Engineers (SAE) has classified driving automation into 6 

levels, from completely manual control to completely automated driving (SAE, 2018). In this 

study, automated driving was defined as level 2.5 automated driving. The vehicle had line 

centering, adaptive cruise control, and limited traffic jam chauffeur. However, automated driving 

may have failed due to the nature of level 2.5 driving automation and required the participants to 

take over control. The driving simulator used in this study has automated driving function that 

fits into the level 2.5 automated driving defined above. The automated failure scenarios could 

happen during automated driving mode under certain scenarios (i.e., sharp curve, front car sharp 

brake) when the simulation system could not perform fast enough for the sudden events. Since 

automated failure is triggered by certain scenarios, different participants may have received a 

different number of automated failures based on the route they chose and the driving style they 

had. To simulate a realistic scenario for people using a level 2.5 automated vehicle, the 

participants were allowed to use their personal phones as entertainment while ensuring the safe 

driving of the simulator. 

Secondary tasks can increase the workload of young drivers (Lansdown et al., 2004), 

which in turn may induce fatigue. In this study, participants were asked to reply to a text 

message through a study phone while maintaining the velocity of driving. The text message sent 

to the participant was a 10 digit phone number since it can simulate both texting and dialing a 

phone call (He et al., 2015). The participant was asked to retype the phone number and send it 

back through a text message. There were 18 messages used for the high-workload scenario.  

Compared with experienced adult drivers, young drivers were more likely to be involved 

in crash/near-crash situations (Simons-Morton et al., 2011), which may introduce higher 

workloads to regain control. Young drivers may also experience high perceived workloads under 
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normal driving conditions (Gaillard, 1993). A crash/near-crash experience could lead to severe 

acute stress (Beck & Coffey, 2007; Winston et al., 2005), which in turn may induce fatigue. In 

the study, sudden crossing pedestrians were used to create a near-crash situation to potentially 

increase drivers’ perceived workloads. A total of 10 simulated pedestrians were distributed 

inside the high-workload map in random locations. Pedestrians were triggered and ran into the 

traffic if the car was in a certain line and at a certain distance from the pedestrian. The pedestrian 

running speed and the distance between pedestrian and vehicle were designed so that the 

automated system would fail to stop since the pedestrians’ movement was too sudden. Also, the 

crossing pedestrian was moving fast so that if the driver was not focusing on driving or not able 

to react fast, they would hit the pedestrian.  

In summary, foggy weather, city roads, secondary tasks (replying to text messages), and 

near-crash scenarios (sudden running pedestrian) were used for the high workload. Clear 

weather; city, freeway, and rural road mix; and no secondary task or near-crash scenarios were 

used for the low workload. 

3.4 Procedures 

During the experiments, participants were asked to sit in the simulator and drive/monitor 

(if it was automated driving) the vehicle, driving on the predefined map for 1.5 hours. They were 

asked to ensure that the vehicle was driving safely and following the traffic rules. During 

automated driving, participants were asked to take over control of the vehicle when they believed 

that automated driving had failed or it was not safe to let the vehicle drive on its own. Once the 

driving condition recovered to normal, participants were asked to switch the driving mode back 

to automated driving again.  
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The participants who agreed to participate in the study went through initial subject 

screening to provide information regarding their age, driving experience, gaming experience, and 

caffeine use. Qualified participants received a 5-minute training on how to perform driving on 

the driving simulator and how to report perceived fatigue and discomfort during the test. Before 

starting the driving task, EPOC+ and H10 were equipped following the existing instructions. 

After the devices were set up, participants were given the first perceived fatigue and discomfort 

questionnaire before the start of the driving task. For every 30 minutes of driving, participants 

were asked to report fatigue. The data from EPOC+ and H10 were continuously collected for 10 

minutes at the beginning of each 30-minute interval. 

3.5 Measurements 

This study measured both mental and physical fatigue. Perceived physical fatigue and 

discomfort were measured using the perceived fatigue and discomfort questionnaires. Mental 

fatigue was measured through the perceived fatigue and discomfort questionnaire, EEG, and 

ECG.  

A perceived fatigue and discomfort questionnaire was used for physical and mental 

fatigue estimation. As shown in Appendix A, a questionnaire was developed based on an existing 

fatigue questionnaire (Åhsberg et al., 1997; Grant et al., 1999). Each participant was asked to fill 

out the perceived fatigue and discomfort questionnaire before they started the driving task and 

every 30 minutes during the driving task. Discomfort at each part of the body, feeling over-

drained, being uninterested, and having stiff joints, tense muscles, drowsiness, sleepiness, and 

numbness were used to measure both physical and mental fatigue. Participants were asked to rate 

from 0 to 10 on those fatigue measures. Overall feelings of discomfort were also used in the 

questionnaire since they could reflect both physical and mental fatigue. Perceived discomfort 
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was related to fatigue measured by EMG (Bosch et al., 2007), and the exposure to discomfort 

was related to fatigue and less alertness (Griefahn & Künemund, 2001). Participants were asked 

to mark their overall feelings of discomfort on a line with a scale of 0 to 100. 

Physiological signals, including EEG and ECG, were used to measure fatigue. EEG is 

one of the widely used indicators for mental fatigue detection. Alpha, (alpha+theta)/beta, and 

theta/alpha were used to evaluate the development of mental fatigue in the participants (Cao et 

al., 2014; Lal & Craig, 2001). HR per minute was measured and used to detect fatigue. Both time 

domain and frequency domain analysis of HRV were used to measure the development of mental 

fatigue. Overall, ECG data, including HR, SDNN, pNN50, and LF/HF, were used as the 

measurement of fatigue in this study. Video recordings were also collected to analyze the 

driver’s behavior and eye movements. 

3.6 Study One: Comparing Young Drivers to Adult New Drivers  

Although there is a difference between young drivers and new drivers, not many studies 

have considered young drivers and new drivers as two separate groups. Findings on how 

experience will affect driving performance among young drivers were mixed. While Williams 

(2003) found that both age and experience play a role in young drivers’ risky driving behaviors, 

Yeung & Wong (2015) believe that experience does not have any effect on young drivers. To 

understand if it is the age difference or the experience difference that affects young drivers’ 

fatigue development, a pilot study was first conducted to compare young drivers with both the 

adult experienced driver group and the adult new driver group. 

 A total of 15 participants were recruited for this study. There were 4 adult experienced 

drivers, 2 adult new drivers, and 9 young drivers. The experienced adult drivers’ average age was 

26.25 (SD =0.957), and they all drove daily with more than 6 years of experience. The adult new 



 32

drivers’ average age was 23.5 (SD = 3.53), and the average time they had had their driver’s 

license was 2.75 months. The young drivers had an average age of 18.5 (SD = 0.517) years old. 

A 2 by 2 by 3 design was used with 2 levels of driving mode, 2 levels of workloads, and 3 levels 

of participant groups. Table 1 below shows the design of the experiment with the number of 

participants tested for each scenario filled in:  

Table 1 The 3 by 2 by 2 Design of Study One 

Driving mode Workload Adult experienced Young new Adult new 

Automated 
driving 

Low workload 
(Baseline) 

3 3 2 

High workload 3 2 2 
Manual 
driving 

Low workload 
(Baseline) 

3 2 2 

 High workload 3 2 2 
 

The perceived fatigue and discomfort questionnaire, EEG, HR, SDNN, pNN50, LF/HF, 

and video recording were used to measure fatigue for this study. 

3.7 Study Two: Young Drivers vs. Adult Drivers 

Based on the results of the first study, a second study was conducted with only two 

groups of participants: adult drivers and young drivers. A 2 by 2 by 2 design with 2 levels of 

driving mode, 2 levels of workload, and 2 levels of participant groups was used. The perceived 

fatigue and discomfort questionnaire, HR, SDNN, pNN50, LF/HF, and video recording were 

used to measure fatigue. 

A total of 32 participants were recruited for this study. There were 16 adult drivers with 

an average age of 26.25 (SD = 2.864) and 16 young drivers with an average age of 18.5 (SD = 

0.516). For each driving mode, workload, and age combination, 4 participants were randomly 

assigned. On average, adult drivers had had their license for 80.43 (SD = 38.36) months and 

young drivers had had their license for 24.09 (SD = 38.36) months.  
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3.8 Data Analysis 

Since different people have a different baseline on their perceived fatigue and discomfort, 

the changes between their before-task measurements and during-task/after-task measurements 

were used rather than the absolute value of between-task and after-task. The before-task data 

were subtracted from the during-task and after-task data to balance the difference on the baseline 

of each participant. After the subtraction, the adjusted scale was from -10 to 10 for the perceived 

fatigue and -100 to 100 for overall discomfort. The -10 on adjusted perceived fatigue means that 

they rated 10 at the beginning and 0 after/during the task, while 10 on adjusted perceived fatigue 

means that they rated 0 at the beginning and 10 after/during the task. The -100 on adjusted 

overall discomfort means that they rated 0 at the beginning and 100 after/during the task, while 

100 on adjusted overall discomfort means they rated 100 at the beginning and 0 after/during the 

task. The adjusted fatigue changes at 30 minutes, 60 minutes, and 90 minutes of driving were put 

in tableau to have a visualized result. 

The RR interval was acquired from the H10. HR and HRV were calculated from the RR 

interval using the Elite HRV. The HRV spectral analysis needs the raw data to be at least 2 

minutes long to ensure the accuracy of the analysis (Malik, 1996). Ten minutes of data were used 

to calculate the HRV to ensure accuracy. Overall, the HR, SDNN, pNN50, and LF/HF were 

calculated based on the following equations: 

 𝑆𝐷𝑁𝑁 =  ඨ
∑(𝑅𝑅௜ − 𝜇)ଶ

𝑁
 (1) 

Where N is the number of the RR intervals, RRi was ith RR interval, and µ was the mean of all 

RR intervals. 

 𝑝𝑁𝑁50 =  
𝑁𝑁50 𝑐𝑜𝑢𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 𝑁𝑁 𝑐𝑜𝑢𝑛𝑡
 (2) 
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Where the NN50 was the NN intervals that differ by more than 50 ms. 

 𝐿𝐹/𝐻𝐹 =
 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑜𝑤 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑏𝑎𝑛𝑑

 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑖𝑔ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑏𝑎𝑛𝑑
 (3) 

Different people could have a different absolute value of HR and HRV based on different 

personal characteristics, such as age, gender, etc. (Malik, 1996), so it is not preferable to directly 

compare HRV with other subjects. Instead, HR and HRV changes at 60 minutes and 90 minutes 

compared with their HR and HRV data at 30 minutes of driving were calculated. 

After getting the raw data from the EPOC+, the EEG data were cleaned for noise first. 

The fast Fourier transform (FFT) was performed to get the band power information on the alpha, 

beta, theta, and delta bands. Theta/alpha and (alpha-theta)/beta were calculated. Due to the 

individual differences, the changes at 60 and 90 minutes compared with their baseline at 30 

minutes were used. 

The data acquired from the video recordings were defined as follows: number of crashes: 

how many times the participants had a crash; number of near crashes: how many times 

participants had a near crash (automated driving mode: too close to the crossing pedestrians or 

other traffic; manual driving mode: lost control of the vehicle but did not cause any crash); 

number of eyes off the road: how many times participants had their eyes off the screen; eyes off 

road time: how long in total the participants’ eyes were off the screen in seconds; average eyes 

off road time: eyes off road time/number of eyes off road; number of missed takeovers: how 

many times the participants were supposed to take over but missed the takeover; number of 

takeovers: how many times the participants were supposed to take over and they did take over; 

number of successful takeovers: how many times a takeover is needed and the participants 

successfully take over without causing any crashes. The video-recorded driving scenes were 

manually reviewed based on the definitions mentioned above and recorded in an excel file. 
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Takeover rate and successful takeover rate were calculated for the automated driving mode as 

shown in Equations 4 and 5. 

 𝑇𝑎𝑘𝑒𝑜𝑣𝑒𝑟 𝑟𝑎𝑡𝑒 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 +  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑎𝑟 𝑐𝑟𝑎𝑠ℎ𝑒𝑠
 (4) 

   

 
𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟 𝑟𝑎𝑡𝑒 

=
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟𝑠 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 +  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑎𝑟 𝑐𝑟𝑎𝑠ℎ𝑒𝑠
 

(5) 

Since study one does not have enough data collected on which to perform statistical 

analysis and hypothesis testing, mean and standard deviation were calculated for each value to 

compare the differences between each group.  

In study two, ANOVA was used to test the difference between the groups. The 

assumptions were checked before the ANOVA was conducted. Four assumptions were required 

to perform a factorial ANOVA: interval independent data, normality, homoscedasticity, and no 

multicollinearity. All the independent data in this study including perceived fatigue rating, HR, 

SDNN, pNN50, LF/HF, number of crashes/near crashes, number of takeovers/missed takeovers, 

takeover rates, successful takeover rates, and eyes off the road time are all interval data, which 

fulfill the first assumption of ANOVA analysis. Since the age, automated scenarios, and 

workload do not have any correlations between each other, no multicollinearity was also fulfilled 

for the study. Normality and homoscedasticity were tested by statistical hypothesis testing.  

There are almost 40 different methods available to check the normality of the data 

(Dufour et al., 1998). For example, the Kolmogorov-Smirnov test, Shapiro-Wilk test, Lilliefors 

test, and Anderson-Darling test are some commonly used tests. For the Anderson-Darling test, 

which can check whether the data are drawn from a given distribution, Anderson & Darling 

(1954) first defined the statistics of this test as followed: 
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 𝐴𝐷 = 𝑛 න [𝐹௡(𝑥) − 𝐹∗(𝑥)]ଶ𝜓(𝐹∗(𝑋))𝑑𝐹∗(𝑥)
∞

ି∞
 (6) 

Arshad et al. (2003) later modified the equation to simplify the calculation: 

 𝐴𝐷 = −𝑛 −
1

𝑛
෍(2𝑖 − 1){log 𝐹∗(𝑋௜) + log(1 − 𝐹∗(𝑋௡ାଵି௜)} (7) 

Where 𝐹∗(𝑥௜) is the cumulative distribution function of the specified distribution, 𝑥௜ are the 

ordered data, and n is the sample size. The p-value then is determinate based on the value of AD 

(D’Agostino & Stephens, 1986): 

 𝑝 =

⎩
⎪
⎨

⎪
⎧𝑒൫ଵ.ଶଽଷ଻ିହ.଻଴ଽ஺஽ା଴.଴ଵ଼଺஺஽మ൯,                                   𝑖𝑓 𝑠 ≥ 0.6

𝑒(଴.ଽଵ଻଻ିସ.ଶଽ଻஺஽ .ଷ଼஺஽మ),                        𝑖𝑓 0.34 < 𝑠 < 0.6

1 − 𝑒(ି଼.ଷଵ଼ାସଶ.଻ଽ଺஺஽ିହଽ.ଽଷ଼஺஽మ),           𝑖𝑓 0.2 < 𝑠 < 0.34

1 − 𝑒(ିଵଷ.ସଷ଺ାଵ଴ଵ.ଵସ஺஽ିଶଶଷ.଻ଷ஺஽మ),                       𝑖𝑓 𝑠 ≤ 0.2

 (8) 

The hypotheses of the Anderson-Darling test are: 

H0: The data follows the normal distribution 

Ha: The data do not follow the normal distribution 

The null hypothesis of the normality will be rejected if the p-value is less than 0.05. Razali & 

Wah (2011) found that the Anderson-Darling test is one of the more powerful tests for the 

normality test compared with the Kolmogorov-Smirnov test, Shapiro-Wilk test, and Lilliefors 

test. Thus, the Anderson-Darling test was used for the normality test in this study. 

Levene’s test was used to test the homoscedasticity of the data. Levene (1960) developed 

this test to check if k samples have equal variances, which is also called homogeneity of 

variance. The hypotheses of Levene’s test are: 

H0: σ1
2=σ2

2=…=σk
2 

Ha: σi
2≠σj

2    for at least one pair of i and j. 

The test statistics of Levene’s test are: 
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 𝑊 =  
(𝑁 − 𝑘)

𝑘 − 1
 

∑ 𝑁௜(𝑍ప.
തതത − 𝑍..

ഥ )ଶ௞
௜ୀଵ

∑ ∑ 𝑁௜(𝑍పఫ
തതതത − 𝑍ప.

തതത)ଶே೔

௝ୀଵ
௞
௜ୀଵ

 (9) 

Where 𝑍௜௝ = ห𝑌௜௝ − 𝑌ప.
ഥ ห, in which 𝑌ప.

ഥ  can be mean, trimmed mean, or median of the ith subgroup; 

𝑍ప.
തതത are the group means of the 𝑍௜௝; and 𝑍..

ഥ  is the overall mean of the 𝑍௜௝. The hypothesis will be 

rejected if the variance is equal when W > Fα, k-1, N-k. 

Once all the assumptions were checked, a 2 by 2 by 2 factorial ANOVA was performed 

on the measures that satisfied the assumptions. A (-1,0,1) coding system was used such that each 

coefficient represents the difference between each level mean and the overall mean. 

If the measure did not fulfill the assumptions of ANOVA, a non-parametric test was used. 

Three non-parametric tests are known to be alternatives to ANOVA: the Kruskal-Wallis test, 

Mood’s median test, and Friedman test. The Friedman test is used to analyze randomized block 

experiments, while both the Mood’s median and Kruskal-Wallis test the equal medians for one-

way designs. Compared with the Kruskal-Wallis test, the Mood’s median test is more resilient to 

the outliers and errors in data; however, it is less powerful. Since the data collected had already 

been cleaned of errors, the Kruskal-Wallis test was used. Kruskal & Wallis (1952) developed the 

test statistics as follows: 

 𝐻 =  
12

𝑁(𝑁 + 1)
෍ ቆ

𝑅௝
ଶ

𝑛௝
ቇ − 3(𝑁 + 1)

௞

௝ୀଵ
 (10) 

Where 𝑁 = ∑ 𝑛௝
௞
௝ୀଵ , in which nj is the number of samples for each group, k is the number of 

groups, and Rj is the rank sum of each sample. 

The hypotheses of the Kruskal-Wallis test are: 

H0: S1 =S2= ….. = Sk 

Ha: Si
 ≠Sj for at least one pair of i and j. 

The null hypothesis will be rejected when H > χ2
α, k-1. 
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On top of the Kruskal-Wallis test, data that does not follow the normal distribution were 

also transformed to perform the ANOVA analysis. Two data transformation methods, Box-cox 

transformation(Cook & Weisberg, 1999) and Johnson transformation(Yeo & Johnson, 2000) 

have were commonly used to transform the nonnormal distributed data to the normal 

distribution. Compare with the Box-cox transformation, Johnson transformation does not have 

restriction on the data. Since the data used in this study includes the negative numbers, Johnson 

transformation was used. Johnson transformation can be defined as: 

 𝜓(𝜆, 𝑦) =

⎩
⎪⎪
⎨

⎪⎪
⎧

(𝑦 + 1)ఒ − 1

𝜆
                 , 𝑖𝑓𝜆 ≠ 0, 𝑦 ≥ 0

log(𝑦 + 1)                      , 𝑖𝑓𝜆 = 0, 𝑦 ≥ 0

 

−[(−𝑦 + 1)ଶିఒ − 1]

2 − 𝜆
   , 𝑖𝑓𝜆 ≠ 2, 𝑦 < 0

−log (−𝑦 + 1)              , 𝑖𝑓𝜆 = 2, 𝑦 < 0

 

 (11) 

Where y is the list of number you need to transform and λ can be defined based on the type of 

transformation you need. 
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Chapter 4 Results 

4.1 Study One: Comparing Young Drivers to Adult New Drivers?  

4.1.1 Perceived Fatigue and Discomfort Questionnaire Results  

The discomfort rating for each part of the body was compared between the young driver 

group and the adult driver groups, and no significant difference was found in the ratings. Figure 

11 and Figure 12 show the averaged adjusted overall feeling about the simulated drive. The 

adjusted overall feeling is on a scale of 100 to -100, where 100 means participants feel more 

comfortable compared with the time before they started driving, while 0 means they feel the 

same as the time before they started driving and -100 means they feel extreme discomfort. 

Similar to the adjusted overall feeling, the adjusted over-drained was on a -10 to 10 scale, where 

-10 means participants felt better and 10 means they felt extremely over-drained.  

Figure 11 shows the adjusted ratings on overall feeling and feeling over-drained under 

automated driving mode. There is a clear trend that the young drivers had earlier fatigue onset (at 

60 minutes) and a higher level of fatigue compared with the adult groups. For the high workload 

after 30 minutes, ratings for over-drained and overall feeling for adult experienced drivers were 

only 0.33 and -11.17 points lower than the young drivers. After 60 minutes, young drivers started 

showing more fatigue than adult experienced drivers. Ratings for over-drained and overall 

feeling for adult experienced drivers were 4.77 and -53.17 points lower than young drivers. After 

90 minutes of driving, the difference for over-drained and overall feeling between adult 

experienced and young drivers went to 4.33 and -68 points. 
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Figure 11. Comparison of Overall Feeling and Feeling Over-Drained with Error Bar for Automated Driving 
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No significant difference was observed between adult new drivers and adult experienced 

drivers. For the high workload after 30 minutes, ratings for over-drained and overall feeling for 

adult new drivers were only 0.5 and -15 points lower than the young drivers. After 60 minutes, 

young drivers started showing more fatigue than adult new drivers. Over-drained and overall 

feeling ratings for adult new drivers were 4 and -46 points lower than young drivers. After 90 

minutes of driving, the difference for over-drained and overall feeling between adult new and 

young drivers went to 3.5 and -67.5 points. 

A similar trend was found for the automated low-workload scenario. Over-drained and 

overall feeling ratings for adult experienced drivers were only 0.33 and 3 points lower than 

young drivers after 30 minutes of driving. After 60 minutes, young drivers started showing more 

fatigue than adult drivers. Over-drained and overall feeling ratings for adult experienced drivers 

were 4.34 and -22.66 points lower than young drivers. At 90 minutes of driving, the difference 

for over-drained and overall feeling ratings between adult experienced drivers and young drivers 

went to 2.34 and -24.33 points. Over-drained and overall feeling ratings for adult new drivers 

were only 0.83 and -2.33 points lower than young drivers after 30 minutes of driving. After 60 

minutes, young drivers started showing more fatigue than adult new drivers. Over-drained and 

overall feeling ratings for adult new drivers were 5.17 and -24.80 points lower than young 

drivers. At 90 minutes of driving, the difference for over-drained and overall feeling ratings 

between adult experienced drivers and young drivers went to 4.67 and -32.80 points.  

Comparing the low workload and high workload among young drivers shows that the 

young drivers felt more drained and less comfortable when the workload was high.  

Figure 12 shows the adjusted ratings on overall feeling and feeling over-drained under 

manual driving mode. 
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Figure 12. Comparison of Overall Feeling and Feeling Over-Drained with Error Bar for Manual Driving  
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Similar results were found for the manual driving mode as for the automated driving 

mode. Young drivers developed fatigue faster and more severely than both adult experienced 

drivers and adult new drivers. At 30 minutes of the manual high workload, overall feeling rating 

for young drivers was 17 points lower than adult new drivers and 5 points lower than adult 

experienced drivers. The difference got even bigger at 60 minutes of driving, where young 

drivers were 21.7 points lower than adult experienced drivers and 30.5 points lower than adult 

new drivers. At 90 minutes of driving, overall feeling rating for young drivers was 5.77 points 

higher than adult experienced drivers and 14.5 points higher than adult new drivers. For the over-

drained ratings, at 30 minutes of driving, young drivers were 0.5 points lower than adult 

experienced drivers but 3 points higher than adult new drivers. At 60 minutes of driving, young 

drivers were 2.83 points higher than adult experienced drivers and 4 points higher than adult new 

drivers. After 90 minutes of driving, young drivers were 2.33 points higher than adult 

experienced drivers and 1.5 points higher than adult new drivers.  

Similar results were also found in the manual low workload. At 30 minutes of driving, 

young drivers rated their overall feeling 15 points lower than adult new drivers but the same as 

adult experienced drivers. At 60 minutes of driving, the difference for overall feeling between 

young drivers and adult new and adult experienced drivers went up to 31.5 points and 14 points. 

After 90 minutes of driving, young drivers rated their overall feeling 38 points higher than adult 

new drivers and 9 points higher than experienced drivers. The young drivers rated the over-drain 

less than adult experienced drivers but still higher than adult new drivers. At 30 minutes of 

driving, young drivers were 1 point lower than adult experienced drivers but 0.5 points higher 

than adult new drivers. At 60 minutes of driving, young drivers were 0.5 points lower than adult 

experienced drivers but 1 point higher than adult new drivers. After 90 minutes of driving, young 
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drivers were 1.5 points lower than adult experienced drivers and 1 point higher than adult new 

drivers.  

Figure 13 shows the results of the adjusted subjective mental fatigue rating under 

automated driving mode. The results of the drowsiness, sleepiness, and uninterested ratings were 

consistent with the overall feeling, in which the young drivers had an earlier onset of fatigue and 

the overall fatigue level by the end of the task was also higher compared to the adult groups. 

Young drivers’ fatigue onset was clear from 30 minutes of high-workload driving. Drowsiness, 

sleepiness, and uninterested ratings for adult experienced drivers were 3.5, 5, and 4.17 points 

lower and ratings for adult new drivers were 4, 4, and 5 points lower than young drivers after 30 

minutes of driving. After 60 minutes of driving, drowsiness, sleepiness, and uninterested ratings 

for adult experienced drivers were 3.67, 4.17, and 3 points lower than young drivers, while 

ratings for adult new drivers were 3, 3, and 5 points lower than young drivers. After 90 minutes 

of driving, the differences for drowsiness, sleepiness, and uninterested ratings between adult 

experienced drivers and young drivers went to 2.67, 4.33, and 4.33 points, and the differences 

between adult new drivers and young drivers were 2.5, 3, and 4 points. 

A similar trend was found for the low-workload scenario. Drowsiness, sleepiness, and 

uninterested ratings for adult experienced drivers were only 0.33, 0.67, and -1.67 points lower 

than young drivers after 30 minutes of driving. Adult new drivers were 4, 1.17, and 0.5 points 

lower compared with young drivers. After 60 minutes, young drivers started showing more 

fatigue than adult drivers on all three measures. Drowsiness, sleepiness, and uninterested ratings 

for adult experienced drivers were 4, 1.77, and 2.67 points lower than young drivers, while 

ratings for adult new drivers were 6.67, 4, and 5.5 points lower than young drivers.



 

 

45 

 
 

Figure 13. Subjective Mental Fatigue with Error Bar for Automated Driving 
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After 90 minutes of driving, the differences for drowsiness, sleepiness, and uninterested 

ratings between adult experienced drivers and young drivers went to 3.67, 2.33, and 3.67 points, 

and the differences between adult new drivers and young drivers went to 6.17, 3.33, and 6.5 

points. For both high workload and low workload, adult new drivers’ ratings were significantly 

lower than for the young driver group. Among the young drivers, they felt drowsier when they 

were at the low workload compared with the high workload.  

Figure 14 shows the results of the adjusted subjective mental fatigue ratings under 

manual driving mode. The results of the drowsiness, sleepiness, and uninterested ratings were 

consistent with the overall feeling, in which the young drivers had an earlier onset of fatigue and 

the overall fatigue level by the end of the task was also higher compared with the adult groups. 

Adult new drivers showed a significant difference from young drivers for both high workload 

and low workload. Young drivers’ fatigue onset was clear from 30 minutes of high-workload 

driving. Drowsiness, sleepiness, and uninterested ratings for adult experienced drivers were 2.17, 

3.17, and 2 points lower and ratings for adult new drivers were 3, 4, and 3 points lower than 

young drivers after 30 minutes of driving. After 60 minutes of driving, drowsiness, sleepiness, 

and uninterested ratings for adult experienced drivers were 3.67, 4.17, and 3 points lower than 

young drivers, while ratings for adult new drivers were 3, 3, and 5 points lower than young 

drivers. After 90 minutes of driving, the differences for drowsiness, sleepiness, and uninterested 

ratings between adult experienced drivers and young drivers went to 1, 1.5, and 1.77 points, and 

the differences between adult new drivers and young drivers were -1, -0.5, and 1.5 points.  

For the manual low workload, adult experienced drivers had a higher rating, but adult 

new drivers still had a lower rating compared with young drivers.
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Figure 14. Subjective Mental Fatigue with Error Bar for Manual Driving 
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Drowsiness, sleepiness, and uninterested ratings for adult experienced drivers were 1, -4, 

and -1 points lower than the young drivers after 30 minutes of driving. Drowsiness, sleepiness, 

and uninterested ratings for adult new drivers were 2, 2.5, and 2 points lower compared with 

young drivers. After 60 minutes, young drivers started showing more fatigue than adult drivers 

on all three measures. Drowsiness, sleepiness, and uninterested ratings for adult experienced 

drivers were 1, -1.5, and -1.5 points lower than young drivers, while ratings for adult new drivers 

were 2.5, 3, and 3 points lower than young drivers. After 90 minutes of driving, the difference 

for drowsiness, sleepiness, and uninterested ratings between adult experienced drivers and young 

drivers went to -2, -2.5, and 0.5 points, and the difference between adult new drivers and young 

drivers went to 1.5, 2, and 4 points from young drivers. For both high workload and low 

workload, adult new drivers’ ratings were significantly lower than those of the young drivers 

group. Among the young drivers, they felt drowsier when they were at the low workload 

compared with the high workload. 

Figure 15 shows the results of the perceived adjusted physical fatigue under automated 

driving. The results were consistent with overall feeling and mental fatigue. Young drivers had 

an earlier onset of fatigue compared with the adult groups. The adult new group has significant 

differences compared with the young driver group. Among different driving conditions, young 

drivers are more likely to have stiff joints and numbness under high workload and tense muscles 

for both low workload and high workload.  

For the high-workload driving, young drivers had a higher fatigue rating from the first 30 

minutes of driving compared with both adult experienced drivers and adult new drivers. 
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Figure 15. Physical Fatigue with Error Bar for Automated Driving 
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At 30 minutes of driving, numbness, stiff joints, and tense muscles ratings for adult 

experienced drivers were 2, 4.77, and 1.5 points lower than young drivers, and ratings for adult 

new drivers were 2.5, 4.5, and 2 points lower than young drivers.After 60 minutes of driving, the 

differences for numbness, stiff joints, and tense muscles ratings between adult experienced 

drivers and young drivers were 4.67, 3.83, and 0.83 points, while the difference for ratings 

between adult new drivers and young drivers were 5, 3.5, and 0.5 points. After 90 minutes of 

driving, the differences for numbness, stiff joints, and tense muscles ratings between adult 

experienced drivers and young drivers were 4.67, 5, and 2.17 points, and the difference for 

ratings between adult new drivers and young drivers were 5, 4.5, and 2 points. 

For the first 30 minutes of driving at low workload, numbness, stiff joints, and tense 

muscles ratings for adult drivers were not too much different from the young drivers. At 60 

minutes of driving, the differences for numbness, stiff joints, and tense muscles ratings between 

adult experienced drivers and young drivers went up to 0.67, 1.66, and 1.67 points, and the 

differences between adult new drivers and young drivers were at 1.17, 1.83, and 1.5 points. At 90 

minutes of driving, the differences numbness, stiff joints, and tense muscles ratings between 

adult experienced drivers and young drivers went to 2.67, 1.33, and 2.77 points, and the 

differences between adult new drivers and young drivers were 2, 2.5, and 3.5 points. Among 

young drivers, they had more physical fatigue under the high workload compared with the low 

workload, while the adult physical fatigue was similar between different workloads.  

Figure 16 shows the results of the perceived adjusted physical fatigue under manual 

driving mode. No significant difference has been observed between young driver and the adult 

driver groups on stiff joints and numbness.
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Figure 16. Physical Fatigue with Error Bar for Manual Driving 
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However, young drivers still show higher ratings on tense muscles compared with the 

adult driver groups. For the high workload, at 30 minutes, adult experienced drivers and adult 

new drivers rated 2.17 and 1 points lower than young drivers on tense muscles. At 60 minutes, 

adult experienced drivers and adult new drivers rated 5.17 and 3.5 points lower than young 

drivers. After 90 minutes of driving, the difference between adult driver groups and the young 

driver group went to 2.83 and 2 points. 

4.1.2 ECG Results 

The ECG data show a different trend among young drivers compared with the adult 

group. Figure 17 shows that under automated driving the young drivers’ group had a higher HR 

decrease at 60 minutes of driving, and the decrease got even worse at 90 minutes of driving. At 

60 minutes of driving, young drivers decreased 3 points at high workload while adult 

experienced drivers decreased 2.33 points and adult new drivers decreased 4 points. Such 

decrease went up to 4 points for young drivers but only 3.33 points for adult experienced drivers 

and 0.5 points for adult new drivers at 90 minutes of driving. For the low workload, at 60 

minutes, young drivers decreased 3 points while adult experienced drivers decreased 0 points and 

adult new drivers decreased 3.5 points. At 90 minutes of driving, young drivers decreased 6.5 

points while adult experienced drivers decreased only 4.33 points and adult new drivers 

decreased 4 only points. For manual driving modes, young drivers had a higher HR decrease 

than adult driver groups, especially for the high workload. At 60 minutes of driving, young 

drivers decreased 4 points, while adult experienced drivers decreased 2 points and adult new 

drivers increased 0.5 points. At 90 minutes of driving, young drivers decreased 5 points, while 

adult experienced drivers decreased 1.67 points and adult new drivers decreased 0.5 points. 

Figure 18 shows the HR decreasing data under manual driving modes.
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Figure 17. HR Decreasing under Automated Driving 
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Figure 18. HR Decreasing under Manual Driving 

 



 

 55

Figure 19 shows the time domain analysis of HRV. The HRV time domain shows that the 

young drivers had an increase in SDNN and pNN50 compared with adults. The level of SDNN 

and pNN50 was also higher by the end of the task for young drivers compared with other groups. 

For the high workload, at 60 minutes of driving, average SDNN changes for young drivers was 

34.26, while the average for adult experienced drivers was 4.51 and the average for adult new 

drivers was 9.04. At 90 minutes of driving, average SDNN for young drivers was 53.04, while 

the average for adult experienced drivers was 6.30 and the average for adult new drivers was 

8.80. The increase from 60 minutes of driving to 90 minutes of driving was 18.17 for young 

drivers and only 1.79 for adult experienced drivers and -0.24 for adult new drivers. The low 

workload had similar trends to the high workload. After 60 minutes of driving, average SDNN 

for young drivers was 0.09, while the average for adult experienced drivers was 6.89 and the 

average for adult new drivers was 16.35. At 90 minutes of driving, average SDNN for young 

drivers was 19.69, while the average for adult experienced drivers was 9.02 and average for adult 

new drivers was 5.2. The increase from 60 minutes of driving to 90 minutes of driving was 19.6 

for young drivers and only 2.13 for adult experienced drivers and -11.15 for adult new drivers.  

A similar trend was found for pNN50. For the high workload, average pNN50 for young 

drivers was 0.12 at 60 minutes of driving, while the average for adult experienced drivers was 

0.03 and the average for adult new drivers was 0. At 90 minutes of driving, average pNN50 for 

young drivers was 0.18, while the average for adult experienced drivers was 0.04 and the average 

for adult new drivers was 0.02. The increase from 60 minutes of driving to 90 minutes of driving 

was 0.06 for young drivers and only 0.01 for adult experienced drivers and 0.03 for adult new 

drivers. No clear trend was found for the low workload.
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Figure 19. HRV Time Domain Analysis for Automated Driving 
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Figure 20. HRV Time Domain Analysis for Manual Driving 
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Among the manual driving results, young drivers had a higher increase in SDNN as well. 

For the high workload, at 60 minutes of driving, average SDNN for young drivers was 5.50, 

while the average for adult experienced drivers was 15 and the average for adult new drivers was 

-2.03. At 90 minutes of driving, average SDNN for young drivers was 28.30, while the average 

for adult experienced drivers was 30.2 and the average for adult new drivers was -1.96. The 

increase from 60 minutes of driving to 90 minutes of driving was 22.8 for young drivers and only 

15.2 for adult experienced drivers and -0.06 for adult new drivers. The low workload had similar 

trends to the high workload. After 60 minutes of driving, average SDNN for young drivers was 

9.33, while the average for adult experienced drivers was 6.3 and the average for adult new 

drivers was -6.4. At 90 minutes of driving, average SDNN for young drivers was 51.4, while the 

average for adult experienced drivers was 14.15 and the average for adult new drivers was -2.51. 

The increase from 60 minutes of driving to 90 minutes of driving was 42.07 for young drivers 

and only 7.85 for adult experienced drivers and 3.89 for adult new drivers. 

PNN50 was found to increase more among young drivers under the manual low workload. 

Average pNN50 for young drivers was 0.04 at 60 minutes of driving, while the average for adult 

experienced drivers was -0.01 and the average for adult new drivers was 0.08. At 90 minutes of 

driving, average pNN50 for young drivers was 0.11, while the average for adult experienced 

drivers was 0.03 and the average for adult new drivers was -0.02. The increase from 60 minutes 

of driving to 90 minutes of driving was 0.05 for young drivers and only 0.04 for adult 

experienced drivers and -0.09 for adult new drivers. No clear trend was found for the low 

workload. No significant difference was found for the manual high workload.  

Figure 21 and Figure 22 show the results of the frequency domain analysis for automated 

driving mode and manual driving mode. No clear difference was found between the 
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Figure 21. HRV Frequency Domain Analysis for Automated Driving Mode 
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Figure 22. HRV Frequency Domain Analysis for Manual Driving Mode 
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young driver group and the adult driver group under automated driving mode In the manual low 

workload scenario, young drivers had a higher LF/HF reading at 90 minutes. LF/HF for young 

drivers was 3.77 at 90 minutes of driving, while the LF/HF for adult experienced drivers was -

0.69 and adult new drivers was 0.06. 

4.1.3 EEG Results 

Figure 23, Figure 24, and Figure 25 show the EEG measurements of alpha, (theta + 

alpha)/beta, and theta/alpha changes among the participants. No error bar was calculated since 

some groups had only 1 set of data left after the data cleaning. No clear pattern was found for the 

data. 

 
Figure 23. EEG Alpha 

 



 

 62

 
Figure 24. EEG (Theta + Alpha)/Beta 

 

 
Figure 25. EEG Theta/Alpha 
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4.1.4 Driving Behavior Performance Results 

Figure 26 shows the total crash numbers among different groups and scenarios. The 

young driver group shows a higher number of crashes for both automated low workload and 

automated high workload. Young drivers had an average of 0.3, 0.3, and 0 crashes at 30, 60, and 

90 minutes of driving under automated low workload, while both adult experienced drivers and 

adult new drivers had 0 crashes at any time under automated driving. Under the automated high 

workload, young drivers had an average of 2.5, 1.5, and 1.5 crashes at 30, 60, and 90 minutes of 

driving, while adult experienced drivers had 2, 2, and 0 crashes and adult new drivers had 0 

crashes over the whole of the automated high workload driving. Under the manual low workload, 

young drivers had 1, 0, and 1 crashes at 30, 60, and 90 minutes of driving, while no adult drivers 

had any crashes at all under manual low workload. For the manual driving high workload, young 

drivers had fewer crashes (M = 2, 1, and 0 at 30, 60, and 90 minutes) compared with adult new 

drivers (M = 3, 1, and 0 at 30, 60, and 90 minutes) but more crashes compared with adult 

experienced drivers, who did not have any crashes under manual high workload driving. 

Moreover, young drivers’ crash numbers were even higher under the automated high workload. 

The adult new group did not have any crashes for automated driving modes.  

Figure 27 shows the average number of near crashes under manual driving mode. Since 

the near crashes under automated driving were more related to the route the participants chose 

than the real driving performance of the driver, that mode is not shown in the figure.  
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Figure 26. Average Total Crashes 
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Figure 27. Average Total Near Crashes 
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No significant difference was observed between young drivers and adult drivers under the 

low workload, but young drivers were involved in more near crashes (M = 5, 0, and1 at 30, 60, 

and 90 minutes of driving) under manual high workload than other driver groups. No significant 

difference was found between the adult new group and the adult experienced group for both high 

workload and low workload. 

Figure 28 shows the average number of eyes off road. The young driver group shows a 

higher number of eyes off road compared with the other two groups when the workload is high. 

Under automated driving mode, young drivers’ average eyes off road times were 21 and 27 

higher than adult experienced drivers and adult new drivers at 30 minutes. At 60 minutes of 

driving, young drivers were 49 and 48 higher than adult experienced drivers and adult new 

drivers. At 90 minutes of driving, young drivers were still 19 and 23 higher than adult 

experienced drivers and adult new drivers. For the manual driving modes, young drivers’ 

average eyes off road times were 20.5 and 10.5 times higher than adult experienced drivers’ and 

adult new drivers’ at 30 minutes. At 60 minutes of driving, young drivers were 16.5 and 8.5 

times higher than adult experienced drivers and adult new drivers. At 90 minutes of driving, 

young drivers were 18.5 and 25.5 times higher than adult experienced drivers and adult new 

drivers. The adult new group had the lowest number of eyes off road times, especially when the 

workload was low.  

Different from the number of eyes off road, the average eyes off road time is higher 

among experienced adult groups compared with the young group for both automated driving 

modes, especially under the low workload, as shown in Figure 29. At 30, 60, and 90 minutes of 

driving, adult experienced drivers
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Figure 28. Average Number of Eyes Off Road 
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under auto high workload had 5.59, 4.64, and 4.29 seconds of average eyes off road time, while 

the adult new drivers had 3.25, 2.13, and 2.41 seconds and young drivers had 2.04, 2.72. 3.39 

seconds. Under auto low workload, adult experienced drivers had 9.16, 3.89, 6.38 seconds of 

average eyes off road time at 30, 60, and 90 minutes of driving. Adult new drivers had 0, 3.67, 

and 12.25 seconds and young drivers had 2.13, 2.41, 3.49 seconds of eyes off road time at 30, 60, 

and 90 minutes of driving. 

4.1.5 Takeover Performance Results 

The number of failures to take over is shown in Figure 30. The young driver group shows 

much lower success in takeover, especially when the workload is high. Young drivers fail to take 

over 3, 2.5, and 2.5 times under automated high workload, while the adult experienced drivers 

had only 2, 1, and 1 times at 30, 60, and 90 minutes of driving. Adult new drivers had no failures 

to take over at all under the high workload scenario. 

For each takeover, what the participant was doing right before they were taking over was 

also analyzed, as shown in Figure 31. In Figure 31, the green filling means the participant 

successfully took over, the red filling means the participant failed to take over and caused a 

crash, and the yellow filling means the participant failed to take over but no crash happened. The 

young driver group had a much higher rate of failure to take over. Also, when the takeover 

happened, the young drivers were more often on the phone rather than monitoring compared 

with the adult groups. Table 2 shows the percentage of each behavior while they were taking 

over. The young drivers were over 2 times more often on the phone when they needed to take 

over, one of them even falling asleep when they needed to take over.
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Figure 29. Average Eyes Off Road in Seconds 
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Figure 30. Failure to Take Over  

 



 

 

71 

 
 
 
 
 
 

 
Figure 31. Examples of Takeover Behaviors 

 

Time Group scenario Takeover 1 Takeover 2 Takeover 3 Takeover 4 Takeover 5 Takeover 6 Takeover 7 Takeover 8 Takeover 9 Takeover 10 Takeover 11 Takeover 12
30 min Adult Experienced Auto High monitoring monitoring monitoring monitoring monitoring
60 min Adult Experienced Auto High monitoring monitoring monitoring monitoring on phone
90 min Adult Experienced Auto High on phone monitoring monitoring
30 min Adult Experienced Auto Low monitoring
60 min Adult Experienced Auto Low monitoring monitoring monitoring
90 min Adult Experienced Auto Low
30 min Adult New Auto Low monitoring monitoring
60 min Adult New Auto Low
90 min Adult New Auto Low monitoring
30 min Adult New Auto High monitoring monitoring monitoring monitoring
60 min Adult New Auto High monitoring monitoring monitoring monitoring monitoring
90 min Adult New Auto High monitoring monitoring monitoring monitoring monitoring monitoring monitoring monitoring monitoring monitoring monitoring monitoring
30 min Young Auto Low monitoring monitoring
60 min Young Auto Low monitoring
90 min Young Auto Low
30 min Young Auto Low monitoring monitoring monitoring
60 min Young Auto Low
90 min Young Auto Low
30 min Young Auto High monitoring on phone on phone monitoring monitoring
60 min Young Auto High monitoring monitoring on phone monitoring sleeping
90 min Young Auto High monitoring monitoring monitoring monitoring
30 min Young Auto High monitoring on phone monitoring monitoring on phone monitoring monitoring
60 min Young Auto High on phone monitoring on phone on phone on phone on phone
90 min Young Auto High monitoring monitoring on phone monitoring monitoring monitoring monitoring monitoring
30 min Young Auto Low monitoring monitoring
60 min Young Auto Low monitoring monitoring
90 min Young Auto Low on phone

Successfuly take over

fail to take over, crash

fail to take over, but no 
crash
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Table 2 Behaviors before Taking Over 
 

Monitoring On Phone Sleeping 

Adult Experienced 88% 12% 0% 

Adult New 100% 0% 0% 

Young 72% 26% 2% 

 

4.2 Study Two: Young Drivers vs. Adult Drivers 

4.2.1 Factorial ANOVA on HR and LF/HF 

The Anderson-Darling test was performed to test all the measures’ normality for the 

ANOVA test. Among all the data, only the HR (AD = 0.216, p = 0.838) and LF/HF (AD = 0.603, 

p = 0.113) have the normal distribution. Equal variance was tested by the Levene test; both HR 

(W = 1.65, p = 0.141) and LF/HF (W = 0.49, p = 0.841) have equal variance between groups. For 

the data does not follow the normal distribution, Johnson transformation was performed. SDNN, 

pNN50, overall feeling, and average eyes off road time in seconds were transformed into the 

normal distribution. The rest of the data was failed to perform the transformation with p>0.1. 

After the Levene’s test, eyes off road time in seconds (W = 3.54, p = 0.009) were excluded for 

the ANOVA since it failed the test for equal variance. Kruskal-Wallis test was used for other 

measurements does not fulfill the assumptions of the ANOVA analysis. 

A 23 factorial ANOVA was conducted to compare the main effects of age, driving mode, 

and workload as well as their inaction effects on the HR and LF/HF. Table 3 shows the ANOVA 

table on HR at 60 minutes of driving. Only the age was statistically significant at p < 0.05. The 

main effect of age group yielded an F value of F(1, 24) = 8.81, p = .007, indicating that the heart 

rate changes were significantly lower for the young group (M = -3.63, SD = 4.18) than for adult 

drivers (M = 1, SD = 4.80). No other main effects or interactions were found significant. With 

the effect size of 4.63 at α = 0.05, the power of this analysis was found to be 0.707. 
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Table 3. ANOVA on HR Changes at 60 Minutes of Driving 

Source DF Adj SS Adj MS F-Value P-Value 
Model 7 312.875 44.696 2.30 0.060 
Linear 3 271.375 90.458 4.66 0.011* 
Group 1 171.125 171.125 8.81 0.007* 
Driving mode 1 45.125 45.125 2.32 0.140 
Workload 1 55.125 55.125 2.84 0.105 
2-Way Interactions 3 40.375 13.458 0.69 0.565 
Group*Driving mode 1 3.125 3.125 0.16 0.692 
Group*Workload 1 36.125 36.125 1.86 0.185 
Driving mode*Workload 1 1.125 1.125 0.06 0.812 
3-Way Interactions 1 1.125 1.125 0.06 0.812 
Group*Driving mode*Workload 1 1.125 1.125 0.06 0.812 
Error 24 466.000 19.417   
Total 31 778.875    

 
At 90 minutes of driving, the age group remains statistically significant at p < 0.05. The 

main effect of age group yielded an F value of F(1, 24) = 7.98, p = .009, indicating that the heart 

rate changes were still significantly lower for the young group (M = -4.88, SD = 5.25) than for 

adult drivers (M = 0.38, SD = 5.08). With the effect size of 5.26 at α = 0.05, the power of this 

analysis was found to be 0.701. No other main effects or interactions were found significant. 

Table 4 shows the ANOVA table for HR at 90 minutes of driving. 

Table 4. ANOVA on HR Changes at 90 Minutes of Driving 

Source DF Adj SS Adj MS F-Value P-Value 
Model 7 359.00 51.286 1.86 0.122 
  Linear 3 273.50 91.167 3.30 0.038* 
    Group 1 220.50 220.500 7.98 0.009* 
    Driving mode 1 12.50 12.500 0.45 0.508 
    Workload 1 40.50 40.500 1.47 0.238 
  2-Way Interactions 3 61.00 20.333 0.74 0.541 
    Group*Driving mode 1 8.00 8.000 0.29 0.595 
    Group*Workload 1 40.50 40.500 1.47 0.238 
    Driving mode*Workload 1 12.50 12.500 0.45 0.508 
  3-Way Interactions 1 24.50 24.500 0.89 0.356 
    Group*Driving mode*Workload 1 24.50 24.500 0.89 0.356 
Error 24 663.00 27.625   
Total 31 1022.00    
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Table 5 shows the ANOVA on LF/HF at 60 minutes of driving. The main effect of age 

group yielded an F value of F(1, 24) = 5.98, p = .022, indicating that the LF/HF changes were 

significantly lower for the young group (M = 0.261, SD = 1.301) than for adult drivers (M = 

1.469, SD = 1.345). With the effect size of 1.208 at α = 0.05, the power of this analysis was 

found to be 0.625. No other main effects or interactions were found significant. 

 Table 5. ANOVA on LF/HF Changes at 60 Minutes of Driving 

Source DF Adj SS Adj MS F-Value P-Value 
Model 7 17.3264 2.4752 1.27 0.307 
  Linear 3 12.1135 4.0378 2.07 0.131 
    Group 1 11.6765 11.6765 5.98 0.022* 
    Driving mode 1 0.1938 0.1938 0.10 0.756 
    Workload 1 0.2433 0.2433 0.12 0.727 
  2-Way Interactions 3 5.2020 1.7340 0.89 0.461 
    Group*Driving mode 1 1.1138 1.1138 0.57 0.457 
    Group*Workload 1 1.6517 1.6517 0.85 0.367 
    Driving mode*Workload 1 2.4365 2.4365 1.25 0.275 
  3-Way Interactions 1 0.0109 0.0109 0.01 0.941 
    Group*Driving mode*Workload 1 0.0109 0.0109 0.01 0.941 
Error 24 46.8704 1.9529   
Total 31 64.1968    

 
No significant change was found on LF/HF at 90 minutes of driving between any main 

effects or their interactions. Table 6 shows the ANOVA table of LF/HF changes at 90 minutes. 

Table 6. ANOVA on LF/HF Changes at 90 Minutes of Driving 

Source DF Adj SS Adj MS F-Value P-Value 
Model 7 23.705 3.3864 1.03 0.434 
  Linear 3 1.472 0.4908 0.15 0.929 
    Group 1 0.650 0.6498 0.20 0.660 
    Driving mode 1 0.813 0.8128 0.25 0.623 
    Workload 1 0.010 0.0098 0.00 0.957 
  2-Way Interactions 3 15.626 5.2086 1.59 0.218 
    Group*Driving mode 1 0.769 0.7688 0.23 0.633 
    Group*Workload 1 12.326 12.3256 3.76 0.064 
    Driving mode*Workload 1 2.531 2.5313 0.77 0.388 
  3-Way Interactions 1 6.607 6.6066 2.02 0.168 
    Group*Driving mode*Workload 1 6.607 6.6066 2.02 0.168 
Error 24 78.640 3.2766   
Total 31 102.344    
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Table 7 shows the ANOVA test result on the transformed SDNN data for 60 minutes of 

driving. Significant difference was found on effects of driving mode and workload.  Driving 

mode yielded an F value of F(1, 24) = 6.37, p = .019, indicating that the SDNN changes were 

significantly lower for the manual driving mode (M = 0.005, SD = 0.802) than for automated 

mode (M = -0.614, SD = 0.877). With the effect size of 0.619 at α = 0.05, the power of this 

analysis was found to be 0.476. Workload yielded an F value of F(1, 24) = 6.91, p = .015, 

indicating that the SDNN changes were significantly lower for the low workload (M = -0.627, 

SD = 0.732) than for high workload (M = 0.018, SD = 0.928). With the effect size of 0.619 at α 

= 0.05, the power of this analysis was found to be 0.507. The three way interaction between 

group, driving mode, and workload was also found to be significant with an F value of F(1, 24) = 

9.64, p = .005. Table 8 shows the ANOVA test result on the transformed SDNN data for 90 

minutes of driving. No significant difference was found between different group, driving mode, 

and workload at 90 minutes of driving.  

Table 7 ANOVA on Transformed SDNN at 60 Minutes of Driving 

Source DF Adj SS Adj MS F-Value P-Value 
Model 7 12.7040 1.81486 3.77 0.007 
  Linear 3 7.2112 2.40374 4.99 0.008* 

Group 1 0.8133 0.81326 1.69 0.206 
Driving mode 1 3.0689 3.06890 6.37 0.019* 

    Workload 1 3.3291 3.32907 6.91 0.015* 
  2-Way Interactions 3 0.8473 0.28242 0.59 0.630 
    Group*Driving mode 1 0.0003 0.00030 0.00 0.980 
    Group*Workload 1 0.4999 0.49989 1.04 0.319 
    Driving mode*Workload 1 0.3471 0.34707 0.72 0.404 
  3-Way Interactions 1 4.6455 4.64554 9.64 0.005* 
    Group*Driving mode*Workload 1 4.6455 4.64554 9.64 0.005* 
Error 24 11.5659 0.48191   
Total 31 24.2699    

 
Table 9 shows the ANOVA on transformed pNN50 data at 60 minutes of driving. The 

main effect of workload yielded an F value of F(1, 24) = 6.76, p = .016, indicating that the 
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pNN50 were significantly lower at high workload (M = -0.569, SD = 1.068) than low workload 

(M = 0.211, SD = 0.613). No other main effects or interactions were found significant. With the 

effect size of 0.78 at α = 0.05, the power of this analysis was found to be 0.611.  

Table 8 ANOVA on Transformed SDNN at 90 Minutes of Driving 

Source DF Adj SS Adj MS F-Value P-Value 
Model 7 8.6187 1.2312 1.53 0.206 
  Linear 3 6.3157 2.1052 2.61 0.075 
    Group 1 2.8612 2.8612 3.55 0.072 
    Driving mode 1 0.2701 0.2701 0.34 0.568 
    Workload 1 3.1844 3.1844 3.95 0.058 
  2-Way Interactions 3 1.5896 0.5299 0.66 0.586 
    Group*Driving mode 1 0.2083 0.2083 0.26 0.616 
    Group*Workload 1 0.7979 0.7979 0.99 0.330 
    Driving mode*Workload 1 0.5834 0.5834 0.72 0.403 
  3-Way Interactions 1 0.7135 0.7135 0.89 0.356 
    Group*Driving mode*Workload 1 0.7135 0.7135 0.89 0.356 
Error 24 19.3415 0.8059   
Total 31 27.9603    

 
Table 9 ANOVA on Transformed pNN50 at 60 Minutes of Driving 

Source DF Adj SS Adj MS F-Value P-Value 
Model 7 10.3225 1.47464 2.05 0.090 
  Linear 3 7.0733 2.35775 3.27 0.039* 
    Group 1 1.9873 1.98728 2.76 0.110 
    Driving mode 1 0.2189 0.21888 0.30 0.587 
    Workload 1 4.8671 4.86709 6.76 0.016* 
  2-Way Interactions 3 3.2257 1.07525 1.49 0.242 
    Group*Driving mode 1 0.0080 0.00802 0.01 0.917 
    Group*Workload 1 2.6912 2.69120 3.74 0.065 
    Driving mode*Workload 1 0.5265 0.52651 0.73 0.401 
  3-Way Interactions 1 0.0235 0.02347 0.03 0.858 
    Group*Driving mode*Workload 1 0.0235 0.02347 0.03 0.858 
Error 24 17.2915 0.72048   
Total 31 27.6139    

 
Table 10 shows the ANOVA on transformed pNN50 data at 90 minutes of driving. The 

main effect of age group yielded an F value of F(1, 24) = 10.02, p = .004, indicating that the 

pNN50 were significantly lower for adult drivers (M = -0.383, SD = 1.010) than young drivers 

(M = 0.601, SD = 0.767)  at 90 minutes of drive. No other main effects or interactions were 
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found significant. With the effect size of 0.984 at α = 0.05, the power of this analysis was found 

to be 0.75.  

Table 10 ANOVA on Transformed pNN50 at 90 Minutes of Driving 

Source DF Adj SS Adj MS F-Value P-Value 
Model 7 13.3143 1.90205 2.46 0.047 
  Linear 3 8.6367 2.87891 3.72 0.025* 
    Group 1 7.7461 7.74611 10.02 0.004* 
    Driving mode 1 0.0320 0.03196 0.04 0.841 
    Workload 1 0.8587 0.85866 1.11 0.302 
  2-Way Interactions 3 4.5597 1.51991 1.97 0.146 
    Group*Driving mode 1 1.8919 1.89195 2.45 0.131 
    Group*Workload 1 2.5738 2.57380 3.33 0.081 
    Driving mode*Workload 1 0.0940 0.09398 0.12 0.730 
  3-Way Interactions 1 0.1179 0.11788 0.15 0.700 
    Group*Driving mode*Workload 1 0.1179 0.11788 0.15 0.700 
Error 24 18.5555 0.77314   
Total 31 31.8698    

 
Table 11, 12 and 13 shows the ANOVA test result on the transformed overall feeling data 

at 30, 60 and 90 minutes of driving. No significant difference was found between different 

group, driving mode, and workload at 30 minutes of drive. But after 60 minutes of drive, age 

group yielded an F value of F(1, 24) = 4.65, p = .041, indicating that the overall were 

significantly lower for young drivers (M = -0.344, SD = 1.055) than adult drivers (M = 0.441, 

SD = 0.930) at 60 minutes of driving. With the effect size of 0.785 at α = 0.05, the power of this 

analysis was found to be 0.523. Such difference went even worse at 90 minutes of driving for 

young drivers (M = -0.396, SD = 0.973) compare with adult drivers (M = 0.505, SD = 0.979) 

with F(1, 24) = 7.07, p = .014. With the effect size of 0.901 at α = 0.05, the power of this 

analysis was found to be 0.633.  
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Table 11 ANOVA on Transformed Overall Feeling at 30 Minutes of Driving 

Source DF Adj SS Adj MS F-Value P-Value 
Model 7 2.4162 0.3452 0.33 0.930 
  Linear 3 1.5958 0.5319 0.52 0.675 
    Group 1 0.8196 0.8196 0.80 0.381 
    Driving Mode 1 0.1729 0.1729 0.17 0.686 
    Workload 1 0.6032 0.6032 0.59 0.452 
  2-Way Interactions 3 0.6350 0.2117 0.21 0.892 
    Group*Driving Mode 1 0.1834 0.1834 0.18 0.677 
    Group*Workload 1 0.2877 0.2877 0.28 0.602 
    Driving Mode*Workload 1 0.1639 0.1639 0.16 0.694 
  3-Way Interactions 1 0.1854 0.1854 0.18 0.675 
    Group*Driving Mode*Workload 1 0.1854 0.1854 0.18 0.675 
Error 24 24.7357 1.0307   
Total 31 27.1519    

 
Table 12 ANOVA on Transformed Overall Feeling at 60 Minutes of Driving. 

Source DF Adj SS Adj MS F-Value P-Value 
Model 7 9.1397 1.30567 1.23 0.324 
  Linear 3 7.3492 2.44974 2.31 0.102 
    Group 1 4.9268 4.92677 4.65 0.041* 

Driving Mode 1 0.2197 0.21967 0.21 0.653 
Workload 1 2.2028 2.20279 2.08 0.162 

  2-Way Interactions 3 0.5378 0.17927 0.17 0.916 
Group*Driving Mode 1 0.1197 0.11971 0.11 0.740 
Group*Workload 1 0.3911 0.39109 0.37 0.549 
Driving Mode*Workload 1 0.0270 0.02701 0.03 0.874 

  3-Way Interactions 1 1.2527 1.25265 1.18 0.288 
Group*Driving Mode*Workload 1 1.2527 1.25265 1.18 0.288 

Error 24 25.4331 1.05971   
Total 31 34.5728    

 

4.2.2 Young Drivers and Adult Drivers under Manual Driving 

Young drivers were expected to develop fatigue faster and more severely under manual 

driving compared with adult drivers. The Kruskal-Wallis test was conducted to compare the 

effects of age on the SDNN, pNN50, and perceived fatigue ratings under the manual driving 

mode.  

No significant difference was found in SDNN changes between young drivers and adult 

drivers at manual high workload H(1) = 1.10, p = 0.294. Age group yielded an H value of H(1) = 
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6.38, p = .012, indicating that the pNN50 changes were significantly higher for the young group 

(Mdn = 0.040) than for adult drivers (Mdn = -0.045). Compared between different times of 

driving, young drivers were not significantly different from adult drivers at 60 minutes of driving 

H(1) = 1.35, p = 0.245, but they had significantly higher pNN50 changes (Mdn = 0.080) at 90 

minutes of driving H(1) = 4.74, p = 0.029 compared with adult drivers (Mdn = -0.045). For the 

manual low workload, neither SDNN changes H(1) = 1.33, p = 0.248, nor pNN50 changes H(1) 

= 2.03, p = 0.154, were found to be significantly different between young drivers and adult 

drivers. 

Table 13 ANOVA on Transformed Overall Feeling at 90 Minutes of Driving 

Source DF Adj SS Adj MS F-Value P-Value 
Model 7 6192.9 884.70 1.86 0.121 
  Linear 3 4103.6 1367.87 2.88 0.057 

Group 1 3362.0 3362.00 7.07 0.014* 
    Driving Mode 1 0.5 0.50 0.00 0.974 
    Workload 1 741.1 741.12 1.56 0.224 
  2-Way Interactions 3 604.1 201.38 0.42 0.738 
    Group*Driving Mode 1 435.1 435.13 0.92 0.348 
    Group*Workload 1 24.5 24.50 0.05 0.822 
    Driving Mode*Workload 1 144.5 144.50 0.30 0.587 
  3-Way Interactions 1 1485.1 1485.12 3.12 0.090 
    Group*Driving Mode*Workload 1 1485.1 1485.12 3.12 0.090 
Error 24 11409.0 475.37   
Total 31 17601.9    

 
Young drivers (Mdn = 2.5) were found to have a significantly higher rating on perceived 

tense muscles compared with adult drivers (Mdn = 1) under manual driving, with H(1) = 7.19, p 

= 0.007. Adult drivers (Mdn = 2) were found to have a significantly higher rating on perceived 

numbness compared with young drivers (Mdn = 0) under manual driving, with H(1) = 5.55, p = 

0.018. Adult drivers (Mdn = 1.5) were significantly higher on perceived numbness compared 

with young drivers (Mdn = 0) at 30 minutes of driving, with H(1) = 5.41, p = 0.020. However, 
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after 60 minutes of driving, no significant difference was found between young drivers and adult 

drivers, with H(1) = 0.94, p = 0.333.  

Young drivers (Mdn = 2) were found to have a significantly higher rating on perceived 

tense muscles under high workload compared with adult drivers (Mdn = 0.5), with H(1) = 4.13, p 

= 0.042. No significant difference was found on perceived tense muscles under low workload 

between young drivers and adult drivers, with H(1) = 3.26, p = 0.071. However, young drivers 

(Mdn = -29) were found to have a higher rating on overall feelings at low workload compared 

with adult drivers (Mdn = -10). Moreover, adult drivers (Mdn = 1.5) were found to have 

significant perceived numbness at high workload compared with young drivers (Mdn = 0), with 

H(1) = 5.91, p = 0.015, but no difference was found at low workload, with H(1) = 0.66, p = 

0.417. 

When investigating the ratings on different body parts, adult drivers showed significantly 

higher ratings on left neck and lower arms compared with young drivers. Adult drivers rated 

discomfort on left neck a median of 2.5, while young drivers rated a median of 0.5 with H(1) = 

6.21, p = 0.013. Adult drivers (Mdn = 1, 1) rated 1 point higher than young drivers (Mdn = 0, 0) 

on both left and right lower arm, with H(1) = 5.02, p = 0.025, and H(1) = 4.42, p = 0.035. Adult 

drivers (Mdn = 2.5) were found to have a higher discomfort rating on left neck compared with 

young drivers (Mdn = 0). with H(1) = 7.48, p = 0.006, under high workload; no significant effect 

was found at low workload, with H(1) = 0.49, p = 0.483. 

4.2.3 Young Drivers and Adult Drivers under Automated Driving 

Young drivers were expected to develop fatigue faster and more severely under 

automated driving compared with adult drivers. Also, their takeover performance was expected 

to be worse compared with adult drivers. The Kruskal-Wallis test was conducted to compare the 
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effects of age on the SDNN, pNN50, perceived fatigue, and takeover performance under the 

automated driving mode. 

The age group yielded an H value of H(1) = 11.29, p = .001, indicating that the SDNN 

change was significantly higher for the young group (Mdn = 32.45) than for adult drivers (Mdn = 

9.39). Compared between different times of driving, young drivers (Mdn = 28.905) were 21.895 

higher than adult drivers (Mdn = 7.010) at 60 minutes of driving on their SDNN changes H(1) = 

5.33, p = 0.021. At 90 minutes of driving, they also had a significantly higher SDNN change 

(Mdn = 39.655) H(1) = 5.33, p = 0.021, compared with adult drivers (Mdn = 14.225). No 

significantly different change in pNN50 was found between young drivers and adult drivers 

under automated high workload H(1) = 3.01, p = 0.083. For the automated low workload, neither 

SDNN changes H(1) = 2.16, p = 0.141, nor pNN50 changes H(1) =0.23, p = 0.633, were found 

to be significantly different between young drivers and adult drivers. 

On the perceived fatigue subject ratings, young drivers (Mdn = -20) rated higher changes 

on overall feelings under automated driving compared with the adult group (Mdn = -10) with 

H(1) =8.05, p = 0.005. Young drivers (Mdn = 3) also rated higher on feeling over-drained under 

automated driving compared with the adult group (Mdn = 0), with H(1) =11.04, p = 0.001. 

Among the perceived physical fatigue ratings, young drivers rated higher changes on stiff joints 

and tense muscles. For stiff joints, young drivers (Mdn = 3) yielded an H value of H(1) =14.21, p 

< 0.000, compared with adult drivers (Mdn = 0), and for tense muscles, young drivers (Mdn = 3) 

yielded an H value of H(1) =7.68, p = 0.006, compared with adult drivers (Mdn = 0). Among the 

perceived mental fatigue, young drivers rated higher changes on uninterested and drowsiness 

compared with adult drivers. For uninterested, young drivers (Mdn = 4) yielded an H value of 

H(1) =15.70, p < 0.000, compared with adult drivers (Mdn = 0), and for drowsiness, young 
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drivers (Mdn = 4.5) yielded an H value of H(1) =6.17, p = 0.013, compared with adult drivers 

(Mdn = 0.5). Young drivers had a significantly earlier onset of fatigue among over-drained H(1) 

=4.57, p = 0.013, stiff joints H(1) =6.70, p = 0.010, uninterested H(1) =5.68, p = 0.017, and 

drowsiness H(1) =4.15, p = 0.042, at 30 minutes of driving compared with adult drivers. At 60 

minutes of driving, young drivers had a significantly higher rating on numbness H(1) =4.35, p = 

0.037, and at 90 minutes of driving, young drivers had a significantly higher rating on tense 

muscles H(1) =3.88, p = 0.049. 

Under the high workload, young drivers rated higher on overall feeling, tense muscles, 

uninterested, and numbness compared with adult drivers. For overall feeling, young drivers (Mdn 

= -39) yielded an H value of H(1) = 7.44, p = 0.006, compared with adult drivers (Mdn = -10); 

for tense muscles, young drivers (Mdn = 3) yielded an H value of H(1) = 5.97, p = 0.015, 

compared with adult drivers (Mdn = 0); for uninterested, young drivers (Mdn = 4) yielded an H 

value of H(1) = 8.01, p = 0.005, compared with adult drivers (Mdn = 0); and for numbness, 

young drivers (Mdn = 3) yielded an H value of H(1) = 6.04, p = 0.014, compared with adult 

drivers (Mdn = 0). 

Under low workload, young drivers rated higher on over-drained, stiff joints, 

uninterested, drowsiness, sleepiness, and numbness. For over-drained, young drivers (Mdn = 5.5) 

yielded an H value of H(1) = 8.37, p = 0.004, compared with adult drivers (Mdn = 1); for stiff 

joints, young drivers (Mdn = 1) yielded an H value of H(1) = 4.55, p = 0.033, compared with 

adult drivers (Mdn = 0); for uninterested, young drivers (Mdn = 5.5) yielded an H value of H(1) 

= 7.78, p = 0.005, compared with adult drivers (Mdn = 1); for drowsiness, young drivers (Mdn = 

7.5) yielded an H value of H(1) = 12.42, p < 0.000, compared with adult drivers (Mdn = 1) for 

sleepiness, young drivers (Mdn = 6) yielded a H value of H(1) = 7.19, p = 0.007, compared with 
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adult drivers (Mdn = 2.5); and for numbness, young drivers (Mdn =0) yielded an H value of H(1) 

= 7.71, p = 0.005, compared with adult drivers (Mdn = -0.5). 

When investigating different parts of the body, young drivers showed higher changes in 

ratings of buttocks and right thigh compared with adult drivers. For left buttock, young drivers 

(Mdn = 1.5) yielded an H value of H(1) =9.27, p = 0.002, compared with adult drivers (Mdn = 0), 

and for right buttock, young drivers (Mdn = 2.5) yielded an H value of H(1) =13.41, p < 0.000, 

compared with adult drivers (Mdn = 0). Young drivers (Mdn = 1) also had a higher rating on the 

right thigh compared with adult drivers (Mdn = 0), with H(1) =11.19, p = 0.001. 

Driving and takeover performance were also studied under the automated driving mode. 

Overall, young drivers (Mdn = 0.75) showed a significantly lower takeover rate compared with 

adult (Mdn = 1) drivers, with H(1) = 4.71, p = 0.030. Young drivers (Mdn = 0.5) also showed a 

lower successful takeover rate compared with adult drivers (Mdn = 1), with H(1) = 7.83, p = 

0.005. During driving, young drivers (Mdn = 5.11) also had a significantly higher average eyes 

off road time in seconds compared with adult drivers (Mdn = 2.33), with H(1) = 7.58, p = 0.006. 

When looking into different workloads, young drivers performed worse under high workload 

compared with adult drivers; no significant difference was found between driving and takeover 

performance under the low workload. During high workload, young drivers (Mdn = 0.732) had a 

lower takeover rate compared with adult drivers (Mdn = 1), with H(1) = 6.27, p = 0.012. For 

successful takeover rate under high workload, young drivers (Mdn = 0.5) were lower, with an H 

value of H(1) = 11.05, p = 0.001, compared with adult drivers (Mdn = 0.875), and for the 

average eyes off road time in seconds at high workload, young drivers (Mdn = 4.36) were higher, 

with an H value of H(1) = 6.16, p = 0.013, compared with adult drivers (Mdn =  2.18). 
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What the driver was doing before the takeover was requested was also recorded and 

analyzed. On average, young drivers were found on the phone more often than adult drivers, and 

adult drivers were found monitoring the simulator more often than young drivers. Table 7 shows 

the results of the behaviors before taking over. The monitoring rate, on-phone rate, sleeping rate, 

and looking-away rate were calculated for both adult and young drivers. Detailed behaviors for 

each participant before taking over can be found in Appendix C. 

Table 14 Behaviors before Taking Over for Study Two 

   Monitoring rate On-phone rate Sleeping rate Looking-away rate 

Adult 85.29% 13.24% 0.00% 1.47% 

Young 69.01% 29.58% 1.41% 0.00% 

 

4.2.4 Young Drivers between Manual Driving and Automated Driving 

Young drivers were expected to develop fatigue faster and more severely under 

automated driving mode than under manual driving mode. A Kruskal-Wallis test was conducted 

to compare the effects of driving mode on the SDNN, pNN50, and subjective ratings under the 

automated driving mode. 

ECG 

SDNN was found to be significantly higher under automated driving with high workload 

(Mdn = 32.54) compared with manual driving with high workload (Mdn = 14.80) for the young 

drivers, with H(1) = 5.83, p = 0.016. When looking into the time of driving, SDNN changes in 

young drivers under automated driving with high workload (Mdn = 28.905) were 25.495 higher 

than under manual driving with high workload (Mdn = 3.410) at 60 minutes of driving, with 

H(1) = 4.08, p = 0.043. At 90 minutes of driving, the difference was no longer significant 

between automated driving and manual driving, with H(1) = 2.08, p = 0.149. No significant 

difference in SDNN was found between automated driving and manual driving under low 
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workload, with H(1) = 0.40, p = 0.529. The pNN50 was found to be not significantly different 

between automated driving and manual driving at both low workload, with H(1) = 2.33, p = 

0.127, and high workload, with H(1) = 0, p = 1. 

For the perceived fatigue, young drivers rated automated driving (Mdn = 3) significantly 

higher than manual driving (Mdn = 0.5) on stiff joints, with H(1) = 4.79, p = 0.029. Under high 

workload, young drivers rated higher on physical fatigue such as stiff joints and numbness under 

automated driving than under manual driving. For stiff joints under high workload, automated 

driving (Mdn = 3) was rated higher, with an H value of H(1) = 12.45, p < 0.000, compared with 

manual driving (Mdn = 0), and for numbness at high workload, automated driving (Mdn = 3) was 

again rated higher, with an H value of H(1) = 4.68, p = 0.031, compared with manual driving 

(Mdn = 0). It was also found that young drivers rated higher on discomfort at the right buttock 

for automated driving (Mdn = 2.5) compared with manual driving (Mdn = 0) under high 

workload, with H(1) = 4.16, p = 0.042. Under low workload, young drivers rated drowsiness 

significantly higher for automated driving (Mdn = 7.5) than for manual driving (Mdn = 3), with 

H(1) = 5.15, p = 0.023. No significant difference was found between automated driving and 

manual driving on overall feeling H(1) = 0.08, p = 0.772, over-drained H(1) = 0.12, p = 0.724, 

tense muscle H(1) = 0.23, p = 0.632, uninterested H(1) = 1.98, p = 0.159, and sleepiness H(1) = 

1.02, p = 0.134 for young drivers. No significant difference was found between automated 

driving and manual driving for discomfort in any part of the body other than the right buttock for 

the young drivers. 

4.2.5 Young Drivers under Manual Driving with Different Workloads 

Young drivers were expected to develop fatigue faster and more severely under manual 

high workload compared with manual low workload. A Kruskal-Wallis test was conducted to 
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compare the effects of workload on the SDNN, pNN50, and subjective ratings under the manual 

driving mode. 

No significant difference on SDNN was found between high workload and low workload 

under manual driving mode among young drivers, with H(1) = 0.28, p = 0.600. The pNN50 was 

also found to be not significantly different between high workload and low workload under 

manual driving among young drivers, with H(1) = 0.28, p = 0.598. 

Among the perceived fatigue ratings, young drivers rated significantly higher on stiff 

joints under low workload (Mdn = 2) compared with high workload (Mdn = 0), with H(1) = 9.58, 

p = 0.002. Young drivers also rated significantly higher on discomfort in both left and right 

fingers at low workload (Mdn = 2, 2) compared with high workload (Mdn = 0, 0), with H(1) = 

6.05, p = 0.014 and H(1) = 7.40, p = 0.007. When investigating the time of driving, young 

drivers rated stiff joints higher at low workload (Mdn = 1.5) at 30 minutes of driving compared 

with high workload (Mdn = 0), with H(1) = 3.94, p = 0.047. The difference for stiff joints went 

higher at 60 minutes of driving between low workload (Mdn = 3.5) and high workload (Mdn = 0) 

among young drivers, with H(1) = 6.14, p = 0.013. However, the difference was not significant 

anymore at 90 minutes of driving, with H(1) = 1.09, p = 0.297. The discomfort in right fingers 

was found to be significantly higher at 90 minutes of driving under low workload (Mdn = 3.5) 

compared with high workload (Mdn = 0), with H(1) = 3.94, p = 0.047. No significant difference 

was found between low workload and high workload under manual driving on overall feeling 

H(1) = 0.24, p = 0.623, over-drained H(1) = 0.04, p = 0.837, tense muscles H(1) = 1.96, p = 

0.162, uninterested H(1) = 0.89, p = 0.345, drowsiness H(1) = 0.12, p = 0.726, and sleepiness 

H(1) = 2.57, p = 0.109 for young drivers. No significant difference was found in any other part 

of body other than the fingers. 
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4.2.6 Young Drivers under Automated Driving with Different Workloads 

Young drivers were expected to develop fatigue faster and more severely under 

automated low workload compared with automated high workload. Also, their takeover 

performance was expected to be worse under the low workload. A Kruskal-Wallis test was 

conducted to compare the effects of workload on the SDNN, pNN50, subjective ratings, and 

takeover performance under the manual driving mode. 

SDNN was found to be significantly different between high workload and low workload 

among young drivers under automated driving mode, with H(1) = 9.28, p = 0.002, which 

indicates that young drivers have a higher SDNN change at high workload (Mdn = 32.450) 

compared with low workload (Mdn = -0.115) under automated driving mode. At 60 minutes of 

driving, SDNN changes among young drivers under automated high workload (Mdn = 28.905) 

was 30.22 higher than in the young drivers under automated low workload (Mdn = -1.315), with 

H(1) = 5.33, p = 0.021. At 90 minutes of driving, SDNN changes among young drivers under 

automated high workload (Mdn = 39.655) were still significantly higher than in the young 

drivers under automated low workload (Mdn = 7.090), with H(1) = 4.08, p = 0.043. No 

significant difference was found in pNN50 changes between different workloads among young 

drivers under automated driving mode, with H(1) = 0.23, p = 0.635. 

Young drivers were found to have significantly more drowsiness under low workload 

(Mdn = 7.5) compared with high workload (Mdn = 1), with H(1) = 8.06, p = 0.005. When 

looking into the discomfort in different parts of the body, young drivers rated significantly lower 

discomfort in both left and right ankles under low workload (Mdn = 0, 0) compared with high 

workload (Mdn = 1, 2), with H values of H(1) = 4.94, p = 0.026, and H(1) = 10.94, p = 0.001. No 

significant difference between low workload and high workload was found in overall feeling 
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H(1) = 3.02, p = 0.082, over-drained H(1) = 1.29, p = 0.257, stiff joints H(1) = 1.96, p = 0.161, 

tense muscles H(1) = 0.20, p = 0.657, uninterested H(1) = 0.10, p = 0.749, sleepiness H(1) = 

1.78, p = 0.182, and numbness H(1) = 2.19, p = 0.138. 

For the driving and takeover performance, no significant difference was found in average 

eyes-off-road time in seconds H(1) = 0.08, p = 0.773, numbers of eyes off road H H(1) = 2.09, p 

= 0.149, takeover rate H(1) = 0.13, p = 0.717, and successful takeover rate H(1) = 1.01, p = 

0.315 between low workload and high workload among young drivers. 
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Chapter 5 Discussion 

5.1 Study One: Are Young Drivers Different from Adult New Drivers?  

The purpose of study one was to determine how age and experience contribute to fatigue 

development and takeover behaviors among young drivers. Adult new drivers were used for 

comparison with the adult experienced group and the young group to measure the difference 

between fatigue development and driving behaviors and performance. 

Based on the results of the perceived fatigue and discomfort questionnaire, there was a 

clear trend that young drivers had earlier fatigue onset compared with the other two groups for 

both mental and physical fatigue. They rated higher on overall feeling, over-drained, drowsiness, 

sleepiness, stiff muscles, and tense muscles. The onset of their fatigue was also earlier (at 60 

minutes) compared with adult groups (at 90 minutes or even having no fatigue onset by the end). 

No significant difference was observed between adult experienced drivers and adult new drivers. 

Overall, the results of the subjective ratings confirmed that ages play a more important role in 

fatigue development compared with experience, as both groups of adult drivers rated lower on 

perceived fatigue development compared with young drivers  

HR reduction can be an indication of fatigue among young drivers. The results of the HR 

show that compared with both adult experienced drivers and adult new drivers, the young drivers 

had an earlier onset of HR reduction, which is consistent with the perceived fatigue and 

discomfort questionnaire results.  

For the EEG data, the young driver group showed more increase on the alpha band, 

which could indicate a more fatigued state for young drivers. However, this increase may have 
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resulted from the lack of data. Due to the failure of the data collection and data cleaning, adult 

groups had only one set of data left for the EEG. So, the difference in result might be due to the 

individual difference rather than being some fatigue indicator. Overall. EEG data do not show 

results as promising as the other measures due to the lack of data. 

The video recording results confirmed that young drivers perform worse during driving 

compared with adult drivers. Both young drivers and adult new drivers had a higher crash and 

near-crash rate under manual driving, but adult new drivers performed better than young driver 

groups on automated driving. During manual driving, inexperience affected both young drivers 

and adult new drivers; however, when it was automated driving, young drivers were the only 

ones who performed badly. During the automated driving mode, young drivers had more failures 

on the takeover. Since both adult new drivers and young drivers lack experience, the bad 

performance of young drivers could be mostly attributed to their immature brains rather than to 

the lack of experience. Young drivers’ EF has not fully developed, which causes low impulse 

control and ease of being distracted (Zhang et al., 2020) and thus failure to monitor automated 

driving and takeover. Moreover, as mentioned earlier, vigilance decrease is a reversed U shape in 

regard to age; young drivers are more vulnerable to their vigilance decreasing since they are still 

young and at the beginning of the reversed U shape. When the young drivers were under 

vigilance decrease, they were less likely to perform well on takeovers compared with the adult 

new drivers group, even with both being inexperienced. 

Although this study has observed that young drivers develop fatigue faster and more 

severely than adult groups, nothing statistically significant has been confirmed due to lack of 

data to perform hypothesis testing. This study was a pilot study and had only 2 or 3 repeats for 

each scenario. After the data cleaning, some of the measures had only one set of data left, which 
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is not enough to do any statistical hypothesis testing. More data were collected in study two to 

test the differences in fatigue development, driving performance, and takeover behaviors among 

young drivers and adult drivers. 

5.2 Study Two: Young Drivers vs. Adult Drivers 

The goal of study two was to test the differences between young drivers and adult drivers 

under different driving modes and different workloads. Five hypotheses were tested in this study: 

First, young drivers were expected develop fatigue faster and more severely compared with adult 

drivers for both automated driving and manual driving. Second, young drivers’ fatigue 

development was expected to be more severe under manual high workload compared with 

manual low workload. Third, young drivers’ fatigue development was expected to be more 

severe under automated compared with manual driving. Fourth, young drivers’ fatigue 

development was expected to be more severe under automated low workload compared with 

automated high workload. Last, young drivers’ takeover performance was expected to be worse 

than adult drivers. Young and adult subjects were recruited to perform a driving task on a driving 

simulator for 1.5 hours, and their self-reported fatigue questionnaire, ECG, and video recording 

data were analyzed. 

The results of the ANOVA test on HR confirmed the first hypothesis. HR reduction can 

be an indication of fatigue among young drivers (Riemersma et al., 1977). Young drivers’ HR 

reduced significantly more than adult drivers’ under different driving modes and workloads, 

which indicates that young drivers develop the fatigue mode more severely than adult drivers 

under different driving modes and workloads. Moreover, the difference between young drivers’ 

and adult drivers’ HR decrease was 4.63 at 60 minutes of driving and 5.26 at 90 minutes of 
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driving, which indicates that the longer they drove, the more severe the fatigue was for the young 

drivers.  

The analysis of perceived fatigue ratings also confirmed the first hypothesis. Young 

drivers rated higher on tense muscles compared with adult drivers under manual driving, 

especially under the manual high workload. However, adult drivers rated higher on numbness 

than young drivers, but when investigating the time of the drive, although adult drivers rated 

higher on numbness at the first 30 minutes of driving, no significant difference was found after 

60 minutes of driving, which means that young drivers developed more fatigue during the 30 

minutes to 60 minutes of driving and had the same perceived numbness at 60 minutes of driving 

as the adult drivers. Higher ratings on physical fatigue like stiff joints and tense muscles can 

potentially be explained by the fact that young drivers tend to be more tense during driving 

(Taubman - Ben-Ari, 2010). They were not able to relax during the driving task and thus caused 

the fatigue onset to be faster and more severe. The young driver group rated high in stiff joints 

under high workload conditions, which might be because all the near-crash scenarios and 

automated failures overwhelmed them. Due to lack of experience (Williams, 2003) and immature 

brain function (Diamond, 2013; Dumontheil, 2016; Huizinga et al., 2006; Luna, 2009; Walshe et 

al., 2017), they were not able to adjust well and in turn caused the fatigue.  

A similar result was found under the automated driving scenario. Young drivers rated 

higher on overall feeling, over-drained, stiff joints, tense muscles, uninterested, and drowsiness. 

Most young drivers’ fatigue ratings were found to be significantly different from adult drivers 

from 30 minutes of driving, which indicates an earlier onset of fatigue among young drivers. 

Compared with manual driving, young drivers perceived more dimensions of fatigue. While 

young drivers experienced only significant tense muscles under manual driving, they 
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experienced both mental and physical fatigue under automated driving. Higher ratings on mental 

fatigue like drowsiness and sleepiness could be caused by the vigilance decreasing under 

automated driving (Greenlee et al., 2018; Mkrtchyan et al., 2012). Vigilance decreasing has a 

reversed U shape in regard to age (Davies & Davies, 1975; Seidel & Joschko, 1990), which 

makes young drivers more vulnerable to vigilance decreasing effects. 

Under manual driving mode, adult drivers were found to have higher discomfort in the 

left neck and lower arms compared with young drivers. Neck pain was found to be related to 

older age (McLean et al., 2010). Guez et al. (2002) found that adults of working age had more 

neck pain than other age groups. Thus, a higher rating on neck discomfort could have been 

caused by pre-existing neck pain in the adult group. Under the automated driving mode, young 

drivers rated significantly higher on buttock discomforts, especially on the right side. Since the 

young drivers were expected to be more stressed by the system failure and their inexperience and 

immature brain were expected to feed back to the stress, they would have been highly tensed 

under automated driving and had their legs preparing for breaking all the time. Such kinds of 

stress and tension could lead to fatigue and discomfort for their buttocks.  

The second hypothesis was that young drivers’ fatigue development was expected to be 

more severe under manual high workload compared with manual low workload. However, the 

results pointed in the opposite direction. Young drivers rated higher on stiff joints under low 

workload compared with high workload. Moreover, they felt more discomfort in the fingers 

under the low workload compared with the high workload. One potential explanation for young 

drivers rating higher on the low workload is because the higher workload gives the drivers more 

simulation and more chance to move around, which decreases the discomfort in their joints and 

fingers. Under the low workload, young drivers were only required to drive the vehicle, while the 
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high workload required the young drivers to reply to text messages and to break more often. 

Such tasks may have given the young drivers more chance to move around and thus reduce their 

discomfort in their joints and fingers. 

The third hypothesis was that young drivers’ fatigue development was expected to be 

more severe under automated driving mode compared with manual driving mode. This 

hypothesis was confirmed by the analysis of the perceived fatigue ratings. Young drivers rated 

higher on stiff joints and numbness under automated driving compared with manual driving, 

especially for the high workload. Moreover, young drivers rated higher on buttock discomfort 

under automated driving compared with manual driving. As mentioned earlier, young drivers 

have less experience, which means that they need extra effort to take over (Sun et al., 2014), 

which in turn causes stress and fatigue for them. Moreover, their inexperience could also have 

made the young divers more stressed when a near crash happened. All these stressors could have 

increased the fatigue among the young drivers during automated driving compared with manual 

driving.  

The fourth hypothesis was that young drivers’ fatigue development was expected to be 

more severe under automated low workload compared with automated high workload. This 

hypothesis was confirmed by the perceived fatigue ratings as well. Young drivers rated higher on 

drowsiness under the low workload compared with the high workload. They also perceived more 

discomfort in their ankles under the low workload compared with the high workload. Higher 

ratings on drowsiness could have been caused by the vigilance decreasing. Under the high 

workload, there were secondary tasks, distractions, and other stimulations, which helped the 

young drivers be more engaged in the driving environment (Miller et al., 2015), which in turn 

helped prevent fatigue development. However, under the low workload, young drivers were 



 

 95

asked only to monitor the automated driving simulator, which may not have any failure for over 

10 minutes; young drivers would then have been fatigued due to the vigilance decreasing. 

The last hypothesis was that young drivers’ takeover performance was expected to be 

worse than adult drivers. This hypothesis was confirmed from the video recording analysis. 

Young drivers were not able to supervise automated driving as they were supposed to, and they 

were less likely to have remained focused on the road after driving for a while. Before the 

takeover was needed, young drivers were much less likely to have been monitoring the system 

but were on their phones or even falling asleep. The rate at which they could successfully take 

over was also significantly lower compared with the adult groups, and they also had a 

significantly higher average eyes-off-road time. Young drivers’ EF is not fully developed, which 

makes them more likely to make decision errors and to be distracted during the driving tasks 

(Diamond, 2013; Huizinga et al., 2006). Walshe et al. (2017) found that young drivers cannot 

update information at the moment and manage subtasks of driving well. During automated 

driving, young drivers will be more likely to be distracted by their phones and not able to 

manage the driving task well. Moreover, young drivers 

=[o not have much experience in driving compared with adult drivers, which makes it 

harder for young drivers to decide when to take over and how to take over when automation 

failure happens. Thus, their takeover rate and successful takeover rate were low compared with 

the adult drivers. 

Overall, four out of five hypotheses have been statistically tested and confirmed for this 

study. Young drivers developed more-severe fatigue than adult drivers under all driving 

conditions. Most of the fatigue measures showed a significant difference between young drivers 

and adult drivers from 30 minutes of driving, which means that young drivers had their fatigue 
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onset as early as during 30 minutes of driving. Young drivers’ fatigue development was more 

severe under automated driving compared with manual driving, especially under the automated 

low workload. Moreover, young drivers’ driving and taking over performance was much worse 

than that of the adult drivers under automated driving. 

5.3 Limitations 

HRV analysis showed opposite results compared with other measurements of the young 

drivers’ fatigue development. Young drivers had an increased SNDD, pNN50, and LF/HF when 

other indicators showed that they were fatigued. This result is different from the expectation that 

HRV can decrease when participants become fatigued. A possible explanation for this was that 

HRV is heavily affected by respiration (Aysin & Aysin, 2006; Bernardi et al., 2000; Yildiz & 

Ider, 2006), but during the driving task, participants were not guided on how they should be 

breathing. Thus, different respiration patterns could have affected the HRV analysis results. For 

example, the participants might have been yawning more when they felt fatigued and the yawn 

could have led to a different breathing pattern and in turn affected the HRV results. 

Due to the data distribution, only HR and LF/HF, SDNN, pNN50, and overall feeling 

were able to undergo the factorial ANOVA analysis. The nonparametric methods Kruskal-Wallis 

test was used to test the rest of the data. However, no nonparametric method can perform 

factorial design. Interactions between the main effects were not tested. Moreover, the sample size 

of study two was relatively small, and the power of the analysis was not ideal. The result may be 

more vulnerable to type II error due to relative low power. However, recent evidence indicates 

that alpha and beta error limits are usually used as a convention, and carefully controlled small 

studies can provide reliable results at a lower cost (Kaplan et al., 2014). 



 

 97

EEG is considered one of the most reliable measures to detect mental fatigue and 

drowsiness (Artaud et al., 1995; Erwin et al., 1973; Volow & Erwin, 1973). However, EEG data 

were not used in study two. Because of the Covid_19 pandemic, it was hard for the EEG 

equipment to meet cleaning requirements. Moreover, the EEG equipment caused discomfort on 

the participants’ heads, which may have induced discomfort and fatigue simply by its use. Thus, 

the EEG was not used for study two. However, some valuable measurements and results might 

have been missed by not looking at the EEG result of the study. 

The simulator could not replicate real-world driving. The consequences of crashes are 

different between simulator driving and real-world driving. The pressure of possible crashes is 

much less under the simulator driving than real-world driving, which may have an impact on the 

fatigue development among young drivers. Moreover, simulator driving is similar to car racing 

games. Participants with racing game experience may find it is easier to drive the simulator than 

the participants without car racing game experience, which could cause the difference on fatigue 

development between different participants. Stinchcombe et al. (2017) found that racing game 

experience was positively associate with simulated crashes and risk-taking behaviors among 

young drivers. Although the initial screening of the study have excluded the participants who 

have the intense experience with driving game, but minor difference may still exist between 

participants. Thus, the gaming experience of the young drivers may have effects on the result of 

the performance of the participants in this study. 

5.4 Future Works 

Although the differences between young drivers and adult new drivers was compared in 

study one, no statistical analysis was performed between them. More adult new drivers should be 
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recruited, and a statistical hypothesis should be performed to test the difference in fatigue 

development between young drivers and new drivers.  

Most of the conclusions were drawn from the perceived fatigue questionnaire. HR was 

the only objective measure used in this study. HRV analysis was not included since the breathing 

could have affected the results of HRV, and the results of HRV were indicating opposite results 

to the other measures. More subjective measurements should be used. For example, participants 

should be guided on how they are breathing to facilitate use of the HRV to analyze the fatigue. 

EEG should be also used, since it is considered one of the most reliable measurements for 

driving fatigue. Moreover, eye tracking information should be used as an objective measurement 

as well. Lal & Craig (2001) found that eye blinking will be faster and eye movement will be 

slower when people are fatigued. Eye fixation can also be used to detect the attention of the 

participants and their distractions. 

More participants could be recruited for this study. Based on the central limit theorem 

(Fischer, 2011), the independent variable will have a normalized distribution when there are 30 

or more repeats in each group. Once the normal distribution can be assumed, factorial ANOVA 

can be performed for all the measurements and the interactions between different main effects 

can be tested. Also, older adult group could be recruited to test if more difference could be found 

between young drivers and older adult drivers. 

It was worth to mentioned that the vigilance decrement may be a contributing factor for 

fatigue under the level 2.5 automated driving scenario. However, when the automated driving 

technic develops to the higher level, vigilance decrement should not be considered any more. As 

the vigilance tasks refers to the tasks that require a person to maintain alertness for a long period 

of time to detect signals that are not frequent and predictable (Hancock, 2017; Warm et al., 
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2015), monitoring the level 2.5 automated driving can be considered as a vigilance task. 

However, the level 3 or above automated driving does not need the driver to monitor the road all 

the time, thus, sit in a level 3 automated vehicle cannot be considered as a vigilance tasks, and 

vigilance decrement should not be considered as factors contribute to the fatigue under any more. 
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Appendices  

Appendix A. Perceived Fatigue and Discomfort Questionnaire 

 
Figure A.1. Perceived Fatigue and Discomfort Questionnaire
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Appendix B. Normality Test for the Measurements 

 
Figure B.1. Normality Test for HR Figure B.2. Normality Test for SDNN 
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Figure B.3. Normality Test for pNN50 Figure B.4. Normality Test for LF/HF 

 

 
Figure B.5. Normality Test for Overall Feeling Figure B.6. Normality Test for Over Drained 
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Figure B.7. Normality Test for Stiff Joints Figure B.8. Normality Test for Tense Muscles 

 

 
Figure B.9. Normality Test for Uninterested Figure B.10. Normality Test for Drowsy 

 



 

 

104 

 
Figure B.11. Normality Test for Sleepy Figure B.12. Normality Test for Numbness 

 

 
Figure B.13. Normality Test for Left Neck Figure B.14. Normality Test for Left Upper Back 
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Figure B.15. Normality Test for Left Upper Arm Figure B.16. Normality Test for Left Lower Back 

 

 
Figure B.17. Normality Test for Left Lower Arm Figure B.18. Normality Test for Left Buttock 
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Figure B.19. Normality Test for Left Fingers Figure B.20. Normality Test for Left Thigh 

 

 
Figure B.21. Normality Test for Left Shank Figure B.22. Normality Test for Left Ankle 
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Figure B.23. Normality Test for Right Neck Figure B.24. Normality Test for Right Upper Back 

 

 
Figure B.25. Normality Test for Right Upper Arm Figure B.26. Normality Test for Right Lower Back 
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Figure B.27. Normality Test for Right Lower Arm Figure B.28. Normality Test for Right Buttock 

 

 
Figure B.29. Normality Test for Right Fingers Figure B.30. Normality Test for Right Thigh 
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Figure B.31. Normality Test for Right Shank Figure B.32. Normality Test for Right Ankle 

 

 
Figure B.33. Normality Test for Takeover Rate Figure B.34. Normality Test for Success Takeover Rate 
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Figure B.35. Normality Test for Average Eye Off Road Time 
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Appendix C. Behaviors before Takeover for Study Two 

 
Figure C.1. Behaviors before Takeover for Study Two 

Time Participant Group Workload Takeover 1 Takeover 2 Takeover 3 Takeover 4 Takeover 5 Takeover 6 Takeover 7 Takeover 8 Takeover 9
30 min A02 Adult Low workload monitoring
60 min A02 Adult Low workload monitoring monitoring monitoring
90 min A02 Adult Low workload
30 min A07 Adult Low workload look away
60 min A07 Adult Low workload monitoring
90 min A07 Adult Low workload monitoring
30 min A10 Adult Low workload monitoring
60 min A10 Adult Low workload
90 min A10 Adult Low workload monitoring
30 min A11 Adult High workload monitoring monitoring monitoring monitoring monitoring
60 min A11 Adult High workload monitoring monitoring monitoring
90 min A11 Adult High workload on phone on phone monitoring monitoring monitoring monitoring monitoring
30 min A12 Adult High workload monitoring monitoring on phone monitoring on phone
60 min A12 Adult High workload monitoring monitoring on phone
90 min A12 Adult High workload monitoring on phone on phone monitoring monitoring
30 min A13 Adult High workload monitoring monitoring monitoring monitoring monitoring monitoring monitoring monitoring
60 min A13 Adult High workload monitoring
90 min A13 Adult High workload monitoring monitoring
30 min A14 Adult High workload monitoring monitoring monitoring monitoring monitoring monitoring
60 min A14 Adult High workload monitoring monitoring monitoring monitoring
90 min A14 Adult High workload monitoring monitoring monitoring on phone on phone monitoring monitoring monitoring
30 min A15 Adult Low workload on phone monitoring
60 min A15 Adult Low workload
90 min A15 Adult Low workload
30 min C04 Young Low workload monitoring monitoring monitoring
60 min C04 Young Low workload
90 min C04 Young Low workload
30 min C06 Young High workload monitoring on phone on phone monitoring monitoring
60 min C06 Young High workload monitoring monitoring on phone monitoring sleeping
90 min C06 Young High workload monitoring monitoring monitoring monitoring
30 min C08 Young High workload monitoring on phone monitoring monitoring on phone monitoring monitoring
60 min C08 Young High workload on phone monitoring on phone on phone on phone on phone
90 min C08 Young High workload monitoring monitoring on phone monitoring monitoring monitoring monitoring monitoring
30 min C09 Young Low workload monitoring monitoring
60 min C09 Young Low workload monitoring monitoring
90 min C09 Young Low workload on phone
30 min C12 Young High workload monitoring monitoring on phone on phone on phone monitoring
60 min C12 Young High workload monitoring on phone
90 min C12 Young High workload monitoring
30 min C14 Young Low workload on phone
60 min C14 Young Low workload on phone monitoring
90 min C14 Young Low workload
30 min C16 Young High workload monitoring
60 min C16 Young High workload monitoring monitoring monitoring monitoring monitoring
90 min C16 Young High workload monitoring monitoring monitoring monitoring
30 min C18 Young Low workload monitoring monitoring on phone
60 min C18 Young Low workload monitoring on phone
90 min C18 Young Low workload on phone

Successfuly take over

fail to take over, crash

fail to take over, but no 
crash
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