


Abstract 1	
  

 Enhanced physical weathering rates in subglacial systems promote high levels of 2	
  
comminution, transport, and deposition of fine-grained sediment within the subglacial 3	
  
drainage network. The impact of shifts in sediment loads due to variations in meltwater 4	
  
flux, and their effects on downstream ecosystems, remains poorly quantified and places a 5	
  
fundamental importance on our ability to characterize subglacial depositional 6	
  
environments. Here, for the first time, we assess the seasonal evolution of the subglacial 7	
  
suspended sediment using coupled radiogenic strontium (87Sr/86Sr) and neodymium 8	
  
(143Nd/144Nd) isotopic ratios with elemental ratios, and in-situ measurements. Weathering 9	
  
rates in fluvial and riverine systems have been traditionally assessed using radiogenic 10	
  
isotopic tracers: 143Nd/144Nd ratios relate to the crustal age whereas 87Sr/86Sr ratios relates 11	
  
to both age and preferential mineral dissolution. Relative shifts in these ratios allow us to 12	
  
characterize distinct sediment transport networks. We apply this technique to the Lemon 13	
  
Creek Glacier (LCG), Alaska, USA and the Athabasca Glacier (AG), Alberta, CA. At the 14	
  
LCG, the 143Nd/144Nd values range from εNd of -4.6 (0.9) to -8.7 (0.2), which suggests a 15	
  
poorly mixed sediment flux. However, the greatest period of variability may correlate 16	
  
with the drainage of a supraglacial lake and suggests caution should be exerted in time-17	
  
scale 143Nd/144Nd provenance studies that may be affected by climatic disturbances. In 18	
  
contrast, limited variation is observed within the AG 143Nd/144Nd seasonal record. A 19	
  
consistent, direct relation between the Rb/Sr elemental ratio and the 87Sr/86Sr ratio enables 20	
  
us to unravel incongruent weathering trends in the radiogenic Sr record. Correlation 21	
  
between the 87Sr/86Sr and total discharge suggests the process is partially controlled by 22	
  
mantling of the bedrock, which can be detected using post-comminution ages. While the 23	
  
subglacial structure may be enabled by the subglacial till beneath the AG, our study 24	
  
supports the use of Sr-Nd as a new proxy in the subglacial environment. 25	
  
 26	
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1. Introduction 32	
  

The predicted escalation of glacial retreat by the end of the twentieth century 33	
  

(IPCC, 2013) highlights the fundamental importance of quantifying how the environment 34	
  

is impacted by an increase in glacio-fluvial sediment deposition. In the subglacial 35	
  

hydrologic system, elevated pressures can promote the presence and motion of water at 36	
  

the base of the glacier. In turn, this meltwater flux facilitates the production and transfer 37	
  

of dissolved and suspended sediment (e.g. Collins, 1990), as well as significant physical 38	
  

and chemical weathering between bedrock and basal ice. Shifts in meltwater 39	
  

hydrochemistry and sediment load can have direct and profound influences on the nature 40	
  

of downstream ecosystems (e.g. Jacobsen et al., 2012; Muhlfeld et al., 2011; Xu et al., 41	
  

2009). The impact of glacially derived sediment release is widely variable. For example, 42	
  

high sediment loads can disrupt salmon spawning grounds, whereas reductions in 43	
  

meltwater quality can destabilize benthic communities (Milner et al., 2009). Additionally, 44	
  

sediment flux can influence the degree and stability of channel distribution in pro-glacial 45	
  

riparian zones (Milner et al., 2009). Investigating the rate and scale at which sediment 46	
  

deposition, associated with hydrologic change, is occurring may provide insight into the 47	
  

sensitivity of downstream ecosystems to sediment flux. 48	
  

While certain aspects of subglacial hydrology, such as water transit velocity, 49	
  

water quality, and subglacial water pressures, have been well studied (e.g. Anderson et 50	
  

al., 2004; Anderson, 2007; Brown, 2002; Hodge, 1976; Lamb et al., 1995; Moore et al., 51	
  

2013; Stenborg, 1969; Tranter, 2005), the spatial distribution of the subglacial 52	
  

hydrological networks is less well constrained. In general, glaciers can be characterized 53	
  

by the annual presence of basal water. Cold-based temperatures glaciers generally lie 54	
  



below the pressure melting point throughout the entire year, whereas warm-based 55	
  

temperatures glaciers typically reach pressure melting point throughout the entire year, 56	
  

which promotes the presence of basal meltwater (e.g. Tranter, 2003). Poly-thermal 57	
  

glaciers exhibit both conditions per annum (e.g. Wadham et al., 1998). In systems where 58	
  

subglacial water is present, basal water is routed beneath glaciers and meltwater conduits 59	
  

can carve the glacial bedrock. These subglacial drainage systems can be classified into 60	
  

two categories: a distributed, slow-transit hydrologic system and a channelized, rapid-61	
  

transit system (Raymond et al., 1995). However, subglacial systems cannot be defined 62	
  

seasonally or spatially by a single configuration, as the subglacial drainage network is 63	
  

constantly evolving (Fountain and Walder, 1998). In particular, dye-trace studies have 64	
  

revealed a hydrologic dispersion through the subglacial drainage network changes during 65	
  

the melt season where fast, efficient channels tend to dominate slow, inefficient networks 66	
  

as the melt season progresses and the subglacial drainage channels expand up-glacier 67	
  

(Bingham et al., 2005; Nienow et al., 1998). Hydrologic variability and glacial 68	
  

sedimentary output are directly linked; comminution of rock occurs as glacial ice 69	
  

physically abrades and meltwater chemically weathers the bedrock. Here, the resulting 70	
  

fresh and highly reactive sediment contributes to the dissolved and suspended sediment 71	
  

loads.  72	
  

The geochemical behavior of glacially derived sediment has been increasingly 73	
  

studied over the past two decades (e.g. Brown et al., 1994; Hodgkins et al., 1995; Tranter 74	
  

et al., 1993; Tranter et al., 1995; Tranter et al., 2005). Yet, these limited number of 75	
  

studies, which characterize the subglacial depositional environment, have focused largely 76	
  

on the deformation of the glacial bed and till (e.g. Boulton et al., 2001; Evans et al., 2006; 77	
  



van der Meer et al., 2003). Even fewer studies have addressed the seasonal dynamics of 78	
  

sediment entrainment, transport, and deposition in the subglacial environment (e.g. Alley 79	
  

et al., 1997; Collins, 1988; Lawson, 1993; Swift et al., 2002) or explored the coupled 80	
  

chemical-physical behavior of the subglacial sediment load (Brown et al., 1996).  81	
  

If subglacial hydrological network processes mirror those of subaerial or riverine 82	
  

environments, they may exhibit similar depositional characteristics such as mantling of 83	
  

the bedrock or mineral sorting between grain sizes. Therefore the sediment depositional 84	
  

environment should also vary, like riverine environments, with location and lithology. 85	
  

But, glacial environments notably differ from riverine environments in that glacial 86	
  

abrasion leads to relatively high physical and low chemical weathering rates (Raiswell et 87	
  

al., 2006), a ratio that likely contributes defining characteristics to the sediment flux in 88	
  

the subglacial environment. The production of sediment through comminution processes 89	
  

leads to the exposure of fresh, reactive surfaces that can be deposited or excavated 90	
  

throughout the glacial system. While subglacial sediment deposition may simply be a 91	
  

function of the net sediment flux into a given subglacial area (Hart, 1995), entrainment 92	
  

occurs when a critical shear stress at the bed is exceeded (Walder and Fowler, 1994).  93	
  

Further, during physical and chemical weathering processes, minerals entrained 94	
  

within the bedrock can be weathered both congruently and incongruently. Congruent 95	
  

weathering relates to processes involving the complete dissolution of minerals, whereas 96	
  

incongruent weathering relates to the conversion of an initial mineral into a secondary 97	
  

mineral through precipitation and dissolution processes. However, discerning the 98	
  

contribution of these two processes to the dissolved load and suspended sediments 99	
  

remains a challenge (e.g. Hindshaw et al., 2014), but the relative contributions may pose 100	
  



an interesting relationship if the sediment behaves in response to the high levels of 101	
  

comminution.  102	
  

As tracers of source and weathering processes in fluvial environments, radiogenic 103	
  

isotopes have the potential for uncovering weathering and sediment transport processes 104	
  

within the subglacial environment. Weathering rates in fluvial and riverine systems have 105	
  

been assessed using radiogenic isotopic tracers (e.g. Derry and France-Lanord, 1996; 106	
  

Edmond, 1992).  107	
  

Strontium isotope (87Sr/86Sr) fluxes have typically been analyzed in stream and 108	
  

river waters to trace mineral weathering reactions and rates and compare them to the 109	
  

isotopic characteristics of the underlying and local bedrock (e.g. Arn et al., 2003; Blum 110	
  

and Erel, 1995; Blum et al., 1993; Clow et al., 1997a; Stevenson et al., In review-b; 111	
  

Taylor and Blum, 1995). Due to the radiogenic decay of 87Rb to 87Sr, the 87Sr/86Sr ratio 112	
  

can also be used to place constraints on lithographic age. Radiogenic Sr is preferentially, 113	
  

incongruently, released from minerals such as biotite during periods of high weathering 114	
  

(e.g. Peucker-Ehrenbrink and Blum, 1998) . Potassium and calcium ions in minerals can 115	
  

readily substitute for Rb and Sr, respectively; therefore 87Sr/86Sr ratios in combination 116	
  

with elemental data can help discern differences in bedrock lithology (e.g. Krishnaswami 117	
  

et al., 1992). For example, carbonate-based catchments exhibit a relatively unradiogenic 118	
  

signature in comparison to silicate-based catchments, (87Sr/86Sr = 0.708 versus 0.721, 119	
  

respectively (Allègre et al., 2010)). The ratio may also de-convolve incongruent mineral 120	
  

weathering rates rock (e.g. Bain and Bacon, 1994; Capo et al., 1998; Clow et al., 1997b).  121	
  

Neodymium isotopic ratios (143Nd/144Nd) have proven themselves as powerful 122	
  

tracers of dust transport, water mass, and sediment source (Aarons et al., 2013; Jiang et 123	
  



al., 2013; Jones et al., 1994; Piepgras and Jacobsen, 1988). Natural variation in the 124	
  

143Nd/144Nd composition of rocks relates to the extent of mixing experienced by the 125	
  

material derived from the mantle from differently aged sources, which is enabled by the 126	
  

limited mobility of rare earth elements (REE), such as Sm and Nd, during sedimentary 127	
  

processes (Öhlander et al., 2014; Taylor and McLennan, 1995). Studies utilizing Nd as a 128	
  

tracer for intense chemical weathering are few, but pedogenic studies have shown intense 129	
  

weathering preferentially removes 143Nd from soil profiles (Ma et al., 2010).  However, 130	
  

Garçon et al. (2014) modeled the Nd composition of different minerals in sediment and 131	
  

found minerals highly enriched in Nd, notably monazite and alanine to dominate the Nd 132	
  

isotopic budgets, despite the mineral proportion consistently falling below 0.5% of the 133	
  

total rock weight. The study supports the general classification of Nd as a proxy for 134	
  

congruent weathering. Whilst still in development, the strength of the Nd proxy as a 135	
  

tracer of intensive chemical weathering may be supported by correlation with the more 136	
  

tested radiogenic isotope proxies of radiogenic strontium (87Sr/86Sr). Therefore, the 137	
  

relationship between radiogenic Nd and Sr systems has the potential to reveal dominant 138	
  

weathering mechanisms in subglacial environments. 139	
  

By correlating the radiogenic Nd and Sr isotopic ratios with local geology, daily 140	
  

in-situ measurements and elemental data, we quantify the ability of this combined Sr-Nd 141	
  

proxy to track channel evolution and model weathering processes in subglacial 142	
  

environments. This study investigates for the first time the effectiveness of the 143	
  

application of coupled Sr-Nd ratios in suspended sediments from two distinct subglacial 144	
  

environments. Here we characterize the seasonal evolution of the subglacial meltwater 145	
  



channels from the Lemon Creek glacier (LCG), Juneau Icefield, Alaska and the 146	
  

Athabasca Glacier (AG), Columbia Icefield, Alberta.  147	
  

 148	
  

2. Site Descriptions 149	
  

2.1 Lemon Creek Glacier 150	
  

The LCG is a warm-based valley glacier located in the Coast Mountain Range of 151	
  

southeast Alaska (11.6 km2, 58° 24.418’ N, 134° 22.379’ W). The LCG forms the 152	
  

southernmost extension of the Juneau Icefield, which itself extends ~3,900 km2. Annual 153	
  

mass balance surveys indicate that the glacier is retreating by an average of 0.48 m yr-1 of 154	
  

water equivalents (Miller and Pelto, 1999). Geologically, the LCG is located on a mid-155	
  

Cretaceous metamorphic-pluton complex, with associated migmatites (Figure 1) (Brew 156	
  

and Ford, 1985; Kistler et al., 1993). Young tonalite sills (62-69 Ma, with a 157	
  

northeastward younging of the bedrock (Gehrels et al., 1984)) characterize the terrain to 158	
  

the immediate west and high-grade metamorphosed sedimentary and volcanic rocks 159	
  

characterize the surrounding area to the east. Late-Permian metamorphosed sedimentary 160	
  

(Greenschist facies) rocks characterize the area further west and beneath the glacial head 161	
  

(Kistler et al., 1993; Stevenson et al., In review-a). The local region maintains a maritime 162	
  

climate with average annual precipitation of 1.4 m yr-1 and mean winter and summer air 163	
  

temperatures of -1°C and 16°C, respectively (Stevenson et al., In review-b).  164	
  

In a corresponding study, Stevenson et al. (In review-a) analyzed the radiogenic 165	
  

Sr isotopic compositions of the suspended sediment at the LCG. The time-series values 166	
  

ranged from 87Sr/86Sr = 0.708487(6) to 0.710003(8), for Julian Day (JD) 226—252. The 167	
  

study additionally includes measured radiogenic strontium values of four bedrock 168	
  



samples: quartzite (87Sr/86Sr = 0.72960(1)), gneiss (87Sr/86Sr = 0.70761(4)), plutonic 169	
  

igneous granodiorite (87Sr/86Sr = 0.70710(4)), and a metamorphosed crystalline carbonate 170	
  

(87Sr/86Sr = 0.70800(2)), with values in parentheses representing two standard error. The 171	
  

bedrock values align well with the radiogenic Sr ratios measured in the Juneau Gold Belt 172	
  

(Kistler et al., 1993). However, no measurements have characterized the radiogenic Nd 173	
  

compositions of the bedrock directly beneath the LCG. In a survey of the accretionary 174	
  

terranes of the Alaskan portion of the Coast Mountains, Samson et al. (1991) reported 175	
  

values from juvenile plutons (i.e. the Gravina belt and the Taku terrane) and metamorphic 176	
  

assemblages (i.e. the Tracy Arm, Endicott assemblage, Port Houghton assemblage, and 177	
  

the Ruth assemblage), but the wide range of 143Nd/144Nd values from 0.511290 ± 12 to 178	
  

0.513030 ± 7 highlights need for direct bedrock measurements to characterize the local 179	
  

geology.  180	
  

2.2 Athabasca Glacier 181	
  

The Athabasca Glacier is one of the eight primary glaciers extending from the 182	
  

Columbia Icefield in the Canadian Rockies, Alberta (8.6 km2, 52° 12.54’ N, 117° 14.29’ 183	
  

W). It is smaller than the Juneau Icefield spanning approximately 325 km2
. The icefield 184	
  

accumulates the largest volumes of snow and ice south of the Arctic Circle in the 185	
  

Northern Hemisphere and contributes freshwater to the Arctic, Pacific, and Atlantic 186	
  

Oceans (Paterson, 1964). The glacier itself spans over three icefalls and into a valley, is 187	
  

~1950 m a.s.l, and extends ~6 km in length. Uplift and rotation define the regional 188	
  

geology, which is primarily Middle Cambrian limestone and shale (Figure 2) and part of 189	
  

the Pika Formation (Charlesworth and Erdmer, 1989). Beneath the ice, a thin (0.05-0.30 190	
  

m) deformable layer of till exists which promotes till erosion, rotation, and detachment 191	
  



(Hart, 2006). The Athabasca Glacier in particular has been the focus of many previous 192	
  

studies (e.g. Arendt et al., 2015; Kite and Reid, 1977; Paterson and Savage, 1963; 193	
  

Raymond, 1969; Xu et al., 2010). Like the LCG, the glacier has consistently decreased in 194	
  

total mass over the past decades of observation (Kite and Reid, 1977). In the past decade, 195	
  

the region has experienced 395 to 475 mm of annual precipitation and ranges of -15 to -196	
  

19°C and +16 to +20°C winter and summer temperatures, respectively (Archive, 2013; 197	
  

Arendt et al., 2015; Shea and Marshall, 2007).  198	
  

 Similarly to the LCG, the bedrock provides a framework for isotopic analysis. 199	
  

The shales and limestones of the Pika Formation have been well-characterized as highly 200	
  

radiogenic by Boghossian et al. (1996), with εNd of -27.1. However, the carbonate bedrock 201	
  

obstructs the possibility of measuring such radiogenic values within the strontium system. 202	
  

To a greater degree, the values from previous study (i.e. Millot et al., 2003) relate to 203	
  

weathering and preferential dissolution of carbonate and, in Athabasca River sediments, 204	
  

range from 87Sr/86Sr = 0.71285 to 0.71612.   205	
  

3. Sampling and Analysis 206	
  

3.1 Sample collection 207	
  

Samples were collected daily from the main meltwater channel draining the LCG 208	
  

from the 30th June 2012 to the 8th September 2012 (JD 182—252) and the AG from the 209	
  

11th August 2014 to the 25th October 2014 (JD 223—298). The sampling site at the LCG 210	
  

shifted mid-season due to accessibility. From JD 182 to 210, sampling occurred from a 3 211	
  

m snow pit where flowing water was observed. Once the seasonal snowpack decreased 212	
  

and the glacial toe was accessible, the sampling site was moved up-glacier 50 m closer to 213	
  

the glacier toe. Samples were collected at the second location daily from JD 227 to 252.  214	
  



Ten liters of subglacial water were filtered using a Masterflex modular peristaltic 215	
  

pump and a Perfluoroether (PFA) 47mm diameter filtration unit (Savillex). Hydrophilic 216	
  

Polyvinylidene fluoride (PVDF) Millipore filter membranes (0.22 µm) were used to 217	
  

separate the suspended sediment.  218	
  

Daily in-situ field protocols are outlined in (Stevenson et al., In review-b). In 219	
  

summary: Electrical conductivity, temperature, pH, dissolved oxygen (DO) and alkalinity 220	
  

measurements were taken using a YSI Handheld Multiparameter Instrument (Pro Plus 221	
  

Multiparameter). The electrical conductivity, temperature, and pH measurements were all 222	
  

conducted on-site in the subglacial outlet channels. Approximately 100 mL of filtered 223	
  

subglacial water was used for alkalinity measurements. For anticipated high alkalinities, 224	
  

the 100 mL sample was mixed with 10 mL of Total Alkalinity Reagent (FisherScientific) 225	
  

solution, shaken, and the pH measured. For anticipated low alkalinities, the 100 mL 226	
  

sample was mixed with 1 mL of Total Alkalinity Reagent solution, shaken, and the pH 227	
  

was measured. The pH was converted to the total alkalinity using a pH-total alkalinity 228	
  

conversion (e.g. Fujita, 2008; Hedin et al., 1994) 229	
  

Two diurnal cycles were tracked at the AG. In August (JD 236—237), samples 230	
  

and in-situ measurements were collected every two hours. In October (JD 297—298) 231	
  

samples were collected every three hours due harsher field conditions.  232	
  

 233	
  

3.2 Sample preparation 234	
  

3.2.1 Lemon Creek suspended sediments 235	
  

The samples were prepared for isotopic analysis in a class 10 laminar flow hood 236	
  

inside a 10,000 level clean room at the University of Michigan. Each filter membrane 237	
  



was rinsed with 18.1 MΩ cm to collect the sediment, which was subsequently dried in 238	
  

Teflon beakers. For the LCG samples, 10 mg of sediment were weighed and digested for 239	
  

7 days in 2 mL concentrated nitric acid (HNO3) with 0.5 mL concentrated hydrofluoric 240	
  

acid (HF). Samples were dried down and further digested in aqua regia for 24 hours to 241	
  

oxidize and remove any residual organic material. Each sample was digested in 1 mL 242	
  

aqua regia for 24 hours, dried on a hotplate, and dissolved in 1 mL of 9 M hydrochloric 243	
  

acid (HCl) in preparation for elemental separation.   244	
  

  245	
  

3.2.2 Athabasca suspended sediments 246	
  

 247	
  

Prior to dissolution procedures (above) the dry AG sediments were first filtered 248	
  

through a 0.63 µm sieve to eliminate potential effects of grain size distribution during 249	
  

fluvial transport. Approximately 10 mg of sediment were weighed and digested using 250	
  

Parr bombs. The sample was loaded into 3 mL Savillex beakers with 2 mL of 251	
  

concentrated HF. The beakers were placed in a 125 mL PTFE container and 6 mL of 252	
  

concentrated HF with trace concentrated HNO3 was added. The vessel was enclosed in 253	
  

the Parr bomb and placed in a 220°C oven for 48 hours. The solutions were dried down 254	
  

on a hot plate and the procedure was replicated with 6 M HCl in both the Savillex 255	
  

beakers and PTFE container at 180°C for 12-16 hours. After the final dry-down, the 256	
  

samples were digested in 1 mL of 9 M HCl in preparation for elemental separation.   257	
  

 258	
  

3.3 Elemental analysis of Athabasca Glacier samples 259	
  



Trace and major elemental concentrations were measured in triplicate on the 260	
  

Thermo Scientific ELEMENT2 Inductively Coupled Plasma mass spectrometer at the 261	
  

University of Michigan Keck Laboratory in pulse counting mode. The digested sediment 262	
  

samples were acidified and diluted to 2 mL solutions. An acid blank and standard river 263	
  

reference standards were run every five samples to assess long-term reproducibility and 264	
  

accuracy. Repeat measurements of international standard NIST1640a are provided in 265	
  

Aciego et al., (2015). Baseline detection measurements from the total procedural blank 266	
  

indicate that analytical error was never greater than 10% the concentration even for the 267	
  

smallest concentrations. Such analyses were not possible for the LCG samples due to 268	
  

prior consumption of sample supply in earlier studies (Sheik et al., 2015). 269	
  

 270	
  

3.4 Neodymium isotope analysis 271	
  

Samples were aliquoted to obtain > 25 ng of Nd. Isolation of Nd was preformed 272	
  

through ion exchange column chemistry involving two columns. Each sample was first 273	
  

loaded into a 700 µL PFA column filled with 50-100 mesh TruSpec resin. Following the 274	
  

procedures of Aciego et al. (2009), HCl was used to elute high field strength elements 275	
  

(HFSE) and REEs. The eluted volumes were then loaded into a preconditioned 2 mL 276	
  

PFA column filled with clean 50-100 µm LnSpec resin. The subsequent volumes eluted 277	
  

with HCl isolated the Nd from the REE fraction (Aciego et al. 2009). An acid blank and a 278	
  

standard of known concentration (BCR-2) were processed using the same procedure to 279	
  

ensure long-term reproducibility and assess error.  280	
  

Nd was loaded onto outgassed rhenium double filaments after 1 µL of 1 M HCl—281	
  

1 M HNO3 was added to each dried sample. A current of 0.8 A was run through the 282	
  



filament until the sample was dry. The current was slowly increased to 1.8 A and held 283	
  

constant for 1 minute. The current was then flashed at 2.2 A and decreased to 0 A.   284	
  

Isotopic ratios were determined using a Thermo-Finnigan Triton Thermal 285	
  

Ionization Mass Spectrometer (TIMS) at the Glaciochemistry and Isotope Geochemistry 286	
  

Laboratory in the Department of Earth and Environmental Science at the University of 287	
  

Michigan (Aarons et al., 2013; Arendt et al., 2014). Instrumental mass bias was corrected 288	
  

for by applying an exponential mass fractionation law with the 146Nd/144Nd= 0.7219 and 289	
  

mass 149 was monitored for Sm interference. Amplifier gains and baselines were run 290	
  

prior to each set of analysis. The Nd isotopic standard JNdi-1 (10 ng) was measured as 291	
  

143Nd/144Nd = 0.512099 ± 0.000016 (2 s.d. n=8) which is in agreement with the accepted 292	
  

JNdi-1 standard value of 143Nd/144Nd = 0.512115 (Tanaka et al., 2000). The 143Nd/144Nd of 293	
  

BCR-2 was 0.512643 ± 36 (2 s.d. in the last decimal place; n=5) and in agreement with 294	
  

the literature (Li et al., 2007; Raczek et al., 2003; Weis et al., 2006).  295	
  

 296	
  

3.5 Strontium radiogenic isotope analysis 297	
  

Radiogenic strontium values for suspended sediment were obtained from 298	
  

Stevenson et al., (In review-a). Here we expand their existing data set using the same 299	
  

analytical preparation and methods. In brief, samples were partitioned to provide 2 μg Sr, 300	
  

these aliquots were dried on a hot place and dissolved in 7.5 M HNO3. Samples were 301	
  

loaded in 500 μL 3 M HNO3 onto Sr columns containing 150 μL Eichrom Strontium 302	
  

specific resin bed in 500 μL 3 M HNO3.  303	
  

The column was washed and eluted in several stages with HNO3 following the 304	
  

procedure outlined by (Aciego et al., 2009b). The procedural Sr blank was less than ~60 305	
  



pg, constituting < 0.1% of the total Sr analyzed for a typical Sr analysis. Strontium 306	
  

samples were loaded onto outgassed 99.98% Re filaments in 1.0 μL 7.5 N HNO3 along 307	
  

with 0.8 μL TaF5 activator to enhance the ionization efficiency of Sr (Charlier et al., 308	
  

2006). 309	
  

Strontium isotope measurements were performed on a Thermo-Finnigan Triton 310	
  

Plus Thermal Ionization Mass Spectrometer (TIMS) at the University of Michigan using 311	
  

the method outlined in Stevenson et al., (2015b). Fractionation caused during machine 312	
  

analysis was corrected for using 86Sr/88Sr = 0.1194. External precision on the standard 313	
  

runs (NBS987) for 87Sr/86Sr was 0.710264 ± 0.000016 (2 s.d. n=50). A basalt rock (BCR-314	
  

2) was used to monitor precision of column chemistry and TIMS analysis. The 87Sr/86Sr 315	
  

of BCR-2 was within error of literature 0.70504±5 (2 s.d. in the last decimal place, n=3), 316	
  

respectively (e.g. Krabbenhöft et al., 2009; Ma et al., 2013; Moynier et al., 2010). 317	
  

 318	
  

4. Results 319	
  

4.1 Physiochemical Properties 320	
  

The seasonal physiochemical dataset of the LCG and AG can be found in 321	
  

Appendices A and B, respectively. Appendix B additionally contains the diurnal values 322	
  

from August and October cycles at the AG. Greater discharge, alkalinity, and 323	
  

conductivities characterize measurements from the AG in comparison to the LCG. In 324	
  

general, the pH is higher at the AG (average pH = 8.89; 2 s.d. of 0.37) than the LCG 325	
  

(average pH = 7.40; 2 s.d. of 0.40). It is important to highlight that field seasons at the 326	
  

AG and LCG did not occur at the same time of year, with sample for the AG from JD 327	
  

223—298 and for the LCG from JD 182—252. At the LCG the pH begins to increase 328	
  



starting JD 238 and reached a maximum measured pH on JD 248 whereas sampling at the 329	
  

AG did not begin until JD 223. Daily precipitation trends, provided by the Agroclimatic 330	
  

Information Service (ACIS, 2015) and the NOAA Juneau Airport weather station 331	
  

(NOAA, 2014), are additionally reported in Figure 3 and Figure 4, respectively.  332	
  

 333	
  

4.2 Radiogenic isotope measurements 334	
  

Appendices C and D present the seasonal radiogenic Sr and Nd measurements at 335	
  

the LCG and AG, respectively. Errors are reported as two standard errors of the mean and 336	
  

are given in parentheses with variation in the last decimal place. Correlations between the 337	
  

87Sr/86Sr and εNd are presented in Figures 5 and 6 for the LCG and AG, respectively, and 338	
  

include both time-series and diurnal values. The plots contrast the wide εNd and narrow 339	
  

87Sr/86Srrange at the LCG with the narrow εNd range and wide 87Sr/86Srrange at the AG.  340	
  

 341	
  

4.2.1 Radiogenic Neodymium  342	
  

The time-series Nd isotopic values are recorded in Appendices C and D and 343	
  

depicted in Figure 3 and 4 for the LCG and AG, respectively. The Nd isotopic 344	
  

compositions are represented in epsilon notation as εNd (Eq. 1), which is defined as: 345	
  

𝜀!" ! =

𝑁𝑑!"#

𝑁𝑑!""
!"#$%&(!)

𝑁𝑑!"#

𝑁𝑑!""
!"#$(!)

− 1 ×  10000 

(Eq. 1) 346	
  

where (143Nd/144Nd)CHUR is the Nd isotopic composition of the Chondritic Uniform 347	
  

Reservoir (CHUR) which is 143Nd/144Nd = 0.512638 (Jacobsen and Wasserburg, 1980). 348	
  



The internal error of 2σ of the mean is parenthesized for each value and external error is 349	
  

εNd = 0.49.  350	
  

At the LCG, we observe an average radiogenic Nd value of εNd = -6.2 ± 1.0 (2 351	
  

s.d.). The greatest degree of spread is observed between JD 216 to 234. Values range 352	
  

from εNd of -4.6 (0.9) to -8.7 (0.2). The remaining subset from JD 230—251 exhibits an 353	
  

average εNd = -6.2 ± 1.1 (2 s.d.) and mirror early season values.  354	
  

The time-series AG values are presented in Figure 4. The dataset exhibits little 355	
  

seasonal variability with an average εNd of -27.3 ± 0.6 (2 s.d.), which is only slightly 356	
  

larger than the external reproducibility of εNd = 0.49. Similarly, the diurnal values 357	
  

reported in Appendix D align with the time-series record. We report averages of εNd =-358	
  

27.5 ± 0.7 and -27.3 ± 0.5 for the August and October cycles, respectively and with two 359	
  

standard deviations.  360	
  

 361	
  

4.2.2 Radiogenic Strontium  362	
  

In a corresponding study, Stevenson et al. (In review-a) analyzed the radiogenic 363	
  

Sr isotopic compositions of the suspended sediment from JD 226—252 at the LCG. The 364	
  

LCG dataset exhibits a slightly parabolic seasonal record. The measurements trend 365	
  

towards less radiogenic values from JD 182—213 (R2= 0.93) with a measured 87Sr/86Srrange 366	
  

= 0.709673(8) to 0.708562(8). Mid-season values from JD 214—235 exhibit poor 367	
  

correlation (R2 = 0.06), coinciding the mid-season spread of measured εNd values. During 368	
  

the time-period, we report an average value of 0.709054 ± 0.00352 (2 s.d.). At the end of 369	
  

the season (JD 236—251), increases towards more radiogenic values mark seasonal 370	
  

progression (87Sr/86Sr = 0.709036(6) to 0.70975(1); R2 = 0.20).  371	
  



The time-series radiogenic Sr values from the AG (Figure 4) exhibit higher 372	
  

isotopic ratios, which generally decrease over the course of the melt season (87Sr/86Srrange 373	
  

of 0.712424(7) to 0.71606(2); R2 = 0.34); however, the correlation is stronger at the 374	
  

beginning of the melt season (JD 233-267; R2 = 0.45). A greater range of seasonal 375	
  

variability is observed at the AG than the LCG (87Sr/86Srrange = 0.0036 versus 0.0015, 376	
  

respectively).  377	
  

Total variation in 87Sr/86Srrange over a diurnal cycle are much larger for August, 378	
  

0.0014, compared to October 0.0004. While no discernable trend exists in the October 379	
  

record, there is a shift towards less radiogenic values from 10:00 to 20:00, which is 380	
  

followed by an increase in the isotopic ratio from 20:00 to 4:00. However, consistently 381	
  

high discharge measurements occurred during the August diurnal sampling with all 382	
  

values greater than 0.75 m3 s-1. The observed trends from the diurnal and time-series 383	
  

samples correlate well to in-situ discharge measurements (Figure 7). The 87Sr/86Sr ratio 384	
  

increases with discharge (R2 = 0.52) until a critical value of 0.9 m3 s-1 was reached. High 385	
  

variability in the 87Sr/86Sr ratio is apparent at high discharge levels during both diurnal 386	
  

and time-series measurements.   387	
  

 388	
  

4.3 Elemental Concentrations 389	
  

Elemental concentrations from the AG are reported in Appendix B. In general, Al, 390	
  

Ca, K, Mg, Na, Rb, seasonal trends are highly variable, with peaks on JD 243, 244, and 391	
  

290. Rain events did occur on each of these days; however, there are no consistent 392	
  

seasonal trends between the daily elemental variation and the rain events or total 393	
  

discharge. While individual concentrations indicate mineralogical variability of the 394	
  



sediment, molar ratios track seasonal weathering trends. Here, we refer to the Rb/Sr, 395	
  

Sm/Nd, and Ca/K values listed in Appendix B. A strong, positive correlation between the 396	
  

87Sr/86Sr and Rb/Sr ratios for the time-series dataset (R2 = 0.79) (Figure 8) encapsulates 397	
  

the traditional Rb-Sr isochron. Inclusion of the diurnal ratios weakens the trend (R2 = 398	
  

0.57), particularly as the October cycle exhibits relatively high Rb/Sr ratios and low 399	
  

87Sr/86Sr values. A moderate, inverse relationship exists between the 87Sr/86Sr and Ca/K 400	
  

ratios (Figure 9, R2 = 0.47 for the entire dataset). However, there is no correlation 401	
  

between εNd and the seasonal Ca/K, further emphasizing the lack of variability in the εNd 402	
  

record.  403	
  

Due to the limited variability in the εNd ratios, we examined variation in Nd 404	
  

concentrations though the Sm/Nd ratio as a comparative plot to Figure 8. There is weak, 405	
  

positive trend (R2 = 0.17) between the Sm/Nd and total discharge over the entire dataset 406	
  

(Figure 11, in the Supplementary Online Material). The August diurnal values exhibit a 407	
  

distinctly wide range of Sm/Nd which correlate with high discharge volumes consistently 408	
  

greater than 2.7 m3 s-1 and captures peak melt conditions that occur at approximately 409	
  

16:00. Still, exclusion of the diurnal cycles leads to a weak correlation (R2 = 0.09).  410	
  

 411	
  

5. Discussion  412	
  

5.1 Characterizing the subglacial environment utilizing combined Sr-Nd analysis 413	
  

Combining radiogenic Nd and Sr isotopic systems has greatly enhanced the 414	
  

current understanding of how sediment is sourced (Goldstein and Jacobsen, 1988; 415	
  

McCulloch et al., 2003; Yang et al., 2007), transported (Viers et al., 2008; Weldeab et al., 416	
  

2002), and weathered (Lupker et al., 2013; Négrel, 2006) in rivers and soils. Our case 417	
  



studies present two contrasting scenarios regarding the processing and mixing of 418	
  

sediment in the subglacial environment. Differences between the systems help us to 419	
  

classify sediment transport mechanisms into two distinct categories: poorly-mixed and 420	
  

well-mixed subglacial suspended sediment. 421	
  

 422	
  

5.1.1 Poorly mixed suspended sediment 423	
  

The LCG exhibits a wide range of εNd values, (εNd (Range)  = 4.1). In rare instances, 424	
  

intense weathering of basalts has been attributed to εNd drifts of ~2.5 (Ma et al., 2010), 425	
  

which is still notably lower than the LCG variability. The few studies reporting annual 426	
  

variability of the dissolved and suspended sediment loads in global rivers has been within 427	
  

the range of εNd (Range) = 1-2.5 (e.g. Andersson et al., 2001; Viers et al., 2008). However, a 428	
  

large variability has been reported in suspended sediments within the major channel and 429	
  

tributaries along the Yangtze River (εNd (Range) = 3.9), which has been attributed to lack of 430	
  

dominant source rocks and complicated underlain geology ranging from Archean to 431	
  

Quaternary material (Yang et al., 2007).  432	
  

While the geology beneath the LCG is primarily mid-Cretaceous, late-Permian 433	
  

facies extend to the west and underlay part of the glacial head. Geologic units underlying 434	
  

the LCG also include: biotite schist, biotite gneiss, marble and calc-silicate granofels, 435	
  

hornblende gneiss, and granitoid rocks (Brew and Ford, 1985). In comparison, the AG is 436	
  

predominately underlain by Middle Cambrian shales and limestones. These differences 437	
  

may create a hydrologic environment where there exists a greater variation in sediment 438	
  

age and composition at the LCG.  439	
  



While the individual glaciers (LCG and AG) are relatively similar in length (Hart, 440	
  

2006; Miller and Pelto, 1999), the differences in range of the isotopic values may be a 441	
  

consequence of the rate of discharge levels or environmental forcings within the 442	
  

subglacial system. At lower discharge rates, there may be a greater potential for 443	
  

heterogeneities (e.g. previously isolated cavities containing sediment pockets) to impact 444	
  

the bulk measured sediment ratio at the terminus of the glacier (sample site). This is 445	
  

because the sample is only a snapshot of the inferred daily sediment load. As discharge 446	
  

increases, greater flow levels could provide enough peak shear stress for more consistent 447	
  

and well-mixed excavations. Still, the alternative explanative of an environmental forcing 448	
  

to the system is more compelling.  449	
  

At the LCG, the greatest spread in εNd values occurs within JD 216—234, during 450	
  

which the drainage network has likely reached its full extent. The subsequent range 451	
  

narrows and aligns with early season values; the excluded subset exhibits an average εNd 452	
  

value of -6.2 ± 1.0 (2 s.d.). This period of high variability also coincides with the 453	
  

drainage of periglacial Lake Linda, which is located at the head of the glacier. Each 454	
  

summer, rapid drainage events cause the water to flow throughout the glacier. Complete 455	
  

drainage has been observed to occur over a 48-hour period and the event may occur on 456	
  

separate times during the summer. In 2012, a flyover on JD 213 affirmed the lake had not 457	
  

yet drained. However, a sampling excursion on JD 230 revealed that drainage had 458	
  

occurred. During the drainage, the abrupt flux of water may have overwhelmed the 459	
  

system and mobilized the surface texture, which may have freed interlocked or underlain 460	
  

grains. Such disturbances could also maximize the introduction of unexposed sediment 461	
  

pockets. As the season progressed past JD 234, the transport network may then have re-462	
  



equilibrated. However, we see little evidence of a change in measured discharge during 463	
  

this period that would have been expected with the abrupt Lake Linda drainage. This may 464	
  

further emphasize the uncertainty that can be associated with subglacial dynamics. 465	
  

Precipitation may play a qualifying role as well. There was a higher frequency of 466	
  

precipitation across the sample collection period at the LCG than the AG (Figure 3 vs. 467	
  

Figure 4). As water transported from the surface and through englacial conduits plays an 468	
  

important role in the total water flux, consistent perturbations could cause the subglacial 469	
  

regime to shift and evolve on a small scale. While no consistent trend between 470	
  

precipitation and isotopic ratios exists, there may potentially be lead-lag relations. Hence, 471	
  

when using fluvial sediment as a source provenance, it may be important to assess 472	
  

potential disruptions to the hydrologic network as they may amplify heterogeneity and 473	
  

obscure chemical weathering signals. Suspended sediment itself can be more 474	
  

heterogeneous in mineralogy than dissolved sediment in nature. The composition of the 475	
  

dissolved load relates more to which minerals are preferentially dissolved through 476	
  

chemical alteration whereas the composition of the suspended load relates to the eroded 477	
  

residue, secondary mineral phases, and the introduction of additional authigenic minerals 478	
  

(Tricca et al., 1999). Further comparison between the subglacial environments from 479	
  

different climatic regimes could elucidate our understanding of the impact of climatic 480	
  

events on the partitioning of chemical signatures between the dissolved and suspended 481	
  

sediment loads.    482	
  

 483	
  

5.1.2 Well-mixed suspended sediment 484	
  



 In contrast to the LCG, limited variability is observed in the Sr-Nd record at the 485	
  

AG. The consistency does not oversimplify the depositional processes within the 486	
  

subglacial environment. Rather, it suggests a continuous, dynamic manner in which the 487	
  

sediment is mixed. The result is a similarly aged product, as reflected in the εNd values. 488	
  

The overall greater flow-through discharge measurements may reflect greater 489	
  

entrainment and transport of available sediment. Comparison between the LCG and AG 490	
  

bedrock suggests shifts in the εNd record would be observed at both sites. The rotation of 491	
  

the bedrock during the genesis of the Canadian Rockies leads to a general in decrease in 492	
  

bedrock age in the northeast direction, or down-glacier (Figure 2). One explanation is 493	
  

also that the age-gradient could be insignificant on the scale of the AG. An undetermined 494	
  

variable however is that samples from the AG were collected later in the melt season than 495	
  

the LCG (JD 223-298 versus JD 189-252, respectively). Despite potential complications 496	
  

of drainage evolution and progressive closure of basal network, the values remain 497	
  

constant through the end of the season. This measurement consistency proves interesting 498	
  

as it enables us to unravel incongruent weathering trends in the radiogenic Sr record. 499	
  

 500	
  

5.2 Strontium weathering signal and depositional implications 501	
  

  The AG isotopic record requires additional attention due to its insignificant 502	
  

variation in the εNd ratios over the course of the melt season and large scale of variability 503	
  

in the 87Sr/86Sr record (approximately twice the observed radiogenic Sr variability at the 504	
  

LCG). The dual combination promotes observation of chemical weathering trends as 505	
  

variation due to bedrock source changes has been eliminated. Négrel (2006) has related 506	
  

similar trends to incongruent weathering mechanisms in soils and waters. Hence, it is 507	
  



important to analyze the Sr systematics with their corresponding elemental data to 508	
  

determine if the comparisons between traditional, well-studied weathering environments 509	
  

and the subglacial environment can be systematic.  510	
  

The 87Sr/86Sr against the Rb/Sr ratio is presented in Figure 8. While the measured 511	
  

trends follow traditional isochron lines (Goldstein and Jacobsen, 1988), the AG plot does 512	
  

not represent variation in geologic age and instead likely represents a mineralogical 513	
  

control on the radiogenic Sr composition of the sediments (Colin et al., 2006; Singh and 514	
  

France-Lanord, 2002). Small deviations create a slightly sub-linear array. Brass (1975) 515	
  

attributed partial causation to the retention of Rb during weathering of sediments and 516	
  

preferential leaching of Sr. Slight complications may also occur due to the presence of 517	
  

un-metamorphosed sedimentary rocks (Eisenhauer et al., 1999), and studies generally 518	
  

present greater scatter in suspended sediment than dissolved sediment trends (Goldstein 519	
  

and Jacobsen, 1988).  520	
  

To further support the weathering model, Figure 9 reveals an inverse relationship 521	
  

between the 87Sr/86Sr ratios and the Ca/K ratio. Carbonate minerals within the bedrock are 522	
  

preferentially dissolved during weathering in the subglacial environment (e.g. Fairchild et 523	
  

al., 1994; Tranter et al., 1993) and the plot reinforces the release of low 87Sr/86Sr bearing 524	
  

minerals during the initial stages of chemical weathering followed by the release of more 525	
  

radiogenic 87Sr/86Sr K-bearing minerals during slower, silicate weathering. The 526	
  

relationship combines with this pseudo-isochron to provide the conceptual framework for 527	
  

detecting chemical weathering trends through correlation of radiogenic Sr record and 528	
  

hydrologic parameters. 529	
  



 Comminution through physical weathering processes leads to the exposure of 530	
  

fresh, reactive surfaces. While these reactive surfaces may be primed for chemical 531	
  

alteration, glacierized environments have been generally reported to have relatively 532	
  

higher physical and lower chemical weathering rates in comparison to non-glacierized 533	
  

environment due to high levels of glacial erosion and abrasion (Raiswell et al., 2006). 534	
  

The ratio of the two weathering rates may contribute unique characteristics to sediments 535	
  

produced in the subglacial environment. In particular, the time elapsed since initial 536	
  

comminution, and hence sediment formation, has taken place may help explain trends 537	
  

between the 87Sr/86Sr ratios and hydro-physical properties such as bulk discharge (Figure 538	
  

7). While the geologic age of the sediment presents as invariable, we suggest the concept 539	
  

of a post-comminution age to describe the correlation and depositional processes.  540	
  

Subglacial deposition may simply be a function of the net sediment flux into a 541	
  

given subglacial area (Hart, 1995) whereas entrainment occurs when a critical shear 542	
  

stress at the bed is exceeded (Walder and Fowler, 1994). The texture of the subglacial 543	
  

environment is largely unconstrained; however, the AG does maintain a layer of 544	
  

deformable subglacial till (Hart, 2006). Subglacial diamict is highly variable in grain size 545	
  

(e.g. Drewry, 1986) and has been described to maintain a matrix rich in clay and silt-546	
  

sized grains, presumably derived from comminution processes (Walder and Fowler, 547	
  

1994). Excavation of sediment is thought to differ between such soft beds and contrasting 548	
  

rigid beds (longitudinal movement of sediment at the base of deforming layer vs. erosion 549	
  

by plucking and abrasion, respectively) (Hart, 1995), and thus we would expect 550	
  

excavation at the AG to be dependent on the depositional layering of sediment. 551	
  



There is an increase in 87Sr/86Sr ratios until a seemingly critical discharge value of 552	
  

~0.9 m3 s-1 is reached at the AG. Critical discharges are likely unique to a given glacier 553	
  

and may depend on the location, bed topography, and climatic factors. The relationship 554	
  

suggests that, as flow rates increase, sediment with a younger post-comminution age will 555	
  

become entrained. As the mantle is deepened, as shown in Figure 10, ‘older’ sediment is 556	
  

exposed and primed for transport. However, once the critical discharge is reached, 557	
  

excavation of sediment is likely non-discriminatory, which may be due shear stresses 558	
  

exceeding conditions for equal mobility or the additional inclusion of previously isolated 559	
  

sediment. All available sediment has the same potential to flush out of the system. The 560	
  

consistency of this trend has implications for the production of sediment throughout the 561	
  

melt season. Often, the greatest sediment loads are excavated at the beginning of the melt 562	
  

season due to the build-up of sediment during the low flow and likely less channelized 563	
  

drainage network during the winter months (e.g. Collins, 1990). Our field campaign 564	
  

occurred during the final stage of the melt season (August—October), which suggests the 565	
  

depositional environment continues to evolve on a daily scale throughout the entire melt 566	
  

season.  567	
  

The results pose the unanswered question of the impact of a soft, deformable 568	
  

layer. If quarrying effects are only observed concurrently with similar soft-sediment 569	
  

layers, they may be requisite. Unfortunately, comparative analysis from the LCG is 570	
  

inconclusive due to the high variation of εNd record.   571	
  

 572	
  

5.3 Diurnal Variability at the Athabasca Glacier 573	
  



  The diurnal AG isotopic and elemental trends are relatively consistent with the 574	
  

time-series values. The sampling in August indicates high discharge levels (> 0.7 m3 s-1) 575	
  

throughout the day with peak discharge levels occurring in the afternoon. The resulting 576	
  

high 87Sr/86Srrange further supports the importance of flow conditions to the understanding 577	
  

of sediment transport, entrainment, and erosion. While it is expected that heterogeneities 578	
  

are inherent to chemical characterization of sediment, our study suggests the presence of 579	
  

systemic depositional processes (e.g. mantling) exist on short temporal scales. The 580	
  

October sampling aligns with a majority of the time-series trends (Figure 6, 7, and 9). 581	
  

However, the 87Sr/86Sr vs. Rb/Sr molar ratio exhibits a distinctly low 87Sr/86Sr for given 582	
  

Rb/Sr values (Figure 8). As the October sampling likely occurred during the progressive 583	
  

closure of the drainage network, an increase of preferential leaching of mobile Sr may 584	
  

help explain these observations.   585	
  

    586	
  

6. Conclusions 587	
  

 High physical weathering rates within the subglacial drainage network could 588	
  

largely impact how the suspended sediment is processed, deposited, and entrained. In an 589	
  

attempt to reveal subglacial dynamics, our study presents the first application of Sr-Nd 590	
  

systematics to the suspended sediment of the subglacial meltwater. The systematics 591	
  

traditionally track variation of source and weathering in fluvial environments. The Sr-Nd 592	
  

correlation reported in our study provides important implications for how well the 593	
  

sediment is mixed as it is processed through the drainage network at two geologically 594	
  

distinct glaciers.  595	
  



Time-series values at the LCG that show high variability in the εNd values suggest 596	
  

a poorly mixed sediment flux. The variation may relate to a glacial flood event, which 597	
  

suggests the sediment transport is sensitive to local climate disturbances. Such events 598	
  

may lead to a period of disequilibrium within the depositional environment and the 599	
  

implications suggest degree of caution should be taken when assessing weathering trends. 600	
  

Conversely, the insights gained from records of low seasonal variability in the εNd record 601	
  

strengthens our ability to understand chemical and physical processes affecting the 602	
  

radiogenic Sr record. At the AG, correlation between the 87Sr/86Sr ratios and total 603	
  

discharge measurements suggest the occurrence of bedrock mantling. We track the 604	
  

process through the post-comminution age of the suspended sediment for which we 605	
  

capitalize on traditional radiogenic Sr systematics to construct a pseudo-isochron of the 606	
  

suspended sediment. Such depositional characteristic may be unique to glaciers with soft, 607	
  

deformable beds. Application to additional subglacial environments with diverse 608	
  

geology, subglacial texture, and locations would provide useful comparisons for future 609	
  

analysis. The introduction of more isotopic tracers such as lead or hafnium could 610	
  

constrain our interpretation further. As we continue to geochemically characterize the 611	
  

processes affecting the erosion, deposition, and transport of the subglacial sediment, a 612	
  

greater quantification of how the subglacial sediment flux impacts the underlying 613	
  

depositional environment and downstream ecosystems may be facilitated.    614	
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Figures: 947	
  

 948	
  
Figure 1: Modified from Stevenson et al. (In review) and provides geologic context of the 949	
  
Lemon Creek Glacier (LCG). Kps = Taku Terrane, composed of Greenschist facies and 950	
  
metamorphosed sedimentary rocks, Late Permian. TKt = Taku terrane, tonalite sills (62-951	
  
69 Ma). pTmsv = Yukon-Tanana Terrane, high grade metamorphosed sedimentary and 952	
  
volcanic rocks, Carboniferous (Gehrels et al., 1984; Kistler et al., 1993; Samson et al., 953	
  
1990). The inset depicts the Lemon Creek watershed, which extends to the Gastineau 954	
  
Channel and to the Gulf of Alaska. The watershed was delineated using USGS 955	
  
HydroSHED digital elevation maps (Lehner et al., 2008). The topographic lines represent 956	
  
10 m of elevation on the LCG. 957	
  
 958	
  



959	
  
Figure 2: Modified from Arendt et al. (2015). Frames A and B show the geographic 960	
  
context and lithography, respectively, of the Athabasca Glacier (AG). The AG is 961	
  
primarily underlain by Middle Cambrian limestone and shale with the oldest rocks in the 962	
  
southwest, or increasing distance from the toe of the AG, and are indicated by the purple 963	
  
section. The oldest rocks are indicated in blue and the dashed lines represent rotation of 964	
  
the AG bedrock during formation. Frame C provides an elevation profile and detailed 965	
  
plot of the sampling location. 966	
  
 967	
  



Figure 3: 968	
  
Time-series measurements from the Lemon Creek Glacier (LCG). The upper panels 969	
  
represent radiogenic neodymium (written in εNd; red circles) and strontium (blue squares) 970	
  
values of the suspended sediment. Two standard errors are included. The lower panels 971	
  
depict seasonal trends of total discharge (black dashed line) and precipitation (solid green 972	
  
line).  973	
  
 974	
  



 975	
  
Figure 4: Time-series measurements from the Athabasca Glacier (AG). The upper panels 976	
  
represent radiogenic neodymium (written in εNd; red circles) and strontium (blue squares) 977	
  
values of the suspended sediment. Two standard errors are included. The lower panels 978	
  
depict seasonal trends of total discharge (black dashed line) and the daily precipitation 979	
  
(solid green line). 980	
  
 981	
  



982	
  
Figure 5: Correlation between 87Sr/86Sr and εNd in the suspended sediment at the Lemon 983	
  
Creek Glacier. The error bars represent two standard error. The large range of εNd (εNd 984	
  
(Range) ~4 units) at the LCG relates to a wide range of sediment mineral ages and suggests 985	
  
that the sediment is poorly mixed. 986	
  
 987	
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Figure 6: Correlation between 87Sr/86Sr and εNd in the suspended sediment at the AG. Low 989	
  
variability is observed in the εNd, with the included external reproducibility of εNd = 0.49. 990	
  
The narrow range of εNd (εNd (Range) ~2 units) at the AG suggests suspended sediment is 991	
  
well-mixed with regards to sediment age and variation is due to incongruent weathering 992	
  
processes. 993	
  
 994	
  



995	
  
Figure 7: Correlation between 87Sr/86Sr ratio of the suspend sediment and total outflow 996	
  
discharge at the AG. Comminuted sediment mantles the bedrock with the greatest post-997	
  
comminution age (i.e. greatest 87Sr/86Sr ratio) at the bedrock-sediment interface. At low 998	
  
discharge levels, the mantle is progressively deepened with increasing meltwater 999	
  
volumes. However, once a critical discharge level is reached (~0.9 m3 s-1), sediment 1000	
  
excavation is non-discriminatory and the wide range of 87Sr/86Sr ratios can relate to 1001	
  
processes such as exposure of previously isolated cavities. 1002	
  
 1003	
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Figure 8: Plot relating 87Sr/86Sr and Rb/Sr ratios. A stronger correlation exists between the 1005	
  
time-series measurements (R2=0.79) in comparison to the complete dataset which 1006	
  
includes both diurnal sample sets (R2=0.57). 1007	
  
 1008	
  



1009	
  
Figure 9: Relationship between 87Sr/86Sr and Ca/K in suspended sediment of the AG. 1010	
  
Despite the predominately carbonate bedrock, the inverse relationship suggests 1011	
  
preferential release of low 87Sr/86Sr bearing minerals during the initial stages of carbonate 1012	
  
weathering followed by the release of higher 87Sr/86Sr bearing minerals during silicate 1013	
  
weathering.    1014	
  
 1015	
  



1016	
  
Figure 10: Simplified diagram of the deepening of the subglacial mantle with increasing 1017	
  
meltwater excavating the comminuted sediment from the channel. 1018	
  
 1019	
  

Supporting Online Material: Appendices 1 and 2 present the hydrophysical data and 1020	
  
Appendices 3 and 4 present the isotopic data of the Lemon Creek Glacier and Athabasca 1021	
  
Glacier, respectively. Additional figures provide support for the use of the coupled Nd-Sr 1022	
  
proxy. Figure 11 depicts the correlation between the Sm/Nd and discharge of the 1023	
  
suspended sediment at the AG and Figure 12 plots the εNd and Ca/K of the suspended 1024	
  
sediment at the AG. External reproducibility of 0.49 is included. The lack of correlation 1025	
  
between K+-bearing minerals (e.g. biotite, clays) indicates there is no trend between the 1026	
  
age of the sediment and excavation processes, which further suggests the suspended 1027	
  
sediment was well-mixed prior to the deposition of comminuted sediment. 1028	
  
 1029	
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