Anna E. Clinger

Implications for post-comminution processes in subglacial suspended sediment using coupled radiogenic strontium and neodymium isotopes

Submitted for Publication in:

Geomorphology

in lieu of thesis in partial fulfillment of the requirements for the degree of **Master of Science in Earth and Environmental Sciences** Department of Earth and Environmental Sciences The University of Michigan

Accepted by:	
Sarah Aciego	Novmber 30, 2015
Name	Date
Rose Corry	I-DPC-201S
Name	Date
Chris Poulsen	12/7/15
	Accepted by: <u>Sarah Aciego</u> Name <u>Rose Coky</u> Name <u>Chris Poulsen</u> Name

I hereby grant the University of Michigan, its heirs and assigns, the non-exclusive right to reproduce and distribute single copies of my thesis, in whole or in part, in any format. I represent and warrant to the University of Michigan that the thesis is an original work, does not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis. I understand that I will not receive royalties for any reproduction of this thesis.

Permission granted.

Permission granted to copy after:

□ Permission declined.

Author Signature

1 Abstract

2 Enhanced physical weathering rates in subglacial systems promote high levels of 3 comminution, transport, and deposition of fine-grained sediment within the subglacial 4 drainage network. The impact of shifts in sediment loads due to variations in meltwater 5 flux, and their effects on downstream ecosystems, remains poorly quantified and places a 6 fundamental importance on our ability to characterize subglacial depositional 7 environments. Here, for the first time, we assess the seasonal evolution of the subglacial suspended sediment using coupled radiogenic strontium (⁸⁷Sr/⁸⁶Sr) and neodymium 8 (¹⁴³Nd/¹⁴⁴Nd) isotopic ratios with elemental ratios, and in-situ measurements. Weathering 9 10 rates in fluvial and riverine systems have been traditionally assessed using radiogenic isotopic tracers: ¹⁴³Nd/¹⁴⁴Nd ratios relate to the crustal age whereas ⁸⁷Sr/⁸⁶Sr ratios relates 11 12 to both age and preferential mineral dissolution. Relative shifts in these ratios allow us to 13 characterize distinct sediment transport networks. We apply this technique to the Lemon 14 Creek Glacier (LCG), Alaska, USA and the Athabasca Glacier (AG), Alberta, CA. At the LCG, the ¹⁴³Nd/¹⁴⁴Nd values range from ε_{Nd} of -4.6 (0.9) to -8.7 (0.2), which suggests a 15 16 poorly mixed sediment flux. However, the greatest period of variability may correlate with the drainage of a supraglacial lake and suggests caution should be exerted in time-17 scale ¹⁴³Nd/¹⁴⁴Nd provenance studies that may be affected by climatic disturbances. In 18 19 contrast, limited variation is observed within the AG¹⁴³Nd/¹⁴⁴Nd seasonal record. A 20 consistent, direct relation between the Rb/Sr elemental ratio and the ⁸⁷Sr/⁸⁶Sr ratio enables 21 us to unravel incongruent weathering trends in the radiogenic Sr record. Correlation between the ⁸⁷Sr/⁸⁶Sr and total discharge suggests the process is partially controlled by 22 23 mantling of the bedrock, which can be detected using post-comminution ages. While the 24 subglacial structure may be enabled by the subglacial till beneath the AG, our study 25 supports the use of Sr-Nd as a new proxy in the subglacial environment. 26 27 Keywords: Subglacial environment; radiogenic isotopes; suspended sediment;

- 28 comminution;
- 29
- 30
- 31

32 **1. Introduction**

33 The predicted escalation of glacial retreat by the end of the twentieth century 34 (IPCC, 2013) highlights the fundamental importance of quantifying how the environment 35 is impacted by an increase in glacio-fluvial sediment deposition. In the subglacial 36 hydrologic system, elevated pressures can promote the presence and motion of water at 37 the base of the glacier. In turn, this meltwater flux facilitates the production and transfer 38 of dissolved and suspended sediment (e.g. Collins, 1990), as well as significant physical 39 and chemical weathering between bedrock and basal ice. Shifts in meltwater 40 hydrochemistry and sediment load can have direct and profound influences on the nature 41 of downstream ecosystems (e.g. Jacobsen et al., 2012; Muhlfeld et al., 2011; Xu et al., 42 2009). The impact of glacially derived sediment release is widely variable. For example, 43 high sediment loads can disrupt salmon spawning grounds, whereas reductions in 44 meltwater quality can destabilize benthic communities (Milner et al., 2009). Additionally, 45 sediment flux can influence the degree and stability of channel distribution in pro-glacial 46 riparian zones (Milner et al., 2009). Investigating the rate and scale at which sediment 47 deposition, associated with hydrologic change, is occurring may provide insight into the 48 sensitivity of downstream ecosystems to sediment flux. 49 While certain aspects of subglacial hydrology, such as water transit velocity, 50 water quality, and subglacial water pressures, have been well studied (e.g. Anderson et 51 al., 2004; Anderson, 2007; Brown, 2002; Hodge, 1976; Lamb et al., 1995; Moore et al., 52 2013; Stenborg, 1969; Tranter, 2005), the spatial distribution of the subglacial 53 hydrological networks is less well constrained. In general, glaciers can be characterized

54 by the annual presence of basal water. Cold-based temperatures glaciers generally lie

55 below the pressure melting point throughout the entire year, whereas warm-based 56 temperatures glaciers typically reach pressure melting point throughout the entire year, 57 which promotes the presence of basal meltwater (e.g. Tranter, 2003). Poly-thermal 58 glaciers exhibit both conditions per annum (e.g. Wadham et al., 1998). In systems where 59 subglacial water is present, basal water is routed beneath glaciers and meltwater conduits 60 can carve the glacial bedrock. These subglacial drainage systems can be classified into 61 two categories: a distributed, slow-transit hydrologic system and a channelized, rapid-62 transit system (Raymond et al., 1995). However, subglacial systems cannot be defined 63 seasonally or spatially by a single configuration, as the subglacial drainage network is 64 constantly evolving (Fountain and Walder, 1998). In particular, dye-trace studies have 65 revealed a hydrologic dispersion through the subglacial drainage network changes during 66 the melt season where fast, efficient channels tend to dominate slow, inefficient networks 67 as the melt season progresses and the subglacial drainage channels expand up-glacier 68 (Bingham et al., 2005; Nienow et al., 1998). Hydrologic variability and glacial 69 sedimentary output are directly linked; comminution of rock occurs as glacial ice 70 physically abrades and meltwater chemically weathers the bedrock. Here, the resulting 71 fresh and highly reactive sediment contributes to the dissolved and suspended sediment 72 loads.

The geochemical behavior of glacially derived sediment has been increasingly
studied over the past two decades (e.g. Brown et al., 1994; Hodgkins et al., 1995; Tranter
et al., 1993; Tranter et al., 1995; Tranter et al., 2005). Yet, these limited number of
studies, which characterize the subglacial depositional environment, have focused largely
on the deformation of the glacial bed and till (e.g. Boulton et al., 2001; Evans et al., 2006;

78 van der Meer et al., 2003). Even fewer studies have addressed the seasonal dynamics of 79 sediment entrainment, transport, and deposition in the subglacial environment (e.g. Alley 80 et al., 1997; Collins, 1988; Lawson, 1993; Swift et al., 2002) or explored the coupled 81 chemical-physical behavior of the subglacial sediment load (Brown et al., 1996). 82 If subglacial hydrological network processes mirror those of subaerial or riverine 83 environments, they may exhibit similar depositional characteristics such as mantling of 84 the bedrock or mineral sorting between grain sizes. Therefore the sediment depositional 85 environment should also vary, like riverine environments, with location and lithology. 86 But, glacial environments notably differ from riverine environments in that glacial 87 abrasion leads to relatively high physical and low chemical weathering rates (Raiswell et 88 al., 2006), a ratio that likely contributes defining characteristics to the sediment flux in 89 the subglacial environment. The production of sediment through comminution processes 90 leads to the exposure of fresh, reactive surfaces that can be deposited or excavated 91 throughout the glacial system. While subglacial sediment deposition may simply be a 92 function of the net sediment flux into a given subglacial area (Hart, 1995), entrainment 93 occurs when a critical shear stress at the bed is exceeded (Walder and Fowler, 1994). 94 Further, during physical and chemical weathering processes, minerals entrained 95 within the bedrock can be weathered both congruently and incongruently. Congruent 96 weathering relates to processes involving the complete dissolution of minerals, whereas 97 incongruent weathering relates to the conversion of an initial mineral into a secondary 98 mineral through precipitation and dissolution processes. However, discerning the 99 contribution of these two processes to the dissolved load and suspended sediments 100 remains a challenge (e.g. Hindshaw et al., 2014), but the relative contributions may pose

an interesting relationship if the sediment behaves in response to the high levels ofcomminution.

As tracers of source and weathering processes in fluvial environments, radiogenic isotopes have the potential for uncovering weathering and sediment transport processes within the subglacial environment. Weathering rates in fluvial and riverine systems have been assessed using radiogenic isotopic tracers (e.g. Derry and France-Lanord, 1996; Edmond, 1992).

Strontium isotope (⁸⁷Sr/⁸⁶Sr) fluxes have typically been analyzed in stream and 108 109 river waters to trace mineral weathering reactions and rates and compare them to the 110 isotopic characteristics of the underlying and local bedrock (e.g. Arn et al., 2003; Blum 111 and Erel, 1995; Blum et al., 1993; Clow et al., 1997a; Stevenson et al., In review-b; 112 Taylor and Blum, 1995). Due to the radiogenic decay of ⁸⁷Rb to ⁸⁷Sr, the ⁸⁷Sr/⁸⁶Sr ratio 113 can also be used to place constraints on lithographic age. Radiogenic Sr is preferentially, 114 incongruently, released from minerals such as biotite during periods of high weathering 115 (e.g. Peucker-Ehrenbrink and Blum, 1998). Potassium and calcium ions in minerals can readily substitute for Rb and Sr, respectively; therefore ⁸⁷Sr/⁸⁶Sr ratios in combination 116 117 with elemental data can help discern differences in bedrock lithology (e.g. Krishnaswami 118 et al., 1992). For example, carbonate-based catchments exhibit a relatively unradiogenic signature in comparison to silicate-based catchments, $({}^{87}Sr/{}^{86}Sr = 0.708$ versus 0.721, 119 120 respectively (Allègre et al., 2010)). The ratio may also de-convolve incongruent mineral 121 weathering rates rock (e.g. Bain and Bacon, 1994; Capo et al., 1998; Clow et al., 1997b). Neodymium isotopic ratios (¹⁴³Nd/¹⁴⁴Nd) have proven themselves as powerful 122 123 tracers of dust transport, water mass, and sediment source (Aarons et al., 2013; Jiang et

124 al., 2013; Jones et al., 1994; Piepgras and Jacobsen, 1988). Natural variation in the 125 ¹⁴³Nd/¹⁴⁴Nd composition of rocks relates to the extent of mixing experienced by the 126 material derived from the mantle from differently aged sources, which is enabled by the 127 limited mobility of rare earth elements (REE), such as Sm and Nd, during sedimentary 128 processes (Öhlander et al., 2014; Taylor and McLennan, 1995). Studies utilizing Nd as a 129 tracer for intense chemical weathering are few, but pedogenic studies have shown intense 130 weathering preferentially removes ¹⁴³Nd from soil profiles (Ma et al., 2010). However, 131 Garçon et al. (2014) modeled the Nd composition of different minerals in sediment and 132 found minerals highly enriched in Nd, notably monazite and alanine to dominate the Nd 133 isotopic budgets, despite the mineral proportion consistently falling below 0.5% of the 134 total rock weight. The study supports the general classification of Nd as a proxy for 135 congruent weathering. Whilst still in development, the strength of the Nd proxy as a 136 tracer of intensive chemical weathering may be supported by correlation with the more tested radiogenic isotope proxies of radiogenic strontium (⁸⁷Sr/⁸⁶Sr). Therefore, the 137 138 relationship between radiogenic Nd and Sr systems has the potential to reveal dominant 139 weathering mechanisms in subglacial environments. 140 By correlating the radiogenic Nd and Sr isotopic ratios with local geology, daily 141 in-situ measurements and elemental data, we quantify the ability of this combined Sr-Nd

142 proxy to track channel evolution and model weathering processes in subglacial

143 environments. This study investigates for the first time the effectiveness of the

144 application of coupled Sr-Nd ratios in suspended sediments from two distinct subglacial

145 environments. Here we characterize the seasonal evolution of the subglacial meltwater

146 channels from the Lemon Creek glacier (LCG), Juneau Icefield, Alaska and the

147 Athabasca Glacier (AG), Columbia Icefield, Alberta.

148

149 **2. Site Descriptions**

150 2.1 Lemon Creek Glacier

151 The LCG is a warm-based valley glacier located in the Coast Mountain Range of 152 southeast Alaska (11.6 km², 58° 24.418' N, 134° 22.379' W). The LCG forms the 153 southernmost extension of the Juneau Icefield, which itself extends ~3,900 km². Annual mass balance surveys indicate that the glacier is retreating by an average of 0.48 m yr⁻¹ of 154 155 water equivalents (Miller and Pelto, 1999). Geologically, the LCG is located on a mid-156 Cretaceous metamorphic-pluton complex, with associated migmatites (Figure 1) (Brew 157 and Ford, 1985; Kistler et al., 1993). Young tonalite sills (62-69 Ma, with a 158 northeastward younging of the bedrock (Gehrels et al., 1984)) characterize the terrain to 159 the immediate west and high-grade metamorphosed sedimentary and volcanic rocks 160 characterize the surrounding area to the east. Late-Permian metamorphosed sedimentary 161 (Greenschist facies) rocks characterize the area further west and beneath the glacial head 162 (Kistler et al., 1993; Stevenson et al., In review-a). The local region maintains a maritime climate with average annual precipitation of 1.4 m yr⁻¹ and mean winter and summer air 163 164 temperatures of -1°C and 16°C, respectively (Stevenson et al., In review-b). 165 In a corresponding study, Stevenson et al. (In review-a) analyzed the radiogenic 166 Sr isotopic compositions of the suspended sediment at the LCG. The time-series values 167 ranged from 87 Sr/ 86 Sr = 0.708487(6) to 0.710003(8), for Julian Day (JD) 226-252. The 168 study additionally includes measured radiogenic strontium values of four bedrock

169	samples: quartzite (87 Sr/ 86 Sr = 0.72960(1)), gneiss (87 Sr/ 86 Sr = 0.70761(4)), plutonic
170	igneous granodiorite (87 Sr/ 86 Sr = 0.70710(4)), and a metamorphosed crystalline carbonate
171	$(^{87}Sr/^{86}Sr = 0.70800(2))$, with values in parentheses representing two standard error. The
172	bedrock values align well with the radiogenic Sr ratios measured in the Juneau Gold Belt
173	(Kistler et al., 1993). However, no measurements have characterized the radiogenic Nd
174	compositions of the bedrock directly beneath the LCG. In a survey of the accretionary
175	terranes of the Alaskan portion of the Coast Mountains, Samson et al. (1991) reported
176	values from juvenile plutons (i.e. the Gravina belt and the Taku terrane) and metamorphic
177	assemblages (i.e. the Tracy Arm, Endicott assemblage, Port Houghton assemblage, and
178	the Ruth assemblage), but the wide range of 143 Nd/ 144 Nd values from 0.511290 ± 12 to
179	0.513030 ± 7 highlights need for direct bedrock measurements to characterize the local
180	geology.

181 2.2 Athabasca Glacier

182 The Athabasca Glacier is one of the eight primary glaciers extending from the Columbia Icefield in the Canadian Rockies, Alberta (8.6 km², 52° 12.54' N, 117° 14.29' 183 W). It is smaller than the Juneau Icefield spanning approximately 325 km² The icefield 184 185 accumulates the largest volumes of snow and ice south of the Arctic Circle in the 186 Northern Hemisphere and contributes freshwater to the Arctic, Pacific, and Atlantic 187 Oceans (Paterson, 1964). The glacier itself spans over three icefalls and into a valley, is 188 ~1950 m a.s.l, and extends ~6 km in length. Uplift and rotation define the regional 189 geology, which is primarily Middle Cambrian limestone and shale (Figure 2) and part of 190 the Pika Formation (Charlesworth and Erdmer, 1989). Beneath the ice, a thin (0.05-0.30 191 m) deformable layer of till exists which promotes till erosion, rotation, and detachment

192 (Hart, 2006). The Athabasca Glacier in particular has been the focus of many previous

193 studies (e.g. Arendt et al., 2015; Kite and Reid, 1977; Paterson and Savage, 1963;

194 Raymond, 1969; Xu et al., 2010). Like the LCG, the glacier has consistently decreased in

total mass over the past decades of observation (Kite and Reid, 1977). In the past decade,

the region has experienced 395 to 475 mm of annual precipitation and ranges of -15 to -

197 19°C and +16 to +20°C winter and summer temperatures, respectively (Archive, 2013;

198 Arendt et al., 2015; Shea and Marshall, 2007).

199 Similarly to the LCG, the bedrock provides a framework for isotopic analysis.

200 The shales and limestones of the Pika Formation have been well-characterized as highly

radiogenic by Boghossian et al. (1996), with ε_{Nd} of -27.1. However, the carbonate bedrock

202 obstructs the possibility of measuring such radiogenic values within the strontium system.

203 To a greater degree, the values from previous study (i.e. Millot et al., 2003) relate to

204 weathering and preferential dissolution of carbonate and, in Athabasca River sediments,

205 range from 87 Sr/ 86 Sr = 0.71285 to 0.71612.

206 3. Sampling and Analysis

207 *3.1 Sample collection*

Samples were collected daily from the main meltwater channel draining the LCG from the 30th June 2012 to the 8th September 2012 (JD 182–252) and the AG from the 11th August 2014 to the 25th October 2014 (JD 223–298). The sampling site at the LCG shifted mid-season due to accessibility. From JD 182 to 210, sampling occurred from a 3 m snow pit where flowing water was observed. Once the seasonal snowpack decreased and the glacial toe was accessible, the sampling site was moved up-glacier 50 m closer to the glacier toe. Samples were collected at the second location daily from JD 227 to 252.

215	Ten liters of subglacial water were filtered using a Masterflex modular peristaltic
216	pump and a Perfluoroether (PFA) 47mm diameter filtration unit (Savillex). Hydrophilic
217	Polyvinylidene fluoride (PVDF) Millipore filter membranes (0.22 μ m) were used to
218	separate the suspended sediment.
219	Daily in-situ field protocols are outlined in (Stevenson et al., In review-b). In
220	summary: Electrical conductivity, temperature, pH, dissolved oxygen (DO) and alkalinity
221	measurements were taken using a YSI Handheld Multiparameter Instrument (Pro Plus
222	Multiparameter). The electrical conductivity, temperature, and pH measurements were all
223	conducted on-site in the subglacial outlet channels. Approximately 100 mL of filtered
224	subglacial water was used for alkalinity measurements. For anticipated high alkalinities,
225	the 100 mL sample was mixed with 10 mL of Total Alkalinity Reagent (FisherScientific)
226	solution, shaken, and the pH measured. For anticipated low alkalinities, the 100 mL
227	sample was mixed with 1 mL of Total Alkalinity Reagent solution, shaken, and the pH
228	was measured. The pH was converted to the total alkalinity using a pH-total alkalinity
229	conversion (e.g. Fujita, 2008; Hedin et al., 1994)
230	Two diurnal cycles were tracked at the AG. In August (JD $236-237$), samples
231	and in-situ measurements were collected every two hours. In October (JD $297-298$)
232	samples were collected every three hours due harsher field conditions.
233	
234	3.2 Sample preparation
235	3.2.1 Lemon Creek suspended sediments
236	The samples were prepared for isotopic analysis in a class 10 laminar flow hood

inside a 10,000 level clean room at the University of Michigan. Each filter membrane

238	was rinsed with 18.1 M Ω cm to collect the sediment, which was subsequently dried in
239	Teflon beakers. For the LCG samples, 10 mg of sediment were weighed and digested for
240	7 days in 2 mL concentrated nitric acid (HNO ₃) with 0.5 mL concentrated hydrofluoric
241	acid (HF). Samples were dried down and further digested in aqua regia for 24 hours to
242	oxidize and remove any residual organic material. Each sample was digested in 1 mL
243	aqua regia for 24 hours, dried on a hotplate, and dissolved in 1 mL of 9 M hydrochloric
244	acid (HCl) in preparation for elemental separation.
245	
246	3.2.2 Athabasca suspended sediments
247	

248 Prior to dissolution procedures (above) the dry AG sediments were first filtered 249 through a 0.63 µm sieve to eliminate potential effects of grain size distribution during 250 fluvial transport. Approximately 10 mg of sediment were weighed and digested using 251 Parr bombs. The sample was loaded into 3 mL Savillex beakers with 2 mL of 252 concentrated HF. The beakers were placed in a 125 mL PTFE container and 6 mL of 253 concentrated HF with trace concentrated HNO₃ was added. The vessel was enclosed in 254 the Parr bomb and placed in a 220°C oven for 48 hours. The solutions were dried down 255 on a hot plate and the procedure was replicated with 6 M HCl in both the Savillex 256 beakers and PTFE container at 180°C for 12-16 hours. After the final dry-down, the 257 samples were digested in 1 mL of 9 M HCl in preparation for elemental separation. 258

259 *3.3 Elemental analysis of Athabasca Glacier samples*

260 Trace and major elemental concentrations were measured in triplicate on the 261 Thermo Scientific ELEMENT2 Inductively Coupled Plasma mass spectrometer at the 262 University of Michigan Keck Laboratory in pulse counting mode. The digested sediment 263 samples were acidified and diluted to 2 mL solutions. An acid blank and standard river 264 reference standards were run every five samples to assess long-term reproducibility and 265 accuracy. Repeat measurements of international standard NIST1640a are provided in 266 Aciego et al., (2015). Baseline detection measurements from the total procedural blank 267 indicate that analytical error was never greater than 10% the concentration even for the 268 smallest concentrations. Such analyses were not possible for the LCG samples due to 269 prior consumption of sample supply in earlier studies (Sheik et al., 2015). 270 271 3.4 Neodymium isotope analysis 272 Samples were aliquoted to obtain > 25 ng of Nd. Isolation of Nd was preformed 273 through ion exchange column chemistry involving two columns. Each sample was first 274 loaded into a 700 µL PFA column filled with 50-100 mesh TruSpec resin. Following the 275 procedures of Aciego et al. (2009), HCl was used to elute high field strength elements 276 (HFSE) and REEs. The eluted volumes were then loaded into a preconditioned 2 mL 277 PFA column filled with clean 50-100 µm LnSpec resin. The subsequent volumes eluted 278 with HCl isolated the Nd from the REE fraction (Aciego et al. 2009). An acid blank and a 279 standard of known concentration (BCR-2) were processed using the same procedure to 280 ensure long-term reproducibility and assess error. 281 Nd was loaded onto outgassed rhenium double filaments after 1 µL of 1 M HCl-282 1 M HNO_3 was added to each dried sample. A current of 0.8 A was run through the

283	filament until the sample was dry. The current was slowly increased to 1.8 A and held
284	constant for 1 minute. The current was then flashed at 2.2 A and decreased to 0 A.
285	Isotopic ratios were determined using a Thermo-Finnigan Triton Thermal
286	Ionization Mass Spectrometer (TIMS) at the Glaciochemistry and Isotope Geochemistry
287	Laboratory in the Department of Earth and Environmental Science at the University of
288	Michigan (Aarons et al., 2013; Arendt et al., 2014). Instrumental mass bias was corrected
289	for by applying an exponential mass fractionation law with the 146 Nd/ 144 Nd= 0.7219 and
290	mass 149 was monitored for Sm interference. Amplifier gains and baselines were run
291	prior to each set of analysis. The Nd isotopic standard JNdi-1 (10 ng) was measured as
292	143 Nd/ 144 Nd = 0.512099 ± 0.000016 (2 s.d. n=8) which is in agreement with the accepted
293	JNdi-1 standard value of 143 Nd/ 144 Nd = 0.512115 (Tanaka et al., 2000). The 143 Nd/ 144 Nd of
294	BCR-2 was 0.512643 ± 36 (2 s.d. in the last decimal place; n=5) and in agreement with
295	the literature (Li et al., 2007; Raczek et al., 2003; Weis et al., 2006).

296

297 *3.5 Strontium radiogenic isotope analysis*

Radiogenic strontium values for suspended sediment were obtained from
Stevenson et al., (In review-a). Here we expand their existing data set using the same
analytical preparation and methods. In brief, samples were partitioned to provide 2 µg Sr,
these aliquots were dried on a hot place and dissolved in 7.5 M HNO₃. Samples were
loaded in 500 µL 3 M HNO₃ onto Sr columns containing 150 µL Eichrom Strontium
specific resin bed in 500 µL 3 M HNO₃.

304 The column was washed and eluted in several stages with HNO_3 following the 305 procedure outlined by (Aciego et al., 2009b). The procedural Sr blank was less than ~60

306	pg, constituting $< 0.1\%$ of the total Sr analyzed for a typical Sr analysis. Strontium
307	samples were loaded onto outgassed 99.98% Re filaments in 1.0 μL 7.5 N HNO3 along
308	with 0.8 μ L TaF ₅ activator to enhance the ionization efficiency of Sr (Charlier et al.,
309	2006).

310	Strontium isotope measurements were performed on a Thermo-Finnigan Triton
311	Plus Thermal Ionization Mass Spectrometer (TIMS) at the University of Michigan using
312	the method outlined in Stevenson et al., (2015b). Fractionation caused during machine
313	analysis was corrected for using 86 Sr/ 88 Sr = 0.1194. External precision on the standard
314	runs (NBS987) for 87 Sr/ 86 Sr was 0.710264 ± 0.000016 (2 s.d. n=50). A basalt rock (BCR-
315	2) was used to monitor precision of column chemistry and TIMS analysis. The 87 Sr/ 86 Sr
316	of BCR-2 was within error of literature 0.70504 ± 5 (2 s.d. in the last decimal place, n=3),
317	respectively (e.g. Krabbenhöft et al., 2009; Ma et al., 2013; Moynier et al., 2010).
318	

319 4. Results

320 4.1 Physiochemical Properties

321 The seasonal physiochemical dataset of the LCG and AG can be found in 322 Appendices A and B, respectively. Appendix B additionally contains the diurnal values 323 from August and October cycles at the AG. Greater discharge, alkalinity, and 324 conductivities characterize measurements from the AG in comparison to the LCG. In 325 general, the pH is higher at the AG (average pH = 8.89; 2 s.d. of 0.37) than the LCG 326 (average pH = 7.40; 2 s.d. of 0.40). It is important to highlight that field seasons at the 327 AG and LCG did not occur at the same time of year, with sample for the AG from JD 328 223-298 and for the LCG from JD 182-252. At the LCG the pH begins to increase

329 starting JD 238 and reached a maximum measured pH on JD 248 whereas sampling at the

AG did not begin until JD 223. Daily precipitation trends, provided by the Agroclimatic

331 Information Service (ACIS, 2015) and the NOAA Juneau Airport weather station

332 (NOAA, 2014), are additionally reported in Figure 3 and Figure 4, respectively.

333

334 4.2 Radiogenic isotope measurements

Appendices C and D present the seasonal radiogenic Sr and Nd measurements at

the LCG and AG, respectively. Errors are reported as two standard errors of the mean and

are given in parentheses with variation in the last decimal place. Correlations between the

338 ${}^{87}\text{Sr}/{}^{86}\text{Sr}$ and ϵ_{Nd} are presented in Figures 5 and 6 for the LCG and AG, respectively, and

339 include both time-series and diurnal values. The plots contrast the wide ε_{Nd} and narrow

340 87 Sr/ 86 Sr_{range} at the LCG with the narrow ε_{Nd} range and wide 87 Sr/ 86 Sr_{range} at the AG.

341

342 *4.2.1 Radiogenic Neodymium*

343 The time-series Nd isotopic values are recorded in Appendices C and D and 344 depicted in Figure 3 and 4 for the LCG and AG, respectively. The Nd isotopic 345 compositions are represented in epsilon notation as ε_{Nd} (Eq. 1), which is defined as:

$$\varepsilon_{Nd(t)} = \left[\frac{\left(\frac{14^3Nd}{14^4Nd}\right)_{sample(t)}}{\left(\frac{14^3Nd}{14^4Nd}\right)_{CHUR(t)}} - 1 \right] \times 10000$$

(Eq. 1)

346

347 where $({}^{143}Nd/{}^{144}Nd)_{CHUR}$ is the Nd isotopic composition of the Chondritic Uniform 348 Reservoir (CHUR) which is ${}^{143}Nd/{}^{144}Nd = 0.512638$ (Jacobsen and Wasserburg, 1980). 349 The internal error of 2σ of the mean is parenthesized for each value and external error is 350 $\varepsilon_{Nd} = 0.49$.

At the LCG, we observe an average radiogenic Nd value of $\varepsilon_{Nd} = -6.2 \pm 1.0$ (2 351 352 s.d.). The greatest degree of spread is observed between JD 216 to 234. Values range from ε_{Nd} of -4.6 (0.9) to -8.7 (0.2). The remaining subset from JD 230–251 exhibits an 353 354 average $\varepsilon_{Nd} = -6.2 \pm 1.1$ (2 s.d.) and mirror early season values. 355 The time-series AG values are presented in Figure 4. The dataset exhibits little seasonal variability with an average ε_{Nd} of -27.3 ± 0.6 (2 s.d.), which is only slightly 356 larger than the external reproducibility of $\varepsilon_{Nd} = 0.49$. Similarly, the diurnal values 357 reported in Appendix D align with the time-series record. We report averages of ε_{Nd} =-358 359 27.5 ± 0.7 and -27.3 ± 0.5 for the August and October cycles, respectively and with two

360 standard deviations.

361

362 *4.2.2 Radiogenic Strontium*

363 In a corresponding study, Stevenson et al. (In review-a) analyzed the radiogenic 364 Sr isotopic compositions of the suspended sediment from JD 226-252 at the LCG. The 365 LCG dataset exhibits a slightly parabolic seasonal record. The measurements trend 366 towards less radiogenic values from JD 182–213 ($R^2 = 0.93$) with a measured 87 Sr/ 86 Sr_{range} 367 = 0.709673(8) to 0.708562(8). Mid-season values from JD 214-235 exhibit poor correlation (R²=0.06), coinciding the mid-season spread of measured ε_{Nd} values. During 368 369 the time-period, we report an average value of 0.709054 ± 0.00352 (2 s.d.). At the end of 370 the season (JD 236-251), increases towards more radiogenic values mark seasonal progression (87 Sr/ 86 Sr = 0.709036(6) to 0.70975(1); R² = 0.20). 371

The time-series radiogenic Sr values from the AG (Figure 4) exhibit higher isotopic ratios, which generally decrease over the course of the melt season (87 Sr/ 86 Sr_{range} of 0.712424(7) to 0.71606(2); R² = 0.34); however, the correlation is stronger at the beginning of the melt season (JD 233-267; R² = 0.45). A greater range of seasonal variability is observed at the AG than the LCG (87 Sr/ 86 Sr_{range} = 0.0036 versus 0.0015, respectively).

Total variation in ⁸⁷Sr/⁸⁶Sr_{range} over a diurnal cycle are much larger for August, 378 379 0.0014, compared to October 0.0004. While no discernable trend exists in the October 380 record, there is a shift towards less radiogenic values from 10:00 to 20:00, which is 381 followed by an increase in the isotopic ratio from 20:00 to 4:00. However, consistently 382 high discharge measurements occurred during the August diurnal sampling with all 383 values greater than 0.75 m³ s⁻¹. The observed trends from the diurnal and time-series samples correlate well to in-situ discharge measurements (Figure 7). The ⁸⁷Sr/⁸⁶Sr ratio 384 increases with discharge ($R^2 = 0.52$) until a critical value of 0.9 m³ s⁻¹ was reached. High 385 variability in the ⁸⁷Sr/⁸⁶Sr ratio is apparent at high discharge levels during both diurnal 386 387 and time-series measurements.

388

389 *4.3 Elemental Concentrations*

Elemental concentrations from the AG are reported in Appendix B. In general, Al,
Ca, K, Mg, Na, Rb, seasonal trends are highly variable, with peaks on JD 243, 244, and

392 290. Rain events did occur on each of these days; however, there are no consistent

393 seasonal trends between the daily elemental variation and the rain events or total

394 discharge. While individual concentrations indicate mineralogical variability of the

395	sediment, molar ratios track seasonal weathering trends. Here, we refer to the Rb/Sr,
396	Sm/Nd, and Ca/K values listed in Appendix B. A strong, positive correlation between the
397	87 Sr/ 86 Sr and Rb/Sr ratios for the time-series dataset (R ² = 0.79) (Figure 8) encapsulates
398	the traditional Rb-Sr isochron. Inclusion of the diurnal ratios weakens the trend ($R^2 =$
399	0.57), particularly as the October cycle exhibits relatively high Rb/Sr ratios and low
400	⁸⁷ Sr/ ⁸⁶ Sr values. A moderate, inverse relationship exists between the ⁸⁷ Sr/ ⁸⁶ Sr and Ca/K
401	ratios (Figure 9, $R^2 = 0.47$ for the entire dataset). However, there is no correlation
402	between ϵ_{Nd} and the seasonal Ca/K, further emphasizing the lack of variability in the ϵ_{Nd}
403	record.
404	Due to the limited variability in the $\epsilon_{\mbox{\tiny Nd}}$ ratios, we examined variation in Nd
405	concentrations though the Sm/Nd ratio as a comparative plot to Figure 8. There is weak,
406	positive trend ($R^2 = 0.17$) between the Sm/Nd and total discharge over the entire dataset
407	(Figure 11, in the Supplementary Online Material). The August diurnal values exhibit a
408	distinctly wide range of Sm/Nd which correlate with high discharge volumes consistently
409	greater than 2.7 m ³ s ⁻¹ and captures peak melt conditions that occur at approximately
410	16:00. Still, exclusion of the diurnal cycles leads to a weak correlation ($R^2 = 0.09$).
411	
412	5. Discussion
413	5.1 Characterizing the subglacial environment utilizing combined Sr-Nd analysis
414	Combining radiogenic Nd and Sr isotopic systems has greatly enhanced the
415	current understanding of how sediment is sourced (Goldstein and Jacobsen, 1988;

416 McCulloch et al., 2003; Yang et al., 2007), transported (Viers et al., 2008; Weldeab et al.,

417 2002), and weathered (Lupker et al., 2013; Négrel, 2006) in rivers and soils. Our case

418 studies present two contrasting scenarios regarding the processing and mixing of

sediment in the subglacial environment. Differences between the systems help us to

420 classify sediment transport mechanisms into two distinct categories: poorly-mixed and

- 421 well-mixed subglacial suspended sediment.
- 422

423 5.1.1 Poorly mixed suspended sediment

424 The LCG exhibits a wide range of ε_{Nd} values, ($\varepsilon_{Nd (Range)} = 4.1$). In rare instances, 425 intense weathering of basalts has been attributed to ε_{Nd} drifts of ~2.5 (Ma et al., 2010), 426 which is still notably lower than the LCG variability. The few studies reporting annual 427 variability of the dissolved and suspended sediment loads in global rivers has been within the range of $\varepsilon_{Nd (Range)} = 1-2.5$ (e.g. Andersson et al., 2001; Viers et al., 2008). However, a 428 429 large variability has been reported in suspended sediments within the major channel and 430 tributaries along the Yangtze River ($\varepsilon_{Nd(Range)} = 3.9$), which has been attributed to lack of 431 dominant source rocks and complicated underlain geology ranging from Archean to 432 Quaternary material (Yang et al., 2007).

While the geology beneath the LCG is primarily mid-Cretaceous, late-Permian facies extend to the west and underlay part of the glacial head. Geologic units underlying the LCG also include: biotite schist, biotite gneiss, marble and calc-silicate granofels, hornblende gneiss, and granitoid rocks (Brew and Ford, 1985). In comparison, the AG is predominately underlain by Middle Cambrian shales and limestones. These differences may create a hydrologic environment where there exists a greater variation in sediment age and composition at the LCG. 440 While the individual glaciers (LCG and AG) are relatively similar in length (Hart, 441 2006; Miller and Pelto, 1999), the differences in range of the isotopic values may be a 442 consequence of the rate of discharge levels or environmental forcings within the 443 subglacial system. At lower discharge rates, there may be a greater potential for 444 heterogeneities (e.g. previously isolated cavities containing sediment pockets) to impact 445 the bulk measured sediment ratio at the terminus of the glacier (sample site). This is 446 because the sample is only a snapshot of the inferred daily sediment load. As discharge 447 increases, greater flow levels could provide enough peak shear stress for more consistent 448 and well-mixed excavations. Still, the alternative explanative of an environmental forcing 449 to the system is more compelling.

450 At the LCG, the greatest spread in ε_{Nd} values occurs within JD 216–234, during 451 which the drainage network has likely reached its full extent. The subsequent range 452 narrows and aligns with early season values; the excluded subset exhibits an average ε_{Nd} 453 value of -6.2 ± 1.0 (2 s.d.). This period of high variability also coincides with the 454 drainage of periglacial Lake Linda, which is located at the head of the glacier. Each 455 summer, rapid drainage events cause the water to flow throughout the glacier. Complete 456 drainage has been observed to occur over a 48-hour period and the event may occur on 457 separate times during the summer. In 2012, a flyover on JD 213 affirmed the lake had not 458 yet drained. However, a sampling excursion on JD 230 revealed that drainage had 459 occurred. During the drainage, the abrupt flux of water may have overwhelmed the 460 system and mobilized the surface texture, which may have freed interlocked or underlain 461 grains. Such disturbances could also maximize the introduction of unexposed sediment 462 pockets. As the season progressed past JD 234, the transport network may then have re463 equilibrated. However, we see little evidence of a change in measured discharge during 464 this period that would have been expected with the abrupt Lake Linda drainage. This may 465 further emphasize the uncertainty that can be associated with subglacial dynamics. 466 Precipitation may play a qualifying role as well. There was a higher frequency of 467 precipitation across the sample collection period at the LCG than the AG (Figure 3 vs. 468 Figure 4). As water transported from the surface and through englacial conduits plays an 469 important role in the total water flux, consistent perturbations could cause the subglacial 470 regime to shift and evolve on a small scale. While no consistent trend between 471 precipitation and isotopic ratios exists, there may potentially be lead-lag relations. Hence, 472 when using fluvial sediment as a source provenance, it may be important to assess 473 potential disruptions to the hydrologic network as they may amplify heterogeneity and 474 obscure chemical weathering signals. Suspended sediment itself can be more 475 heterogeneous in mineralogy than dissolved sediment in nature. The composition of the 476 dissolved load relates more to which minerals are preferentially dissolved through 477 chemical alteration whereas the composition of the suspended load relates to the eroded 478 residue, secondary mineral phases, and the introduction of additional authigenic minerals 479 (Tricca et al., 1999). Further comparison between the subglacial environments from 480 different climatic regimes could elucidate our understanding of the impact of climatic 481 events on the partitioning of chemical signatures between the dissolved and suspended 482 sediment loads.

483

484 5.1.2 Well-mixed suspended sediment

485	In contrast to the LCG, limited variability is observed in the Sr-Nd record at the
486	AG. The consistency does not oversimplify the depositional processes within the
487	subglacial environment. Rather, it suggests a continuous, dynamic manner in which the
488	sediment is mixed. The result is a similarly aged product, as reflected in the ϵ_{Nd} values.
489	The overall greater flow-through discharge measurements may reflect greater
490	entrainment and transport of available sediment. Comparison between the LCG and AG
491	bedrock suggests shifts in the $\epsilon_{\mbox{\tiny Nd}}$ record would be observed at both sites. The rotation of
492	the bedrock during the genesis of the Canadian Rockies leads to a general in decrease in
493	bedrock age in the northeast direction, or down-glacier (Figure 2). One explanation is
494	also that the age-gradient could be insignificant on the scale of the AG. An undetermined
495	variable however is that samples from the AG were collected later in the melt season than
496	the LCG (JD 223-298 versus JD 189-252, respectively). Despite potential complications
497	of drainage evolution and progressive closure of basal network, the values remain
498	constant through the end of the season. This measurement consistency proves interesting
499	as it enables us to unravel incongruent weathering trends in the radiogenic Sr record.
500	
501	5.2 Strontium weathering signal and depositional implications

502The AG isotopic record requires additional attention due to its insignificant503variation in the ε_{Nd} ratios over the course of the melt season and large scale of variability504in the 87 Sr/ 86 Sr record (approximately twice the observed radiogenic Sr variability at the505LCG). The dual combination promotes observation of chemical weathering trends as506variation due to bedrock source changes has been eliminated. Négrel (2006) has related507similar trends to incongruent weathering mechanisms in soils and waters. Hence, it is

important to analyze the Sr systematics with their corresponding elemental data to
determine if the comparisons between traditional, well-studied weathering environments
and the subglacial environment can be systematic.

511 The ⁸⁷Sr/⁸⁶Sr against the Rb/Sr ratio is presented in Figure 8. While the measured 512 trends follow traditional isochron lines (Goldstein and Jacobsen, 1988), the AG plot does 513 not represent variation in geologic age and instead likely represents a mineralogical 514 control on the radiogenic Sr composition of the sediments (Colin et al., 2006; Singh and 515 France-Lanord, 2002). Small deviations create a slightly sub-linear array. Brass (1975) 516 attributed partial causation to the retention of Rb during weathering of sediments and 517 preferential leaching of Sr. Slight complications may also occur due to the presence of 518 un-metamorphosed sedimentary rocks (Eisenhauer et al., 1999), and studies generally 519 present greater scatter in suspended sediment than dissolved sediment trends (Goldstein 520 and Jacobsen, 1988).

521 To further support the weathering model, Figure 9 reveals an inverse relationship 522 between the ⁸⁷Sr/⁸⁶Sr ratios and the Ca/K ratio. Carbonate minerals within the bedrock are 523 preferentially dissolved during weathering in the subglacial environment (e.g. Fairchild et 524 al., 1994; Tranter et al., 1993) and the plot reinforces the release of low ⁸⁷Sr/⁸⁶Sr bearing 525 minerals during the initial stages of chemical weathering followed by the release of more 526 radiogenic ⁸⁷Sr/⁸⁶Sr K-bearing minerals during slower, silicate weathering. The 527 relationship combines with this pseudo-isochron to provide the conceptual framework for 528 detecting chemical weathering trends through correlation of radiogenic Sr record and 529 hydrologic parameters.

530 Comminution through physical weathering processes leads to the exposure of 531 fresh, reactive surfaces. While these reactive surfaces may be primed for chemical 532 alteration, glacierized environments have been generally reported to have relatively 533 higher physical and lower chemical weathering rates in comparison to non-glacierized 534 environment due to high levels of glacial erosion and abrasion (Raiswell et al., 2006). 535 The ratio of the two weathering rates may contribute unique characteristics to sediments 536 produced in the subglacial environment. In particular, the time elapsed since initial 537 comminution, and hence sediment formation, has taken place may help explain trends between the ⁸⁷Sr/⁸⁶Sr ratios and hydro-physical properties such as bulk discharge (Figure 538 539 7). While the geologic age of the sediment presents as invariable, we suggest the concept 540 of a post-comminution age to describe the correlation and depositional processes. 541 Subglacial deposition may simply be a function of the net sediment flux into a 542 given subglacial area (Hart, 1995) whereas entrainment occurs when a critical shear 543 stress at the bed is exceeded (Walder and Fowler, 1994). The texture of the subglacial 544 environment is largely unconstrained; however, the AG does maintain a layer of 545 deformable subglacial till (Hart, 2006). Subglacial diamict is highly variable in grain size 546 (e.g. Drewry, 1986) and has been described to maintain a matrix rich in clay and silt-547 sized grains, presumably derived from comminution processes (Walder and Fowler, 548 1994). Excavation of sediment is thought to differ between such soft beds and contrasting 549 rigid beds (longitudinal movement of sediment at the base of deforming layer vs. erosion 550 by plucking and abrasion, respectively) (Hart, 1995), and thus we would expect 551 excavation at the AG to be dependent on the depositional layering of sediment.

552	There is an increase in ⁸⁷ Sr/ ⁸⁶ Sr ratios until a seemingly critical discharge value of
553	\sim 0.9 m ³ s ⁻¹ is reached at the AG. Critical discharges are likely unique to a given glacier
554	and may depend on the location, bed topography, and climatic factors. The relationship
555	suggests that, as flow rates increase, sediment with a younger post-comminution age will
556	become entrained. As the mantle is deepened, as shown in Figure 10, 'older' sediment is
557	exposed and primed for transport. However, once the critical discharge is reached,
558	excavation of sediment is likely non-discriminatory, which may be due shear stresses
559	exceeding conditions for equal mobility or the additional inclusion of previously isolated
560	sediment. All available sediment has the same potential to flush out of the system. The
561	consistency of this trend has implications for the production of sediment throughout the
562	melt season. Often, the greatest sediment loads are excavated at the beginning of the melt
563	season due to the build-up of sediment during the low flow and likely less channelized
564	drainage network during the winter months (e.g. Collins, 1990). Our field campaign
565	occurred during the final stage of the melt season (August-October), which suggests the
566	depositional environment continues to evolve on a daily scale throughout the entire melt
567	season.

568 The results pose the unanswered question of the impact of a soft, deformable 569 layer. If quarrying effects are only observed concurrently with similar soft-sediment 570 layers, they may be requisite. Unfortunately, comparative analysis from the LCG is 571 inconclusive due to the high variation of ε_{Nd} record.

572

573 5.3 Diurnal Variability at the Athabasca Glacier

574	The diurnal AG isotopic and elemental trends are relatively consistent with the
575	time-series values. The sampling in August indicates high discharge levels (> $0.7 \text{ m}^3 \text{ s}^{-1}$)
576	throughout the day with peak discharge levels occurring in the afternoon. The resulting
577	high 87 Sr/ 86 Sr _{range} further supports the importance of flow conditions to the understanding
578	of sediment transport, entrainment, and erosion. While it is expected that heterogeneities
579	are inherent to chemical characterization of sediment, our study suggests the presence of
580	systemic depositional processes (e.g. mantling) exist on short temporal scales. The
581	October sampling aligns with a majority of the time-series trends (Figure 6, 7, and 9).
582	However, the ⁸⁷ Sr/ ⁸⁶ Sr vs. Rb/Sr molar ratio exhibits a distinctly low ⁸⁷ Sr/ ⁸⁶ Sr for given
583	Rb/Sr values (Figure 8). As the October sampling likely occurred during the progressive
584	closure of the drainage network, an increase of preferential leaching of mobile Sr may
585	help explain these observations.

586

587 **6.** Conclusions

588 High physical weathering rates within the subglacial drainage network could 589 largely impact how the suspended sediment is processed, deposited, and entrained. In an 590 attempt to reveal subglacial dynamics, our study presents the first application of Sr-Nd 591 systematics to the suspended sediment of the subglacial meltwater. The systematics 592 traditionally track variation of source and weathering in fluvial environments. The Sr-Nd 593 correlation reported in our study provides important implications for how well the 594 sediment is mixed as it is processed through the drainage network at two geologically 595 distinct glaciers.

596 Time-series values at the LCG that show high variability in the ε_{Nd} values suggest 597 a poorly mixed sediment flux. The variation may relate to a glacial flood event, which 598 suggests the sediment transport is sensitive to local climate disturbances. Such events 599 may lead to a period of disequilibrium within the depositional environment and the 600 implications suggest degree of caution should be taken when assessing weathering trends. 601 Conversely, the insights gained from records of low seasonal variability in the ε_{Nd} record 602 strengthens our ability to understand chemical and physical processes affecting the 603 radiogenic Sr record. At the AG, correlation between the ⁸⁷Sr/⁸⁶Sr ratios and total 604 discharge measurements suggest the occurrence of bedrock mantling. We track the 605 process through the post-comminution age of the suspended sediment for which we 606 capitalize on traditional radiogenic Sr systematics to construct a pseudo-isochron of the 607 suspended sediment. Such depositional characteristic may be unique to glaciers with soft, 608 deformable beds. Application to additional subglacial environments with diverse 609 geology, subglacial texture, and locations would provide useful comparisons for future 610 analysis. The introduction of more isotopic tracers such as lead or hafnium could 611 constrain our interpretation further. As we continue to geochemically characterize the 612 processes affecting the erosion, deposition, and transport of the subglacial sediment, a 613 greater quantification of how the subglacial sediment flux impacts the underlying 614 depositional environment and downstream ecosystems may be facilitated.

615

616 Acknowledgements

617 Funding was provided by the Department of Earth & Environmental Sciences618 Turner Award and the Geological Society of America undergraduate research grant to

619 AEC and by the Packard Foundation to SMA. Thank you to Ted Houston for trace 620 element analysis, Molly Blakowski, Yi-Wei Lui, Kyle Meyer, and Walt Afonso for field 621 assistance, and University of Michigan Undergraduate Research Opportunity Program 622 students Megan Wiltse, Nickolas Adamowicz, and Rohan Mehta for laboratory 623 assistance. 624 625 626 627 628 References 629 630 Aarons, S.M., Aciego, S., Gleason, J., 2013. Variable Hf Sr Nd radiogenic isotopic 631 compositions in a Saharan dust storm over the Atlantic: Implications for dust 632 flux to oceans, ice sheets and the terrestrial biosphere. Chemical Geology, 633 349, 18-26. 634 Aciego, S., Stevenson, E., Arendt, C., 2015. Climate versus geological controls on 635 glacial meltwater micronutrient production in southern Greenland. Earth 636 and Planetary Science Letters, 424, 51-58. 637 Aciego, S.M., Bourdon, B., Lupker, M., Rickli, J., 2009a, A new procedure for 638 separating and measuring radiogenic isotopes (U, Th, Pa, Ra, Sr, Nd, Hf) in ice 639 cores. Chemical Geology, 266(3), 194-204. Aciego, S.M., Bourdon, B., Lupker, M., Rickli, J., 2009b. A new procedure for 640 641 separating and measuring radiogenic isotopes (U, Th, Pa, Ra, Sr, Nd, Hf) in ice 642 cores. Chem Geol, 266(3-4), 194-204. ACIS, 2015. Agroclimatic Information Service (ACIS). In: A.A.a.R. Development (Ed.). 643 644 Allègre, C.J., Louvat, P., Gaillardet, J., Meynadier, L., Rad, S., Capmas, F., 2010. The 645 fundamental role of island arc weathering in the oceanic Sr isotope budget. 646 Earth and Planetary Science Letters, 292(1), 51-56. 647 Alley, R.B., Cuffey, K.M., Evenson, E.B., Strasser, J.C., Lawson, D.E., Larson, G.J., 1997. 648 How glaciers entrain and transport basal sediment: Physical constraints. 649 Quaternary Science Reviews, 16(9), 1017-1038. 650 Anderson, R.S., Anderson, S.P., MacGregor, K.R., Waddington, E.D., O'Neel, S., 651 Riihimaki, C.A., Loso, M.G., 2004. Strong feedbacks between hydrology and sliding of a small alpine glacier. Journal of Geophysical Research, 109(F3). 652 653 Anderson, S.P., 2007. Biogeochemistry of glacial landscape systems. Annual Review 654 of Earth and Planetary Sciences, 35, 375-399. Andersson, P.S., Dahlqvist, R., Ingri, J., Gustafsson, Ö., 2001. The isotopic composition 655 656 of Nd in a boreal river: a reflection of selective weathering and colloidal 657 transport. Geochimica et Cosmochimica Acta, 65(4), 521-527.

 National climate data and information archive technical report no. Alberta 5, 2011-7, 2011, Fredericton, New Brunswick, Canada. Arendt, C.A., Aclego, S.M., Hetland, E.A., 2015. An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes. Geochemistry, Geophysics, Geosystems. Arendt, C.A., Aclego, S.M., Sims, K.W., Robhins, M., 2014. Sequential Separation of Uranium, Hafnium and Neodymium from Natural Waters Concentrated by Iron Coprecipitation. Geostandards and Geoanalytical Research. Arn, K., Hosein, R., Föllmi, K.B., 2003. Strontium isotope systematics in two glaciated crystalline catchments: Rhone and Oberaar Glaciers (Swiss Alps). Schweizerische mineralogische und petrographische Mitteilungen, 83, 273-283. Bain, D., Bacon, J., 1994. Strontium isotopes as indicators of mineral weathering in catchments. Catena, 22(3), 201-214. Bingham, R.G., Nienow, P.W., Sharp, M.J., Boon, S., 2005. Subglacial drainage processes at a High Arctic polythermal valley glacier. Journal of Glaciology, 51(172), 15-24. Blum, J.D., Erel, Y., 1993. A Silicate Weathering Mechanism Linking Increases in Marine Sr-87/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., Brown, K., 1993. Sr-87/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(1	658	Archive, C.N.C., 2013. Canada National Climate Archive, Natl. Clim. Data Cent.
 2011-7, 2011, Fredericton, New Brunswick, Canada. Arendt, C.A., Aciego, S.M., Hetland, E.A., 2015. An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes. Geochemistry, Geophysics, Geosystems. Arendt, C.A., Aciego, S.M., Sims, K.W., Robbins, M., 2014. Sequential Separation of Uranium, Hafnium and Ncodymium from Natural Waters Concentrated by Iron Coprecipitation. Geostandards and Geoanalytical Research. Arn, K., Hosein, R., Föllmi, K.B., 2003. Strontium isotope systematics in two glaciated crystalline catchments: Rhone and Oberaar Glaciers (Swiss Alps). Schweizerische mineralogische und petrographische Mitteilungen, 83, 273- 283. Bain, D., Bacon, J., 1994. Strontium isotopes as indicators of mineral weathering in catchments. Catena. 22(3), 201-214. Bingham, R.G., Nienow, P.W., Sharp, M.J., Boon, S., 2005. Subglacial drainage processes at a High Arctic polythermal valley glacier. Journal of Glaciology, 51(172), 15-24. Blum, J.D., Erel, Y., 1995. A Slicate Weathering Mechanism Linking Increases in Marine Sr-87/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., 1995. Netwith Sore 87/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordiilera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brown, G.H., Tranter, M., Sharp, M.,	659	National climate data and information archive technical report no. Alberta 5,
 Arendt, C.A., Aciego, S.M., Hetland, E.A., 2015. An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes. Geochemistry, Geophysics, Geosystems. Arendt, C.A., Aciego, S.M., Sims, K.W., Robbins, M., 2014. Sequential Separation of Uranium, Hafnium and Neodymium from Natural Waters Concentrated by Iron Coprecipitation. Geostandards and Geoanalytical Research. Arn, K., Hosein, R., Föllmi, K.B., 2003. Strontium isotope systematics in two glaciated crystalline catchments: Rhone and Oberaar Glaciers (Swiss Alps). Schweizerische mineralogische und petrographische Mitteilungen, 83, 273- 283. Bain, D., Bacon, J., 1994. Strontium isotopes as indicators of mineral weathering in catchments. Catena, 22(3), 201-214. Bingham, R.G., Nienow, P.W., Shary, M.J., Boon, S., 2005. Subglacial drainage processes at a High Arctic polythermal valley glacier. Journal of Glaciology, 51(172), 15-24. Blum, J.D., Erel, Y., 1995. A Silicate Weathering Mechanism Linking Increases in Marine Sr-87/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., Brown, K., 1993. Sr-87/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weather	660	2011-7, 2011, Fredericton, New Brunswick, Canada.
 isotope mixing model with applications in Earth surface processes. Geochemistry, Geophysics, Geosystems. Arendt, C.A., Aciego, S.M., Sims, K.W., Robbins, M., 2014. Sequential Separation of Uranium, Hafnium and Neodymium from Natural Waters Concentrated by Iron Coprecipitation. Geostandards and Geoanalytical Research. Arn, K., Hosein, R., Föllmi, K.B., 2003. Strontium isotope systematics in two glaciated crystalline catchments: Rhone and Oberaar Glaciers (Swiss Alps). Schweizerische mineralogische und petrographische Mitteilungen, 83, 273-283. Bain, D., Bacon, J., 1994. Strontium isotopes as indicators of mineral weathering in catchments. Catena, 22(3), 201-214. Bingham, R.G., Nienow, P.W., Sharp, M.J., Boon, S., 2005. Subglacial drainage processes at a High Arctic polythermal valley glacier. Journal of Glaciology, 51(172), 15-24. Blum, J.D., Erel, Y., 1995. A Silicate Weathering Mechanism Linking Increases in Marine Sr-87/Sr-86 ewith Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., Brown, K., 1993. Sr-7/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647-1653. Bro	661	Arendt, C.A., Aciego, S.M., Hetland, E.A., 2015. An open source Bayesian Monte Carlo
 Geochemistry, Geophysics, Geosystems. Arendt, C.A., Aciego, S.M., Sims, K.W., Robbins, M., 2014. Sequential Separation of Uranium, Hafnium and Neodymium from Natural Waters Concentrated by Iron Coprecipitation. Geostandards and Geoanalytical Research. Arn, K., Hosein, R., Föllmi, K.B., 2003. Strontium isotope systematics in two glaciated crystalline catchments: Rhone and Oberaar Glaciers (Swiss Alps). Schweizerische mineralogische und petrographische Mitteilungen, 83, 273- 283. Bain, D., Bacon, J., 1994. Strontium isotopes as indicators of mineral weathering in catchments. Catena, 22(3), 201-214. Bingham, R.G., Nienow, P.W., Shary, M.J., Boon, S., 2005. Subglacial drainage processes at a High Arctic polythermal valley glacier. Journal of Glaciology, 51(172), 15-24. Blum, J.D., Erel, Y., 1995. A Silicate Weathering Mechanism Linking Increases in Marine Sr-87/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., Brown, K., 1993. Sr-87/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brewn, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontiu	662	isotope mixing model with applications in Earth surface processes.
 Arendt, C.A., Aciego, S.M., Šims, K.W., Robbins, M., 2014. Sequential Separation of Uranium, Hafnium and Neodymium from Natural Waters Concentrated by Iron Coprecipitation. Geostandards and Geoanalytical Research. Arn, K., Hosein, R., Föllmi, K.B., 2003. Strontium isotope systematics in two glaciated crystalline catchments: Rhone and Oberaar Glaciers (Swiss Alps). Schweizerische mineralogische und petrographische Mitteilungen, 83, 273- 283. Bain, D., Bacon, J., 1994. Strontium isotopes as indicators of mineral weathering in catchments. Catena, 22(3), 201-214. Bingham, R.G., Nienow, P.W., Sharp, M.J., Boon, S., 2005. Subglacial drainage processes at a High Arctic polythermal valley glacier. Journal of Glaciology, 51(172), 15-24. Blum, J.D., Erel, Y., 1995. A Silicate Weathering Mechanism Linking Increases in Marine Sre7/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., 1995. A Silicate Weathering Mechanism Linking Increases in Marine Sre7/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., Brown, K., 1993. Sr-87/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles,	663	Geochemistry, Geophysics, Geosystems,
 Uranium, Hafnium and Neodymium from Natural Vaters Concentrated by Iron Coprecipitation. Geostandards and Geoanalytical Research. Arn, K., Hosein, R., Föllmi, K.B., 2003. Strontium isotope systematics in two glaciated crystalline catchments: Rhone and Oberaar Glaciers (Swiss Alps). Schweizerische mineralogische und petrographische Mitteilungen, 83, 273- 283. Bain, D., Bacon, J., 1994. Strontium isotopes as indicators of mineral weathering in catchments. Catena, 22(3), 201-214. Bingham, R.G., Nienow, P.W., Sharp, M.J., Boon, S., 2005. Subglacial drainage processes at a High Arctic polythermal valley glacier. Journal of Glaciology, 51(172), 15-24. Blum, J.D., Erel, Y., 1995. A Silicate Weathering Mechanism Linking Increases in Marine Sr-87/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., Brown, K., 1993. Sr-87/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, 74ku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10	664	Arendt, C.A., Aciego, S.M., Sims, K.W., Robbins, M., 2014, Sequential Separation of
 Iron Coprecipitation. Geostandards and Geoanalytical Research. Arn, K., Hosein, R., Föllmi, K.B., 2003. Strontium isotope systematics in two glaciated crystalline catchments: Rhone and Oberaar Glaciers (Swiss Alps). Schweizerische mineralogische und petrographische Mitteilungen, 83, 273-283. Bain, D., Bacon, J., 1994. Strontium isotopes as indicators of mineral weathering in catchments. Catena, 22(3), 201-214. Bingham, R.G., Nienow, P.W., Sharp, M.J., Boon, S., 2005. Subglacial drainage processes at a High Arctic polythermal valley glacier. Journal of Glaciology, 51(172), 15-24. Blum, J.D., Erel, Y., 1995. A Silicate Weathering Mechanism Linking Increases in Marine Sr-87/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., Brown, K., 1993. Sr-87/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647-1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., 2002. Glacier meltwater hydrochemistry.	665	Uranium, Hafnium and Neodymium from Natural Waters Concentrated by
 Arn, K., Hosein, R., Föllmi, K.B., 2003. Strontium isotope systematics in two glaciated crystalline catchments: Rhone and Oberaar Glaciers (Swiss Alps). Schweizerische mineralogische und petrographische Mitteilungen, 83, 273- 283. Bain, D., Bacon, J., 1994. Strontium isotopes as indicators of mineral weathering in catchments. Catena, 22(3), 201-214. Bingham, R.G., Nienow, P.W., Sharp, M.J., Boon, S., 2005. Subglacial drainage processes at a High Arctic polythermal valley glacier. Journal of Glaciology, 51(172), 15-24. Blum, J.D., Erel, Y., 1995. A Silicate Weathering Mechanism Linking Increases in Marine Sr-87/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., Brown, K., 1993. Sr-87/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and me	666	Iron Coprecipitation. Geostandards and Geoanalytical Research.
 crystalline catchments: Rhone and Oberaar Glaciers (Swiss Alps). Schweizerische mineralogische und petrographische Mitteilungen, 83, 273-283. Bain, D., Bacon, J., 1994. Strontium isotopes as indicators of mineral weathering in catchments. Catena, 22(3), 201-214. Bingham, R.G., Nienow, P.W., Sharp, M.J., Boon, S., 2005. Subglacial drainage processes at a High Arctic polythermal valley glacier. Journal of Glaciology, 51(172), 15-24. Blum, J.D., Erel, Y., 1995. A Silicate Weathering Mechanism Linking Increases in Marine Sr-87/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., Brown, K., 1993. Sr-87/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647-1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., Zrater, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1-3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology	667	Arn, K., Hosein, R., Föllmi, K.B., 2003. Strontium isotope systematics in two glaciated
 Schweizerische mineralogische und petrographische Mitteilungen, 83, 273- 283. Bain, D., Bacon, J., 1994. Strontium isotopes as indicators of mineral weathering in catchments. Catena, 22(3), 201-214. Bingham, R.G., Nienow, P.W., Sharp, M.J., Boon, S., 2005. Subglacial drainage processes at a High Arctic polythermal valley glacier. Journal of Glaciology, 51(172), 15-24. Blum, J.D., Erel, Y., 1995. A Silicate Weathering Mechanism Linking Increases in Marine Sr-87/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., Brown, K., 1993. Sr-87/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., Zono2. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1-3), 197-225. Charlesworth,	668	crystalline catchments: Rhone and Oberaar Glaciers (Swiss Alps).
 Bain, D., Bacon, J., 1994. Strontium isotopes as indicators of mineral weathering in catchments. Catena, 22(3), 201-214. Bingham, R.G., Nienow, P.W., Sharp, M.J., Boon, S., 2005. Subglacial drainage processes at a High Arctic polythermal valley glacier. Journal of Glaciology, 51(172), 15-24. Blum, J.D., Erel, Y., 1995. A Silicate Weathering Mechanism Linking Increases in Marine Sr-87/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., 1995. A Silicate Weathering Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Gapo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1-3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. 	669	Schweizerische mineralogische und petrographische Mitteilungen, 83, 273-
 Bain, D., Bacon, J., 1994. Strontium isotopes as indicators of mineral weathering in catchments. Catena, 22(3), 201-214. Bingham, R.G., Nienow, P.W., Sharp, M.J., Boon, S., 2005. Subglacial drainage processes at a High Arctic polythermal valley glacier. Journal of Glaciology, 51(172), 15-24. Blum, J.D., Erel, Y., 1995. A Silicate Weathering Mechanism Linking Increases in Marine Sr-87/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., Brown, K., 1993. Sr-87/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brewn, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1-3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and N	670	283.
 catchments. Catena, 22(3), 201-214. Bingham, R.G., Nienow, P.W., Sharp, M.J., Boon, S., 2005. Subglacial drainage processes at a High Arctic polythermal valley glacier. Journal of Glaciology, 51(172), 15-24. Blum, J.D., Erel, Y., 1995. A Silicate Weathering Mechanism Linking Increases in Marine Sr-87/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., Brown, K., 1993. Sr-87/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., Znou. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1-3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the <	671	Bain, D., Bacon, J., 1994. Strontium isotopes as indicators of mineral weathering in
 Bingham, R.G., Nienow, P.W., Sharp, M.J., Boon, S., 2005. Subglacial drainage processes at a High Arctic polythermal valley glacier. Journal of Glaciology, 51(172), 15-24. Blum, J.D., Erel, Y., 1995. A Silicate Weathering Mechanism Linking Increases in Marine Sr-87/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., Brown, K., 1993. Sr-87/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1-3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier, B.L.A. Ginibre C. Morcan D. Nowell G.M. Pearson D.G. Davidson I.P. 	672	catchments. Catena, 22(3), 201-214.
 processes at a High Arctic polythermal valley glacier. Journal of Glaciology, 51(172), 15-24. Blum, J.D., Erel, Y., 1995. A Silicate Weathering Mechanism Linking Increases in Marine Sr-87/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., Brown, K., 1993. Sr-87/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1-3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier, B.L. Ginihre C. Morgan D. Nowell G. M. Pearson, D. G. Davidson I.P. 	673	Bingham, R.G., Nienow, P.W., Sharp, M.J., Boon, S., 2005. Subglacial drainage
 51(172), 15-24. Blum, J.D., Erel, Y., 1995. A Silicate Weathering Mechanism Linking Increases in Marine Sr-87/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., Brown, K., 1993. Sr-87/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1-3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier, B.L. Ginihre, C. Morgan, D. Nowell, G.M. Pearson, D.G. Davidson, I.P. 	674	processes at a High Arctic polythermal valley glacier. Journal of Glaciology,
 Blum, J.D., Erel, Y., 1995. A Silicate Weathering Mechanism Linking Increases in Marine Sr-87/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., Brown, K., 1993. Sr-87/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1-3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. 	675	51(172), 15-24.
 Marine Sr-87/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418. Blum, J.D., Erel, Y., Brown, K., 1993. Sr-87/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1-3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. 	676	Blum, J.D., Erel, Y., 1995. A Silicate Weathering Mechanism Linking Increases in
 Blum, J.D., Erel, Y., Brown, K., 1993. Sr-87/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., Znanter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1-3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charles R. L.A. Ginibre, C. Morgan, D. Nowell, G.M. Pearson, D.G. Davidson, I.P. 	677	Marine Sr-87/Sr-86 with Global Glaciation. Nature, 373(6513), 415-418.
 Waters - Implications for Relative Mineral Weathering Rates. Geochim Cosmochim Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1-3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier, B.L.A. Ginibre, C. Morgan, D. Nowell, G.M. Pearson, D.G. Davidson, I.P. 	678	Blum, J.D., Erel, Y., Brown, K., 1993. Sr-87/Sr-86 Ratios of Sierra-Nevada Stream
 Cosmochin Ac, 57(21-22), 5019-5025. Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1–3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier, B.L.A. Ginibre, C. Morgan, D. Nowell, G.M. Pearson, D.G. Davidson, I.P. 	679	Waters - Implications for Relative Mineral Weathering Rates. Geochim
 Boghossian, N.D., Patchett, P.J., Ross, G.M., Gehrels, G.E., 1996. Nd isotopes and the source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1–3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier, B.LA. Ginibre, C. Morgan, D. Nowell, G.M. Pearson, D.G. Davidson, I.P. 	680	Cosmochim Ac. 57(21-22), 5019-5025.
 source of sediments in the miogeocline of the Canadian Cordillera. The Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1-3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier, B.LA. Ginibre, C. Morgan, D. Nowell, G.M. Pearson, D.G. Davidson, I.P. 	681	Boghossian, N.D., Patchett, P.I., Ross, G.M., Gehrels, G.E., 1996, Nd isotopes and the
 Journal of Geology, 259-277. Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1-3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier, B.L.A. Ginibre, C. Morgan, D. Nowell, G.M. Pearson, D.G. Davidson, I.P. 	682	source of sediments in the miogeocline of the Canadian Cordillera. The
 Boulton, G., Dobbie, K., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1–3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier B L.A. Ginibre C. Morgan D. Nowell G.M. Pearson D.G. Davidson J.P. 	683	Journal of Geology, 259-277.
 and its coupling to the subglacial hydraulic system. Quaternary International, 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1–3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. 	684	Boulton, G., Dobbie, K., Zatsepin, S., 2001, Sediment deformation beneath glaciers
 86(1), 3-28. Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1–3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier, B.L.A. Ginibre, C. Morgan, D. Nowell, G.M. Pearson, D.G. Davidson, J.P. 	685	and its coupling to the subglacial hydraulic system. Quaternary International
 Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1–3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier, B.L.A. Ginibre, C. Morgan, D. Nowell, G.M. Pearson, D.G. Davidson, J.P. 	686	86(1), 3-28.
 in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647- 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1–3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier, B.L.A. Ginibre, C. Morgan, D. Nowell, G.M. Pearson, D.G. Davidson, I.P. 	687	Brass, G.W., 1975. The effect of weathering on the distribution of strontium isotopes
 1653. Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1–3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier, B.L.A. Ginibre, C. Morgan, D. Nowell, G.M. Pearson, D.G. Davidson, I.P. 	688	in weathering profiles. Geochimica et Cosmochimica Acta, 39(12), 1647-
 Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau, Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1–3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier, B.L.A. Ginibre, C. Morgan, D. Nowell, G.M. Pearson, D.G. Davidson, I.P. 	689	1653.
 691 Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles, 692 southeastern Alaska. 2331-1258, US Geological Survey. 693 Brown, G.H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 694 855-883. 695 Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the 696 weathering of suspended sediment by alpine glacial meltwater. Hydrological 697 Processes, 10(4), 579-597. 698 Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of 699 ecosystem processes: theory and methods. Geoderma, 82(1–3), 197-225. 700 Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the 701 Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. 702 Charlier B.L.A. Ginibre C. Morgan D. Nowell G.M. Pearson D.G. Davidson J.P. 	690	Brew, D.A., Ford, A.B., 1985. Preliminary reconnaissance geologic map of the Juneau,
 southeastern Alaska. 2331-1258, US Geological Survey. Brown, G.H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1–3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier, B.L.A. Ginibre, C. Morgan, D. Nowell, G.M. Pearson, D.G. Davidson, J.P. 	691	Taku River, Atlin, and part of the Skagway 1: 250,000 quadrangles,
 Brown, G.H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1–3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier, B.L.A. Ginibre, C. Morgan, D. Nowell, G.M. Pearson, D.G. Davidson, J.P. 	692	southeastern Alaska. 2331-1258, US Geological Survey.
 855-883. Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1–3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier, B.L.A. Ginibre, C. Morgan, D. Nowell, G.M. Pearson, D.G. Davidson, J.P. 	693	Brown, G.H., 2002. Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7),
 Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the weathering of suspended sediment by alpine glacial meltwater. Hydrological Processes, 10(4), 579-597. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1–3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier, B.L.A. Ginibre, C. Morgan, D. Nowell, G.M. Pearson, D.G. Davidson, J.P. 	694	855-883.
 696 weathering of suspended sediment by alpine glacial meltwater. Hydrological 697 Processes, 10(4), 579-597. 698 Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of 699 ecosystem processes: theory and methods. Geoderma, 82(1–3), 197-225. 700 Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the 701 Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. 702 Charlier B L A. Ginibre C. Morgan D. Nowell G M. Pearson D G. Davidson J P. 	695	Brown, G.H., Tranter, M., Sharp, M., 1996. Experimental investigations of the
 697 Processes, 10(4), 579-597. 698 Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of 699 ecosystem processes: theory and methods. Geoderma, 82(1–3), 197-225. 700 Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the 701 Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. 702 Charlier B.L.A. Ginibre C. Morgan D. Nowell G.M. Pearson D.G. Davidson J.P. 	696	weathering of suspended sediment by alpine glacial meltwater. Hydrological
 Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82(1–3), 197-225. Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier, B.L.A. Ginibre, C. Morgan, D. Nowell, G.M. Pearson, D.G. Davidson, J.P. 	697	Processes, 10(4), 579-597.
 699 ecosystem processes: theory and methods. Geoderma, 82(1–3), 197-225. 700 Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the 701 Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. 702 Charlier B L A. Ginibre C. Morgan D. Nowell G M. Pearson D G. Davidson J P. 	698	Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998, Strontium isotopes as tracers of
 Charlesworth, H., Erdmer, P., 1989. Geology of the Rocky Mountains between the Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. Charlier B L A. Ginibre C. Morgan D. Nowell G M. Pearson D G. Davidson J P. 	699	ecosystem processes; theory and methods. Geoderma. 82(1–3), 197-225.
701 Athabasca and North Saskatchewan Rivers, Edmonton Geological Society. 702 Charlier B L A Ginibre C Morgan D Nowell G M Pearson D G Davidson J P	700	Charlesworth, H., Erdmer, P., 1989, Geology of the Rocky Mountains between the
702 Charlier BLA Ginibre C Morgan D Nowell GM Pearson DG Davidson IP	701	Athabasca and North Saskatchewan Rivers, Edmonton Geological Society
	702	Charlier, B.L.A., Ginibre, C., Morgan, D., Nowell, G.M., Pearson, D.G., Davidson, J.P.
703 Ottley, C.J., 2006. Methods for the microsampling and high-precision analysis	703	Ottley, C.J., 2006. Methods for the microsampling and high-precision analysis

704	of strontium and rubidium isotopes at single crystal scale for petrological
705	and geochronological applications. Chemical Geology, 232(3-4), 114-133.
706	Clow, D.W., Mast, M.A., Bullen, T.D., Turk, J.T., 1997a. Strontium 87 strontium 86 as a
707	tracer of mineral weathering reactions and calcium sources in an
708	alpine/subalpine watershed, Loch Vale, Colorado. Water Resour Res, 33(6),
709	1335-1351.
710	Clow, D.W., Mast, M.A., Bullen, T.D., Turk, J.T., 1997b. Strontium 87/strontium 86 as
711	a tracer of mineral weathering reactions and calcium sources in an
712	alpine/subalpine watershed, Loch Vale, Colorado. Water Resources Research,
713	33(6), 1335-1351.
714	Colin, C., Turpin, L., Blamart, D., Frank, N., Kissel, C., Duchamp, S., 2006. Evolution of
715	weathering patterns in the Indo - Burman Ranges over the last 280 kyr:
716	Effects of sediment provenance on 87Sr/86Sr ratios tracer. Geochemistry.
717	Geophysics, Geosystems, 7(3).
718	Collins, D.N., 1988. Seasonal development of subglacial drainage and suspended
719	sediment delivery to meltwaters beneath an Alpine glacier. Department of
720	Geography. University of Manchester.
721	Collins, D.N., 1990. Seasonal and annual variations of suspended sediment transport
722	in meltwaters draining from an Alpine glacier. Hydrology in Mountainous
723	Regions I: Hydrological Measurements: the Water Cycle, 439-446.
724	Derry, L.A., France-Lanord, C., 1996, Neogene Himalayan weathering history and
725	river 87Sr/86Sr: impact on the marine Sr record. Earth and Planetary Science
726	Letters, 142(1), 59-74.
726 727	Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore.
726 727 728	Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium
726 727 728 729	Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088), 1594-1597.
726 727 728 729 730	Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088), 1594-1597. Eisenhauer, A., Meyer, H., Rachold, V., Tütken, T., Wiegand, B., Hansen, B., Spielhagen,
726 727 728 729 730 731	Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088), 1594-1597. Eisenhauer, A., Meyer, H., Rachold, V., Tütken, T., Wiegand, B., Hansen, B., Spielhagen, R., Lindemann, F., Kassens, H., 1999. Grain size separation and sediment
726 727 728 729 730 731 732	 Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088), 1594-1597. Eisenhauer, A., Meyer, H., Rachold, V., Tütken, T., Wiegand, B., Hansen, B., Spielhagen, R., Lindemann, F., Kassens, H., 1999. Grain size separation and sediment mixing in Arctic Ocean sediments: evidence from the strontium isotope
726 727 728 729 730 731 732 733	 Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088), 1594-1597. Eisenhauer, A., Meyer, H., Rachold, V., Tütken, T., Wiegand, B., Hansen, B., Spielhagen, R., Lindemann, F., Kassens, H., 1999. Grain size separation and sediment mixing in Arctic Ocean sediments: evidence from the strontium isotope systematic. Chemical Geology, 158(3), 173-188.
726 727 728 729 730 731 732 733 734	 Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088), 1594-1597. Eisenhauer, A., Meyer, H., Rachold, V., Tütken, T., Wiegand, B., Hansen, B., Spielhagen, R., Lindemann, F., Kassens, H., 1999. Grain size separation and sediment mixing in Arctic Ocean sediments: evidence from the strontium isotope systematic. Chemical Geology, 158(3), 173-188. Evans, D., Phillips, E., Hiemstra, J., Auton, C., 2006. Subglacial till: formation,
726 727 728 729 730 731 732 733 734 735	 Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088), 1594-1597. Eisenhauer, A., Meyer, H., Rachold, V., Tütken, T., Wiegand, B., Hansen, B., Spielhagen, R., Lindemann, F., Kassens, H., 1999. Grain size separation and sediment mixing in Arctic Ocean sediments: evidence from the strontium isotope systematic. Chemical Geology, 158(3), 173-188. Evans, D., Phillips, E., Hiemstra, J., Auton, C., 2006. Subglacial till: formation, sedimentary characteristics and classification. Earth-Science Reviews, 78(1),
726 727 728 729 730 731 732 733 734 735 736	 Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088), 1594-1597. Eisenhauer, A., Meyer, H., Rachold, V., Tütken, T., Wiegand, B., Hansen, B., Spielhagen, R., Lindemann, F., Kassens, H., 1999. Grain size separation and sediment mixing in Arctic Ocean sediments: evidence from the strontium isotope systematic. Chemical Geology, 158(3), 173-188. Evans, D., Phillips, E., Hiemstra, J., Auton, C., 2006. Subglacial till: formation, sedimentary characteristics and classification. Earth-Science Reviews, 78(1), 115-176.
726 727 728 729 730 731 732 733 734 735 736 737	 Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088), 1594-1597. Eisenhauer, A., Meyer, H., Rachold, V., Tütken, T., Wiegand, B., Hansen, B., Spielhagen, R., Lindemann, F., Kassens, H., 1999. Grain size separation and sediment mixing in Arctic Ocean sediments: evidence from the strontium isotope systematic. Chemical Geology, 158(3), 173-188. Evans, D., Phillips, E., Hiemstra, J., Auton, C., 2006. Subglacial till: formation, sedimentary characteristics and classification. Earth-Science Reviews, 78(1), 115-176. Fairchild, I.J., Bradby, L., Sharp, M., Tison, JL., 1994. Hydrochemistry of carbonate
726 727 728 729 730 731 732 733 734 735 736 737 738	 Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088), 1594-1597. Eisenhauer, A., Meyer, H., Rachold, V., Tütken, T., Wiegand, B., Hansen, B., Spielhagen, R., Lindemann, F., Kassens, H., 1999. Grain size separation and sediment mixing in Arctic Ocean sediments: evidence from the strontium isotope systematic. Chemical Geology, 158(3), 173-188. Evans, D., Phillips, E., Hiemstra, J., Auton, C., 2006. Subglacial till: formation, sedimentary characteristics and classification. Earth-Science Reviews, 78(1), 115-176. Fairchild, I.J., Bradby, L., Sharp, M., Tison, JL., 1994. Hydrochemistry of carbonate terrains in alpine glacial settings. Earth Surface Processes Landforms, 19, 33-
726 727 728 729 730 731 732 733 734 735 736 737 738 739	 Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088), 1594-1597. Eisenhauer, A., Meyer, H., Rachold, V., Tütken, T., Wiegand, B., Hansen, B., Spielhagen, R., Lindemann, F., Kassens, H., 1999. Grain size separation and sediment mixing in Arctic Ocean sediments: evidence from the strontium isotope systematic. Chemical Geology, 158(3), 173-188. Evans, D., Phillips, E., Hiemstra, J., Auton, C., 2006. Subglacial till: formation, sedimentary characteristics and classification. Earth-Science Reviews, 78(1), 115-176. Fairchild, I.J., Bradby, L., Sharp, M., Tison, JL., 1994. Hydrochemistry of carbonate terrains in alpine glacial settings. Earth Surface Processes Landforms, 19, 33-54.
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740	 Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088), 1594-1597. Eisenhauer, A., Meyer, H., Rachold, V., Tütken, T., Wiegand, B., Hansen, B., Spielhagen, R., Lindemann, F., Kassens, H., 1999. Grain size separation and sediment mixing in Arctic Ocean sediments: evidence from the strontium isotope systematic. Chemical Geology, 158(3), 173-188. Evans, D., Phillips, E., Hiemstra, J., Auton, C., 2006. Subglacial till: formation, sedimentary characteristics and classification. Earth-Science Reviews, 78(1), 115-176. Fairchild, I.J., Bradby, L., Sharp, M., Tison, JL., 1994. Hydrochemistry of carbonate terrains in alpine glacial settings. Earth Surface Processes Landforms, 19, 33-54. Fountain, A.G., Walder, J.S., 1998. Water flow through temperate glacier. Rev.
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741	 Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088), 1594-1597. Eisenhauer, A., Meyer, H., Rachold, V., Tütken, T., Wiegand, B., Hansen, B., Spielhagen, R., Lindemann, F., Kassens, H., 1999. Grain size separation and sediment mixing in Arctic Ocean sediments: evidence from the strontium isotope systematic. Chemical Geology, 158(3), 173-188. Evans, D., Phillips, E., Hiemstra, J., Auton, C., 2006. Subglacial till: formation, sedimentary characteristics and classification. Earth-Science Reviews, 78(1), 115-176. Fairchild, I.J., Bradby, L., Sharp, M., Tison, JL., 1994. Hydrochemistry of carbonate terrains in alpine glacial settings. Earth Surface Processes Landforms, 19, 33-54. Fountain, A.G., Walder, J.S., 1998. Water flow through temperate glacier. Rev. Geophys., 36(3), 299-328.
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742	 Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088), 1594-1597. Eisenhauer, A., Meyer, H., Rachold, V., Tütken, T., Wiegand, B., Hansen, B., Spielhagen, R., Lindemann, F., Kassens, H., 1999. Grain size separation and sediment mixing in Arctic Ocean sediments: evidence from the strontium isotope systematic. Chemical Geology, 158(3), 173-188. Evans, D., Phillips, E., Hiemstra, J., Auton, C., 2006. Subglacial till: formation, sedimentary characteristics and classification. Earth-Science Reviews, 78(1), 115-176. Fairchild, I.J., Bradby, L., Sharp, M., Tison, JL., 1994. Hydrochemistry of carbonate terrains in alpine glacial settings. Earth Surface Processes Landforms, 19, 33-54. Fountain, A.G., Walder, J.S., 1998. Water flow through temperate glacier. Rev. Geophys., 36(3), 299-328. Fujita, K., 2008. Effect of precipitation seasonality on climatic sensitivity of glacier
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743	 Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088), 1594-1597. Eisenhauer, A., Meyer, H., Rachold, V., Tütken, T., Wiegand, B., Hansen, B., Spielhagen, R., Lindemann, F., Kassens, H., 1999. Grain size separation and sediment mixing in Arctic Ocean sediments: evidence from the strontium isotope systematic. Chemical Geology, 158(3), 173-188. Evans, D., Phillips, E., Hiemstra, J., Auton, C., 2006. Subglacial till: formation, sedimentary characteristics and classification. Earth-Science Reviews, 78(1), 115-176. Fairchild, I.J., Bradby, L., Sharp, M., Tison, JL., 1994. Hydrochemistry of carbonate terrains in alpine glacial settings. Earth Surface Processes Landforms, 19, 33-54. Fountain, A.G., Walder, J.S., 1998. Water flow through temperate glacier. Rev. Geophys., 36(3), 299-328. Fujita, K., 2008. Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth and Planetary Science Letters, 276(1), 14-19.
726 727 728 729 730 731 732 733 734 735 736 737 738 737 738 739 740 741 742 743 744	 Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088), 1594-1597. Eisenhauer, A., Meyer, H., Rachold, V., Tütken, T., Wiegand, B., Hansen, B., Spielhagen, R., Lindemann, F., Kassens, H., 1999. Grain size separation and sediment mixing in Arctic Ocean sediments: evidence from the strontium isotope systematic. Chemical Geology, 158(3), 173-188. Evans, D., Phillips, E., Hiemstra, J., Auton, C., 2006. Subglacial till: formation, sedimentary characteristics and classification. Earth-Science Reviews, 78(1), 115-176. Fairchild, I.J., Bradby, L., Sharp, M., Tison, JL., 1994. Hydrochemistry of carbonate terrains in alpine glacial settings. Earth Surface Processes Landforms, 19, 33-54. Fountain, A.G., Walder, J.S., 1998. Water flow through temperate glacier. Rev. Geophys., 36(3), 299-328. Fujita, K., 2008. Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth and Planetary Science Letters, 276(1), 14-19. Garçon, M., Chauvel, C., France-Lanord, C., Limonta, M., Garzanti, E., 2014. Which
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745	 Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088), 1594-1597. Eisenhauer, A., Meyer, H., Rachold, V., Tütken, T., Wiegand, B., Hansen, B., Spielhagen, R., Lindemann, F., Kassens, H., 1999. Grain size separation and sediment mixing in Arctic Ocean sediments: evidence from the strontium isotope systematic. Chemical Geology, 158(3), 173-188. Evans, D., Phillips, E., Hiemstra, J., Auton, C., 2006. Subglacial till: formation, sedimentary characteristics and classification. Earth-Science Reviews, 78(1), 115-176. Fairchild, I.J., Bradby, L., Sharp, M., Tison, JL., 1994. Hydrochemistry of carbonate terrains in alpine glacial settings. Earth Surface Processes Landforms, 19, 33-54. Fountain, A.G., Walder, J.S., 1998. Water flow through temperate glacier. Rev. Geophys., 36(3), 299-328. Fujita, K., 2008. Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth and Planetary Science Letters, 276(1), 14-19. Garçon, M., Chauvel, C., France-Lanord, C., Limonta, M., Garzanti, E., 2014. Which minerals control the Nd–Hf–Sr–Pb isotopic compositions of river sediments?
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746	 Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088), 1594-1597. Eisenhauer, A., Meyer, H., Rachold, V., Tütken, T., Wiegand, B., Hansen, B., Spielhagen, R., Lindemann, F., Kassens, H., 1999. Grain size separation and sediment mixing in Arctic Ocean sediments: evidence from the strontium isotope systematic. Chemical Geology, 158(3), 173-188. Evans, D., Phillips, E., Hiemstra, J., Auton, C., 2006. Subglacial till: formation, sedimentary characteristics and classification. Earth-Science Reviews, 78(1), 115-176. Fairchild, I.J., Bradby, L., Sharp, M., Tison, JL., 1994. Hydrochemistry of carbonate terrains in alpine glacial settings. Earth Surface Processes Landforms, 19, 33-54. Fountain, A.G., Walder, J.S., 1998. Water flow through temperate glacier. Rev. Geophys., 36(3), 299-328. Fujita, K., 2008. Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth and Planetary Science Letters, 276(1), 14-19. Garçon, M., Chauvel, C., France-Lanord, C., Limonta, M., Garzanti, E., 2014. Which minerals control the Nd-Hf-Sr-Pb isotopic compositions of river sediments? Chemical Geology, 364, 42-55.
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747	 Letters, 142(1), 59-74. Drewry, D., 1986. Glacial geologic processes. Edward Arnold Baltimore. Edmond, J., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258(5088), 1594-1597. Eisenhauer, A., Meyer, H., Rachold, V., Tütken, T., Wiegand, B., Hansen, B., Spielhagen, R., Lindemann, F., Kassens, H., 1999. Grain size separation and sediment mixing in Arctic Ocean sediments: evidence from the strontium isotope systematic. Chemical Geology, 158(3), 173-188. Evans, D., Phillips, E., Hiemstra, J., Auton, C., 2006. Subglacial till: formation, sedimentary characteristics and classification. Earth-Science Reviews, 78(1), 115-176. Fairchild, I.J., Bradby, L., Sharp, M., Tison, JL., 1994. Hydrochemistry of carbonate terrains in alpine glacial settings. Earth Surface Processes Landforms, 19, 33-54. Fountain, A.G., Walder, J.S., 1998. Water flow through temperate glacier. Rev. Geophys., 36(3), 299-328. Fujita, K., 2008. Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth and Planetary Science Letters, 276(1), 14-19. Garçon, M., Chauvel, C., France-Lanord, C., Limonta, M., Garzanti, E., 2014. Which minerals control the Nd-Hf-Sr-Pb isotopic compositions of river sediments? Chemical Geology, 364, 42-55. Gehrels, G., Brew, D., Saleeby, J., 1984. Progress report on U/Pb (zircon)

749	Juneau, southeastern Alaska. This publication is part of a larger work. Please
750	see C-939 for more information. Department of Natural Resources, Division
751	of Geological & Geophysical Surveys (DGGS) 3354 College Road, Fairbanks,
752	AK.
753	Goldstein, S.J., Jacobsen, S.B., 1988. Nd and Sr isotopic systematics of river water
754	suspended material: implications for crustal evolution. Earth and Planetary
755	Science Letters, 87(3), 249-265.
756	Hart, J.K., 1995. Subglacial erosion, deposition and deformation associated with
757	deformable beds. Progress in Physical Geography, 19(2), 173-191.
758	Hart, I.K., 2006, Athabasca Glacier, Canada–a field example of subglacial ice and till
759	erosion? Earth Surface Processes and Landforms. 31(1), 65-80.
760	Hedin, R.S., Watzlaf, G.R., Nairn, R.W., 1994, Passive treatment of acid mine drainage
761	with limestone. Journal of Environmental Quality, 23(6), 1338-1345.
762	Hindshaw, R.S., Rickli, J., Leuthold, J., Wadham, J., Bourdon, B., 2014, Identifying
763	weathering sources and processes in an outlet glacier of the Greenland Ice
764	Sheet using Ca and Sr isotope ratios. Geochimica et Cosmochimica Acta, 145.
765	50-71.
766	Hodge, S.M., 1976. Direct measurement of basal water pressures: a pilot study.
767	Journal of Glaciology, 16, 205-218.
768	Hodgkins, R., Tranter, M., Dowdeswell, J., 1995, The interpretation of hydrochemical
769	evidence for meltwater routing at a high Arctic glacier. IAHS Publications-
770	Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 228.
771	387-394.
772	IPCC, 2013. Climate Change 2013: The Physical Science Basis: Working Group I
773	Contribution to the Fifth Assessment Report of the Intergovernment Panel on
774	Climate Change. Cambridge University Press, Cambridge.
775	Jacobsen, D., Milner, A.M., Brown, L.E., Dangles, O., 2012. Biodiversity under threat in
776	glacier-fed river systems. Nature Climate Change, 2(5), 361-364.
777	Jacobsen, S.B., Wasserburg, G., 1980. Sm-Nd isotopic evolution of chondrites. Earth
778	and Planetary Science Letters, 50(1), 139-155.
779	Jiang, F., Frank, M., Li, T., Xu, Z., Li, A., 2013. Asian dust input in the western
780	Philippine Sea: Evidence from radiogenic Sr and Nd isotopes. Geochemistry,
781	Geophysics, Geosystems, 14(5), 1538-1551.
782	Jones, C.E., Halliday, A.N., Rea, D.K., Owen, R.M., 1994. Neodymium isotopic
783	variations in North Pacific modern silicate sediment and the insignificance of
784	detrital REE contributions to seawater. Earth and Planetary Science Letters,
785	127(1–4), 55-66.
786	Kistler, R.W., Newberry, R.J., Brew, D.A., 1993. Vein minerals in the Juneau Gold Belt,
787	Alaska. Geologic Studies in Alaska by the US Geological Survey, 1992, 236.
788	Kite, G., Reid, I., 1977. Volumetric change of the Athabasca Glacier over the last 100
789	years. Journal of Hydrology, 32(3), 279-294.
790	Krabbenhöft, A., Fietzke, J., Eisenhauer, A., Liebetrau, V., Bohm, F., Vollstaedt, H.,
791	2009. Determination of radiogenic and stable strontium isotope ratios
792	((87)Sr/(86)Sr; delta(88/86)Sr) by thermal ionization mass spectrometry
793	applying an (87)Sr/(84)Sr double spike. J Anal Atom Spectrom, 24(9), 1267-
794	1271.

795	Krishnaswami, S., Trivedi, J.R., Sarin, M.M., Ramesh, R., Sharma, K.K., 1992. Strontium
796	isotopes and rubidium in the Ganga-Brahmaputra river system: Weathering
797	in the Himalaya, fluxes to the Bay of Bengal and contributions to the
798	evolution of oceanic87Sr/86Sr. Earth and Planetary Science Letters, 109(1–
799	2), 243-253.
800	Lamb, H., Tranter, M., Brown, G., Hubbard, B., Sharp, M., Gordon, S., Smart, C., Willis,
801	I., Nielsen, M., 1995. The composition of subglacial meltwaters sampled from
802	boreholes at the Haut Glacier d'Arolla, Switzerland. IAHS Publications-Series
803	of Proceedings and Reports-Intern Assoc Hydrological Sciences, 228, 395-
804	404.
805	Lawson, D.E., 1993. Glaciohydrologic and glaciohydraulic effects on runoff and
806	sediment yield in glacierized basins, DTIC Document.
807	Li, CF., Chen, F., Li, XH., 2007. Precise isotopic measurements of sub-nanogram Nd
808	of standard reference material by thermal ionization mass spectrometry
809	using the NdO+ technique. International Journal of Mass Spectrometry,
810	266(1), 34-41.
811	Lupker, M., France-Lanord, C., Galy, V., Lavé, J., Kudrass, H., 2013. Increasing
812	chemical weathering in the Himalayan system since the Last Glacial
813	Maximum. Earth and Planetary Science Letters, 365, 243-252.
814	Ma, J., Wei, G., Xu, Y., Long, W., 2010. Variations of Sr–Nd–Hf isotopic systematics in
815	basalt during intensive weathering. Chemical Geology, 269(3–4), 376-385.
816	Ma, J.L., Wei, G.J., Liu, Y., Ren, Z.Y., Xu, Y.G., Yang, Y.H., 2013. Precise measurement of
817	stable (delta Sr-88/86) and radiogenic (Sr-87/Sr-86) strontium isotope
818	ratios in geological standard reference materials using MC-ICP-MS. Chinese
819	Sci Bull, 58(25), 3111-3118.
820	McCulloch, M., Pailles, C., Moody, P., Martin, C.E., 2003. Tracing the source of
821	sediment and phosphorus into the Great Barrier Reef lagoon. Earth and
822	Planetary Science Letters, 210(1), 249-258.
823	Miller, M.M., Pelto, M.S., 1999. Mass balance measurements on the Lemon Creek
824	Glacier, Juneau Icefield, Alaska 1953–1998. Geografiska Annaler: Series A,
825	Physical Geography, 81(4), 671-681.
826	Millot, R., érôme Gaillardet, J., Dupré, B., Allègre, C.J., 2003. Northern latitude
827	chemical weathering rates: clues from the Mackenzie River Basin, Canada.
828	Geochimica et Cosmochimica Acta, 67(7), 1305-1329.
829	Milner, A.M., Brown, L.E., Hannah, D.M., 2009. Hydroecological response of river
830	systems to shrinking glaciers. Hydrological Processes, 23(1), 62-77.
831	Moore, P.L., Winberry, J.P., Iverson, N.R., Christianson, K.A., Anandakrishnan, S.,
832	Jackson, M., Mathison, M.E., Cohen, D., 2013. Glacier slip and seismicity
833	induced by surface melt. Geology, 41(12), 1247-1250.
834	Moynier, F., Agranier, A., Hezel, D.C., Bouvier, A., 2010. Sr stable isotope composition
835	of Earth, the Moon, Mars, Vesta and meteorites. Earth Planet Sc Lett, 300(3-
836	4), 359-366.
837	Muhlfeld, C.C., Giersch, J.J., Hauer, F.R., Pederson, G.T., Luikart, G., Peterson, D.P.,
838	Downs, C.C., Fagre, D.B., 2011. Climate change links fate of glaciers and an
839	endemic alpine invertebrate. Climatic Change, 106(2), 337-345.

840	Négrel, P., 2006. Water–granite interaction: clues from strontium, neodymium and
841	rare earth elements in soil and waters. Applied Geochemistry, 21(8), 1432-
842	1454.
843	Nienow, P., Sharp, M., Willis, I., 1998. Seasonal changes in the morphology of the
844	subglacial drainage system, Haut Glacier d'Arolla, Switzerland. Earth Surface
845	Processes and Landforms, 23(9), 825-843.
846	NOAA, 2014. Quality Controlled Local Climatological Data (QCLCD 2.5.5). In: NE.P.S.
847	Division (Ed.), Boulder, Colorado.
848	Öhlander, B., Land, M., Ingri, J., Widerlund, A., 2014. Mobility and Transport of Nd
849	Isotopes in the Vadose Zone during Weathering of Granitic Till in a Boreal
850	Forest. Aquatic Geochemistry, 20(1), 1-17.
851	Paterson, W., 1964. Variations in velocity of Athabasca Glacier with time. Journal of
852	Glaciology, 5, 277-285.
853	Paterson, W., Savage, J., 1963. Geometry and movement of the Athabasca Glacier.
854	Journal of Geophysical Research, 68(15), 4513-4520.
855	Peucker-Ehrenbrink, B., Blum, J.D., 1998. Re-Os isotope systematics and weathering
856	of Precambrian crustal rocks: implications for the marine osmium isotope
857	record. Geochimica et Cosmochimica Acta, 62(19–20), 3193-3203.
858	Piepgras, D.J., Jacobsen, S.B., 1988. The isotopic composition of neodymium in the
859	North Pacific. Geochimica et Cosmochimica Acta, 52(6), 1373-1381.
860	Raczek, I., Jochum, K.P., Hofmann, A.W., 2003. Neodymium and Strontium Isotope
861	Data for USGS Reference Materials BCR - 1, BCR - 2, BHVO - 1, BHVO - 2,
862	AGV - 1, AGV - 2, GSP - 1, GSP - 2 and Eight MPI - DING Reference Glasses.
863	Geostandards Newsletter, 27(2), 173-179.
864	Raiswell, R., Tranter, M., Benning, L.G., Siegert, M., De'ath, R., Huybrechts, P., Payne,
865	T., 2006. Contributions from glacially derived sediment to the global iron
866	(oxyhydr) oxide cycle: implications for iron delivery to the oceans.
867	Geochimica et Cosmochimica Acta, 70(11), 2765-2780.
868	Raymond, C.F., 1969. Flow in a transverse section of Athabasca Glacier, Alberta,
869	Canada, California Institute of Technology.
870	Raymond, C.F., Benedict, R.J., Harrison, W.D., Echelmeyer, K.A., Sturm, M., 1995.
871	Hydrological discharges and motion of Fels and Black-Rapids Glaciers,
872	Alaska, USA - Implications for the structure of their drainage systems. Journal
873	of Glaciology, 41(138), 290-304.
874	Samson, S.D., Patchett, P.J., McCleeland, W.C., Gehrels, G.E., 1991. Nd isotopic
875	characterization of metamorphic rocks in the Coast Mountains, Alaskan and
876	Canadian Cordillera: ancient crust bounded by juvenile terranes. Tectonics,
877	10(4), 770-780.
878	Shea, J.M., Marshall, S.J., 2007. Atmospheric flow indices, regional climate, and
879	glacier mass balance in the Canadian Rocky Mountains. International journal
880	of climatology, 27(2), 233-247.
881	Sheik, C.S., Stevenson, E.I., Den Uyl, P.A., Arendt, C.A., Aciego, S.M., Dick, G.J., 2015.
882	Microbial communities of the Lemon Creek Glacier show subtle structural
883	variation yet stable phylogenetic composition over space and time. Frontiers
884	in Microbiology, 6, 495.

885	Singh, S.K., France-Lanord, C., 2002. Tracing the distribution of erosion in the
886	Brahmaputra watershed from isotopic compositions of stream sediments.
887	Earth and Planetary Science Letters, 202(3–4), 645-662.
888	Stenborg, T., 1969. Studies of the internal drainage of glaciers. Geografiska Annaler.
889	Series A. Physical Geography, 13-41.
890	Stevenson, E.I., Aciego, S.M., Burton, K.W., Parkinson, I.J., Blakowski, M.A., Arendt,
891	C.A., In review-a. Insights into combined radiogenic and stable strontium
892	isotopes as tracers for weathering processes in subglacial environments.
893	Chemical Geology.
894	Stevenson, E.I., Aciego, S.M., Liu, YW., Arendt, C.A., In review-b. Glacial catchment
895	seasonal snow and ice melt impacts on the hydrochemistry of the proglacial
896	environment: evidence from the Lemon Creek. Arctic, Antarctic, and Alpine
897	Research, In review.
898	Swift, D.A., Nienow, P.W., Spedding, N., Hoey, T.B., 2002. Geomorphic implications of
899	subglacial drainage configuration: rates of basal sediment evacuation
900	controlled by seasonal drainage system evolution. Sedimentary Geology,
901	149(1), 5-19.
902	Taylor, A., Blum, J.D., 1995. Relation between Soil Age and Silicate Weathering Rates
903	Determined from the Chemical Evolution of a Glacial Chronosequence.
904	Geology, 23(11), 979-982.
905	Taylor, S.R., McLennan, S.M., 1995. The geochemical evolution of the continental
906	crust. Reviews of Geophysics, 33(2), 241.
907	Tranter, M., 2003. Geochemical weathering in glacial and proglacial environments.
908	Treatise on geochemistry, 5, 189-205.
909	Tranter, M., 2005. Geochemical weathering in glacial and proglacial environments.
910	Surface and Groundwater, Weathering and Soils, 5, 189-205.
911	Tranter, M., Brown, G., Raiswell, R., Sharp, M., Gurnell, A., 1993. A conceptual-model
912	of solute acquisition by alpine glacial meltwaters. Journal of Glaciology,
913	39(133), 573-581.
914	Tricca, A., Stille, P., Steinmann, M., Kiefel, B., Samuel, J., Eikenberg, J., 1999. Rare
915	earth elements and Sr and Nd isotopic compositions of dissolved and
916	suspended loads from small river systems in the Vosges mountains (France),
917	the river Rhine and groundwater. Chemical Geology, $160(1-2)$, $139-158$.
918	van der Meer, J.J., Menzies, J., Rose, J., 2003. Subglacial till: the deforming glacier bed.
919	Quaternary Science Reviews, 22(15), 1659-1685.
920	Viers, J., Roddaz, M., Filizola, N., Guyot, JL., Sondag, F., Brunet, P., Zouiten, C.,
921	Boucayrand, C., Martin, F., Boaventura, G.R., 2008. Seasonal and provenance
922	controls on Nd–Sr isotopic compositions of Amazon rivers suspended
923	sediments and implications for Nd and Sr fluxes exported to the Atlantic
924	Ocean. Earth and Planetary Science Letters, 274(3–4), 511-523.
925	Wadham, J., Hodson, A., Tranter, M., Dowdeswell, J., 1998. The hydrochemistry of
926	meltwaters draining a polythermal - based, high Arctic glacier, south
927	Svalbard: I. The ablation season. Hydrological Processes, 12(12), 1825-1849.
928	Walder, J.S., Fowler, A., 1994. Channelized subglacial drainage over a deformable
929	bed. Journal of Glaciology, 40(134), 3-15.

930 Weis, D., Kieffer, B., Maerschalk, C., Barling, J., De Jong, J., Williams, G.A., Hanano, D., 931 Pretorius, W., Mattielli, N., Scoates, J.S., 2006. High - precision isotopic 932 characterization of USGS reference materials by TIMS and MC - ICP - MS. 933 Geochemistry, Geophysics, Geosystems, 7(8). 934 Weldeab, S., Emeis, K.-C., Hemleben, C., Siebel, W., 2002. Provenance of lithogenic 935 surface sediments and pathways of riverine suspended matter in the Eastern 936 Mediterranean Sea: evidence from 143 Nd/144 Nd and 87 Sr/86 Sr ratios. 937 Chemical Geology, 186(1), 139-149. 938 Xu, J., Grumbine, R.E., Shrestha, A., Eriksson, M., Yang, X., Wang, Y., Wilkes, A., 2009. The melting Himalayas: cascading effects of climate change on water, 939 940 biodiversity, and livelihoods. Conservation Biology, 23(3), 520-530. 941 Xu, Y., Simpson, A.J., Eyles, N., Simpson, M.J., 2010. Sources and molecular 942 composition of cryoconite organic matter from the Athabasca Glacier, 943 Canadian Rocky Mountains. Organic Geochemistry, 41(2), 177-186. 944 Yang, S., Jiang, S., Ling, H., Xia, X., Sun, M., Wang, D., 2007. Sr-Nd isotopic 945 compositions of the Changjiang sediments: Implications for tracing sediment 946 sources. Science in China Series D: Earth Sciences, 50(10), 1556-1565.

948

949 Figure 1: Modified from Stevenson et al. (In review) and provides geologic context of the 950 Lemon Creek Glacier (LCG). Kps = Taku Terrane, composed of Greenschist facies and 951 metamorphosed sedimentary rocks, Late Permian. TKt = Taku terrane, tonalite sills (62-952 69 Ma). pTmsv = Yukon-Tanana Terrane, high grade metamorphosed sedimentary and 953 volcanic rocks, Carboniferous (Gehrels et al., 1984; Kistler et al., 1993; Samson et al., 954 1990). The inset depicts the Lemon Creek watershed, which extends to the Gastineau 955 Channel and to the Gulf of Alaska. The watershed was delineated using USGS 956 HydroSHED digital elevation maps (Lehner et al., 2008). The topographic lines represent 957 10 m of elevation on the LCG.

- 959 960 Figure 2: Modified from Arendt et al. (2015). Frames A and B show the geographic
- 961 context and lithography, respectively, of the Athabasca Glacier (AG). The AG is 962 primarily underlain by Middle Cambrian limestone and shale with the oldest rocks in the
- 963 southwest, or increasing distance from the toe of the AG, and are indicated by the purple
- section. The oldest rocks are indicated in blue and the dashed lines represent rotation of 964
- 965 the AG bedrock during formation. Frame C provides an elevation profile and detailed
- plot of the sampling location. 966
- 967

972 depict seasonal trends of total discharge (black dashed line) and precipitation (solid green973 line).

975 **Julian Day (2014)** 976 Figure 4: Time-series measurements from the Athabasca Glacier (AG). The upper panels 977 represent radiogenic neodymium (written in ε_{Nd} ; red circles) and strontium (blue squares) 978 values of the suspended sediment. Two standard errors are included. The lower panels 979 depict seasonal trends of total discharge (black dashed line) and the daily precipitation 980 (solid green line).

982 983 Figure 5: Correlation between $^{87}Sr/^{86}Sr$ and $\epsilon_{_{Nd}}$ in the suspended sediment at the Lemon

984 Creek Glacier. The error bars represent two standard error. The large range of $\epsilon_{\scriptscriptstyle Nd}\,(\epsilon_{\scriptscriptstyle Nd}$ (Range)~4 units) at the LCG relates to a wide range of sediment mineral ages and suggests 985 986 that the sediment is poorly mixed.

Figure 6: Correlation between 87 Sr/ 86 Sr and ε_{Nd} in the suspended sediment at the AG. Low

990 variability is observed in the ε_{Nd} , with the included external reproducibility of $\varepsilon_{Nd} = 0.49$.

991 The narrow range of ε_{Nd} ($\varepsilon_{Nd (Range)} \sim 2$ units) at the AG suggests suspended sediment is

well-mixed with regards to sediment age and variation is due to incongruent weatheringprocesses.

Figure 7: Correlation between 87 Sr/ 86 Sr ratio of the suspend sediment and total outflow discharge at the AG. Comminuted sediment mantles the bedrock with the greatest postcomminution age (i.e. greatest 87 Sr/ 86 Sr ratio) at the bedrock-sediment interface. At low discharge levels, the mantle is progressively deepened with increasing meltwater volumes. However, once a critical discharge level is reached (~0.9 m³ s⁻¹), sediment excavation is non-discriminatory and the wide range of 87 Sr/ 86 Sr ratios can relate to processes such as exposure of previously isolated cavities.

1004 1005 Figure 8: Plot relating 87 Sr/ 86 Sr and Rb/Sr ratios. A stronger correlation exists between the 1006 time-series measurements (R²=0.79) in comparison to the complete dataset which 1007 includes both diurnal sample sets (R²=0.57). 1008

 $\begin{array}{c} 1009\\ 1010 \end{array}$ Figure 9: Relationship between ⁸⁷Sr/⁸⁶Sr and Ca/K in suspended sediment of the AG.

Despite the predominately carbonate bedrock, the inverse relationship suggests 1011

preferential release of low ⁸⁷Sr/⁸⁶Sr bearing minerals during the initial stages of carbonate 1012

weathering followed by the release of higher ⁸⁷Sr/⁸⁶Sr bearing minerals during silicate 1013

- 1014 weathering.
- 1015

1016

1017 Figure 10: Simplified diagram of the deepening of the subglacial mantle with increasing

1018 meltwater excavating the comminuted sediment from the channel.

1019

1020 Supporting Online Material: Appendices 1 and 2 present the hydrophysical data and 1021 Appendices 3 and 4 present the isotopic data of the Lemon Creek Glacier and Athabasca Glacier, respectively. Additional figures provide support for the use of the coupled Nd-Sr 1022 1023

proxy. Figure 11 depicts the correlation between the Sm/Nd and discharge of the

suspended sediment at the AG and Figure 12 plots the $\epsilon_{\mbox{\tiny Nd}}$ and Ca/K of the suspended 1024

sediment at the AG. External reproducibility of 0.49 is included. The lack of correlation 1025 1026 between K⁺-bearing minerals (e.g. biotite, clays) indicates there is no trend between the

1027 age of the sediment and excavation processes, which further suggests the suspended

1028 sediment was well-mixed prior to the deposition of comminuted sediment.

- 1029
- 1030
- 1031