Aislinn E. Deely

Photon dose affects dissolved organic matter apparent quantum yields in Alaskan Arctic surface waters

submitted in partial fulfillment of the requirements for the degree of
Master of Science in Earth and Environmental Sciences
Department of Earth and Environmental Sciences
The University of Michigan

Accepted by:

Name
Date

Signature

Accepted by:

Name
Date

Signature

Department Chair Signature

Permission granted.

□ Permission granted to copy after: ________________

□ Permission declined.

Author Signature

Earth and Environmental Sciences
UNIVERSITY OF MICHIGAN
Photon dose affects dissolved organic matter apparent quantum yields in Alaskan Arctic surface waters
Aislinn E. Deely

Abstract

Photochemical, or light-driven, processing of dissolved organic matter (DOM) in inland waters can completely degrade DOM to carbon dioxide (CO$_2$), a greenhouse gas, through photo-mineralization or partially degrade DOM through partial photo-oxidation. Evidence suggests that the lability of DOM, quantified as an apparent quantum yield (AQY, ϕ_{AQ}), is not constant with increasing light exposure. Thus, the rate of photochemical processing is not constant during light exposure in sunlit surface waters as DOM ϕ_{AQ} changes. Findings in this study show that $\phi_{PM,\lambda}$ (photo-mineralization) typically decreases as photon dose increases, while $\phi_{PPO,\lambda}$ (partial photo-oxidation) does not show a consistent trend. Differences in DOM chemistry between sites and dates sampled are likely controlling differences in $\phi_{PM,\lambda}$ and $\phi_{PPO,\lambda}$ trends with increasing photon dose. Daily areal rates of photo-mineralization calculated with $\phi_{PM,\lambda}$ after a low photon dose are an overestimate by a factor of 2.08 ± 0.18 compared to rates calculated with $\phi_{PM,\lambda}$ from a higher photon dose, while daily areal rates of partial photo-oxidation calculated with $\phi_{PPO,\lambda}$ after a low photon dose are an overestimate by a factor of 1.15 ± 0.10 compared to rates calculated with $\phi_{PPO,\lambda}$ from a higher photon dose. Because partial photo-oxidation $\phi_{PPO,\lambda}$ does not show a consistent trend with increasing photon dose, the impact of low vs. high photon dose experimentally determined $\phi_{PPO,\lambda}$ on calculated areal rates is not as large as the impact of $\phi_{PM,\lambda}$. Understanding how photon dose and DOM chemistry control the photochemical degradation of DOM will further constrain current estimates of how much CO$_2$ and partially-oxidized DOM is produced through photochemical processes in these arctic surface waters.
Introduction

Inland waters transport large amounts of carbon from land to the atmosphere and to the ocean, similar in magnitude to the net flux of carbon between land and the atmosphere (Cole et al. 2007). Much of the carbon in inland waters is in the form of dissolved organic matter (DOM). DOM is a heterogeneous mixture of organic molecules, resulting from the breakdown of bacterial and plant organic matter. DOM has multiple fates as it moves through inland waters: (1) DOM is stored in sediments and the hyporheic zone, (2) DOM is converted to carbon dioxide (CO$_2$, a greenhouse gas) in the water column by photochemical reactions and microbial respiration, which can then be emitted to the atmosphere, or (3) DOM is partially oxidized by photochemical reactions, which can be respired by microbes or transported to the ocean (Battin et al. 2009; Cole et al. 2007; Wetzel 2001; Cory et al. 2013, 2014). This DOM fate is particularly important in the Arctic, where permafrost soils contain twice as much carbon as there is currently in the atmosphere (Tarnocai et al. 2009). Permafrost soils are thawing and releasing carbon to inland waters in the Arctic (Zhang et al. 2006; Keller et al. 2010). Understanding the controls on DOM fate, and how this could change as carbon is released from permafrost soils, is vital for inland water, and thus, global carbon budgets.

Previous work suggests that the relative balance of DOM completely converted to CO$_2$ by light vs. partially oxidized by light may vary due to differences in prior light exposure that DOM has received during transit in arctic surface waters (Cory et al. 2013, 2014). DOM with little prior light exposure (e.g., exported from soils) is easily converted to CO$_2$ by light (Cory et al. 2013, 2014), thus this DOM is labile to photochemical processing. As water travels downstream and total photon dose increases, the fraction of DOM readily converted to CO$_2$ by light may be depleted. As these labile fractions are removed, partial photo-oxidation becomes the dominant
fate of DOM (Cory et al. 2014). However, changes in DOM lability to photochemical processes, or how easily the DOM is processed by light, with increasing photon dose are poorly understood.

Studies have shown that the rate of photochemical CO$_2$ production in seawater is not constant with increasing light exposure (Farjalla et al. 2001; Lindell et al. 2000; Miles and Brezonik 1981; Miller and Zepp 1995; Powers and Miller 2015a, 2015b). Miller and Zepp (1995) suggested that the greater production of CO$_2$ in short light exposure experiments compared to long light exposure experiments indicated the presence of a DOM pool that was very labile to photo-mineralization. Farjalla et al. (2001) observed nonlinear CO$_2$ production with increased light exposure, however they attributed it to photobleaching, where colored DOM (CDOM) is degraded to uncolored DOM thus reducing the rate of light absorption (Wetzel et al. 1995; Miller and Zepp 1995; Pullin et al. 2004). Powers and Miller (2015a, 2015b) showed that initial rates of CO$_2$ production were faster than during longer exposures, and that photobleaching did not account for the nonlinear production. However, the sites, light exposure times, and light source are not consistent across the studies described above, and therefore it is difficult to determine a common control on photo-mineralization with increasing light exposure. Additionally, these studies did not calculate apparent quantum yields (AQYs, ϕ_b), which is a measure of DOM lability quantified as mol CO$_2$ produced per mol photons absorbed by CDOM for photo-mineralization ($\phi_{PM,\lambda}$), normalizing the photochemically produced CO$_2$ to the rate of light absorption, which is not constant across sites (Vahatalo et al. 2000; Hu et al. 2002). Photo-mineralization with increasing light exposure has not yet been investigated in freshwaters.

Molecular oxygen (O$_2$) is consumed in waters when light absorbed by CDOM initiates the production of reactive intermediates and radicals, called reactive oxygen species (ROS) (Miles and Brezonik 1981). However, few studies have measured photochemical O$_2$ consumption with
increasing photon dose (Amon and Benner 1996; Andrews et al. 2000; Lindell et al. 2000; Miles and Brezonik 1981). Amon and Benner (1996) observed a decrease in the rate of O$_2$ consumption with increasing light exposure, however absorbance was not measured, therefore it cannot be concluded that the observed decrease in O$_2$ consumption was due to changes in DOM lability rather than photobleaching. Miles and Brezonik (1981) observed rapid O$_2$ consumption rates initially, and then slower rates at longer light exposure times. Only one study has quantified changes in DOM ϕ for photo-oxidation ($\phi_{\text{O}_{2},\lambda}$) (Andrews et al. 2000). $\phi_{\text{O}_{2}}$ decreased with increasing absorbed light dose in seawater and was suggested to be due to fractions within the DOM pool having different photo-labilities (Andrews et al. 2000). Investigating O$_2$ consumption, in addition to CO$_2$ production, with increasing light exposure is not well understood.

ROS, such as hydrogen peroxide (H$_2$O$_2$), hydroxyl radical (\cdotOH), and singlet oxygen (1O$_2$), generated through oxygen consumption have multiple fates in waters (Cooper and Zika 1983; Mopper and Zhou 1990; Latch and McNeill 2006). One fate of ROS is to oxidize DOM to CO$_2$ or partially oxidized DOM (Cory et al. 2010a). ROS can also be quenched by DOM exhibiting anti-oxidant properties, ultimately suppressing or slowing down photo-oxidation (Blough and Zepp 1995; Aeschbacher et al. 2012). However, anti-oxidant DOM can be degraded by light, reducing the amount of ROS that are quenched with increasing photon dose. With increasing photon dose, ϕ_{\cdot} for \cdotOH and H$_2$O$_2$ decrease while $\phi_{^{1}\text{O}_{2}}$ for 1O$_2$ increase, likely due to the degradation of DOM with anti-oxidant properties (Sharpless et al. 2014). Thus, photo-oxidation by ROS is controlled by changes in ϕ_{\cdot} for ROS and quenching of ROS by anti-oxidant DOM.

Previous work has shown that aquatic DOM has a higher electron donating capacity (EDC) than terrestrial DOM and microbial DOM, and thus has a higher anti-oxidant capacity (Aeschbacher et al. 2012). EDCs of DOM correlated with titrated phenol contents, suggesting that
phenolic moieties contain major electron donating groups (Aeschbacher et al. 2012). Irreversible oxidation of DOM in the environment results in a depletion of electron donating phenolic moieties (Aeschbacher et al. 2012). Upon exposure to light, DOM exhibits a decrease in average molecular weight, a loss of aromatic groups, and more specifically, the disappearance of lignin phenols (Aeschbacher et al. 2012; Sharpless et al. 2014). There is also a positive relationship between EDC and SUVA$_{254}$, a proxy for aromaticity of DOM (Sharpless et al. 2014). DOM exhibits a larger absolute loss in absorbance in the UV range (280-400 nm), however there is a greater % loss of absorbance in the visible range (400-700 nm), leading to an increase in the DOM anti-oxidant capacity proxy E2/E3, which is the ratio of absorbance coefficients at 254 nm to 365 nm (Sharpless et al. 2014). The increase in E2/E3 and decrease in EDC with increasing light exposure suggest that DOM with anti-oxidant properties are being destroyed due to photo-degradation (Sharpless et al. 2014). Therefore, the initial composition of DOM controls anti-oxidant capacity, where high anti-oxidant capacity DOM would be expected to have a high average molecular weight, high aromaticity, and low E2/E3.

The initial composition of DOM and effect of increasing photon dose on DOM ϕ_r could change throughout the growing season in the Arctic, the period of time each year when the tundra thaws and vegetation can grow (May through August). In the Arctic, the spring thaw delivers a large pulse of DOM to surface waters (Townsend-Small et al. 2010) that may not have been previously exposed to light. As time passes from the spring thaw, DOM present in freshwaters is increasingly exposed to light as residence time increases during low flow conditions (Cory et al. 2014, 2015). Additionally, increasing soil thaw depth throughout the season could influence DOM composition and ϕ_r. Ward and Cory 2016 determined that there were trends in ϕ_r dependent on soil depth. $\phi_{PM,350}$ was similar between shallower and deeper organic matter (Ward and Cory
However, $\phi_{PPO,350}$ was greater in DOM leached from deeper organic matter (Ward and Cory 2016). The study suggested that this greater $\phi_{PPO,350}$ was due to deeper organic matter having a lower phenolic content than shallower organic matter, thus decreasing the DOM anti-oxidant capacity and allowing for more DOM to be partially-oxidized. Ward and Cory 2015 determined that there were trends in DOM chemistry leached from soils of different depths in a watershed in the Alaskan Arctic. With increasing soil depth, slope ratio (S_r, inverse relationship with average molecular weight) increased, SUVA$_{254}$ decreased, and fluorescence index (FI, proxy for DOM source) increased (Ward and Cory 2015). This indicates that the initial composition of deeper organic matter had a lower average molecular weight, aromaticity, and originated from a different source. Seasonal light exposure and these changes in ϕ_l and DOM chemistry with soil depth could influence the effect of photon dose on ϕ_l, as thaw depth increases between May and August in the Arctic.

Photochemical processes of DOM in inland waters are an important component of the arctic carbon budget (Cory et al. 2014). Light converts a substantial amount of DOM to CO$_2$ in arctic surface waters through photo-mineralization, accounting for 55% of the CO$_2$ released to the atmosphere in the Kuparuk River basin (Cory et al. 2014). In this basin, 45% of DOM degradation was due to partial photo-oxidation (Cory et al. 2014). Changes in DOM $\phi_{PML,3}$, $\phi_{PPO,3}$, and areal rates of photochemical processes with increasing photon dose have not yet been incorporated into current estimates of photo-mineralization and partial photo-oxidation rates in these arctic surface waters.

Changes in DOM ϕ_l have been studied in seawater from various sites, however this has not been investigated in freshwaters or in the Arctic, where photochemistry largely contributes to carbon budgets. Previous studies have cautioned that using short exposure experiments to quantify
would lead to an overestimation of areal rates or that using longer exposure experiments would lead to underestimation of areal rates (Andrews et al. 2000; Powers and Miller 2015b). Changes in $\phi_{PPO,\lambda}$ with increasing photon dose have never been quantified. The objective of this study was to investigate changes in DOM $\phi_{M,\lambda}$ and $\phi_{PPO,\lambda}$ with increasing photon dose, and the impact of ϕ_{λ} on calculated daily areal rates of photochemical processes. This study also examined changes in ϕ_{λ} with increasing photon dose relative to initial DOM composition and the influence of antioxidants at different sites and times throughout the arctic growing season. This study addressed these knowledge gaps by testing the effect of photon dose on well-characterized and representative freshwaters in the Arctic, and exposed surface waters to increasing photon doses to be able to compare the effect of photon dose on changes in ϕ_{λ} between different waters (where DOM composition and ϕ_{λ} are known to be different).

Methods

Site Descriptions

Surface water was collected from two rivers and two streams (characterized in Table 1) on the North Slope of Alaska in May through July 2017. These streams and rivers drain some organic and mineral soils, underlain by permafrost (Osterkamp and Payne 1981; McNamara et al. 1998). Maximum annual thaw depth on the North Slope is less than 1.0 m (Carter et al. 1987). ϕ_{λ} and areal rates of photochemical processes have previously been quantified and calculated for these sites (Cory et al. 2013, 2014, 2015). (1) Innnavait Creek is a beaded headwater stream (1st order) running through a glacial valley (2.2 km2; Kane et al. 1989) formed during the Sagavanirktok glaciation (~250 ka) in the Kuparuk River basin (Hamilton 1986). The vegetation is primarily tussock cottongrass and the soil is classified as moist acidic tundra (Ward and Cory 2016).
Imnavait Creek has a high DOC concentration and a pH of 5-6 (Cory et al. 2014). (2) Toolik Inlet is the inlet stream (3rd order) of Toolik Lake, the site of the Arctic Long-Term Ecological Research (LTER) project, draining a watershed that contains several lakes (46.6 km²; Kling et al. 2000). Glacial till from the Itkillik I glaciation (50-100 ka) is found on ridges in the watershed and stream valleys contain glacial till and outwash deposits from the Itkillik II glaciation (10-25 ka; Hamilton and Porter 1975). The vegetation present is typically upland tussock, riparian birch and willow and the soil is classified as wet sedge tundra (Keller et al. 2010). Toolik Inlet has an intermediate DOC concentration and circumneutral pH (Cory et al. 2014). (3) The Kuparuk River (4th order) originates in the foothills of the Brooks Range and flows to the Arctic Ocean, draining an area of about 8000 km², which contains lakes (Hershey et al. 1997; McGuire et al. 2009). The river is on deposits from ~250 ka. The Kuparuk River has an intermediate DOC concentration and circumneutral pH (Cory et al. 2014). The vegetation present is tussock cottongrass, and riparian dwarf willows and birches and the soil is classified as wet sedge tundra (Hershey et al. 1997). (4) The Sagavanirktok River is the second largest river on the North Slope (> 4th order), draining an area of about 15,000 km², which contains lakes (McGuire et al. 2009; Levine and Whalen 2001; Cory et al. 2014). The river is on surfaces deposited during the Itkillik I and II glaciations (Hobara et al. 2013). The Sagavanirktok River has a low DOC concentration and a pH of ~8 (Cory et al. 2014). The vegetation present is riparian shrubs, and willows and the soil is classified as wet sedge tundra (Giblin et al. 1994).

Sample Collection and Water Chemistry

Surface water was collected from streams and rivers from a depth of 0.1 m, in high density polyethylene bottles, pre-rinsed with stream water three times. Temperature, conductivity, and pH
were measured in the field. Filtered (pre-combusted Whatman GF/F) subsamples taken for dissolved organic carbon concentration (DOC) were acidified with trace-metal grade hydrochloric acid to approximately pH 3 and stored in the dark at 4°C until analysis using a high-temperature platinum-catalyzed combustion followed by infrared detection of CO₂ (Shimadzu TOC-V).

Photochemical Oxidation Experiments

Surface water samples were 0.22 µm filtered (sterile Sterivex) into high density polyethylene bottles using a peristaltic pump (Geotech Geopump) and kept in the dark at room temperature to equilibrate with the atmosphere overnight. Filtered water was placed in gas-tight, pre-combusted 12 mL borosilicate extainer vials (Labco Inc.) without headspace, and exposed to natural light at Toolik Field Station (68°38’ N, 149°36’ W). Exposure times and corresponding photon doses are provided in Table 2. Due to high background DIC and low CDOM absorbance in the Sagavanirktok River waters, and thus a lower rate of light absorption, photon doses received were about double the doses for the three other sites. However, even though the water received higher photon doses, the Sagavanirktok River did not have a higher light absorbed by CDOM compared to the other three sites. Each exposure time consisted of four light exposed replicates alongside four aluminum foil wrapped dark control replicates for each analysis (dissolved O₂ (DO), dissolved inorganic carbon (DIC), and CDOM/fluorescent DOM (FDOM)). Ambient temperatures during exposure ranged from 1 to 25 °C; May and June experiments were exposed at low temperatures and July experiments were exposed during higher temperatures. Light exposed waters reached a higher temperature during the experiments, relative to the dark controls. However, due to the low activation energies of photochemical reactions, there is a weak temperature dependence on the rates (Schwarzenbach et al. 2003). Total irradiance measurements were taken every five minutes during the experiments (Yankee Environmental Systems, Inc. UVA-
1 (280-320 nm) and UVB-1 (320-400 nm); Li-Cor, Quantum Model LI-190SB for PAR (400-700 nm)). At the end of each exposure time, sample replicates for DO and DIC were killed with HgCl$_2$ (added at 1% volume of the exetainer vial). All replicates were refrigerated in the dark until analysis.

Photochemical O$_2$ consumption was quantified as the change in DO relative to dark controls using membrane inlet mass spectrometry (MIMS) as previously described (Cory et al. 2010a). Photochemical production of CO$_2$ was quantified as the change in DIC measured relative to dark controls using a DIC analyzer (Apollo SciTech, Inc.). Excitation Emission Matrices (EEMs) and absorbance for CDOM/FDOM were measured using a spectrofluorometer (Horiba Aqualog) in a 1-cm quartz cuvette in reference to a Milli-Q blank. Data presented in this study are an average of four independent light reps, each relative to an independent dark rep, plus or minus standard error.

Apparent Quantum Yield Calculations

Apparent quantum yields (AQY, ϕ_{λ}) quantify the lability of DOM to photochemical processes. ϕ_{λ} normalizes the measured O$_2$ consumption or CO$_2$ production to the rate of light absorption, in terms of moles of O$_2$ consumed or moles of CO$_2$ produced per moles of photons absorbed by CDOM for photo-oxidation and photo-mineralization, respectively (Vähätalo et al. 2000).

The apparent quantum yield spectrum is assumed to decrease exponentially with increasing wavelength (Johannessen et al. 2001), as shown in Equation 1:

$$\phi_{\lambda} = c \ e^{-d\lambda}$$ \hspace{1cm} (1)
where c (mol C mol$^{-1}$ photons) and d (nm$^{-1}$) are positive parameters calculated using an unconstrained nonlinear optimization in Matlab.

$Q_{\alpha,\lambda}$ is the light absorbed by the water in the exetainer vial, calculated using Equation 2:

$$Q_{\alpha,\lambda} (mol \ photons \ m^{-2} \ d^{-1}) = Q_{dso,\lambda}(1 - e^{-K_{d,\lambda}z}) (2)$$

Where $Q_{dso,\lambda}$ is the spectrum of light just below the water surface (mol photons m$^{-2}$ d$^{-1}$), $K_{d,\lambda}$ is the light extinction coefficient (m$^{-1}$), and z is pathlength of the borosilicate exetainers (m). These calculations take photobleaching throughout the light exposure experiment into account (Miller and Zepp 1995).

Direct measurements of natural light at Toolik Field Station were apportioned to a “clear sky” modeled solar spectrum generated with the NREL Simple Model of Atmospheric Radiation Transfer (SMARTS). The modeled solar spectrum in the UV-Visible range was generated and normalized using parameters previously described for Toolik Field Station (Cory et al. 2014). This spectrum was then separated into direct and diffuse components. A turbidity correction was quantified as a daily average cloudiness factor (F) as the ratio of mean measured to mean modeled (SMARTS) solar irradiance at Toolik Field Station. F varied from ~0.6 on cloudy days to ~1 for clear sky days during these light exposure experiments. Turbidity scatter, assumed to be independent of wavelength, was applied to all wavelengths. Wavelength dependent Rayleigh scattering was calculated following Bird and Riordan (1986). The angle of incidence for diffuse radiation was set to 45° and the angle of incidence for direct radiation was calculated from the local zenith angle at 1-hour intervals (NREL Solar Position Calculator). Radiative transfer below the water surface in the experiment exetainer was calculated separately for the direct and diffuse photon fluxes as previously described (Cory et al. 2014).

The rate of photochemical oxidation is the product of three spectra (Equation 3): the
apparent quantum yield, the irradiance reaching the water column, and the spectrum of light absorbed by CDOM.

\[\phi \text{oto} \text{c} \text{hal} \text{em} \text{ical} \text{oxidation} (\text{mmol} \text{O}_2 \text{or} \text{CO}_2 \text{m}^{-2} \text{d}^{-1}) = \int_{\lambda_{\text{min}}}^{\lambda_{\text{max}}} \phi_\lambda Q_a \lambda \frac{a_{\text{CDOM},\lambda}}{a_{\text{tot},\lambda}} \text{d}\lambda \]

(3)

Where \(\lambda_{\text{min}} \) and \(\lambda_{\text{max}} \) are the minimum and maximum wavelengths of light contributing to the photo-oxidation of DOM (280 and 700 nm, respectively), \(\phi_\lambda \) is the apparent quantum yield for photo-oxidation or photo-mineralization, \(a_{\text{CDOM},\lambda} \) is the Naperian absorption coefficient of CDOM (m\(^{-1}\)), and \(a_{\text{tot},\lambda} \) is the total light absorption in the water column (CDOM, particles and water; m\(^{-1}\)). In these experiments, CDOM is assumed to be the only light absorbing constituent in these filtered waters, therefore the ratio of \(a_{\text{CDOM},\lambda} \) to \(a_{\text{tot},\lambda} \) is 1.

To quantify the lability of DOM over the entire course of each light exposure, \(\phi_\lambda \) were determined by setting the total measured reactant (O\(_2\)) on the left side of Equation 3 and used the measured photons absorbed by CDOM (using \(Q_{a,\lambda} \) and \(a_{\text{CDOM},\lambda} \)) in the exetainer vials during the total light exposure to solve for \(\phi_\lambda \) after each photon dose. These equations were also used to determine the \(\phi_\lambda \) for photo-mineralization using the measured product (CO\(_2\)). For each photon dose, the O\(_2\) consumed and the CO\(_2\) produced were calculated relative to dark controls.

To quantify the lability of DOM that was degraded by light in between increases in photon dose, the \(\phi_\lambda \) were also calculated incrementally. These photochemical experiments each consisted of five photon doses (Table 2), where \(t_1 \) received the lowest photon dose and \(t_5 \) received the highest photon dose in each experiment. For \(t_1 \), photobleaching, O\(_2\) consumed, CO\(_2\) produced, and \(Q_{\text{dio-},\lambda} \) relative to dark controls were used to determine \(\phi_\lambda \), quantifying the lability of the DOM that was degraded by light during the lowest photon dose. Then for \(t_2 \), photobleaching, the O\(_2\) consumed, the CO\(_2\) produced, and \(Q_{\text{dio-},\lambda} \) relative to \(t_1 \) were used to determine \(\phi_\lambda \). Therefore, the \(\phi_\lambda \) calculated for \(t_2 \) quantifies the lability of the DOM that was degraded by light only between \(t_1 \) and \(t_2 \). For \(t_3 \),
photobleaching, the O$_2$ consumed, the CO$_2$ produced, and $Q_{dso-\lambda}$ relative to t_2 were used to determine ϕ, thereby quantifying the DOM that was degraded by light only between t_2 and t_3. The same methods were used to calculate ϕ for t_4 and t_5 in these experiments. Thus, with these incremental ϕ, we can assess changes in DOM lability during increases in photon dose.

Partial photo-oxidation is calculated using two assumptions: (1) 1 mole of O$_2$ is consumed to produce 1 mole of CO$_2$ in photo-mineralization and (2) 0.5 mole of O$_2$ that is in excess of the 1:1 stoichiometry is consumed to oxidize 1 mole of carbon (Andrews et al. 2000). Partial photo-oxidation AQYs are calculated using Equation 4:

$$\phi_{PPO,350} = \frac{\text{mmol C}_{ox}}{\text{mol photons}} = \left(\phi_{PO,350} - \phi_{PM,350} \right) \left(\frac{1 \text{ mol O}_2 \text{ consumed}}{1 \text{ mol CO}_2 \text{ produced}} \right) \left(\frac{1 \text{ mol C oxidized}}{0.5 \text{ mol O}_2 \text{ consumed}} \right) \tag{4}$$

Where $\phi_{PPO,350}$ is the partial photo-oxidation ϕ at 350 nm, $\phi_{PO,350}$ is the photo-oxidation ϕ at 350 nm, and $\phi_{PM,350}$ is the photo-mineralization ϕ at 350 nm. The $\phi_{PM,350}$ and $\phi_{PO,350}$ for both the entire photon dose and the incremental photon doses were used to calculate $\phi_{PPO,350}$, quantifying $\phi_{PPO,350}$ over the entire photon dose and in increments of light exposure. $\phi_{PM,350}$ (mmol CO$_2$ produced mol photons$^{-1}$) and $\phi_{PPO,350}$ (mmol C$_{ox}$ mol photons$^{-1}$) presented in this study are an average of four reps plus or minus standard error.

Photochemical Areal Rate Calculations

Daily areal rates of photochemical processes were calculated using Equation 3, with the experimentally determined ϕ, for each photon dose, the measured attenuation coefficient of the surface water, and direct measurements of natural light at Toolik Field Station for a 24-hour period. Areal rate calculations for Imnavait Creek, Toolik Inlet, and the Kuparuk River assumed that CDOM was the main light absorbing constituent in the water column, thus $a_{CDOM,\lambda}/a_{tot,\lambda} = 1$. For
the Sagavanirktok River areal rate calculations, a $a_{\text{CDOM}, \lambda}/a_{\text{tot}, \lambda}$ factor of 0.15 was used. The Sagavanirktok River was turbid on the sample collection dates in June and July 2017, and thus were similar conditions to those described in Cory et al. (2013). Areal rates were calculated using the light spectra for 5-June-2017 to 6-June-2017 (May and June experiments), 7-July-2017 to 8-July-2017 (early July experiments), and 27-July-2017 to 28-July-2017 (late July experiments). Each areal rate calculation began at 6:00 on the first day and ran to 6:00 on the next day. A time weighted F factor was used in these calculations (75% first day, 25% second day). The rates were calculated using an average water depth of 0.5 m.

A single daily areal rate was also calculated using the incremental ϕ_λ, factoring in changes in ϕ_λ with increasing light exposure, as well as changing the absorption spectra after each increment of light exposure to incorporate photobleaching into the areal rate calculation. These calculations were done using the same light spectra as listed above. Each ϕ_λ was used to calculate an areal rate in increments corresponding to its order during the light exposure experiment: t_1 (6:00 – 8:00), t_2 (8:00 – 10:00), t_3 (10:00 – 14:00), t_4 (14:00 – 18:00), and t_5 (18:00 – 6:00 the following day). The areal rates calculated in each of these increments were then summed up to receive a daily areal rate.

Results

Initial Chemistry

Initial water chemistry is provided in Table 3. Surface waters samples from Imnavaik Creek had a pH ranging 4.8 ± 0.1 to 5.9 ± 0.1, temperatures ranged 0.1 to 16°C, and conductivity ranged 11 to 13 μs cm$^{-1}$ on dates sampled. In Toolik Inlet, pH ranged 7.3 ± 0.1 to 7.6 ± 0.1, temperatures ranged 0.1 to 12°C, and conductivity ranged 85 to 92 μs cm$^{-1}$ on dates sampled. For the Kuparuk
River, pH ranged 6.7 ± 0.1 to 7.8 ± 0.1, temperatures ranged 0.1 to 10°C, and conductivity ranged 18 to 77 µs cm⁻¹ on dates sampled. In the Sagavanirktok River, pH ranged 7.8 ± 0.1 to 8.1 ± 0.1, temperatures ranged 5 to 11°C, and conductivity ranged 189 to 245 µs cm⁻¹ on dates sampled. Initial DOM chemistry is provided in Table 3. Highest DOC concentrations and CDOM absorbance were in May/June surface water samples. DOC content, absorbance, aromaticity, and optical proxies varied by site and date.

Initial DOM chemistry differs by site and date (Figures 1, 2). There is no difference in S_R between May and July in Imnavait Creek, Toolik Inlet, and the Kuparuk River. Slope ratio (S_R), the ratio of slopes of the absorbance spectra at 275-295 nm: 300-350 nm, is an optical proxy that is inversely related to average molecular weight (Helms et al. 2008). In the Sagavanirktok River, S_R is greater in June than in July. E2/E3 is the ratio of absorbance at 254:365 nm, and has an inverse relationship with EDC, thus a higher E2/E3 indicates a low anti-oxidant capacity (Sharpless et al. 2014). A higher E2/E3 is observed in July for Imnavait Creek, Toolik Inlet, and the Kuparuk River. The Sagavanirktok River shows no difference in E2/E3 between June and July. SUVA$_{254}$, the DOC normalized decadic absorption coefficient at 254 nm, is a proxy for DOM aromaticity (Weishaar et al. 2003). Imnavait has a higher SUVA$_{254}$ in July, Toolik Inlet shows no change, and the Kuparuk River and the Sagavanirktok River have a higher SUVA$_{254}$ in May and June. Fluorescence Index (FI) is a proxy for DOM source and aromatic carbon, calculated from the ratio of emission intensities at excitation = 370 nm emission at 470:520 nm (Cory et al. 2010b). C/A is the ratio of EEM emission peaks at 350-540 nm to 250:450 nm, which are related to humic DOM (Coble et al. 1996). In all sites, there is a higher FI and C/A in July.

Effect of increasing photon dose on $\phi_{EM,350}$
In May and June, $\phi_{PM,350}$ decreased with increasing photon dose for all waters tested (Figure 3). In early July, $\phi_{PM,350}$ decreased with increasing photon dose for Innvait Creek and the Kuparuk River, the only waters tested on this date (Figure 4). In late July, $\phi_{PM,350}$ decreased with increasing photon dose for Toolik Inlet water, but increased or remained the same with increasing photon dose in the other three waters tested (Figure 5).

Effect of increasing photon dose on $\phi_{PPO,350}$

The effect of photon dose on $\phi_{PPO,350}$ differed by date and by stream or river (Figures 6-8). With increasing photon dose, Innvait Creek DOM $\phi_{PPO,350}$ decreased in May, early July, and late July. Toolik Inlet DOM $\phi_{PPO,350}$ showed no change in May and decreased in July with increasing light exposure. Kuparuk River DOM $\phi_{PPO,350}$ increased in May and early July, but $\phi_{PPO,350}$ decreased in late July, with increasing photon dose. Sagavanirktok River DOM $\phi_{PPO,350}$ increased in June but remained the same in July with increasing photon dose.

$\phi_{PM,350}$ and $\phi_{PPO,350}$ through the season

In Figure 9, many points fall above the 1:1 line, suggesting that $\phi_{PM,350}$ is higher in July vs. May or June. However, sometimes in the Kuparuk River and the Sagavanirktok River, May and June $\phi_{PM,350}$ is higher or, for all sites, sometimes there is no difference observed. In general, $\phi_{PPO,350}$ is greater in July vs. May or June (Figure 9). In the Kuparuk River and the Sagavanirktok River, $\phi_{PPO,350}$ is higher in July compared to May and June, and this is also observed sometimes in Innvait Creek and Toolik Inlet. Toolik Inlet $\phi_{PPO,350}$ is sometimes higher in May, and in both Innvait Creek and Toolik Inlet, there is sometimes no change.
Discussion

DOM composition is different between sites

There were differences in DOM composition between sites and dates sampled. Only the Sagavanirktok River shows a seasonal change in S_R and is the only site to not show a seasonal difference in E2/E3. In Imnavait Creek, Toolik Inlet, and the Kuparuk River, the average molecular weight does not change between May and July, but the DOM anti-oxidant capacity decreases at these three sites. SUVA$_{254}$ trends varied by site, indicating that Imnavait Creek had a higher aromaticity in July, Toolik Inlet had the same aromaticity in July, and the Kuparuk River and the Sagavanirktok River had a lower aromaticity in July. Fluorescence Index and C/A were higher in July across all sites, indicating that the source and composition of the DOM at all sites changed between May/June and July. These CDOM and FDOM properties indicate that DOM source and composition differs by sites and date.

The Sagavanirktok River DOM composition was different from the other sites. Between June and July, Sagavanirktok River DOM showed an increase in average molecular weight, a decrease in aromaticity, and maintained its anti-oxidant capacity. The Sagavanirktok River also demonstrated the greatest change in DOM source by an 8.7 ± 0.4 % increase in FI in July (Figure 2). These observations indicate that the DOM found in the Sagavanirktok River watershed is substantially different from the DOM in the watersheds of Imnavait Creek, Toolik Inlet, and the Kuparuk River.

DOM photo-lability with increasing photon dose differs by site, date, and process.

Most cumulative $\phi_{PM,350}$ align with observations and predictions in the literature that $\phi_{PM,350}$ decreased with increasing photon dose. In May, June, and early July experiments, as photon dose
increased, $\phi_{PM,350}$ decreased and then plateaued. In late July, Toolik Inlet $\phi_{PM,350}$ decreased with increasing photon dose, while $\phi_{PM,350}$ in the three other sites increased or stayed the same. Decreases in $\phi_{PM,350}$ with increasing photon dose could be attributed to photo-mineralization removing labile DOM from the DOM pool, leaving behind a pool that is less labile to photo-mineralization.

Changes in $\phi_{PO,350}$ are not consistent between site and date. Previous work quantified a decrease in the lability of DOM to photo-oxidation with increasing light exposure (Andrews et al. 2000), thus a decrease in partial photo-oxidation lability would be expected as labile moieties are removed from the DOM pool. However, this was not observed in this study. DOM is partially-oxidized by ROS generated after CDOM absorbs light (Cooper and Zika 1983; Mopper and Zhou 1990; Latch and McNeill 2006). Previous work has shown that the ϕ of different ROS do not follow the same trends with increasing light exposure. ϕ for H_2O_2 and $•OH$ production decrease with increasing light exposure, while ϕ for $^{1}O_2$ production increase (Sharpless et al. 2014). These opposite trends in ROS production could lead to increases and decreases in $\phi_{PO,350}$ as more $^{1}O_2$ is produced later in the light exposure period and less H_2O_2 and $•OH$ is produced. Additionally, $\phi_{PO,350}$ is influenced by DOM with anti-oxidant properties. DOM with a high anti-oxidant capacity would quench ROS and prevent partial photo-oxidation. However, DOM with anti-oxidant properties can be degraded with increasing photon dose, allowing ROS to partially oxidize more DOM at higher photon doses. Changes in ϕ of ROS, the presence of anti-oxidant DOM, and the degradation of anti-oxidant DOM could be contributing to differences in $\phi_{PO,350}$ with increasing photon dose by site and date.

We would expect $\phi_{PM,350}$ and $\phi_{PO,350}$ to be greater in May/June after the spring thaw, which brings large amounts of fresh DOM to arctic surface waters, than in July when low flow conditions
would increase light exposure history, thus decreasing $\phi_{\text{PM},350}$ and $\phi_{\text{PPO},350}$ (Townsend-Small et al. 2010, Cory et al. 2015). However, in Figure 9, $\phi_{\text{PM},350}$ points fall on, above, and below the 1:1 line, indicating that $\phi_{\text{PM},350}$ does not have clear seasonal differences, suggesting that there is not an effect of seasonal light exposure. In general, $\phi_{\text{PPO},350}$ is greater in late July than in May and June, plotting above the 1:1 line in Figure 9. Later in the season, the DOM is not from the same source and does not have the same composition as the DOM from the early season spring thaw (Figures 1, 2). Thus, DOM source and composition likely control seasonal $\phi_{\text{PM},350}$ and $\phi_{\text{PPO},350}$ more than seasonal light exposure.

There were differences in DOM chemistry between sites and dates (Figures 1, 2). At all sites, FI is greater in late July. FI decreases with light exposure, therefore we would expect to observe a lower FI in July if seasonal light exposure was the cause for changes in $\phi_{\text{PM},350}$ and $\phi_{\text{PPO},350}$ with increasing photon dose. An increase in FI later in the season supports the hypothesis that DOM source has a greater impact on $\phi_{\text{PM},350}$ and $\phi_{\text{PPO},350}$ than seasonal light exposure. One factor that increases FI is the contribution of microbial DOM, however microbial contribution to DOM is low in arctic streams and rivers (Cory et al. 2007). Another factor that increases FI is DOM draining from a deeper soil depth (Ward and Cory 2015, Ward and Cory 2016). Thus, the increase in FI at all sites later in the season suggests that the streams and rivers are draining deeper and older organic matter with a different composition from DOM delivered during the spring thaw. Furthermore, previous work has investigated differences in $\phi_{\text{PM},350}$ and $\phi_{\text{PPO},350}$ between shallow and deeper organic matter in the Alaskan Arctic. Little difference in $\phi_{\text{PM},350}$ was observed between shallow and deeper organic matter, consistent with little difference in $\phi_{\text{PM},350}$ by season in this study. However, $\phi_{\text{PPO},350}$ was greater for deeper organic matter than shallow organic matter. The study suggested that the shallower organic matter had a greater phenolic content, and thus a greater
anti-oxidant capacity, than the deeper organic matter. The observed FI increase in this study strongly suggests that DOM draining from deeper soil, with a lower anti-oxidant capacity, is likely leading to greater $\phi_{PPO,350}$ later in the season in these streams and rivers.

Properties of anti-oxidant capacity

Optical properties of DOM have previously been correlated with EDC, phenolic content, and anti-oxidant capacity. However, iron (Fe) has been shown to affect the absorption spectra of DOM, thus affecting SUVA$_{254}$, E2/E3 and S_R optical proxies that are calculated with absorbance intensities (Poulin et al. 2014). Fe concentrations in arctic streams and rivers are high during the spring thaw and decrease through the season (Rember and Trefry 2004). Therefore, optical proxies for water samples collected in May and June are likely affected by Fe transported to these waters during the spring thaw. Imnavait Creek maintains a high Fe concentration after the spring thaw, and thus the optical proxies for this stream in July are likely also affected by absorption of light by Fe (Page et al. 2014). Additionally, E2/E3 may not be an accurate depiction of anti-oxidant capacity during low CDOM conditions, such as in the Sagavanirktok River in July, due to variability in the absorbance spectra at longer wavelengths. These factors make it difficult to qualitatively examine anti-oxidant capacity with these proxies between sites and dates.

Optical proxies in this study did not always agree on the relative anti-oxidant capacity between sites. DOM with a high anti-oxidant capacity would be expected to have a high average molecular weight (low S_R), high aromaticity (high SUVA$_{254}$), and a low E2/E3. In May/June, Imnavait Creek had the highest molecular weight and the Kuparuk River had the highest aromaticity and lowest E2/E3; the Sagavanirktok River had the lowest molecular weight and highest E2/E3 and Toolik Inlet had the lowest aromaticity. In July, Imnavait Creek had the highest
molecular weight and aromaticity and the Sagavanirktok River had the lowest E2/E3; the Sagavanirktok River also had the lowest molecular weight and aromaticity and Toolik Inlet had the highest E2/E3. Specifically, the properties of DOM in the Sagavanirktok River in July highlight the contradiction between molecular weight and aromaticity proxies with the anti-oxidant capacity proxy.

Partial photo-oxidation lability is the best indicator of relative DOM anti-oxidant capacity. Imnavait Creek DOM has a high aromaticity, but does not have the lowest E2/E3, which is likely influenced by the presence of Fe in the water. However, Imnavait Creek consistently has low $\phi_{PPO,350}$. In this study, the Sagavanirktok River had the greatest $\phi_{PPO,350}$, indicating that the DOM in the Sagavanirktok River has little to no anti-oxidant capacity. DOM in the Sagavanirktok River is not able to fend off oxidation, and therefore $\phi_{PPO,350}$ indicates that the DOM has low anti-oxidant capacity. Using $\phi_{PPO,350}$ as a qualitative measure of anti-oxidant capacity, the Sagavanirktok River has the lowest anti-oxidant capacity, followed by the Kuparuk River and Imnavait Creek, and Toolik Inlet has the highest anti-oxidant capacity. These observations are consistent with previously published $\phi_{PPO,350}$ for these sites (Cory et al. 2014).

Effect of changing ϕ_e on calculated daily areal rates of photochemical processes

Studies have cautioned that using ϕ_e from longer exposure experiments would underestimate the rapid photo-oxidation or mineralization of DOM during short exposure times and others suggested that using ϕ_e from short exposure experiments would overestimate photo-oxidation or mineralization. When calculated with each experimentally determined ϕ_e as photon dose increases, the areal water column rate of photo-mineralization decreases (Figure 10). Previous ϕ_e and water column areal rates of photo-mineralization and partial photo-oxidation for
the streams and rivers in this study have been determined from 12-hour exposure experiments (Cory et al. 2014). To determine the effect of photon dose on daily areal rates calculated with a single ϕ_λ spectrum, the areal rate calculated from the shortest photon dose ϕ_λ was compared to the areal rate calculated from the 12-hour exposure ϕ_λ for each site and date. On average, $\phi_{PM,\lambda}$ of the lowest photon dose yielded an areal rate of photo-mineralization that was an overestimate by a factor of 2.08 ± 0.18 compared to the rate calculated with the $\phi_{PM,\lambda}$ determined from the 12-hour exposure experiment. $\phi_{PPO,\lambda}$ of the lowest photon dose yielded an areal rate of partial photo-oxidation that was a slight overestimate by a factor of 1.15 ± 0.10 compared to the rate calculated with the $\phi_{PPO,\lambda}$ determined from the 12-hour exposure experiment. Therefore, the areal rates of both photo-mineralization and partial photo-oxidation were impacted by differences in ϕ_λ between experiments that received low or high photon doses, however the impact on the areal rate of photo-mineralization was greater than on partial photo-oxidation.

Figure 11 and Figure 12 demonstrate how the areal rate calculated with the single ϕ_λ spectra from the 12-hour experiment compares to the areal rate calculated with changing ϕ_λ and photobleaching as light exposure increases. For photo-mineralization (Figure 11), only two points (June and July Sagavanirktok River areal rates) fall on the 1:1 line, indicating that the constant $\phi_{PM,\lambda}$ areal rate was not significantly different from the changing $\phi_{PM,\lambda}$ areal rate. There are four points (May and early July Innnavait Creek, July Toolik Inlet, and May Kuparuk River areal rates) that plot slightly below the 1:1 line, indicating that the constant $\phi_{PM,\lambda}$ areal rate calculation was a slight overestimate relative to the areal rate calculated with changing $\phi_{PM,\lambda}$ and photobleaching. This could be due to the fact that the changing $\phi_{PM,\lambda}$ areal rate takes photobleaching into account. However, a recalculation of the areal rate with changing ϕ_{PM} with a constant absorption spectrum showed change only within error, indicating that photobleaching was not greatly impacting the
areal rates of photo-mineralization of DOM with the changing $\phi_{PM,\lambda}$. Thus, these waters were light-limited, because accounting for photobleaching did not significantly affect the areal rate. This observation is in line with the controls on DOM degradation discussed in Cory et al. (2015). The areal calculated with a constant $\phi_{PM,\lambda}$, being an overestimate is likely due to the areal rate calculated with a changing $\phi_{PM,\lambda}$ containing increments of low $\phi_{PM,\lambda}$ later in the exposure calculation. Four points (late July Imnavait Creek, May Toolik Inlet, and both July Kuparuk River areal rates) plot above the 1:1 line, indicating that the constant $\phi_{PM,\lambda}$ rate is an underestimate of the daily areal rate of photo-mineralization. This is likely due to the changing $\phi_{PM,\lambda}$ rate taking in to account the high initial lability of DOM at low photon doses. When comparing the areal rate calculated using the constant $\phi_{PM,\lambda}$, compared to the areal rate calculated with a changing $\phi_{PM,\lambda}$ daily photo-mineralization rates differ by a factor of 1.00 ± 0.11.

For partial photo-oxidation (Figure 12), May Imnavait Creek, May and early July Kuparuk River, and June and July Sagavanirktok River areal rates plot on the 1:1 line, indicating that the areal rate calculated with constant ϕ_{PPO}, was not significantly different from the areal rate calculated with changing $\phi_{PPO,\lambda}$. Three points (both July Imnavait Creek and July Toolik Inlet areal rates) plotted slightly above the 1:1 line, indicating that the areal rate calculated with constant $\phi_{PPO,\lambda}$ was an underestimate. Photodecarboxylation produces CO$_2$ without consuming O$_2$, therefore photodecarboxylation makes the calculation for $\phi_{PPO,\lambda}$ conservative. Leached organic matter from the Imnavait watershed has previously been show to undergo photodecarboxylation (Ward and Cory 2016). Additionally, the Toolik Inlet experiment exhibited photodecarboxylation in one of the light exposure increments. Therefore, photodecarboxylation that is accounted for throughout the areal rate calculated with constant $\phi_{PPO,\lambda}$ could be making the areal rate conservative, while the changing $\phi_{PPO,\lambda}$ calculation only accounts for photodecarboxylation in
some increments of light exposure if photodecarboxylation was not happening during the entire length of the experiment. Two points (May Toolik Inlet and late July Kuparuk River areal rates) plot below the 1:1 line, indicating that the constant $\phi_{\text{PO},\lambda}$ areal rate of partial photo-oxidation is an overestimate. A recalculation of the areal rate with changing $\phi_{\text{PO},\lambda}$ using a constant absorption spectrum showed change within error, thus photobleaching was not causing the overestimate in the areal rate calculated with constant $\phi_{\text{PO},\lambda}$. In these two experiments, there were periods of no detectable partial photo-oxidation, as observed in the incremental $\phi_{\text{PO},\lambda}$. Therefore, the rate calculated with constant $\phi_{\text{PO},\lambda}$ is accounting for constant partial photo-oxidation, leading it to be greater in magnitude than the rate calculated with changing $\phi_{\text{PO},\lambda}$. When comparing the areal rate calculated using the 12-hour light exposure $\phi_{\text{PO},\lambda}$ compared to the areal rate calculated with a changing $\phi_{\text{PO},\lambda}$ daily partial photo-oxidation rates differ by a factor of 1.03 ± 0.09.

Implications

Changes in DOM photo-lability have been studied in seawater from various sites with inconsistent methods, photon doses, and light sources across studies. Because of high background DIC in seawater, greater photon doses are required to produce a measurable amount of CO$_2$ that is detectable with infrared detection (Wang et al. 2005). With higher photon doses, studies could be missing the rapid production of CO$_2$ at low photon doses, as shown in the current study. To investigate CO$_2$ production at low photon doses, studies have sparged their water samples to reduce background DIC, however that changes the water chemistry, and thus may not produce results that are characteristic of the natural system. Andrews et al. (2000) was able to track changes in $\phi_{\text{PO},\lambda}$ in seawater every five minutes, up to four hours in a solar simulator, however the study used pulsed polarographic oxygen sensors to track O$_2$ consumption, or photo-oxidation, rather than measuring
CO$_2$ production. In addition to requiring longer exposures times due to background DIC, light exposure times and sources, and thus photon doses, vary between studies. Furthermore, reporting light exposure times is not useful when comparing across sites and studies. Rather, what needs to be reported in time course studies are absorption coefficients and photon doses.

The current study investigated changes in freshwater DOM ϕ_k with consistent increasing photon doses allowing for comparisons between sites, dates, and DOM chemistry. Low background DIC in Imnavait Creek, Toolik Inlet, and the Kuparuk River allowed for light exposure times as low as two hours (corresponding photon doses in Table 2), capturing the rapid production of CO$_2$ at low photon doses. Additionally, exposure times in this study were consistent throughout the season and by site, allowing comparisons by site and date. Imnavait Creek, Toolik Inlet, and Kuparuk River photon doses received by the water were similar, though rates of light absorption were different between sites and dates because of varying amounts of CDOM present in the waters. As mentioned in the Methods, the Sagavanirktok River water received high photon doses in this study, however the light absorbed by CDOM was not greater compared to the other three sites. Therefore, the higher photon doses received by the Sagavanirktok River water in this study are likely not causing the river’s different trends in DOM lability. These controls on DOM lability with increasing photon dose have not previously been investigated in freshwaters.

Conclusions

The effect of photon dose on $\phi_{PM,350}$ and $\phi_{PO,350}$ differ by site and date. Trends in $\phi_{PM,350}$ and $\phi_{PO,350}$ by date are likely due to differences in initial DOM composition and source, due in part to DOM draining from deeper soils later in the season. Trends in $\phi_{PM,350}$ and $\phi_{PO,350}$ by site are likely due to differences in DOM composition between the streams and rivers. Imnavait Creek,
Toolik Inlet, and Kuparuk River DOM composition are similar, and the Sagavanirktok River DOM is different from the other three sites. This is likely causing $\phi_{PM,350}$ and $\phi_{PPO,350}$ trends with increasing photon dose in the Sagavanirktok River because the DOM has a lower anti-oxidant capacity, relative to the three other sites in this study. The effect of changing $\phi_{PM,\lambda}$ with photon dose on the areal rates of photo-mineralization leads to an over or underestimate of photo-mineralization areal rates by a factor of 2.08 ± 0.18, calculating the areal rate with the $\phi_{PM,\lambda}$ from the shortest photon dose vs. using the $\phi_{PM,\lambda}$ from the 12-hour exposure experiment. When comparing the areal rate calculated using the 12-hour light exposure $\phi_{PM,\lambda}$ compared to the areal rate calculated with a changing $\phi_{PM,\lambda}$, photo-mineralization areal rates differ by a factor of 1.00 ± 0.11. The effect of changing $\phi_{PPO,\lambda}$ with photon dose on the areal rates of partial photo-oxidation leads to an over or underestimate of partial photo-oxidation areal rates by a factor of 1.15 ± 0.10, calculating the areal rate with the $\phi_{PPO,\lambda}$ from the shortest photon dose vs. the $\phi_{PPO,\lambda}$ from the 12-hour exposure experiment. When comparing the areal rate calculated using the 12-hour light exposure $\phi_{PPO,\lambda}$ compared to the areal rate calculated with a changing $\phi_{PPO,\lambda}$, partial photo-oxidation areal rates differ by a factor of 1.03 ± 0.09. Thus, photon dose impacts calculated areal rates of photo-mineralization and partial photo-oxidation, therefore photochemistry studies need to report photon doses received by samples to allow comparison across sites and studies.

Acknowledgements

I thank R.M. Cory, L.A. Treibergs, A. Trusiak, K. Nicholaides, G.W. Kling, J.A. Dobkowski, C.L. Cook, J.C. Bowen, N. Sheldon, G. Dick, and researchers, technicians, and support staff of the Toolik Lake Arctic LTER and Toolik Lake Field Station for assistance in the field and laboratory. Research was supported by NSF CAREER-1351745 and DEB-1026843.
References

Townsend-Small, A., McClelland, J. W., Holmes, R. M., & Peterson, B. J. (2010). Seasonal and

Tables and Figures

<table>
<thead>
<tr>
<th></th>
<th>Innavait Creek</th>
<th>Toolik Inlet</th>
<th>Kuparuk River</th>
<th>Sagavanirktok River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude (°N)</td>
<td>68°37'</td>
<td>68°38'</td>
<td>68°39'</td>
<td>68°48'</td>
</tr>
<tr>
<td>Longitude (°W)</td>
<td>149°19'</td>
<td>149°36'</td>
<td>149°25'</td>
<td>148°51'</td>
</tr>
<tr>
<td>n</td>
<td>65</td>
<td>85</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>9.2 ± 5.8</td>
<td>9.0 ± 4.6</td>
<td>4.8 ± 4.3</td>
<td>5.5 ± 5.4</td>
</tr>
<tr>
<td>pH</td>
<td>5.6 ± 0.5</td>
<td>7.3 ± 0.3</td>
<td>7.0 ± 0.6</td>
<td>7.6 ± 0.6</td>
</tr>
<tr>
<td>Conductivity (μS cm⁻¹)</td>
<td>11.7 ± 3.9</td>
<td>86.1 ± 21.5</td>
<td>43.9 ± 24.5</td>
<td>198 ± 35.7</td>
</tr>
<tr>
<td>a305 (m⁻¹)</td>
<td>59.0 ± 9.2</td>
<td>20.1 ± 8.3</td>
<td>32.7 ± 17.6</td>
<td>12.5 ± 7.7</td>
</tr>
</tbody>
</table>

*a305 is the absorbance at 305 nm of 0.7 μm filtered surface water.

Table 1. Characteristics of study sites in May – August of 2016 and 2017. Shown are the mean ± standard error.

<table>
<thead>
<tr>
<th>Site/Date</th>
<th>Hours of sunlight exposure</th>
<th>Photon Dose (mol photons m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innavaite Creek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-May-2017</td>
<td>2, 4, 8, 12, 16</td>
<td>10, 20, 41, 63, 83</td>
</tr>
<tr>
<td>5-July-2017</td>
<td>2, 4, 8, 12, 16</td>
<td>10, 20, 29, 50, 59</td>
</tr>
<tr>
<td>27-July-2017</td>
<td>2, 4, 8, 12, 18</td>
<td>7, 15, 23, 36, 63</td>
</tr>
<tr>
<td>Toolik Inlet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-May-2017</td>
<td>2, 4, 8, 12, 16</td>
<td>10, 21, 33, 51, 72</td>
</tr>
<tr>
<td>21-July-2017</td>
<td>3, 7, 12, 19, 24</td>
<td>11, 23, 32, 43, 55</td>
</tr>
<tr>
<td>Kuparuk River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-May-2017</td>
<td>2, 4, 8, 12, 16</td>
<td>10, 20, 41, 63, 83</td>
</tr>
<tr>
<td>4-July-2017</td>
<td>2, 4, 8, 12, 16</td>
<td>9, 17, 31, 51, 60</td>
</tr>
<tr>
<td>27-July-2017</td>
<td>2, 4, 8, 12, 16</td>
<td>9, 18, 30, 47, 65</td>
</tr>
<tr>
<td>Sagavanirktok River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-June-2017</td>
<td>4, 8, 12, 18, 24</td>
<td>26, 43, 63, 91, 121</td>
</tr>
<tr>
<td>17-July-2017</td>
<td>2, 4, 8, 12, 19, 28</td>
<td>8, 16, 24, 37, 56, 59</td>
</tr>
</tbody>
</table>

Table 2. Hours of light exposure and corresponding photon doses received in each experiment.
Table 3. Initial water and DOM chemistry of surfaces waters in this study. Shown are the mean ± standard error.

<table>
<thead>
<tr>
<th>Site/Date</th>
<th>Temperature °C ± 0.1</th>
<th>pH ± 0.1</th>
<th>Conductivity µs cm⁻¹</th>
<th>a305 m⁻¹</th>
<th>DOC µM</th>
<th>SUVA₂₅₄ L mg C⁻¹ m⁻¹</th>
<th>SR</th>
<th>FI</th>
<th>E2/E3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innaluit Creek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-May-2017</td>
<td>0.1</td>
<td>4.8</td>
<td>13</td>
<td>63 ± 0.04</td>
<td>1371</td>
<td>3.3</td>
<td>0.74 ± 0.001</td>
<td>1.49 ± 0.003</td>
<td>5.02 ± 0.003</td>
</tr>
<tr>
<td>5-July-2017</td>
<td>16</td>
<td>5.9</td>
<td>12</td>
<td>46 ± 0.04</td>
<td>888</td>
<td>3.9</td>
<td>0.79 ± 0.001</td>
<td>1.47 ± 0.003</td>
<td>5.05 ± 0.003</td>
</tr>
<tr>
<td>27-July-2017</td>
<td>10</td>
<td>5.7</td>
<td>11</td>
<td>54 ± 0.04</td>
<td>1105</td>
<td>3.6</td>
<td>0.76 ± 0.001</td>
<td>1.53 ± 0.004</td>
<td>5.47 ± 0.01</td>
</tr>
<tr>
<td>Toolik Inlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-May-2017</td>
<td>0.1</td>
<td>7.6</td>
<td>92</td>
<td>29 ± 0.02</td>
<td>693</td>
<td>3.1</td>
<td>0.87 ± 0.001</td>
<td>1.54 ± 0.005</td>
<td>4.93 ± 0.01</td>
</tr>
<tr>
<td>21-July-2017</td>
<td>12</td>
<td>7.3</td>
<td>85</td>
<td>15 ± 0.04</td>
<td>418</td>
<td>2.8</td>
<td>0.90 ± 0.004</td>
<td>1.58 ± 0.003</td>
<td>5.99 ± 0.04</td>
</tr>
<tr>
<td>Kuparuk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-May-2017</td>
<td>0.1</td>
<td>6.7</td>
<td>18</td>
<td>53 ± 0.06</td>
<td>1006</td>
<td>3.5</td>
<td>0.76 ± 0.001</td>
<td>1.47 ± 0.003</td>
<td>4.51 ± 0.01</td>
</tr>
<tr>
<td>4-July-2017</td>
<td>10</td>
<td>7.8</td>
<td>77</td>
<td>6 ± 0.02</td>
<td>170</td>
<td>2.6</td>
<td>1.00 ± 0.01</td>
<td>1.54 ± 0.006</td>
<td>5.77 ± 0.05</td>
</tr>
<tr>
<td>27-July-2017</td>
<td>7</td>
<td>7.4</td>
<td>63</td>
<td>17 ± 0.06</td>
<td>408</td>
<td>3.1</td>
<td>0.81 ± 0.003</td>
<td>1.56 ± 0.003</td>
<td>5.30 ± 0.05</td>
</tr>
<tr>
<td>Sagavanirktok</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-June-2017</td>
<td>5</td>
<td>7.8</td>
<td>189</td>
<td>6 ± 0.03</td>
<td>142</td>
<td>3.2</td>
<td>1.01 ± 0.013</td>
<td>1.50 ± 0.004</td>
<td>5.34 ± 0.04</td>
</tr>
<tr>
<td>17-July-2017</td>
<td>11</td>
<td>8.1</td>
<td>245</td>
<td>3 ± 0.02</td>
<td>99</td>
<td>2.8</td>
<td>0.91 ± 0.006</td>
<td>1.63 ± 0.004</td>
<td>5.13 ± 0.30</td>
</tr>
</tbody>
</table>

Figure 1. Comparison of CDOM chemistry proxies in May/June (x-axis) vs. July (y-axis) in Innaluit Creek (blue), Toolik Inlet (green), the Kuparuk River (grey), and the Sagavanirktok River (purple). Shown are the mean ± standard error.
Figure 2. Comparison of FDOM chemistry proxies in May/June (x-axis) vs. July (y-axis) in Imnivait Creek (blue), Toolik Inlet (green), the Kuparuk River (grey), and the Sagavanirktok River (purple). Percentages shown on the FI plot are % change in FI between May/June and July. Shown are the mean ± standard error.
Figure 3. May/June $\phi_{PM,350}$ (y-axis) with increasing photon dose (x-axis) in Imnavait Creek (blue), Toolik Inlet (green), the Kuparuk River (grey), and the Sagavanirktok River (purple). Shown are the mean ± standard error.

Figure 4. Early July $\phi_{PM,350}$ (y-axis) with increasing photon dose (x-axis) in Imnavait Creek (blue) and the Kuparuk River (grey), which were the only waters tested on this date. Shown are the mean ± standard error.
Figure 5. Late July $\phi_{PM,350}$ (y-axis) with increasing photon dose (x-axis) in Imnavait Creek (blue), Toolik Inlet (green), the Kuparuk River (grey), and the Sagavanirktok River (purple). Shown are the mean ± standard error.
Figure 6. May/June $\phi_{\text{PPO,350}}$ (y-axis) with increasing photon dose (x-axis) in Imnavait Creek (blue), Toolik Inlet (green), the Kuparuk River (grey), and the Sagavanirktok River (purple). Shown are the mean ± standard error.

Figure 7. Early July $\phi_{\text{PPO,350}}$ (y-axis) with increasing photon dose (x-axis) in Imnavait Creek (blue) and the Kuparuk River (grey), which were the only waters tested on this date. Shown are the mean ± standard error.
Figure 8. Late July $\phi_{PPO,350}$ (y-axis) with increasing photon dose (x-axis) in Imnavait Creek (blue), Toolik Inlet (green), the Kuparuk River (grey), and the Sagavanirktok River (purple). Shown are the mean ± standard error.
Figure 9. Comparison of (a) $\phi_{PM,350}$ and (b) $\phi_{PPO,350}$ in May/June (x-axis) vs. July (y-axis) in Imnavait Creek (blue), Toolik Inlet (green), the Kuparuk River (grey), and the Sagavanirktok River (purple). Shown are the mean ± standard error.
Figure 10. Daily areal rates of (a) photo-mineralization and (b) partial photo-oxidation (y-axes) calculated with (a) $\phi_{PM,350}$ and (b) $\phi_{PO,350}$ corresponding to the cumulative photon dose (x-axes) of that light exposure increment in Imnivait Creek (blue), Toolik Inlet (green), the Kuparuk River (grey), and the Sagavanirtok River (purple). Collection date is indicated by May/June (circle), early July (square), and late July (diamond). Shown are the mean ± standard error.
Figure 11. Comparison of daily areal rates of photo-mineralization calculated with a constant $\phi_{PM,350}$ and absorption spectra (x-axis) vs. a changing $\phi_{PM,350}$ and absorption spectra (y-axis) in Imnavait Creek (blue), Toolik Inlet (green), the Kuparuk River (grey), and the Sagavanirktok River (purple). Triangles represent the rate calculated with changing $\phi_{PM,350}$ and a constant absorption spectrum, showing that photobleaching was not causing these points to fall below the 1:1 line. Shown are the mean ± standard error.
Figure 12. Comparison of daily areal rates of photo-mineralization calculated with a constant $\phi_{PPO,350}$ and absorption spectra (x-axis) vs. a changing $\phi_{PPO,350}$ and absorption spectra (y-axis) in Imnivait Creek (blue), Toolik Inlet (green), the Kuparuk River (grey), and the Sagavanirktok River (purple). Triangles represent the rate calculated with changing $\phi_{PPO,350}$ and a constant absorption spectrum, showing that photobleaching was not causing these points to fall below the 1:1 line. Shown are the mean ± standard error.