Melanie Shadix

Using leaf carbon isotope values to investigate plant response to high latitude climate change

submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth and Environmental Sciences Department of Earth and Environmental Sciences The University of Michigan

Accepted by: Nathan D. Sheldon_____12 Nov 2020_ Name Date Signature Selena Y. Smith_ 12 Nov 2020 Name Date Marin K. Clark 12-18-2020 Department Chair Signature Name Date

I hereby grant the University of Michigan, its heirs and assigns, the non-exclusive right to reproduce and distribute single copies of my thesis, in whole or in part, in any format. I represent and warrant to the University of Michigan that the thesis is an original work, does not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis. I understand that I will not receive royalties for any reproduction of this thesis.

- Permission granted.
- Permission granted to copy after:
- Permission declined.

Alance Shadix Author Signature

Using leaf carbon isotope values to evaluate plant response to high latitude climate change

Melanie A. Shadix¹ ¹University of Michigan Department of Earth and Environmental Sciences, 1100 N University Avenue, Ann Arbor MI 48109

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government

Table of Contents

1.	Abstract	3
2.	Introduction	3–7
3.	Materials & Methods	7–10
4.	Results	10–13
5.	Discussion	13–20
6.	Conclusion	20–21
7.	Acknowledgments	21
8.	References Cited	22–30
9.	Tables & Figures	31–41
10.	Appendix	42–88

1. Abstract

As climate continues to change, more research is needed to understand how individual plant species will respond. This study uses leaf carbon isotope values as a lens to examine how high-latitude plant species in Alaska, Canada, and the northern United States are impacted by changes in water availability and increased temperature due to anthropogenic climate change. I found that Δ_{leaf} values of three individual species, Juniperus communis, Betula glandulosa, and *Eriophorum angustifolium* are *not* responding uniformly to climate. While none of the species has responded to increase [CO₂] over the period of 1923–2015, each species responded to multiple other climatic variables, specifically temperature and water availability, in ways not previously noted in studies of temperate and tropical systems. In particular, while meta-analytical studies of temperate and tropical indicated that Δ_{leaf} was lower at low precipitation, I found that the opposite was true for the high-latitude species. Meta-analytical studies also have found little or no change in Δ_{leaf} due to temperature, which is validated for sites where the mean annual temperature is >0°C. However, at colder sites Δ_{leaf} is negative correlated with temperature. This implies that studying leaf carbon isotope values of species on the edge of their growth range, under climatic extremes, may provide an opportunity to identify the climatic drivers that most affect a species under future climate change. This study suggests that some individual species growing at high latitudes may have a physiological advantage when faced with climate change, potentially broadening their growth range poleward, while other species may face a physiological disadvantage with a decreased chance of survival.

2. Introduction

Climate is shifting faster at higher latitudes than lower latitudes as anthropogenic emissions continue to accelerate (Settele et al., 2014). These high latitude environments are comprised of an ecosystem gradient from boreal forests to arctic tundra to polar desert environments where temperature and precipitation are increasing at a greater rate than in temperate environments (Diffenbaugh & Field, 2013). Higher temperatures caused by modern climate change will result in increased vapor pressure deficit (VPD), resulting in increased evaporative demand, especially in regions with lower water availability (Stocker et al., 2013; Novick et al., 2016). While many studies point to an increase in species distribution towards the

poles with increased temperature and precipitation, the effect of this shift is often different amongst species, with the threat of some species not being able to adapt quickly enough to changing climate (Jump & Peñuelas, 2005; Parmesan & Hanley, 2015; Feeley et al., 2020). Modeled future vegetation growth at these latitudes predicts decreased growth (Boulanger et al., 2016) and some non-model-based land cover studies suggest there may be forest loss (Carpino et al, 2018). Overall, there is a need for more studies focusing on species' specific responses to climate change in more climatically stressed, arctic regions to determine how the distributions of taller, woody vegetation of the boreal forest and grasses, sedges, and shrubs of the tundra will continue to intersect and shift (Myers-Smith et al., 2011; Feeley et al., 2020).

Over the last 150 years, anthropogenic activity has also resulted in an increase in atmospheric CO₂ concentration from ~280 ppm up to ~420 ppm and decrease of the carbon isotope composition of the atmosphere ($\delta^{13}C_{atm}$ values) from -6.8 ‰ to -8.2 ‰ because the source carbon is isotopically depleted anthropogenic inputs (Keeling et al., 2001; Tans, 2020). Given the dependence on plants for atmospheric CO₂ and the record of $\delta^{13}C_{atm}$ values within plant leaf carbon isotope values ($\delta^{13}C_{leaf}$), leaf carbon isotope values may provide insight into the relative stress of plant species collected from this volatile region.

2.1 Carbon isotope discrimination in C3 plants

 δ^{13} C_{leaf} values in C₃ plants are a measure of the ratio of preferentially consumed ¹²C in CO₂ over ¹³C during photosynthesis. Leaf carbon isotope discrimination values (Δ_{leaf}) account for the main processes that result in isotopic fractionation within the leaves of a plant (see Eq. (1) below; Farquhar et al., 1989). Variables *a* and *b* represent known fractionation caused by diffusion of CO₂ and carboxylation due to the enzyme RuBisCo, respectively. While I assume fractionation due to RuBisCo to be constant in this case, the functionality of it may also be impacted by extreme climate relative to the tolerance of the plant (Galmés et al., 2010). Different concentrations of CO₂ outside the plant and within the plant are represented by *c*_a and *c*_i respectively. While δ^{13} C_{leaf} has been shown to track the decrease in the isotopic value of atmospheric CO₂ (δ^{13} C_{leaf} has been shown to track the decrease in the isotopic value of atmospheric CO₂ (δ^{13} C_{leaf} has been shown to studies have found that other environmental factors also impact carbon isotopic compositions of plants (Farquhar, 1989; O'Leary, 1993;

Arens et al., 2000; Diefendorf et al., 2010; Kohn, 2010; Schubert & Jahren, 2012; Sheldon et al., 2020).

$$\operatorname{Eq.}(1) \Delta_{\operatorname{leaf}}(\%_{0}) = \frac{\delta \delta^{13}(\mathcal{C}_{aaaaa} - \delta \delta^{13}(\mathcal{C}_{\operatorname{lillaall}})}{1 + \frac{\mathfrak{G}^{13}\mathcal{C}_{\operatorname{lillaall}}}{1000}} = aa + (bb - aa)_{ccaa}$$

The connection between Δ_{leaf} and different climatic variables can, in part, be linked to the effects of environmental inputs that change stomatal conductance (i.e. the rate of CO₂ diffusion into, and water vapor out of, the stomata). Stomata are the main entry and exit point of gases in and out of a leaf, including carbon dioxide and water vapor (Lawson & Blatt, 2014). Individual species vary in maximum stomatal aperture sizes, response times, and photosynthetic capacities (Franks & Farquhar, 2007; Lawson & Blatt, 2014). While stomatal conductance is not specifically measured in Eq. (1), as c_i decreases due to a hypothetical stomatal closure, the pressure difference of CO₂ between the atmosphere (c_a) and the plant (c_i) increases, resulting in lower Δ_{leaf} values (Eq. (1); Figure 1). Therefore, to some extent, the known relationships between stomatal closure and external climatic variables, and variation in species' stomata and responses to climate variables, may provide insight into why a given species shows variable Δ_{leaf} values or into why another species does not seem to record the carbon isotope values of the atmosphere.

Generally, stomatal conductance increases in the presence of low CO_2 concentrations, high light, and low evaporative demand, and decreases under the opposite environmental pressures (Lawson & Blatt, 2014). Because I expect to see increased precipitation and warmer temperatures at high latitudes as climate changes, it is important to consider how water availability and variables such as VPD affect stomata. VPD is the difference between the moisture holding capacity of the atmosphere at a particular temperature and current atmospheric moisture level (Anderson, 1936). If VPD is high, then there will be greater evaporative demand on plants. Open stomata pose the risk of water loss due to evapotranspiration; therefore, low water availability can limit the range of stomatal conductance. When high VPD is coupled with higher water availability, there will likely be even lower stomatal conductance, limited within the range of stomatal conductances pre-set by water availability (Forseth & Ehleringer, 1983; Novick et al., 2016). Thus, high VPD conditions should result in lower Δ_{leaf} values (Figure 1).

Recently-studied climate parameters that have been proposed to drive Δ_{leaf} values in meta-analyses include latitude (Kohn, 2010), mean annual precipitation (MAP; Diefendorf et al.,

2010), mean annual temperature (MAT; O'Leary, 1993), nitrogen availability (Sparks & Elheringer, 1997), soil water (Lavergne et al, 2020), and others, which is to be expected due to the known response of stomata to different climate variables and the link to internal concentration of CO_2 (variables summarized in Arens et al., 2000). While these previous studies prove useful for more temperate or tropical regions, they lack significant sample sizes from climatically stressed regions, such as higher latitude tundra regions. In addition, even at temperate latitudes the trends observed in meta-analyses are not replicated at the species level. For example, neither common gymnosperm nor angiosperm trees reveal a relationship between MAP and Δ_{leaf} (Stein et al., 2019; Sheldon et al., 2020). Furthermore, measurements of leaf carbon isotope values from natural populations, especially from higher latitudes, are sparse.

For this study, I compare Δ_{leaf} values to moisture (represented through soil drainage, MAP, and the average month precipitation of the collection month of the sample), temperature (represented through MAT and the average month temperature of the collection month of the sample), and a combination of both moisture and temperature: VPD. I deliberately selected localities that would be representative of stressed environments (lower water availability and higher evaporative demand) in an effort to directly test my hypothesis that species are likely to record a noticeable response to this climate through changes in leaf carbon isotope discrimination values. Specifically, I hypothesize that samples within a species collected from regions with the lowest precipitation and highest evaporative demand (represented by VPD) are likely to have lower Δ_{leaf} values compared to the average Δ_{leaf} collected from more temperate regions, implying that these climatic extremes are impacting photosynthesis of the plant and potentially impacting its survivability.

2.2 Regional Setting

This study focuses on samples of plant species growing at high latitudes (Figure 2), primarily within the following climatic regimes (from lower to higher latitudes): Boreal-Continental fully humid warm summer (Dfb), Boreal-Continental fully humid cool summer (Dfc), Boreal-Continental Steppe cool summer (Dsc), and Polar (ET) (Peel et al., 2007; Rubel & Kottek, 2010). These ecoregions are mainly snow or polar climates according to the Köppen-Geiger climate classification maps (Peel et al., 2007). According to Rubel & Kottek (2010), by 2100 the climate classification bands that these samples fall into are all expected to shift

northward with nearly all samples from this study originally falling within ET, no longer falling within the ET. Dfb and Dfc will shift northward with some sample localities then falling into Boreal-Continental Fully Humid Hot Summer (Dfa). The majority of localities will experience warmer, wetter summers due to climate change (Rubel & Kottek, 2010; Stocker et al., 2013), implying that any observed relationships between Δ_{leaf} and temperature-related or moisture-related climatic variables could impact the relative survivability of the focal species in this study or of other similar plant-functional types.

While the majority of samples collected from higher latitudes are likely not affected by shade cover due to increased sparseness in ground cover, it is possible that the location of some samples within more forested areas have been impacted by shade from other canopies resulting in changes in leaf carbon isotope discrimination (McDowell et al., 2011).

3. Materials and Methods

3.1 Plant Species

The three species used in this study, *Juniperus communis*, *Eriophorum angustifolium*, and *Betula glandulosa*, were selected due to their similarly wide temporal and spatial distributions, their high sample numbers in herbaria, and their distinct growth habits. Original specimen collection dates range from 1923 to 2015. Each species' geographic range covers the variability of climate across higher latitudes. The latitudinal range of *J. communis* is 41.97 to 69.38 °N, 44.48 to 81.42 °N for *E. angustifolium*, and 47.67 to 71.51 °N for *B. glandulosa* (Figure 2).

Juniperus communis (gymnosperm, Cupressaceae) is a conifer that commonly grows as a shrub in the tundra (Hustich, 1953). At lower latitudes it may grow as a small tree and is often found as a tree in Europe. With a nearly circumpolar distribution *J. communis* is found scattered across the northern hemisphere in both boreal forests and at lower latitudes in places such as the Mediterranean (Hustich, 1953; Little, 1979; Tognetti et al., 2000; Farjon & Filer, 2013). This vast distribution and high frequency make *J. communis* a strong candidate for further study to compare responses of this taxon from higher, colder latitudes, to lower, warmer latitudes.

Also known as cottongrass or cottonsedge, *E. angustifolium* (angiosperm, Cyperaceae) is a sedge with a narrower, but more northern latitudinal distribution, compared to *J. communis*. It is generally found growing in anaerobic, undrained soils, commonly in wetlands and tundra (Gebauer et al., 1998; eFloras, 2020). This species was chosen in order to represent fast growing, short statured herbaceous vegetation.

Commonly referred to as a dwarf birch, *B. glandulosa* (angiosperm, Betulaceae) is a deciduous shrub generally distributed throughout Alaska, Canada, and into parts of the lower 48 states of the United States (de Groot et al., 1997; USDA & NRCS, 2020). It can be found in the tundra and in boreal forests, growing in bogs, muskegs, and rocky slopes or on permafrost, as well as in subalpine montane ecosystems at lower latitudes (de Groot et al., 1997; eFloras, 2020). *Betula glandulosa* was selected in order to represent woody broad-leaved deciduous plant in contrast to the evergreen needle-leaved *J. communis*.

While the majority of samples collected from higher latitudes are likely not affected by shade due to the short stature and increased sparseness in ground cover, it is possible that the location of some samples within more forested areas have been impacted by shade from other canopies resulting in changes in leaf carbon isotope discrimination (Buchmann et al., 1997). I also expect that the general growth habit of the selected species, being shorter and more ground hugging, will limit potential canopy effects on Δ_{leaf} (McDowell et al., 2011).

3.2 Sample Collection, Preparation, and Leaf Carbon Isotope Value Measurement

For the measurement of $\delta^{13}C_{\text{leaf}}$, plant leaf samples were retrieved and analyzed from two different herbaria: the University of Michigan Herbarium (MICH; n = 35) and the National Herbarium of Canada at the Canadian Museum of Nature (CANL; n = 415). Additional $\delta^{13}C_{\text{leaf}}$ data of *E. angustifolium* specimens were collated from a prior publication (n = 6; Schell, 2016). Analyses of *Juniperus communis* (n = 141), *Eriophorum angustifolium* (n = 156), and *Betula glandulosa* (n = 159) are collated in Supplemental Table 1.

To remove any surface residue, leaves of each sample were individually cleaned for 30 minutes in 20–40 mL of deionized water in an ultrasonic bath. Following cleaning, each sample was rinsed and placed into an oven at 50 °C for 48 h. After drying, each sample was shredded into smaller pieces using a razor blade and tweezers in order to maintain as much remaining leaf tissue as possible for analysis. Approximately 0.952 mg of the shredded leaf tissue samples were then loaded into tin capsules and placed into a Picarro Combustion Module with autosampler coupled to a Picarro G2201-i cavity ring-down spectrometer (CRDS) in order to measure $\delta^{13}C_{leaf}$ values of each sample. Output $\delta^{13}C_{leaf}$ values were calibrated using ten lab-calibrated acetanilide

standards ($\delta^{13}C = -26.58\%$), four IAEA-600 caffeine standards ($\delta^{13}C = -27.77\%$), and four IAEA-CH6 sucrose standards ($\delta^{13}C = -10.45\%$) in each run. Reproducibility was better than $\pm 0.2\%$ based upon standard replication.

3.3 Climate Data

Climate data was compiled from WorldClim 2 (Fick & Hijmans, 2017) including average monthly water vapor pressure (kPa), average monthly temperature (°C), and average monthly precipitation (mm) of the collection month of each sample, MAP (mm) and MAT (°C; Supplemental Methods). Raster files were uploaded into ArcMap and data from each climate variable layer was collected for each sample location. Soil data for specimens collected within Canada was sourced from Soil Landscapes of Canada (SCL) derived from V3.1 and V2.2 (Agriculture and Agri-Food Canada). Soil drainage polygons were matched with each sample point location to compile soil drainage data in ArcMap 10.7.0.10450. Soil drainage type for specimens collected within the United States was sourced from the National Resource Conservation Service's "websoilsurvey" (Soil Survey Staff). Canadian soil drainage codes and U.S. soil drainage codes were then reconciled in order to create standardized soil drainage bins based on how rapid or poorly drainage a soil was (Supplemental Methods). Atmospheric CO₂ concentrations (ppm) are from ice cores (pre-1958; Etheridge et al., 1998) and from Mauna Lao Observatory (1958 and later; Keeling et al., 2001).

To calculate Δ_{leaf} values (Eq. 1), I used $\delta^{13}C_{\text{atm}}$ values from direct measurement at Mauna Loa Observatory (Keeling et al., 2001) for samples after 1979, and from gas trapped in ice cores and firns prior to 1980 (Rubino et al., 2013). For samples that had no sampled $\delta^{13}C_{\text{atm}}$ value, I used a regression that interpolated between years with direct measurements of $\delta^{13}C_{\text{atm}}$ (Supplemental Methods).

3.4 VPD Calculation

Eq. (2)
$$ee_{ss} = 6.11 * 10^{\frac{7.5 * TT}{237.3 + TT}}$$

Average monthly collection VPD was calculated using Eq. (2) from National Weather Service (2020) for saturated vapor pressure. Actual vapor pressure pulled from WorldClim was then subtracted from saturated vapor pressure in order to calculate VPD (kPa). VPD bins were

divided for each species to capture the variation in the means of subsets of samples within each species at relative "tipping points" (see section 5.1.2).

3.5 Data Analysis

Data were identified as outliers if they 1) appeared visually far away from the other data points and 2) their removal changed the R^2 value of linear regressions. Other methods for outlier analysis were considered but the isotope measurements did not follow a Gaussian distribution. For linear regressions, I calculated the partial least squares for the relationship between Δ_{leaf} and each climate variable. Non-linear relationships were best explained by an exponential function (based on my main assumption that Δ_{leaf} values may reflect stomatal conductance). Coefficients of determination (R^2 values) were calculated to determine how well Δ_{leaf} could be predicted given some climatic input. *P*-values from an ANOVA test were used to test for statistical significance. Values less than 0.001 were considered statistically significant. To examine the combinatorial effect of multiple climate or environmental variables, principle component analyses (PCAs) were performed in OriginPro 2020 9.7.0.185 for each species individually and for the three focal species in aggregate. Those results were used to identify additional combinations of variables for analysis.

4. Results

4.1 Summary of sample climate data

Over half of the samples (n = 249 of 456) were collected during the month of July, with an average monthly temperature of 13.22 °C for *Juniperus communis* ($1\sigma \pm 4.04$), 9.19 °C for *Eriophorum angustifolium* ($1\sigma \pm 3.77$), and 10.84 °C for *Betula glandulosa* ($1\sigma \pm 2.62$).

4.2 Summary of Carbon Isotope Values (δ¹³Cleaf) and Isotopic Discrimination (Δleaf)

Eriophorum angustifolium had the largest range of $\delta^{13}C_{\text{leaf}}$ and Δ_{leaf} values and the greatest standard deviation in comparison to the other non-sedge species ($\sigma = 1.51$ and $\sigma = 1.46$, respectively; Table 1.) All species had similar mean $\delta^{13}C_{\text{leaf}}$ and mean Δ_{leaf} values within 1‰ of one another.

4.3 $\delta^{13}C_{atm}$ vs. $\delta^{13}C_{leaf}$

The coefficients of determination for linear regressions between $\delta^{13}C_{atm}$ and $\delta^{13}C_{leaf}$ for *J. communis, E. angustifolium*, and *B. glandulosa* (angiosperm,) were modestly predictive at $R^2 = 0.23$ (*p*-value < 0.001), $R^2 = 0.11$ (*p*-value = 0.0016), and $R^2 = 0.29$ (*p*-value < 0.001), respectively. The slopes of $\delta^{13}C_{atm}$ and $\delta^{13}C_{leaf}$ for *B. glandulosa* (*m* = 1.39; angiosperm; Betulaceae; shrub) and *E. angustifolium* (*m* = 1.31; angiosperm; Cyperaceae; sedge), are nearly identical, whereas the slope of *J. communis* (gymnosperm; Cupressaceae; shrub) is slightly steeper (*m* = 1.90; Figure 3, Supplemental Table 2). Figure 4 plots the high latitude species from this study with previously published results from low- to mid-latitude tree species: *Pinus strobus* (gymnosperm; Pinaceae), *Populus tremuloides* (angiosperm; Salicaceae), *Thuja occidentalis* (gymnosperm; Cupressaceae; Sheldon et al., 2020). There is not a clear grouping of either gymnosperm versus angiosperm slopes. Species of the Cupressaceae family have similar, relatively steeper slopes compared to the other species of different families (Figure 4, Supplemental Table 2).

4.4 Aleaf vs. MAP and Average Collection Month Precipitation and VPD

Juniperus communis was the only species to show a modest and statistically significant relationship between Δ_{leaf} and MAP ($R^2 = 0.15$, *p*-value < 0.001). Linear regressions showed no other higher R^2 values between Δ_{leaf} and MAP or Δ_{leaf} and average collection month precipitation; however, extremely low MAP resulted in higher carbon isotope discrimination values for every species (Figure 5 A1-3). The only higher R^2 value between Δ_{leaf} vs. average collection month VPD was for *E. angustifolium* ($R^2 = 0.19$, *p*-value < 0.001), where carbon isotopic discrimination values were lower (lower Δ_{leaf} values) at higher VPD levels, especially at lower monthly precipitation gradients (~40 mm; Figure 5 C2 and Figure 7). Variability in carbon isotope discrimination decreased for *J. communis* as VPD increased (Figure 5 C1, Figure 7). When Δ_{leaf} values are analyzed for *J. communis* across increasing MAP, increased soil drainage coupled with higher average collection month VPD may result in less variable Δ_{leaf} values (Figure 7, Supplemental Figure 1).

4.5 Δ_{leaf} vs. Latitude, MAT, and Average Collection Month Temperature

Juniperus communis was the only species to show statistically significant and predictive positive relationship between Δ_{leaf} and latitude ($R^2 = 0.17$, *p*-value < 0.001) where Δ_{leaf} increases with latitude. This trend is visible for all three species, but not statistically significant (Figure 6 A1) for the others. Juniperus communis was the only species with a statistically significant relationship between Δ_{leaf} and MAT ($R^2 = 0.13$, *p*-value < 0.001). In general, all species showed modestly increased carbon isotope discrimination with decreasing MAT (Figure 6 B1-3). The same trend is also found for Δ_{leaf} and average temperature of collection month, but only significantly for *E. angustifolium* (Figure 5; $R^2 = 0.13$, *p*-value < 0.001).

4.6 Δ_{leaf} and [CO₂]

 R^2 values for linear regressions between Δ_{leaf} and [CO₂] were low and notstatistically significant for *J. communis*, *E. angustifolium*, and *B. glandulosa* ($R^2 = 0.0000012$, *p*-value = 0.99, $R^2 = 0.0011$, *p*-value = 0.69, $R^2 = 0.021$, *p*-value = 0.068; Supplemental Figure 2).

4.7 Principle Components Analysis

The PCA analyses for each individual species and all species together resulted in the first two principle components explaining >50% of the variation in the data (Supplemental Table 3, Supplemental Table 4). Biplots of PC1 and PC2 show that there is variability in the strength of climatic variables and each species is affected differently (Figure 9, Figure 10). For individual species, principle component 1 (PC1; 39.40% variation) of *J. communis* has an eigenvalue of 2.76 with the majority of variability of values accounted for by MAT, average precipitation of collection month, and MAP (Supplemental Table 3), while PC2 (eigenvalue of 1.74; 24.90% variation) was most highly correlated with average temperature of the collection month and VPD. PC1 of *E. angustifolium* has an eigenvalue of 3.64 (52.03% variation), with variability driven by VPD, average temperature of collection month, MAT, average precipitation of collection month, and MAP while variability of PC2 (eigenvalue of 1.33; 19.01% variation) is driven by Δ_{leaf} , VPD, average precipitation of collection month, MAT, average precipitation is driven by Δ_{leaf} , VPD, average precipitation of collection month, MAP, and drainage level (Supplemental Table 3). Finally, PC1 of *B. glandulosa* has an eigenvalue of 2.9 (42.05% variation) with variability driven by average temperature of collection month, MAT, average precipitation of collection month and drainage level, and PC2 has an eigenvalue of 1.73 (24.70%

of variation) with variability driven by VPD, average temperature of collection month, MAP and drainage level. (Supplemental Table 3).

The PCA of all species combined shows the variation in the relative effects of each climate variable on all three species (Figure 10). PC1 has an eigenvalue of 3.2 (45.77% of variation) with variability driven by VPD, average temperature of collection month, MAT, average precipitation of collection month, and MAP (see Supplemental Table 4 for coefficients). PC2 has an eigenvalue of 1.5 (21.56% of variation) with variability driven by VPD, average temperature of the collection month, MAP, and drainage level. The majority of the samples of *E. angustifolium* and *B. glandulosa* overlap, with samples of *E. angustifolium* more driven by Δ_{leaf} . In contrast, samples of *J. communis* are more driven by the variability accounted for in PC1, driven mainly by MAT and MAP (Figure 10, Supplemental Table 4). All three species appear to be driven by variability in VPD and drainage level to some extent described in PC2 (Figure 10, Supplemental Table 4).

5. Discussion

5.1 Leaf carbon isotopes in relation to carbon and the water cycle

5.1.1 δ^{13} Catm vs. δ^{13} Cleaf values

Species have varying ranges of $\delta^{13}C_{leaf}$ and the coefficient of determination for the relationship between $\delta^{13}C_{leaf}$ vs. $\delta^{13}C_{atm}$ varies in strength (R^2) and statistical significance (*p*-value) based on species and plant functional type (Diefendorf et al., 2010; Stein et al., 2019; Sheldon et al., 2020). When the relationships between $\delta^{13}C_{atm}$ and $\delta^{13}C_{leaf}$ of the focal species in this study were compared to those demonstrated in Sheldon et al. (2020), the single genus in the same family (*Juniperus*, Cupressaceae) behaves similarly (Figure 4, Supplemental Table 3). This could be due to genetic similarities within the family that appear to hold true even in more extreme climates. Specifically, the similarity in stomatal shape and size may be a result of the similar carbon isotope measurements within the Cupressaceae family. While species may individually close their stomata more or less in relation to a change in a climatic variable, there may be stomatal similarities within the family, thus creating a homogenous limitation to the carbon that could be brought in by the plant across the family level (Peterson et al., 2010).

5.1.2 Δ_{leaf} and Water Availability: Precipitation and VPD

Two of the three species in this study showed noticeable response between Δ_{leaf} and precipitation (MAP or monthly precipitation); however, this response to water availability was not initially evident by linear regression (Figure 5 A1, B2, Supplemental Table 3, Figure 9, Figure 10). When the results of the PCA are considered in conjunction with the linear regressions, both MAP and average monthly precipitation appear to influence Δ_{leaf} values of both *J. communis* and *E. angustifolium* (Supplemental Table 3, Figure 9). The variation in responses to MAP or average monthly precipitation between species may be due to growth habit. Within the dataset, the faster growing sedge and *B. glandulosa* respond more to average monthly precipitation, but the slower growing coniferous shrub responds more to MAP (Supplemental Table 3, Figure 9).

Typically, Δ_{leaf} values are lower with decreased water availability because lower water availability causes stomatal closure, driving down internal carbon concentration (c_i) . A metaanalysis by Diefendorf et al. (2010) proposed that Δ_{leaf} value logarithmically increase with increasing MAP and then level out (Supplemental Figure 2). However, this relationship is defined by only a few samples growing at low MAP, where n = 59 samples of n = 29 species of xeric woodland scrubland with MAP $\sim 200-500$ mm yr⁻¹ (Diefendorf et al., 2010). This sample density was not high enough for any given single species to reflect the trend that I see in this data; for the highest sample number of one of the 29 species was n = 9. Moreover, the specimens categorized as xeric woodland scrubland are reflective of more mid-latitude desert climates. In contrast, at low MAP, the carbon isotope values of my focal species (J. communis, E. angustifolium) are demonstrably higher than expected at lower MAP based on the Diefendorf et al. (2010) model, and then appear to level out in a similar fashion (Figure 5, A1). This suggests that the relationship between Δ_{leaf} values and MAP is actually exponential and that paleoclimate reconstructions of MAP based on results from Diefendorf et al. (2010) should be approached with caution, as each species is likely to reflect a differing relationship between leaf carbon isotope values and water availability. Mesophyll conductance or even changes in carbon isotope fractionation by RuBisCo may be responsible for the difference in response to water availability between cold and temperate climatic regimes (Galmés et al., 2010; Sáez et al, 2018).

The inflection point where Δ_{leaf} values increase at low MAP or relative water threshold of when a plant begins to experience water stress may be the tipping point as to when a plant

appears more vulnerable to other climatic variables. For example, the Δ_{leaf} values of *J. communis* are significantly higher at lower MAT when MAP is lower (Figure 8). Moreover, the isotopic composition of *J. communis* only appeared to be impacted by VPD when high VPD was coupled with low MAP and rapid soil drainage, resulting in a narrowed range of Δ_{leaf} values (Figure 7, Supplemental Figure 1). This may suggest that increased precipitation at high latitudes due to climate change would resolve some of the responses observed in leaf carbon isotope values to temperature or VPD. This observed relative precipitation threshold, in which each species begins to show a response to other climate variables, varies between each species. It is likely that this variation will result in incongruent responses of species to climate change.

As for the effect of VPD on carbon isotope discrimination, it is important to remember that the effect of transpiration due increased evaporative pressure from higher VPD may be greater at lower water potentials (Forseth & Ehleringer, 1983). Therefore, lower water availability coupled with higher evaporative demand could result in lower Δ_{leaf} values. This relationship was most evident for *E. angustifolium* in which the negative relationship between Δ_{leaf} and VPD appeared stronger when viewed in relation to lower monthly precipitations (~35 mm; Figures 5 C2, Figure 7). The relationship between Δ_{leaf} values and VPD was further confirmed within the PCA results where VPD and rising Δ_{leaf} values were inversely related. Sedges may be more impacted by higher VPD due to their fast growth rate during peak growth season—the time when VPD is likely the highest due to warmer temperatures. Overall, Δ_{leaf} values can be used to highlight the coupled role of water availability and VPD acting on these species at high latitudes.

As a last measurement of water availability, I considered soil drainage capacity. I cannot confidently describe how soil drainage level affected these plants. I hypothesized that soils classified as "rapidly draining" would increase the relative water stress of a plant, similar to the effect of low MAP or low average monthly precipitation. Plants collected from rapidly drained soils and high MAP or hight average monthly precipitation would be less water stressed, assuming precipitation was the dominate climatic driver. *Juniperus communis* may appear to show this in the aforementioned Supplemental Figure 1, where I observe decreased variability in Δ_{leaf} under higher VPD levels and more rapid drainage levels. Ultimately, data bin sizes are too small to be conclusive. The effect of soil drainage is only evident in PCA results; however, there are contradictory results for *J. communis* and *E. angustifolium*. This may be due to individual

water demands of either species (see below). Future work focused on plants growing in low precipitation gradients, across different soil drainage areas, and under varying VPD levels would help constrain the interplaying demands of soil water availability versus atmospheric water demand on plants in high stress regions.

5.1.3 Δ_{leaf} , Temperature, and Latitude

Previous studies concluded that there is no relationship between MAT and Δ_{leaf} for species growing at more temperate latitudes (Sheldon et al., 2020). In contrast, species in this study from higher latitudes show that there is a relationship between MAT and Δ_{leaf} : as MAT increases, carbon isotope discrimination decreases. *Juniperus communis* is more responsive to MAT and *E. angustifolium* is more responsive to average collection month temperature (Figure 6 B1, B2, Figure 9, Supplemental Table 3). The higher Δ_{leaf} values of *J. communis* are clustered and less variable at lower MAT when MAP is lower, meaning that the effects of colder temperatures could be even greater on a plant when water is limited (Figure 8). The relationship between Δ_{leaf} values of *J. communis* and temperature may be explained by latitude; for decreasing temperatures and increasing latitude both result in Δ_{leaf} increases. The lack of clear patterns between Δ_{leaf} and latitude may mean that climatic responses of species noted in this study can be applied to the same species growing elsewhere in extreme environments.

Differences in responses between species to different temporal measurements of temperature (monthly or annually) may be due to differences in growth habit, just as with precipitation. For example, the sedge could show a response to monthly temperature because of its rapid growth speed compared to the other plants studied. The growth speed of *E. angustifolium*, especially as a seedling, is considered quite fast (Phillips, 1954). In contrast, *J. communis* retains its leaves multiple years and is considered frost-resistant, meaning its growth season is likely longer than that of the sedge (Raatikainen & Tanska, 1993).

5.1.4 Δ_{leaf} and [CO₂]

The region of focus in this study is likely one with increased local concentrations of carbon dioxide relative to the atmosphere as a whole due to increased permafrost thaw and combined oxidation of methane (Negandhi et al., 2013) and due to increased fires in peatlands (Hugelius et al., 2020). Some workers (Schubert & Jahren, 2012; Schubert & Jahren, 2018) have

proposed that Δ_{leaf} increases with increasing [CO₂], but these studies relied on fast growing weedy habit plants grown in growth chambers. At ground level, some species growing both near natural CO₂ vents and in growth chambers indicated increased leaf carbon isotope discrimination and decreased stomatal conductance with increased [CO₂] (Tognetti & Peñuelas, 2003; Tognetti et al., 2000). Therefore, species specific studies using ground level measurements of [CO₂] levels could be expected to show a relationship between Δ_{leaf} and [CO₂]. However, the overall effect of increased [CO₂] on vegetation may be limited due to limitations in nitrogen at higher latitudes (Atkin, 1996; Langley & Megonigal, 2010).

In contrast, other workers (Lomax et al., 2019) have found that moisture availability is more important than $[CO_2]$ when growing the same fast growing weedy habitat species and Stein et al. (in press) recently used herbarium specimens to find that there was no relationship between Δ_{leaf} and rising atmospheric $[CO_2]$ in seven species of temperate angiosperm and gymnosperm trees. Herein, I validate that result and further find that neither dwarf tree or shrubby species (*B. glandulosa* and *J. communis*, respectively) nor naturally grown weedy habit species (*E. angustifolium*) show a Δ_{leaf} response to rising atmospheric $[CO_2]$ during Industrialization (Supplemental Figure 2), and caution against the use of Δ_{leaf} as a proxy for historical or geological reconstructions of atmospheric $[CO_2]$.

5.2 Implications for Specific Species Growing Under High Latitude Climate Change

While analysis of certain species collected from the field in comparison to studies of expected responses to climate can prove helpful in identifying species-specific and universal climatic drivers, when a species has multiple climatic drivers that counteract one another, it may be impossible to initially determine any climatic drivers from single-variable regressions alone. Therefore, multiple stages of analysis may be necessary for individual species. In this study, PCA results supported the results from bivariate regressions that multiple drivers were at play in relation to leaf carbon isotope discrimination (Figure 5, Figure 6, Figure 9, Figure 10, Supplemental Table 3). Basic linear regressions between Δ_{leaf} and a climatic variable with low R^2 values are *not sufficient* to rule out a relationship between Δ_{leaf} of a species and a particular climatic variable. The following sections summarize the notable responses for each individual species and the implications of species responses for other species growing in similar ecosystems.

5.2.1 Juniperus communis

Based on current known climatic changes occurring at high latitudes and the response seen here, J. communis may continue to survive under increasing precipitation, given that the species appeared most impacted by lack of water availability (Figure 5, A1 and Supplemental Table 3). Increasing temperatures may benefit already existing J. communis plants, as they will likely increase the growth season of the species, but may negatively impact seed viability (Verheyen et al., 2009). While I cannot identify the spike in Δ_{leaf} values at the -10.0 to -5.0 °C mark (Figure 9) at MAP ~250–500 mm yr⁻¹, this temperature aligns with the reported minimum temperature where CO₂ is still sufficiently accrued (-4.9 °C) and the reported cutoff temperature for respiration (-9.0 °C) (Ungerson & Scherdin, 1965). In comparison to the other species, samples of J. communis, seemed affected the most by climate variables in terms of magnitude, which may also be due to leaf retention (Figure 10). Overall, physiologically, J. communis may be able to survie at even higher latitudes given its known resistance to embolism and near constant hydraulic efficiency at different latitudes (Unterholzner et al., 2020), drought tolerance, and tolerance to colder temperatures (Thomas et al., 2007). In combination with the results of this study, this previous work suggests that J. communis and communities dominated by J. *communis* will likely be robust in the face of climate change.

5.2.2 Eriophorum angustifolium

E. angustifolium's strong response to VPD, with a decrease in Δ_{leaf} , parallels a response found in Gebauer et. al (1989) where *E. angustifolium* showed stomatal closure to increasing VPD even when the plant had sufficient water access; therefore, the plant worked to prevent evapotranspiration based water loss even when it wasn't necessarily water stressed. Δ_{leaf} values of *E. angustifolium* were lower at higher levels of VPD (Figure 5 C2 and Figure 7). Due to the connection between Δ_{leaf} and lower internal concentration of CO₂ from stomatal closure, this could indicate that samples of *E. angustifolium* did in fact close their stomata to increased VPD in an attempt to retain water. Increasing VPD due to higher temperatures in the arctic could disproportionally affect this species despite projected increased precipitation.

5.2.3 Betula glandulosa

 Δ_{leaf} values of *Betula glandulosa* did not show any direct predictive relationships with climatic variables (Figure 5 and Figure 6). In contrast, PCA results for *B. glandulosa* showed that multiple climatic drivers were at play (Figure 9, Figure 10, Supplemental Table 3). The carbon isotope values of *B. glandulosa* are the most strongly correlated with the carbon isotope values of the atmosphere in this study (Figure 3) and have relatively lower variability of carbon isotope discrimination values of the three species (Table 1). While *B. glandulosa* may have some sort of leading response to more extreme climatic variables, it is possible that these responses simply are not captured by the sampling conducted within this study due to the fact that the majority of samples were collected during peak growth season or the fact that reproduction of *B. glandulosa* is restrained by colder temperatures (Myers-Smith et al., 2011). For these reasons, using Δ_{leaf} as a lens to understand how deciduous species respond to different climatic variables may be an avenue worth future investigation.

5.2.4 Projections for Future Climate Change

It is important to consider the implications of these species-specific climate-physiology relationships on spatial distributions as climate change progresses, as indiviual plant traits may provide insight into the effects of changing climate in colder, tundra biomes (Bjorkman et al., 2018; Myers-Smith et al., 2019) While species' ranges may broaden at the arctic treeline boundary (Inset Map of Figure 2; Ettinger & HilleRisLambers, 2013), congruent with documented trends of an increase in woody plants in the arctic (Post & Høye, 2013), each species may respond differently based on results observed in this study. I would expect the distribution of J. communis to spread northward, with a projected shift poleward of the leading edge of the treeline. Due to the similarity in slopes of $\delta^{13}C_{atm}$ and $\delta^{13}C_{leaf}$ between J. communis and other species of the Cupressaceae family, it is possible that other species of the Cupressaceae family growing in this region may also spread their distribution range poleward. However, predictions across taxonomy should be approached with caution, because growth responses to changes in climate have been shown to vary between species within the same genus (Riddle et al., 2014). The southernmost trailing edge of the growth range of *E. angustifolium* is likely to shift northwards, decreasing the range of the species lower latitudinal limits, due to potential negative effects of higher VPD from increased temperatures (Inset Map of Figure 2). Other

herbaceous species may be predicted to respond similarly, but only if their responses to VPD and water parallel that of *E. angustifolium*. As for *Betula glandulosa* and other deciduous species, while PCA results show multiple potential drivers of Δ_{leaf} , results are not conclusive enough to predict the future shift or lack thereof. A study by Gamm et al. (2018) reports a decline in deciduous shrubs at high latitudes and also found a lack of any significant trend in Δ_{leaf} versus climate for *Betula nana*, so this may provide guidance for *B. glandulosa*, but further work is needed to verify the similarity of responses between different species in the genus *Betula*.

6. Conclusions

In this study, three species, Juniperus communis, Eriophorum angustifolium, and Betula glandulosa were used to understand better the impacts of climate change on individual species growing in boreal and tundra environments. Overall, I found that the shift in greater overall precipitation and likely increased VPD from rising temperatures due to climate change will not impact vegetation at high latitudes homogeneously. For two of these species, water was a key player in the extent to which either species respond to other changes in climate variables. Many of the relationships between Δ_{leaf} and climatic variables within this study were exacerbated when the precipitation level was too low for that plant—resulting in a potential spike in mesophyll conductance or change in the function of RuBisCo. In order to confirm relationships seen with water availability further, it is necessary to specifically sample these species growing in areas with higher water availability. In contrast, these species were not impacted by rising atmospheric [CO₂] levels. In order to understand further the potential impact of climate variables within climatically stressed regions, I suggest using climate data with higher spatial and temporal resolution. While this study includes large single species sample numbers, a higher sample size from lower latitudes and at similar latitudes with different longitudes should be collected in order to see if the current relationships between carbon isotope measurements and changes in carbon isotope discrimination hold up. While predictions can be made for the relative shift for coniferous shrubs, and sedges within this boreal forest to arctic tundra transition zone, more work is needed to understand the impacts of climate change on deciduous shrubs. Similar, multifaceted studies must be conducted to see if these results hold true across plant families and for species of similar functional types in extreme climates. However, I note three key findings that are likely generalizable: 1) in agreement with previous studies of woody species, none of the

three species studied here showed any Δ_{leaf} response to changing [CO₂], suggesting that isotope discrimination is a fundamental leaf trait; 2) response to environmental stressors is complex, but changing VPD has largely been overlooked and should be the subject of future work, and 3) trends observed in meta-analytical analyses of Δ_{leaf} from temperate and tropical latitudes do not apply to higher latitude settings, where I find a measurable influence of temperature on Δ_{leaf} that is absent at lower latitudes. Thus, leaf carbon isotope values may prove to be a key tool for studying species living at the edge of their range limits under changing climates.

7. Acknowledgements

I would like to thank my academic advisor Dr. Nathan Sheldon and Dr. Selena Smith, my second thesis reader. I would also like to thank Dr. Chris Deduke, Ph.D. the Botany Collection Technician and Jennifer Doubt, M.Sc. the Curator of Botany from the Canadian Museum of Nature (CANL). I would also like to thank Rich Rabeler and Tony Reznicek at the University of Michigan Herbarium (MICH) and Molly Ng for helping out in the herbarium. I would like to thank Rebekah Stein for inspiring MAS, running all the samples on the CRDS, and reading countless drafts. Thank you Allison Curley for teaching me how to use Adobe Illustrator and Eric Szymanski for helping me think about and process data. Finally, I would like to thank my mother for helping her sample 400+ plants at Canadian Museum of Nature's (CANL) herbarium in Ottawa, Ontario Canada.

8. References Cited

- Agriculture and Agri-Food Canada. "Soil Landscapes of Canada (SLC) derived from V3.1 and V2.2 Cartographic 1M" Feature Layer. <u>https://hub.arcgis.com/datasets/5457d3cb7e674de2b6adc20a2c33fba3?layer=3</u> (accessed 3 November 2020).
- Anderson, D.B., 1936. Relative Humidity or Vapor Pressure Deficit. Ecology 17(2), 277–282. https://doi.org/10.2307/1931468
- Arens, N.C., Hope Jahren, A., Amundson, R., 2000. Can C₃ plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? Paleobiology 26, 137–164. <u>https://doi.org/10.1666/0094-8373(2000)026<0137:ccpfrt>2.0.co;2</u>
- Atkin, O.K., 1996. Reassessing the nitrogen relations of Arctic plants: A mini-review. Plant, Cell Environ. 19(6), 695–704. <u>https://doi.org/10.1111/j.1365-3040.1996.tb00404.x</u>
- Bjorkman, A.D., Myers-Smith, I.H., Elmendorf, S.C. *et al.*, 2018. Plant functional trait change across a warming tundra biome. Nature 562, 57–62. https://doi.org/10.1038/s41586-018-0563-7
- Boulanger, Y., Taylor, A.R., Price, D.T., Cyr, D., McGarrigle, E., Rammer, W., Sainte-Marie, G., Beaudoin, A., Guindon, L., Mansuy, N., 2017. Climate change impacts on forest landscapes along the Canadian southern boreal forest transition zone. Landsc. Ecol. 32(7), 1415–1431. <u>https://doi.org/10.1007/s10980-016-0421-7</u>
- Buchmann, N., Guehl, J.M., Barigah, T.S., Ehleringer, J.R., 1997. Interseasonal comparison of CO2 concentrations, isotopic composition, and carbon dynamics in an Amazonian rainforest (French Guiana). Oecologia 110(1), 120-131. https://doi.org/10.1007/s004420050140
- Carpino, O.A., Berg, A.A., Quinton, W.L., Adams, J.R., 2018. Climate change and permafrost thaw-induced boreal forest loss in northwestern Canada. Environ. Res. Lett. 13(8), 084018. https://doi.org/10.1088/1748-9326/aad74e

- CAVM Team, 2003. Circumpolar Arctic Vegetation Map. (1:7,500,000 scale), Conservation of Arctic Flora and Fauna (CAFF) Map No. 1. U.S. Fish and Wildlife Service, Anchorage, Alaska. ISBN: 0-9767525-0-6, ISBN-13: 978-0-9767525-0-9
 - de Groot, W.J., Thomas, P.A., Wein, R.W., 1997. *Betula Nana L.* and *Betula Glandulosa Michx*. J. Ecol. 85(2), 241–264. https://doi.org/10.2307/2960655
 - Diefendorf, A.F., Mueller, K.E., Wing, S.L., Koch, P.L., Freeman, K.H., 2010. Global patterns in leaf ¹³C discrimination and implications for studies of past and future climate. Proc. Natl. Acad. Sci. U. S. A. 107(13), 5738–5743. <u>https://doi.org/10.1073/pnas.0910513107</u>
 - Diffenbaugh, N.S., Field, C.B., 2013. Changes in ecologically critical terrestrial climate conditions. Science 341(6145), 486–492. <u>https://doi.org/10.1126/science.1237123</u>
 - eFloras, 2020. Published on the Internet <u>http://www.efloras.org</u> (accessed 10 November 2008) Missouri Botanical Garden, St. Louis, MO & Harvard University Herbaria, Cambridge, MA.
 - Etheridge, D.M., Steele, L.P., Langenfelds, R.L., Francey, R.J., Barnola, J.-M., Morgan, V.I.,
 1998. Historical CO₂ records from the Law Dome DE08, DE08-2, and DSS ice cores. In
 Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis
 Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn.,
 U.S.A.
 - Ettinger, A.K., HilleRisLambers, J., 2013. Climate isn't everything: Competitive interactions and variation by life stage will also affect range shifts in a warming world. Am. J. Bot. 100(7), 1344–1355. https://doi.org/10.3732/ajb.1200489
 - Farjon, A., Filer, D., 2013. An Atlas of the World's Conifers: An Analysis of their Distribution, Biogeography, Diversity and Conservation Status. Brill, Leiden and Boston.
 - Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., 1989. Carbon Isotope Discrimination and Photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40(1), 503–537.
 - Feeley, K.J., Bravo-Avila, C., Fadrique, B., Perez, T.M., Zuleta, D., 2020. Climate-driven

changes in the composition of New World plant communities. Nat. Clim. Chang. 10, 965–970. <u>https://doi.org/10.1038/s41558-020-0873-2</u>

- Fick, S.E. and Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
- Forseth, I.N., Ehleringer, J.R., 1983. Ecophysiology of two solar tracking desert winter annuals III. Gas exchange responses to light, CO2 and VPD in relation to long-term drought, Oecologia 58(1), 10–18. https://doi.org/10.1007/BF00377179
- Franks, P.J., Farquhar, G.D., 2007. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol. 143(1), 78–87. <u>https://doi.org/10.1104/pp.106.089367</u>
- Gamm, C.M., Sullivan, P.F., Buchwal, A., Dial, R.J., Young, A.B., Watts, D.A., Cahoon, S.M.P., Welker, J.M., Post, E., 2018. Declining growth of deciduous shrubs in the warming climate of continental western Greenland. J. Ecol. 106(2), 640–654. https://doi.org/10.1111/1365-2745.12882
- Gebauer, R.L.E., Reynolds, J.F., Tenhunen, J.D., 1998. Diurnal patterns of CO₂ and H₂O exchange of the arctic sedges *Eriophorum angustifolium* and *E. vaginatum* (Cyperaceae).
 Am. J. Bot. 85(4), 592–599. <u>https://doi.org/10.2307/2446442</u>
- Galmés, J., Ribas-Carbó, M., Medrano, H., Flexas, J., 2011. Rubisco activity in Mediterranean species is regulated by the chloroplastic CO₂ concentration under water stress. J. Exp. Bot. 62(2), 653–665. https://doi.org/10.1093/jxb/erq303
- Hugelius, G., Loisel, J., Chadburn, S., Jackson, R.B., Jones, M., MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M.B., Treat, C., Turetsky, M., Voigt, C., Yu, Z., 2020. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl. Acad. Sci. U. S. A. 117(34), 20438–20446. https://doi.org/10.1073/pnas.1916387117
- Hustich, I.,1953. The Boreal Limits of Conifers. Arctic 6(2), 149–162. http://www.jstor.org/stable/40506572 (accessed 21 September 2020).

- Jump, A.S., Peñuelas, J., 2005. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8(9), 1010–1020. <u>https://doi.org/10.1111/j.1461-</u> 0248.2005.00796.x
- Keeling, C.D., Piper, S.C., Bacastow, R.B., Whalen, M., Whorf, T.P., Heimann, M., Meijer, H.A., 2001. Exchanges of atmospheric CO₂ and ¹³CO₂ with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects, SIO Reference Series, No. 01-06, Scripps Institution of Oceanography, San Diego, 88 pages.
- Kohn, M.J., 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc. Natl. Acad. Sci. U. S. A. 107(46), 19691–19695. https://doi.org/10.1073/pnas.1004933107
- Langley, J.A., Megonigal, J.P., 2010. Ecosystem response to elevated CO₂ levels limited by nitrogen-induced plant species shift. Nature 466, 96–99. https://doi.org/10.1038/nature09176
- Lavergne, A., Sandoval, D., Hare, V.J., Graven, H., Prentice, I.C., 2020. Impacts of soil water stress on the acclimated stomatal limitation of photosynthesis: Insights from stable carbon isotope data. Glob. Chang. Biol. 00, 1–15. https://doi.org/10.1111/gcb.15364
- Lawson, T., Blatt, M.R., 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 164(4), 1556–1570. <u>https://doi.org/10.1104/pp.114.237107</u>
- Lomax, B.H., Lake, J.A., Leng, M.J., Jardine, P.E., 2019. An experimental evaluation of the use of Δ¹³C as a proxy for palaeoatmospheric CO₂. Geochim. Cosmochim. Acta 247, 162–174. https://doi.org/10.1016/j.gca.2018.12.026
- Little, E.L., 1979. Checklist of United States trees (native and naturalized). Agriculture handbook ; no. 541. Washington: D.C.: Forest Service, U.S. Dept. of Agriculture.

- McDowell, N.G., Bond, B.J., Dickman, L.T., Ryan, M.G., Whitehead, D., 2011. Relationships Between Tree Height and Carbon Isotope Discrimination. Springer, Dordrecht, 255–286. <u>https://doi.org/10.1007/978-94-007-1242-3_10</u>
- Myers-Smith, I.H., Forbes, B.C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K.D., MacIas-Fauria, M., Sass-Klaassen, U., Lévesque, E., Boudreau, S., Ropars, P., Hermanutz, L., Trant, A., Collier, L.S., Weijers, S., Rozema, J., Rayback, S.A., Schmidt, N.M., Schaepman-Strub, G., Wipf, S., Rixen, C., Ménard, C.B., Venn, S., Goetz, S., Andreu-Hayles, L., Elmendorf, S., Ravolainen, V., Welker, J., Grogan, P., Epstein, H.E., Hik, D.S., 2011. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environ. Res. Lett. 6(4), 045509. https://doi.org/10.1088/1748-9326/6/4/045509
- Myers-Smith, I.H., Thomas, H.J.D., Bjorkman, A.D., 2019. Plant traits inform predictions of tundra responses to global change. New Phytol. 221(4), 1742–1748. https://doi.org/10.1111/nph.15592
- National Weather Service, 2020. Vapor Pressure. https://www.weather.gov/media/epz/wxcalc/vaporPressure.pdf (accessed 23 October 2020).
- Negandhi, K., Laurion, I., Whiticar, M.J., Galand, P.E., Xu, X., Lovejoy, C., 2013. Small thaw ponds: An unaccounted source of methane in the Canadian high Arctic. PLoS One 8(11), e78204. https://doi.org/10.1371/journal.pone.0078204
- Novick, K.A., Ficklin, D.L., Stoy, P.C., Williams, C.A., Bohrer, G., Oishi, A.C., Papuga, S.A., Blanken, P.D., Noormets, A., Sulman, B.N., Scott, R.L., Wang, L., Phillips, R.P., 2016. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 6(11), 1023–1027. <u>https://doi.org/10.1038/nclimate3114</u>

- O'Leary, M.H., 1993. Biochemical Basis of Carbon Isotope Fractionation, in: Stable Isotopes and Plant Carbon-Water Relations. Elsevier, Academic Press, 19–28. https://doi.org/10.1016/b978-0-08-091801-3.50009-x
- Parmesan, C., Hanley, M.E., 2015. Plants and climate change: Complexities and surprises. Ann. Bot. 116(6), 849-864. https://doi.org/10.1093/aob/mcv169
- Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
- Peterson, K.M., Rychel, A.L., Torii, K.U., 2010. Out of the mouths of plants: The molecular basis of the evolution and diversity of stomatal development. Plant Cell. 22(2), 296–306. <u>https://doi.org/10.1105/tpc.109.072777</u>
- Phillips, M., 1954. Eriophorum Angustifolium Roth. *Journal of Ecology*, 42(2), 612–622. htpps://doi.org/10.2307/2256893
- Post, E., Høye, T.T., 2013. Advancing the long view of ecological change in tundra systems. Introduction. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368(1624): 20120477 https://doi.org/10.1098/rstb.2012.0477
- Raatikainen, M., Tanska, T., 1993. Cone and seed yields of the juniper (Juniperus communis) in southern and central Finland. Acta Botanica Fennica, 149, 27–39.
- Riddle, J., Pederson, N., Stella, J.C., Leopold, D.J., 2014. Shifting climate sensitivity and contrasting growth trends in Juniperus species growing together at opposite range margins. Tree-Ring Res. 70(2), 101–111. https://doi.org/10.3959/1536-1098-70.2.101
- Rubel, F., Kottek, M., 2010. Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol. Zeitschrift 19(2), 135–141. <u>https://doi.org/10.1127/0941-2948/2010/0430</u>

- Rubino, M., Etheridge, D.M., Trudinger, C.M., Allison, C.E., Battle, M.O., Langenfelds, R.L.,
 Steele, L.P., Curran, M., Bender, M., White, J.W.C., Jenk, T.M., Blunier, T., Francey, R.J.,
 2013. A revised 1000 year atmospheric δ¹³C-CO₂ record from Law Dome and South Pole,
 Antarctica. J. Geophys. Res. Atmos. 118(15), 8482–8499.
 https://doi.org/10.1002/jgrd.50668
- Sáez, P.L., Galmés, J., Ramírez, C.F., Poblete, L., Rivera, B.K., Cavieres, L.A., Clemente-Moreno, M.J., Flexas, J., Bravo, L.A., 2018. Mesophyll conductance to CO₂ is the most significant limitation to photosynthesis at different temperatures and water availabilities in Antarctic vascular species. Environ. Exp. Bot. 156, 279–287. https://doi.org/10.1016/j.envexpbot.2018.09.008
- Schell, D., 2016. Arctic LTER 1988: δ¹³C and δ¹⁵N ratios measurement for *Eriophorum*, *Carex* and lichen species in water tracks at Toolik and Imnavait Creek ver 2. Environmental Data Initiative. https://doi.org/10.6073/pasta/d1771a19979f042e44a1813fe935c426 (Accessed 31 July 2020).
- Schubert, B.A., Jahren, A.H., 2012. The effect of atmospheric CO₂ concentration on carbon isotope fractionation in C₃ land plants. Geochim. Cosmochim. Acta 96, 29–43. <u>https://doi.org/10.1016/j.gca.2012.08.003</u>
- Schubert, B.A., Jahren, A.H., 2018. Incorporating the effects of photorespiration into terrestrial paleoclimate reconstruction. Earth-Science Rev. 177, 637–642 https://doi.org/10.1016/j.earscirev.2017.12.008
- Settele, J., R. Scholes, R. Betts, S. Bunn, P. Leadley, D. Nepstad, J.T. Overpeck, and M.A. Taboada, 2014:Terrestrial and inland water systems. In: *Climate Change 2014: Impacts, Adaptation, and Vulnerability.Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of theIntergovernmental Panel on Climate Change* [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach,M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 271-359.

- Sheldon, N.D., Smith, S.Y., Stein, R., Ng, M., 2020. Carbon isotope ecology of gymnosperms and implications for paleoclimatic and paleoecological studies. Glob. Planet. Change 184, 103060. <u>https://doi.org/10.1016/j.gloplacha.2019.103060</u>
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at the following link: <u>http://websoilsurvey.sc.egov.usda.gov/</u> (accessed 15 May 2020).
- Sparks, J.P., Ehleringer, J.R., 1997. Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevational transects. Oecologia 109(3), 362–367. https://doi.org/10.1007/s004420050094
- Stein, R.A., Sheldon, N.D., Smith, S., 2019. Rapid response to anthropogenic climate change by Thuja occidentalis : implications for past climate reconstructions and future climate predictions. PeerJ 7, e7378. <u>https://doi.org/10.7717/peerj.7378</u>
- Stein, R.A., Sheldon, N.D., Smith, S.Y., in press. C₃ plant carbon isotope discrimination does not respond to CO₂ concentration on decadal to centennial timescales. New Phytol. nph.17030. https://doi.org/10.1111/nph.17030
- Stocker, T.F., D. Qin, G.-K. Plattner, L.V. Alexander, S.K. Allen, N.L. Bindoff, F.-M. Bréon, J.A. Church, U. Cubasch, S. Emori, P. Forster, P. Friedlingstein, N. Gillett, J.M. Gregory, D.L. Hartmann, E. Jansen, B. Kirtman, R. Knutti, K. Krishna Kumar, P. Lemke, J. Marotzke, V. Masson-Delmotte, G.A. Meehl, I.I. Mokhov, S. Piao, V. Ramaswamy, D. Randall, M. Rhein, M. Rojas, C. Sabine, D. Shindell, L.D. Talley, D.G. Vaughan and S.-P. Xie, 2013: Technical Summary. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Tans, P., 2020. NOAA/GML: Monthly Average Mauna Loa CO₂. https://www.esrl.noaa.gov/gmd/ccgg/trends/ (accessed 10 Nov 2020).

- Thomas, P.A., El-Barghathi, M., Polwart, A., 2007. Biological Flora of the British Isles: Juniperus communis L. J. Ecol. 95(6), 1404–1440. https://doi.org/10.1111/j.1365-2745.2007.01308.x
- Tognetti, R., Peñuelas, J., 2003. Nitrogen and carbon concentrations, and stable isotope ratios in Mediterranean shrubs growing in the proximity of a CO₂ spring. Biol. Plant. 46(3), 411– 418. https://doi.org/10.1023/A:1024342606329
- Tognetti, R., Raschi, A., Jones, M.B., 2000. Seasonal patterns of tissue water relations in three Mediterranean shrubs co-occurring at a natural CO₂ spring. Plant, Cell Environ. 23(12), 1341–1351. <u>https://doi.org/10.1046/j.1365-3040.2000.00645.x</u>
- Ungerson, J., Scherdin, G., 1965. Untersuchungen über Photosynthese und Atmung unter Natürlichen Bedingungen Während des Winterhalbjahres bei *Pinus silvestris* L., *Picea excelsa* Link. und *Juniperus communis* L. Planta 67, 136–167. <u>https://doi.org/10.1007/BF00385506</u>
- Unterholzner, L., Carrer, M., Bär, A., Beikircher, B., Dämon, B., Losso, A., Prendin, A.L., Mayr, S., 2020. Juniperus communis populations exhibit low variability in hydraulic safety and efficiency. Tree Physiol. tpaa103. https://doi.org/10.1093/treephys/tpaa103
- USDA, NRCS, 2020. The PLANTS Database. <u>http://plants.usda.gov</u> (accessed 10 November 2020). National Plant Data Team, Greensboro, NC 27401-4901 USA.
- Verheyen, K., Adriaenssens, S., Gruwez, R., Michalczyk, I.M., Ward, L.K., Rosseel, Y., Van den Broeck, A., García, D., 2009. Juniperus communis: Victim of the combined action of climate warming and nitrogen deposition? Plant Biol. 11(s1), 49–59. https://doi.org/10.1111/j.1438-8677.2009.00214.x

9. Tables & Figures

9.1 Tables

	mean δ ¹³ C (‰)	range δ ¹³ C (‰)	σ δ ¹³ C (‰)	mean Δ _{leaf} (‰)	range Δ_{leaf} (‰)	$\sigma \Delta_{leaf}$ (‰)
Juniperus communis	-26.76	-23.6129.72	1.18	20.06	16.94 - 23.11	1.18
Eriophorum angustifolium	-27.11	-22.9631.40	1.51	20.21	15.84 - 23.96	1.46
Betula glandulosa	-27.51	-24.56 30.75	1.20	20.60	17.91 - 23.14	1.07

Table 1. Summary statistics for leaf carbon isotope measurements and leaf carbon isotope discrimination, where σ is equivalent to $\pm 1\sigma$.

9.2 Figures

Figure 2. Sample locations and Δ_{leaf} values. Samples (n =453; this study and Shell (2016)) are divided by species (shape) and are color-coded by calculated Δ_{leaf} values (‰). The region in pink designates the circumpolar arctic land area where the treeline has ended to highlight the shift from trees to shorter stature vegetation (CAVM Team, 2003). The inset map highlights a region where samples were collected that fall along or near the treeline boundary; here we can predict how species may shift due to changes in climate. Basemap: World Light Gray Canvas Map, Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS user community; stereographic North Pole projection, WGS 1984.

Figure 3. Leaf carbon isotope values ($\delta^{13}C_{leaf}$) of Juniperus communis, Eriophorum angustifolium, and Betula glandulosa vs. atmospheric carbon isotope values ($\delta^{13}C_{atm}$). Pre-1965 samples include all samples collected up to but not including the collection year 1966. The separation of data points was chosen based on the observed inflection point in $\delta^{13}C_{atm}$, where the rate of change in $\delta^{13}C_{atm}$ increased due to the acceleration of Industrialization. For specific inflection points and atmospheric carbon isotope measurements see Supplemental Methods.

Figure 4. Species-level relationship between $\delta^{13}C_{leaf}$ and $\delta^{13}C_{atm}$. Results from this study for post-1965 samples (Figure 3) are compared to previous results from Sheldon et al. (2020) and generalized relationship proposed by Arens et al. (2000). Slopes for each regression can be found in Supplemental Table 1.

Figure 5: Compilation of all Δ_{leaf} vs MAP, average precipitation of collection month, and VPD for all 3 species used in this study. Blue highlighted samples are outliers.

Figure 6: Compilation of all Δ_{leaf} vs. latitude, MAT, and average temperature of collection month for all 3 species used in this study. Blue highlighted samples are outliers.

Figure 7. Combined effects of MAP and VPD on Δ_{leaf} . VPD bins were selected based on relative data evenness. A) Δ_{leaf} vs. MAP for different average collection month VPD bins for *Juniperus communis*. B) Accompanying box and whisker plot for A highlighting the differences in the mean and variation about the mean leaf carbon isotope values for *Juniperus communis* when data are binned by VPD (kPa) and divided into two MAP groups: less than 500 mm and between 500 mm and 1000 mm yr⁻¹(n= 35, 66, 14, 6). C) Δ_{leaf} vs. collection month precipitation for different average collection month VPD bins for *Eriophorum angustifolium*. D) Accompanying box and whisker plot for C (n= 74, 56, 22 respectively). E) Δ_{leaf} vs. collection month precipitation for different average collection month VPD bins for *Betula glandulosa*. F) Accompanying box and whisker plot for E (n= 17, 72, 70). Blue highlighted samples are outliers.

Figure 8. Juniperus communis Δ_{leaf} versus MAP binned by MAT. For MAT < 0°C, Δ_{leaf} is strongly negatively correlated with MAP. In contrast, leaves collected from sites where MAT > 0°C show no relationship. See trendline in Figure 5 A1.

Figure 9. Biplots for PCA results of Juniperus communis, Eriophorum angustifolium, and Betula glandulosa respectively.

Figure 10. Biplot of PCA when all three species and all climate variables are considered simultaneously.

10. Appendix

- - a. Supplemental Figure 1
 - b. Supplemental Figure 2
 - c. Supplemental Figure 3
- III. Supplemental Tables...... 50–88
 - a. Supplemental Table 1
 - b. Supplemental Table 2
 - c. Supplemental Table 3
 - d. Supplemental Table 4

I. Supplemental Methods

- a. Climate Data
 - i. In ArcMap, the National Geographic Basemap was used with a WGS 1984 coordinate system. Latitude and longitude coordinates of each individual plant sample used within this study were uploaded as a csv file and coordinate points were turned into a vector shapefile. The following data from WorldClim 2 were downloaded (Fick & Hijmans, 2017)
 - 1. Average Temperature for Months 3–12 (2.5m resolution)
 - a. Pyramid Resampling Technique = Nearest Neighbor
 - b. Pyramid Compression Type = Default
 - c. Compression Quality = 75
 - d. Unit = $^{\circ}C$
 - 2. Water Vapor Pressure for Months 3–12 (2.5m resolution)
 - a. Pyramid Resampling Technique = Nearest Neighbor
 - b. Pyramid Compression Type = Default
 - c. Compression Quality = 75
 - d. Unit = kPa
 - 3. Bioclimatic Variables
 - a. BIO1 (annual mean temperature) and BIO12 (annual precipitation)
 - b. Pyramid Resampling Technique = Nearest Neighbor
 - c. Pyramid Compression Type = Default
 - d. Compression Quality = 75
 - e. Units = $^{\circ}$ C and mm
 - ii. Values from each climate layer were then extracted to each individual sample point using the Spatial Analyst Tool- Extraction and exported into an excel file.
- b. Soil Data
 - i. For samples with coordinates within Canada, the vector shapefile of sample locations was plotted onto the National Geographic Basemap, WGS 1984 Coordinate system. The following soil data was uploaded into ArcMap: Soil Landscapes of Canada (SCL) derived from V3.1 and V2.2 Cartographic 1M (Agriculture and Agri-Food Canada). The sample points were joined to the soil data polygons. For this research only DRAINAGE_CODE was used from output shapefile. The attribute labels were: Very Rapidly Drained, Rapidly Drained, Well Drained, Moderately Well Drained, Imperfectly Drained, Poorly Drained and Very Poorly Drained. For samples with coordinates in the continental United States, soil drainage data from each sample coordinate was manually collected for each location (Soil Survey Staff). The attribute labels were: Excessively drained, Somewhat excessively drained, Well drained, and Very Poorly Drained. The codes for each country were combined into numbered bins

represented by the numbers in parentheses in an attempt to reconcile the databases. Samples were given a code of 0 if they were listed as unclassified.

- 1. Canadian Soil Drainage Codes
 - a. (1) Very rapidly drained
 - b. (1) Rapidly drained
 - c. (2) Well drained
 - d. (2) Moderately well drained
 - e. (3) Imperfectly drained
 - f. (4) Poorly drained
 - g. (4) Very poorly drained
- 2. U.S. Soil Drainage Codes
 - a. (1) Excessively drained
 - b. (1) Somewhat excessively drained
 - c. (2) Well drained
 - d. (2) Moderately well drained
 - e. (3) Somewhat poorly drained
 - f. (4) Poorly drained
 - g. (4) Very Poorly Drained
- c. Calculating Vapor Pressure Deficit (VPD)
 - i. VPD was calculated using Eq. (1) for saturated vapor pressure (National Weather Service, 2020).

EEEE. (1)
$$ee_{ss} = 6.11 * 10^{237.3 + 17}$$

Where *eess* is saturated vapor pressure (hPa) and T is temperature (°C). To calculate VPD, the actual vapor pressure pulled from Worldclim was subtracted from the saturated vapor pressure. Actual Vapor Pressure pulled was pulled from WorldClim 2, Monthly Average Water Vapor Pressure (kPa) (2.5m Resolution) for months 3 through 12. Temperature was pulled from WorldClim 2, Monthly Average Temperature (°C) (2.5m Resolution) for months 3 through 12. Each monthly VPD was linked to the corresponding month that the sample was collected in.

- d. Accounting for missing $\delta^{13}C_{atm}$ values
 - i. Two regressions were created in order to account for any yearly missing atmospheric measurements using $\delta^{13}C_{atm}$ measurements (Keeling et al., 2001; Rubino et al., 2013). For samples collected during the year of 1965 or earlier, $\delta^{13}C_{atm}$ values were assigned from Rubino et al. (2013). If samples collected from 1965 or earlier happened to not have a direct $\delta^{13}C_{atm}$ value that it corresponded to, values were extrapolated from a linear regression of all known measurements from Rubino et al. (2013) from 1898 to 1965 (y = -0.0049x + 2.5495). For samples collected in the year 1966 or later, $\delta^{13}C_{atm}$ values were assigned from a combination of measurements from Rubino et al (2013) and Keeling et al. (2001). For sample years without direct measurements a $\delta^{13}C_{atm}$ value was calculated

from the regression line of measured $\delta^{13}C_{atm}$ values from 1966 to 2018 (y = -0.0254x + 42.709). Two individually regression lines were used to select $\delta^{13}C_{atm}$ values, because the isotopic composition of the atmosphere, based on the measurements from Rubino et al. (2013) and Keeling et al. (2001) begins to become more negative around the 1965–1966 mark. To assign $\delta^{13}C_{atm}$ to each sample, the sample collection year and month was used to calculate the Julian calendar # that each sample was collected on Eq. (2).

Eq. (2) JJJJJJJJaaJJ CCaaJJeeJJCCaaCC =
$$\frac{CCCCJJJeeCCCCJJCCJJ MMCCJJCCh - 1}{12} + CCCCJJJeeCCCCJJCCJJ YYeeaaCC$$

Sample collection day was not included within the Julian calendar number due to the fact that $\delta^{13}C_{atm}$ measurements were only at a monthly resolution post 1980, and that VPD was an average monthly measurement. Each Julian calendar # for each given sample was matched with the $\delta^{13}C_{atm}$ Julian calendar measurement it was closest to.

e. Calculating Δ_{leaf}

Eq. (4)
$$\Delta = aa + (bb - aa) \frac{pp_{ii}}{pp_{aa}}$$
 (Farquhar et al. 1989).

Where $aa = 4.4\%_0$ is fractionation due to diffusion of CO₂ and $bb = 27\%_0$ is fractionation due to carboxylation from the enzyme rubisco (Farquhar et al.,1989)

f. Supplemental Methods Citations

Agriculture and Agri-Food Canada. "Soil Landscapes of Canada (SLC) derived from V3.1 and V2.2 – Cartographic 1M" Feature Layer. <u>https://hub.arcgis.com/datasets/5457d3cb7e674de2b6adc20a2c33fba3?layer=3</u> (accessed 3 November 2020).

- Diefendorf, A.F., Mueller, K.E., Wing, S.L., Koch, P.L., Freeman, K.H., 2010. Global patterns in leaf ¹³C discrimination and implications for studies of past and future climate. Proc. Natl. Acad. Sci. U. S. A. 107, 5738–5743. <u>https://doi.org/10.1073/pnas.0910513107</u>
- Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., 1989. Carbon Isotope Discrimination and Photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537.
- Fick, S.E. and Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302-4315. https://doi.org/10.1002/joc.5086
- Keeling, C.D., Piper, S.C., Bacastow, R.B., Whalen, M., Whorf, T.P., Heimann, M., Meijer, H.A., 2001. Exchanges of atmospheric CO₂ and ¹³CO₂ with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects, SIO Reference Series, No. 01-06, Scripps Institution of Oceanography, San Diego, 88 pages.

National Weather Service, 2020. Vapor Pressure.

https://www.weather.gov/media/epz/wxcalc/vaporPressure.pdf (accessed 23 October 2020).

- Rubino, M., Etheridge, D.M., Trudinger, C.M., Allison, C.E., Battle, M.O., Langenfelds, R.L., Steele, L.P., Curran, M., Bender, M., White, J.W.C., Jenk, T.M., Blunier, T., Francey, R.J., 2013. A revised 1000 year atmospheric δ¹³C-CO₂ record from Law Dome and South Pole, Antarctica. J. Geophys. Res. Atmos. 118, 8482–8499. https://doi.org/10.1002/jgrd.50668
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at the following link: <u>http://websoilsurvey.sc.egov.usda.gov/</u> (accessed 15 May 2020).

II. Supplemental Figures

Supplemental Figure 1. Δ_{leaf} vs. MAP with VPD and soil drainage bins for Juniperus communis. Drainage range from rapid drainage to poor drainage. Points filled with black indicate higher VPD levels.

Supplemental Figure 2. Exponential relationship of Δ_{leaf} vs. MAP for Juniperus communis in this study in comparison to the meta-analysis of multiple species from Diefendorf et al. (2010). Note the increase in Δ_{leaf} values of this study at lower MAP while Diefendorf et al. (2010) shows the opposite.

Supplemental Figure 3. Δ_{leaf} vs. [CO₂] for Juniperus communis, Eriophorum angustifolium, and Betula glandulosa respectively ($R^2 = 1.21 \times 10^{-6}$, 0.0011, 0.021; p-value = not significant).

III. Supplemental Tables

Soil Drai ngag e Clas sific ation Leve I***	2	1	1	1	2	2	4	1	2	1	1	3	1	2
∆lea f (‰)* *	17.5 3	18.1 4	20.2 1	20.4 0	20.0 8	17.6 6	21.0 4	20.9 6	19.0 1	20.8 0	19.2 3	17.7 5	17.6 8	20.3 4
VPD (kPa)*	0.49 322 056 7	0.36 911 943 9	0.72 681 581 1	0.34 307 650 3	0.46 040 952 3	0.32 317 641 7	0.43 646 74	0.40 841 227	0.42 109 292 3	0.47 435 758 8	0.69 912 496 5	0.50 426 154 9	0.55 144 282 7	0.48 953 346 4
δ1 3C lea f (‰)	- 23. 99	- 24. 52	- 26. 59	- 26. 76	- 26. 51	- 24. 20	- 27. 50	- 27. 43	- 25. 53	- 27. 25	- 25. 76	- 24. 35	- 24. 32	- 27. 25
δ13C atm (‰) Sourc e ^{****}	EXTR APOL ATED	Rubin o et al. 2013 JGR Atmos phere	EXTR APOL ATED	Rubin o et al. 2013 JGR Atmos phere	EXTR APOL ATED	EXTR APOL ATED	Rubin o et al. 2013 JGR Atmos phere	Rubin o et al. 2013 JGR Atmos phere	EXTR APOL ATED	EXTR APOL ATED	EXTR APOL ATED	EXTR APOL ATED	Rubin o et al. 2013 JGR Atmos phere	Keelin g et al. 2001
δ13 Cat m (‰)	- 6.87 605 833 3	- 6.83 2	- 6.90 995	- 6.90 643 735 4	- 6.96 834 166 7	- 6.96 875	- 7.04 268 242 9	- 7.04 268 242 9	- 7.00 223 333 3	- 7.01 734 166 7	- 7.01 775	- 7.03 285 833 3	- 7.07 088 918 6	- 7.47
[C O₂] (p m)	30 4. 1	30 6. 8	30 7. 2	30 8. 2	31 0. 3	31 0. 3	31 0. 3	31 0. 3	31 0. 5	31 1. 5	31 1. 5	31 3	31 4. 2	33 7. 6
Mon thly Avg Tem pera ture (°C)	17.6	14.0 12	20.6 64	9.93 6	15.3 12	15.6 52	17.2 28	9.69	9.3	16.9 68	20.0 84	14.5 8	19.8 76	18.0 32
MĂT (°C)*	4.42 733	5.57 183	7.49 05	7.60 65	6.02 283	3.76 417	4.51 75	4.78	4.27 883	7.73 583	7.00 867	- 2.66 05	7.80 983	5.50 75
Mon thly Ave rag Pre cipi atio n (m m)*	99	99	66	71	72	77	88	65	67	74	66	60	96	78
M P (m y r- 1)*	8 8 9	7 9 1	7 3 3	8 6 2	7 6 9	7 4 1	8 6 1	793	8 2 6	8 3 5	8 0 5	4 0 1	8 4 1	7 5 5
Lon gitu de (°W)	- 89.7 3	- 84.9 5	- 83.2 7	- 82.6 5	- 85.5 3	- 88.5 4	- 85.0 2	- 88.6 1	- 88.1 0	- 86.4 3	- 86.0 2	- 121. 37	- 86.5 4	- 84.6 0
Lat itu de (°N)	46. 69	45. 99	43. 95	43. 84	45. 74	48. 11	46. 76	47. 24	47. 45	43. 81	44. 90	61. 87	43. 65	45. 83
Retr ival Dat e	25- Nov -19	25- Nov -19	25- Nov -19	25- Nov -19	25- Nov -19	25- Nov -19	25- Nov -19	25- Nov -19	25- Nov -19	25- Nov -19	25- Nov -19	25- Nov -19	25- Nov -19	25- Nov -19
Col lect ion #		443 5	689 4	s.n.	305 3	429 3	976 2	581	154 3	126 78	641	916 7	531 2	114 9
Colle ctor	H.T. Darli nton	J. H. Ehler s	R.R. Dreis hbac h	Sister Vince nt dePa ul McGi vney	Sister M. Marc elline Horto n, O.P.	Harol d and Virgin ia Baile y	Roge rs McVa ugh	Charl es D. Richa rds	Charl es D. Richa rds	Virgin ius H. Chas e	Dale A. Zimm erma n	W.J. Cody and J.M. Matte	E.G. Voss	Brain T. Hazle tt
Her bari um	MIC H	MIC H	MIC H	MIC Н	MIC H	MIC H	MIC H	MIC H	MIC Н	МIС Н	H H	MIC H	MIC H	MIC H
Col lect ion Da y	4	6	20		2	14	9	12	14	20	12	3	20	1
Col lect ion Mo nth	8	9	7	10	6	7	8	5	5	6	7	8	8	8
Col lect ion Ye ar	192 3	192 9	193 0	193 2	194 2	194 2	194 8	194 8	194 9	195 2	195 2	195 5	195 7	198 0
Pers onal ID #	JCU MMA S1	JCU MMA S2	JCU MMA S3	JCU MMA S4	JCU MMA S5	JCU MMA S6	JCU MMA S8	JCU MMA S7	JCU MMA S9	JCU MMA S10	JCU MMA S12	JCU MMA S13	JCU MMA S14	JCU MMA S20
Genus, Species	Juniperu s communi s	Juniperu s communi s	Juniperu s communi s	Juniperu s communi s	Juniperu s communi s	Juniperu s communi s	Juniperu s communi s	Juniperu s communi s	Juniperu s communi s	Juniperu s communi s	Juniperu s communi s	Juniperu s communi s	Juniperu s communi s	Juniperu s communi s

Juniperu s communi s	JCU MMA S22	200 2	8	3	MIC H	Timot hy L. Walte rs	844 3	25- Nov -19	44. 13	- 85.5 3	8 2 7	89	6.58 083	18.7 84	37 1. 48	- 7.99	Keelin g et al. 2001	- 28. 61	0.52 816 872	21.2 3	1
Juniperu s communi s	JCU MMA S23	200 7	5	15	MIC H	Timot hy L. Walte rs and Joel Scha effer	118 79	25- Nov -19	44. 72	- 85.5 2	7 6 4	61	7.13 75	12.3 64	38 6. 41	-8.4	Keelin g et al. 2001	- 28. 34	0.53 541 203 8	20.5	2
Juniperu s communi s	JCC AMA S1	192 4	3	5	CA NL	H. M. Laing	436	7- Jan- 202 0	54. 32	- 130. 32	2 4 5 9	179	7.10 614	3.38 421	30 4. 5	- 6.88 712 011 2	Rubin o et al. 2013 JGR Atmos phere	- 28. 04	0.14 945 367 5	21.7 7	2
Juniperu s communi s	JCC AMA S2	192 6	7	23	CA NL	M.O. Malte	593	7- Jan- 202 0	46. 45	- 62.0 0	1 1 9 7	81	5.54 028	17.8	30 5. 4	- 6.89 035	EXTR APOL ATED	- 27. 11	0.42 708 657 6	20.7 9	2
Juniperu s communi s	JCC AMA S3	192 6	7	15	CA NL	Hugh M. Raup	113	7- Jan- 202 0	58. 83	- 110. 83	3 9 1	67	- 1.60 667	16.8 72	30 5. 4	- 6.89 035	EXTR APOL ATED	- 28. 04	0.58 301 820 5	21.7 6	0
Juniperu s communi s	JCC AMA S4	192 7	7	19	CA NL	Hugh M. Raup	118	6- Jan- 202 0	62. 75	- 109. 10	2 7 6	38	- 6.43 333	14.4 24	30 5. 8	- 6.89 525	EXTR APOL ATED	- 26. 49	0.46 360 567	20.1 3	2
Juniperu s communi s	JCC AMA S5	192 7	8	24	CA NL	A.E. & R.T. Porsil d	312 6	7- Jan- 202 0	68. 33	- 132. 33	2 1 5	37	- 8.69 833	10.0 48	30 5. 8	- 6.89 565 833 3	EXTR APOL ATED	- 27. 10	0.33 949 072 3	20.7 7	3
Juniperu s communi s	JCC AMA S6	192 7	7	18	CA NL	A.E. & R.T. Porsil d	203 3	7- Jan- 202 0	69. 00	- 134. 67	2 2 2	32	- 9.08 8	12.9 28	30 5. 8	- 6.89 525	EXTR APOL ATED	- 29. 33	0.45 837 233 1	23.1 1	3
Juniperu s communi s	JCC AMA S7	192 8	9	1	CA NL	A.E. & R.T. Porsil d	335 6	7- Jan- 202 0	64. 97	- 123. 67	2 7 6	39	- 5.75 383	5.9	30 6. 3	- 6.90 096 666 7	EXTR APOL ATED	- 29. 14	0.21 894 548 1	22.9 1	4
Juniperu s communi s	JCC AMA S8	192 8	6	16	CA NL	A.E. & R.T. Porsil d	323 8	7- Jan- 202 0	64. 95	- 123. 80	2 8 2	30	- 5.75 467	13.6	30 6. 3	- 6.89 974 166 7	EXTR APOL ATED	- 26. 97	0.72 523 672 5	20.6 3	4
Juniperu s communi s	JCC AMA S9	192 8	5	11	CA NL	A.E. & R.T. Porsil d	318 8	7- Jan- 202 0	64. 92	- 125. 70	3 0 9	15	- 5.29 55	5.85 6	30 6. 3	- 6.89 933 333 3	EXTR APOL ATED	- 26. 96	0.43 811 728 8	20.6 1	4
Juniperu s communi s	JCC AMA S10	192 9	7	23	CA NL	P. Louis - Marie , O.C.; L. Lapor te; & H. Dude main e		6- Jan- 202 0	46. 12	- 71.5 7	1 2 6 5	126	4.00 167	18.5 08	30 6. 8	- 6.83 2	Rubin o et al. 2013 JGR Atmos phere	- 25. 62	0.50 504 795	19.2 8	2
Juniperu s communi s	JCC AMA S11	193 0	8	6 to 7	CA NL	Jacq ues Rous seau	353 34	7- Jan- 202 0	45. 38	- 61.5 0	1 6 9 6	112	5.88 056	18.1	30 7. 2	- 6.91 035 833 3	EXTR APOL ATED	- 25. 66	0.38 592 278 1	19.2 4	2
Juniperu s communi s	JCC AMA S12	193 2	7	21	CA NL	Hugh M. Raup & Ernst C. Abbe	400 1	7- Jan- 202 0	56. 05	- 123. 68	6 1 4	79	0.95 883	12.9 04	30 8. 2	- 6.90 643 735 4	Rubin o et al. 2013 JGR Atmos phere	- 27. 59	0.54 323 162 9	21.2 7	2
Juniperu s communi s	JCC AMA S13	193 2	6	12	CA NL	Hugh M. Raup & Ernst C. Abbe	354 4	7- Jan- 202 0	56. 13	- 120. 67	4 5 9	71	2.61 85	14.5 72	30 8. 2	- 6.90 643 735 4	Rubin o et al. 2013 JGR Atmos phere	- 26. 56	0.67 500 376 7	20.1 9	2
Juniperu s communi s	JCC AMA S14	193 4	7	21	CA NL	A.E. Porsil d	700 9	6- Jan- 202 0	68. 67	- 134. 12	2 3 3	32	- 8.65 967	13.1 52	30 9	- 6.92 955	EXTR APOL ATED	- 27. 56	0.50 317 495 5	21.2 1	2
Juniperu s communi s	JCC AMA S15	193 7	7	23	CA NL	C.H. D. Clark e		6- Jan- 202 0	64. 17	- 104. 08	2 4 2	39	- 10.4 6683	13.4 8	31 0	- 6.95 017	Rubin o et al. 2013	- 27. 43	0.56 310 710 2	21.0 6	2

			1	1	1	1				1	1		1	1	-	101	100	1			
																124	Atmos phere				
Juniperu s communi s	JCC AMA S16	193 9	6	20	CA NL	H.M. Laing	435	6- Jan- 202 0	52. 83	- 126. 95	1 7 3 0	74	5.38 455	11.1 458	31 0. 3	- 6.99 414 044 2	Rubin o et al. 2013 JGR Atmos phere	- 26. 05	0.29 213 820 2	19.5 7	2
Juniperu s communi s	JCC AMA S17	193 9	7	28	CA NL	H.M. Raup & J.H. Sope r	960 3	7- Jan- 202 0	62. 08	- 127. 58	5 5 5	87	- 5.49 917	10.7 16	31 0. 3	- 6.99 414 044 2	Rubin o et al. 2013 JGR Atmos phere	- 26. 61	0.44 812 507	20.1 5	2
Juniperu s communi s	JCC AMA S18	194 3	6	26	CA NL	H.M Raup & D.S. Corre II	103 04	7- Jan- 202 0	57. 23	- 122. 72	5 7 5	109	0.68 3	11.4 4	31 0. 2	- 6.97 324 166 7	EXTR APOL ATED	- 26. 39	0.53 280 933	19.9 4	2
Juniperu s communi s	JCC AMA S19	194 4	6	2	CA NL	A.E. Porsil d	903 9	6- Jan- 202 0	59. 42	- 126. 17	4 4 3	52	- 0.90 417	13.0 28	31 0. 1	- 6.97 814 166 7	EXTR APOL ATED	- 27. 84	0.57 135 992 6	21.4 6	2
Juniperu s communi s	JCC AMA S20	194 4	7	9	CA NL	V.C. Wynn e- Edwa rds	842 3	7- Jan- 202 0	62. 08	- 123. 33	4 3 0	74	- 3.95 167	15.0 36	31 0. 1	- 6.97 855	EXTR APOL ATED	- 28. 48	0.56 140 023 3	22.1 3	2
Juniperu s communi s	JCC AMA S21	194 7	7	12	CA NL	Franc is Harp er	229 5	7- Jan- 202 0	60. 60	- 99.8 0	3 4 8	60	- 8.21 967	13.8 2	31 0. 2	- 7.01 336 056 8	Rubin o et al. 2013 JGR Atmos phere	- 26. 41	0.55 209 128 5	19.9 2	2
Juniperu s communi s	JCC AMA S22	194 7	8	8	CA NL	Franc is Harp er	240 1	7- Jan- 202 0	60. 60	- 99.9 9	3 4 5	50	- 8.41 683	12.0 64	31 0. 2	- 7.01 336 056 8	Rubin o et al. 2013 JGR Atmos phere	- 27. 44	0.40 331 335 5	21.0 0	2
Juniperu s communi s	JCC AMA S23	194 7	10	20	CA NL	Franc is Harp er	254 3	7- Jan- 202 0	60. 55	- 100. 19	3 4 4	40	- 8.37 9	- 4.29 6	31 0. 2	- 7.01 336 056 8	Rubin o et al. 2013 JGR Atmos phere	- 26. 38	0.03 438 595 3	19.8 9	2
Juniperu s communi s	JCC AMA S24	194 8	7	10	CA NL	Hans ford T. Shac klette	290 5	7- Jan- 202 0	66. 08	- 118. 03	2 3 3	34	- 7.40 017	11.6 08	31 0. 3	- 7.04 268 242 9	Rubin o et al. 2013 JGR Atmos phere	- 26. 78	0.37 392 740 8	20.2 8	2
Juniperu s communi s	JCC AMA S25	194 8	7	20	CA NL	Hans ford T. Shac klette	311 2	7- Jan- 202 0	65. 72	- 118. 90	2 4 7	37	- 6.98 633	14.1 2	31 0. 3	- 7.04 268 242 9	Rubin o et al. 2013 JGR Atmos phere	- 27. 33	0.62 356 842 1	20.8 5	4
Juniperu s communi s	JCC AMA S26	194 9	8	27	CA NL	J. Ewan	185 16	6- Jan- 202 0	49. 38	- 115. 22	7 0 0	38	5.33 333	17.2 2	31 0. 5	- 7.00 345 833 3	EXTR APOL ATED	- 27. 00	0.88 227 232 7	20.5 5	2
Juniperu s communi s	JCC AMA S27	194 9	7	10	CA NL	W.K. W. Bald win	159 3	7- Jan- 202 0	52. 42	- 80.2 5	7 1 3	104	-1	15	31 0. 5	- 7.00 305	EXTR APOL ATED	- 26. 76	0.45 584 258 1	20.3 0	4
Juniperu s communi s	JCC AMA S28	195 0	7	10	CA NL	Willia m H. Drury , Jr.	421 4	6- Jan- 202 0	61. 92	- 154. 42	4 6 5	82	- 2.28 217	12.8 36	31 0. 7	- 7.00 634 099 8	Rubin o et al. 2013 JGR Atmos phere	- 27. 27	0.42 381 721 2	20.8 3	0
Juniperu s communi s	JCC AMA S29	195 2	7	29	CA NL	John S. Tene r	119	6- Jan- 202 0	64. 04	- 103. 85	2 3 6	39	- 10.5 01	13.5 96	31 1. 5	- 7.01 775	EXTR APOL ATED	- 26. 15	0.55 203 099 4	19.6 5	2
Juniperu s communi s	JCC AMA S30	195 3	6	27	CA NL	E.H. McE wen	54	6- Jan- 202 0	68. 17	- 131. 47	1 9 5	18	- 8.41 383	11.9 68	31 1. 9	- 7.02 224 166 7	EXTR APOL ATED	- 27. 36	0.65 042 431 4	20.9 1	3
Juniperu s	JCC AMA S31	195 7	6	30	CA NL	T.C. Brays haw		6- Jan-	44. 00	- 77.1 3	9 4 9	74	7.39 717	17.6 76	31 4. 2	- 7.07 1	Rubin o et al.	- 26. 01	0.56 529 115	19.4 5	2

communi								202									2013 IGR				
5								0									Atmos phere				
Juniperu s communi s	JCC AMA S32	195 9	6	25	CA NL	John W. Thier et & Robe rt J. Reich	473 8	6- Jan- 202 0	61. 07	- 117. 15	2 9 6	28	- 2.81 25	13.6 36	31 8. 15	- 7.06 651 172 9	Rubin o et al. 2013 JGR Atmos phere	- 28. 96	0.61 169 176 1	22.5 5	4
Juniperu s communi s	JCC AMA S33	195 9	6	25	CA NL	John W. Thier et & Robe rt J. Reich	476 9	6- Jan- 202 0	60. 93	- 117. 72	3 1 4	32	- 2.57 767	13.7 12	31 8. 15	- 7.06 651 172 9	Rubin o et al. 2013 JGR Atmos phere	- 27. 46	0.62 943 283 9	20.9 6	4
Juniperu s communi s	JCC AMA S34	195 9	8	5	CA NL	W.W. Jeffre y	404	7- Jan- 202 0	60. 75	- 123. 97	5 4 1	75	- 3.04 3	10.6 56	31 4. 8	- 7.06 651 172 9	Rubin o et al. 2013 JGR Atmos phere	- 26. 43	0.44 378 353 3	19.8 9	2
Juniperu s communi s	JCC AMA S35	195 9	8	21	CA NL	W.W. Jeffre y	619	7- Jan- 202 0	61. 03	- 123. 38	4 2 7	59	- 2.39 217	14.8 92	31 4. 8	- 7.06 651 172 9	Rubin o et al. 2013 JGR Atmos phere	- 29. 46	0.50 041 809 9	23.0 7	3
Juniperu s communi s	JCC AMA S36	195 9	7	1	CA NL	W.W. Jeffre y	19	7- Jan- 202 0	60. 03	- 123. 50	4 7 5	94	- 1.75 233	15.6 08	31 6. 54	- 7.06 651 172 9	Rubin o et al. 2013 JGR Atmos phere	- 28. 35	0.56 376 982 7	21.9 1	3
Juniperu s communi s	JCC AMA S37	195 9	8	22	CA NL	W.W. Jeffre y	664 a	7- Jan- 202 0	61. 03	- 123. 38	4 2 7	59	- 2.39 217	14.8 92	31 4. 8	- 7.06 651 172 9	Rubin o et al. 2013 JGR Atmos phere	- 23. 61	0.50 041 809 9	16.9 4	3
Juniperu s communi s	JCC AMA S38	196 0	7	13	CA NL	Yves Des marai s	189 9	6- Jan- 202 0	50. 23	- 62.2 2	1 0 4 9	96	1.47 024	14.3	31 8. 18	- 7.05 695	EXTR APOL ATED	- 27. 11	0.29 047 099	20.6 1	4
Juniperu s communi s	JCC AMA S39	196 0	7	27	CA NL	K. Bea mish & F. Vrugt man	609 13	6- Jan- 202 0	49. 42	- 123. 08	2 0 5 5	61	5.74 783	13.0 72	31 8. 18	- 7.05 695	EXTR APOL ATED	- 26. 04	0.47 168 429	19.4 9	2
Juniperu s communi s	JCC AMA S40	196 0	7	28	CA NL	H.J. Scog gan	145 74	7- Jan- 202 0	43. 27	- 81.2 5	1 0 5 6	86	7.14 2	20.2 56	31 8. 18	- 7.05 695	EXTR APOL ATED	- 25. 90	0.64 265 764 8	19.3 4	2
Juniperu s communi s	JCC AMA S41	196 0	7	25	CA NL	W.K. W. Bald win	846 3	7- Jan- 202 0	50. 10	- 91.9 5	7 2 8	88	1.43 95	18.8 16	31 8. 18	- 7.05 695	EXTR APOL ATED	- 25. 87	0.68 570 899 7	19.3 1	2
Juniperu s communi s	JCC AMA S42	196 0	7	25	CA NL	H.J. Scog gan	145 32	7- Jan- 202 0	41. 97	- 82.5 2	9 1 3	84	9.49 55	22.3 44	31 8. 18	- 7.05 695	EXTR APOL ATED	- 25. 96	0.82 061 951 2	19.4 1	4
Juniperu s communi s	JCC AMA S43	196 0	6	25	CA NL	A.E. & R.T. Porsil d	219 44	7- Jan- 202 0	59. 00	- 125. 00	5 1 5	72	- 0.52 1	12.2 44	31 9. 59	- 7.05 654 166 7	EXTR APOL ATED	- 27. 07	0.54 891 407 7	20.5 7	1
Juniperu s communi s	JCC AMA S44	196 1	8	4	CA NL	E. Kuyt	123	6- Jan- 202 0	64. 33	- 103. 40	2 2 9	39	- 10.8 9833	10.7 88	31 6. 79	- 7.06 225 833 3	EXTR APOL ATED	- 26. 64	0.36 551 890 1	20.1 2	3
Juniperu s communi s	JCC AMA S45	196 2	7	7	CA NL	P.M. Youn gman & Gast on Tessi er	46	6- Jan- 202 0	67. 77	- 136. 03	3 1 4	44	- 7.74 233	13.2 96	31 9. 61	- 7.09 148 428 3	Rubin o et al. 2013 JGR Atmos phere	- 27. 09	0.62 386 943 2	20.5 5	2
Juniperu s communi s	JCC AMA S47	196 2	6	7	CA NL	Lloyd A. Spetz man	5	6- Jan- 202 0	62. 38	- 140. 87	4 2 2	73	- 5.11 3	11.7 24	32 0. 62	- 7.09 148 428 3	Rubin o et al. 2013 JGR Atmos phere	- 24. 80	0.55 285 257	18.1 5	2
Juniperu s	JCC AMA S48	196 2	7	8	CA NL	Lloyd A.	10	6- Jan-	60. 78	- 136. 47	3 0 6	44	- 1.31 45	13.4 76	31 9. 61	- 7.09 148	Rubin o et al.	- 25. 29	0.61 070	18.6 7	2

communi						Spetz		202	1	1	1	1				428	2013	1	424		
s						man		0								3	JGR Atmos phere		6		
Juniperu s communi s	JCC AMA S49	196 2	7	3	CA NL	W.K. W. Bald win	966 1	7- Jan- 202 0	53. 20	- 70.9 0	8 1 2	111	- 3.90 5	13.4 8	31 9. 61	- 7.09 148 428 3	Rubin o et al. 2013 JGR Atmos phere	- 26. 56	0.36 590 720 2	20.0 0	1
Juniperu s communi s	JCC AMA S50	196 2	7	7	CA NL	W.K. W. Bald win	969 9	7- Jan- 202 0	53. 20	- 70.9 0	8 1 2	111	- 3.90 5	13.4 8	31 9. 61	- 7.09 148 428 3	Rubin o et al. 2013 JGR Atmos phere	- 27. 37	0.36 590 720 2	20.8 5	1
Juniperu s communi s	JCC AMA S51	196 2	6	30	CA NL	W.K. W. Bald win	962 9	7- Jan- 202 0	53. 20	- 70.9 0	8 1 2	88	- 3.90 5	9.38 4	32 0. 62	- 7.09 148 428 3	Rubin o et al. 2013 JGR Atmos phere	- 26. 55	0.29 854 312 9	19.9 9	1
Juniperu s communi s	JCC AMA S52	196 3	6	30	CA NL	L. Husti ch & P. Kallio	127	6- Jan- 202 0	53. 58	- 64.3 3	8 9 9	89	- 3.36 733	9.48	32 1. 48	- 7.05 5	Rubin o et al. 2013 JGR Atmos phere	- 26. 10	0.37 858 400 5	19.5 6	2
Juniperu s communi s	JCC AMA S53	196 4	8	5	CA NL	W.K. W. Bald win	102 43	6- Jan- 202 0	51. 28	- 80.1 2	6 8 4	77	- 0.32 163	15.3 952	31 8. 69	- 7.07 695 833 3	EXTR APOL ATED	- 25. 79	0.43 973 048 8	19.2 1	4
Juniperu s communi s	JCC AMA S54	196 5	7	16	CA NL	P.M. Youn gman & G. Tessi er	715	6- Jan- 202 0	64. 70	- 127. 92	4 2 2	66	- 6.84 217	10.5 48	32 1. 21	- 7.08 145	EXTR APOL ATED	- 27. 29	0.48 377 413 7	20.7 8	2
Juniperu s communi s	JCC AMA S55	196 5	7	2	CA NL	G.B. Ross bach	643 2	6- Jan- 202 0	63. 87	- 104. 03	2 4 5	40	- 10.1 5817	14.0 2	32 1. 21	- 7.08 145	EXTR APOL ATED	- 28. 43	0.58 835 037 1	21.9 7	2
Juniperu s communi s	JCC AMA S56	196 5	6	23	CA NL	G.B. Ross bach	630 0	6- Jan- 202 0	62. 45	- 114. 35	2 7 9	26	- 4.62 267	12.2 16	32 1. 87	- 7.08 104 166 7	EXTR APOL ATED	- 25. 37	0.58 828 906 1	18.7 7	2
Juniperu s communi s	JCC AMA S57	196 5	6	23	CA NL	G.B. Ross bach	630 0	6- Jan- 202 0	62. 45	- 114. 35	2 7 9	26	- 4.62 267	12.2 16	32 1. 87	- 7.08 104 166 7	EXTR APOL ATED	- 24. 62	0.58 828 906 1	17.9 8	2
Juniperu s communi s	JCC AMA S58	196 5	7	3	CA NL	G.B. Ross bach	645 7	6- Jan- 202 0	63. 95	- 103. 88	2 4 3	39	- 10.2 6833	13.9 04	32 1. 21	- 7.08 145	EXTR APOL ATED	- 26. 80	0.58 473 940 6	20.2 7	2
Juniperu s communi s	JCC AMA S59	196 5	7	3	CA NL	G.B. Ross bach	645 7	6- Jan- 202 0	63. 95	- 103. 88	2 4 3	39	- 10.2 6833	13.9 04	32 1. 21	- 7.08 145	EXTR APOL ATED	- 27. 86	0.58 473 940 6	21.3 7	2
Juniperu s communi s	JCC AMA S60	196 5	6	16	CA NL	P.R. Robe rts & B. Pugh	65- 711	7- Jan- 202 0	45. 73	- 64.7 0	1 2 8 6	102	5.69 625	17.4 8	32 1. 87	- 7.08 104 166 7	EXTR APOL ATED	- 24. 38	0.35 403 346 2	17.7 4	1
Juniperu s communi s	JCC AMA S61	196 6	7	20	CA NL	V. Blais, Cl. Ham el, A. Lega ult	11, 441	6- Jan- 202 0	45. 88	- 71.5 0	1 2 5 1	122	3.71 55	15.0 96	32 2. 38	- 7.23 5	Rubin o et al. 2013 JGR Atmos phere	- 25. 02	0.41 721 372 3	18.2 4	3
Juniperu s communi s	JCC AMA S62	196 7	6	12	CA NL	Sam uel Briss on & Clau de Ham el	12, 213	6- Jan- 202 0	45. 82	- 71.3 5	1 1 4 5	111	4.24 65	18.7	32 4. 09	- 7.33 3	Rubin o et al. 2013 JGR Atmos phere	- 27. 28	0.52 081 183 6	20.5 0	2
Juniperu s communi s	JCC AMA S63	196 8			CA NL	R.T. Porsil d	151 9	6- Jan- 202 0										- 25. 28			
Juniperu s communi s	JCC AMA S64	196 8	6	26	CA NL	W.S. Dicki nson	330	6- Jan- 202 0	44. 28	- 77.7 8	9 3 1	84	6.65 7	17.4 2	32 5. 36	- 7.28 878 333 3	EXTR APOL ATED	- 24. 88	0.56 687 788 2	18.0 4	2

Juniperu	JCC	196	9	7	CA	J.E.	108	7-	45.	-	1	109	4.53	13.0	32	-	EXTR	-	0.24	20.9	0
s communi s	AMA S65	8			NL	Cruis e	54	Jan- 202 0	15	78.8 5	0 8 3		45	64	0. 33	7.29 513 333 3	APOL ATED	27. 63	729 728 1	2	
Juniperu s communi s	JCC AMA S66	196 8	5	2	CA NL	C.E. Garto n	107 70	7- Jan- 202 0	48. 35	- 89.2 5	7 0 5	68	3.56 65	9.91 2	32 5. 57	- 7.28 666 666 7	EXTR APOL ATED	- 25. 99	0.46 750 991 9	19.2 0	2
Juniperu s communi s	JCC AMA S67	196 9	7	31	CA NL	J. Nagy & W. Blais	246 0	6- Jan- 202 0	49. 08	- 114. 02	8 4 8	59	1.18 733	12.1 48	32 5. 88	- 7.30 5	Rubin o et al. 2013 JGR Atmos phere	- 24. 76	0.59 313 188 6	17.9 0	0
Juniperu s communi s	JCC AMA S68	196 9	6	25	CA NL	C.E. Garto n	118 04	7- Jan- 202 0	49. 38	- 88.8 7	7 6 5	83	1.11 25	13.9 56	32 6. 71	- 7.30 5	Rubin o et al. 2013 JGR Atmos phere	- 25. 90	0.49 211 391 1	19.0 9	2
Juniperu s communi s	JCC AMA S69	196 9	6	1	CA NL	C.E. Garto n	116 02	7- Jan- 202 0	48. 38	- 88.9 5	7 0 2	78	3.40 05	12.1	32 6. 71	- 7.30 507 071 1	Rubin o et al. 2013 JGR Atmos phere	- 26. 56	0.26 905 954 2	19.7 8	2
Juniperu s communi s	JCC AMA S70	197 0			CA NL	Keith Winte rhald er		6- Jan- 202 0	45. 70	- 82.3 8	8 4 4		5.50 283					- 24. 49			1
Juniperu s communi s	JCC AMA S71	197 1	7	5	CA NL	G.W Argu s & W.N. Chun ys	792 1	6- Jan- 202 0	60. 78	- 116. 58	3 1 4	44	- 2.67 9	16.4 04	32 7. 36	- 7.34 775 126 3	Rubin o et al. 2013 JGR Atmos phere	- 25. 93	0.62 547 823 4	19.0 7	2
Juniperu s communi s	JCC AMA S72	197 1	5	7	CA NL	P.M. Catlin g, L. Gad, H. Saifi, & S. McKa v		7- Jan- 202 0	44. 62	- 79.0 2	1 0 2	90	5.68 967	11.5 92	32 8. 93	- 7.34 775 126 3	Rubin o et al. 2013 JGR Atmos phere	- 25. 95	0.43 768 124 1	19.1 0	2
Juniperu s communi s	JCC AMA S73	197 2	6	7	CA NL	D.E. Reid	325	6- Jan- 202 0	65. 67	- 128. 80	3 1 7	32	- 5.78 983	15.1 28	32 9. 09	- 7.35 614 816 4	Rubin o et al. 2013 JGR Atmos phere	- 27. 14	0.79 115 039	20.3 4	4
Juniperu s communi s	JCC AMA S74	197 2	10	17	CA NL	M.J. Shch epan ek	762	7- Jan- 202 0	45. 23	- 76.9 2	9 1 1	80	4.71 733	7.29 6	32 5. 2	- 7.35 614 816 4	Rubin o et al. 2013 JGR Atmos phere	- 27. 01	0.21 792 071 3	20.2 0	0
Juniperu s communi s	JCC AMA S75	197 2	9	28	CA NL	M.J. Shch epan ek	722	7- Jan- 202 0	45. 18	- 76.5 5	8 6	87	5.08 567	13.8 16	32 4. 84	- 7.35 614 816 4	Rubin o et al. 2013 JGR Atmos phere	- 26. 95	0.34 088 043	20.1 3	2
Juniperu s communi s	JCC AMA S76	197 2	5	18	CA NL	M.J. Shch epan ek	452	7- Jan- 202 0	45. 17	- 77.3 3	9 4 9	84	4.15 217	10.4 12	33 0. 07	- 7.35 614 816 4	Rubin o et al. 2013 JGR Atmos phere	- 26. 74	0.41 185 971 6	19.9 2	0
Juniperu s communi s	JCC AMA S77	197 2	6	22	CA NL	M.J. Shch epan ek & E. Habe r	581	7- Jan- 202 0	44. 97	- 76.7 2	9 6 2	102	5.03 983	16.5 12	32 9. 09	- 7.35 614 816 4	Rubin o et al. 2013 JGR Atmos phere	- 25. 41	0.53 834 969 7	18.5 3	2
Juniperu s communi s	JCC AMA S78	197 2	8	31	CA NL	M.J. Shch epan ek, E. Habe r, & G. Sava ge	687	7- Jan- 202 0	45. 43	- 77.1 0	8 7 8	81	4.66 667	18.2 44	32 6. 32	- 7.35 614 816 4	Rubin o et al. 2013 JGR Atmos phere	- 26. 14	0.53 606 273 5	19.2 9	2

uniperu communi	JCC AMA S79	197 3	6	16	CA NL	N.A. Skogl und	795 x	6- Jan- 202	61. 45	- 121. 25	4 0 7	58	- 2.58 15	14.4	33 2. 07	- 7.39 284	Rubin o et al.	- 27. 93	0.65 105 614	21.1 2	4
1								0								195 3	2013 JGR Atmos phere		5		
luniperu communi	JCC AMA S80	197 3	6	25	CA NL	S.L. Wels h & J.K. Rigby	120 80	6- Jan- 202 0	68. 73	- 136. 32	2 5 1	23	- 9.25 833	8.84 8	33 2. 07	- 7.39 284 195 3	Rubin o et al. 2013 JGR Atmos phere	- 27. 96	0.38 667 184 1	21.1 6	3
Juniperu s communi s	JCC AMA S81	197 3	6	20	CA NL	D.F. Murr ay	367 0	6- Jan- 202 0	67. 42	- 153. 72	3 2 3	32	- 5.97 067	11.6 08	33 2. 07	- 7.39 284 195 3	Rubin o et al. 2013 JGR Atmos phere	- 27. 57	0.60 232 740 8	20.7 5	3
Juniperu s communi s	JCC AMA S82	197 3	7	17	CA NL	M.J. Shch epan ek	780	7- Jan- 202 0	45. 37	- 76.0 3	8 9 9	92	5.29 3	20.2 72	33 0. 87	- 7.39 284 195 3	Rubin o et al. 2013 JGR Atmos phere	- 26. 79	0.71 540 729 5	19.9 3	2
Juniperu s communi s	JCC AMA S83	197 4	8	8	CA NL	E. Habe r & J. Berg eron	242 1	6- Jan- 202 0	52. 12	- 72.5 0	9 3 1	120	- 2.66 033	12.9 84	32 9. 39	- 7.48 261 14	Rubin o et al. 2013 JGR Atmos phere	- 25. 30	0.38 264 646 2	18.2 8	2
Juniperu s communi s	JCC AMA S84	197 5	10	17	CA NL	Kathl een Pryer	131	6- Jan- 202 0	45. 54	- 75.9 9	9 7 0	90	5.08 25	7.54 8	32 8. 34	- 7.41 790 639 5	Rubin o et al. 2013 JGR Atmos phere	- 26. 64	0.24 850 907 7	19.7 5	3
Juniperu s communi s	JCC AMA S85	197 5	10	15	CA NL	R. Rosie	104	7- Jan- 202 0	61. 57	- 124. 82	5 1 3	36	- 5.21 8	- 3.62	32 8. 34	- 7.41 790 639 5	Rubin o et al. 2013 JGR Atmos phere	- 27. 06	0.19 558 081 9	20.1 9	2
Juniperu s communi s	JCC AMA S86	197 5	8	23	CA NL	R. Rosie	105	7- Jan- 202 0	61. 43	- 129. 33	5 2 0	62	- 4.19 317	10.2 24	33 0. 06	- 7.41 790 639 5	Rubin o et al. 2013 JGR Atmos phere	- 28. 32	0.45 929 347 4	21.5 1	2
Juniperu s communi s	JCC AMA S87	197 6	7	2	CA NL	J.L. Riley & D.A. Hoy	324 4	6- Jan- 202 0	48. 58	- 86.3 0	835	91	3.23 283	13.5 28	33 3. 05	- 7.44 270 962 2	Rubin o et al. 2013 JGR Atmos phere	- 26. 73	0.16 074 897 4	19.8 2	0
Juniperu s communi s	JCC AMA S88	197 6	6	20	CA NL	A.W. Duga I	297	6- Jan- 202 0	49. 67	- 99.2 8	5 0 0	88	2.73 967	16.7 32	33 4. 33	- 7.44 270 962 2	Rubin o et al. 2013 JGR Atmos phere	- 27. 33	0.54 841 035 5	20.4 5	1
Juniperu s communi s	JCC AMA S89	197 6	6	11	CA NL	G.A. Shea	11, 010	7- Jan- 202 0	49. 45	- 83.4 0	8 4 2	77	0.61 95	13.7 6	33 4. 33	- 7.44 270 962 2	Rubin o et al. 2013 JGR Atmos phere	- 27. 56	0.48 433 928 9	20.6 9	2
Juniperu s communi s	JCC AMA S90	197 6	6	11	CA NL	G.A. Shea	11, 013	7- Jan- 202 0	49. 45	- 83.4 0	8 4 2	77	0.61 95	13.7 6	33 4. 33	- 7.44 270 962 2	Rubin o et al. 2013 JGR Atmos phere	- 26. 37	0.48 433 928 9	19.4 4	2
Juniperu s communi s	JCC AMA S91	197 6	6	13	CA NL	R.R. Riew e & J. Mars h	16	7- Jan- 202 0	67. 33	- 126. 42	2 4 2	23	- 7.98 183	7.94	33 4. 33	- 7.44 270 962 2	Rubin o et al. 2013 JGR Atmos phere	- 27. 30	0.28 872 155 8	20.4 1	2
Juniperu s communi s	JCC AMA S92	197 7	7	28	CA NL	G.W. Argu s & E.	101 34	6- Jan- 202 0	57. 33	- 123. 93	7 0 2	116	3.38 233	8.48	33 4. 92	7.48 5	Rubin o et al. 2013 JGR	- 26. 82	0.42 708 762 3	19.8 7	0

			1	1	1		1	1	r	1			T	1	-	1	A.L.	r		1	
						Habe r											Atmos phere				
Juniperu s communi s	JCC AMA S93	197 7	7	20	CA NL	John M. Gillett & M. Boud reau	173 01	6- Jan- 202 0	56. 55	- 126. 42	6 3 2	73	- 1.68 233	10.6 96	33 4. 92	- 7.48 5	Rubin o et al. 2013 JGR Atmos phere	- 26. 76	0.47 120 924 5	19.8 1	2
Juniperu s communi s	JCC AMA S94	197 7	8	5	CA NL	G.W. Argu s & E. Habe r	106 41	6- Jan- 202 0	57. 75	- 124. 78	6 7 8	83	- 3.70 017	8.67 2	33 2. 75	- 7.48 5	Rubin o et al. 2013 JGR Atmos phere	- 27. 45	0.45 681 151 7	20.5 3	0
Juniperu s communi s	JCC AMA S95	197 7	7	30	CA NL	John M. Gillett & M. Boud reau	175 78	6- Jan- 202 0	57. 68	- 126. 78	6 1 2	80	- 2.98 55	9.94 4	33 4. 92	- 7.48 5	Rubin o et al. 2013 JGR Atmos phere	- 26. 04	0.44 773 266 9	19.0 5	0
Juniperu s communi s	JCC AMA S96	197 7	7	19	CA NL	G.W. Argu s & E. Habe r	107 57	6- Jan- 202 0	58. 45	- 124. 88	6 3 4	114	- 3.82 917	9.1	33 4. 92	- 7.48 5	Rubin o et al. 2013 JGR Atmos phere	- 27. 64	0.40 259 172 9	20.7 3	2
Juniperu s communi s	JCC AMA S97	197 7	7	29	CA NL	G.W. Argu s & E. Habe r	101 92	6- Jan- 202 0	56. 90	- 123. 80	7 2 9	112	- 3.19 917	8.79 6	33 4. 92	- 7.48 5	Rubin o et al. 2013 JGR Atmos phere	- 27. 17	0.44 268 021 9	20.2 3	0
Juniperu s communi s	JCC AMA S98	197 7	8	5	CA NL	John M. Gillett & M. Boud reau	177 84	6- Jan- 202 0	57. 87	- 126. 40	5 7 8	66	- 2.32 983	9.96 8	33 2. 75	- 7.48 5	Rubin o et al. 2013 JGR Atmos phere	- 26. 63	0.45 690 296 7	19.6 7	2
Juniperu s communi s	JCC AMA S99	197 7	7	25	CA NL	John M. Gillett & M. Boud reau	174 77	6- Jan- 202 0	57. 43	- 126. 80	6 1 6	77	- 2.18 017	10.8 04	33 4. 92	- 7.48 5	Rubin o et al. 2013 JGR Atmos phere	- 27. 01	0.46 889 882 9	20.0 7	2
Juniperu s communi s	JCC AMA S100	197 7	8	5	CA NL	M.J. Shch epan ek & D. White	280 5	7- Jan- 202 0	49. 80	- 56.3 2	1 1 5 1	107	2.90 6	14.9 4	33 2. 75	- 7.48 5	Rubin o et al. 2013 JGR Atmos phere	- 27. 26	0.36 446 452	20.3 3	3
Juniperu s communi s	JCC AMA S101	197 7	6	16	CA NL	L.R. Willia ms	74	7- Jan- 202 0	55. 73	- 97.8 3	5 2 9	70	- 2.46 05	13.4 8	33 6. 27	- 7.48 5	Rubin o et al. 2013 JGR Atmos phere	- 28. 00	0.58 470 710 2	21.1 1	3
Juniperu s communi s	JCC AMA S102	197 7	8	12	CA NL	J.L. Riley	749 1	7- Jan- 202 0	55. 87	- 86.7 7	5 1 5	75	- 5.08 551	11.8 435	33 2. 75	- 7.48 5	Rubin o et al. 2013 JGR Atmos phere	- 26. 85	0.25 856 966 3	19.9 0	4
Juniperu s communi s	JCC AMA S103	197 9	9	19	CA NL	J.M Gillett & M.J. Shch epan ek	184 74	7- Jan- 202 0	44. 88	- 77.1 7	9 4 9	98	5.06 833	13.8 32	33 3. 91	- 7.54	Rubin o et al. 2013 JGR Atmos phere	- 26. 57	0.32 732 411 2	19.5 4	2
Juniperu s communi s	JCC AMA S104	197 9	7	1	CA NL	R. Rosie	740	7- Jan- 202 0	60. 27	- 134. 18	2 8 7	38	- 1.16 983	12.2 04	33 7. 73	- 7.54	Rubin o et al. 2013 JGR Atmos phere	- 27. 08	0.57 076 547 1	20.0 8	2
Juniperu s communi s	JCC AMA S105	198 0	7	7	CA NL	S. Clayd en & C. Lefra nçois (s.n.)	80- 356	6- Jan- 202 0	48. 52	- 79.5 2	8 6 8	96	1.26 133	16.9 72	33 9. 56	- 7.59	Keelin g et al. 2001	- 26. 43	0.51 364 804 8	19.3 6	2
Juniperu s	JCC AMA S106	198 2	8	15	CA NL	D.F. Brunt on &	383 7	6- Jan-	48. 33	- 83.7 5	8 3 4	79	1.55 017	15.7 92	33 9. 81	- 7.46	Keelin g et	- 27. 27	0.41 038	20.3 7	1

communi				r	1	J.		202	r	Γ	1		1				al.	r	869		
S	100	400			<u></u>	Harp er	45.4	0	51		5	70	0.00	40.0	20		2001		6	00.4	2
Juniperu s communi s	AMA S107	2	ŏ	ŏ	NL	M.J. Shch epan ek & A.W. Duga I	454 9	ь- Jan- 202 0	93	98.8 0	5 1 2	70	233	16.3 84	33 9. 81	7.46	keelin g et al. 2002	- 27. 33	0.38 390 329 9	3	2
Juniperu s communi s	JCC AMA S108	198 2	8	13	CA NL	M.J. Shch epan ek & A.W. Duga I	480 2	6- Jan- 202 0	52. 92	- 98.7 8	4 9 6	70	0.45 867	17.3 56	33 9. 81	- 7.46	Keelin g et al. 2003	- 26. 37	0.53 964 61	19.4 2	3
Juniperu s communi s	JCC AMA S109	198 2	5	20	CA NL	J. Cam pbell- Snelli ng & M. Cha mber s	179	6- Jan- 202 0	49. 57	- 113. 73	4 8 2	64	5.50 633	10.5 16	34 4. 14	-7.8	Keelin g et al. 2001	- 26. 58	0.59 345 655 9	19.2 9	2
Juniperu s communi s	JCC AMA S110	198 2	6	17	CA NL	J. Cam pbell- Snelli ng & M. Cha mber s	145	6- Jan- 202 0	49. 72	- 113. 77	5 3 7	71	4.19 933	8.86 4	34 3. 35	7.71	Keelin g et al. 2001	- 24. 96	0.53 590 257 2	17.6 9	2
Juniperu s communi s	JCC AMA S111	198 3	8	11	CA NL	M.J. Shch epan ek & A. Duga I	539 9	6- Jan- 202 0	49. 75	- 91.1 8	7 4 0	82	0.94 667	16.3 92	34 2. 38	- 7.58	Keelin g et al. 2001	- 28. 14	0.47 605 295 5	21.1 6	2
Juniperu s communi s	JCC AMA S112	198 3	8	14	CA NL	M.J. Shch epan ek & A. Duga I	550 9	6- Jan- 202 0	48. 78	- 93.0 3	6 7 5	86	2.94 917	17.7 72	34 2. 38	- 7.58	Keelin g et al. 2002	- 26. 70	0.53 916 445 5	19.6 4	2
Juniperu s communi s	JCC AMA S113	198 3	8	11	CA NL	Clau de Potvi n		6- Jan- 202 0	46. 07	- 83.9 3	7 6 6	78	5.37 767	18.4 68	34 2. 38	- 7.58	Keelin g et al. 2001	- 24. 71	0.56 611 477 1	17.5 6	2
Juniperu s communi s	JCC AMA S114	198 5	12	10	CA NL	F.W. Schu eler	159 04	6- Jan- 202 0	53. 50	- 132. 50	2 2 6 0	267	6.86 167	2.72	34 5. 56	- 7.63	Keelin g et al. 2001	- 27. 05	0.11 547 752 8	19.9 6	2
Juniperu s communi s	JCC AMA S115	198 5	7	13	CA NL	M.J. Shch epan ek & A.W. Duga I	678 7	7- Jan- 202 0	53. 50	- 132. 25	1 8 5 2	64	7.65 333	13.6	34 6. 56	- 7.68	Keelin g et al. 2001	- 27. 08	0.31 763 672 5	19.9 4	2
Juniperu s communi s	JCC AMA S116	198 6	9	24	CA NL	M.J. Shch epan ek & A.W. Duga I	743 0	6- Jan- 202 0	45. 30	- 76.3 3	8 1 5	78	5.20 917	14.2 88	34 4. 85	- 7.47	Keelin g et al. 2001	- 27. 77	0.37 240 468 6	20.8 8	2
Juniperu s communi s	JCC AMA S117	198 6	9	9	CA NL	M.J. Shch epan ek, A.W. Duga I, & G. Wats on	729 5	6- Jan- 202 0	44. 75	- 76.5 3	9 4 2	101	6.03 017	14.8	34 4. 85	- 7.47	Keelin g et al. 2002	- 26. 49	0.39 040 231 2	19.5 3	2
Juniperu s communi s	JCC AMA S118	198 6	5	9	CA NL	F.W. Schu eler	161 57	6- Jan- 202 0	49. 08	- 122. 63	1 5 4	98	10.0 8683	12.5 52	35 0. 21	- 7.83	Keelin g et al. 2001	- 28. 88	0.44 527 025 9	21.6 8	2
Juniperu s communi s	JCC AMA S119	198 7	8	7	CA NL	T. Lock hart		6- Jan- 202 0	60. 58	- 111. 87	3 4 1	50	- 3.25 983	14.3 48	34 8. 1	- 7.62	Keelin g et al. 2001	- 28. 75	0.43 114 443 3	21.7 6	3
Juniperu s communi s	JCC AMA S120	198 7	5	21	CA NL	M.J. Shch epan ek, A.W. Duga I, &	753 9	6- Jan- 202 0	44. 55	- 77.1 2	9 3 7	82	6.21 6	12.2 6	35 1. 85	- 7.82	Keelin g et al. 2001	- 25. 27	0.48 721 593 3	17.9 0	0

2		2	2	3	2	2	2	0	2	2	3	4	2	4
19.5	0	20.3 4	20.1 5	20.6 5	22.0 8	20.4 0	20.2 2	20.7 8	18.6 5	20.5	18.6 4	20.1 1	20.9 6	20.1 8
0.56	373 487 6	0.36 595 716 2	0.26 465 040 3	0.63 769 436 4	0.35 683 740 6	0.69 032 643 8	0.24 688 351 9	0.03 296 118 9	0.52 896 073 1	0.37 392 740 8	0.50 685 958 8	0.58 091 994 5	0.49 045 848	0.11 385 899 8
_	26. 86	- 27. 86	- 27. 56	- 28. 36	- 29. 72	- 28. 15	- 26. 57	- 27. 20	- 25. 20	- 27. 08	- 25. 21	- 26. 91	- 27. 74	- 27. 18
Keelin	g et al. 2001	Keelin g et al. 2001	Keelin g et al. 2001	Keelin g et al. 2001	Keelin g et al. 2001	Keelin g et al. 2001	EXTR APOL ATED	Rubin o et al. 2013 JGR Atmos phere	Rubin o et al. 2013 JGR Atmos phere	Rubin o et al. 2013 JGR Atmos phere	Rubin o et al. 2013 JGR Atmos phere	EXTR APOL ATED	Rubin o et al. 2013 JGR Atmos phere	Rubin o et al. 2013 JGR
_	7.88	- 8.08	- 7.96	- 8.29	- 8.29	- 8.32	- 6.89 075 833 3	- 6.98 157 586 8	- 7.01 336 056 8	7.04 268 242 9	- 7.04 268 242 9	- 7.34 17	- 7.35 614 816 4	- 7.54
35	3. 79	36 4. 97	37 0. 25	37 8. 13	38 8. 07	39 0. 33	30 5. 4	30 7. 7	31 0. 2	31 0. 3	31 0. 3	32 6. 34	32 9. 09	33 7. 73
16 1	28	11.5 889	7.88 4	12.1 84	10.5 84	16.0 68	8.00 800 04	12.5 319 996	10.4 960 003	11.6 079 998	13.0 880 003	15.0 279 999	13.9 399 996	9.7
3.01	15	4.46 319	5.35 117	- 8.38 95	- 9.25 617	- 5.14 733	- 8.95 4	3.95 867	- 8.46 1	- 7.40 017	- 5.48 883	- 3.94 767	0.67 783	- 4.96 666
102		97	80	22	26	36	54	74	29	44	39	71	94	78
6	5	1 1 4 6	9 3 4	2 3 8	2 1 2	2 7 4	3 7 4	8 1 8	1 6 2	2 3 3	2 3 3	4 0 4	7 7 7	5 2 1
-	93.1 2	- 53.9 4	- 75.8 2	- 133. 53	- 123. 09	- 114. 36	- 72.5 0	- 85.7 8	- 146. 00	- 118. 03	- 147. 00	- 122. 22	- 89.9 5	- 82.3 3
48	70	48. 65	45. 43	68. 30	69. 38	62. 53	64. 00	47. 33	69. 28	66. 08	66. 50	62. 33	48. 85	55. 17
6-	Jan- 202 0	6- Jan- 202 0	6- Jan- 202 0	6- Jan- 202 0	6- Jan- 202 0	6- Jan- 202 0	4- Nov -19	4- Nov -19	25- Nov -19	4- Nov -19	4- Nov -19	4- Nov -19	4- Nov -19	4- Nov -19
822	7	96- 24		1	929 0	152 6	125 891	433 6		282 5	259 6	188 03	149 06	267 7A
L.M. Ley M.I	Shch epan ek & A.W. Duga I	René Char est & Luc Brouil let	Droui n, Guy, J. Xia, & M. Hajib abaei	Myrn a Pokia k	L.J. Gilles pie, L.L. Cons aul, & R.D. Bull	J.M. Saar ela, R.D. Bull, & P.C. Sokol off	J. Dewe y Sope r	Carl O. Gras sl	R. McGr egor	Hans ford T. Shac klette	W.S. Benni nghof f	W.J. Cody	C.E. Garto n	R.A. Sims
CA	NL	CA NL	CA NL	CA NL	CA NL	CA NL	MIC H	MIC Н	MIC Н	MIC H	H H	MIC H	MIC Н	MIC H
22		30		3	25	28	1	30	28	5	17	11	6	
6		6	10	6	7	7	8	7	7	7	8	7	6	7
198	8	199 6	200 2	200 3	200 9	201 0	192 6	193 1	194 7	194 8	194 8	197 0	197 2	197 9
,100	AMA S121	JCC AMA S122	JCC AMA S123	JCC AMA S124	JCC AMA S125	JCC AMA S126	EAU MMA S1	EAU MMA S2	EAU MMA S3	EAU MMA S5	EAU MMA S6	EAU MMA S8	EAU MMA S10	EAU MMA S11
Jupiperu	s communi s	Juniperu s communi s	Juniperu s communi s	Juniperu s communi s	Juniperu s communi s	Juniperu s communi s	Eriophor um angustifo lium	Eriophor um angustifo lium	Eriophor um angustifo lium	Eriophor um angustifo lium	Eriophor um angustifo lium	Eriophor um angustifo lium	Eriophor um angustifo lium	Eriophor um angustifo lium

																	Atmos phere				
Eriophor um angustifo lium	EAU MMA S13	197 9	7		MIC H	R.A. Sims	266 4A	4- Nov -19	54. 80	- 82.3 3	5 1 9	79	- 4.11 583	12.2 639 999	33 7. 73	- 7.54	Rubin o et al. 2013 JGR Atmos phere	- 26. 81	0.31 759 159	19.8 0	4
Eriophor um angustifo lium	EAU MMA S14	197 9	7		MIC H	R.A. Sims	265 2A	4- Nov -19	55. 17	- 82.3 3	5 2 1	78	- 4.96 666	9.7	33 7. 73	- 7.54	Rubin o et al. 2013 JGR Atmos phere	- 27. 68	0.11 385 899 8	20.7 2	4
Eriophor um angustifo lium	EAU MMA S15	197 9			MIC H	Tass Kelso , JoAn n Flock and Miria m Colso n	291	25- Nov -19	65. 80	- 168. 00	3 3 7		- 6.23 125			- 7.54	Rubin o et al. 2013 JGR Atmos phere	- 28. 46		21.5 3	4
Eriophor um angustifo lium	EAU MMA S16	198 0	6	14	MIC H	C.E. Garto n	194 46	25- Nov -19	48. 67	- 89.0 8	7 6 6	84	0.96 35	13.6 800 003	34 1. 17	- 7.69	Keelin g et al. 2001	- 27. 35	0.48 016 939 3	20.2 1	2
Eriophor um angustifo lium	EAU MMA S17	198 0	7	1	MIC H	W.J. Cody	266 29	4- Nov -19	64. 62	- 138. 30	4 1 4	68	- 6.71 833	10.5 080 004	33 9. 56	- 7.59	Keelin g et al. 2001	- 25. 40	0.52 517 802 3	18.2 7	2
Eriophor um angustifo lium	EAU MMA S19	198 3	6	17	MIC H	C.E. Garto n	221 44	25- Nov -19	49. 75	- 87.7 7	8 1 4	96	0.11 417	13.4 239 998	34 5. 32	- 7.88	Keelin g et al. 2001	- 30. 17	0.47 027 500 2	22.9 9	2
Eriophor um angustifo lium	EAU MMA S21	200 0	7	12	MIC H	S.S. Talbo t & W.B. Schof ield	024 -25	4- Nov -19	57. 16	- 158. 10	5 1 5	50	2.72 7	11.9 799 995	34 3. 98	- 8.07	Keelin g et al. 2001	- 27. 57	0.36 793 266 3	20.0 5	
Eriophor um angustifo lium	EAU MMA S22	200 1			MIC H	M.J. Oldh am & D.A. Suth erlan d	258 83	4- Nov -19	55. 05	- 83.6 7	5 2 0		- 4.62 083			- 8.05	Keelin g et al. 2001	- 24. 92		17.3 0	4
Eriophor um angustifo lium	EAU MMA S24	200 4	6	13	H H	Doug Gold man, Barbr a Grav ende el and Tany a Livsh ultz	285 5	4- Nov -19	44. 48	- 67.6 0	1 2 8 5	89	6.66 932	13.2 454 996	37 9. 55	8.29	Keelin g et al. 2001	- 27. 16	0.27 608 308 1	19.3 9	4
Eriophor um angustifo lium	EAU MMA S25	200 5	7	12	MIC H	B.A. Benn ett, P. Secc ombe -Hett, J. Ryde r, S. Thom pson & D. Maho ney	05- 043 3	25- Nov -19							38 0. 66	8.24	Keelin g et al. 2001	- 26. 15		18.3 9	
Eriophor um angustifo lium	EAU MMA S26	201 0	7	7	MIC H	Alan. R. Batte n, Carol yn L. Park er	201 0- 97		62. 60	- 150. 17	7 4 3	91	0.32 367	12.7 24	39 0. 33	- 8.32	Keelin g et al. 2001	- 26. 98	0.33 617 905 2	19.1 7	
Eriophor um angustifo lium	EAC AMA S1	192 3	8	31	CA NL	J. Dewe y Sope r		8- Jan- 202 0	72. 50	- 78.5 2	2 0 2	38	- 14.1 803	4.37 727 02	30 4. 1	- 6.87 605 833 3	EXTR APOL ATED	- 29. 22	0.13 537 517 8	23.0 2	0
Eriophor um	EAC AMA S2	192 3	8	22	CA NL	J. Dewe y		8- Jan-	72. 70	- 77.9 8	1 9 7	38	- 14.3 8824	4.38 823 99	30 4. 1	- 6.87 605	EXTR APOL ATED	- 26. 51	0.13 601	20.1 7	0

angustifo		r	r			Sone		202				1				833			834	l –	r
lium						r		0			L					3	=>/==		9		
Eriophor um angustifo lium	EAC AMA S3	192 3	8	19	CA NL	J. Dewe y Sope		8- Jan- 202 0	73. 08	- 84.5 5	2 3 7	38	- 14.1 875	3.7	30 4. 1	- 6.87 605 833	EXTR APOL ATED	- 26. 74	0.14 650 120 7	20.4 1	0
Eriophor um angustifo lium	EAC AMA S4	192 4	8	17	CA NL	r J. Dewe y Sope r		7- Jan- 202 0	65. 67	- 65.7 5	7 0 1	95	- 8.18	7.66 666	30 4. 5	3 - 6.88 712 011 2	Rubin o et al. 2013 JGR Atmos phere	- 26. 49	0.25 850 208	20.1	2
Eriophor um angustifo lium	EAC AMA S5	192 5	6	26	CA NL	J. Dewe y Sope r		7- Jan- 202 0	66. 67	- 70.0 0	3 1 8	24	- 10.6 1389	1.9	30 5	- 6.96 757 961 9	Rubin o et al. 2013 JGR Atmos phere	- 27. 49	0.12 083 339 6	21.1 1	0
Eriophor um angustifo lium	EAC AMA S6	192 6	8	1	CA NL	J. Dewe y Sope r		7- Jan- 202 0	64. 00	- 72.5 0	3 7 4	54	- 8.95 4	8.00 800 04	30 5. 4	- 6.89 075 833 3	EXTR APOL ATED	- 27. 46	0.24 688 351 9	21.1 5	2
Eriophor um angustifo lium	EAC AMA S7	192 6	7	3	CA NL	J. Dewe y Sope r		8- Jan- 202 0	64. 23	- 76.5 4	4 0 1	37	- 8.64 954	6.87 778	30 5. 4	- 6.89 035	EXTR APOL ATED	- 26. 93	0.17 934 563 3	20.6 0	0
Eriophor um angustifo lium	EAC AMA S8	192 7	6		CA NL	Porsil d, A. Erling ; Porsil d, R.Th orbjör n	188 6	9- Jan- 202 0	68. 33	- 133. 50	2 3 8	22	- 8.38 95	12.1 84	30 5. 8	- 6.89 484 166 7	EXTR APOL ATED	- 25. 82	0.63 769 436 4	19.4 3	3
Eriophor um angustifo lium	EAC AMA S9	192 7	7	18	CA NL	Porsil d, A. Erling ; Porsil d, R.Th orbjör n	205 3	9- Jan- 202 0	69. 00	- 134. 67	2 2 2	32	- 9.08 8	12.9 280 005	30 5. 8	- 6.89 525	EXTR APOL ATED	- 25. 75	0.45 837 233 1	19.3 5	3
Eriophor um angustifo lium	EAC AMA S10	192 8	8	15	CA NL	M.O. Malte		7- Jan- 202 0	64. 25	- 82.8 3	2 0 6	36	- 10.9 5117	7.00 799 99	30 6. 3	- 6.90 055 833 3	EXTR APOL ATED	- 26. 09	0.18 071 953 4	19.7 0	4
Eriophor um angustifo lium	EAC AMA S11	192 8	8	6	CA NL	Porsil d, A. Erling ; Porsil d, R.Th orbjör n	521 9	9- Jan- 202 0	66. 33	- 118. 50	2 2 7	42	- 7.69 3	10.3 479 996	30 6. 3	- 6.90 055 833 3	EXTR APOL ATED	- 27. 17	0.29 727 290 5	20.8 4	2
Eriophor um angustifo lium	EAC AMA S12	192 8	8	2	CA NL	Porsil d, A. Erling ; Porsil d, R.Th orbjör n	509 9	9- Jan- 202 0	66. 37	- 120. 58	2 3 4	40	- 7.34 3	10.0 080 004	30 6. 3	- 6.90 055 833 3	EXTR APOL ATED	- 27. 43	0.26 899 296 8	21.1 0	2
Eriophor um angustifo lium	EAC AMA S13	192 8	7	11	CA NL	Porsil d, A. Erling ; Porsil d, R.Th orbjör n	502 4	9- Jan- 202 0	66. 82	- 121. 00	2 2 3	35	- 7.80 033	11.8 479 996	30 6. 3	- 6.90 015	EXTR APOL ATED	- 26. 84	0.38 898 220 1	20.4 9	2
Eriophor um angustifo lium	EAC AMA S14	192 8	7	11	CA NL	Porsil d, A. Erling ; Porsil d, R.Th orbjör n	502 8	9- Jan- 202 0	66. 82	- 121. 00	2 2 3	35	- 7.80 033	11.8 479 996	30 6. 3	- 6.90 015	EXTR APOL ATED	- 24. 82	0.38 898 220 1	18.3 8	2
Eriophor um angustifo lium	EAC AMA S15	192 9	7	10	CA NL	J. Dewe y Sope r		8- Jan- 202 0	65. 58	- 73.5 2	3 2 6	41	- 10.0 7717	7.84 8	30 6. 8	- 6.83 2	Rubin o et al. 2013	- 27. 76	0.25 204 047 5	21.5 2	4

																	Atmos phere				
Eriophor um angustifo lium	EAC AMA S16	193 0	8		CA NL	Porsil d, A. Erling	575 3	9- Jan- 202 0	62. 50	- 97.0 0	3 0 0	50	- 10.8 7867	9.80 000 02	30 7. 2	- 6.91 035 833 3	EXTR APOL ATED	- 27. 04	0.24 196 936 1	20.6 9	2
Eriophor um angustifo lium	EAC AMA S17	193 1	6	26	CA NL	J. Dewe y Sope r	s.n.	8- Jan- 202 0	62. 82	- 69.9 2	3 8 0	35	- 7.37 719	3.31 052 99	30 7. 7	- 6.98 157 586 8	Rubin o et al. 2013 JGR Atmos phere	- 28. 66	0.13 698 198 7	22.3 1	2
Eriophor um angustifo lium	EAC AMA S18	193 4	6	20	CA NL	Porsil d, A. Erling	695 4	9- Jan- 202 0	68. 69	- 134. 13	2 2 7	19	- 8.67 667	10.0 120 001	30 9	- 6.92 914 166 7	EXTR APOL ATED	- 27. 49	0.45 652 237	21.1 4	2
Eriophor um angustifo lium	EAC AMA S19	193 6	7	28	CA NL	C.H. D. Clark e		7- Jan- 202 0	63. 68	- 107. 12	2 7 9	40	- 8.96 3	13.6 560 001	30 9. 8	- 6.93 904 564	Rubin o et al. 2013 JGR Atmos phere	- 24. 05	0.53 372 566 7	17.5 4	2
Eriophor um angustifo lium	EAC AMA S20	193 7	7	27	CA NL	V.C. Wynn e- Edwa rds	724 7	7- Jan- 202 0	61. 33	- 64.8 9	5 3 5	70	- 4.97 708	5.55 000 02	31 0	- 6.95 017 124 1	Rubin o et al. 2013 JGR Atmos phere	- 25. 81	0.15 665 762 1	19.3 6	2
Eriophor um angustifo lium	EAC AMA S21	193 7	8	1	CA NL	V.C. Wynn e- Edwa rds	727 2	8- Jan- 202 0	61. 83	- 65.7 5	5 2 2	81	- 6.42 45	5.54	31 0	- 6.95 017 1 <u>2</u> 4 1	Rubin o et al. 2013 JGR Atmos phere	- 27. 96	0.08 122 779 9	21.6 2	0
Eriophor um angustifo lium	EAC AMA S22	193 8	8	11	CA NL	Laing , H.M.	455	9- Jan- 202 0	52. 37	- 126. 07	8 0 5	33	6.19 167	15.8 439 999	31 0. 2	- 6.94 338 105 1	Rubin o et al. 2013 JGR Atmos phere	- 23. 74	0.53 876 824 7	17.2 0	2
Eriophor um angustifo lium	EAC AMA S23	193 8	No Mo nth		CA NL	Carro II, J.		9- Jan- 202 0	64. 42	- 108. 90	2 6 1		- 9.46 533			- 6.94 338 105 1	Rubin o et al. 2013 JGR Atmos phere	- 27. 44		21.0 8	2
Eriophor um angustifo lium	EAC AMA S24	193 8	8	17	CA NL	E.W. Mann ing	162	8- Jan- 202 0	65. 45	- 77.4 5	3 0 5	44	- 9.41 417	5.59 999 99	31 0. 2	- 6.94 338 105 1	Rubin o et al. 2013 JGR Atmos phere	- 27. 26	0.11 981 243 9	20.8 9	4
Eriophor um angustifo lium	EAC AMA S25	194 7	7	28	CA NL	Harp er, Franc is	236 3	9- Jan- 202 0	60. 61	- 99.9 3	3 4 8	61	- 8.43 683	14.0 279 999	31 0. 2	- 7.01 336 056 8	Rubin o et al. 2013 JGR Atmos phere	- 24. 23	0.57 198 157 8	17.6 4	2
Eriophor um angustifo lium	EAC AMA S26	194 7	7	23	CA NL	Harp er, Franc is	234 8	9- Jan- 202 0	60. 61	- 99.9 4	3 4 8	61	- 8.43 683	14.0 279 999	31 0. 2	- 7.01 336 056 8	Rubin o et al. 2013 JGR Atmos phere	- 24. 30	0.57 198 157 8	17.7 2	2
Eriophor um angustifo lium	EAC AMA S27	194 7	7	8	CA NL	Harp er, Franc is	227 5	9- Jan- 202 0	60. 61	- 99.9 4	3 4 8	61	- 8.43 683	14.0 279 999	31 0. 2	- 7.01 336 056 8	Rubin o et al. 2013 JGR Atmos phere	- 25. 64	0.57 198 157 8	19.1 2	2
Eriophor um angustifo lium	EAC AMA S28	194 7	6	20	CA NL	Franc is Harp er	222 1	8- Jan- 202 0	60. 61	- 99.9 4	3 4 8	37	- 8.43 683	9.39 999 96	31 0. 2	- 7.01 336 056 8	Rubin o et al. 2013 JGR Atmos phere	- 26. 92	0.44 301 358 2	20. 4 6	2
Eriophor um angustifo lium	EAC AMA S29	194 8	6	24	CA NL	Raup , Hugh M.; Drury Jr., Willia	132 03	9- Jan- 202 0	59. 63	- 136. 47	8 8 0	46	- 1.41 367	7.79 6	31 0. 3	- 7.04 268 242 9	Rubin o et al. 2013 JGR Atmos phere	- 27. 46	0.36 788 050 3	21.0 0	2

						m H.; Raup , K.A.															
Eriophor um angustifo lium	EAC AMA S30	194 8	8	1	CA NL	C. Thac ker	47	7- Jan- 202 0	63. 75	- 68.5 2	4 1 9	65	- 8.74 635	6.93 75	31 0. 3	- 7.04 268 242 9	Rubin o et al. 2013 JGR Atmos phere	- 27. 12	0.18 037 623	20.6 4	2
Eriophor um angustifo lium	EAC AMA S31	194 8	7	5	CA NL	Shac klette , Hans ford T.	282 5	9- Jan- 202 0	66. 08	- 118. 03	2 3 3	34	- 7.40 017	11.6 079 998	31 0. 3	- 7.04 268 242 9	Rubin o et al. 2013 JGR Atmos phere	- 28. 67	0.37 392 740 8	22.2 7	2
Eriophor um angustifo lium	EAC AMA S32	194 8	7	4	CA NL	Shac klette , Hans ford T.	281 9	9- Jan- 202 0	66. 08	- 118. 03	2 3 3	34	- 7.40 017	11.6 079 998	31 0. 3	- 7.04 268 242 9	Rubin o et al. 2013 JGR Atmos phere	- 26. 69	0.37 392 740 8	20.1 9	2
Eriophor um angustifo lium	EAC AMA S33	194 8	7	5	CA NL	Shac klette , Hans ford T.	282 5	9- Jan- 202 0	66. 10	- 119. 00	2 3 1	35	- 7.40 4	11.1 999 998	31 0. 3	- 7.04 268 242 9	Rubin o et al. 2013 JGR Atmos phere	- 26. 16	0.32 066 696	19.6 4	4
Eriophor um angustifo lium	EAC AMA S34	195 0	7	31	CA NL	Scog gan, H.J.; Bald win, Willia m K.W.	833 8	9- Jan- 202 0	60. 00	- 98.1 7	3 8 4	62	- 8.05 9	13.6 440 001	31 0. 7	- 7.00 634 099 8	Rubin o et al. 2013 JGR Atmos phere	- 25. 40	0.52 250 506 9	18.8 7	3
Eriophor um angustifo lium	EAC AMA S35	195 0	6	30	CA NL	Kelsa II, John P.; McE wen, E.H.	26	9- Jan- 202 0	66. 83	- 108. 03	1 8 0	16	- 11.2 6533	5.39 200 02	31 0. 7	- 7.00 634 099 8	Rubin o et al. 2013 JGR Atmos phere	- 25. 66	0.08 395 162 5	19.1 5	2
Eriophor um angustifo lium	EAC AMA S36	195 0	6	13	CA NL	V.C. Wynn e- Edwa rds	881 4	8- Jan- 202 0	69. 83	- 70.6 7	2 4 2	20	- 12.7 2917	2.04 399 99	31 0. 7	- 7.00 634 099 8	Rubin o et al. 2013 JGR Atmos phere	- 26. 52	0.13 249 459 2	20.0 4	2
Eriophor um angustifo lium	EAC AMA S37	195 0	6	29	CA NL	V.C. Wynn e- Edwa rds	886 4	7- Jan- 202 0	69. 83	- 70.6 7	2 4 2	20	- 12.7 2917	2.04 399 99	31 0. 7	- 7.00 634 099 8	Rubin o et al. 2013 JGR Atmos phere	- 26. 97	0.13 249 459 2	20.5 2	2
Eriophor um angustifo lium	EAC AMA S38	195 1	7	1	CA NL	Linds ey, Alton A.	109	9- Jan- 202 0	60. 72	- 115. 78	3 2 2	42	- 2.82 817	16.5	31 1. 1	- 7.01 285	EXTR APOL ATED	- 23. 52	0.61 771 580 9	16.9 1	3
Eriophor um angustifo lium	EAC AMA S39	195 1	7	24	CA NL	D.K. Brow n	886	8- Jan- 202 0	63. 60	- 84.0 8	2 3 8	31	- 10.9 4256	8.75	31 1. 1	- 7.01 285	EXTR APOL ATED	- 25. 51	0.24 915 95	18.9 8	4
Eriophor um angustifo lium	EAC AMA S40	195 2	7	28	CA NL	Brow n, D.K.	134 1	9- Jan- 202 0	60. 97	- 101. 33	3 3 0	58	- 8.45 883	13.0 799 999	31 1. 5	- 7.01 775	EXTR APOL ATED	- 26. 75	0.47 607 175 8	20.2 7	2
Eriophor um angustifo lium	EAC AMA S42	195 5	8	8	CA NL	J.S. Tene r	336	8- Jan- 202 0	65. 67	- 102. 08	2 0 5	37	- 11.9 565	9.69 600 01	31 3	- 7.03 285 833 3	EXTR APOL ATED	- 27. 12	0.36 353 558 8	20.6 4	2
Eriophor um angustifo lium	EAC AMA S43	195 5	8	21	CA NL	Mrs. P.F. Coop er	244	7- Jan- 202 0	68. 63	- 95.8 7	1 2 8	28	- 14.3 9936	5.60 768 99	31 3	- 7.03 285 833 3	EXTR APOL ATED	- 25. 36	0.14 029 851	18.8 0	2
Eriophor um angustifo lium	EAC AMA S44	195 6	7	14	CA NL	Macp herso n, Andr ew H.	69	9- Jan- 202 0	68. 53	- 89.8 3	2 4 3	36	- 13.6 1015	9.32 174 02	31 3. 6	- 7.03 735	EXTR APOL ATED	- 25. 55	0.34 448 089 4	19.0 0	3
Eriophor um angustifo lium	EAC AMA S45	195 9	8	11	CA NL	A.E. Porsil d	215 23	7- Jan- 202 0	63. 75	- 68.5 2	4 1 9	65	- 8.74 635	6.93 75	31 4. 8	- 7.06 651 172 9	Rubin o et al. 2013 JGR Atmos phere	- 28. 63	0.18 037 623	22.2 0	2

Frienber	EAC	105	7	10	CA	W/cc		0	60	r	2	20		12.0	21		Dubin	1	0.42	17.0	2
Eriophor um angustifo lium	AMA S46	9	7	19	NL	woo d, Ray mond D.		9- Jan- 202 0	68. 22	- 135. 00	2 6 6	39	- 8.70 45	13.0 799 999	31 6. 54	- 7.06 651 172 9	o et al. 2013 JGR Atmos	- 24. 55	0.43 607 165 8	2	3
Frienher	540	106	7	10	<u> </u>	N4- All		0	69		2	20		12.0	21		phere		0.42	21.0	2
um angustifo lium	AMA S47	0	/	10	NL	ister, Dona Id E.		9- Jan- 202 0	22	- 135. 00	6 6	39	8.70 45	799 999	8. 18	- 7.05 695	APOL ATED	27. 50	607 165 8	2	5
Eriophor	EAC	196	7	7	CA	Besc	107	8-	74.	-	1	21	-	4.82	31	-	EXTR	-	0.15	21.5	2
um angustifo lium	AMA S48	0			NL	hel	17	Jan- 202 0	68	94.8 3	4 9		16.5 0196	941 01	8. 18	7.05 695	APOL ATED	27. 99	577 862 9	4	-
Eriophor um	EAC AMA	196 1	6	24	CA NL	Macp herso	248	9- Jan-	64. 45	- 99.0	2	21	- 11.3	2.55 6	31 9.	- 7.06	EXTR APOL	- 28.	0.06 445	21.7 3	2
angustifo lium	S49					n, Eliza beth		202 0		0	6		8133		77	144 166 7	ATED	18	326 2		
Eriophor um	EAC AMA	196 1	7	6	CA NL	J.S. Tene	73	8- Jan-	75. 15	- 99.7	1	18	- 17.5	5.40 000	31 8.	- 7.06	EXTR APOL	- 26	0.20 525	19.7 9	2
angustifo lium	S50					r & C.R. Harin gton		202 0		3	5		215	01	57	185	ATED	33	088 5		
Eriophor	EAC AMA	196 2	7	12	CA	Steve	102	8- Jan-	69. 12	-	1	20	- 13.0	8.89 999	31 9	-	Rubin	- 27	0.25	21.2	2
angustifo lium	S51	2			n.	hens		202 0	12	05	7		2887	96	61	148 428 3	al. 2013 JGR Atmos phere	77	582 7		
Eriophor	EAC	196	6	15	CA	Barry	347	9-	69. 70	-	1	8	-	7.05	32	-	Rubin	-	0.24	20.8	3
um angustifo lium	S52	2			NL	, Т.W.		202 0	70	00	9		2083	01	62	148 428 3	al. 2013 JGR Atmos phere	33	984 5	U	
Eriophor	EAC	196	8	1	CA	P.J.	303	7-	69.	-	1	41	-	4.77	31	-	Rubin	-	0.14	18.8	2
um angustifo lium	AMA S53	3			NL	Web ber		Jan- 202 0	90	76.9 0	4		12.6 1717	199 98	7. 77	7.05 5	o et al. 2013 JGR Atmos phere	25. 45	959 553 6	8	
Eriophor	EAC	196	8	7	CA	I.A.	80	8-	63.	-	5	94	-	5.82	31	-	EXTR	-	0.16	22.6	2
um angustifo lium	AMA S54	4			NL	McLa ren		Jan- 202 0	40	64.7 5	3 4		7.48 233	800 01	8. 69	7.07 695 833 3	ATED	29. 05	712 150 3	3	
Eriophor um angustifo lium	EAC AMA S55	196 4	8	20	CA NL	I.A. McLa ren	141	7- Jan- 202 0	63. 40	- 64.7 5	5 3 4	94	- 7.48 233	5.82 800 01	31 8. 69	- 7.07 695 833 3	EXTR APOL ATED	- 26. 82	0.16 712 150 3	20.2 8	2
Eriophor	EAC	196	8	6	CA	Lamb		9-	71.	-	1	27	-	4.76	31	-	EXTR	-	0.10	21.3	2
um angustifo lium	AMA S56	4			NL	ert, J.D.H		Jan- 202 0	98	125. 20	2 8		12.9 6339	428 99	8. 69	7.07 695 833 3	APOL ATED	27. 84	618 96	6	
Eriophor	EAC	196	8	5	CA	Lamb		9-	71.	-	1	27	-	4.76	31	-	EXTR	-	0.10	22.0	2
um angustifo lium	S57	4			NL	ert, J.D.H		Jan- 202 0	98	125. 20	8		12.9 6339	428 99	8. 69	7.07 695 833 3	ATED	28. 45	96 96	0	
Eriophor	EAC	196	8	13	CA	Lamb		9-	71.	-	1	27	-	4.76	31	-	EXTR	-	0.10	18.2	2
um angustifo lium	AMA S58	4			NL	ert, J.D.H		Jan- 202 0	98	125. 20	8		12.9 6339	428 99	8. 69	7.07 695 833 3	ATED	24. 86	618 96	3	
Eriophor	EAC	196	7	30	CA	Lamb		9-	71.	-	1	17	-	7.07	32	-	EXTR	-	0.19	19.4	2
um angustifo lium	AMA S59	4			NL	ert, J.D.H		Jan- 202 0	98	125. 20	2 8		12.9 6339	856 99	0. 44	7.07 655	APOL ATED	26. 02	544 537 6	5	
Eriophor um	EAC AMA	196 4	8	10	CA	Lamb ert.		9- Jan-	71. 98	- 125	1	27	-	4.76 428	31 8.	- 7.07	EXTR APOI	- 28	0.10 618	22.1 0	2
angustifo lium	S60				112	J.D.H		202 0		20	8		6339	99	69	695 833 3	ATED	55	96	Ū	
Eriophor	EAC	196 4	7	18	CA	G.R. Brass	156 05	8- Jan	81. 42	- 76.0	1	29	- 17.2	3.92	32 0	-	EXTR APOI	- 25	0.19	19.0 9	2
angustifo lium	S61	106	7	3	C^	ard	646	202 0	62	2	7	40	5341	99	44	655	ATED	68	123	21.4	2
um	AMA	196 5	'	3	NL	bach,	040 5	9- Jan-	95	- 103.	4	40	- 10.3	360	32 1.	- 7.08	APOL	27.	908	21.1 6	2
angustifo lium	S62					G.B.		202 0		87	7		4167	001	21	145	ATED	66	438 9		
Eriophor	EAC	196	7	3	CA	Ross	646	9-	63.	-	2	40	-	13.7	32	-	EXTR	-	0.57	18.9	2
um angustifo lium	AMA S63	5			NL	bach, G.B.	5	Jan- 202 0	95	103. 87	4 7		10.3 4167	360 001	1. 21	7.08 145	APOL ATED	25. 54	908 438 9	5	
Eriophor um	EAC AMA	196 5	8	1	CA	G.B. Ross	698 9	8- Jan-	64. 32	- 96.0	2	46	-	9.30 399	31 8	-	EXTR APOL	- 27	0.22	20.5 0	2
um	S64	Ŭ			INL	bach	5	odir-	52	5	6		2317	99	87	185	ATED	02	000	Ŭ	

angustifo lium								202 0								833 3			882 7		
Eriophor	EAC	196 5	7	18	CA	G.B. Ross	670 6	8- Jan-	64. 67	- 98.5	2	39	-	11.3 280	32 1	- 7.08	EXTR APOI	- 29	0.42	23.0 0	2
angustifo lium	S65	0			INL.	bach	Ŭ	202 0	01	7	5		9233	001	21	145	ATED	40	245 6	Ŭ	
Eriophor um angustifo	EAC AMA S66	196 5	7	11	CA NL	G.B. Ross bach	662 2	7- Jan- 202 0	64. 67	- 99.8 8	2 1 5	38	- 11.5 1867	11.9 08	32 1. 21	- 7.08 145	EXTR APOL ATED	- 27. 38	0.46 649 365 7	20.8 7	2
Eriophor um angustifo	EAC AMA S67	196 5	7	28	CA NL	Hain ault, Robe	384 4	7- Jan- 202	70. 00	- 68.5 8	2 3 8	25	- 12.7 81	4.87 200 02	32 1. 21	- 7.08 145	EXTR APOL ATED	- 27. 56	0.18 721 997	21.0 6	2
Eriophor um angustifo lium	EAC AMA S68	196 6	7	22	CA NL	Bald win, Willia m K.W.; MacP herso n.J.	105 27	9- Jan- 202 0	53. 97	- 106. 08	4 6 8	86	0.53 25	16.6 760 006	32 2. 38	- 7.23 493 247 8	Rubin o et al. 2013 JGR Atmos phere	- 27. 13	4 0.52 004 419 9	20.4 5	2
Eriophor um angustifo lium	EAC AMA S69	196 7	7	26	CA NL	P.J. Web ber	127 7	7- Jan- 202 0	68. 83	- 68.5 0	2 6 3	29	- 11.1 6111	6.03 333	32 2. 54	- 7.33 311 385 2	Rubin o et al. 2013 JGR Atmos phere	- 29. 70	0.21 756 203 7	23.0 5	2
Eriophor um angustifo lium	EAC AMA S70	197 0	7	8	CA NL	G.R. Park er	SP- 70- 97B	7- Jan- 202 0	64. 20	- 85.0 0	2 5 8	32	- 11.6 6733	9.01 599 98	32 6. 34	- 7.34 17	EXTR APOL ATED	- 26. 82	0.28 085 256	20.0 2	0
Eriophor um angustifo lium	EAC AMA S71	197 0	7	21	CA NL	D.A. Gill	16	7- Jan- 202 0	75. 72	- 98.4 2	1 2 3	19	- 17.7 275	4.93 599 99	32 6. 34	- 7.34 17	EXTR APOL ATED	- 29. 33	0.19 909 511	22.6 6	2
Eriophor um angustifo lium	EAC AMA S72	197 1	7	17	CA NL	Argu s, Geor ge W.; Chun ys, W.N	804 1	9- Jan- 202 0	62. 57	- 115. 10	2 6 9	35	- 4.91 7	16.2 999 992	32 7. 36	- 7.34 775 126 3	Rubin o et al. 2013 JGR Atmos phere	- 24. 95	0.67 395 663 3	18.0 5	2
Eriophor um angustifo lium	EAC AMA S73	197 1	7	1	CA NL	M. Kuc		8- Jan- 202 0	76. 13	- 108. 12	7 2	14	- 18.4 9659	3.03 636 4	32 7. 36	- 7.34 775 126 3	Rubin o et al. 2013 JGR Atmos	- 27. 75	0.06 996 709 1	20.9 8	2
Eriophor um angustifo lium	EAC AMA S74	197 2	7		CA NL	Gillett , John M.	164 66	9- Jan- 202 0	62. 82	- 92.0 8	3 2 7	41	- 8.48 69	8.74 285 98	32 8. 04	- 7.35 614 816 4	Rubin o et al. 2013 JGR Atmos phere	- 24. 90	0.22 861 386 6	18.0 0	2
Eriophor um angustifo lium	EAC AMA S75	197 3	7	23	CA NL	Gillett , John M.	161 95	9- Jan- 202 0	62. 20	- 95.6 7	2 9 9	43	- 10.1 8317	11.7 24	33 0. 87	- 7.39 284 195 3	Rubin o et al. 2013 JGR Atmos phere	- 24. 81	0.37 285 257	17.8 6	2
Eriophor um angustifo lium	EAC AMA S76	197 3	7	23	CA NL	Gillett , John M.	162 56	9- Jan- 202 0	62. 40	- 94.2 2	2 9 5	39	- 10.2 1833	10.7 959 995	33 0. 87	- 7.39 284 195 3	Rubin o et al. 2013 JGR Atmos phere	- 27. 28	0.31 540 866	20.4 4	0
Eriophor um angustifo lium	EAC AMA S77	197 3	7	17	CA NL	Gillett , John M.	160 63	9- Jan- 202 0	62. 82	- 92.0 8	3 2 7	41	- 8.48 69	8.74 285 98	33 0. 87	- 7.39 284 195 3	Rubin o et al. 2013 JGR Atmos phere	- 27. 39	0.22 861 386 6	20.5 6	2
Eriophor um angustifo lium	EAC AMA S78	197 4	8	31	CA NL	Jean- Louis Bloui n		8- Jan- 202 0	66. 92	- 64.7 5	4 2 4	54	- 9.38 15	5.27 6	32 9. 39	- 7.48 261 14	Rubin o et al. 2013 JGR Atmos phere	- 26. 05	0.15 913 971 9	19.0 6	0
Eriophor um angustifo lium	EAC AMA S79	197 5	7	30	CA NL	Talbo t, Step hen	T50 99-	9- Jan- 202 0	61. 17	- 124. 55	5 3 8	94	- 4.30 9	11.2 480 001	33 1. 9	- 7.41 790 639 5	Rubin o et al. 2013 JGR Atmos phere	- 25. 46	0.49 651 162 1	18.5 1	0

Frienber	FAC	407	7	40	<u></u>	E alluna	755	0	05	1	0	27		0.02	22		Durkin		0.20	10.5	0
erioprior um angustifo lium	AMA S80	6	7	19	NL	d, Sylvi a A.	755	о- Jan- 202 0	76 76	94.1 3	2 4 7	37	- 13.7 615	9.93 200 02	33 3. 05	- 7.44 270 962 2	o et al. 2013 JGR Atmos phere	- 26. 45	0.36 274 857 3	2	2
Eriophor um angustifo lium	EAC AMA S81	197 7	8	10	CA NL	Shch epan ek, Mich ael J.; White , D.	295 2	9- Jan- 202 0	49. 65	- 54.7 5	1 0 6 0	102	3.90 114	15.6 317 997	33 2. 75	- 7.48 5	Rubin o et al. 2013 JGR Atmos phere	- 26. 42	0.40 829 635 3	19.4 5	0
Eriophor um angustifo lium	EAC AMA S82	197 7	8	8	CA NL	Shch epan ek, Mich ael J.; White , D.	291 2	9- Jan- 202 0	49. 83	- 56.3 0	1 1 5 1	107	2.90 6	14.9 399 996	33 2. 75	- 7.48 5	Rubin o et al. 2013 JGR Atmos phere	- 28. 52	0.36 446 452	21.6 6	3
Eriophor um angustifo lium	EAC AMA S83	197 7	7	28	CA NL	Gillett , John M.; Boud reau, Mireil le J.	175 48	9- Jan- 202 0	57. 43	- 126. 80	6 1 6	77	- 2.18 017	10.8 039 999	33 4. 92	- 7.48 5	Rubin o et al. 2013 JGR Atmos phere	- 26. 92	0.46 889 882 9	19.9 8	2
Eriophor um angustifo lium	EAC AMA S84	197 7	7	21	CA NL	Argu s, Geor ge W.; Habe r, Erich	108 59	9- Jan- 202 0	58. 45	- 124. 88	6 3 4	114	- 3.82 917	9.10 000 04	33 4. 92	- 7.48 5	Rubin o et al. 2013 JGR Atmos phere	- 22. 96	0.40 259 172 9	15.8 4	2
Eriophor um angustifo lium	EAC AMA S85	197 8	7	26	CA NL	Forsy the, J.A.	920	9- Jan- 202 0	48. 02	- 64.5 0	1 1 3 6	94	4.34 167	18.1 000 004	33 6. 54	- 7.50 2	Rubin o et al. 2013 JGR Atmos phere	- 27. 01	0.49 759 268 1	20.0 5	4
Eriophor um angustifo lium	EAC AMA S86	198 0	8	21	CA NL	Edlun d, Sylvi a A.	s.n.	8- Jan- 202 0	74. 72	- 94.9 7	1 4 9	34	- 16.6 655	1.59 2	33 7. 6	- 7.47	Keelin g et al. 2001	- 26. 96	0.06 232 288	20.0 3	2
Eriophor um angustifo lium	EAC AMA S87	198 1	8	13	CA NL	Shch epan ek, Mich ael J.; Duga I, Alber t W.	396 5	9- Jan- 202 0	46. 47	- 62.2 2	1 2 0 4	96	5.52 054	18.6 357 002	33 8. 43	- 7.49	Keelin g et al. 2001	- 26. 04	0.49 926 341 6	19.0 5	2
Eriophor um angustifo lium	EAC AMA S88	198 2	7	28	CA NL	J.M. Gillett	191 06	7- Jan- 202 0	63. 75	- 68.5 2	4 1 9	60	- 8.74 635	7.90 000 01	34 2. 06	- 7.67	Keelin g et al. 2001	- 27. 32	0.24 831 221	20.2 0	2
Eriophor um angustifo lium	EAC AMA S89	198 2	6	27	CA NL	Edlun d, Sylvi a A.	33	9- Jan- 202 0	71. 12	- 118. 07	1 6 3	12	- 12.3 2662	3.41 110 99	34 3. 35	- 7.71	Keelin g et al. 2001	- 26. 96	0.13 763 318 4	19.7 8	2
Eriophor um angustifo lium	EAC AMA S90	198 3	8	30	CA NL	Talbo t, Step hen	003 -2	9- Jan- 202 0	62. 83	- 163. 42	4 9 4	106	- 1.84 15	11.5 4	34 2. 38	- 7.58	Keelin g et al. 2002	- 24. 89	0.28 099 041 5	17.7 5	2
Eriophor um angustifo lium	EAC AMA S91	198 4	7	26	CA NL	Edlun d, Sylvi a A.	420	9- Jan- 202 0	75. 43	- 113. 50	1 0 1	18	- 17.1 3042	3.19 499 99	34 5. 39	- 7.72	Keelin g et al. 2001	- 30. 71	0.15 606 296 5	23.7 2	0
Eriophor um angustifo lium	EAC AMA S92	198 4	7	4	CA NL	Edlun d, Sylvi a A.	24	9- Jan- 202 0	76. 03	- 113. 08	9 3	17	- 17.8 17	3.36 8	34 5. 39	- 7.72	Keelin g et al. 2002	- 27. 20	0.17 923 489 8	20.0 2	0
Eriophor um angustifo lium	EAC AMA S93	198 5	7	12	CA NL	Edlun d, Sylvi a A.	137	9- Jan- 202 0	75. 80	- 114. 80	1 0 6	19	- 17.8 465	2.19 199 99	34 6. 56	- 7.68	Keelin g et al. 2001	- 28. 05	0.13 962 665 2	20.9 6	0
Eriophor um angustifo lium	EAC AMA S94	198 6	8	18	CA NL	S.G. Aiken , C. Cam pbell, & E. Robi nson	86- 374	7- Jan- 202 0	63. 73	- 68.4 5	4 2 8	67	- 8.94 278	6.68 666 98	34 5. 9	7.52	Keelin g et al. 2001	- 27. 18	0.18 414 398 8	20.2 1	2
Eriophor um angustifo lium	EAC AMA S95	198 6	8	14	CA NL	S.G. Aiken , C. Cam	86- 286	7- Jan- 202 0	63. 77	- 68.9 8	3 9 7	62	- 9.06 975	7.23 477 98	34 5. 9	- 7.52	Keelin g et al. 2001	- 25. 98	0.19 974 390 3	18.9 6	2

						pbell, & E. Robi nson															
Eriophor um angustifo lium	EAC AMA S96	198 6	7	12	CA NL	J.D. Jaco bs & L. Maus		8- Jan- 202 0	65. 95	- 71.3 0	3 2 2	45	- 10.1 9213	8.35 000 04	34 7. 94	- 7.63	Keelin g et al. 2001	- 25. 21	0.30 894 790 8	18.0 4	4
Eriophor um angustifo lium	EAC AMA S97	198 6	7	12	CA NL	J.D. Jaco bs & L. Maus		7- Jan- 202 0	65. 95	- 71.3 0	3 2 2	45	- 10.1 9213	8.35 000 04	34 7. 94	- 7.63	Keelin g et al. 2002	- 26. 90	0.30 894 790 8	19.8 0	4
Eriophor um angustifo lium	EAC AMA S98	198 6	8	9	CA NL	S.G. Aiken , C. Cam pbell, & E. Robi nson	86- 201	7- Jan- 202 0	66. 03	- 71.2 0	3 2 0	54	- 10.3 8385	6.79 374 98	34 5. 9	- 7.52	Keelin g et al. 2001	- 27. 83	0.21 806 447 1	20.8 9	4
Eriophor um angustifo lium	EAC AMA S99	198 6	8	8	CA NL	S.A. Edlun d	287	8- Jan- 202 0	72. 56	- 105. 40	7 7	15	- 16.2 7133	3.04 399 99	34 5. 9	- 7.52	Keelin g et al. 2001	- 26. 89	0.07 757 889 9	19.9 1	2
Eriophor um angustifo lium	EAC AMA S100	198 6	8	13	CA NL	S.A. Edlun d	379	8- Jan- 202 0	73. 68	- 106. 60	7 5	14	- 16.8 0391	2.62 5	34 5. 9	- 7.52	Keelin g et al. 2001	- 28. 16	0.05 807 093 5	21.2 4	2
Eriophor um angustifo lium	EAC AMA S101	198 8	8	21	CA NL	Habe r, Erich; Bristo w, Valeri e N.	388 5	9- Jan- 202 0	46. 84	- 66.6 9	1 1 6 7	101	2.47 833	16.5 919 991	35 0. 43	- 7.73	Keelin g et al. 2001	- 28. 48	0.49 553 421 1	21.3 5	3
Eriophor um angustifo lium	EAC AMA S102	198 8	7	12	CA NL	Aiken , Susa n	88- 217	9- Jan- 202 0	68. 97	- 137. 27	2 3 8	34	- 9.82 895	11.4 157 9	35 2. 38	- 7.77	Keelin g et al. 2001	- 28. 02	0.33 826 39	20.8 4	3
Eriophor um angustifo lium	EAC AMA S103	199 6	7	15	CA NL	Char est, René ; Brouil let,	96- 103 0	9- Jan- 202 0	48. 43	- 54.1 4	1 0 7 8	84	4.28 85	15.9 519 997	36 3. 65	- 7.98	Keelin g et al. 2001	- 27. 76	0.45 444 298 5	20.3 4	2
Eriophor um angustifo lium	EAC AMA S104	199 9	7	2	CA NL	Aiken , Susa n	99- 201	9- Jan- 202 0	73. 84	- 119. 96	1 3 4	16	- 14.8 6867	6.34 399 99	36 4. 47	- 8.06	Keelin g et al. 2001	- 30. 10	0.32 191 314 1	22.7 2	2
Eriophor um angustifo lium	EAC AMA S105	200 0	7	24	CA NL	Gilles pie, Lynn; Cons aul, Lauri e L.	685 8	9- Jan- 202 0	76. 56	- 118. 86	1 0 8	14	- 17.8 8882	3.41 579 01	37 0. 12	- 8.07	Keelin g et al. 2001	- 31. 28	0.14 540 654 9	23.9 6	2
Eriophor um angustifo lium	EAC AMA S106	200 3	7	16	CA NL	Pokia k, Myrn a	26	9- Jan- 202 0	69. 35	- 124. 07	2 1 8	22	- 9.48 939	9.91 818 05	37 6. 61	- 8.18	Keelin g et al. 2001	- 29. 12	0.27 343 411	21.5 7	2
Eriophor um angustifo lium	EAC AMA S107	200 3	7	22	CA NL	Salok anga s, Raila	26	9- Jan- 202 0	70. 76	- 117. 75	1 8 3	26	- 11.9 145	8.45 600 03	37 6. 61	- 8.18	Keelin g et al. 2002	- 26. 39	0.29 448 387 3	18.7 0	0
Eriophor um angustifo lium	EAC AMA S108	200 4	7	8	CA NL	Peter son, Paul M.; Saar ela, Jeffer y M.; Smith , S.F.	184 79	9- Jan- 202 0	60. 99	- 138. 50	4 1 7	68	- 3.29 567	10.1 239 996	37 7. 76	- 8.19	Keelin g et al. 2001	- 27. 92	0.46 977 785 8	20.2 9	2
Eriophor um angustifo lium	EAC AMA S109	200 8	7	13	CA NL	Gilles pie, Lynn J.; Saar ela, Jeffer y M.; Cons aul, Lauri e L.; Bull, Roge r D	791 3	8- Jan- 202 0	68. 66	- 110. 71	1 2 5	22	- 12.6 37	9.40 8	38 6. 25	-8.3	Keelin g et al. 2001	- 27. 20	0.28 564 93	19.4 3	2

Eriophor um angustifo lium	EAC AMA S110	200 8	7	26	CA NL	Gilles pie, Lynn J.; Saar ela, Jeffer y M.; Cons aul, Lauri e L.; Bull, Rocc	840 6	8- Jan- 202 0	69. 12	- 105. 06	1 3 7	20	- 13.9 2887	8.89 999 96	38 6. 25	-8.3	Keelin g et al. 2001	- 26. 32	0.25 067 582 7	18.5 1	2
Eriophor um angustifo lium	EAC AMA S111	200 9	7	21	CA NL	r D. Gilles pie, Lynn J.; Saar ela, Jeffer y M.; Cons aul, Lauri e L.; Bull, Roge r D.; Boxw ell, Janet ; Hunt er, Chris	914 5	9- Jan- 202 0	68. 87	- 122. 82	2 2 6	31	9.62 7	10.3 240 004	38 8. 07	- 8.29	Keelin g et al. 2001	- 26. 95	0.40 685 813 6	19.1 7	2
Eriophor um angustifo lium	EAC AMA S112	200 9	7	1	CA NL	Gilles pie, Lynn J.; Saar ela, Jeffer y M.; Cons aul, Lauri e L.; Bull, Roge r D.; Boxw ell, Janet ; Hunt er, C.	869	9- Jan- 202 0	69. 32	- 124. 01	2 2 5	24	- 9.36 345	10.2 954 998	38 8. 07	8.29	Keelin g et al. 2002	- 29. 45	0.32 968 715 5	21.8 0	2
Eriophor um angustifo lium	EAC AMA S113	200 9	7	23	CA NL	Gilles pie, Lynn J.; Cons aul, Lauri e L.; Bull, Roge r D.	918 2	9- Jan- 202 0	69. 40	- 123. 05	2 1 3	26	- 9.25 683	10.4 399 996	38 8. 07	8.29	Keelin g et al. 2003	- 28. 98	0.36 302 280 7	21.3 1	2
Eriophor um angusifo lium	EAC AMA S114	0	6	26	CA NL	Lauri e Cons aul, Morg, Don Char ette, Emily Kattu k, Chris tine Ekidl ak, Betsy Meek o, Louis a Ippak , Narlik , Narik	3	8- Jan- 202 0	56. 43	- 79.1 6	5 1 5	48	- 4.37 55	6.71 600 01	39 2. 24	- 8.43	Keelin get al. 2001	- 26. 75	0.25 719 311 1	18.8 2	2

						Narlik , Sara h Uppik , Luca ssie Ippak , Shirle y Ippak , Ronn ie Ippak , & Mina Inukt aulk															
Eriophor um angustifo lium	EAC AMA S115	201 0	6	26	CA NL	Lauri e Cons aul, Morg, Don Char ette, Emily Kattu k, Chris tine Ekidl ak, y Meek o, Louis a Ippak , Marlik , John Narlik , Sara h Uppik , Luca ssie Ippak , Shirle y Ippak , Ronn ie Ippak , Mina Inutk	369 6a	8- Jan- 202 0	56. 43	79.1 6	5 1 5 5	48	4.37	6.71 600 01	39 2. 24	8.43	Keelin g et al. 2002	28.	0.25 719 311 1	21.0 7	2
Eriophor um angustifo lium	EAC AMA S116	201 0	8	10	CA NL	Lauri e Cons aul, Emily Kattu k, Betsy Meek o, Don Char ette	401 7	8- Jan- 202 0	56. 56	- 79.2 4	4 9 5	69	- 4.27 292	10.5 249 996	38 8. 52	8.21	Keelin g et al. 2001	- 28. 55	0.23 222 033 4	20.9 4	2
Eriophor um angustifo lium	EAC AMA S117	201 0	7	5	CA NL	Lauri e Cons aul & Emily Kattu k	395 7	8- Jan- 202 0	56. 68	- 79.3 3	4 9 3	63	- 4.49 167	9.53 333 3	39 0. 33	8.32	Keelin g et al. 2001	- 28. 20	0.21 444 776 2	20.4 6	2

0	2	0	0	3	2	2															
20.2	19.5	21.3	23.8	20.6	20.0	21.2															
9		0	3	5	6	4															
0.35 010 708 6	0.30 670 814	0.30 025 038 5	0.30 025 038 5	0.18 441 072 4	0.42 021 569 5	0.29 000 159 2															
-	-	-	-	-	-	-															
28.	27.	29.	31.	28.	27.	29.															
04	30	00	40	42	76	00															
Keelin	Keelin	Keelin	Keelin	Keelin	Keelin	Keelin															
g et	g et	g et	g et	g et	g et	g et															
al.	al.	al.	al.	al.	al.	al.															
2002	2003	2004	2005	2001	2001	2001															
8.32	8.32	8.32	8.32	- 8.36	- 8.26	8.38															
39	39	39	39	39	39	39															
0.	0.	0.	0.	2.	2.	4.															
33	33	33	33	59	54	52															
8.32	7.75	7.35	7.35	9	7.65	8.91															
800	199	200	200		600	199															
01	99	02	02		01	97															
-	-	-	-	-	-	- 7.37															
13.3	13.0	13.9	13.9	10.8	5.99																
6867	0783	505	505	8917	283																
24	24	22	22	30	82	61															
1 6 4	1 6 4	1 4 6	1 4 6	2 0 0	6 0 0	3 8 6															
-	-	-	-	-	-	-															
116.	117.	115.	115.	138.	128.	69.8															
37	34	44	44	95	48	9															
71.	71.	71.	71.	69.	62.	62.															
21	51	62	62	57	22	85															
9-	9-	9-	9-	9-	9-	8-															
Jan-	Jan-	Jan-	Jan-	Jan-	Jan-	Jan-															
202	202	202	202	202	202	202															
0	0	0	0	0	0	0															
977 7	955	948 9	945 8	219	NH- 12- 264	264 2															
Gilles pie, Lynn J.; Saar ela, Jeffer y M.; Doub t, Jenni fer; Bull, Roge r D.; Sokol off, Paul C.	Gilles pie, Lynn J.; Saar ela, Jeffer; Doub t, Jenni fer; Bull, Roge r D.; Sokol off, Paul C.	Gilles pie, Lynn J.; Saar ela, Jeffer y M.; Doub t, Jenni fer; Bull, Roge r D.; Sokol off, Paul C.	Gilles pie, Lynn J.; Saar ela, Jeffer y M.; Doub t, Jenni fer; Bull, Roge r D.; Sokol off, Paul C.	Sloan , Heat her Cray	Pono mare nko, Serg uei	Saar ela, Jeffer y M.; Gilles pie, Lynn J.; Sokol off, Paul															
CA	CA	CA	CA	CA	CA	CA															
NL	NL	NL	NL	NL	NL	NL															
14	9	7	7	20	15	20															
7	7	7	7	7	8	7															
201	201	201	201	201	201	201															
0	0	0	0	1	2	2															
EAC	EAC	EAC	EAC	EAC	EAC	EAC															
AMA	AMA	AMA	AMA	AMA	AMA	AMA															
S118	S119	S120	S121	S122	S123	S124															
Eriophor	Eriophor	Eriophor	Eriophor	Eriophor	Eriophor	Eriophor															
um	um	um	um	um	um	um															
angustifo	angustifo	angustifo	angustifo	angustifo	angustifo	angustifo															
lium	lium	lium	lium	lium	lium	lium															
						C.; Bull, Roge r D.															
-------------------------------------	--------------------	----------	---	----	----------	---	----------	------------------------	-----------	----------------	-------------	----	------------------	-------------------	----------------	------	-------------------------------	----------------	-------------------------	-----------	---
Eriophor um angustifo lium	EAC AMA S125	201 2	7	15	CA NL	Saar ela, Jeffer y M.; Gilles pie, Lynn J.; Sokol off, Paul C.; Bull, Roge r D.	246 2	8- Jan- 202 0	62. 98	- 69.7 2	4 0 0	61	- 7.64 167	9.23 600 01	39 4. 52	8.38	Keelin g et al. 2002	- 29. 45	0.32 004 824 5	21.7 1	2
Eriophor um angustifo lium	EAC AMA S126	201	7	15	CA NL	Saar ela, Jeffer y M.; Gilles pie, Lynn J.; Sokol off, Paul C.; Bull, Roge r D.	245 2	8- Jan- 202 0	62. 98	- 69.7 2	4 0 0	61	- 7.64 167	9.23 600 01	39 4. 52	8.38	Keelin g et al. 2003	- 28. 53	0.32 004 824 5	20.7 4	2
Eriophor um angustifo lium	EAC AMA S127	201 2	7	12	CA NL	Saar ela, Jeffer y M.; Gilles pie, Lynn J.; Sokol off, Paul C.; Bull, Roge r D.	238 8	8- Jan- 202 0	63. 11	- 69.7 2	4 0 0	62	- 8.22 1	9.46 399 97	39 4. 52	8.38	Keelin g et al. 2004	- 27. 71	0.33 930 752	19.8 8	2
Eriophor um angustifo lium	EAC AMA S128	201 2	7	6	CA NL	Saar ela, Jeffer y M.; Gilles pie, Lynn J.; Sokol off, Paul C.; Bull, Roge r D.	212 5	8- Jan- 202 0	63. 16	- 69.6 5	4 0 6	64	- 8.58 1	9.27 6	39 4. 52	8.38	Keelin g et al. 2005	- 25. 48	0.33 839 891 2	17.5 4	2
Eriophor um angustifo lium	EAC AMA S129	201 2	7	6	CA NL	Saar ela, Jeffer y M.; Gilles pie, Lynn J.; Sokol off, Paul C.; Bull, Roge r D.	215 1	8- Jan- 202 0	63. 17	- 69.6 5	4 1 5	63	- 8.42 1	9.50 800 04	39 4. 52	8.38	Keelin g et al. 2006	- 28. 71	0.34 962 086 5	20.9 3	2
Eriophor um angustifo lium	EAC AMA S130	201 2	7	4	CA NL	Saar ela, Jeffer y M.; Gilles pie, Lynn J.; Sokol off, Paul C.; Bull, Roge r D.	211 0	8- Jan- 202 0	63. 24	- 69.6 1	4 2 0	64	- 8.37 767	9.60 400 01	39 4. 52	8.38	Keelin g et al. 2007	- 30. 08	0.35 611 801 8	22.3 7	2

Eriophor um angustifo lium	EAC AMA S131	201 2	7	2	CA NL	Saar ela, Jeffer y M.; Gilles pie, Lynn J.; Sokol off, Paul C.; Bull, Roge r D.	200 0	8- Jan- 202 0	63. 25	- 69.6 0	4 2 7	64	- 8.41 133	9.60 799 98	39 4. 52	- 8.38	Keelin g et al. 2008	- 27. 94	0.35 443 965 9	20.1	2
Eriophor um angustifo lium	EAC AMA S132	201 3	7	19	CA NL	Pono mare nko, Serg uei	KL0 62	9- Jan- 202 0	61. 01	- 139. 31	5 6 4	88	- 3.74 9	9.45 199 97	39 7. 37	- 8.46	Keelin g et al. 2001	- 26. 66	0.41 595 093 7	18.7 0	0
Betula glandulo sa	BGC AMA S1	192 4	8	24	CA NL	Sope r, J. Dewe y		9- Jan- 202 0	64. 98	- 66.4 7	6 0 8	90	- 8.27 4305 491	7.19 166 99	30 4. 5	- 6.88 712 011 2	Rubin o et al. 2013 JGR Atmos phere	- 27. 28	0.25 460 192 8	20.9 7	2
Betula glandulo sa	BGC AMA S2	192 7	7	9	CA NL	Raup , Hugh M.	587	10- Jan- 202 0	62. 58	- 111. 52	2 7 1	40	- 6.08 0666 589	14.6 079 998	30 5. 8	- 6.89 525	EXTR APOL ATED	- 26. 15	0.48 966 669	19.7 7	0
Betula glandulo sa	BGC AMA S3	192 7	7	17	CA NL	Raup , Hugh M.	582	10- Jan- 202 0	62. 72	- 109. 17	2 7 5	38	- 6.44 0666 442	13.8 68	30 5. 8	- 6.89 525	EXTR APOL ATED	- 27. 77	0.40 542 805	21.4 7	2
Betula glandulo sa	BGC AMA S4	192 7	7	18	CA NL	Porsil d, A. Erling ; Porsil d, R.Th orbjör n	207 4	10- Jan- 202 0	69. 00	- 134. 67	2 2 2	32	- 9.08 8000 08	12.9 280 005	30 5. 8	- 6.89 525	EXTR APOL ATED	- 28. 71	0.45 837 233 1	22.4 6	3
Betula glandulo sa	BGC AMA S5	192 8	8	6	CA NL	Porsil d, A. Erling ; Porsil d, R.Th orbjör n	523 1	10- Jan- 202 0	66. 33	- 118. 50	2 2 7	42	- 7.69 2999 88	10.3 479 996	30 6. 3	- 6.90 055 833 3	EXTR APOL ATED	- 26. 57	0.29 727 290 5	20.2 0	2
Betula glandulo sa	BGC AMA S6	193 1	7	1	CA NL	Sope r, J. Dewe y		9- Jan- 202 0	63. 17	- 69.9 2	4 0 9	64	- 9.37 3666 74	8.92 000 01	30 7. 7	- 6.98 157 586 8	Rubin o et al. 2013 JGR Atmos phere	- 26. 21	0.32 261 916 2	19.7 4	2
Betula glandulo sa	BGC AMA S7	193 2	7	13	CA NL	Raup , Hugh M.; Abbe , Ernst C.	375 9	10- Jan- 202 0	56. 02	- 123. 65	6 4 2	84	0.18 2499 967	11.9 160 004	30 8. 2	- 6.90 643 735 4	Rubin o et al. 2013 JGR Atmos phere	- 25. 16	0.52 203	18.7 2	2
Betula glandulo sa	BGC AMA S8	193 2	8	2	CA NL	Raup , Hugh M.; Abbe , Ernst C.	426 1	10- Jan- 202 0	56. 03	- 122. 72	6 1 8	63	1.99 4166 549	13.4 040 003	30 8. 2	- 6.90 643 735 4	Rubin o et al. 2013 JGR Atmos phere	- 27. 24	0.53 346 808 1	20.9 1	2
Betula glandulo sa	BGC AMA S9	193 4	8	10	CA NL	Porsil d, A. Erling	721 6	10- Jan- 202 0	68. 67	- 134. 12	2 3 3	39	- 8.65 9666 78	10.2 080 002	30 9	- 6.92 995 833 3	EXTR APOL ATED	- 27. 75	0.32 515 970 8	21.4 2	2
Betula glandulo sa	BGC AMA S10	193 5	6	25	CA NL	Porsil d, A. Erling	737 4	10- Jan- 202 0	68. 67	- 134. 12	2 3 3	20	- 8.65 9666 78	9.84 399 99	30 9. 4	- 6.97 565 330 3	Rubin o et al. 2013 JGR Atmos phere	- 27. 54	0.47 635 308 5	21.1 5	2
Betula glandulo sa	BGC AMA S11	193 7	7	12	CA NL	Porsil d, A. Erling	34	10- Jan- 202 0	53. 45	- 55.7 8	9 4 7	84	0.27 9166 766	11.8 999 996	31 0	- 6.95 017 124 1	Rubin o et al. 2013 JGR Atmos phere	- 25. 72	0.29 375 765 7	19.2 7	0

2.2 2	0.3 2	0.0 2).2 2).7 2	9.4 2).9 2	0.0 2	1.0 4	1.4 4	0.9 4	1.6 4	0.8 2
21	20	20	20	20	19	20	20	2 [.]	2 [.]	2(2 [.]	2(
5	9	6	7	3	2	8		1	1	9	0	9
0.10 965 899 6	0.40 412 990 5	0.50 855 989 9	0.42 113 404 2	0.42 113 404 2	0.44 812 507	0.39 227 221 1	0.57 198 157 8	0.62 356 842 1	0.62 356 842 1	0.62 356 842 1	0.32 066 696	0.38 893 707 8
-	-	-	-	-	-	-	-	-	-	-	-	-
28.	26.	26.	26.	27.	25.	27.	26.	27.	27.	27.	28.	27.
56	79	53	72	16	91	42	48	48	86	45	03	37
Rubin	Rubin	Rubin	Rubin	Rubin	Rubin	Rubin	Rubin	Rubin	Rubin	Rubin	Rubin	Rubin
o et	o et	o et	o et	o et	o et	o et	o et	o et	o et	o et	o et	o et
al.	al.	al.	al.	al.	al.	al.	al.	al.	al.	al.	al.	al.
2013	2013	2013	2013	2013	2013	2013	2013	2013	2013	2013	2013	2013
JGR	JGR	JGR	JGR	JGR	JGR	JGR	JGR	JGR	JGR	JGR	JGR	JGR
Atmos	Atmos	Atmos	Atmos	Atmos	Atmos	Atmos	Atmos	Atmos	Atmos	Atmos	Atmos	Atmos
phere	phere	phere	phere	phere	phere	phere	phere	phere	phere	phere	phere	phere
-	-	-	-	-	-	-	-	-	-	-	-	-
6.95	6.94	6.99	6.99	6.99	6.99	7.01	7.01	7.04	7.04	7.04	7.04	7.04
017	338	414	414	414	414	336	336	268	268	268	268	268
124	105	044	044	044	044	056	056	242	242	242	242	242
1	1	2	2	2	2	8	8	9	9	9	9	9
31 0	31 0. 2	31 0. 3	31 0. 3	31 0. 3	31 0. 3	31 0. 2	31 0. 2	31 0. 3	31 0. 3	31 0. 3	31 0. 3	31 0. 3
5.88	11.1	12.8	8.69	8.69	10.7	11.9	14.0	14.1	14.1	14.1	11.1	11.6
	440	559	200	200	159	359	279	199	199	199	999	280
	001	999	04	04	996	999	999	999	999	999	998	003
- 7.02	- 12.2 2150 003	- 4.88 5499 901	- 5.99 7166 699	- 5.99 7166 699	- 5.49 9166 51	- 8.43 6833 408	- 8.43 6833 408	- 6.98 6333 365	- 6.98 6333 365	- 6.98 6333 365	- 7.40 3999 877	- 7.92 9833 266
82	41	80	93	93	87	50	61	37	37	37	35	34
4	2	5	5	5	5	3	3	2	2	2 4 7	2	2
7	5	0	8	8	5	4	4	4	4		3	2
7	5	9	3	3	5	8	8	7	7		1	4
-	-	-	-	-	-	-	-	-	-	-	-	-
66.0	97.0	127.	127.	127.	127.	99.9	99.9	118.	118.	118.	119.	118.
0	0	50	58	58	58	4	4	90	90	90	00	08
62.	64.	62.	62.	62.	62.	60.	60.	65.	65.	65.	66.	66.
95	50	07	08	08	08	61	61	72	72	72	10	47
9-	10-	10-	10-	10-	10-	9-	10-	10-	10-	10-	10-	10-
Jan-	Jan-	Jan-	Jan-	Jan-	Jan-	Jan-	Jan-	Jan-	Jan-	Jan-	Jan-	Jan-
202	202	202	202	202	202	202	202	202	202	202	202	202
0	0	0	0	0	0	0	0	0	0	0	0	0
738 5		958 5	951 0	934 1	950 2	245 7	226 8	294 3	311 0	310	279 7	320 3
Wynn e- Edwa rds, V.C.	Dutill y, Arthè me H.	Raup , Hugh M.; Sope r, Jame s H.	Raup , Hugh M.; Sope r, Jame s H.	Raup , Hugh M.; Sope r, Jame s H.	Raup , Hugh M.; Sope r, Jame s H.	Harp er, Franc is	Harp er, Franc is	Shac klette , Hans ford T.	Shac klette , Hans ford T.	Shac klette , Hans ford T.	Shac klette , Hans ford T.	Shac klette , Hans ford T.
CA	CA	CA	CA	CA	CA	CA	CA	CA	CA	CA	CA	CA
NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL
4	31	24	18	3	18	31	6	13	20	19	3	27
8	7	7	7	7	7	8	7	7	7	7	7	7
193	193	193	193	193	193	194	194	194	194	194	194	194
7	8	9	9	9	9	7	7	8	8	8	8	8
BGC	BGC	BGC	BGC	BGC	BGC	BGC	BGC	BGC	BGC	BGC	BGC	BGC
AMA	AMA	AMA	AMA	AMA	AMA	AMA	AMA	AMA	AMA	AMA	AMA	AMA
S12	S13	S14	S15	S16	S17	S18	S19	S20	S21	S22	S23	S24
Betula	Betula	Betula	Betula	Betula	Betula	Betula	Betula	Betula	Betula	Betula	Betula	Betula
glandulo	glandulo	glandulo	glandulo	glandulo	glandulo	glandulo	glandulo	glandulo	glandulo	glandulo	glandulo	glandulo
sa	sa	sa	sa	sa	sa	sa	sa	sa	sa	sa	sa	sa

Betula glandulo sa	BGC AMA S26	194 9	7	21	CA NL	Porsil d, A. Erling	170 99	10- Jan- 202 0	66. 13	- 122. 50	2 5 7	39	- 6.92 3833 362	13.8 520 002	31 0. 5	- 7.00 305	EXTR APOL ATED	- 26. 27	0.62 298 089 1	19.7 8	2
Betula glandulo sa	BGC AMA S27	194 9	7	26	CA NL	Porsil d, A. Erling	171 70	9- Jan- 202 0	67. 83	- 115. 09	2 4 0	32	- 10.6 5032 058	10.4 153 996	31 0. 5	- 7.00 305	EXTR APOL ATED	- 25. 78	0.32 679 244 8	19.2 7	3
Betula glandulo sa	BGC AMA S28	194 9	8	8	CA NL	Porsil d, A. Erling	172 74	10- Jan- 202 0	70. 74	- 117. 77	1 8 0	35	- 11.8 4886 361	6.28 181 98	31 0. 5	- 7.00 345 833 3	EXTR APOL ATED	- 27. 81	0.17 017 302 5	21.4 0	2
Betula glandulo sa	BGC AMA S29	195 0	7	12	CA NL	Schw edlan d, J.		10- Jan- 202 0	53. 87	- 58.9 5	9 5 7	103	- 1.34 4531 29	12.5 187 998	31 0. 7	- 7.00 634 099 8	Rubin o et al. 2013 JGR Atmos phere	- 27. 09	0.36 920 245 3	20.6 4	0
Betula glandulo sa	BGC AMA S30	195 0	7	31	CA NL	Scog gan, Hom er J.; Bald win, Willia m K.W.	835 4	9- Jan- 202 0	60. 00	- 98.1 7	3 8 4	62	- 8.05 9000 023	13.6 440 001	31 0. 7	- 7.00 634 099 8	Rubin o et al. 2013 JGR Atmos phere	- 28. 69	0.52 250 506 9	22.3	3
Betula glandulo sa	BGC AMA S31	195 1	7	19	CA NL	Linds ey, Alton A.	340	10- Jan- 202 0	64. 42	- 124. 80	3 0 2	46	- 4.75 2000 076	16.9 48	31 1. 1	- 7.01 285	EXTR APOL ATED	- 27. 85	0.76 150 668 8	21.4 3	2
Betula glandulo sa	BGC AMA S32	195 2	7	28	CA NL	Brow n, D.K.	135 0	9- Jan- 202 0	60. 97	- 101. 33	3 3 0	58	- 8.45 8833 379	13.0 799 999	31 1. 5	- 7.01 775	EXTR APOL ATED	- 29. 47	0.47 607 175 8	23.1	2
Betula glandulo sa	AMA S33	195 2	/	20	NL	, B.R.	122 2	9- Jan- 202 0	62. 92	- 96.8 8	2 8 3	45	- 10.6 7233 334	10.6 120 005	31 1. 5	- 7.01 775	APOL ATED	- 27. 67	0.30 082 454 5	21.2	2
Betula glandulo sa	AMA S34	195 5	8	25	NL	веск ett, Eva	43	10- Jan- 202 0	63. 33	- 90.7 5	2 6 2	50	- 10.6 9739 576	9.41 250 04	31	- 7.03 285 833 3	APOL ATED	- 27. 86	0.36 080 703 7	3	0
Betula glandulo sa	BGC AMA S35	195 5	8		CA NL	Tene r, Dr. John S.	388	9- Jan- 202 0	65. 13	- 104. 58	2 1 9	39	- 11.2 7833 341	10.2 880 001	31 3	- 7.03 285 833 3	EXTR APOL ATED	- 27. 39	0.35 624 117 9	20.9 3	3
Betula glandulo sa	BGC AMA S36	195 6	7	14	CA NL	Husti ch, I.		10- Jan- 202 0	56. 00	- 87.6 3	5 0 8	77	- 4.82 5500 026	13.2 360 001	31 3. 6	- 7.03 735	EXTR APOL ATED	- 27. 25	0.38 229 908 3	20.7 8	4
Betula glandulo sa	BGC AMA S37	195 8	7	23	CA NL	Pruitt Jr., Willia m O.	36	9- Jan- 202 0	64. 72	- 100. 25	2 1 7	38	- 11.3 0133 317	12.2 799 997	31 5. 86	- 7.04 715	EXTR APOL ATED	- 27. 98	0.49 789 518 2	21.5 4	2
Betula glandulo sa	BGC AMA S38	195 9	8	5	CA NL	Jeffre y, W.W.	405	10- Jan- 202 0	60. 75	- 123. 97	5 4 1	75	- 3.04 3000 057	10.6 560 001	31 4. 8	- 7.06 651 172 9	Rubin o et al. 2013 JGR Atmos phere	- 27. 35	0.44 378 353 3	20.8 6	2
Betula glandulo sa	BGC AMA S39	195 9	8	10	CA NL	Porsil d, A. Erling	215 35	9- Jan- 202 0	63. 75	- 68.5 2	4 1 9	65	- 8.74 6354 194	6.93 75	31 4. 8	- 7.06 651 172 9	Rubin o et al. 2013 JGR Atmos phere	- 28. 37	0.18 037 623	21.9 2	2
Betula glandulo sa	BGC AMA S40	195 9	8	22	CA NL	Barry , T.W.	442	10- Jan- 202 0	69. 70	- 129. 00	1 1 9	30	- 10.6 2083 346	7.95 833 02	31 4. 8	- 7.06 651 172 9	Rubin o et al. 2013 JGR Atmos phere	- 28. 27	0.15 005 710 8	21.8 2	3
Betula glandulo sa	BGC AMA S41	196 0	6	25	CA NL	Porsil d, A. Erling ; Porsil d, R.Th orbjör n	220 29	10- Jan- 202 0	59. 00	- 126. 00	5 7 3	75	- 2.57 6666 673	8.60 400 01	31 9. 59	- 7.05 654 166 7	EXTR APOL ATED	- 27. 69	0.44 724 863	21.2 2	0
Betula glandulo sa	BGC AMA S42	196 0	7	15	CA NL	Arnol d, E.W.	29	10- Jan- 202 0	64. 00	- 128. 00	4 0 4	65	- 5.87 1666 837	13	31 8. 18	- 7.05 695	EXTR APOL ATED	- 26. 12	0.55 861 372 5	19.5 8	2
Betula glandulo sa	BGC AMA S43	196 0	6	26	CA NL	Arnol d, E.W.	22	10- Jan-	64. 00	- 128. 00	4 0 4	52	- 5.87	11.0 319 996	31 9. 59	- 7.05 654	EXTR APOL ATED	- 26. 39	0.58 870	19.8 5	2

								202			Γ		1666			166			396		
Betula	BCC	106	7	25	CA	Maini	502	0	61		3	55	837	14.3	31	7	EVTD		5	21.6	3
glandulo sa	AMA S44	1	,	25	NL	, J.S.; Swan	502	Jan- 202 0	00	105. 00	6 3	55	7.02 1333 589	079 996	8. 57	- 7.06 185	APOL ATED	28. 08	131 553 4	3	5
Betula glandulo sa	BGC AMA S45	196 1	6	27	CA NL	Macp herso n, Eliza beth	303	9- Jan- 202 0	64. 45	- 99.0 0	2 2 4	21	- 11.2 7033 342	3.31 2	31 9. 77	- 7.06 144 166 7	EXTR APOL ATED	- 26. 32	0.10 495 762 6	19.7 8	2
Betula glandulo sa	BGC AMA S46	196 2	6	29	CA NL	Bald win, Willia m K.W.	961 2	10- Jan- 202 0	53. 20	- 70.9 0	8 1 2	88	- 3.90 5000 11	9.38 399 98	32 0. 62	- 7.09 148 428 3	Rubin o et al. 2013 JGR Atmos phere	- 24. 56	0.29 854 312 9	17.9 1	1
Betula glandulo sa	BGC AMA S47	196 2	7	9	CA NL	Bald win, Willia m K.W.	971 6	10- Jan- 202 0	53. 20	- 70.9 0	8 1 2	111	- 3.90 5000 11	13.4 799 995	31 9. 61	- 7.09 148 428 3	Rubin o et al. 2013 JGR Atmos phere	- 26. 02	0.36 590 720 2	19.4 4	1
Betula glandulo sa	BGC AMA S48	196 2	7	24	CA NL	Bald win, Willia m K.W.	984 4	10- Jan- 202 0	53. 20	- 70.9 0	8 1 2	111	- 3.90 5000 11	13.4 799 995	31 9. 61	- 7.09 148 428 3	Rubin o et al. 2013 JGR Atmos phere	- 24. 73	0.36 590 720 2	18.0 8	1
Betula glandulo sa	BGC AMA S49	196 2	7	24	CA NL	Bald win, Willia m K.W.	984 5	10- Jan- 202 0	53. 20	- 70.9 0	8 1 2	111	- 3.90 5000 11	13.4 799 995	31 9. 61	- 7.09 148 428 3	Rubin o et al. 2013 JGR Atmos phere	- 24. 96	0.36 590 720 2	18.3 2	1
Betula glandulo sa	BGC AMA S50	196 2	7	5	CA NL	Youn gman , Philip M.; Tessi er, Gast on D.	10	10- Jan- 202 0	67. 77	- 136. 03	3 1 4	44	- 7.74 2333 328	13.2 959 995	31 9. 61	- 7.09 148 428 3	Rubin o et al. 2013 JGR Atmos phere	- 26. 05	0.62 386 943 2	19.4 6	2
Betula glandulo sa	BGC AMA S51	196 2	7	16	CA NL	Youn gman , Philip M.; Tessi er, Gast on D.	92	10- Jan- 202 0	67. 77	- 136. 03	3 1 4	44	- 7.74 2333 328	13.2 959 995	31 9. 61	- 7.09 148 428 3	Rubin o et al. 2013 JGR Atmos phere	- 27. 91	0.62 386 943 2	21.4 2	2
Betula glandulo sa	BGC AMA S52	196 2	8	10	CA NL	Barry , T.W.	236	10- Jan- 202 0	69. 70	- 129. 00	1 1 9	30	- 10.6 2083 346	7.95 833 02	31 7. 4	- 7.09 148 428 3	Rubin o et al. 2013 JGR Atmos phere	- 27. 91	0.15 005 710 8	21.4 2	3
Betula glandulo sa	BGC AMA S53	196 3	8	5	CA NL	Cain, Roy F.		10- Jan- 202 0	47. 67	- 59.1 3	1 6 4 5	122	3.34 3666 635	14.7 159 996	31 7. 77	- 7.05 5	Rubin o et al. 2013 JGR Atmos phere	- 26. 06	0.22 170 270 2	19.5 1	0
Betula glandulo sa	BGC AMA S54	196 3	8	8	CA NL	Husti ch, I., Kallio , P.	885	10- Jan- 202 0	52. 92	- 66.1 8	8 1 7	94	- 3.92 3333 434	12.2 159 996	31 7. 77	- 7.05 5	Rubin o et al. 2013 JGR Atmos phere	- 26. 81	0.36 188 906 1	20.3 0	4
Betula glandulo sa	BGC AMA S55	196 3	6	8	CA NL	Brays haw, Thom as C.; Meril ees, W. J.		10- Jan- 202 0	53. 68	- 122. 75	6 2 1	69	4.28 4833 342	13.5 439 997	32 1. 48	- 7.05 5	Rubin o et al. 2013 JGR Atmos phere	- 24. 76	0.61 236 585 2	18.1 6	2
Betula glandulo sa	BGC AMA S56	196 3	7	15	CA NL	Brays haw, Thom as C.; Meril ees, W. J.		10- Jan- 202 0	54. 18	- 125. 72	4 7 1	46	2.94 1166 751	14.3 16	31 9. 74	- 7.05 5	Rubin o et al. 2013 JGR Atmos phere	- 28. 06	0.61 216 056 8	21.6 1	2

Betula	BGC	196	8	27	CA	Aucla	535	10-	54.	-	6	57	3.50	14.6	31	-	Rubin	-	0.62	21.3	2
glandulo sa	AMA S57	3			NL	ir, Allan		Jan- 202 0	25	122. 63	8 7		7166 502	199 999	7. 77	7.05 5	o et al. 2013 JGR Atmos phere	27. 85	255 598 2	9	
Betula glandulo sa	BGC AMA S58	196 4	7	14	CA NL	Lamb ert, J.D.H	s.n.	9- Jan- 202 0	69. 12	- 104. 57	1 3 5	20	- 14.0 8683 32	9.50 800 04	32 0. 44	- 7.07 655	EXTR APOL ATED	- 27. 44	0.32 282 086 5	20.9 4	2
Betula glandulo sa	BGC AMA S59	196 5	6	23	CA NL	Ross bach, G.B.	631 9	10- Jan- 202 0	62. 45	- 114. 37	2 7 9	26	- 4.62 2666 592	12.2 159 996	32 1. 87	- 7.08 104 166 7	EXTR APOL ATED	- 24. 82	0.58 828 906 1	18.2 0	2
Betula glandulo sa	BGC AMA S60	196 5	7	3	CA NL	Ross bach, G.B.	646 4	10- Jan- 202 0	63. 95	- 103. 88	2 4 3	39	- 10.2 6833 348	13.9 040 003	32 1. 21	- 7.08 145	EXTR APOL ATED	- 25. 31	0.58 473 940 6	18.7 0	2
Betula glandulo sa	BGC AMA S61	196 5	7	3	CA NL	Ross bach, G.B.	646 4	10- Jan- 202 0	63. 95	- 103. 88	2 4 3	39	- 10.2 6833 348	13.9 040 003	32 1. 21	- 7.08 145	EXTR APOL ATED	- 25. 82	0.58 473 940 6	19.2 3	2
Betula glandulo sa	BGC AMA S62	196 5	7	10	CA NL	Ross bach, G.B.	661 1	9- Jan- 202 0	64. 55	- 100. 45	2 1 3	38	- 11.1 2833 324	11.9 639 997	32 1. 21	- 7.08 145	EXTR APOL ATED	- 26. 01	0.45 205 494 3	19.4 4	2
Betula glandulo sa	BGC AMA S63	196 5	7	10	CA NL	Ross bach, G.B.	661 1	9- Jan- 202 0	64. 55	- 100. 45	2 1 3	38	- 11.1 2833 324	11.9 639 997	32 1. 21	- 7.08 145	EXTR APOL ATED	- 25. 88	0.45 205 494 3	19.2 9	2
Betula glandulo sa	BGC AMA S64	196 5	7	19	CA NL	Ross bach, G.B.	671 1	9- Jan- 202 0	64. 60	- 98.6 5	2 2 5	39	- 11.5 3916 674	10.0 719 995	32 1. 21	- 7.08 145	EXTR APOL ATED	- 26. 00	0.29 547 304 8	19.4 2	2
Betula glandulo sa	BGC AMA S65	196 5	7	11	CA NL	Ross bach, G.B.	661 6	9- Jan- 202 0	64. 67	- 99.8 8	2 1 5	38	- 11.5 1866 676	11.9 08	32 1. 21	- 7.08 145	EXTR APOL ATED	- 25. 56	0.46 649 365 7	18.9 7	2
Betula glandulo sa	BGC AMA S66	196 5	7	25	CA NL	Ross bach, G.B.	677 3	9- Jan- 202 0	64. 73	- 98.0 0	2 2 7	38	- 11.7 4566 669	9.94 400 02	32 1. 21	- 7.08 145	EXTR APOL ATED	- 27. 46	0.28 773 266 9	20.9 6	2
Betula glandulo sa	BGC AMA S67	196 5	7	21	CA NL	Ross bach, G.B.	677 3	9- Jan- 202 0	64. 73	- 98.0 0	2 2 7	38	- 11.7 4566 669	9.94 400 02	32 1. 21	- 7.08 145	EXTR APOL ATED	- 27. 67	0.28 773 266 9	21.1 7	2
Betula glandulo sa	BGC AMA S68	196 5	7	27	CA NL	Ross bach, G.B.	683 4	9- Jan- 202 0	64. 78	- 97.0 2	2 3 9	39	- 12.1 46	10.2 559 996	32 1. 21	- 7.08 145	EXTR APOL ATED	- 25. 66	0.31 196 477 4	19.0 7	2
Betula glandulo sa	BGC AMA S69	196 7	7	14	CA NL	Argu s, Geor ge W.; Chun ys, W.N.	676 0	10- Jan- 202 0	59. 58	- 135. 48	1 0 7 2	47	- 0.94 4666 699	10.8 240 004	32 2. 54	- 7.33 311 385 2	Rubin o et al. 2013 JGR Atmos phere	- 27. 19	0.32 822 562 2	20.4	0
Betula glandulo sa	BGC AMA S70	196 7	7	14	CA NL	Argu s, Geor ge W.; Chun ys, W.N.	676 0	10- Jan- 202 0	59. 78	- 136. 45	7 7 4	59	- 1.69 0500 011	9.58 800 03	32 2. 54	- 7.33 311 385 2	Rubin o et al. 2013 JGR Atmos phere	- 27. 03	0.43 443 213 4	20.2 4	2
Betula glandulo sa	BGC AMA S71	196 7	7	21- 22	CA NL	David F. Murr ay, Barb ara M. Murr av	983	10- Jan- 202 0	61. 62	- 141. 97	7 4 4	113	- 5.19 8166 711	7.18 800 02	32 2. 54	- 7.33 311 385 2	Rubin o et al. 2013 JGR Atmos phere	- 28. 00	0.35 477 949 2	21.2 7	2
Betula glandulo sa	BGC AMA S72	197 1	7	15	CA NL	Brays haw, Thom as C.; Barre tt, D.		10- Jan- 202 0	59. 40	- 133. 57	5 0 1	43	1.03 5166 715	12.2 679 996	32 7. 36	- 7.34 775 126 3	Rubin o et al. 2013 JGR Atmos phere	- 27. 42	0.48 196 733 4	20.6 4	2
Betula glandulo sa	BGC AMA S73	197 1	7	27	CA NL	Brays haw, Thom as C.; Barre tt, D.		10- Jan- 202 0	59. 77	- 136. 60	7 3 8	53	- 1.38 8666 67	11.0 240 002	32 7. 36	- 7.34 775 126 3	Rubin o et al. 2013 JGR Atmos phere	- 26. 60	0.42 960 462 4	19.7 7	2
Betula glandulo sa	BGC AMA S74	197 1	7	5	CA NL	Argu s, Geor ge W.;	792 8	10- Jan- 202 0	61. 42	- 117. 40	2 8 7	41	- 2.94 7333 282	16.5 919 991	32 7. 36	- 7.34 775 126 3	Rubin o et al. 2013 JGR	- 27. 72	0.65 073 421 1	20.9 5	2

•						Chun ys, W.N.											Atmos phere				
ula ndulo	BGC AMA S75	197 1	8	20	CA NL	Ohen oja, Esteri	17	9- Jan- 202 0	62. 80	- 92.0 8	3 2 2	56	- 10.4 4236 107	9.76 111 03	32 5. 43	- 7.34 775 126 3	Rubin o et al. 2013 JGR Atmos phere	- 28. 89	0.30 880 956 4	22.1 9	2
itula andulo	BGC AMA S76	197 1	8	12	CA NL	Dabb s, Don L.	173	10- Jan- 202 0	64. 75	- 125. 50	2 9 3	48	- 5.15 1000 024	13.0 559 998	32 5. 43	- 7.34 775 126 3	Rubin o et al. 2013 JGR Atmos phere	- 25. 11	0.49 651 054 5	18.2 2	4
ətula andulo 1	BGC AMA S77	197 1	7	17	CA NL	Argu s, Geor ge W.; Chun ys, W.N.	803 4	10- Jan- 202 0	64. 90	- 127. 18	3 5 8	56	- 6.01 1333 307	13.4 840 002	32 7. 36	- 7.34 775 126 3	Rubin o et al. 2013 JGR Atmos phere	- 26. 52	0.61 551 015 1	19.7 0	2
ətula andulo 1	BGC AMA S78	197 1	7	16	CA NL	Argu s, Geor ge W.; Chun ys, W.N.	801 5	10- Jan- 202 0	64. 90	- 127. 18	3 5 8	56	- 6.01 1333 307	13.4 840 002	32 7. 36	- 7.34 775 126 3	Rubin o et al. 2013 JGR Atmos phere	- 26. 90	0.61 551 015 1	20.0 9	2
etula landulo a	BGC AMA S79	197 1	8	2	CA NL	Macl nnes, K.L.		10- Jan- 202 0	69. 43	- 132. 93	1 5 5	30	- 10.2 7735 504	8.5	32 5. 43	- 7.34 775 126 3	Rubin o et al. 2013 JGR Atmos phere	- 27. 35	0.15 410 581 2	20.5 7	3
etula landulo a	BGC AMA S80	197 3	7	23	CA NL	Gillett , John M.	162 00	10- Jan- 202 0	62. 20	- 95.6 7	2 9 9	43	- 10.1 8316 66	11.7 24	33 0. 87	- 7.39 284 195 3	Rubin o et al. 2013 JGR Atmos phere	- 28. 29	0.37 285 257	21.5 1	2
letula landulo a	BGC AMA S81	197 3	7	21	CA NL	Gillett , John M.	161 24	10- Jan- 202 0	62. 28	- 95.5 0	2 9 9	43	- 10.1 7033 333	11.5 52	33 0. 87	- 7.39 284 195 3	Rubin o et al. 2013 JGR Atmos phere	- 27. 28	0.36 207 165 5	20.4 5	2
Betula Ilandulo a	BGC AMA S82	197 3	7	29	CA NL	Gubb e, D.	296 (75)	10- Jan- 202 0	65. 88	- 128. 08	3 0 5	43	- 6.20 3666 586	16.4 319 992	33 0. 87	- 7.39 284 195 3	Rubin o et al. 2013 JGR Atmos phere	- 26. 52	0.74 560 783 4	19.6 4	4
Betula glandulo sa	BGC AMA S83	197 3	7	29	CA NL	Gubb e, D.	276 (79)	10- Jan- 202 0	65. 88	- 128. 08	3 0 5	43	- 6.20 3666 586	16.4 319 992	33 0. 87	- 7.39 284 195 3	Rubin o et al. 2013 JGR Atmos phere	- 27. 60	0.74 560 783 4	20.7 8	4
Betula glandulo sa	BGC AMA S84	197 3	6	19	CA NL	Wels h, S.L.	119 37	10- Jan- 202 0	67. 73	- 136. 37	2 8 8	30	- 7.87 0833 298	11.1 719 999	33 2. 07	- 7.39 284 195 3	Rubin o et al. 2013 JGR Atmos phere	- 26. 28	0.65 379 641 2	19.4 0	2
Betula glandulo sa	BGC AMA S85	197 3	7	10	CA NL	L. Hetti nger	236	10- Jan- 202 0	68. 25	- 144. 17	1 7 1	35	- 8.13 4166 523	8.80 799 96	33 0. 87	- 7.39 284 195 3	Rubin o et al. 2013 JGR Atmos phere	- 26. 93	0.56 200 027 2	20.0 8	3
Betula glandulo sa	BGC AMA S86	197 4	8	24	CA NL	Gubb e, D.; Burr, D.	603	10- Jan- 202 0	65. 82	- 128. 25	3 1 3	44	- 6.10 8833 341	11.9 879 999	32 9. 39	- 7.48 261 14	Rubin o et al. 2013 JGR Atmos phere	- 27. 64	0.45 827 208 4	20.7 3	4
Betula glandulo sa	BGC AMA S87	197 4	8	30	CA NL	Gubb e, D.; Burr, D.	675	10- Jan- 202 0	65. 85	- 128. 13	2 9 7	41	- 6.05 4666 683	12.8 959 999	32 9. 39	- 7.48 261 14	Rubin o et al. 2013 JGR Atmos phere	- 27. 69	0.46 525 207 9	20.7 8	2

Bindles Person Bindles Person Internet Person J. J. <th>1</th> <th>I</th> <th>I</th> <th>2</th> <th>2</th> <th>2</th> <th>2</th> <th>Ι</th> <th>ţ</th> <th>L</th> <th>2</th> <th>)</th> <th>3</th>	1	I	I	2	2	2	2	Ι	ţ	L	2)	3
observation observation <	19.1 6	18.8 4	21.4 5	22.4 1	21.4 7	20.8 6	21.0 1	19.8 7	21.3 6	20.9 5	20.2 6	20.2 0	
Bolice set PGUE Set	0.63 851 798 3	0.48 820 031 4	0.48 820 031 4	0.51 480 157 6	0.54 075 222 6	0.52 480 905 4	0.51 265 434 1	0.36 332 201	0.20 687 069 2	0.29 102 267 3	0.29 747 582 7	0.41 197 559 8	
Beller Beine Beine generation ge	- 26. 15	- 25. 77	- 28. 26	- 29. 18	- 28. 28	- 27. 70	- 27. 84	- 26. 78	- 28. 20	- 27. 81	- 27. 16	- 27. 13	
Bolic s. s. s. Bulk s. Bulk s. I.V. s.	Rubin o et al. 2013 JGR Atmos phere	Rubin o et al. 2013 JGR Atmos phere	Rubin o et al. 2013 JGR Atmos phere	Rubin o et al. 2013 JGR Atmos phere	Rubin o et al. 2013 JGR Atmos phere	Rubin o et al. 2013 JGR Atmos phere	Rubin o et al. 2013 JGR Atmos phere	Rubin o et al. 2013 JGR Atmos phere	Rubin o et al. 2013 JGR Atmos phere	Rubin o et al. 2013 JGR Atmos phere	Rubin o et al. 2013 JGR Atmos phere	Rubin o et al. 2013 JGR Atmos phere	
Belda set Buds Set Sup Set	- 7.48 261 14	- 7.41 790 639 5	- 7.41 790 639 5	- 7.41 790 639 5	- 7.41 790 639 5	- 7.41 790 639 5	- 7.41 790 639 5	- 7.44 270 962 2	- 7.44 270 962 2	- 7.44 270 962 2	- 7.44 270 962 2	- 7.48 5	
Battal genuchos genuchos Buck set Fue set Fue s	33 1. 18	33 0. 06	33 0. 06	33 1. 9	33 1. 9	33 1. 9	33 1. 9	33 0. 94	33 0. 94	33 3. 05	33 3. 05	33 2. 75	-
Billion sa Bick Siss 14' / 2a N.L.	14.5 600 004	14.8 68	14.8 68	12.9 160 004	13.9 08	13.1 239 996	11.8 879 995	15.3 879 995	6.95 200 01	9.17 199 99	8.89 999 96	15.3 760 004	
Bottom ser Bottom SNR 14' 1' 2' CM NM J.K 2's Line SNR Line SNR <thline SNR Line SNR Line</thline 	- 7.53 7333 307	- 2.54 7166 68	- 2.54 7166 68	- 3.19 8166 595	- 3.31 7666 675	- 4.33 8500 097	- 4.19 3166 678	1.33 8499 967	- 14.0 2016 662	- 13.8 3866 655	- 14.3 5100 001	3.14 3000 015	
Betture serioritotic	34	66	66	94	89	85	76	79	40	27	28	108	
Beturing ser Deck (See) 1 1 2 2 Ch (See) Null	2 4 3	4 5 7	4 5 7	5 0 3	4 6 8	4 8 5	5 2 0	7 9 5	2 0 0	1 9 9	1 9 4	1 0 9 7	
Betula sa DGC SB 197 4 7 4 29 4 NL 5	- 126. 08	- 109. 33	- 109. 33	- 123. 78	- 123. 62	- 125. 35	- 129. 33	- 83.3 7	- 94.0 5	- 94.3 3	- 94.3 3	- 55.8 0	r
Betula sa BGC SB 197 4 7 2 2 4 N.L. N.L. N.L. S.K. S. 205 4 10- 3222 0 Betula glandulo sa BGC AMA AMA 197 5 8 10 CA N.L. Argu S. 941 5 10- 30 Betula glandulo sa BGC Sa 197 AMA 8 10 CA N.L. Argu Argu S. 941 5 10- 30 Betula glandulo sa BGC Sa 197 AMA 7 15 CA N.L. Argu Argu Argu V 941 10- 9 10- 30 Betula glandulo sa BGC Sa 197 AMA 7 15 CA N.L. Talbo 1, bp ben T50 10- 1, J. 10- 30 Betula glandulo sa BGC AMA 197 AMA 7 11 CA N.L. Talbo 1, bp ben T50 10- 1, Jan- 500 10- 30 Betula glandulo sa BGC AMA 197 AMA 7 20 AMA 11 N.L. Talbo 1, bp ben 10- 30 10- 30 Betula glandulo sa BGC AMA 197 AMA 8 11 N.L. Retult AmA 947 AmA 10- 400 B	03	58. 98	58. 98	61. 12	61. 22	61. 37	61. 43	48. 48	67. 53	67. 58	67. 66	49. 90	
Deckas AMA 19' 1' 2' NL Set	Jan- 202 0	10- Jan- 202 0	10- Jan- 202 0	10- Jan- 202 0	10- Jan- 202 0	10- Jan- 202 0	10- Jan- 202 0	10- Jan- 202 0	10- Jan- 202 0	10- Jan- 202 0	10- Jan- 202 0	10- Jan- 202 0	40
John SaJohn S	200	981 5	981 9	T50 26- 6	T50 07	T50 56	12	108 88	947	702	622	288 7	70
Detula saDOC NAMA S88DOC 197P 25DOC NLBetula glandulo saBGC AMA S90197 578 810 NLBetula glandulo saBGC AMA S90197 578 710 NLBetula glandulo saBGC AMA S91197 577 7 711 NLBetula glandulo saBGC AMA S91197 577 7 711 NLBetula glandulo saBGC AMA S91197 577 7 711 NLBetula glandulo saBGC AMA S93197 577 7 7 11CA NLBetula glandulo saBGC AMA S93197 577 7 11 11CA NLBetula glandulo saBGC AMA S93197 577 7 11 <b< td=""><td>, J.K.</td><td>Argu s, Geor ge W.; White , David J.</td><td>Argu s, Geor ge W.; White , David J.</td><td>Talbo t, Step hen</td><td>Talbo t, Step hen</td><td>Talbo t, Step hen</td><td>Rosie , R.M.</td><td>Shea , Garry A.</td><td>Edlun d, Sylvi a A.</td><td>Edlun d, Sylvi a A.</td><td>Edlun d, Sylvi a A.</td><td>Shch epan ek, Mich ael J.; White , D.</td><td>14/303-</td></b<>	, J.K.	Argu s, Geor ge W.; White , David J.	Argu s, Geor ge W.; White , David J.	Talbo t, Step hen	Talbo t, Step hen	Talbo t, Step hen	Rosie , R.M.	Shea , Garry A.	Edlun d, Sylvi a A.	Edlun d, Sylvi a A.	Edlun d, Sylvi a A.	Shch epan ek, Mich ael J.; White , D.	14/303-
Detulia saDesc AMA S88197 197 58 810 10Betula glandulo saBGC AMA S90197 58 810Betula glandulo saBGC AMA S90197 57 715Betula glandulo saBGC AMA S91197 57 715Betula glandulo saBGC AMA S91197 57 7 715Betula glandulo saBGC AMA S91197 57 7 711 11Betula glandulo saBGC AMA S92197 57 7 711 11 11Betula glandulo saBGC AMA S93197 57 7 11 11 1111 11 11Betula glandulo saBGC AMA S93197 68 8 111 1111 11 11Betula glandulo saBGC AMA S95197 68 11 1111 11 11Betula glandulo saBGC AMA S95197 67 7 11 11 11 1111 11 11 11Betula glandulo saBGC AMA S97197 67 7 11 1311 13Betula glandulo saBGC AMA S98197 7 78 7 1311 13Betula glandulo saBGC AMA S98197 7 78 7 1311 13Betula glandulo saBGC AMA S98197 7 78 7 1311 13Betula gland	NL	CA NL	CA NL	CA NL	CA NL	CA NL	CA NL	CA NL	CA NL	CA NL	CA NL	CA NL	<u></u>
Detula saJOC ISIIN IIN IBetula glandulo saBGC AMA S89197 S8Betula glandulo saBGC AMA S90197 S8Betula glandulo saBGC AMA S90197 S7Betula glandulo saBGC AMA S91197 S7Betula glandulo saBGC AMA S91197 S7Betula glandulo saBGC AMA S91197 S7Betula glandulo saBGC AMA S93197 S7Betula glandulo saBGC AMA S93197 S7Betula glandulo saBGC AMA S93197 S7Betula glandulo saBGC AMA S95197 S8Betula glandulo saBGC AMA S95197 S8Betula glandulo saBGC AMA S95197 S7Betula glandulo saBGC AMA S96197 S7Betula glandulo saBGC AMA S97197 S7Betula glandulo saBGC AMA S98197 S7Betula glandulo saBGC AMA S98197 S7Betula glandulo saBGC AMA S98197 S8Betula glandulo saBGC AMA S98197 S8Betula glandulo saBGC AMA S98197 S8Betula glandulo saBGC AM	23	10	10	15	11	26	1	8	11	17	13	7	40
Detula glandulo SaBGC AMA S88197 4Betula glandulo saBGC AMA AMA S89197 5Betula glandulo saBGC AMA S90197 5Betula glandulo saBGC AMA S91197 5Betula glandulo saBGC AMA S91197 5Betula glandulo saBGC AMA S91197 5Betula glandulo saBGC AMA S91197 5Betula glandulo saBGC AMA S93197 5Betula glandulo saBGC AMA S93197 5Betula glandulo saBGC AMA S94197 6Betula glandulo saBGC AMA S95197 6Betula glandulo saBGC AMA S95197 6Betula glandulo saBGC AMA S96197 6Betula glandulo saBGC AMA S97197 6Betula glandulo saBGC AMA S98197 6Betula glandulo saBGC AMA S98197 6Betula glandulo saBGC AMA S98197 6Betula glandulo saBGC AMA S98197 6Betula saBGC AMA S98197 6Betula saBGC AMA S98197 7Betula saAMA S98197 7Betula saBGC AMA S98197 7Betula saBGC AMA S98197 7	1	8	8	7	7	7	7	8	8	7	7	8	
Detula saBGC glandulo saBGC glandulo saBetula glandulo saBGC AMA S89Betula glandulo saBGC AMA S90Betula glandulo saBGC glandulo saBetula glandulo saBGC glandulo saBetula glandulo saBGC glandulo saBetula glandulo saBGC glandulo saBetula glandulo saBGC glandulo saBetula glandulo saBGC glandulo saBetula glandulo saBGC glandulo saBetula glandulo saBGC glandulo saBetula glandulo saBGC saBetula glandulo saBGC saBetula glandulo saBGC saBetula glandulo saBGC saBetula glandulo saBGC saBetula glandulo saBGC saBetula glandulo saBGC saBetula glandulo saBGC saBetula glandulo saBGC saBetula saBGC saBetula saBGC saBetula saBGC saBetula saBGC saBetula saBGC saBetula saBGC saBetula saBGC saBetula saBGC saBetula saBGC saBetula saBGC saBetula saBGC saBetula saBGC saBetula sa <td>4</td> <td>197 5</td> <td>197 5</td> <td>197 5</td> <td>197 5</td> <td>197 5</td> <td>197 5</td> <td>197 6</td> <td>197 6</td> <td>197 6</td> <td>197 6</td> <td>197 7</td> <td>107</td>	4	197 5	197 5	197 5	197 5	197 5	197 5	197 6	197 6	197 6	197 6	197 7	107
Betula glandulo sa Betula glandulo sa Betula glandulo sa Betula glandulo sa Betula glandulo sa Betula glandulo sa Betula glandulo sa Betula glandulo sa Betula glandulo sa Betula glandulo sa Betula glandulo sa	AMA S88	BGC AMA S89	BGC AMA S90	BGC AMA S91	BGC AMA S92	BGC AMA S93	BGC AMA S94	BGC AMA S95	BGC AMA S96	BGC AMA S97	BGC AMA S98	BGC AMA S99	
	glandulo sa	Betula glandulo sa	Betula glandulo sa	Betula glandulo sa	Betula glandulo sa	Betula glandulo sa	Betula glandulo sa	Betula glandulo sa	Betula glandulo sa	Betula glandulo sa	Betula glandulo sa	Betula glandulo sa	Detule

Det la	DOO	407	<u>^</u>				404	10	50	1	-	00		0.54	00		D.1.1	1	0.40	00.7	<u>^</u>
Betula glandulo sa	AMA S101	7	8	1	NL	Argu s, Geor ge W.; Habe r, Erich	104	10- Jan- 202 0	90 90	- 123. 80	2 9	82	- 3.19 9166 672	8.54	33 2. 75	- 7.48 5	o et al. 2013 JGR Atmos phere	- 27. 69	0.48 080 851	8	0
Betula glandulo sa	BGC AMA S102	197 7	7	25	CA NL	Argu s, Geor ge W.; Habe r, Erich	997 6	10- Jan- 202 0	57. 33	- 123. 93	7 0 2	116	- 3.38 2333 353	8.47 999 95	33 4. 92	- 7.48 5	Rubin o et al. 2013 JGR Atmos phere	- 27. 57	0.42 708 762 3	20.6 5	0
Betula glandulo sa	BGC AMA S103	197 7	7	19	CA NL	Argu s, Geor ge W.; Habe r, Erich	107 53	10- Jan- 202 0	58. 45	- 124. 88	6 3 4	114	- 3.82 9166 719	9.10 000 04	33 4. 92	- 7.48 5	Rubin o et al. 2013 JGR Atmos phere	- 27. 95	0.40 259 172 9	21.0 5	2
Betula glandulo sa	BGC AMA S104	197 7	7	20	CA NL	Argu s, Geor ge W.; Habe r, Erich	108 07	10- Jan- 202 0	58. 45	- 124. 88	6 3 4	114	- 3.82 9166 719	9.10 000 04	33 4. 92	- 7.48 5	Rubin o et al. 2013 JGR Atmos phere	- 27. 40	0.40 259 172 9	20.4 8	2
Betula glandulo sa	BGC AMA S105	197 9	7	13	CA NL	Coop er, P.F	103 5	10- Jan- 202 0	68. 96	- 139. 61	2 1 2	39	- 9.34 4333 219	10.2 24	33 7. 73	- 7.54	Rubin o et al. 2013 JGR Atmos phere	- 26. 39	0.51 089 347 4	19.3 6	2
Betula glandulo sa	BGC AMA S106	197 9	7	11	CA NL	Coop er, P.F	855	10- Jan- 202 0	69. 17	- 139. 24	2 0 6	35	9.23 6666 54	10.9 6	33 7. 73	- 7.54	Rubin o et al. 2013 JGR Atmos phere	- 27. 30	0.45 322 120 2	20.3	2
Betula glandulo sa	BGC AMA S107	198 0	7	19	CA NL	Coop er, P.F	131 9	10- Jan- 202 0	68. 75	- 139. 44	2 3 7	38	- 9.21 3666 717	11.6 84	33 9. 56	- 7.59	Keelin g et al. 2001	- 26. 87	0.55 601 519 8	19.8 1	2
Betula glandulo sa	BGC AMA S108	198 1	7	20	CA NL	Gillett , John M.	186 91	10- Jan- 202 0	69. 45	- 133. 03	1 5 2	22	- 10.1 9625 002	10.5 799 999	34 0. 49	- 7.61	Keelin g et al. 2001	- 28. 13	0.23 689 674 2	21.1 1	3
Betula glandulo sa	BGC AMA S109	198 2	7	20	CA NL	Gillett , John M.	189 68	9- Jan- 202 0	63. 75	- 68.5 2	4 1 9	60	- 8.74 6354 194	7.90 000 01	34 2. 06	- 7.67	Keelin g et al. 2001	- 26. 81	0.24 831 221	19.6 7	2
Betula glandulo sa	BGC AMA S110	198 2	7	18	CA NL	Edlun d, Sylvi a A.	437	10- Jan- 202 0	70. 80	- 117. 44	1 7 3	25	- 12.1 0800 022	8.93 999 96	34 2. 06	- 7.67	Keelin g et al. 2002	- 27. 07	0.34 776 425 6	19.9 4	0
Betula glandulo sa	BGC AMA S111	198 2	7	18	CA NL	Edlun d, Sylvi a A.	435	10- Jan- 202 0	70. 80	- 117. 44	1 7 3	25	- 12.1 0800 022	8.93 999 96	34 2. 06	- 7.67	Keelin g et al. 2003	- 29. 22	0.34 776 425 6	22.2 0	0
Betula glandulo sa	BGC AMA S112	198 2	7	18	CA NL	Edlun d, Sylvi a A.	433	10- Jan- 202 0	70. 80	- 117. 44	1 7 3	25	- 12.1 0800 022	8.93 999 96	34 2. 06	- 7.67	Keelin g et al. 2004	- 27. 71	0.34 776 425 6	20.6 1	0
Betula glandulo sa	BGC AMA S113	198 2	7	18	CA NL	Edlun d, Sylvi a A.	436	10- Jan- 202 0	70. 80	- 117. 44	1 7 3	25	- 12.1 0800 022	8.93 999 96	34 2. 06	- 7.67	Keelin g et al. 2005	- 27. 85	0.34 776 425 6	20.7 6	0
Betula glandulo sa	BGC AMA S114	198 2	7	18	CA NL	Edlun d, Sylvi a A.	434	10- Jan- 202 0	70. 80	- 117. 44	1 7 3	25	- 12.1 0800 022	8.93 999 96	34 2. 06	- 7.67	Keelin g et al. 2006	- 29. 24	0.34 776 425 6	22.2 2	0
Betula glandulo sa	BGC AMA S115	198 2	7	30	CA NL	Edlun d, Sylvi a A.	577	10- Jan- 202 0	71. 51	- 117. 33	1 6 4	24	- 13.0 0783 344	7.75 199 99	34 2. 06	- 7.67	Keelin g et al. 2007	- 28. 37	0.30 670 814	21.3 0	2
Betula glandulo sa	BGC AMA S116	198 3	7	15	CA NL	Argu s, Geor ge W.	111 26	10- Jan- 202 0	56. 13	- 74.5 3	5 9 0	74	- 4.56 5999 973	9.60 799 98	34 3. 98	- 7.71	Keelin g et al. 2001	- 28. 23	0.08 763 955 9	21.1	1
Betula glandulo sa	BGC AMA S117	198 3	7	29	CA NL	Edlun d, Sylvi a A.	399	9- Jan- 202 0	64. 30	- 96.0 5	2 6 6	43	- 11.6 2316 679	11.1 000 004	34 3. 98	- 7.71	Keelin g et al. 2002	- 28. 02	0.36 226 209 5	20.9	2
glandulo sa	AMA S118	3	/	23	NL	d, Sylvi a A.	031	Jan- 202 0	69. 45	- 133. 03	5 2	22	- 10.1 9625 002	799 999	34 3. 98	- 7.71	g et al. 2003	26. 43	0.23 689 674 2	2	3

Betula	BGC	198	7	24	CA	Jaco		9-	65.	-	3	45	-	8.44	34	-	Keelin	-	0.31	20.6	4
glandulo sa	AMA S119	5			NL	bs, J.D.		Jan- 202 0	93	71.3 7	1 9		10.2 8233 317	400 02	6. 56	7.68	g et al. 2001	27. 77	598 292 9	7	
Betula glandulo sa	BGC AMA S120	198 5	7	16	CA NL	Ironsi de, Gary		9- Jan- 202 0	66. 72	- 64.0 2	3 9 8	39	- 8.74 1500 037	9.47 599 98	34 6. 56	- 7.68	Keelin g et al. 2002	- 26. 96	0.44 066 479 1	19.8 1	2
Betula glandulo sa	BGC AMA S121	198 6	8	16	CA NL	Aiken , Susa n; Cam pbell, Carol A.; Robi nson, Eliza beth	86- 331	9- Jan- 202 0	63. 73	- 68.4 5	4 2 8	67	- 8.94 2777 865	6.68 666 98	34 5. 9	7.52	Keelin g et al. 2001	- 27. 63	0.18 414 398 8	20.6 8	2
Betula glandulo sa	BGC AMA S122	198 6	8	6	CA NL	Aiken , Susa n; Cam pbell, Carol A.; Robi nson, Eliza beth	86- 087	9- Jan- 202 0	65. 95	- 71.3 0	3 2 2	55	- 10.1 9212 965	7.02 222 01	34 5. 9	7.52	Keelin g et al. 2002	- 26. 83	0.23 369 895 9	19.8 4	4
Betula glandulo sa	BGC AMA S123	198 8	8	19	CA NL	Habe r, Erich; Bristo w, Valeri e N.	382 4	10- Jan- 202 0							35 0. 43	- 7.52	Keelin g et al. 2003	- 27. 88		20.9 4	
Betula glandulo sa	BGC AMA S124	198 9	8	20	CA NL	Aiken , Susa n	89- 065	9- Jan- 202 0	63. 45	- 67.2 5	5 0 8	78	- 8.65 9000 038	6.37 599 99	35 1. 67	- 7.71	Keelin g et al. 2001	- 28. 50	0.19 323 131 7	21.4 0	2
Betula glandulo sa	BGC AMA S125	199 0	7	5	CA NL	Cons aul, Lauri e L.; Aiken , Susa n	863	10- Jan- 202 0	69. 47	- 140. 98	1 5 5	30	- 10.2 9950 007	10.8 760 004	35 4. 81	- 7.79	Keelin g et al. 2001	- 28. 33	0.50 472 463 8	21.1 4	2
Betula glandulo sa	BGC AMA S126	199 1	7	26	CA NL	Brunt on, Dani el F.; McInt osh, Kare n I	104 90	9- Jan- 202 0	62. 89	- 92.2 0	3 1 2	40	- 10.4 6666 656	10.6 000 004	35 6. 17	- 7.82	Keelin g et al. 2001	- 27. 12	0.37 860 103	19.8 3	2
Betula glandulo sa	BGC AMA S127	200 1	7	23	CA NL	Aiken , Susa n; Brysti ng, Anne	01- 012	10- Jan- 202 0	58. 75	- 93.8 5	4 1 7	54	- 6.92 2000 056	12.3 559 999	37 1. 62	- 8.05	Keelin g et al. 2001	- 29. 10	0.33 625 636 3	21.6 8	3
Betula glandulo sa	BGC AMA S128	200 1	7	27	CA NL	Aiken , Susa n; Brysti ng, Anne	01- 053	9- Jan- 202 0	62. 80	- 92.1 0	3 2 2	41	- 10.4 4236 107	10.5 166 998	37 1. 62	- 8.05	Keelin g et al. 2002	- 29. 57	0.37 151 595 1	22.1 7	2
Betula glandulo sa	BGC AMA S129	200 1	8	6	CA NL	Aiken , Susa n; Brysti ng, Anne	01- 047 7	10- Jan- 202 0	69. 50	- 133. 00	1 5 0	29	- 10.2 9734 852	8.48 182 01	36 9. 55	- 7.97	Keelin g et al. 2001	- 27. 71	0.15 609 756 3	20.3 0	3
Betula glandulo sa	BGC AMA S130	200 3	8	12	CA NL	Pokia k, Myrn a	47	10- Jan- 202 0	69. 40	- 133. 00	1 5 9	30	- 10.1 4296 867	8.68 75	37 4. 48	-8.1	Keelin g et al. 2001	- 29. 38	0.16 626 629 4	21.9 2	3
Betula glandulo sa	BGC AMA S131	200	7	5	CA NL	Aiken , Susa n; LeBla nc, Mich elle	04- 002	9- Jan- 202 0	63. 76	- 68.4 6	4 2 3	61	- 9.06 0833 367	8.35 599 99	37 7. 76	- 8.19	Keelin g et al. 2001	- 30. 54	0.30 459 573 5	2 <u>3.0</u> 6	2
Betula glandulo sa	BGC AMA S132	200 5	8	4	CA NL	Arch amba ult, Annie	AA 269	9- Jan- 202 0	62. 85	- 69.8 7	3 9 0	49	- 7.53 4500 08	7.73 600 01	37 8. 67	- 8.15	Keelin g et al. 2001	- 28. 72	0.20 555 664 7	21.1 8	2

3	2	2	2	2	2	2	2	2
21.9 8	22.6 2	20.1 1	19.7 2	19.6 4	21.6 8	19.5 1	21.2 9	21.5 2
0.32 679 244 8	0.19 009 972	0.19 009 972	0.36 019 358 1	0.36 019 358 1	0.28 564 93	U.28 564 93	0.20 993 726 9	0.26 808 958 3
- 29. 60	- 30. 24	- 27. 85	27. 48	- 27. 40	- 29. 34	27. 28	- 29. 07	- 29. 10
Keelin g et al. 2001	Keelin g et al. 2001	Keelin g et al. 2002	Keelin g et al. 2003	Keelin g et al. 2004	Keelin g et al. 2005	Keelin g et al. 2006	Keelin g et al. 2001	Keelin g et al. 2001
- 8.27	-8.3	-8.3	-8.3	-8.3	-8.3	-8.3	-8.4	8.21
38 2. 28	38 6. 25	38 6. 25	38 6. 25	38 6. 25	38 6. 25	38 6. 25	38 9. 62	38 8. 52
10.4 153 996	10.5	10.5	9.78 800 01	9.78 800 01	9.40 8	9.40	6.20 909 02	10.9 239 998
- 10.6 5032 058	- 11.0 9166 661	- 11.0 9166 661	12.1 6783 338	- 12.1 6783 338	- 12.6 3699 988	- 12.6 3699 988	- 9.48 9393 992	- 4.37 5499 971
32	27	27	21	21	22	22	71	71
2 4 0	1 6 8	1 6 8	1 2 6	1 2 6	1 2 5 5	1 2 5	2 1 8	5 1 5
- 115. 09	- 108. 03	- 108. 03	- 112. 57	- 112. 58	- 110. 71	- 110. 71	124. 07	- 79.1 4
67. 82	66. 84	66. 84	68. 61	68. 62	68. 66	68.	69. 35	56. 46
9- Jan- 202 0	9- Jan- 202 0	9- Jan- 202 0	9- Jan- 202 0	9- Jan- 202 0	9- Jan- 202 0	9- Jan- 202 0	10- Jan- 202 0	9- Jan- 202 0
062 3	s.n.	s.n.	780 5	759 9	785 5	/91 9	855 6	402 4
Davis , Jonat han	Burt, Page M.	Burt, Page M.	Gilles pie, Lynn J.; Saar ela, Jeffer y M.; Cons aul, Lauri e L.; Bull, Roge r D.	Gilles pie, Lynn J.; Saar ela, Jeffer y M.; Cons aul, Lauri e L.; Bull, Roge r D. Cons	Cons aul, Lauri e L.; Kattu k, Emily ; Meek o,			
CA NL	CA NL	CA NL	CA NL	CA NL	CA NL	CA NL	CA NL	CA NL
10	28	2	10	6	12	13	27	10
7	7	7	7	7	7	7	6	8
200 6	200 8	200 8	200 8	200 8	200 8	200 8	200 9	201 0
BGC AMA S133	BGC AMA S134	BGC AMA S135	BGC AMA S136	BGC AMA S137	BGC AMA S138	BGC AMA S139	BGC AMA S140	BGC AMA S141
Betula glandulo sa	Betula glandulo sa	Betula glandulo sa	Betula glandulo sa	Betula glandulo sa	Betula glandulo sa	<i>Betula</i> glandulo sa	Betula glandulo sa	Betula glandulo sa

						Betsy ; Char ette, Don															
Betula glandulo sa	BGC AMA S142	201 0	8	10	CA NL	Cons aul, Lauri e L.; Kattu k, Emily ; Meek o, Betsy ; Char ette, Don	403 3	9- Jan- 202 0	56. 48	- 79.1 5	5 1 5	70	- 4.48 7166 618	10.8 079 996	38 8. 52	8.21	Keelin g et al. 2002	- 28. 96	0.25 804 389 2	21.3 7	2
Betula glandulo sa	BGC AMA S143	201 0	8	10	CA NL	Cons aul, Lauri e L.; Kattu k, Emily ; Meek o, Betsy ; Char ette, Don	403 4	9- Jan- 202 0	56. 49	- 79.1 3	5 1 5	70	- 4.48 7166 618	10.8 079 996	38 8. 52	8.21	Keelin g et al. 2003	- 28. 72	0.25 804 389 2	21.1 2	2
Betula glandulo sa	BGC AMA S144	201 0	8	10	CA NL	Cons aul, Lauri e L.; Kattu k, Emily ; Meek o, Betsy ; Char ette, Don	403 8	9- Jan- 202 0	56. 50	- 79.1 3	5 1 5	70	- 4.48 7166 618	10.8 079 996	38 8. 52	8.21	Keelin g et al. 2004	- 28. 68	0.25 804 389 2	21.0 8	2
Betula glandulo sa	BGC AMA S145	201 0	8	10	CA NL	Cons aul, Lauri e L.; Kattu k, Emily ; Meek o, Betsy ; Char ette, Don	401 3	9- Jan- 202 0	56. 50	- 79.1 8	5 0 7	70	- 4.35 1992 831	10.7 912 998	38 8. 52	8.21	Keelin g et al. 2005	- 27. 75	0.25 500 338 3	20.1 0	2
Betula glandulo sa	BGC AMA S146	201 0	6	23	CA NL	Cons aul, Lauri e L.; Tsuji moto, Megu mu; Ip, Morg an; Char ette, Don; Char ette, Emily ; Ekidl ak, Chris tine	362 3	9- Jan- 202 0	56. 55	- 79.1 8	4 9 7	48	- 4.42 9861 096	5.5	39 2. 24	8.43	Keelin g et al. 2001	- 29. 43	0.17 684 541 9	21.6 4	2
Betula glandulo sa	BGC AMA S147	201 0	7	14	CA NL	Gilles pie, Lynn J.; Saar ela, Jeffer y M.; Doub t,	981 9	10- Jan- 202 0	71. 19	- 116. 41	1 6 2	24	- 13.2 0050 002	8.34 799 96	39 0. 33	8.32	Keelin g et al. 2001	- 30. 16	0.34 599 859 5	22.5 2	0

						Jenni															
						fer; Bull, Roge r D.; Sokol off, Paul															
Betula glandulo sa	BGC AMA S148	201 0	7	14	CA NL	C. Gilles pie, Lynn J.; Saar ela, Jeffer y M.; Doub t, Jenni fer; Bull, Roge r D.;	980 7	10- Jan- 202 0	71. 19	- 116. 41	1 6 2	24	- 13.2 0050 002	8.34 799 96	39 0. 33	8.32	Keelin g et al. 2002	- 28. 65	0.34 599 859 5	20.9 2	0
Betula	BGC	201	7	13	СА	Sokol off, Paul C. Gilles	974	10-	71.	-	1	24	-	8.34	39	-	Keelin	-	0.34	21.2	0
glandulo sa	AMA S149	0			NL	pie, Lynn J.; Saar ela, Jeffer y M.; Doub t, Jenni fer; Bull, Roge r D.; Sokol off, Paul C.	4	Jan- 202 0	21	116. 39	62		13.2 0050 002	799 96	0. 33	8.32	g et al. 2003	28. 93	599 859 5	3	
Betula glandulo sa	BGC AMA S150	201 0	7	10	CA NL	Gilles pie, Lynn J.; Saar ela, Jeffer y M.; Doub t, Jenni fer; Bull, Roge r D.; Sokol off, Paul C.	962 3	10- Jan- 202 0	71. 48	- 117. 36	1 5 6	23	- 12.9 5362 332	7.69 999 98	39 0. 33	8.32	Keelin g et al. 2004	- 27. 44	0.27 397 878 1	19.6 6	2
Betula glandulo sa	BGC AMA S151	201 2	6	30	CA NL	Saar ela, Jeffer y M.; Gilles pie, Lynn J.; Sokol off, Paul C.; Bull, Roge r D.	191 9	9- Jan- 202 0	63. 25	- 69.6 1	4 2 0	37	- 8.37 7666 91	5.55 999 99	39 5. 88	8.45	Keelin g et al. 2001	- 27. 78	0.26 968 779 7	19.8 8	2
Betula glandulo sa	BGC AMA S153	201 2	6	29	CA NL	Saar ela, Jeffer y M.; Gilles pie, Lynn J.; Sokol off, Paul C.; Bull, Roge r D.	190 8	9- Jan- 202 0	63. 75	- 68.4 8	4 2 6	41	- 8.83 4090 924	4.04 545 02	39 5. 88	- 8.45	Keelin g et al. 2003	- 28. 19	0.19 612 515 2	20.3 1	2

								oll gag las ific tion eve
3 2	6 2	2 2	9 3	3 3	0 3	8 3	0 4	a S E)* n e C S a L
19.3 5	19.6 6	20.2 3	19.9 7	22.3 4	23.0 5	20.8 3	20.0	∆lea f (‰)* *
0.51 657 275 7	0.50 191 531 1	0.46 968 848	0.39 654 907 5	0.39 520 412 7	0.34 658 068	0.22 321 438 2	0.27 183 384 7	∨₽D (kPa)*
- 27. 24	- 27. 54	- 28. 08	- 27. 83	- 30. 09	- 30. 76	- 28. 82	- 27. 84	61 3C lea f (‰)
Keelin g et al. 2001	Keelin g et al. 2002	Keelin g et al. 2003	Keelin g et al. 2004	Keelin g et al. 2005	Keelin g et al. 2006	Keelin g et al. 2001	Keelin g et al. 2001	613C atm (‰) Sourc e****
8.42	8.42	8.42	8.42	8.42	- 8.42	- 8.59	- 8.33	613 Cat m (‰)
39 9. 07	39 9. 07	39 9. 07	39 9. 07	39 9. 07	39 9. 07	40 1. 31	39 9	[C O2] (P P m)
12.1 719 999	12.0 92	11.7 200 003	11.1 759 996	11.0 559 998	10.6 84	5.73 846 01	10.7 545 004	Mon thly Avg Tem pera ture (°C)
- 9.69 5000 097	- 9.69 5666 547	- 9.85 3833 289	- 10.3 6516 655	- 10.3 8499 979	- 10.7 2133 331	- 10.6 5032 058	- 9.26 5530 159	мАТ (°С)*
35	35	34	33	33	32	16	57	Mon thly Ave rag e Pre cipi atio n (m m)*
2 4 6	2 4 9	2 4 4	2 4 0	2 4 1	2 3 7	2 4 0	2 8 9	M P (m y r- 1)*
- 115. 52	- 115. 63	- 115. 61	- 115. 38	- 115. 37	- 115. 24	- 115. 11	- 94.0 9	Lon gitu de (°W)
67. 26	67. 43	67. 52	67. 74	67. 74	67. 80	67. 82	61.	Lat itu de (°N)
10- Jan- 202 0	9- Jan- 202 0	10- Jan- 202 0	10- Jan- 202 0	10- Jan- 202 0	10- Jan- 202 0	9- Jan- 202 0	9- Jan- 202 0	
352 5	313 2	364 4	410 6	382 6	428 0	304 4		
Saar ela, Jeffer y M.; Sokol off, Paul C.; Bull, Roge r D	Saar ela, Jeffer y M.; Sokol off, Paul C.; Bull, Roge r D.	Gavi n, Mega n; Irkok, Ancill a	Sour ce					
CA NL	CA NL	CA NL	CA NL	CA NL	CA NL	CA NL	CA NL	
7	1	8	16	12	23	29	13	Col lect ion Da y
7	7	7	7	7	7	6	8	Col lect ion Mo nth
201 4	201 4	201 4	201 4	201 4	201 4	201 4	201 5	Col lect ion Ye ar
BGC AMA S154	BGC AMA S155	BGC AMA S156	BGC AMA S157	BGC AMA S158	BGC AMA S159	BGC AMA S160	BGC AMA S161	Pers onal ID #
Betula glandulo sa	Betula glandulo sa	Betula glandulo sa	Betula glandulo sa	Betula glandulo sa	Betula glandulo sa	Betula glandulo sa	Betula glandulo sa	Genus, Species

Eriophor	EAT	198	7	2	Schel		68.	-	2	42	-	12.0	35	-	Keelin	-	0.55	18.6	
um	KMA	8			I,		633	149.	3		9.09	04	2.	7.77	g et	25.	095	601	
angustifo	S1				2016		333	6333	4		7		38		al.	94	188	564	
lium								333							2001	6	8	2	
Eriophor	EAT	198	7	2	Schel		68.	-	2	42	-	12.0	35	-	Keelin	-	0.55	18.2	
um	KMA	8			I,		633	149.	3		9.09	04	2.	7.77	g et	25.	095	158	
angustifo	S2				2016		333	6333	4		7		38		al.	52	188	876	
lium								333							2001	1	8	7	
Eriophor	EAT	198	7	2	Schel		68.	-	2	42	-	12.0	35	-	Keelin	-	0.55	18.8	
um	КМА	8			L.		633	149.	3		9.09	04	2	7.77	a et	26	095	191	
angustifo	\$3	-			2016		333	6333	4		7	•	38		al	09	188	419	
lium	00				2010		000	333			·		00		2001	8	8	7	
Eriophor	EAT	108	7	15	Schol		68	000	2	12		12.0	35		Koolin	Ŭ	0.55	17.0	
Linophor		0	'	15	I		622	140	2	42	- 00	04	20	-	n eeliin	25	0.55	714	
anguatifa	C 4	0			1,		000	6222	3		9.09	04	2.	1.11	y et	20.	400	/ 14	
angustito	54				2016		333	0333	4		'		30		al.	20	100	439	
num			_					333							2001	1	0		
Eriophor	EAT	198	1	15	Schel		68.	-	2	42	-	12.0	35	-	Keelin	-	0.55	17.4	
um	KMA	8			I,		633	149.	3		9.09	04	2.	7.77	g et	24.	095	693	
angustifo	S5				2016		333	6333	4		7		38		al.	80	188	445	
lium								333							2001	6	8	6	
Eriophor	EAT	198	7	15	Schel		68.	-	2	42	-	12.0	35	-	Keelin	-	0.55	18.1	
um	KMA	8			I,		633	149.	3		9.09	04	2.	7.77	g et	25.	095	249	
angustifo	S6				2016		333	6333	4		7		38		al.	43	188	910	
lium								333							2001	4	8	2	
*JCCAMAS																			
45 &																			
JCCAMAS																			
46 are																			
combined		1	1	1		1	1									1			

Supplemental Table 1. Summary of data sample data.

	Species	Equation of Line	R ²	P-value
This Study	Juniperus communis	y = 1.90x - 12.64	0.23	<0.001
	Eriophorum angustifolium	y = 1.31x - 17.07	0.11	0.002
	Betula glandulosa	y = 1.39x - 17.09	0.28	<0.001
Sheldon et al., 2020	Pinus strobus	y = 1.28x - 17.88	0.13	<0.001
	Populus tremuloides	y = 0.68x - 21.65	0.12	<0.001
	Thuja occidentalis	y = 1.42x - 15.04	0.43	<0.001
	Thuja plicata	y = 1.86x - 12.35	0.50	<0.001
Arens et al., 2000	Compilation of Species	y = 1.10x - 18.67	0.34	<0.001

Supplemental Table 2. Summary of regressions plotted in Figure 4. Equations of lines for species in this study are from Figure 3.

		Eigenvalue	Percentage of Variance
PCA Results	PC1	2.76	39.40%
Juniperus communis	PC2	1.74	24.90%
Extraced Eigenvectors		Coefficients of PC1	Coefficients of PC 2
Δ_{leaf} (‰)		-0.25	-0.25
VPD (kPa)		-0.23	0.63
Average Temperature of Collection Month (°C)		0.06	0.68
MAT (°C)		0.50	0.25
Average Precipitation of Collection Month (mm)		0.51	-0.07
MAP (mm)		0.54	-0.04
Drainage Level		-0.27	0.08
		Eigenvalue	Percentage of Variance
PCA Results	PC1	3.64	52.03%
Eriophorum angustifolium	PC2	1.33	19.01%
Extraced Eigenvectors		Coefficients of PC1	Coefficients of PC 2
$\Delta_{leaf}(‰)$		-0.18	0.54
VPD (kPa)		0.36	-0.45
Average Temperature of Collection Month (°C)		0.46	-0.27
MAT (°C)		0.48	0.20
Average Precipitation of Collection Month (mm)		0.42	0.37
MAP (mm)		0.44	0.41
Drainage Level		0.16	-0.30
		Eigenvalue	Percentage of Variance
PCA Results	PC1	2.94	42.05%
Betula glandulosa	PC2	1.73	24.70%
Extraced Eigenvectors		Coefficients of PC1	Coefficients of PC 2
$\Delta_{leaf}(‰)$		-0.18	-0.15
VPD (kPa)		0.25	0.61
Average Temperature of Collection Month (°C)		0.33	0.55
MAT (°C)		0.53	-0.01
Average Precipitation of Collection Month (mm)		0.48	-0.28
MAP (mm)		-0.18	0.36
Drainage Level		0.42	-0.35

Supplemental Table 3. Compilation of PCA results for individual species. All coefficients are rounded up. Values equal to or greater than ± 0.3 are highlighted in green.

	Eigenvalue	Percentage of Variance		
	PC1	3.2	45.77%	
Combined PCA Results	PC2	1.5	21.56%	
Extraced Eigenvectors		Coefficients of PC1	Coefficients of PC 2	
Δ_{leaf} (‰)		-0.22	-0.11	
VPD (kPa)		0.31	0.57	
Average Temperature of Collection Month (°C)		0.42	0.43	
MAT (°C)		0.52	-0.09	
Average Precipitation of Collection Month (mm)		0.44	-0.36	
MAP (mm)		0.46	-0.37	
Drainage Level		-0.02	0.45	

Supplemental Table 4. Results of compiled species PCA.