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Abstract  

Variation in extreme rainfall under the influence of orography plays an important yet 

poorly understood role in the erosion of mountains. In the steep terrain of the Himalaya, intense 

precipitation frequently triggers soil and shallow bedrock landslides during the summer 

monsoon. Characterizing monsoon-triggered landsliding as a dominant erosion process and 

hazard requires an understanding of the intensity and duration of precipitation during storms, but 

the daily resolution and sparse spatial coverage of local precipitation instrumental records are 

insufficient. Here we use NASA’s Global Precipitation Measurement (GPM) IMERG 30-minute, 

0.1x0.1 degree product scaled to match local rain gauge records to characterize extreme rainfall 

events (EREs) over a study area in central Nepal. We separate extreme events in the time series 

with a minimum dry period between storm arrivals and cluster them using a K-means 

multivariate approach. Results show variability in the intensity and duration of EREs with 

distance from the Himalayan range front in a pattern consistent with the orographic effect also 

observed on total precipitation volume. Storms of highest intensity and shortest duration are 

coincident with increased density in monsoon-driven landsliding.  
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1. Introduction 
 

Orographic rainfall contributes to focused, intense erosion in mid-latitude ranges: shaping 

the relief of mountain ranges and increasing the potential for frequent landsliding. Moist air 

parcels saturate when encountering high topography, leading to concentrated precipitation on the 

lower slopes of steep mountain fronts and a semi-arid rain shadow at higher elevations that tends 

to persist over diurnal and seasonal cycles (Houze, 2012; Roe, 2005). Across some orogens, 

mean annual precipitation reflects a strong orographic effect (Bookhagen & Burbank, 2006) that 

is closely coupled with spatial patterns in relief and erosion rates (Roe et al., 2003). Shallow 

landsliding and debris flows dominate the hillslope erosional process on steep and threshold 

hillslopes, often in response to individual prolonged or intense storm events generated by 

orography (Burbank et al., 2012; Gabet, Pratt-Sitaula, et al., 2004).  

It is commonly accepted that higher volumes of rain result in greater frequencies or sizes 

of landslides (Sidle Hirotaka Ochiai et al., 2006), and that seasonal precipitation accumulation 

saturates hillslopes and drives landsliding (Gabet, Pratt-Sitaula, et al., 2004). But the variability 

of rainfall at minute to hourly scales also influences where and when landslides occur (Iverson, 

2000; Montgomery & Dietrich, 1994; Rosso et al., 2006). Shallow landslides are triggered by 

high pore pressures following topographically controlled groundwater flow and infiltration over 

minutes to hours to weeks (Iverson, 2000), and are thus modulated by the interplay between 

hydrologic properties of the subsurface (Bellugi et al., 2015) and the style and variability of 

precipitation. Local thresholds of rainfall intensity and duration linked to landsliding are 

commonly derived where detailed data exist (Dahal & Hasegawa, 2008). However, records that 

connect storm characteristics (including intensity and duration of rainfall) to the size and location 

of landsliding are scarce (Bellugi et al., 2015). This limits our understanding of how rainfall 

variability over short timescales influences landsliding, particularly in orographic settings with 

seasonal precipitation and steep climatic and topographic gradients (Gabet, Pratt-Sitaula, et al., 

2004; Gariano & Guzzetti, 2016) 

Precipitation over steep terrain is notoriously complex because of micro-scale physics 

and location-specific airflow (Roe, 2005). Short and intense storm events are particularly 

difficult to model because the processes that govern them are often non-stationary and stochastic 

(Fatichi et al., 2016; Terzago et al., 2018). High precipitation accumulation is a hallmark of 
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orographic rainfall, yet some studies have shown that orography may depress rainfall intensity in 

short duration storms (< 1 hr) (Allamano et al., 2009; Avanzi et al., 2015; Marra et al., 2021; 

Zhang et al., 2014) and enhance intensity in storms of longer duration (1-6 hrs) (Marra et al., 

2021). Disentangling orographically influenced storm variability poses a significant challenge in 

part because precipitation datasets often lack the spatial and temporal resolution to resolve 

convective-scale, short-duration storm events. Satellite-derived precipitation are inaccurate over 

high relief and altitude (Andermann et al., 2011; Bharti et al., 2016; Mei et al., 2014) and 

networks of rain gauges in areas of such difficult access are sparsely populated. Recent advances 

in satellite precipitation monitoring with high temporal resolution and continuous spatial 

coverage (e.g., TRMM, CHIRPS and IMERG; (Funk et al., 2015; Huffman et al., 2019)) offer 

the opportunity to expand insight into the relationship between orography and rainfall 

characteristics. The availability of repeat, high-resolution (sub-meter) optical imagery facilitates 

the derivation of annual spatial patterns of landsliding in otherwise inaccessible terrain (Marc et 

al., 2015), which, when compared to statistical interpretations of high temporal resolution 

precipitation patterns, may help us understand how precipitation, orography and erosion 

processes interact.  

The uniquely extreme environment of the central Nepalese Himalaya allows us to study 

the critical effects of orography on variable storm precipitation and the annual erosion cycle. 

Steep hillslopes are vulnerable to intense rain during the summer monsoon and experience 

frequent shallow landslides and debris flows that damage rural communities and kill hundreds of 

people each year (Petley et al., 2007). The prominent relief of the Himalaya is known to have a 

long-term orographic effect on mean annual precipitation of up to 4 m/yr over the range front 

(Anders et al., 2006; Bookhagen & Burbank, 2006, 2010; Roe, 2005) that can be strongly 

influenced by relief at local scales (Barros et al., 2006).  Here, we look in greater detail at the 

characteristics (e.g., intensity and duration) of extreme storms during the summer monsoon to 

explore the influence of orography and their spatial correlation with annual landsliding. 

In this study, we calibrate GPM IMERG-V06 data with the daily record from local Nepal 

Department of Hydrology and Meteorology (DHM) rain gauges to produce high-temporal 

resolution records of precipitation at point locations. We delineate independent storms using 

location-specific minimum dry periods, define extreme storms over a certain intensity threshold, 

and quantify variability and spatial patterns in storm characteristics using paired K-means 
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agglomerative cluster and principal component analyses. Storm variability is compared to 

mapped inventories of monsoon-triggered landslides from 2010-2014 to evaluate the influence of 

orographic precipitation on spatial patterns in erosion. 

 

2. Methods  

 
2.1 Study area 

The central Nepalese Himalaya is a collisional tectonic setting with coupled gradients in 

topography, precipitation, and erosion (Hodges et al., 2001) (Figure 1). The “physiographic 

transition” refers to an abrupt increase in elevation, steeper slopes and greater relief at mid-

altitudes in the range (Hodges et al., 2001; Wobus et al., 2003, 2006), which enhances the 

orographic barrier of the Himalaya and concentrates rainfall (Bookhagen & Burbank, 2006; 

Gabet, Pratt-Sitaula, et al., 2004). We have targeted the Melamchi Khola, a tributary catchment 

to the Indrawati River, for study (Figure 1). The Melamchi is oriented perpendicular to the 

physiographic transition and located entirely within the Greater Himalayan Sequence of 

migmatites and gneisses (Dhital, 2015; Figure S1), allowing us to evaluate landsliding across a 

steep gradient in topography and precipitation while minimizing the dependence of landslide 

susceptibility on lithology.  

2.2 Data sources 

 

We use two primary precipitation datasets in this study: (1) local rain gauges operated by 

the Nepal Department of Hydrology and Meteorology (DHM) and the International Centre for 

Integrated MOuntain Development (Shea et al., 2015), and (2) NASA’s Global Precipitation 

Mission (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) satellite-based dataset 

(Huffman et al., 2019) (Figure 1). The current network of local rain gauges measures daily 

precipitation and an orographic effect on monsoon rainfall reflected in the long-term TRMM 

record (Figure 1B). However, the network lacks the subdaily temporal resolution needed to 

characterize storm events. NASA’s gridded 0.1x0.1-degree IMERG product provides global 

precipitation estimates every 30-minutes in mm/hr from merged and intercalibrated microwave 
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precipitation and infrared estimates and is spatially continuous. IMERG rainfall depth is 

underestimated across steep terrain relative to ground-based data and is therefore insufficient as a 

standalone dataset for this study (Lee et al., 2019; Xu et al., 2017); Figure 1). 

Satellite-derived products like IMERG have previously been shown to perform poorly 

over mountainous regions with high relief (Andermann et al., 2011; Barros et al., 2006; Mei et 

al., 2016), particularly in the case of short-duration (Mei et al., 2014) and heavy rainfall events 

(Bharti et al., 2016; Y. C. Gao & Liu, 2013; Moazami & Najafi, 2021; Tan et al., 2016). 

Although satellite-derived products do reasonably well at estimating the occurrence of rainfall 

relative to ground-based data over complex topography (Dinku et al., 2008; Nepal et al., 2021; 

Tan et al., 2016), timing estimates of peak rainfall during a storm can also be significantly 

different from gauge estimates, depending on the magnitude and duration of the event (Hossain 

et al., 2004). It is also likely that the DHM network underestimates rainfall due to wind-

dependent under-catch (Pollock et al., 2018; Rodda & Dixon, 2012). In Nepal, studies comparing 

IMERG and gauge data show a consistent underestimation of mean annual rainfall by IMERG 

relative to available DHM gauge data (Nepal et al., 2021; Sharma, Chen, et al., 2020; Sharma, 

Khadka, et al., 2020). The discrepancy between the IMERG and ground-based measurements of 

very short duration (<30 minutes) and extreme convective-scale storm events may be explained 

by the 30-minute temporal resolution limited by the overpass frequency of passive microwave 

sensors (Mei et al., 2014), or by the infrared sensors that effectively see cloud tops but weakly 

estimate the intensity or volume of surface precipitation (Sapiano & Arkin, 2009; Tan et al., 

2016). 

2.3 Merging precipitation datasets 

In this study, we calibrate the IMERG data with the DHM rain gauge dataset to produce a 

rainfall product with 30-minute rainfall intensity. We scale the summed IMERG 30-minute grid 

cell precipitation at each gauge to match daily rainfall records such that total daily GPM rainfall 

is equal to total gauge daily rainfall (Figure 2). We supplement the IMERG record with the 

Tropical Rainfall Measuring Mission (TRMM) 3B42V6 data collected prior to the 2014 

inception of the IMERG catalog. The resulting precipitation dataset is a point-location timeseries 

with 30-minute rainfall intensity measurements in mm/hr spanning the monsoon season (June 

01-September 30) over the period 2010-2018.  
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2.4 Defining storms and extreme rainfall events (EREs) 

 

Rainfall-induced landsliding is driven by excess pore fluid pressures during periods of 

intense rainfall. To characterize storms in precipitation timeseries, we first extract individual 

storms from the time series using a minimum dry period between measurable rainfall (Driscoll, 

1989; Dunkerley, 2008; Gaál et al., 2014; Schleiss & Smith, 2016). We calculate the average 

inter-accumulation time (IAT) (Schleiss, 2017; Schleiss & Smith, 2016) for each rain gauge 

record for each monsoon year as the minimum dry period between definitive storm events (also 

referred to as the Minimum Interevent Time (MIT); (Gaál et al., 2014)). Eq. 1 defines the IAT as 

the mean number of hours over which an arbitrary amount of rain accumulates (∆r) during the 

monsoon season (here, we use ∆r = 2 mm). 

 

"#$∆" =	∆' #$%&!"#$""#	&"&'(	)*$
'($)*(++!"#$""#	&"&'(	!!

    Eq. 1 

 

The average IAT at each gauge ranges from ~1.5 to 8 hours across our study area (Table 

S1). Using the IAT method as a proxy for the MIT is preferable to applying a consistent dry 

period threshold at every station (such as a 6-hr MIT) because it allows for the duration and 

intensity of individual storm events to vary with respect to total rainfall and normalizes for the 

regional precipitation gradient (Schleiss & Smith, 2016). In this manner, we avoid artificially 

depressing the average intensity of storms in locations with greater monsoon rainfall totals and 

shorter dry periods between events, and vice versa.    

Sample sizes of 20-120 individual storm events were determined for each of 46 rain 

gauges for each monsoon year. Storms are characterized by several properties hypothesized to 

influence erosion and landslide occurrence: duration (hrs), depth (mm), average intensity 

(mm/hr), peak intensity (mm/hr), and rainfall prior to the storm peak (mm) (Figure 2). A 

lognormal PDF is fit to the average intensity distribution of all storm events at each station and 

for each monsoon year. Any storm with an average intensity that falls above the 90th percentile is 

considered an ERE (Bookhagen & Burbank, 2010; Krishnamurthy et al., 2009; Malik et al., 

2012); Appendix B and Figure S5).   
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2.5 Cluster analysis of extreme rainfall events (EREs)  

 

To evaluate the spatial variability of storm characteristics relative to orography, we 

partitioned the bulk 2010-2018 ERE dataset into clusters using a K-means clustering technique. 

The K-means approach is an agglomerative method that partitions clusters based on similarity 

defined by the Euclidean distance metric. The K-means method also requires a pre-specified 

number of clusters for which we use the Elbow Method (Figure S6). Individual EREs are 

assigned to one of 10 clusters based on the five prescribed storm characteristics: duration, depth, 

average intensity, peak intensity, and rainfall prior to the storm peak. We then assign each gauge 

station to a cluster based on the cluster group for which a majority of the EREs are assigned. 

This results in a spatial distribution of cluster values based on the dominant storm characteristics 

observed at each gauge station. The spatial distribution does not change significantly by using 

fewer than 10 clusters in this approach, or with multiple clustering iterations (Appendix C). 

We assess the interdependent relationships between ERE characteristics using a principal 

components analysis (PCA) based on the correlation matrix of the ERE dataset. Many of the 

storm properties that we have chosen to include in this analysis covary, and we use PCA here as 

a dimension-visualization tool in conjunction with our cluster analysis to determine how clusters 

differ over space in terms of their ERE characteristics. As a final step, we compare our cluster 

and PCA results with a catalog of monsoon-driven landslides from 2010-2014 in the Melamchi 

Valley (see Appendix C) to relate storm characteristics to monsoon-triggered landsliding. We 

limit the landslide catalog to 2010-2014 prior to the 2015 Mw7.8 Gorkha earthquake to avoid 

including a legacy earthquake effect on monsoon-driven landsliding. 

 

3. Results  
 

ERE intensity in Central Nepal varies with orography and follows the trend of mean 

monsoon rainfall intensity. Here we identify a spatial pattern of EREs over our study area using 

an interpolation spline-fit to the threshold ERE intensities between 2010-2018 at each rain gauge 

(Figure 3). Overall, EREs range from a threshold intensity of ~4 mm/hr over the Kathmandu 

basin to a maximum of ~20 mm/hr in the northern Melamchi Valley, which mirrors the sharp 

increase in mean monsoon rainfall intensities observed in the rain gauge dataset. Further north, 
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ERE intensity decreases and ranges from 4-13 mm/hr; however, the density of rain gauges and 

the availability of ground-based precipitation data in these northern areas is limited and 

intensities may be underestimated through gauge under-catching due to wind and snowfall 

(Kirkham et al., 2019). The yearly variation in the ERE thresholds is small to the south of the 

Melamchi Valley, and large north of the physiographic transition at ~47 km distance along our 

transect. At several gauge locations within the northern Melamchi, the ERE threshold fluctuates 

within a range of 10 mm/hr year-to-year (Figure 3; Figure S8). Importantly, the threshold ERE 

intensities put only a lower bound on the expected intensities of extreme events over Central 

Nepal; many EREs between 2010-2018 have average intensities that far exceed these thresholds 

by up to 110 mm/hr and experience peak intensities of >100 mm/hr (Figure S9).  

 

We identify 5,261 storms that exceed the ERE threshold during the period of 2010-2018. 

The primary ERE clusters at each rain gauge are spatially distributed into two groups (A and B) 

(Figure 3). Principal components analysis (PCA) derives linear combinations of the five storm 

characteristics for which we ascertain differences between the storms typical of clusters A and B 

(Figure 4A). Both average storm intensity and peak storm intensity are negatively correlated with 

duration, prior rainfall and storm depth. This suggests that overall, EREs are typically short and 

intense or prolonged and less intense. Prolonged (>6 hours) EREs with a high 30-minute peak 

intensity are rare. The PCA shows that two components explain more than 88% of the variance 

in the ERE dataset, where components 1 and 2 are primarily composed of average and peak 

storm intensities and storm duration, depth, and prior rain, respectively. Variability in monsoon 

storm events is adequately described by these two groupings of strongly correlated storm 

properties. Details on the PCA including variable loadings and the proportion of variance 

explained by each component are listed in Table S2.  

Clusters A and B are distinct in terms of the types of storms that occur in each. Cluster A 

includes storms with high intensities (both average and peak 30-minute intensities), whereas 

cluster B includes prolonged events with greater total rainfall and rainfall prior to the storm peak 

(Figure 4). Interestingly, the short duration storms (30 min to 3 hrs) that do occur over the space 

of cluster B experience average storm intensities equal to or greater than the intensities of storms 

in cluster A. Storms greater than ~3 hours in length are more intense in cluster A and less intense 

in cluster B. We observe no correlation with timing throughout the monsoon season; EREs in 
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both clusters occur stochastically and frequently (Figure S10). Importantly, clusters A and B also 

show a spatial pattern in ERE characteristics. Cluster A includes rain gauge stations that are 

situated between the physiographic transition and the highest peaks of the Central Nepalese 

Himalaya, focusing the shortest and most intense storms in the northern Melamchi Valley 

(Figure 3). The longer duration, less intense storms of Cluster B are recorded at stations located 

to the north of the Melamchi Valley and in the southern Melamchi south of the physiographic 

transition.  

The loci of monsoon-driven landsliding in the Melamchi Valley occurs ~50-62 km from 

the range front, which spatially correlates with both the highest peak in ERE intensity thresholds 

and the short and intense storms of cluster A (Figure 3). Landslide density is agglomerated for 

monsoon years 2010-2014 to avoid the potential legacy effects of the 2015 Mw7.8 Gorkha event. 

In the five-year period of analysis, over 600 shallow landslides occurred during the monsoons, 

with most occurring in the northern Melamchi Valley where slopes are steepest and intense 

precipitation is frequent. Specific intensity-duration thresholds for shallow landsliding in central 

Nepal are scarce because sub-daily resolution precipitation data and mapped monsoon-driven 

landslide inventories with specific trigger times are unavailable. Dahal and Hasegawa (2008) 

determined an intensity-duration threshold for monsoon-driven landsliding that is limited to 

intense rainfall lasting > 5 hours; this Himalaya-specific threshold requires greater rainfall 

intensities than the global rainfall-triggered landslide threshold from Guzzetti et al., 2008 (Figure 

4). Most EREs that we identify between the monsoon years 2010-2018 are of shorter duration 

than 5 hrs and very few storms fall above the Himalaya-specific threshold (Dahal & Hasegawa, 

2008) even when extrapolated out to storm events lasting < 5 hours. However, the peak 

intensities of many of the EREs fall above the Himalaya landslide threshold, with the majority 

being storm events of shorter duration in cluster A (Figure S9).  

 

4. Discussion  

 
The separation of individual storms offers a holistic perspective on the variability of 

landslide-triggering precipitation. Satellite-based observations calibrated with ground data 

capture a regional trend in storm characteristics. Short, frequent, and high intensity events are 

concentrated over the forefront of the Himalayan range north of the physiographic transition 
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where topography and slope gradients are steepest (Figure 3). While Bookhagen & Burbank 

(2010) show that orography focuses high seasonal precipitation totals near the physiographic 

transition, we show that Himalayan orography also causes precipitation to be distinctly more 

intense. The observation that orography enhances storm intensity is also consistent with 

observations from 1–6 hour long cyclones over steep topography in the southeast Mediterranean 

(Marra et al., 2021). 

At a finer scale, the relationship between intensity and topography varies as a function of 

total storm duration. We observe comparable average and peak ERE intensities between clusters 

A and B at short durations (< 1 hour), suggesting that these infrequent and extremely intense 

events are indiscriminate of topography. It is only at longer durations (> 1 hr) that EREs in 

cluster A are consistently of higher intensities compared to cluster B (Figure 4B). Within storms, 

peak 30-minute rainfall intensities are also similar between clusters at any storm duration, 

suggesting that low-intensity storm events in any location may include short bursts of 

comparably intense rainfall (Figure S8). The measurement interval of the satellite data (30 

minutes) limits how much we can say about the patterns of rainfall with respect to orography at 

durations less than one hour. For example, the “reverse orographic effect” (intensities decrease 

with increasing elevation) seen in short duration periods (< 1 hr) elsewhere (Allamano et al., 

2009; Avanzi et al., 2015; Marra et al., 2021; Zhang et al., 2014) cannot be evaluated with our 

dataset.  

While we do not differentiate storms with respect to atmospheric dynamics (i.e., 

convective vs. stratiform conditions), the distribution of ERE intensities and durations suggests 

that our methodology identifies storms initiating from either process. We interpret the highest-

intensity and short-duration (30-minute) storms occurring in both clusters A and B as convective 

cells originating from rising unstable air parcels and the super-cooling of water vapor (Roe, 

2005). Orography has a poorly understood effect on extreme rainfall at short durations 

(Bongioannini Cerlini et al., 2005). Convective cells occur regardless of the presence of relief, 

although some studies show that convective rain is affected by airflow dynamics at the forefront 

of mountain ranges (Bongioannini Cerlini et al., 2005; Houze, 2012). Stratiform processes, on 

the other hand, enhance rainfall at higher elevations and perhaps at longer durations (Kirschbaum 

& Stanley, 2018). Valley-located gauges may receive more precipitation than neighboring ridges 

because such high relief results in lower water vapor content (Roe, 2005) although at small 
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scales rainfall can reach high elevations through the advection of cloud vapor (Barros et al., 

2006). Two of the rain gauges in our dataset located near or on the Melamchi ridge (stations 

Tarke Ghyang and Sarmathang; Figure 1) consistently record frequent and high intensity events 

(Figure 3) but may be more prone to error from local airflow on ridges (Roe, 2005; Talchabhadel 

et al., 2017). Given the likelihood of under-catch, the minimum ERE intensities that we report 

for the northern Melamchi are likely underestimated and miss convective bursts of rainfall at 

higher intensities (>100 mm/hr), implying that more EREs may exceed landslide thresholds at 

short durations than are reported here. 

We note no consistency in the timing of EREs with respect to the beginning or end of the 

monsoon season over the bulk of our study period (Figure S9), although it is possible that EREs 

occurring late in the monsoon season trigger landslides in near-saturated conditions after 

repeated monsoon precipitation has elevated the groundwater table (Dahal & Hasegawa, 2008; 

Gabet, Burbank, et al., 2004). This, coupled uncertain landslide event timing within the monsoon 

season, prevents us from correlating specific landslides to specific EREs and establishing a 

rainfall threshold for this study area. However, if we extrapolate published landslide thresholds 

for Nepal (Dahal & Hasegawa, 2008) to storm events <5 hours in length, fewer than ~20 storms 

over the 2010-2018 period qualify as landslide-triggering events (Figure 4B). We speculate that 

these less frequent, high-intensity EREs exhibited in cluster A trigger the majority of shallow 

landslides within the Melamchi Valley during each monsoon season.  

While orographic rainfall is likely a primary landslide trigger, the complex interplay 

between tectonics, climate and erosion in this setting cannot be overlooked. Our results show that 

extreme rainfall is spatially coincident with monsoon-triggered landsliding: the area of densest 

landsliding in the Melamchi is closely coupled to the occurrence of intense EREs of durations < 

10 hours. However, this narrow band of increased ERE intensity is also coincident with steep 

topography and exhumed, fractured bedrock, both of which make the hillslopes more susceptible 

to failure (Murray et al., 2018). While steeper slopes increase the driving forces to landsliding, 

the relationship between slope angle and rainfall-triggered landslide frequency is sometimes 

unclear on hillslopes >30 degrees (Coe et al., 2004; J. Gao & Maro, 2010; de Rose, 2013) and 

thinner soils on the steepest hillslopes may cause less frequent landsliding (Prancevic et al., 

2020). While the tectonic and topographic contributions are not quantified here, we posit that 
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over the orographic focusing of extreme rainfall is likely to be the primary climatic boundary 

condition that modulates erosion in the Himalaya.  

 

Conclusions  
 

We present a novel approach to merging high-temporal resolution GPM IMERG data 

with local rain gauge records combined with a multidimensional approach to defining storm 

characteristics that relate to rainfall triggered landsliding. In the central Nepalese Himalaya, 

storm characteristics that influence landsliding (intensity, duration, depth, and prior rainfall) vary 

with respect to distance from the physiographic transition and mirror gradients in seasonal 

rainfall totals, topography, and erosion. Precipitation variability and intensity is strongly 

influenced by orography: frequent and intense storm events occur over steep hillslopes with high 

relief at mid-elevations range, while storm events are longer and less intense (mm/hr) over the 

lower foothills and near the headwaters. The association of shallow soil and bedrock landsliding 

frequency with storm characteristics suggests that frequent, intense storms concentrated at mid-

elevations in the range are the primary climate drivers to hillslope erosion in the Himalaya.  
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Appendices 
 
Appendix A. Details on data collection and error consideration 
 
DHM rain gauge network details 
The Nepal DHM rain gauge network employs a mix of over 300 automatic tipping bucket rain gauges and 
standard manual rain gauges (Talchabhadel et al., 2016; Dahal and Hasegawa, 2008). The DHM relies on 
part-time employees to read the standard gauges every day at 8:45 am (03 UTC) and report the daily total 
rainfall in mm via email to the DHM office in Kathmandu. DHM manual gauges are advertised as 
standard 8” gauges used by the U.S. National Weather Service, consisting of a measuring stick, overflow 
can, collector funnel and measuring tube (Talchabhadel et al., 2016). Rain infiltrates the collector funnel 
and fills the measuring tube; if rainfall is exceedingly heavy, the overflow falls into the surrounding can. 
It is unclear how overflow rain is measured or if it measured, which may lead to considerable error in 
daily rainfall measurements during the monsoon season when we see heavy rain. Part-time DHM 
employees otherwise use the measuring stick to read daily rainfall from the collection tube. Automatic 
tipping bucket gauges are notably rare within the DHM gauge network, and many of them are stationed at 
higher altitudes (Talchabhadel et al., 2016).  
 
Each type of rain gauge assumes different sources of error. The World Meteorological Organization 
estimates a standard rain gauge error of 5% or 0.1 mm, whichever is greatest (Legates and Liberty, 1998). 
Gauges typically underestimate rainfall due to wind, evaporation, and the addition of water on the internal 
walls of the gauge when it is emptied. Strong winds associated with the summer monsoon likely 
contribute to underestimates during the monsoon season (Pollock et al., 2018; Rodda & Dixon, 2012), and 
topographic location has also been shown to influence rain gauge collection (Bookhagen and Burbank, 
2006; Barros et al., 2006; Roe 2005). All sources of gauge error can result in both random and systematic 
errors in rainfall measurement (Y. Chen et al., 2013). Another source for error in either type of gauge is 
the possibility that employees might not be reading and reporting daily rainfall at exactly 8:45 am every 
day, which could result in discrepancies between the two types of gauges and either over or 
underestimates of daily rainfall (Talchabhadel et al., 2016). 
 
Rain gauge precipitation data cleaning methods 
For many of the reasons listed above, the DHM gauge time series are often discontinuous and show long 
periods of time without reported data, or suspiciously long periods of time where zero rain was falling 
during the intense summer monsoon. These periods are likely due to reporting errors or instrumentation 
malfunction, and we consider any period longer than the minimum number of days of zero rainfall in the 
GPM time series within the DHM gauge timeseries to be a reporting error and replace those periods with 
NaN. In doing so, we splice the timeseries into one or more continuous timeframes. The longest period of 
continuous rainfall over the summer monsoon is the timeseries that we use for analysis, with the caveat 
that if this time window is less than 50% of the four-month monsoon season (June-September), we 
exclude that dataset from our analysis. During any given year, we use precipitation data from a minimum 
of 35 out of 46 rain gauge stations. 
 
GPM IMERG data details 
NASA’s gridded 30-minute, 0.1x0.1 degree Integrated Multi-satllitE Retrieval (IMERG) product for the 
Global Precipitation Mission (GPM) is a precipitation product available in *.tif file format from the 
NASA Precipitation Processing System (PPS) website for public use and research 
(https://storm.pps.eosdis.nasa.gov/storm/). The product gives global precipitation estimates every 30-
minutes in mm/hr from merged and intercalibrated microwave precipitation and microwave-calibrated 
infrared (IR) estimates. The final product is corrected, and standard error estimates computed with 
precipitation gauges (Huffman et al., 2019). We use the GPM IMERG 3B V06 Final run 30-minute 
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surface precipitation product in *.tif format and extract the precipitation timeseries for each grid cell that 
hosts a DHM rain gauge. We use the standard threshold of 0.1 mm/30-minutes (or 0.2 mm/hr) as the 
sensitivity limit of the IMERG data and assign all rainfall recorded as <0.1 mm as 0 mm of rainfall. 
 
ICIMOD Kyanjin rain gauge station in Langtang Valley, Nepal 
In addition to the DHM network, we use precipitation data from the Kyanjin rain gauge station installed, 
monitored and maintained by the International Centre for Integrated Mountain Development (ICIMOD) 
in collaboration with the DHM, located in Langtang National Park. This data is available for research use 
on ICIMOD’s website (http://rds.icimod.org/Home/DataDetail?metadataId=22464&searchlist=True). The 
Kyanjin station records 10-minute precipitation aggregated into reported hourly totals (mm). It is an 
automatic tipping bucket gauge with uncertainties of +/- 0.05 mm for total amount and +/- 6 mm/hr for 
rainfall intensities (see ICIMOD Kyanjin station Metadata Catalog pdf). 
We use the data from Kyanjin station because we prefer to have precipitation data from a rain gauge 
network that spans the length of the Melamchi Valley. The DHM does not report precipitation data for 
years 2010-2018 in the Langtang Valley, and without a station located in that region, our along-strike 
analysis of orographic precipitation along the Himalayas is poorly constrained north of the Melamchi 
Valley and relies on data pulled from stations located in the northwest Trisuli river basin (see main text, 
Figure 1). We use the Kyanjin station precipitation data to fill this spatial gap in the DHM rain gauge 
network. 
 
Scaling the IMERG data 
In the final run IMERG product, NASA corrects the 30-minute satellite data with monthly rain gauge 
records by multiplying a difference factor between total satellite precipitation and total rain gauge 
precipitation (Huffman et al., 2019). We adopt the same approach but on the daily scale. In the process of 
merging the DHM gauge and the IMERG data, there are periods of time when the rain gauge in question 
reads rainfall > 0 mm on any given day, but the GPM data reads 0 mm per day. In this instance, scaling 
the GPM data to match the gauge total results in a missing value; in this case, we treat the DHM rain 
gauge data as the “ground truth” framework but only use the available rainfall record of IMERG. These 
small instances of missing values account for up to 10% of the total rainfall during the monsoon season at 
any given station and result in a discontinuous time series. For the purposes of this analysis, we replace 
those missing values with zeroes to maintain a continuous time series and accept the source of error in 
identifying continuous storm periods. We also recognize that we potentially underestimate total monsoon 
rainfall by up to 26% in the most extreme cases and 5% on average (see Table S1). 
 
In summary, several sources of error are present in our precipitation dataset: (1) gaps in time of no 
reported data from the DHM gauges (ranges from the odd day to months), (2) suspiciously long periods 
of zero rainfall recorded by the DHM gauge, (3) by scaling the GPM data, we are left with a few days of 
NaN that we replace with zero rainfall and finally, (4) we crop incomplete time series so that we are 
handling the longest continuous series of rainfall and in doing so, ignore large portions of our 
precipitation dataset and risk losing information or biasing our final results with a smaller sample size. 
We attempt to rectify this by only using stations with at least 50% of the monsoon timeseries available.  
 
 
Appendix B. Clustering analysis and PCA 
 
The optimal number of clusters for our dataset is chosen using the “elbow criterion” derived from the 
common Elbow Method, which looks at the variance explained as a function of the number of clusters. 
The optimal number of clusters is shown by an “elbow” or discontinuity in slope shown in Figure S6, 
where variance explained is no longer improved with additional clusters. Here, we use 10 clusters based 
on the elbow criterion. Most extreme storm events during the summer monsoon fall into similar intensity-
duration space ranging from ~5-15 mm/hr and 30 minutes-10-hr durations, but the most extreme events 
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are outliers in terms of both intensity and duration, especially when considered in principal components 
space (see Figure S7). To account for these outliers and reduce scatter in each individual cluster, we use 
10 clusters (Figure S7), which each include 1-40 ERE’s. We then look at the distribution of cluster 
numbers at each rain gauge station over 2010-2018 and assign a dominant cluster number to the station 
based on the cluster (i.e., cluster 1, cluster 2, …cluster 10) that includes the majority of EREs registered at 
that station. This results in the dominant two clusters presented in the main text. However, the exact 
results vary with each iteration of clustering, and several stations at the transition from cluster A to cluster 
B fall into one or the other depending on the iteration. We attribute this to the complexity and variability 
of storms at the “transition zone” between two distinct regimes of rainfall. Our results do not change with 
analysis of 3-9 clusters. 
 
 
Appendix C. Landslide catalog and mapping protocol 
 
Our monsoon-driven landslide catalog encompasses landslides that happened during the monsoon (June-
September) between years 2010-2014. We intentionally limit our record to before 2015 to eliminate the 
legacy effects of the April 2015 Mw7.8 Gorkha earthquake. Landslides were hand-mapped by comparing 
pre- and post-monsoon high resolution photographs (Digital Globe Worldview-2 and -3 satellite 
imagery). The resolution of the imagery is on the order of 20-50 cm, allowing us to identify and map 
small landslides and debris flows with minimal scars and runout areas. Adjacent scar areas were mapped 
as separate landslides to avoid skewness introduced by amalgamation. Over higher elevation, cloud cover, 
lack of vegetation and glacially sculpted topography limited our ability to accurately map landslides. 
 
We compare landsliding to patterns in precipitation in 2D using a swath profile of landslide density. 
Landslide density is calculated as the total area of landslides (source and runout) divided by the total area 
of the inquiry zone in m2/km2. The “inquiry zone” is defined as 1-km wide bands running parallel to the 
range front (see main text Figure 1 for the swath boundary). The curve shown in main text Figure 3 is a 5-
km moving average of the binned densities. We combine all landslides from 2010-2014 into the same 
analysis to look at bulk density of monsoon-driven landsliding and to increase our sample size for signal 
strength. 
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Tables 
Station % total monsoon rainfall lost to scaling % complete monsoon timeseries (avg. 2010-2018)  IAT (hrs) 

Bahrabise 8.6 81.8 2.8 

Bahunipati 8.2 90.6 4.3 

Bhaktapur 4.6 94.1 6.3 

Changu Narayan 6.8 91.9 4.5 

Chapa Gaun 3.9 96.8 6.8 

Chautara 4.6 60.1 3.7 

Chisapani Gadhi 4.0 98.9 4.5 

Daman 5.6 37.0 5.6 

Dhap 10.0 86.6 3.4 

Dhulikhel 4.5 82.5 6.4 

Dhunche 6.6 80.4 3.5 

Dhunibesi 2.8 96.4 5.3 

Dolal Ghat 2.3 84.1 7.0 

Duwachaur 6.1 72.6 4.9 

Godavari 2.1 91.9 4.9 

Gumthang 12.8 80.8 3.0 

Jitpurphedhi 3.3 91.7 4.1 

Kakani 5.1 100 2.7 

Kathmandu Airport 4.2 99.3 5.1 

Khokana 3.0 99.3 7.1 

Khumaltar 4.2 97.6 7.2 

Kyangjin 7.2 33.3 12.8 

Lele 4.0 93.0 5.0 

Mandan 10.8 66.7 8.3 

Markhu Gaun 2.7 74.7 6.6 

Nagarjun 4.0 86.7 4.0 

Nagarkot 4.1 95.4 4.4 

Naikap 4.8 69.6 6.2 

Nangkhel 3.5 98.5 5.9 

Nawalpur 5.2 87.7 2.9 

Nuwakot 5.2 88.2 4.1 

Panchkhal 4.4 65.1 8.5 

Panipokhari 5.0 92.3 4.8 

Pansayakhola 8.3 87.3 2.6 

Sangachok 2.7 85.8 5.4 

Sankhu 8.0 78.1 4.3 

Sarmathang 6.7 89.5 1.7 

Sundarijal(Alapot) 5.3 96.6 3.8 

Sundarijal(Mulkharka) 4.2 96.3 3.2 

Tarke Ghyang 5.0 94.8 1.9 

Thamachit 9.2 86.2 5.7 

Thankot 2.5 93.6 5.6 

Thokarpa 7.3 84.1 4.1 

Tikathali 4.9 87.1 6.7 

Timure 8.8 76.0 8.1 

Table S1. Missing data statistics and inter accumulation times (IATs) reported as averages over 2010-

2018. 
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Table S2. PCA results including the loadings of each variable in each component as well as the standard 
deviation, proportion of variance and cumulative proportion of variance explained by each component.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Component 1 2 3 4 5 
Storm depth 0.605   0.488 0.628 

Storm 
duration 0.438 0.408 -0.729 -0.292 -0.158 

Storm 
intensity 0.160 -0.678 -0.114 -0.614 0.354 

Peak storm 
intensity 0.369 -0.564 -0.111 0.380 -0.624 

Rainfall 
prior to the 
storm peak 

0.529 0.236 0.664 -0.395 -0.259 

Standard 
deviation 1.600 1.372 0.583 0.384 0.262 

Proportion 
of variance 0.512 0.377 0.068 0.029 0.014 

Cumulative 
proportion 
of variance 

0.512 0.889 0.957 0.986 1.000 
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Figures 

Figure 1. (A) Locations of the Melamchi-Indrawati catchments in central Nepal (inset) and rain gauges 
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used in this study. The gridded GPM IMERG product is visualized as average rainfall intensity over a 

single monsoon period (e.g. 2014), and the dashed box indicates the bounds of the elevation swath profile 

shown in (B). The dark grey “physiographic transition” is a prominent change in topography, relief, 

precipitation, and channel gradient (Wobus et al., 2003, 2006). (B) NNE profile of average monsoon 

intensity (calculated as total rainfall volume over the monsoon period) measured by the rain gauge 

network and GPM IMERG data from 2010-2018 and with 95% confidence bounds. The peak in monsoon 

rain gauge data at ~55 km is similarly located to the peak in rainfall derived from long-term satellite 

records from TRMM2B31 data (Bookhagen and Burbank, 2006). 

 

 
Figure 2. Process of calibrating the IMERG data based on the rain gauge record (2) and defining storm 

periods (3) using inter-accumulation times. Storm periods integrate across dry periods of time < IAT (i.e., 

t3, t4). Five characteristics describe each storm event: average storm intensity, peak storm intensity, 

duration, depth, and prior rain to the storm peak. 
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Figure 3. Profile across the central Nepal Himalaya (A-A’ from Figure 1) showing orographic 

relationships between elevation, extreme rainfall event (ERE) intensity thresholds and landslide density. 

Rain gauge station locations are plotted with respect to elevation derived from a 30 m DEM. Landslides 

were mapped within the Melamchi watershed during the period of 2010-2014, prior to the 2015 Mw7.8 

Gorkha earthquake, and are potentially undercounted north of ~64 km due to unavailable imagery and/or 

cloud cover. The two primary clusters A and B are shown in orange and gray, respectively. ERE 

thresholds at each rain gauge station are fit with a smoothing spline interpolation for each monsoon year 

(2010-2018) shown in blue. Cluster A (orange) is collocated over the highest ERE thresholds and a peak 

in monsoon-driven landsliding (red). The approximate location of the physiographic transition (Wobus et 

al., 2006) coincides with the southern boundary of cluster A. 
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Figure 4. (A) Principal components analysis (PCA) biplot with variables axes shown in red and clusters 

A and B shown in orange and gray, respectively. The same color scheme is used in (B), where individual 

EREs are plotted with respect to the duration and average intensity of each event. A global landslide 

threshold (Guzzetti et al., 2008) and a Himalaya-specific landslide threshold (Dahal & Hasegawa, 

2008) are also plotted. A small number of storms fall above the Himalaya-specific threshold. 
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Figure S1. Bedrock geology of the Melamchi-Indrawati Valleys, central Nepal (Dhital, 2015), which is 
almost exclusively the Higher Himalayan crystalline sequence of gneiss and migmatite. 
 
 

 
Figure S2. Example daily timeseries from station Naikap showing both the DHM rain gauge data (blue) 
and the summed 30-minute IMERG data (orange). In this instance, rain gauge data exists for August-
September (50% of the monsoon), and so this station was not included in the 2018 analysis because the 
sample size of storms is too small to adequately define a 90th percentile and EREs. Also note that on most 
days, the IMERG data overestimates rainfall at this station, which is located south of the Melamchi 
Valley near Kathmandu. 
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Figure S3. Frequency distribution histograms of periods of consecutive days of 0-rainfall, where the x 
axis is the number of consecutive days, and the y axis is the frequency of those periods (for every station 
in our dataset for the year 2018). The dashed red line indicates the maximum dry period in the IMERG 
data (here, 10 days). We apply this threshold to the gauge data to eliminate periods where rain gauges 
recorded 0 rainfall but were likely not working during that time.  
 

 
Figure S4. Example daily timeseries at station Tarke Ghyang with DHM rain gauge data (red) and scaled 
IMERG data (cyan). Note the unfilled days where the IMERG data read 0-rainfall (and therefore could 
not be scaled). We only use IMERG data when it is available, and so these periods are considered 0 
rainfall and account for a 1.67% underestimation of gauge rainfall (mm) for this monsoon year and at this 
station. 
 

 

 



 28 

Figure S5. Example distributions of storms at stations Tarke Ghyang and Sangachok, where storms are 
binned with respect to average intensity (mm/hr). We fit a lognormal pdf to the storm distributions and 
define any storm that falls above the 90th percentile (pink dashed line) as an extreme rainfall event (ERE). 
 
 

 
Figure S6. Elbow analysis determining the appropriate number of clusters for our dataset (10). 
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Figure S7. Profile figure of topography, threshold ERE rainfall and spatial distribution of clusters A and 
B (same as Figure 3, main text) for each year of our analysis (2010-2018). Here we show the ERE 
thresholds defined at each gauge (dark blue dots) for each year to demonstrate that our smoothing spline 
interpolations (blue lines) fit the threshold data well. 
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Figure S8. Intensity-duration plot of all 2010-2018 EREs, plotted with respect to the peak 30-minute 
intensity of the storm event over its duration. Landslide thresholds are plotted at 30-minute intensity 
(from Dahal and Hasegawa, 2008; Guzzetti et al., 2008). 
 
 

 
Figure S9. EREs plotted with respect to timing in the monsoon season, colored by cluster. We observe no 
correlation with cluster and timing; EREs in either cluster are likely to occur at any point during the 
monsoon season. 


