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A lot of foundational work in formal epistemology proceeds under the assumption that
subjects have precise credences. The traditional requirement of probabilistic coherence
presupposes that you have precise credences, for instance, and it says that your precise
credence function must satisfy the probability axioms. The traditional rule for updating
says that when you get evidence, you should modify your precise credence function by
conditionalizing it on the information that you learn. Meanwhile, advocates of impre-
cise credences challenge the assumption behind these rules. They argue that your partial
beliefs are best represented not by a single function, but by a set of functions, or represen-

tor.1 The move to imprecise credences leaves many traditional requirements of rationality
surprisingly intact, as fans of imprecise credences often simply reinterpret these rules as
applying to the individual functions in your representor. In order for your imprecise
credences to be rational, each member of your representor must satisfy the probability
axioms. In order for you to update rationally, your later representor must contain just
those functions that result from conditionalizing each member of your representor on the
information you learn.2

However, for agents with imprecise credences, the requirements of rationality needn’t
take this form. Whether you are rational might just as easily depend on global features
of your representor, features that can’t be reduced to each member of your representor
having a certain property. Global features of your representor are like the properties
attributed by collective readings of predicates such as ‘lift the piano’. What it takes for a
group of people to lift a piano is not the same as what it takes for each individual member
of the group to lift it. Similarly, what it takes for an imprecise agent to be rational might
not be for each member of her representor to satisfy familiar constraints on precise
credence functions. To take the point further, imagine a band director commanding
a marching band to spread out to fill a football field. This command is global in an
especially strong sense—namely, no individual could possibly satisfy it. Similarly, for
fans of imprecise credences, the requirements of rationality could in principle include
rules that no precise agent could possibly satisfy.

This paper is an extended investigation of global rules of rationality. Some rules
surveyed in this paper are rules analogous to the command to lift a piano, and some
are analogous to the command to spread out to fill a football field. In section 1, I state

*I am grateful to Eric Swanson for several insightful comments that prompted the writing of this paper,
and for many subsequent conversations about the central ideas in it. Thanks also to Jim Joyce, Teddy
Seidenfeld, and an anonymous referee for helpful discussion.

1The term ‘representor’ is from van Fraassen 1990. For early discussions of imprecise credence models,
see Smith 1961, Levi 1974, and Williams 1976.

2This updating rule is part of the definition of an imprecise probability model in the sense of Joyce

2010. For further discussion, see the literature cited in footnote 31.
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formal definitions for both of these kinds of global constraints, and I address relevant
questions about how to interpret the formalism of imprecise credences. In the remainder
of the paper, I describe three applications of global constraints, using my ideas to solve
problems faced by fans of imprecise credences. Section 2 discusses cases in which it
seems like imprecise agents are forced to make bad choices about whether to gather
evidence. Section 3 discusses the problem of belief inertia, according to which certain
imprecise agents are unable to engage in inductive learning.3 Finally, section 4 answers
the objection that many imprecise agents are doomed to violate the rational principle of
Reflection.4 These three applications are modular enough that readers interested in one
particular problem may skip to my discussion of it after reading section 1.

A note of clarification: in discussing global requirements of rationality, I am playing
a defensive game on behalf of fans of imprecise credences. I am not aiming to prove
that imprecise credences are sometimes rationally required, or even that they are ratio-
nally permissible. Rather, I am aiming to demonstrate that fans of imprecise credences
have more argumentative resources at their disposal than previously thought, resources
brought out by the observation that the rules of rationality could be global in character.
Imprecise credence models can support a much broader range of rational requirements
than precise credence models, and fans of imprecise credences can benefit from under-
standing this flexibility and taking better advantage of it.

1 Two notions of globalness

Let a representor be a set of probability measures, and let a constraint be a set of
representors. We define the notion of a pointwise constraint as follows:

C is pointwise if and only if: there is some set of probability measures S such that
for every representor R, R ∈ C if and only if R ⊆ S.

When a constraint is pointwise, we can figure out whether it contains a representor just
by testing to see whether every probability measure contained in that representor has
a certain property. For example, say that you have .5 credence that a certain fair coin
will land heads, although your credences in other propositions are less precise. Then
your representor will be a member of a certain constraint, namely the set of representors
whose members agree that it is .5 likely that the coin will land heads. This is a pointwise
constraint, satisfied by your representor in virtue of the fact that every one of its members
assigns .5 probability to the coin landing heads.

With this notion in hand, we can define our first notion of globalness:

C is global if and only if: C is not pointwise.

For example, consider the set of representors that contain at least one probability measure
that assigns .5 to the coin landing heads. This constraint does not correspond to a test

3For an introduction to the problem of belief inertia, see §3.2 of Bradley & Steele 2014.
4For a prominent statement of this objection, see White 2010.
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on the individual members of a representor, as evidenced by the fact that a representor
can satisfy this constraint, while a proper subset of that same representor fails to satisfy
it. Pointwise constraints are like distributive readings of predicates, which are satisfied
in virtue of every member of a group having a certain property, while global constraints
are more like collective readings.5

In order to spell out another useful characterization of this first notion of globalness,
we must make a small detour and say more about how to interpret the formalism of
representors and constraints. What exactly does your representor represent? This ques-
tion is best answered by analogy. According to a traditional model of full beliefs, you
believe a proposition just in case it contains every world that is doxastically possible for
you.6 Analogously, your representor can be used to model your probabilistic beliefs—that
is, your credences, conditional credences, comparative probability judgments, and so on.
We can think of these probabilistic beliefs as attitudes toward sets of probability spaces,
or probabilistic contents.7 For instance, you have .6 credence that Jones smokes in virtue
of standing in the belief relation to a certain set of probability spaces, namely those
that assign .6 probability to the proposition that Jones smokes. Just as you believe a
proposition if and only if it contains every one of your doxastic possibilities, you believe
a probabilistic content if and only if it contains every member of your representor. For
instance, you have .6 credence that Jones smokes if and only if every member of your
representor assigns .6 probability to the proposition that Jones smokes.8

Just as a set of worlds can represent your full beliefs, and your representor can represent
your probabilistic beliefs, these same models can also represent another doxastic attitude.
Given any content such that you could believe it or believe its complement, there is also a
third attitude that you can hold toward that content—namely, the attitude of suspending
judgment. As Friedman 2013 convincingly argues, suspending judgment is a genuine
attitude, not the mere absence of belief or disbelief. As Friedman puts it, suspending
judgment about a content is an attitude that “expresses or represents or just is [your]
neutrality or indecision” about that content (180). According to traditional models of full
belief, you suspend judgment about a proposition just in case it contains some but not
all of your doxastic possibilities. According to imprecise credence models, agents with
imprecise credences suspend judgment about probabilistic contents.9 Levi 1980 describes
this interpretation of imprecise credence models by saying, “[c]redal ignorance entails
suspension of judgment between alternative systems of evaluations of hypotheses with
respect to credal probability” (185). As Kaplan 2010 puts it, imprecise credence models

5For an overview of the distributive–collective distinction, see Champollion 2020, §2–3.
6Classic discussions of this model of belief include Hintikka 1962, Stalnaker 1984, and Lewis 1986a.
7For an extended defense of the claim that probabilistic beliefs are attitudes toward probabilistic con-

tents, see §1.2–3 and §3.6 of Moss 2018.
8In the rest of this paper, for sake of simplicity, I will talk about sets of probability measures rather

than sets of probability spaces. Although probabilistic contents are defined to be the latter rather
than the former in Moss 2018, this difference does not matter for my arguments. Also, I set aside
potential differences between what is represented by a probability measure and by its singleton set,
assuming that the belief states of precise agents may be represented by either object.

9Although this is my preferred interpretation of imprecise credence models, there are notable alterna-
tives which I am setting aside for present purposes. For discussion, see §2.10.3 of Walley 1991.
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represent “a doxastic option, indecision, whose cogency orthodox Bayesian Probabilism
wrongly refuses ever to countenance” (49). To be more specific, you suspend judgment
about a probabilistic content just in case it contains some but not all of the probability
measures in your representor. For example, suppose you are wondering whether it is at
least .6 likely that Jones smokes. If you do not know whether it is at least .6 likely that
she smokes, you may want to avoid taking a stand on this probabilistic question. In order
to suspend judgment about it, you must have some representor members that assign at
least .6 probability to Jones smoking, as well as some representor members that do not.
Imprecision just is the suspension of probabilistic judgment.

Having spelled out this interpretation of imprecise credence models, we can identify
a second useful characterization of the notion of a pointwise constraint defined above.
A pointwise constraint contains the representors of all and only those agents who believe

a certain probabilistic content. By the definition given above, a constraint is pointwise
just in case it is the power set of some set S of probability measures. Being a member of
S is the test that each member of your representor must pass in order for your representor
to satisfy the constraint. When each member of your representor is indeed contained in
the set S, that just amounts to saying that S is a probabilistic content that you believe.

In addition to identifying certain constraints as global, we can also identify a special
subset of global constraints, namely those that do not contain the representors of any
precise agents.10 These constraints are global in an especially strong sense:

C is strongly global if and only if: for all R ∈ C, |R| > 1

All other global constraints are merely weakly global :

C is weakly global if and only if: C is global, and for some R ∈ C, |R| = 1

Some properties of groups—filling a football field, for instance—are properties that only
groups can have. Strongly global constraints are like these properties. By contrast,
weakly global constraints are like the property of lifting a piano. Although groups can
lift pianos, so can very strong individuals. But the property of lifting a piano is still
global in an interesting sense—namely, because a group does not have this property in
virtue of each member of the group having it.

A word of caution: although it can be helpful to compare global constraints and
collective readings of predicates, it is important not to overstate the analogy between
them. For instance, one might at first be tempted to assume that any global constraint
must contain at least one non-singleton set. But this assumption is false. For instance,
consider the set of representors containing exactly one probability measure—that is, the
constraint corresponding to the rational requirement to have precise credences. This set is
a global constraint. Having exactly one measure in your representor does not involve each
of your representor members having a certain property. The notion of a global constraint
essentially depends on the richness of imprecise credence models, but not because every
global constraint must contain the representor of some imprecise agent.

10Any non-empty constraint of this sort must be global, since any non-empty pointwise constraint will
contain some precise credence function(s)—namely, the representor(s) of each precise agent who
believes the corresponding probabilistic content.
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2 The problem of cheap evidence

In sections 3 and 4, I use the foregoing notions of globalness to solve well-known problems
for imprecise credences. But first, I want to introduce and address a serious problem
that has not been widely discussed in the literature. The problem is that without global
constraints on rationality, imprecise agents will be forced to make questionable decisions
about whether to gather evidence.

2.1 Phone a Friend

Consider the following example:

Phone a Friend : You are about to be offered a chance to guess whether p
is true. If your guess is correct, you will win 100 dollars. If your guess is
incorrect, you will lose 100 dollars. Also, before you face this offer, you have
the option of paying 20 dollars right now to phone a friend and find out
whether p is true.

Suppose that you are certain that if you phone a friend and find out whether p is true,
you will guess accordingly. What if you decide not to phone a friend? Let Later p be
the material conditional proposition that if you remain uninformed, you will later guess
that p is true. Let Later not-p be the proposition that if you remain uninformed, you
will guess that p is not true. Suppose that your representor contains just two probability
measures, m1 and m2, and that these measures have the following features:

m1(p) = .99, m1(Later p) = 1, m1(Later not-p) = 0

m2(p) = .01, m2(Later p) = 0, m2(Later not-p) = 1

The members of your representor strongly disagree about the likelihood of p and also
about the likelihood that you will later guess that p is true. Their opinions about how
you will act reflect their first-order credences that determine how you should act. This
sort of dependence in your imprecise credences is described and defended by Williams

2014 in response to another diachronic decision puzzle. As Williams puts it, the idea is
that “each credence assumes that the agent will do what is rational” by the lights of that
credence function (26)—which in this case, means guessing that p is true just in case it
is likely that p is true.

Unfortunately, Phone a Friend presents a problem for imprecise credence fans. Ac-
cording to each member of your representor, you should not pay 20 dollars to find out
whether p is true. That’s because according to each representor member, the expected
utility of foregoing the phone call and making an uninformed guess is 98 dollars, whereas
the expected utility of making an informed guess is merely 80 dollars. As a result, al-
most every decision theory for imprecise agents will say that it is impermissible for you
to make an informed guess. As Joyce 2010 explains, there is a “consensus among pro-
ponents of the imprecise model” that the rules for rational decision making “should never
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recommend one act over another when every member of your committee says that the
utility of the latter exceeds that of the former” (311). Since your representor members
unanimously agree that you ought to forego the phone call, it follows that you ought to
forego the phone call.

This is a counterintuitive result. Although the members of your representor agree
that you should make an uninformed guess about whether p is true, they have wildly
divergent opinions about the expected value of particular options that you will later face,
such as the act of guessing that p is true. In light of this fact, it is intuitive to think that
rationality should at least permit you to gather evidence that would settle this dispute
and tell you what to guess in order to win 100 dollars. Call this the problem of cheap

evidence. To sum up, it ought to be permissible for an imprecise agent to pay for evidence
that will help her make up her mind about decisions, as long as the evidence is cheap
enough to be worth it. But absent any relevant constraints on rational credences, it is
unclear how to secure this result.11

2.2 Convexity to the rescue?

How should the fan of imprecise credences respond? There are a couple of options, both
of which involve endorsing global requirements on imprecise agents, rules that forbid
rational agents from having a representor containing only m1 and m2. The first require-
ment is a rule proposed by Levi 1980—namely, that your representor must be convex in
the following sense:

R is convex if and only if: for all f, g ∈ R and 0 ≤ λ ≤ 1, λf + (1− λ)g ∈ R

A convex representor contains all linear averages of its members. As a result, the cre-
dences assigned by the members of a convex representor take a special form. Where R
is a representor, and p is a proposition, let us define R[p] =df {m(p) : m ∈ R}. Speaking
loosely, R[p] is “the imprecise credence assigned by R to p.” If R is convex, then for any
proposition p, R[p] will be an interval of real numbers.

The set of convex representors is a global constraint. A representor can be convex
while a proper subset of it is not, and so the constraint of convex representors is not
the power set of any set of probability measures. Among the many global requirements
that might govern imprecise agents, convexity is certainly one of the first that comes to
mind.12 Roughly speaking, the idea of this requirement is that your representor members
must “fill in any gaps in the football field.” In other words, if your representor includes
some probability measures, it must also include all those between them.

11The problem of cheap evidence is distinct from the problem of free evidence discussed in the literature.
The former problem is that it is intuitively permissible for agents to pay for certain evidence, whereas
the latter problem is that it is intuitively obligatory for agents to gain evidence that they do not have
to pay for. The former problem arises when each representor member is confident that the imprecise
agent will make decisions that are correct from her perspective, whereas the problem of free evidence
resolves itself under these same conditions, as discussed in §3.1 of Bradley & Steele 2016.

12Convexity is championed by Levi 1980, ch. 9; it is also an assumption of the decision theory defended
in Gilboa & Schmeidler 1989 and the maximality theorem proved in Walley 1991.
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Requiring agents to have convex credences forestalls our counterintuitive verdict about
Phone a Friend, and indeed, it provides a general strategy for solving problems of this
sort. As long as your representor is convex, any pair of confident representor members
like m1 and m2 will be accompanied by a moderate probability measure that assigns .5 to
the proposition p that you might be acting on later. According to this third probability
measure, the later option to guess that p is worth much more if you first find out whether
p is true, and so you should be willing to pay a lot to gain that information. As long
as your representor contains moderate probability measures, you will not be rationally
required to forego gathering evidence in cases like Phone a Friend.

Since the convexity requirement is endorsed by some imprecise credence fans, it is
important to appreciate that it solves the problem of cheap evidence. However, the
requirement itself is highly controversial. The most prominent argument against the re-
quirement is due to Jeffrey 1987. According to Jeffrey, you can judge that propositions
are irrelevant to each other without having settled opinions about either. For instance,
you can be certain that whether there is water on Mars is independent of whether a
certain coin landed heads, even if you have maximally imprecise credences about both
propositions. But as Jeffrey points out, the convexity requirement precludes rational
agents from having this particular combination of beliefs:

The bare judgment of irrelevancy would be represented by the set I =
{P |P (AB) = P (A)P (B)}, but by no proper subset, and by no one member.
Levi disallows such judgments: he requires the sets that represent indetermi-
nate probability judgments to be convex. (586)

The set of probability measures representing the bare judgment of irrelevancy is not
convex, and so Levi says that it cannot constitute the representor of any rational agent.

As I see it, Jeffrey’s observation alone does not yet constitute a strong argument against
the convexity requirement. Fans of convexity could reasonably complain that it is unre-
alistic to assume that a rational agent could believe a bare judgment of irrelevancy about
some propositions while lacking any other belief whatsoever. But on behalf of opponents
of convexity, I want to propose a way to strengthen Jeffrey’s argument, challenging con-
vexity without making this unrealistic assumption. Here is a much weaker assumption:
a rational agent can believe that A and B are irrelevant to each other, while still having
imprecise credences in A and B. For fans of imprecise credences, this certainly seems
like an unobjectionable combination of belief states, and yet the convexity requirement
rules out any such state as rationally impermissible. The set I defined by Jeffrey has
the following significant feature: for any R ⊆ I, R is convex only if one of the following
holds: all of its members assign the same credence to A, or all of them assign the same
credence to B.13 Hence the convexity requirement entails that any rational agent with a
representor in I must have a precise credence in at least one of A or B.

To sum up, requiring representors to be convex would indeed solve the problem of
cheap evidence. Levi and other proponents of convexity should welcome this motivation
for their global constraint. But given our strengthened challenge for convexity, one might

13See claim 1 of the appendix.
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also reasonably doubt whether imprecise agents are rationally required to have convex
representors.14

2.3 A global independence requirement

In light of the controversial nature of the convexity requirement, I want to state an
additional solution to the problem of cheap evidence. Rather than faulting your credences
in p for not being convex, we can instead fault them for being intimately connected with
your credences about how you will later act. Imagine filling out the details of the Phone a

Friend case by saying that there is no fact of the matter that settles exactly which member
of your representor will determine how you respond in any given decision situation. If
that is right, then there is no evidence that could settle whether you will guess that p
if you do not phone a friend. Even from the perspective of an individual member of
your representor, there is no more reason to suppose that you will later guess correctly
than that you will guess incorrectly. Accordingly, rationality should require you to have
imprecise credences about how you will guess—and moreover, it should require these
credences to be independent of your first-order beliefs about p.

How should we understand this independence requirement? Crucially, the requirement
does not involve making the sort of bare judgment of irrelevancy discussed by Jeffrey

1987. In Jeffrey’s sense, you do believe that p and Later p are irrelevant to each other
in Phone a Friend. As you decide whether to phone your friend, each member of your
representor assigns an extreme credence to Later p. Hence each member of your repre-
sentor considers p and Later p to be trivially independent, so your representor is indeed
contained in the following constraint:

Ip =df {R : R ⊆ {m|m(p∧Later p) = m(p)m(Later p)}}

We cannot solve the problem of cheap evidence merely by requiring your representor to
satisfy this pointwise constraint.

By contrast, a global interpretation of the relevant independence requirement yields a
successful solution to our problem. Consider the following requirement:15

Global Independence For any probability measures m1 and m2 in your represen-
tor, there must be a third representor member m3 such that
m3(p) = m1(p), and such that m3 is certain that you will
later act as prescribed by your currently having m2 as your
credence function.

When you satisfy Global Independence, it is as if your representor members themselves
have imprecise credences about how you will act. Strictly speaking, of course, we cannot

14For additional critical discussion of convexity, see Kyburg & Pittarelli 1996.
15A number of global notions of independence could be used to solve our puzzle. See Moss 2015 for

a precursor to the above independence requirement, as well as discussion of another puzzle that it
could be used to solve. For further discussion of global notions of independence, see §3 of Couso

et al. 2000 and §3.1 of Cozman 2012.
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require the precise functions of your representor to suspend judgment about anything.
But Global Independence imposes a functionally equivalent requirement—namely, that
any precise credence function in your representor is accompanied by many counterpart
functions, each of which is certain that you will act on the recommendations of a different
representor member. The set of these counterpart functions is the representor of an
agent who suspends judgment about how you will act. Rather than demanding that
you believe that p and Later p are independent, Global Independence demands that you
suspend judgment about each proposition in light of the other. This fact explains why
Global Independence is a global requirement of rationality—namely, because it does not
require probabilistic belief, but rather the suspension of probabilistic judgment.

By contrast with Ip, the constraint of Global Independence is not satisfied by your rep-
resentor in Phone a Friend. We could produce a representor that satisfies this constraint
by adding the following probability measures to your representor:

m3(p) = .99, m3(Later p) = 0, m3(Later not-p) = 1

m4(p) = .01, m4(Later p) = 1, m4(Later not-p) = 0

But as soon as these probability measures are added, the act of declining to gather ev-
idence about p will no longer have maximal expected value according to every member
of your representor. According to m3 and m4, the expected utility of making an unin-
formed guess is -98 dollars, whereas the expected utility of making an informed guess is
80 dollars, so there is no longer any simple argument for the claim that you are rationally
required to forego gathering evidence.

Global Independence serves as a useful template for independence requirements on im-
precise credences, applicable in cases where independence should be understood in terms
of suspending judgment, rather than believing a probabilistic content that represents ir-
relevancy. Phone a Friend motivates one rational requirement of this sort—namely, the
requirement that your first-order credences be independent of your credences about your
future actions. Of course, your predictions about your actions may sometimes depend on
your first-order beliefs—such as, for instance, when you are offered a bet at long odds on
the proposition that you will at some point accept at least one bet at long odds. But in
many normal cases, an imprecise agent will not have much evidence about which mem-
bers of their representor will end up governing their actions. In the absence of relevant
evidence, an agent will be rationally required to suspend judgment, and they will thereby
avoid the problem of being required to forego sensible acts of evidence gathering.

3 The problem of belief inertia

Fans of imprecise credences sometimes suggest that rational agents can have radically

imprecise credences in a proposition, i.e. credences that span the range from 0 to 1. At
first glance, however, this appears to raise a problem. In certain circumstances, rational
agents with radically imprecise credences will retain those credences, no matter what
evidence they conditionalize on. In other words, some radically imprecise credences are

9
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inert with respect to relevant evidence.16 As Walley 1991 observes, “[i]f the vacuous
previsions are used to model prior beliefs about a statistical parameter for instance, they
give rise to vacuous posterior previsions” (93). Rinard 2013 gives an example:

[C]onsider an urn about which you know only the following: either all the
marbles in the urn are green (H1), or exactly one tenth of the marbles are
green (H2). . . if your initial credence in H1 is (0, 1), it will remain there. It
will be impossible for you to become confident in H1, no matter how many
marbles are sampled and found to be green. (160–1)

In this example, your imprecise credence in H1 will be inert with respect to the proposi-
tion that all of the sampled marbles have been green, no matter how many marbles have
been sampled. In this sense, having radically imprecise credences can preclude inductive
learning. And yet, it seems rationally impermissible for an agent to be incapable of
learning from experience. As White 2010 puts the point, “Maximally mushy credences
are immovable! This result is entirely unacceptable” (184). This apparent problem for
fans of imprecise credences has come to be known as the problem of belief inertia.17

In response to the problem of belief inertia, Joyce 2010 proposes that rational impre-
cise credences must satisfy two constraints:

Perhaps the right way to secure inductive learning is to sharpen your credal
state by (a) throwing out all the pigheaded committee members. . . and (b) si-
lencing “extremist” elements by insisting that each committee member assign
a credence to [H1] that falls within some sharpened interval. (291)

The exact details of this proposal do not matter for our purposes. The point is that Joyce
is attempting to derive a global requirement of rationality from pointwise requirements.
The idea is that there are certain rational constraints on precise credence functions,
namely constraints against pigheaded and extremist credences. Fans of imprecise cre-
dences should endorse these requirements as constraints on the individual members of
your representor. According to Joyce, any representor satisfying these pointwise con-
straints will also satisfy the constraint of not being inert with respect to assigning radi-
cally imprecise credences to a proposition.

Unfortunately, Vallinder 2018 demonstrates that Joyce’s proposal does not solve the
problem of belief inertia. Vallinder produces a representor that satisfies the pointwise
constraints that Joyce proposes, although it is still incapable of inductive learning. The
crux of Vallinder’s argument is that you can be stubborn in your credences without be-
ing maximally imprecise. Even in the absence of pigheaded and extremist representor

16Formally, a representor R is inert with respect to a constraint C and a set of propositions E if and
only if for all p ∈ E, {m|p : m ∈ R} ∈ C, where m|p is the result of conditionalizing the measure m

on the proposition p. The set E is often implicitly determined by context to be the set of evidence
propositions that an agent might learn.

17This terminology is due to Bradley 2012, though the problem is widely discussed by earlier authors.
For a classic discussion of belief inertia, see §13.2 of Levi 1980. For more recent statements of
the problem, see Weatherson 2008, §4.2; Bradley 2012, §4.6.3; Rinard 2013, p. 160ff.; and
Vallinder 2018.
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members, your credences can be inert with respect to moderate imprecise credence as-
signments. Vallinder concludes that the problem of belief inertia remains, since “even
this weaker form of belief inertia means that no matter how much evidence the agent
receives, she cannot converge on the correct answer with any greater precision than is
already given in her prior credal state” (1216).

How, then, should imprecise credence fans solve the problem of belief inertia? As
I see it, the correct response does not involve deriving anti-inertia requirements from
pointwise requirements of rationality. Anti-inertia requirements on imprecise credences
are indeed intimately connected with rational requirements on precise agents, but not
because the former consist in the pointwise application of the latter. Rather, many anti-
inertia requirements on imprecise agents are genuinely global requirements. They are
not derived from rules for precise agents, because they are themselves the direct analogs
of traditional rules against inert belief states.

To back up a step, note that in discussions of rational requirements governing full
beliefs, it is often taken for granted that you should not be stubborn in your beliefs.
As Quine 1951 puts it, “no statement is immune to revision” (40), not even obvious
statements such as the law of excluded middle. This statement is generally interpreted
as a normative claim. In order to be a rational agent, none of your beliefs should be so
strong that you would retain it in the face of any counterevidence whatsoever. In short,
you should be open-minded rather than stubborn.

When it comes to agents with precise credences, the most familiar rule against stub-
bornness is the rule of Regularity, which requires rational agents to assign positive cre-
dence to any epistemically possible proposition. Arguments for Regularity often take it
for granted that rational agents should be willing to revise their beliefs. Here are some
examples:

Absolute certainty is tantamount to a firm resolve to never change your mind
no matter what, and that is objectionable.18

[An agent] who started out with an irregular credence function (and who
then learned from experience by conditionalizing) would stubbornly refuse to
believe some propositions no matter what the evidence in their favor.19

The idea behind these arguments [for Regularity] is that being doxastically
stubborn might make us miss out on good beliefs that we could have in the
future, whereas being open-minded allows us to have those beliefs.20

Moral: Keep the mind open, or at least ajar.21

18
Lewis 1981, p. 14.

19
Lewis 1980, p. 268.

20
Singer 2019, p. 291.

21
Edwards et al. 1963, p. 211.
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[R]egularity. . . is meant to capture a form of open-mindedness and respon-
siveness to evidence.22

To sum up, advocates of Regularity typically defend it by appealing to the intuitive
thought that rational agents should be open-minded rather than stubborn.23

This intuitive thought supports other rational requirements on precise agents as well.
For instance, a natural extension of Regularity would not only forbid you from being
dogmatic about which propositions you believe with maximum confidence, but also forbid
you from being dogmatic about other probabilistic beliefs. Also, it is intuitive to think
that rational agents should not only be open to revising their beliefs, but also open to
revising other attitudes, such as the attitude of suspending judgment about a question.
Following Weatherson 2015, we can distinguish the following rational requirements:

Open-Minded Any time an agent is confident in a proposition,
there is some evidence she could get that would
make her lose confidence in it.

Evidence-

Responsive

For any proposition, there is some evidence the
agent could get that would make her confident in
it. (9)

Just as rational agents must be able to both gain and lose full beliefs, rational agents
must be able to both gain and lose probabilistic beliefs, such as attitudes of confidence.
Just as any thread might eventually be disentangled from your web of probabilistic belief,
many external threads might eventually be woven into it.

The traditional rule of Regularity governs precise agents. However, this rule against
stubbornness can be extended to imprecise agents, and the same goes for more general
rules against stubbornness. For any given constraint on imprecise credences, there is
a second constraint containing all and only those representors that are not inert with
respect to the first constraint. Rules against stubbornness are constraints of this second
sort, many of which are global constraints. For example, consider the constraint con-
taining representors of agents that believe that it is more than .5 likely that a certain
coin landed heads. Although this is a pointwise constraint, the set of representors that
are not inert with respect to it is a global constraint. Although believing that a coin
probably landed heads just amounts to each member of your representor assigning at
least .5 probability to the proposition that it landed heads, being such that you could

stop believing this content does not correspond to any pointwise test.24

Let us return to the problem of belief inertia. In his criticism of Joyce, Vallinder as-
sumes that when it comes to imprecise agents, the impermissibility of belief inertia must

22
Hájek 2019, §3.3.4.

23I am not defending Regularity in this paper. It is controversial whether an agent must satisfy Regularity
in order to avoid being stubborn; see Easwaran 2014 for an opposing view. The focus of my
discussion is the underlying assumption that rational agents should avoid being stubborn, as it is
this widely shared assumption that I want to extend to imprecise agents.

24See claim 2 of the appendix.
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be grounded in other rational requirements. But why should we accept this assumption?
When it comes to precise agents, rules against stubbornness are not grounded in more ba-
sic requirements. The rule of Regularity is compelling because it follows from the intuitive
idea that rational agents should be open-minded. Rules against inert credences—precise
or imprecise—can be defended on just the same grounds. The impermissibility of inert
credences is not derived from pointwise requirements, but from more general global prin-
ciples. The phenomenon of belief inertia is an instance of the broader phenomenon of
having stubborn imprecise beliefs, which are just as irrational as stubborn precise beliefs,
and for just the same reasons. It is a general fact that rational agents are not incapable
of learning, and it follows from this general fact that rational imprecise agents do not
have inert credences that are maximally imprecise.

4 Violations of Reflection principles

Like many rules of rationality, the principle of Reflection has traditionally been inter-
preted as imposing a constraint on the credence functions of precise agents. As introduced
by van Fraassen 1984, the principle states that your conditional credence in a propo-
sition, conditional on your assigning it credence r at some later time, must equal this
same real number r (244). In other words:

Precise Reflection Cr0(p|Cr1(p) = r) = r

As many authors have noted, this principle stands in need of qualification.25 Precise

Reflection should not govern your credences when you believe that you might forget
information, for instance, or when you fear that you might learn false information or fail
to update rationally. Briggs 2009 makes the helpful observation that a suitably qualified
version of Precise Reflection is simply a consequence of the Kolmogorov axioms, and so
the former may be considered just as unobjectionable as the latter.

In the context of Precise Reflection, Cr0 and Cr1 are precise credence functions, map-
ping propositions to real numbers. How should this principle be extended to constrain
representors, objects that are not even functions defined on propositions? At first glance,
this question might appear to have an obvious answer—namely, that Reflection con-
strains your current imprecise conditional credences in a proposition, given hypotheses
about your later imprecise credence in it. In other words, one might be tempted to
extend Reflection as follows:26

Value Reflection R0[p|R1[p] = S] = S

In support of Value Reflection, White 2010 says, “It is natural to suppose that if you
know that you will soon take doxastic attitude A to heads as a result of rationally

responding to new information without loss of information, then you should now take

25See Christensen 1991, Talbott 1991, Maher 1992, and Bovens 1995.
26Recall from section 2.2 that R[p] is defined as {m(p) : m ∈ R}. An imprecise conditional credence is

defined as follows: R[p|q] =df {m(p|q) : m ∈ R}.
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attitude A to heads. (This is a generalization of Bas van Fraassen’s (1984) Reflection
principle)” (178).27

However, Value Reflection poses a problem for fans of imprecise credences. It is gen-
erally accepted that rational imprecise agents can have credences that dilate, or become
less precise over time.28 But Value Reflection forbids imprecise agents from anticipating
rational dilation. For illustration, consider the following case from White 2010:

Coin Game. You haven’t a clue as to whether p. But you know that I know
whether p. I agree to write ‘p’ on one side of a fair coin, and ‘¬p’ on the
other, with whichever one is true going on the heads side (I paint over the
coin so that you can’t see which sides are heads and tails). We toss the coin
and observe that it happens to land on ‘p’. (175)

Suppose that at the start of the coin game, you have credence (0, 1) in p. If the coin
lands on ‘p’, some members of your representor will take this outcome as confirming heads

while others will take it as disconfirming heads, so after looking at the coin, you will come
to have credence (0, 1) in heads. The same thing will happen if the coin lands on ‘¬p’.
Since you know all this ahead of time, your earlier credences are a counterexample to
Value Reflection:

R0[heads |R1[heads ] = (0, 1)] = {.5} 6= (0, 1)

This counterexample has none of the usual trappings of traditional problems for Reflec-
tion. We can stipulate that you are certain that you will not forget information or update
on false information, for instance, and that you are certain that you will update your
representor by conditionalizing each member of it on the proposition that you learn. As
a result, one might be tempted to conclude that dilation is irrational, and that the same
goes for the imprecise credences that license this diachronic behavior.

How should fans of imprecise credences solve this problem? The correct diagnosis
does not involve rejecting the permissibility of your imprecise priors, nor the updating
rule that results in their dilation.29 Rather, we should reject the principle of Value

Reflection itself. At first glance, this principle may appear to be an uncontroversial
extension of Precise Reflection. But as I shall argue, Value Reflection is much stronger
than any principle supported by the normative facts that ground Precise Reflection. The
appropriate extension of Precise Reflection is a significantly weaker principle.

The idea of tempering Value Reflection in response to dilation examples is discussed
briefly by Schoenfield 2012 and Topey 2012. Both authors consider something like
the following substitute for Value Reflection:

Identity Reflection R0[p|R1 = X] = X[p]

27For similar remarks, see Schoenfield 2012 and Topey 2012.
28For an early discussion of the rational permissibility of dilation, see Seidenfeld & Wasserman 1993.
29

Bradley & Steele 2014 investigate alternative rules for updating imprecise credences and conclude
that no reasonable rule forbids rational dilation.
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Unlike Value Reflection, the principle of Identity Reflection is not violated by your Coin

Game credences. Before you look at the coin, you have an imprecise conditional credence
in heads, conditional on the hypothesis that you will later learn that the coin lands on
‘p’ and adjust your credences accordingly. The same goes for learning that the coin
lands on ‘¬p’. Conditional on either complete hypothesis about your later belief state,
your current credence in heads is (0, 1), matching the credence that you anticipate later
assigning to heads.

Although Identity Reflection is consistent with the permissibility of dilation, one might
worry that this version of Reflection is overly restricted in scope. Both Schoenfield and
Topey raise this concern:

We don’t want the principles that tell us how to defer to be applicable only in
cases where we know what the expert’s entire representor is, since we rarely
have such information. (Schoenfield 2012, 207)

It isn’t the case that any psychological difference renders Reflection inappli-
cable. If it were, Reflection would be applicable only when a person had
acquired perfect knowledge of her entire future credal state. And no one ever
has such knowledge. So, if Reflection is to be at all useful as a principle, some
psychological differences must be irrelevant to its applicability. (Topey 2012,
485)

It is true that an imprecise agent hardly ever knows what representor she will have at
a later time. But fortunately, this fact does not severely restrict the force of Identity

Reflection. Just like Precise Reflection, the principle of Identity Reflection imposes sig-
nificant rational constraints on your credences, even when you are not certain of your
future credal states. Identity Reflection imposes constraints on your conditional cre-
dences, conditional on hypotheses about various states that you think that you might
be in later. These constraints on your conditional credences indirectly constrain your
current unconditional credences. For example, suppose that you don’t know what your
later representor will be, but you have .5 credence that your representor will be Q and
.5 credence that it will be R, where Q[p] = (.1, .2) and R[p] = (.2, .3). From Identity

Reflection, it follows that you are rationally required to believe that p is more than .15
likely and less than .25 likely, which is indeed a substantive constraint on your current
credences.30

That being said, there is something right about the spirit of the complaints raised by
Schoenfield and Topey. Fans of imprecise credences should value Reflection principles
that are easy to operationalize. Identity Reflection constrains your credences in light of
your opinions about extremely strong hypotheses. A more valuable Reflection principle
would constrain your current credences in light of more targeted opinions about your
future credences—for instance, constraining your current imprecise credence in p in light
of your estimates of your future imprecise credence in that same proposition. Can we
find a Reflection principle of this sort?

30See claim 3 of the appendix.
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As we search for such a principle, it is again useful to pay attention to the distinction
between global and pointwise constraints. So far, we have seen that global constraints
can help solve several problems that cannot be solved with pointwise constraints. At this
point, though, the tables have turned. In extant discussions of Reflection principles for
imprecise agents, it is generally assumed that the correct analog of Precise Reflection for
imprecise agents will be a global requirement of rationality. For example, the principle of
Value Reflection corresponds to a global constraint on your current credences—namely,
the set of representors that treat your future self as an expert about the likelihood of
every proposition. In order to treat your future self as an expert about a proposition,
your credences might be required to spread out to fill a certain interval, for instance, and
this does not amount to the satisfaction of any pointwise constraint. Fans of imprecise
credences should part with this trend in the literature, endorsing a pointwise Reflection
principle. Notice that the principle of Precise Reflection is intimately connected the
procedure of updating by conditionalization, as Precise Reflection requires you to defer
to your future credences when you are certain you will conditionalize. Conditionalization
is generally extended to imprecise agents as a rule that targets the individual elements
of a representor, saying that your later representor must contain just those functions
that result from conditionalizing some member of your representor on the information
you learn.31 An accompanying Reflection principle for imprecise agents should similarly
target the individual elements of a representor. Here is the rough idea behind the correct
Reflection principle for imprecise agents: each individual member of your representor
should defer to her own later credences, as long as she is certain that you will update
rationally.

This rough idea cannot be implemented as it stands. It can be useful to talk as if
your representor members are independent agents, but this metaphor has its limits. An
individual member of your representor does not really have opinions about what her own
later credences will be. At any given time, your total belief state is represented by a set
of credence functions. There are no further facts about the cross-temporal identity of
members of this set. To extend the metaphor, an individual member of your representor
can only ever learn that her later credence in p will be contained in a certain set, so to
speak—namely, your later imprecise credence in p.

Fortunately, this modest constraint on individual members of your representor is strong
enough to yield a significant constraint on your imprecise credences. For instance, con-
sider the fact that as a precise agent, you violate Precise Reflection if you have .8 condi-
tional credence in p, given the proposition that your later credence in p is contained in
(.6, .7). Similarly, as an imprecise agent, you violate an important Reflection principle if
some member of your representor has .8 conditional credence in p, given the proposition
that your later imprecise credence in p is (.6, .7). This idea is captured by the following
general Reflection principle for imprecise agents:

31To be precise, the result of updating representor R on proposition p is {m(·|p) : m ∈ R and m(p) > 0}.
This rule is defended using a Dutch book argument in §6.4 of Walley 1991. See Grove & Halpern

1998 and Pires 2002 for further sympathetic discussion. For a broader survey of rules for updating
imprecise credences, see Gilboa & Schmeidler 1993.
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Pointwise Reflection R0[p|R1[p] = S] ⊆ S

In other words, every probability measure m in your current representor R0 must be such
that m(p|R1[p] = S) ∈ S. By contrast with other imprecise Reflection principles consid-
ered in this paper, Pointwise Reflection is a pointwise constraint, imposing a universal
condition on the probability measures in your representor.

Fortunately, just like Identity Reflection, the principle of Pointwise Reflection is con-
sistent with rational dilation. In Coin Game, you have .5 conditional credence in heads,
conditional on the proposition that you will later have (0, 1) credence in heads. This is
consistent with Pointwise Reflection, since the former credence is contained in the latter.
Meanwhile, unlike Identity Reflection, the principle of Pointwise Reflection is easy to
operationalize. The principle does not constrain your credences conditional on extremely
strong hypotheses about your future representor, but rather on hypotheses about your
later credence in one particular proposition. Moreover, Pointwise Reflection is a strong
rational requirement. For instance, in ordinary cases of learning where your credences
shrink rather than dilate, Pointwise Reflection ensures that evidence about your later
credences has a significant impact on your current credences. In the special case where S
is a singleton and your representor is non-empty, Pointwise Reflection entails the intuitive
rule of Value Reflection considered at the start of this section: R0[p|R1[p] = S] = S.

Pointwise Reflection is a natural generalization of Precise Reflection. As mentioned
at the start of this section, Briggs 2009 derives a qualified version of Precise Reflection

from the probability axioms, given modest background assumptions.32 As long as you
are certain that you will rationally update on veridical evidence, simply having a coher-
ent credence function will guarantee that you satisfy Precise Reflection. We can derive
a similarly qualified version of Pointwise Reflection from the same modest background
assumptions. As long as you are certain that you will rationally update on veridical
evidence, merely having a representor of coherent credence functions will guarantee that
you satisfy Pointwise Reflection.33 This result justifies the principle of Pointwise Re-

flection as a legitimate Reflection principle for imprecise agents, by contrast with overly
ambitious principles such as Value Reflection.

To sum up, although it is initially tempting to extend Precise Reflection to an ex-
tremely strong global requirement, the spirit of this principle is best captured by a
pointwise requirement. Distinguishing pointwise requirements from global requirements
has thus proven useful in both directions. Articulating global independence and iner-
tia constraints helps us solve some challenging problems for fans of imprecise credences.
Articulating a pointwise Reflection constraint has helped us solve another. The notion
of a global constraint is not only theoretically interesting, but also significant for the
development and defense of the epistemology of imprecise credences.

32See p. 186 of Weisberg 2007 for a similar result.
33See claim 4 of the appendix.
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Appendix

Claim 1. If R ⊆ {P |P (AB) = P (A)P (B)}, R is convex only if either |R[A]| = 1 or
|R[B]| = 1.34

Proof: Assume R is convex. Let P1, P2 ∈ R. By convexity, .5P1 + .5P2 ∈ R. Hence:

.5(P1(A) + P2(A)).5(P1(B) + P2(B)) = .5(P1(AB) + P2(AB))

P1(A)P1(B) + P2(A)P1(B) + P1(A)P2(B) + P2(A)P2(B) = 2P1(AB) + 2P2(AB)

P1(AB) + P2(A)P1(B) + P1(A)P2(B) + P2(AB) = 2P1(AB) + 2P2(AB)

P2(A)P1(B) + P1(A)P2(B) = P1(AB) + P2(AB)

P2(A)P1(B) + P1(A)P2(B) = P1(A)P1(B) + P2(A)P2(B)

P2(A)[P1(B)− P2(B)] = P1(A)[P1(B)− P2(B)]

P2(A) = P1(A)

Since P1 and P2 are arbitrary elements of R, it follows that |R[A]| = 1, as desired.

Claim 2. Copen =df {R : R is not inert with respect to {Q : Q[H] ⊆ [.5, 1]}} is global.35

Proof: It suffices to produce R1, R2 such that R1 /∈ Copen, R2 ∈ Copen, and R1 ⊆ R2. As
Vallinder 2018 demonstrates, for any given interval (c−, c+), there exists some repre-
sentor that is inert with respect to assigning that imprecise credence to H. Let R1 be a
representor that is inert with respect to assigning (.5, 1) to H, and let R2 be the union
of this representor and any singleton set containing a credence function that assigns less
than .5 to H. Since R2 /∈ {Q : Q[H] ⊆ [.5, 1]}, it follows that R2 is not inert with respect
to this constraint.

Claim 3. If R0[R1 = Q] = .5, R0[R1 = R] = .5, Q[A] = (.1, .2), and R[A] = (.2, .3), then
by Identity Reflection, R0[A] ⊆ (.15, .25).

Proof: Let m be an arbitrary element of R0. By the probability calculus, we have:
m(A) = m(R1 = Q)m(A|R1 = Q) +m(R1 = R)m(A|R1 = R)
m(A) = .5a+ .5b for some a ∈ (.1, .2), b ∈ (.2, .3)
m(A) ∈ (.15, .25).

Claim 4. Assume that the evidence propositions that the agent might learn form a finite
partition B, and that the agent is certain that conditionalization is the right updating

34This claim is mentioned in footnote 12 of Joyce 2010, but Joyce does not provide a proof of it.
35I adopt the simplifying assumption that the elements of a representor are given by the expected value

of a probability density function over possible chance hypotheses about the outcome of flipping a coin,
where H is the proposition that the coin lands heads. As mentioned in footnote 16, the inertness
relation is relative to a class of evidence propositions that is implicitly restricted by context. In this
case, the evidence propositions are potential outcomes of a series of observed flips of the coin.
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procedure.36 Assume that the following qualifications hold for every B ∈ B:
i. R0[R0[A|B] = R1[A|B]] = 1
ii.37 R0[B ≡ R1[B] = 1] = 1
iii. R0[R0[A|B] = S] = 1 if and only if R0[A|B] = S

Then R0[A|R1[A] = S] ⊆ S.

Proof: The argument closely follows the derivation of Qualified Reflection on p. 69 of
Briggs 2009. Let m0 be an arbitrary element of R0. Then we have:

m0(A|R1[A] = S) =
m0(A ∧R1[A] = S)

m0(R1[A] = S)

=

∑
B∈B:R1[A|B]=S m0(A ∧R1[B] = 1)
∑

B∈B:R1[A|B]=S m0(R1[B] = 1)

=

∑
B∈B:R1[A|B]=S m0(A|R1[B] = 1)m0(R1[B] = 1)

∑
B∈B:R1[A|B]=S m0(R1[B] = 1)

=

∑
B∈B:R1[A|B]=S m0(A|B)m0(B)
∑

B∈B:R1[A|B]=S m0(B)

By (i) and (iii), we have R0[A|B] = R1[A|B] for every B ∈ B. Hence we have:

∑
B∈B:R1[A|B]=S m0(A|B) =

∑
B∈B:R0[A|B]=S m0(A|B)

By the definition of R0[A|B], we can conclude that m0(A|B) ∈ S, and hence that
m0(A|R1[A] = S) ∈ S. Since m0 was chosen to be an arbitrary element of R0, it
follows that R0[A|R1[A] = S] ⊆ S, as desired.
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