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The following context will be organized as follows. Section 1 provides proofs for Theorem

1 and Property 1 from the main manuscript as well as some discussion about the re-weighting

estimation scheme. Section 2 includes extra simulation results. Section 3 includes extra note

about covariate and efficiency gain and one detailed extension of the proposed method to

address missing data problem.

1 Proof

Without lose of generality, among total n samples, we assume that the first m1pď nq subjects

in the study have auxiliary data, with a constant ρ defined as limnÑ8pm1{nq. In what follows,

we use Ẽpfq to denote the limit value of p1{m1q
řm1

i“1 fi, for any measurable random variable

f . The notation ‖¨‖ represents L2 norm. To facilitate the proof, we need the following

regularity assumptions that are broadly adopted in empirical likelihood (Qin and Lawless,

1994) and generalized method of moment (Newey and McFadden, 1994).

Assumption 1 E
 

gpDu
i ;βq

(

“ 0 if and only if β “ β0.

Assumption 2 Suppose that Du
i are independent and identically distributed, for i “

1, . . . , n. The function gpDu
i ;βq is twice continuously differentiable; E‖gpDu

i ;βq‖2 is finite;

and ‖B2gpDu
i ;βq{BβTBβ‖ can be bounded by some integrable function in the neighborhood

of β0 defined in Assumption 1.

Assumption 3 There exist values of parameter θ˚ such that Ẽ
 

hpDa
i ;θ˚q

(

“ 0.

Assumption 4 Suppose that Da
i are independent and identically distributed, for i “

1, . . . , n. For θ˚ defined in Assumption 3, Ẽ
 

hpDa
i ;θ˚qh

T pDa
i ;θ˚q

(

is positive definite, and
 

B2hpDa
i ;θ˚q

(

{pBθTBθq is continuous in the neighborhood of θ˚. Moreover, ‖
 

BhpDa
i ;θ˚q

(

{pBθT q‖,

‖
 

B2hpDa
i ;θ˚q

(

{pBθTBθq‖, and ‖hpDa
i ;θ˚q‖3 are bounded by some integrable function around

θ˚.
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Assumption 1 and 2 are the moment regularities for the main parameter estimation of

interest. Assumption 3 and 4 are regularities for the auxiliary model. Assumption 1 and 3

are important for identifiability and estimation consistency for the main parameter, whereas

Assumption 2 and 4 are moment conditions to guarantee valid Taylor expansion of given

estimating equations.

1.1 Proof for Theorem 1

In order to solve the problem of constrained maximization in (3), we introduce Lagrange

multipliers λ, and from the theorem of empirical likelihood (Qin and Lawless, 1994; Owen,

2001) under Assumption 3,4, we have

λ̂ “
1

m1

SQm1pθ˚q ` oppn
´ 1

2 q (1)

with Qm1pθ˚q “
řm1

i“1 hpD
a
i ;θ˚q. The notation S is defined in the Theorem 1. On the other

hand, by empirical likelihood theorem and Assumption 3,4 again, estimated weights can be

expressed as p̂i “ m´1
1 r1´λ̂

ThpDa
i ;θ˚qt1`opp1qus. Based on (1) and expression of estimated

weights and under Assumption 2, 4, we have

0 “
m1

n

m1
ÿ

i“1

p̂igpD
u
i ; β̂ENq `

1

n

n
ÿ

i“m1`1

gpDu
i ; β̂ENq

“
1

n

m1
ÿ

i“1

gpDu
i ; β̂ENq

”

1´ λ̂ThpDa
i ;θ˚qt1` opp1qu

ı

`
1

n

n
ÿ

i“m1`1

gpDu
i ; β̂ENq

“
1

n

n
ÿ

i“1

gpDu
i ;β0q `

1

n

n
ÿ

i“1

BgpDu
i ;β0q

Bβ
pβ̂EN ´ β0q ´

1

n

m1
ÿ

i“1

gpDu
i ;β0qhpD

a
i ;θ˚q

T λ̂` oppn
´ 1

2 q,

The third equation is based on Taylor expansion with respect to β0. Thus, the asymptotic

expansion of the estimator β̂EN can be derived as

n
1
2 pβ̂EN ´ β0q

“ ´

˜

1

n

n
ÿ

i“1

BgpDu
i ;β0q

BβT

¸´1 «

n´
1
2

n
ÿ

i“1

gpDu
i ;β0q ´ n

´ 1
2

m1
ÿ

i“1

!

gpDu
i ;β0qhpD

a
i ;θ˚q

T
)

λ̂

ff

` opp1q

“ ´ Γ´1

#

n´
1
2

n
ÿ

i“1

gpDu
i ;β0q ´ n

´ 1
2ΛSQm1pθ˚q

+

` opp1q

(2)

To complete the proof, it suffices to calculate the asymptotic variance. Based on the
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influence function in (2), we have

lim
nÑ8

var
 

n
1
2 pβ̂EN ´ β0q

(

“ lim
nÑ8

Γ´1

„

var
!

n´
1
2

n
ÿ

i“1

gpDu
i ;β0q

)

` var
 

n´
1
2ΛSQm1pθ˚q

(

´ cov
!

n´
1
2

n
ÿ

i“1

gpDu
i ;β0q, n

´ 1
2ΛSQm1pθ˚q

)

´ cov
!

n´
1
2ΛSQm1pθ˚q, n

´ 1
2

n
ÿ

i“1

gpDu
i ;β0q

)



pΓ T
q
´1.

Notice that

lim
nÑ8

var
!

n´
1
2

n
ÿ

i“1

gpDu
i ;β0q

)

“Σ,

lim
nÑ8

var
 

n´
1
2ΛSQm1pθ˚q

(

“ρΛSΛT ,

lim
nÑ8

cov
!

n´
1
2

n
ÿ

i“1

gpDu
i ;β0q, n

´ 1
2ΛSQm1pθ˚q

)

“ρΛSΛT .

Thus, based on central limit theory, we have the asymptotic normality of n1{2pβ̂EN ´ β0q

with the asymptotic variance-covariance matrix equal to Γ´1pΣ ´ ρΛSΛT qpΓ T q´1.

1.2 Proof of Property 1

In the following proof, we will utilize S11 and S12 to represent S11pθ˚q and S12pθ˚q, respec-

tively. The same strategy from the proof of Theorem 1 will be applied to the proof of Property

1. For convenience, let us denote the solution to the estimating equations G˚
npβq “ 0 as β̂.

Now applying Taylor expansion to the estimating equations at β0, we have

n
1
2 pβ̂ ´ β0q “ ´Γ

´1n
1
2

!

Gnpβ0q ´CQm1pθ̂q
)

` opp1q, (3)

with Gnpβ0q defined as 1{n
řn
i“1 gpD

u
i ;β0q and Qm1pθ̂q re-defined as 1{n

řm1

i“1 hpD
a
i ; θ̂q.

Notice that, by empirical likelihood theorem (Qin and Lawless, 1994) and Taylor expan-

sion at θ˚, Qm1pθ̂q can be expressed as

Qm1pθ̂q “Qm1pθ˚q `
BQm1pθ˚q

BθT
pθ̂ ´ θ˚q ` oppn

´ 1
2 q, with

n
1
2 pθ̂ ´ θ˚q “ ´ n

1
2ΩS21S

´1
11

n

m1

Qm1pθ˚q ` opp1q.

By applying the above results, the expression in (3) becomes

n
1
2 pβ̂ ´ β0q “ ´ Γ

´1
!

n
1
2Gm1pβ0q ` n

1
2Gm2pβ0q ´ n

1
2CApθ˚qQm1pθ˚q

)

` opp1q (4)
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with Apθ˚q “ I ´ S12ΩS21S
´1
11 , Gm1pβ0q “ 1{n

řm1

i“1 gpD
u
i ;β0q, and

Gm2pβ0q “ 1{n
řn
i“m1`1 gpD

u
i ;β0q.

To obtain the estimator β̂ in (4) with smallest variance, it suffices to project Gm1pβ0q `

Gm2pβ0q onto the linear subspace spanned by Apθ˚qQm1pθ˚q based on projection theory

(Qin, 2017), which leads the matrix C equal to E
 

pGm1 ` Gm2qQ̃
T
m1

(

E´pQ̃m1Q̃
T
m1
q “

EpGm1Q̃
T
m1
qE´pQ̃m1Q̃

T
m1
q with Q̃m1pθ˚q “ Apθ˚qQm1pθ˚q. Here, the notation E´ repre-

sents generalized inverse of the expectation. Therefore, under such a C matrix, we have

lim
nÑ8

var
 

n
1
2 pβ̂ ´ β0q

(

“ lim
nÑ8

Γ´1
”

var
 

n
1
2Gm1pβ0q ` n

1
2Gm2pβ0q

(

` var
 

n
1
2CQ̃m1pθ˚q

(

´ cov
 

n
1
2Gm1pβ0q ` n

1
2Gm2pβ0q, n

1
2CQ̃m1pθ˚q

(

´ cov
 

n
1
2CQ̃m1pθ˚q, n

1
2Gm1pβ0q ` n

1
2Gm2pβ0q

(

ı

pΓ T
q
´1

“Γ´1
!

Σ ´ lim
nÑ8

nEpGm1Q̃
T
m1
qE´pQ̃m1Q̃

T
m1
qEpQ̃m1G

T
m1
q

)

pΓ T
q
´1.

The second equality holds by the fact that

var
`

n
1
2CQ̃m1pθ˚q

˘

“nEpGm1Q̃
T
m1
qE´pQ̃m1Q̃

T
m1
qEpQ̃m1G

T
m1
q,

cov
`

n
1
2Gm1pβ0q ` n

1
2Gm2pβ0q, n

1
2CQ̃m1pθ˚q

˘

“nEpGm1Q̃
T
m1
qE´pQ̃m1Q̃

T
m1
qEpQ̃m1G

T
m1
q,

lim
nÑ8

var
`

n
1
2Gm1pβ0q ` n

1
2Gm2pβ0q

˘

“Σ.

Finally, by realizing that EpGm1Q̃
T
m1
q “ pm1{n

2qΛpI ´ S´1
11 S12ΩS21q and EpQ̃m1Q̃

T
m1
q “

pm1{n
2qpS11 ´ S12ΩS21q, we have

lim
nÑ8

var
`

n
1
2 pβ̂ ´ β0q

˘

“ Γ´1
`

Σ ´ ρΛSΛT
˘

pΓ´1
q
T
“ VEN ,

which completes the proof.

1.3 An alternative equivalent formulation of the proposed estima-

tion procedure

let us consider another formulation of the proposed method. Let ηi be the indicator which

equals one if the ith subject has the auxiliary records, and is equal to zero otherwise. Then,

the reweighting scheme in (2) from the main manuscript can be summarized as

n
ÿ

i“1

p̂˚i gpD
u
i ;βq “ 0, (5)

where the non-negative weights p̂˚i on subjects i “ 1, . . . , n are obtained by maximizing
śn

i“1 p
˚
i under the constraints

n
ÿ

i“1

p˚i “ 1,
n
ÿ

i“1

p˚i ηihpD
a
i ;θq “ 0. (6)

4



It can be shown that the above scheme is equal to the one in (2) from the main manuscript,

given that the first m1 subjects in the study have auxiliary data, and the rest subjects

have no auxiliary records. To this end, notice that the estimated weights from (6) are

p̂˚i “ n´1{t1 ` λ̂TηihpD
a
i ; θ̂qu by applying Lagrange multiplier technique from Section 1.1,

which equals 1{n for i “ m1 ` 1, . . . , n. The constrains in (6) then become
řm1

i“1 p
˚
i “ m1{n

and
řm1

i“1 p
˚
i hpD

a
i ;θq “ 0, and the estimating equation in (4) becomes

řm1

i“1 p̂
˚
i gpD

u
i ;βq `

řn
i“m1`1p1{nqgpD

u
i ;βq “ 0. Thus, (5) and (6) are reduced to (2) and (3) from the main

manuscript by realizing the fact that p̂˚i “ pm1{nqp̂i, where p̂i are the estimated weights

solving (3) from the main manuscript.

2 Extra simulation results

In this section, we will examine the performance of our proposed estimator by considering

a linear model for the main analysis, in the presence of longitudinal measurements as aux-

iliary data. To be specific, suppose, for i “ 1, . . . ,m1, the auxiliary data Da
i contains the

repeated measurements Ỹi with length T “ 5 generated by the model Ỹi “ X̃iθ ` ε̃i with

θ “ p´1, 1, 2qT and X̃i “ pX̃i1, . . . , X̃iT q
T , where X̃it “ p1, X̃it1, X̃it2q

T with X̃it1 follow-

ing independent and identical uniform distribution within support r0, 1s and X̃it2 following

independent and identical standard normal distribution, for t “ 1, . . . , T . On the other

hand, for i “ 1, . . . , n, the outcomes Yi in the main data Du
i is generated by the linear

model Yi “ X̃T
iTβ ` εi with β “ pβ0, β1, β2q

T “ p1,´1,´1qT . In order to make feasible of

borrowing information from the auxiliary data, we require residuals ε̄i “ pε̃Ti , εiq
T in both

data sets follow 6-dimensional multivariate normal distribution with mean zeros and covari-

ance matrix σ2C, given the variance σ2 “ 1 and correlation coefficient ρ “ 0.4, 0.6, 0.8,

respectively. Thereafter, we investigate three different situations by specifying the functions

hpDa
i ;θq in (4) for the auxiliary data. In situation 1 (S1), we select base matrices Vj such

that
řτ
j“1 ajVj “ C

´1. In particular, when the true correlation structure C is exchangeable,

we have two base matrices, i.e., identity matrix V1 and a matrix V2 with 0 on the diagonal

and 1 off the diagonal; when AR1 structure is applied, we have three base matrices, i.e., V1

defined above, V3 with 1 on the two main off-diagonal and 0 otherwise, and V4 with 1 on

the left-up and right-bottom corners and 0 elsewhere. Situation 2 (S2) aims to incorporate

all V1, V2, V3, and V4 base matrices into (4). In situation 3 (S3), we evaluate the behav-

ior of mis-specification for the mean structure µipθq in (4), i.e., instead of utilizing X̃i, we

use covariate matrix Z̃i “ pZ̃i1, . . . , Z̃iT q where Z̃it “ p1, X̃it1 ` 0.5X̃it2q. For all situations

above, we will only present the results where the underlying true correlation structure C

is exchangeable. To evaluate the performance of our proposed estimator, we implemented

1000 Monte Carlo runs, where 75% and 100% subjects have auxiliary data for sample size
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n “ 200, 600, respectively. To further compare with the estimator from classic least square

method applied to the main data, we record certain measurements, including empirical rel-

ative efficiency of the proposed estimator versus ordinary least square estimator, absolute

value of bias, empirical standard error, estimated asymptotic standard error, and empirical

coverage proportion of the proposed estimator with IIB recorded for each setup.

The results are summarized in Table S.1. Overall, the proposed estimator has a satisfac-

tory performance as evidenced by the low bias and high relative efficiency. The empirical

coverage proportion becomes closer to 95% nominal level as sample size increases. We can

also observe that, in general, more auxiliary data would enhance the efficiency in the main

analysis, which has been notified in Theorem 1 from the main manuscript. For all situa-

tions, the relative efficiency increases as the correlation coefficient of residuals between two

outcomes increases. This phenomenon is expected as well, since stronger association im-

plies more information sharing between the auxiliary and main data. In addition, for any

given correlation coefficient, the relative efficiency in situation 2 is always higher than that

in situation 1. This result supports the theoretical conclusion that adding extra set of esti-

mating equations would further enhance the estimation efficiency. In situation 3, in which

the mean structure is mis-specified, the proposed estimator has little bias and better effi-

ciency compared to the classic least square approach. This further indicates the flexibility

and robustness of our proposed estimator. Besides, all situations have showed that IIB has

the potential to provide a fair evaluation on how well and how much amount of information

is borrowed from the auxiliary data.

Moreover, Table S.2 summarizes the results in Example 1 from the main manuscript,

where the main outcome is binary and only partial auxiliary data are observed. Note that in

Table 1 from the main manuscript, there is little efficiency gain for the estimated parameter

(β̂3) corresponding to a time-independent covariate. By selecting proper basis matrices, it

is possible to substantially increase the estimation efficiency for parameters associated with

time-independent covariates. To see this, we consider four basis matrices: Ṽ1, Ṽ2, Ṽ3, and

Ṽ4, where ith diagonal of Ṽi is equal to one, and zero otherwise, for i “ 1, 2, 3, 4. All other

setups remain the same to Section 3.1 in the main manuscript, and the results with r0 “ 0.9

and ρ “ 0.4 (defined in Section 3.1 in the main manuscript) are summarized in Table S.3

It can be seen that there is considerable efficiency gain for parameters associated with both

time-independent and time-dependent covariates, due to larger than one ERE.
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3 Extra discussions and one extension to missing data

3.1 One note about covariates and efficiency gain

In the simulation study from the main manuscript, we find that the covariates in the

pool of X̃i in Example 2 have little efficiency gain. Here, we will provide some mathe-

matical insight onto this phenomenon. Let us consider a special case in Example 2 with

dpX̃i, Z̃i;θq “ pX̃T
i , Z̃

T
i q

T for illustration. In the auxiliary data, we have a contiunous-

scale auxiliary variable Ỹi and covariates X̃i involved in the mean structure µpX̃i;θq as

well as some redundant covariates Z̃i; in the main analysis, the covariates we utilize are

Xi “ X̃i, i.e., the same covariates used in the mean structure µpX̃i;θq in the working

model. Furthermore, we assume that the covariance between two outcomes (Yi and Ỹi) in

the main data and auxiliary data is constant, denoted by a, and we adopt the score func-

tions for gpDu
i ;βq to solve the parameters of interest β. Then, by some algebra, we can

check that the matrix ΛSΛT is equal to zero matrix. The underlying reason leading to

this result is that the association matrix Λ in this situation becomes aS21, thus resulting

in ΛS´1
11 pθ˚qS12pθ˚qΩpθ˚qS21pθ˚qS

´1
11 pθ˚qΛ

T “ ΛS´1
11 pθ˚qΛ

T and then ΛSΛT “ 0. But it

would not be the case if the covariates in the main analysis become Xi “ Z̃i. These findings

may provide some guidance for researchers to select proper covariates in the working model,

in order to achieve a satisfactory efficiency gain in the main estimation. More simulation

studies can be conducted to check this, which is omitted in this paper.

3.2 Extension to missing data problem

In simulation studies and the real data application from the main manuscript, we assume all

the main data are observed or missing completely at random, which may not be the case in

some applications. However, our method can be easily accommodated to the data missing

at random. Herein, we present an extension by incorporating inverse probability weight

for illustration. To be specific, let us denote observing indicator R̃i, which is equal to one if

subject i is observed and 0 otherwise. Then, we define the probability of observing subject i as

πipαq “ EpR̃i|Xiq, where α are parameters involved in the missing data model. Furthermore,

let us define the score function for parameters α in the missing data model as
řn
i“1Lipαq,

which can be obtained from logistic regression by modeling R̃i with covariates Xi. We keep

other setups the same to Section 2 in the main manuscript. Then, we simultaneously solve

β and α by the following modified weighted estimating equations:

m1
ÿ

i“1

p̂ig̃pD
u
i ,α;βq `

n
ÿ

i“m1`1

g̃pDu
i ,α;βq “ 0, (7)
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where g̃pDu
i ,α;βq “ pRi{πipαqg

T pDu
i ;βq,LTi pαqq

T . Here gpDu
i ;βq is the same in (2) from

the main manuscript. The final asymptotic variance-covariance matrix for joint β and α

parameters will be the same in Theorem 1 by replacing gpDu
i ;β0q with g̃pDu

i ,α0;β0q, where

α0 and β0 are true parameter values. Weights p̂i are the same from solving constrained

optimization problem in (3) from the main manuscript.

In the presence of high missingness, we can see that the only modification is to construct

an extended estimating functions g̃pDu
i ,α;βq for the main analysis. The first component in

g̃pDu
i ,α;βq is a typical estimating function under inverse probability weight framework. The

second term is to make the constructed estimating functions g̃pDu
i ,α;βq independently and

identically distributed, in order to guarantee the efficiency gain for β estimates in theory.

Numerical evaluations can be done by generating the main data with missing at random.

Since this paper does not specifically focus on the missing data problem, we omit the details

and regard it as a future work.
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Table S.1: Simulation results for linear regression in the main analysis by borrowing infor-

mation from continuous scaled auxiliary records.

β1 β2

Set-up Bias ESE ASE ERE 95%CP Bias ESE ASE ERE 95%CP IIB

P=100% S2 ρ=0.8 0.3 21 19 1.48 93 0.2 6.2 5.6 1.35 91 0.49

n=200 ρ=0.6 0.2 22 21 1.26 94 0.3 6.7 6.1 1.15 91 0.35

ρ=0.4 0.2 23 22 1.12 94 0.3 7.2 6.5 1.03 91 0.23

S1 ρ=0.8 0.6 23 22 1.17 94 0.3 6.6 6.5 1.17 94 0.20

ρ=0.6 0.5 24 23 1.12 94 0.3 6.9 6.7 1.12 94 0.14

ρ=0.4 0.5 24 23 1.07 95 0.2 7.1 6.8 1.07 93 0.09

S3 ρ=0.8 0.2 25 23 1.01 94 0.4 6.5 6.2 1.22 94 0.28

ρ=0.6 0.3 25 24 1.00 94 0.4 6.9 6.5 1.12 93 0.20

ρ=0.4 0.3 25 24 0.99 94 0.3 7.1 6.7 1.04 92 0.13

P=100% S2 ρ=0.8 0.1 11 11 1.56 94 0.2 3.4 3.3 1.51 95 0.42

n=600 ρ=0.6 0.0 13 12 1.28 94 0.2 3.7 3.6 1.28 95 0.28

ρ=0.4 0.0 14 14 1.12 94 0.2 3.9 4.1 1.12 94 0.16

S1 ρ=0.8 0.1 13 13 1.22 94 0.2 3.9 3.7 1.11 94 0.18

ρ=0.6 0.1 13 13 1.14 94 0.2 4.0 3.9 1.07 94 0.12

ρ=0.4 0.0 14 14 1.07 95 0.2 4.0 3.9 1.03 94 0.07

S3 ρ=0.8 0.2 14 14 1.06 94 0.1 3.7 3.6 1.23 95 0.24

ρ=0.6 0.0 14 14 1.03 94 0.1 3.9 3.8 1.14 94 0.16

ρ=0.4 0.1 14 14 1.00 94 0.1 4.0 3.9 1.07 94 0.09

P=75% S2 ρ=0.8 0.4 22 20 1.31 93 0.2 6.5 5.9 1.21 93 0.52

n=200 ρ=0.6 0.2 23 22 1.19 94 0.2 6.9 6.3 1.09 92 0.38

ρ=0.4 0.1 24 23 1.09 94 0.2 7.2 6.6 1.02 92 0.26

S1 ρ=0.8 0.4 24 23 1.12 93 0.2 6.8 6.6 1.13 94 0.22

ρ=0.6 0.4 24 23 1.09 94 0.2 7.0 6.7 1.09 94 0.16

ρ=0.4 0.4 24 24 1.06 95 0.2 7.1 6.8 1.05 93 0.10

S3 ρ=0.8 0.4 25 24 1.01 95 0.2 6.9 6.5 1.09 94 0.23

ρ=0.6 0.4 24 24 1.00 95 0.2 7.2 6.7 1.03 93 0.17

ρ=0.4 0.4 24 24 1.00 95 0.2 7.3 6.8 0.99 92 0.13

P=75% S2 ρ=0.8 0.0 12 12 1.36 94 0.2 3.6 3.5 1.31 94 0.44

n=600 ρ=0.6 0.0 13 13 1.19 95 0.2 3.8 3.7 1.17 94 0.29

ρ=0.4 0.1 14 13 1.08 94 0.2 4.0 3.9 1.07 93 0.18

S1 ρ=0.8 0.2 13 13 1.16 95 0.2 4.0 3.8 1.06 93 0.18

ρ=0.6 0.1 14 14 1.11 94 0.2 4.1 3.9 1.03 93 0.13

ρ=0.4 0.0 14 14 1.06 95 0.2 4.1 4.0 1.01 94 0.08

S3 ρ=0.8 0.3 14 14 1.01 94 0.2 4.0 3.8 1.12 94 0.18

ρ=0.6 0.4 14 14 0.99 94 0.2 4.0 4.0 1.07 94 0.12

ρ=0.4 0.4 15 14 0.98 95 0.1 4.1 4.0 1.03 94 0.07

1000 Monte Carlo simulation runs are implemented under three situations (S1,S2,S3) with correlation coefficient ρ equal to

0.8, 0.6, and 0.4, respectively. The sample size n “ 200, 600, where 75%,100% subjects have auxiliary data (P “ 75%, 100%),

respectively. The measurements such as absolute value of bias, empirical standard error (ESE), estimated asymptotic

standard error (ASE), empirical relative efficiency (ERE), coverage probability (CP), and IIB are recorded. All values except

ERE and IIB are multiplied by 100.
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Table S.2: Simulation results for Example 1 in the main manuscript. Half of the subjects

have auxiliary data (ρ “ 50%)

n=300 n=600

Bias ESE ASE ERE 95%CP IIB Bias ESE ASE ERE 95%CP IIB

S2 ρ̃=0.4 β0 2 25 24 0.98 95.0 0.166 1 18 17 0.99 94.6 0.111

r0=0.5 β1 -2 29 29 0.98 95.3 -2 20 20 1.01 96.0

β2 -3 17 16 0.97 94.5 -1 12 12 0.99 94.8

β3 1 30 29 0.98 93.7 0 21 20 1.00 94.1

ρ̃=0.4 β0 2 25 24 0.98 94.4 0.293 2 17 17 1.01 95.5 0.237

r0=0.9 β1 -2 28 28 1.01 93.9 -1 20 20 1.04 95.3

β2 -3 17 16 1.01 93.7 -1 12 11 1.04 94.4

β3 1 29 29 1.01 95.1 0 20 20 1.02 95.2

ρ̃=0.8 β0 2 25 24 0.97 95.4 0.181 1 17 17 1.00 95.7 0.126

r0=0.5 β1 -2 28 28 0.99 95.7 -2 20 20 1.03 95.9

β2 -3 17 16 0.97 94.7 -1 12 12 1.01 94.7

β3 1 30 29 0.97 93.8 0 21 20 0.99 93.6

ρ̃=0.8 β0 2 25 24 0.98 94.4 0.344 2 18 17 1.00 94.4 0.290

r0=0.9 β1 -2 28 28 1.01 93.9 -1 19 19 1.08 95.4

β2 -3 17 16 1.01 93.7 -1 12 11 1.06 94.0

β3 1 29 29 1.01 95.1 0 20 20 0.99 94.6

S1 ρ̃=0.4 β0 2 25 25 0.99 95.3 0.042 1 17 17 1.00 95.3 0.028

r0=0.5 β1 -2 29 29 0.99 95.6 -2 20 20 1.01 96.6

β2 -3 17 17 0.99 95.0 -1 12 12 1.00 94.9

β3 1 30 29 0.98 94.6 0 21 20 1.00 94.1

ρ̃=0.4 β0 3 25 25 0.99 95.4 0.075 2 17 17 1.00 95.0 0.060

r0=0.9 β1 -2 28 29 1.00 95.1 -1 20 20 1.01 95.8

β2 -3 17 17 1.00 94.4 -1 12 12 1.02 94.1

β3 1 29 29 0.99 95.7 0 20 20 1.00 95.6

ρ̃=0.8 β0 2 24 25 0.99 95.6 0.072 1 17 17 1.01 95.9 0.056

r0=0.5 β1 -2 28 29 1.01 95.8 -2 20 20 1.02 96.1

β2 -3 17 17 0.98 94.8 -1 12 12 1.02 94.6

β3 1 30 29 0.98 94.6 0 21 20 1.00 93.7

ρ̃=0.8 β0 2 25 25 1.01 96.2 0.170 2 17 17 1.01 94.7 0.155

r0=0.9 β1 -2 28 28 1.07 95.7 -1 19 20 1.06 95.2

β2 -3 17 16 1.03 93.4 -1 12 11 1.04 94.7

β3 2 29 29 0.98 94.4 0 20 20 0.99 94.8

S3 ρ̃=0.4 β0 2 25 25 0.98 94.9 0.131 1 18 17 0.99 94.5 0.083

r0=0.5 β1 -2 29 29 0.99 95.4 -2 20 20 1.00 96.1

β2 -3 17 17 0.98 94.9 -1 12 12 1.00 94.9

β3 1 30 29 0.98 94.2 0 21 20 0.99 94.0

ρ̃=0.4 β0 3 25 24 0.97 95.2 0.216 2 17 17 1.01 95.7 0.167

r0=0.9 β1 -2 28 28 1.03 94.7 -1 20 20 1.04 96.0

β2 -3 17 16 1.03 94.5 -1 12 11 1.04 94.2

β3 1 30 29 0.98 94.8 0 20 20 0.98 95.2

ρ̃=0.8 β0 2 25 25 0.97 95.6 0.148 1 17 17 1.00 95.4 0.100

r0=0.5 β1 -2 28 29 0.99 96.1 -2 20 20 1.02 96.2

β2 -3 17 16 0.98 95.0 -1 12 12 1.01 94.9

β3 1 30 29 0.97 94.4 0 21 20 0.99 93.8

ρ̃=0.8 β0 3 25 24 0.98 95.6 0.270 2 17 17 1.00 94.6 0.226

r0=0.9 β1 -2 28 28 1.06 95.4 -1 19 20 1.07 95.0

β2 -3 17 16 1.05 94.1 -1 12 11 1.05 94.2

β3 1 29 29 0.97 94.2 0 20 20 0.98 94.4

S1, S2, S3: scenarios 1, 2, 3. ESE: empirical standard error. ASE: estimated asymptotic standard error. ERE: empirical

relative efficiency, the empirical variance of the maximum likelihood estimator using the main study data alone divided by

the empirical variance of the proposed estimator. CP: coverage probability. All values except ERE and IIB are multiplied

by 100.
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Table S.3: Simulation results for Example 1 in the main manuscript with different basis

matrices

Sample Size Parameter Bias ESE ASE ERE 95%CP IIB

n=300 β0 2.1 23 21.8 1.14 95 0.966

β1 -1.5 25.4 24.8 1.25 95

β2 -2.7 15.9 14.7 1.19 94

β3 1.5 27.7 26.1 1.11 93

n=600 β0 1.3 15.9 15.4 1.19 94 0.9

β1 -0.8 17.7 17.6 1.26 95

β2 -1.3 10.6 10.4 1.28 94

β3 0.3 18.8 18.5 1.15 95

These results are based on the setup where r0 “ 0.9 and ρ “ 0.4. ESE: empirical standard

error. ASE: estimated asymptotic standard error. ERE: empirical relative efficiency, the

empirical variance of the maximum likelihood estimator using the main study data alone

divided by the empirical variance of the proposed estimator. CP: coverage probability.

All values except ERE and IIB are multiplied by 100.
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