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In many clinical and observational studies, auxiliary data from the same sub-
jects, such as repeated measurements or surrogate variables, will be collected
in addition to the data of main interest. Not directly related to the main study,
these auxiliary data in practice are rarely incorporated into the main analysis,
though they may carry extra information that can help improve the estima-
tion in the main analysis. Under the setting where part of or all subjects have
auxiliary data available, we propose an effective weighting approach to borrow
the auxiliary information by building a working model for the auxiliary data,
where improvement of estimation precision over the main analysis is guaranteed
regardless of the specification of the working model. An information index is
also constructed to assess how well the selected working model works to improve
the main analysis. Both theoretical and numerical studies show the excellent
and robust performance of the proposed method in comparison to estimation
without using the auxiliary data. Finally, we utilize the Atherosclerosis Risk in
Communities study for illustration.
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1 INTRODUCTION

To improve the estimation accuracy in the main study, auxiliary measurements may play an important role. In the litera-
ture, there are multiple types of auxiliary measurements, of which the most popular one is from an external independent
study. Such information could be either at the summary level or from other validation data through shared covariate
effects between the main and external studies. In presence of this type of auxiliary data, methods based on the generalized
method of moment, generalized regression, weight calibration, constrained maximum likelihood, empirical likelihood,
etc., have been proposed to borrow auxiliary information to power up the main study.1-13 In this article, we consider a
different type of auxiliary data that is also widely seen in applications, that is, an auxiliary measurement collected in the
same study but served as the outcome in a secondary analysis. Usually, such kind of auxiliary measurement is highly asso-
ciated with the primary outcome, and how to incorporate this secondary information to enhance estimation precision for
the main analysis is of high interest.

There are many examples in epidemiological and clinical studies where auxiliary outcomes that are associated with
primary outcome are available but the information contained in these variables is rarely incorporated into the main
analysis. For instance, in the prospective Cardiovascular Health Study,14,15 both cardiovascular and cancer outcomes
were measured. Investigators may borrow information from cancer outcomes to improve studies in which cardiovascular
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disease is the main outcome, or vice versa. Another example is the long-term Health Professional Follow-up Study16 on
the association between coffee drinking status at the baseline and prostate cancer risk. Since data on coffee consump-
tion during the follow-up were also repeatedly measured, these data not used in the main analysis become auxiliary but
contain extra information about the main study. A third example is a study on the relationship between risk of influenza
and vaccination status in the current flu-season, in which case individuals’ vaccination and disease status in previous
seasons are auxiliary measurements and may help improve the main analysis. In this article, we use the Atherosclerosis
Risk in Communities study17,18 for illustration. We are interested in detecting baseline risk factors for the development of
essential hypertension during the follow-up. In addition to the primary interest, there are certain auxiliary measurements
available in the study that are associated with the hypertension development, for example, longitudinal measurements
of systolic blood pressure. Since these auxiliary measurements are not typically treated as risk factors for hypertension,
in the existing literature they are rarely incorporated into the main analysis for risk factor detection. However, the sys-
tolic blood pressure is highly associated with the occurrence of hypertension, it may contain useful information for the
estimation in the main analysis.

In the remaining article, let us focus on the auxiliary measurements collected from all or part of the subjects in the
same study. To make use of these auxiliary data, we propose an estimation procedure by reweighting the study subjects
in their contribution towards the main analysis. The weights are calculated based on the empirical likelihood method19

through specifying a working model for the auxiliary data. Note that weighting based on the empirical likelihood have
already been investigated in certain areas, including missing data problems, casual inference, and longitudinal quantile
regression.6,20-25 Distinct from existing literature, we allow the auxiliary data and the main data to contain completely dif-
ferent variables, which implies a broader applicability for information borrowing. The auxiliary data are also allowed to
be available only from a subset of study subjects. One of desirable features of the proposed method is that under mild con-
ditions, mis-specification of the working model for the auxiliary data will not affect estimation consistency of the main
analysis but still improves estimation precision in comparison to estimation without the auxiliary data. Here, misspecifi-
cation also refers to informative missing data issues when building the working model, in addition to misspecification of
the working model itself. We further propose an index of information borrowing (IIB) to assess the overall performance of
the estimation procedure, serving as a criterion in practice for selecting a proper auxiliary data set or a desirable working
model.

The rest of paper is organized as follows. Section 2 describes the new estimation procedure with its theoretical proper-
ties in a general setting. Two examples are then illustrated. Section 3 conducts simulation studies to evaluate the numerical
performance of the proposed method. An application to the Atherosclerosis Risk in Communities study data is presented
in Section 4. Some discussions are given in Section 5. The technical proofs, extra discussions, and other simulation results
are presented in Appendix S1.

2 PROPOSED ESTIMATION PROCEDURE

We start with a general framework. For each subject i from a random sample, i = 1,… ,n, let Du
i be the data for the main

analysis, which include both the outcome Yi (eg, occurrence of hypertension in ARIC study) and covariates Xi (eg, risk
factors such as age, bmi, etc.) of primary interest. The model of interest is a regression of the main outcome on potential
risk factors, with regression parameters 𝜷 estimated by solving the estimating equations

n∑
i=1

g(Du
i , 𝜷) = 0. (1)

Here, the estimating functions g(Du
i , 𝜷) can be the derivative of least squares, the score function from a likelihood,

the generalized estimating equations (GEE), etc., based on different specifications of the regression model of interest.
For illustration, we assume that all primary data Du

i are observed. Some more complicated setups, such as in missing
data framework, are discussed in Section 5 and section 3.2 in Appendix S1. Let 𝜷0 be the true parameter values such that
E{g(Du

i , 𝜷0)} = 0. Then, the solution �̂� to the equation (1) is consistent for 𝜷0 and has an asymptotic normal distribution
under some regularity conditions.26

In addition to the data Du
i for the main analysis, many studies have secondary (auxiliary) variables collected, such

as longitudinal measurements of systolic blood pressure in ARIC study. Let Da
i be the auxiliary data collected on sub-

ject i. It includes an auxiliary outcome with certain covariates, which is believed to contain information to improve
over the main estimation. To avoid confusion, hereafter, we call Da

i the auxiliary data/variables and use terms auxiliary
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outcome/covariates to denote the outcome/covariates in the auxiliary data Da
i . In practice, not every subject has auxil-

iary data. Without loss of generality, we assume that the first m1 subjects in the study have auxiliary data, that is, Da
i for

i = 1,… ,m1. A more concrete specification for the main data Du
i and auxiliary data Da

i will be provided in later examples
and Section 3.

To improve the estimation precision from (1), auxiliary data Da
i can play an important role. Due to potential association

between the main data and the auxiliary data, the estimation of main parameters of interest 𝜷 will be affected if the
information in the auxiliary data is incorporated. One way to incorporate the auxiliary information is to jointly model the
two sets of data. However, the joint modeling approach may be theoretically complicated (sometimes even intractable)
and computationally intensive (more discussions in Section 5). Instead, to effectively use the auxiliary data to improve
estimation for the main parameters 𝜷, we consider the following combined weighted estimating equations

m1∑
i=1

m1p̂ig(Du
i ; 𝜷) +

n∑
i=m1+1

g(Du
i ; 𝜷) = 0, (2)

where the weights p̂i on subjects i = 1,… ,m1 are non-negative and maximize
∏m1

i=1pi under the constraints

m1∑
i=1

pi = 1,
m1∑
i=1

pih(Da
i ;𝜽) = 0, (3)

where the estimating functions h(Da
i ;𝜽) are based on some working model for the auxiliary data Da

i that satisfies
E{h(Da

i ;𝜽
∗)} = 0. The working model has parameters 𝜽 with dimension r and true values 𝜽∗ if the working model for

auxiliary data is correctly specified. From (2) and (3), intuitively, we can see that the information from auxiliary data
Da

i is incorporated into the main model by the constructed weights p̂i, making data integration and information borrow-
ing possible. Denote the dimension of h(Da

i ;𝜽) as q, and we require q > r, thereby resulting in over-identified estimating
functions. Two working examples for auxiliary data and corresponding specification of over-identified functions h(Da

i ;𝜽)
are provided below.

Example 1. The typical auxiliary measurement in longitudinal format is oftentimes available in practice and can carry
the information that is useful for the main analysis. For example, the repeated measurements on systolic blood pressure
are informative for the analysis where the risk of hypertension occurrence is the outcome with primary interest. In gen-
eral, the auxiliary data Da

i from the ith subject contains repeatedly measured auxiliary outcomes Ỹi with dimension T
and some covariates X̃i. Then, the over-identified estimating functions accounting for the association within repeated
measurements can take the form of

h(Da
i ;𝜽) =

⎛⎜⎜⎜⎝
ZT

i R−1∕2
i V1R−1∕2

i

{
Ỹi − 𝝁(X̃i;𝜽)

}
…
ZT

i R−1∕2
i V𝜏R−1∕2

i

{
Ỹi − 𝝁(X̃i;𝜽)

}
⎞⎟⎟⎟⎠ , (4)

where Zi = 𝜕𝝁(X̃i;𝜽)∕𝜕𝜽T ; Ri is a diagonal matrix containing variances of each element in Ỹi; 𝝁(X̃i;𝜽) are the conditional
mean of Ỹi indexed by parameters 𝜽. The 𝜏 matrices Vj lead to the over-identified estimating function with length q =
r × 𝜏 > r, given 𝜏 ≥ 2. One possible candidate for Vj is the basis matrix as suggested in References 6,27. Another option
is to take Vj to be the inverse of a working correlation matrix, in which case (4) is equivalent to stacking multiple GEEs28

with different working correlation structures. In what follows, we will adopt basis matrices for constructing Vj. In practice,
we recommend using more distinct and small number of basis matrices to avoid potential co-linearity issue. Detailed
specifications are referred to Section 3.1.

Example 2. Sometimes, the secondary outcomes that are highly associated with the disease of main interest is available.
For example, the measurement of amyloid plaques is often accessible in addition to Alzheimer’s disease outcome.29 Those
measurements may not be in a longitudinal format but could be still informative for the analysis of the disease of primary
interest. Suppose for the auxiliary data, we specify a working model with auxiliary outcome Ỹ i and covariates X̃i such that
the conditional mean of Ỹ i given X̃i is 𝜇(X̃i;𝜽). Then, we may consider the over-identified estimating function h(Da

i ;𝜽)
with the form

h(Da
i ;𝜽) = d(X̃i, Z̃i;𝜽)

{
Ỹ i − 𝜇(X̃i;𝜽)

}
, (5)
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where d(X̃i, Z̃i;𝜽) is a user-specified vector function with dimension q > r and Z̃i are some additionally available variables.
One special case is to set d(X̃i, Z̃i;𝜽) = (X̃T

i , Z̃T
i )T . The variables Z̃i may be part of or all the covariates Xi used for the

main analysis. The selected redundant variables Z̃i should satisfy E{h(Da
i ;𝜽∗)} = 0 for some parameter values 𝜽∗ (not

necessarily to be the true ones 𝜽∗).

Given a specific type of auxiliary data with corresponding estimating functions h(Da
i ;𝜽), the constrained optimization

in (3) results in estimated weights p̂i (and estimated �̂� as by product) that are used to reweight subjects i = 1,… ,m1 in (2).
The solution to (2) is our proposed estimator �̂�EN . The following theorem summarizes the asymptotic property of �̂�EN .

Theorem 1. Under certain regularity conditions Appendix S1, suppose there exist parameter values 𝜽∗ such that
Ẽ{h(Da

i ;𝜽∗)} = 0, then we have

n
1
2 (�̂�EN − 𝜷0) → N(0,VEN),

in distribution, where asymptotic covariance matrix VEN equals 𝜞 −1(𝜮 − 𝜌𝜦S𝜦T)(𝜞 T)−1 with 𝜌 =
limn→∞ m1∕n, 𝜞 = E{𝜕g(Du

i ; 𝜷0)∕𝜕𝜷T}, 𝜮 = E{g⊗2(Du
i ; 𝜷0)}, 𝜦 = Ẽ{g(Du

i ; 𝜷0)h(Da
i ;𝜽∗)T}, and S = S−1

11 (𝜽∗) −
S−1

11 (𝜽∗)S12(𝜽∗)𝜴(𝜽∗)S21(𝜽∗)S−1
11 (𝜽∗). Here, 𝜴(𝜽∗) = {S21(𝜽∗)S−1

11 (𝜽∗)S12(𝜽∗)}−1, S11(𝜽∗) = Ẽ{h⊗2(Da
i ;𝜽∗)}, S12(𝜽∗) =

Ẽ{𝜕h(Da
i ;𝜽∗)∕𝜕𝜽T}, and S21(𝜽∗) = ST

12(𝜽∗). The notation f⊗2 is ffT, and Ẽ(f) denotes the limit value of (1∕m1)
∑m1

i=1fi, for any
measurable function vector f.

The proof is presented in section 1.1 in Appendix S1. The regularity conditions are similar to those for the empirical
likelihood19 and the method of moments.26 In VEN , the term Ṽ = 𝜞 −1𝜮(𝜞 −1)T is the asymptotic covariance matrix for the
estimator �̂� solving the equations in (1).26 Since the matrix S is nonnegative definite, the asymptotic covariance matrix of
�̂�EN is no larger than that of �̂�. In addition, the term 𝜌 quantifies the degree of information borrowing from the auxiliary
data, with the efficiency of �̂�EN reaches the maximum when auxiliary data are available for all subjects, that is, m1 = n.

Efficiency improvement of �̂�EN over �̂� requires q > r; that is, the length of the estimating function h(⋅) should be larger
than the number of paramemters 𝜽. If q = r and the matrix S12(𝜽∗) has full rank, then

𝜴(𝜽∗) =
{

S21(𝜽∗)S−1
11 (𝜽∗)S21(𝜽∗)

}−1 = S−1
21 (𝜽∗)S11(𝜽∗)S−1

21 (𝜽∗),

which implies S = S−1
11 (𝜽∗) − S−1

11 (𝜽∗) = 0 and thus 𝜦S𝜦T = 0. In this case, all information in the auxiliary data has been
used to estimate nuisance parameters 𝜽, and thereby the auxiliary data no longer improves over the main analysis. Indeed,
such a situation would cause the weights p̂i equal to 1∕n for all i, being totally noninformative to the main analysis. More-
over, the quantity 𝜦 = E[g(Du

i ; 𝜷0)h(Da
i ;𝜽

∗)T] typically describes the strength of association between the main outcome
in Du

i and auxiliary outcome in Da
i . Higher association implies larger potential of efficiency gain, thus highlighting the

motivation of this article to incorporate auxiliary outcome that are highly associated with the trait of main interest into
the estimation procedure.

In theory, for a particular specified working model, we only require the existence of 𝜽∗ such that Ẽ{h(Da
i ;𝜽∗)} = 0.

Thus, the working model for the auxiliary data does not have to be correctly specified for efficiency improvement for the
main parameter estimation. Note that the misspecification of the working model will occur if the mean structure fails
to incorporate appropriate covariates and/or the working model fails to address the issue of informative missingness in
auxiliary data. In any case, however, our proposed weighting scheme always enables unbiased estimation of main param-
eters 𝜷, as long as Ẽ{h(Da

i ;𝜽∗)} = 0 hold with some values 𝜽∗. This benefit can be seen from our numerical evaluations
(Section 3). It is also worthwhile pointing out that, since we do not intend to make any inference on the auxiliary data,
the working model does not need to be practically interpretable. It only serves as a bridge to deliver the information from
the auxiliary data to the main analysis.

To illustrate the efficiency gain of our method in using the auxiliary data, we consider the following set of estimating
functions

𝒮 =

{
G∗

n(𝜷)
|||G∗

n(𝜷) =
1
n

n∑
i=1

g(Du
i ; 𝜷) −

1
n

m1∑
i=1

Ch(Da
i ; �̂�)

}
, (6)

where C is any p × r constant matrix, and �̂� is the empirical likelihood estimator under the constraints in (3). When
the weight matrix C is set to be zero, the class reduces to the estimating function in (1). Thus, the constructed
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class contains the unweighted estimation function as a special case. Furthermore, (6) augments the unweighted
estimation function based on the main data by using a weighted estimating function based on the auxiliary data,
with an arbitrary weight. The following property summarizes the optimality of our proposed estimator within
this class.

Property 1. The asymptotic covariance matrix of the proposed estimator �̂�EN is the minimum that can be achieved by
any estimator solving G∗

n(𝜷) = 0 for G∗
n(𝜷) ∈ 𝒮.

The proof is given in section 1.2 in Appendix S1. Note that Property 1 is for a given working function h(Da
i ;𝜽). In

general, it is rather challenging to determine the optimal form of h(Da
i ;𝜽) that leads to the most efficiency improvement

for the estimation of 𝜷. Thus, a criterion assessing several candidate working models is highly desired. Noting that 𝜌 and
𝜦S𝜦T play essential roles in the efficiency improvement based on Theorem 1, the quantity trace{𝜌𝜞 −1𝜦S𝜦T(𝜞 T)−1} may
serve as such a criterion. It is equivalent to the sum of eigenvalues for the matrix 𝜌𝜞 −1𝜦S𝜦T(𝜞 T)−1, providing an overall
evaluations for the efficiency gain. Therefore, we propose the following index for information borrowing (IIB), which is
a scaled version of this quantity,

IIB = trace{𝜌Diag( ̂̃V)−
1
2 �̂�

−1
�̂�Ŝ�̂�T(�̂� T)−1Diag( ̂̃V)−

1
2 }, (7)

where the terms ̂̃V, �̂� , �̂�, and Ŝ are some consistent estimators for Ṽ, 𝜞 , 𝜦, and S, respectively. The multiplier Diag( ̂̃V)−1∕2

is used to adjust the asymptotic standard error, thereby making it comparable to the one from unweighted estimator
based on the equations in (1). The IIB is nonnegative, and a larger value may indicate a better performance in borrowing
information by incorporating the auxiliary data.

3 SIMULATION

3.1 Example 1

In this section, we will examine the performance of our proposed estimator in the case specified in Example 1, where aux-
iliary outcomes are repeated measurements. We consider the setting where the outcome in the main analysis is binary but
the longitudinal outcomes in the auxiliary data are continuous. This setup considers different types of outcomes in the
main and auxiliary data and mimics the situation in ARIC study, where occurrence of hypertension (binary-scale) is our
main interest with systolic blood pressure (continuous-scale) as an auxiliary outcome. Specifically, for i = 1,… ,m1, the
auxiliary data Da

i contain continuous repeated outcomes Ỹi with dimension T = 4 generated by the model Ỹi = X̃i𝜽 + �̃�i
with 𝜽 = (−1, 1, 2, 1)T and covariates X̃i = (1, X̃i1, X̃i2, X̃i3) with X̃ij = (X̃ ij1,… , X̃ ijT)T . Here, time-dependent covariate vec-
tor X̃i1 follows multivariate normal distribution with mean zero, variance one, and exchangeable correlation matrix with
correlation coefficient 0.3; time-dependent covariate vector X̃i2 follows multivariate Bernoulli distribution with success
probability 0.5 and exchangeable correlation matrix with correlation coefficient 0.3; X̃i3 is a time-independent covari-
ate vector where all components are equal and are from Bernoulli distribution with success probability 0.5. The residual
vector �̃�i = (𝜖i1,… , 𝜖iT)T follows multivariate normal distribution with mean zero, variance one, and the exchangeable
correlation structure with correlation coefficient �̃� = 0.4, 0.8 in this simulation.

In the main analysis, the outcome of interest is binary with success probability p⋆
i = {1 + exp(−XT

i 𝜷)}
−1, where 𝜷 =

(𝛽0, 𝛽1, 𝛽2, 𝛽3)T = (1,−1,−1, 1)T and Xi = (1, X̃ i11, X̃ i21, X̃ i31)T . In other words, the covariates used in the main analysis are
the baseline covariates in the auxiliary data. The association between the binary outcome of primary interest and the
continuous auxiliary outcome in the auxiliary data is generated as follows. For each i, generate a standard normal random
variable Zi and then a variable xi = 𝜖i1r0 + Zi(1 − r2

0)
0.5 with 0 ≤ r0 ≤ 1. It is clear that xi follows the standard normal

distribution. Then the binary outcome of main interest Yi is equal to 1 if xi ≥ x0i and equal to 0 otherwise, where x0i is the
(1 − p⋆

i )
th percentile of the standard Normal distribution. The constant r0 controls the strength of association between

the binary Yi and the continuous Ỹi, with larger values indicating a stronger association. In our simulations, we consider
two possible values r0 = 0.5 and r0 = 0.9, leading to correlation coefficient between Yi and Ỹi1 equal to 0.34 and 0.63,
respectively.

We consider three different scenarios and specify h(Da
i ;𝜽) in (4) for the auxiliary data by employing basis matrices

for different correlation structures. In scenario 1, we select the basis matrices V1 and V2 corresponding to an exchange-
able correlation structure, where V1 is the identity matrix, and V2 is the matrix with 0 on the diagonal and 1 off the
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diagonal. In scenario 2, in addition to V1 and V2 as above, we also use V3 and V4 corresponding to the basis matri-
ces for an AR-1 correlation structure, where V3 is a matrix with 1 on the two main off-diagonal and 0 elsewhere, and
V4 is a matrix with 1 at the left-top and right-bottom corners and 0 elsewhere. This is to study if adding more basis
matrices will further improve estimation efficiency for main parameters 𝜷. In scenario 3, we evaluate the performance
under a misspecified working model for 𝝁i(X̃i;𝜽) with covariates X̃i replaced by X̌i = (1, X̃i1, X̃i2). The basis matrices
are the same as in scenario 2. We consider settings where 50% and 100% of the subjects have auxiliary data for sam-
ple sizes n = 300, 600. We are not aware of an existing method that is directly applicable to our simulation setting,
so we compare our proposed estimator to the main-data-only estimator. More discussions about the potential com-
parison to existing methods are provided in Section 5. All simulation results are summarized based on 1000 Monte
Carlo runs in Table 1 (𝜌 = 100%) with the results of partially observed auxiliary data (𝜌 = 50%) provided in Table S2 in
Appendix S1.

Overall, the proposed estimator has a good performance evidenced by the small bias and greater-than-one ERE, which
is the ratio between the empirical variance of the maximum likelihood estimator using the main study data alone and the
empirical variance of the proposed estimator. The empirical coverage probabilities of the 95% confidence intervals are all
close to the nominal level. There is more efficiency improvement as more auxiliary data become available, that is, as 𝜌
increases. For all scenarios, as expected, the efficiency improvement increases as the correlation coefficient between the
repeated measurements or between the outcome of interest and the repeated measurements increases, reflected by the
increased ERE. Also from the ERE, for any given �̃� and r0, efficiency improvement in scenario 2 is always higher than that
in scenario 1, showing that adding additional valid estimating equations in h(Da

i ;𝜽) further improves the efficiency. This
is to be expected, since with a fixed parameter 𝜽, more estimating equations lead to higher efficiency from the estimating
equation theory.26 In scenario 3 where the working model is misspecified, the proposed estimator has little bias and still
has a better efficiency compared to the maximum likelihood estimator based on the main study data alone, showing the
flexibility and robustness of our proposed method. We also observe that, for all the settings considered, the estimates
corresponding to X̃ i11 and X̃ i21, the baseline value of the time-dependent covariates X̃i1 and X̃i2, have more efficiency
gain compared to the estimates corresponding to X̃ i31, the baseline value of the time-independent covariates X̃i3. More
discussion regarding this observation is given in section 2 in the Appendix S1. The IIB seems to be a good measure to
compare the overall efficiency gain across different scenarios. Note that, under our data generating scheme the correlation
coefficient between main outcome and auxiliary outcome can only take values up to around 0.6, therefore the efficiency
gains observed in Table 1 are mild. Substantial efficiency gain could be discovered in real studies or from other simulation
setups in Section 3.2 and Appendix S1 (Tables S1 and S3).

3.2 Example 2

In this section, we assess the performance of our proposed estimator under the setting in Example 2, where a surro-
gate auxiliary outcome (not in a longitudinal format) is available to the main trait. There are five covariates in total
generated as following: X̃ i1 follows the Uniform distribution on [0, 1]; Z̃i1 follows Bernoulli distribution with success
probability 0.5; (X̃ i2, Z̃i2)T follows the bivariate Normal distribution with mean zero, variance one, and correlation coef-
ficient 0.3; X̃ i3 is the sum of Z̃i2 and a standard normal random variable with a standardization such that X̃ i3 has mean
zero and variance one. With these covariates, the outcome of primary interest is Yi that follows Bernoulli distribution
with success probability p⋆

i = {1 + exp(−XT
i 𝜷)}

−1, where 𝜷 = (𝛽0, 𝛽1, 𝛽2, 𝛽3)T = (1,−1,−1, 1)T and Xi = (1, X̃ i2, Z̃i1, X̃ i3)T .
The auxiliary outcome is modeled as Ỹ i = X̃T

i 𝜽 + 𝜖i, with X̃i = (1, X̃ i1, X̃ i2)T and 𝜽 = (−1, 1, 1)T . Here, to generate a cor-
relation between Yi and Ỹ i, we set 𝜖i = r0Z0i + (1 − r2

0)
0.5𝜖i, where 𝜖i follows standard Normal distribution, and Z0i is

Yi with a standardization to have mean zero and unit variance. The residual 𝜖i then has mean zero and unit vari-
ance as well and is associated with Yi, where the degree of association is controlled by 0 ≤ r0 ≤ 1. In this setup, we
consider three values for r0, 0.5, 0.7, 0.9, and adopt (5) as our working estimating functions with redundant variables
Z̃i = (Z̃i1, Z̃i2)T .

We consider two scenarios, with correctly specified and misspecified working models for the auxiliary outcome,
respectively. In the latter scenario, X̌i = (1, X̃ i2)T instead of X̃i is used to construct the working model 𝜇i(X̌i;𝜽) for the auxil-
iary outcome Ỹ i. The simulation results based on 1000 Monte Carlo runs are summarized in Table 2. Similar to Section 3.1,
our proposed estimator for the main parameters 𝜷 shows a better performance compared to logistic regression without
integrating the auxiliary data. It has smaller standard errors and is robust against misspecification of the working model.
More discussions about the efficiency gain are referred to section 3.1 in Appendix S1.
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T A B L E 1 Simulation results for Example 1. All subjects have auxiliary data (𝜌 = 100%)
n = 300 n = 600
Bias ESE ASE ERE 95%CP IIB Bias ESE ASE ERE 95%CP IIB

S2 �̃�= 0.4 𝛽0 2 24 24 1.01 94.8 0.222 1 17 17 1.02 94.5 0.167
r0 = 0.5 𝛽1 −2 28 28 1.04 95.8 −2 19 20 1.03 96.5

𝛽2 −3 17 16 1.01 94.2 −1 12 11 1.02 95.0
𝛽3 1 29 29 1.01 94.2 0 21 20 1.03 94.0

�̃�= 0.4 𝛽0 2 24 24 1.04 95.3 0.479 1 17 17 1.08 95.4 0.420
r0 = 0.9 𝛽1 −2 27 27 1.14 95.1 −1 19 19 1.12 95.6

𝛽2 −3 17 16 1.07 93.5 −1 11 11 1.10 93.8
𝛽3 1 28 28 1.06 95.0 0 20 20 1.05 94.9

�̃�= 0.8 𝛽0 2 24 24 1.00 95.2 0.181 1 17 17 1.04 95.8 0.198
r0 = 0.5 𝛽1 −2 27 28 1.06 95.7 −2 19 20 1.06 95.9

𝛽2 −2 16 16 1.05 94.7 −1 12 11 1.07 94.6
𝛽3 1 29 29 1.00 94.3 0 21 20 1.01 93.0

�̃�= 0.8 𝛽0 2 25 24 1.03 94.5 0.582 2 17 17 1.08 94.4 0.523
r0 = 0.9 𝛽1 −3 26 26 1.24 94.8 −1 18 18 1.23 95.3

𝛽2 −3 16 15 1.18 93.9 −1 11 11 1.18 95.6
𝛽3 2 29 29 1.00 94.8 0 20 20 1.01 94.3

S1 �̃�= 0.4 𝛽0 2 25 25 1.00 95 0.042 1 18 17 1.00 94.8 0.042
r0 = 0.5 𝛽1 −2 29 29 1.00 95.5 −2 20 20 1.01 96.5

𝛽2 −2 17 17 1.01 95.1 −1 12 12 1.01 95.4
𝛽3 1 30 29 0.99 94.8 0 21 20 1.00 94.1

�̃�= 0.4 𝛽0 2 25 25 1.00 95.5 0.124 2 17 18 1.02 95.5 0.105
r0 = 0.9 𝛽1 −2 28 29 1.03 95.6 −1 20 21 1.05 95.5

𝛽2 −3 17 16 1.03 94.6 −1 12 12 1.05 94.3
𝛽3 1 29 29 0.99 95.5 0 20 21 1.00 95.9

�̃�= 0.8 𝛽0 2 24 25 1.00 95.2 0.114 1 17 17 1.02 96.1 0.099
r0 = 0.5 𝛽1 −2 28 29 1.03 95.5 −2 20 20 1.04 96.4

𝛽2 −2 16 16 1.04 94.7 −1 12 12 1.06 95
𝛽3 1 29 29 0.99 94.4 0 21 20 1.00 93.9

�̃�= 0.8 𝛽0 2 25 24 1.03 95.9 0.312 2 17 17 1.03 94.8 0.294
r0 = 0.9 𝛽1 −2 28 27 1.14 95.2 −1 19 19 1.13 95.3

𝛽2 −3 16 16 1.13 94.1 −1 11 11 1.13 95.4
𝛽3 1 29 29 0.99 95.1 0 20 20 1.00 94.5

S3 �̃�= 0.4 𝛽0 2 24 24 1.00 94.7 0.16 1 17 17 1.01 95.1 0.120
r0 = 0.5 𝛽1 −2 28 28 1.03 95.9 −2 20 20 1.02 96.1

𝛽2 −3 17 16 1.00 94.8 −1 12 12 1.02 95
𝛽3 1 30 29 0.99 94.2 0 21 20 1.00 93.8

�̃�= 0.4 𝛽0 2 24 24 1.03 95.8 0.332 1 17 17 1.04 95.5 0.285
r0 = 0.9 𝛽1 −2 27 27 1.13 95.2 −1 19 19 1.10 95.9

𝛽2 −3 17 16 1.07 94.3 −1 11 11 1.08 94.1
𝛽3 1 30 29 0.98 94.9 0 20 20 0.99 95.6

�̃�= 0.8 𝛽0 2 24 24 1.00 95 0.200 1 17 17 1.02 95.3 0.154
r0 = 0.5 𝛽1 −2 27 28 1.05 95.9 −2 20 20 1.04 96.3

𝛽2 −2 16 16 1.03 94.4 −1 12 11 1.05 95
𝛽3 1 29 29 0.99 94.6 0 21 20 1.01 93.3

�̃�= 0.8 𝛽0 2 25 24 1.03 95 0.444 2 17 17 1.06 94.6 0.399
r0 = 0.9 𝛽1 −3 27 27 1.20 95.4 −1 18 19 1.19 95.2

𝛽2 −3 16 16 1.13 94.3 −1 11 11 1.14 94.5
𝛽3 2 29 29 0.97 94.9 0 20 20 0.99 94.5

Abbreviations: ASE, estimated asymptotic standard error; CP, coverage probability; ERE, empirical relative efficiency, the empirical variance of the maximum
likelihood estimator using the main study data alone divided by the empirical variance of the proposed estimator; ESE, empirical standard error; S1, S2, and S3,
scenarios 1, 2, 3.
Notes: All values except ERE and IIB are multiplied by 100.
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T A B L E 2 Simulation results for Example 2
n = 300 n = 600
Bias ESE ASE ERE 95%CP IIB Bias ESE ASE ERE 95%CP IIB

S1 prop = 100% 𝛽1 1 20 20 1.10 94.6 0.514 1 14 14 1.18 94.2 0.487
r0 = 0.5 𝛽2 −3 18 17 1.01 93.7 −1 12 12 1.00 95.0

𝛽3 −1 26 25 1.30 93.9 −1 18 17 1.38 95.0
𝛽4 2 17 16 1.11 93.6 1 11 11 1.16 94.7

prop = 100% 𝛽1 1 19 18 1.24 94.0 0.975 1 13 13 1.37 94.7 0.947
r0 = 0.7 𝛽2 −3 17 16 1.03 93.8 −1 12 12 1.02 95.0

𝛽3 −1 21 21 1.85 93.4 −1 15 15 2.03 96.0
𝛽4 2 16 15 1.25 92.9 1 10 10 1.34 95.2

prop = 100% 𝛽1 1 17 16 1.51 94.4 1.591 1 12 12 1.70 94.7 1.564
r0 = 0.9 𝛽2 −3 17 16 1.05 93.5 −1 12 11 1.04 95.1

𝛽3 −1 14 14 4.21 94.2 −1 9 10 4.95 95.8
𝛽4 2 14 13 1.53 93.6 1 9 9 1.63 96.0

prop = 50% 𝛽1 1 21 20 1.04 94.1 0.275 1 15 14 1.08 94.7 0.248
r0 = 0.5 𝛽2 −3 18 17 0.99 93.8 −1 12 12 0.99 95.0

𝛽3 −1 27 27 1.13 93.9 −1 19 19 1.14 94.4
𝛽4 2 17 16 1.04 92.7 1 11 11 1.07 94.4

prop = 50% 𝛽1 1 20 20 1.09 94.2 0.506 1 14 14 1.15 94.8 0.476
r0 = 0.7 𝛽2 −3 18 17 1.00 93.8 −1 12 12 1.00 94.8

𝛽3 −1 26 25 1.29 94.3 −1 18 17 1.33 94.4
𝛽4 2 17 16 1.09 92.9 1 11 11 1.14 94.6

prop = 50% 𝛽1 1 20 19 1.19 94.2 0.814 1 13 13 1.27 94.9 0.783
r0 = 0.9 𝛽2 −3 18 16 1.00 94.0 −1 12 12 1.01 94.7

𝛽3 −1 23 22 1.59 94.7 0 16 16 1.70 94.4
𝛽4 2 16 15 1.20 93.6 1 11 11 1.24 95.0

S2 prop = 100% 𝛽1 1 20 20 1.10 94.2 0.477 1 14 14 1.16 94.2 0.451
r0 = 0.5 𝛽2 −3 18 17 1.01 93.8 −1 12 12 1.00 95.0

𝛽3 −1 26 25 1.27 93.5 −1 18 18 1.33 94.6
𝛽4 2 17 16 1.08 93.5 1 11 11 1.15 94.8

prop = 100% 𝛽1 1 19 18 1.23 93.8 0.906 −1 13 13 1.33 94.6 0.877
r0 = 0.7 𝛽2 −3 18 16 1.02 93.7 −1 12 12 1.02 95.1

𝛽3 −1 22 21 1.75 94.0 1 15 15 1.87 95.2
𝛽4 2 16 15 1.21 93.2 1 10 10 1.31 95.1

prop = 100% 𝛽1 1 18 17 1.47 94.3 1.477 −1 12 12 1.61 94.7 1.448
r0 = 0.9 𝛽2 −3 17 16 1.04 93.5 −1 12 11 1.04 95.2

𝛽3 −1 15 15 3.52 94.7 1 11 11 3.80 95.7
𝛽4 2 15 14 1.44 92.6 1 9 10 1.57 95.7

prop = 50% 𝛽1 1 21 20 1.03 94.1 0.260 1 15 14 1.07 94.8 0.232
r0 = 0.5 𝛽2 −3 18 17 0.99 93.5 −1 12 12 1.00 95.0

𝛽3 −1 28 27 1.11 93.3 −1 19 19 1.14 94.2
𝛽4 2 18 16 1.03 92.9 1 11 11 1.07 94.7

prop = 50% 𝛽1 1 20 20 1.09 94.1 0.476 1 14 14 1.14 94.8 0.444
r0 = 0.7 𝛽2 −3 18 17 1.00 93.6 −1 12 12 1.01 94.9

𝛽3 −1 26 25 1.26 93.7 −1 18 18 1.31 94.4
𝛽4 2 17 16 1.08 93.0 1 11 11 1.13 94.9

prop = 50% 𝛽1 1 20 19 1.18 94.3 0.763 1 14 13 1.23 94.6 0.728
r0 = 0.9 𝛽2 −3 18 16 1.00 94.1 −1 12 12 1.01 94.7

𝛽3 −1 24 23 1.53 93.5 −1 16 16 1.62 94.6
𝛽4 2 16 15 1.17 93.5 1 11 11 1.23 95.0

Abbreviations: ASE, estimated asymptotic standard error; CP, coverage probability; ERE, empirical relative efficiency, the empirical variance of the maximum
likelihood estimator using the main study data alone divided by the empirical variance of the proposed estimator; ESE, empirical standard error; S1 and S2,
scenarios 1 and 2, with correctly specified and misspecified working model, respectively.
Notes: All values except ERE and IIB are multiplied by 100.
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T A B L E 3 Simulation results for auxiliary data with informative missingness

n = 300 n = 600

Bias ESE ASE ERE 95%CP IIB Bias ESE ASE ERE 95%CP IIB

r0 = 0.5 𝛽1 3 20 20 0.99 96 0.202 0 15 14 1.02 95 0.185

𝛽2 −2 17 17 0.98 95 −1 12 12 1.01 94

𝛽3 −2 27 27 1.03 94 0 20 19 1.06 94

𝛽4 2 17 16 1.05 95 1 12 12 1.05 95

r0 = 0.7 𝛽1 3 20 20 1.01 96 0.367 0 15 14 1.06 95 0.349

𝛽2 −2 17 17 0.99 95 −1 12 12 1.01 94

𝛽3 −2 26 26 1.11 94 0 19 18 1.15 94

𝛽4 2 16 16 1.10 96 1 11 11 1.10 95

r0 = 0.9 𝛽1 3 20 19 1.06 95 0.587 0 14 14 1.11 94 0.568

𝛽2 −2 17 17 0.99 95 −1 12 12 1.02 94

𝛽3 −2 25 24 1.25 95 −1 18 17 1.31 94

𝛽4 2 16 16 1.17 95 1 11 11 1.17 95

Abbreviations: ASE, estimated asymptotic standard error; CP, coverage probability; ERE, empirical relative efficiency, the empirical variance of the maximum
likelihood estimator using the main study data alone divided by the empirical variance of the proposed estimator; ESE, empirical standard error.
Note: All values except ERE and IIB are multiplied by 100.

3.3 Informative missing in auxiliary data

Section 3.1 and 3.2 evaluate the performance when the mean structure of auxiliary outcomes is misspecified. Not limited to
this, our weighting scheme is also robust to other misspecification of the working model, such as informative missingness
in auxiliary data (Section 2). Note that, though previous simulation setups have already considered partially observed
auxiliary data, we implicitly assume that the unobserved auxiliary data are missing completely at random. Thus, this
section provides more evaluation to the case in presence of nonignorable missing auxiliary data.

For illustration, we take the setup from Example 2 and consider the situation where the mean structure is misspecified,
and also the auxiliary outcome is informatively missing. To be specific, we first generate main data with sample size 300
and 600 by following the lines in Section 3.2. Then we simulate complete auxiliary data, where the auxiliary outcome is
modeled as Ỹ i = X̃T

i 𝜽 + �̃�i + 𝜖i. Here, �̃�i follows standard normal distribution, and X̃i, 𝜖i, and 𝜽 are defined the same in
Section 3.2. We then simulate observing indicator R̃i, so that R̃i = 1 to keep subject i’s auxiliary data and R̃i = 0, otherwise.
The success probability for R̃i is given as {1 + exp(−HT

i �̃�)}
−1, where Hi = (X̌T

i , �̃�i)T , �̃� = (1, 1, 0.5)T , and X̌i are already
defined in Section 3.2. By incorporating �̃�i into both models, R̃i and Ỹ i are not independent given covariates X̃i, leading to
non-ignorable missingness.30,31 To evaluate our proposed estimation, we only take auxiliary data with Ri = 1 to construct
the working model, of which the mean structure is misspecified with covariates X̌i. Thus, both informative missing data
issue and misspecification of the mean structure are present for the auxiliary outcome. Table 3 summarizes the results
under 1000 Monte Carlo runs under two sample sizes and three r0 values (defined in Section 3.2). It is seen that, even
under the worst situation with both missing data problem and mean structure misspecification, our weighting scheme
leads to little bias from the estimation for main parameters 𝜷 and still improve estimation precision in comparison to the
estimation without the auxiliary data.

4 DATA APPLICATION

Hypertension impacts over one-third of the U.S. adults and is a major risk factor for cardiovascular disease and stroke,
one of the top causes of death in the United States and worldwide. The Atherosclerosis Risks in Communities study,
beginning in 1987, is a prospective epidemiological study conducted among approximately 16 000 middle-aged adults
from four U.S. communities. The objective of the study is to investigate the distribution and causes of atherosclerosis
and its clinical outcomes, as well as other cardiovascular risk factors. In this application, we are particularly interested
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T A B L E 4 Data analysis results for the Atherosclerosis Risks in Communities study based on different auxiliary datasets

Data F (IIB: 1.09) Date S (IIB: 1.26)

Estimate Relative variance Estimate Relative variance

Intercept −6.2934 1.08 −7.6346 1.17

BMI 0.0054 1.11 0.0352 1.24

DRNKR 0.1633 1.27 0.2350 1.19

CIGT 0.0361 1.18 0.0019 1.13

AGE 0.1036 1.08 0.1031 1.12

Hemoglobin −0.0847 1.14 −0.0504 1.19

Abbreviations: BMI, body mass index; CIGT, current cigarette smoking status; DRNKR, current alcohol drinking status; Data F, auxiliary data including all
subjects; Data S, auxiliary data including the subjects with four observations; Relative variance, variance of the maximum likelihood estimate divided by that of
the proposed estimate.

in detecting baseline risk factors for the development of essential hypertension. Our analysis focuses on the subjects who
did not have hypertension at baseline and who were not taking antihypertensive medications within the 2 weeks prior to
the baseline. The outcome of primary interest is the occurrence of hypertension (binary-scale) during the follow-up (ie,
systolic blood pressure ≥ 140 mm Hg or diastolic blood pressure ≥ 90 mm Hg). To further narrow down the focus, we
select white males sampled from center B. The potential risk factors of interest include baseline measurements of body
mass index (kg/m2), current alcohol drinking status (1 = Yes, 0 = No), current cigarette smoking status (1 = Yes, 0 = No),
age (years), and hemoglobin (g/dL). By removing a small portion of subjects with missing values, the main dataset we
use has 1143 subjects.

There are quite a few variables with repeated measurements that could be considered as a candidate auxiliary out-
come, including the systolic blood pressure, the diastolic blood pressure, the glucose, etc. Among them, the systolic blood
pressure and the diastolic blood pressure are the most informative because that is how hypertension is defined. Noting that
only 2.96% subjects in the data have diastolic blood pressure ≥ 90 while 17.6% subjects have systolic blood pressure≥ 140,
we take the systolic blood pressure as the auxiliary outcome in this application. We have also computed the IIB for differ-
ent variables, and using the systolic blood pressure measurements as the auxiliary outcome leads to substantially higher
IIB than the others.

The systolic blood pressure is repeatedly measured for four visits in this study. To borrow the auxiliary information,
we take the estimating functions in (4) with the basis matrices V1, V2, V3, and V4 used in Section 3. Such a choice of
basis matrices is based on the highest IIB compared to other three cases that use V1 and V2, V1 and V3 and V4, and V2
and V3 and V4, respectively. The covariates used in the working model include body mass index, alcohol drinking status,
cigarette smoking status, hemoglobin, usage of antihypertensive medication (1 = Yes, 0 = No), and age at each visit. Since
some study subjects did not complete four visits, we consider two ways of using the auxiliary data. The first way uses
all available repeated measurements from all subjects, and the second uses data only from those subjects with all four
repeated measurements. For the second way about 𝜌 =76% of the study subjects contribute auxiliary data. Both ways are
valid since we just need to specify a working model for the auxiliary data, and misspecification of the constructed working
model will lead to unbiased estimation for the main analysis (referred to Sections 2 and 3).

The results are summarized in Table 4. When using all available repeated measurements from all subjects, a better
efficiency is observed for estimates for the drinking and cigarette smoking effects, based on a larger relative variance,
while the estimates corresponding to the intercept, BMI, age, and hemoglobin are less efficient, compared to those when
using only the subjects with complete four repeated measurements. In addition, using partial the subjects with all four
repeated measurements leads to a higher IIB. Thus, when the auxiliary data have missing values, using more subjects
with incomplete observations may not necessarily lead to a better estimation. Table 5 summarizes the results when using
only the subjects with all four repeated measurements. Compared to the maximum likelihood estimator using the main
data alone, the proposed method leads to estimates with smaller variances after incorporating the information from the
auxiliary data. The maximum likelihood method only detects the significance of baseline age, whereas our method also
detects the marginal significance of baseline body mass index on the development of hypertension. Note that in this
application, most subjects have records of the occurrence of hypertension during the study as the main outcome. Thus,
taking complete data for main analysis will not be improper. However, our proposed estimation can easily address missing
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T A B L E 5 Data analysis results for the Atherosclerosis Risks in Communities study using subjects with all four repeated measurements
as the auxiliary dataset

Estimate SE Relative variance Odds ratio Lower limit Upper limit P value P value MLE

Intercept −7.6346 1.4169 1.17 0.000 0.000 0.008 0.000 0.001

BMI 0.0352 0.0200 1.24 1.036 0.996 1.077 0.078 0.387

DRNKR 0.2350 0.1505 1.19 1.265 0.942 1.699 0.118 0.357

CIGT 0.0019 0.1725 1.13 1.002 0.715 1.405 0.991 0.724

AGE 0.1031 0.0134 1.12 1.109 1.080 1.138 0.000 0.000

Hemoglobin −0.0504 0.0664 1.19 0.951 0.835 1.083 0.448 0.672

Abbreviations: BMI, body mass index; CIGT, current cigarette smoking status; DRNKR, current alcohol drinking status; Lower limit and upper limit, lower
bound and upper bound of the 95% confidence interval for the odds ratio; Relative variance, variance of the maximum likelihood estimate divided by that of the
proposed estimate; SE, estimated standard error.

data issue occurred in the main analysis. Discussions and extensions are referred to Section 5 and section 3.2 in the
Appendix S1.

5 DISCUSSION

In the big data era, it is of tremendous interest to have methods that can incorporate auxiliary information to enhance
statistical analysis. This paper considers the case where auxiliary data are collected from the same study subjects. We
proposed an effective estimation procedure to borrow information from the auxiliary data, which can be completely dif-
ferent from the trait of primary interest. The auxiliary information may substantially improve the estimation efficiency
in the main analysis. Note that in theory, we can reformulate (2) and (3) by introducing an indicator of the availabil-
ity of auxiliary data, which leads to an alternative equivalent formulation of the proposed estimation procedure.Refer to
section 1.3 in Appendix S1 for more details. In addition, we provided an IIB to assess the performance when compar-
ing different working models for the auxiliary data. The magnitude of efficiency gain by borrowing information from
auxiliary data depends on the number of subjects that have auxiliary data, the strength of association between the main
outcome and the auxiliary outcome, and the specification of the working model for the auxiliary data, among other
things.

Some existing methods may be applied to the setting considered in this article after some nontrivial modifications. One
such method is the joint modeling approach, which was originally proposed to incorporate the longitudinal information
to survival analysis via shared random effects.32 In the setting we considered, a shared random effect to link the main
outcome and the auxiliary outcome may be used. However, most joint modeling methods are limited to certain parametric
forms, which may not be applicable to model the data we generated in Section 3. Moreover, when the main and auxiliary
data are jointly modeled, the misspecification of a working model for the auxiliary data can lead to inconsistent estimation
in the main model. In future research, we will study how to modify and apply some existing methods to our setting and
how they compare to our method.

Many extensions could be easily done based on this paper. One direct extension is to address missing data problem
in the main analysis. In presence of high missingness, our method can be easily adjusted by adopting some well-known
scheme, such as inverse probability weight,31,33,34 into the estimating function g(Du

i ; 𝜷). More details about this extension
is provided in section 3.2 in Appendix S1. Moreover, a generalization of the proposed method to other data types, such as
survival data, is of great interest. Borrowing information from possible multiple auxiliary outcomes is another important
research problem. We will investigate such generalizations in our future work.
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